
Proposal for HL7 Version 3 Data Types

Gunther Schadow

Regenstrief Institute for Health Care, Indianapolis

WORKING DRAFT

Id: v3dtm.tex,v 1.5 1998/09/29 01:45:48 schadow Exp

Preface

This document is a mess and I apologize for it. The reason why I publish it
anyway is because I want the project team on version 3 data types to get up
and running. Originally I intended to come to San Diego with a complete
document, but the project was too big to accomplish just a few weeks before
the meeting. So I fell back to producing slides and while doing so, I came to
new ideas of how to break down the problem into parts.

I want to use this document as a basis for working through the many
issues involved in data types. The table of contents sets forth an agenda.
Except from an introduction there is only one section written, section 2.1
on text. Some lengthy but incomplete thoughts on real world concepts are
found in section 2.2, and the rest is empty yet. As a compensation to the
lack of text, this document contains the slides that I presented in San Diego.
These provide the keywords along which we can tackle the problem space.

As we discuss these issues, more and more of the messy text should be-
come straight and the controversial text should become reflecting our con-
sensus. As we move on, the slides are going to be replaced by text and useful
drawings if we want. The list of authors will expand as input from other peo-
ple gets into the document. Although lots of thoughts originate in a dialog
with Mark Tucker, I did not list him now, because there are possibly many
things in here to which he would object.

1

This document is going to be collaborative work. I will edit the docu-
ment as people make suggestions and as the phone conferences move forward.
The document will be distributed as PDF, which is a platform independent
format. My Web server http://aurora.rg.iupui.edu/v3dt will be the
distribution site. The small line “Id: ...” in the title tells you the revision
number and date. I use the Revision Control System (RCS) so that a com-
plete history of our changes is maintained. We thus need not be afraid from
removing large chunks from the text as we can recover those later, if we want
to.

Contributions are welcome in various forms. If you want to comment, you
can do this simply by faxing the respective pages with your scribbeling to
the number (317) 630 6962, please write my (or Mark’s) name in the upper
left corner or otherwhise the fax is falsely routed to Clem’s desk. You can
also cut and paste a couple of paragraphs or more out of the PDF reader and
modify those. Do not fight with formatting or a couple of screwed letters
— the contents is what counts most. If you want to contribute chunks of
text, please do so by sending raw ASCII e-mail. You can just post to the
list hl7-cq@list.mc.duke.edu. If you absolutely think that you have to
contribute marked up text, by all means do so in HTML. Please use Word
or RTF texts as the absolute last resort. If you want to contribute drawings,
the easiest thing is to scratch something on paper and fax it. If you want
to share to the list, use whatever tool you want and post in a format that
others can read.

We will start our e-mail discussions on hl7-cq@list.mc.duke.edu. If the
traffic becomes high, or if there is too much distraction from parallel threads,
I will set up an e-mail list on hl7-v3dt@aurora.rg.iupui.edu. Now please
scan through this document and let your thoughts flow. I am looking forward
to working with you on this important part of HL7 version 3.

2

Contents

1 Introduction 5
1.1 Requirements . 6

1.1.1 Semantics first . 6
1.1.2 Usefulness and reuseability 6
1.1.3 Coherence . 7
1.1.4 Minimality . 7
1.1.5 Stability . 7
1.1.6 Completeness . 7
1.1.7 Simplicity . 8

1.2 Material and Methods . 8
1.2.1 Prior Knowledge and Experience 9
1.2.2 Reuse of MDF Methodology 12
1.2.3 CDTM and DDTM . 12
1.2.4 Control query and other technical committees or BDTM

and EDTMs. 13
1.2.5 Abstract properties of data and abstract data types . . 14
1.2.6 From semantics to implementable specifications (ITS) . 14
1.2.7 Literals . 15

1.3 Roadmap . 16

2 The Basic Data Type Model (BDTM) 20
2.1 DDTM on Text . 20

2.1.1 From Bits to Characters 21
2.1.2 From Characters to Strings 22
2.1.3 Display Properties . 23
2.1.4 Encoding of appearance 24
2.1.5 From appearance of text to multimedial information . . 26
2.1.6 Pulling the pieces together 28
2.1.7 Requirements to ITS 30

2.2 DDTM on Symbols, Identifiers and Qualities 31
2.2.1 Boolean values . 33
2.2.2 Real world concepts (Nominal values) 34
2.2.3 Technical concepts . 38
2.2.4 Technical instances . 39
2.2.5 Real world instances 40
2.2.6 Ordinal values . 41

3

2.3 DDTM on Quantities . 42
2.3.1 The number concept 42
2.3.2 Dimensioned quantities 43
2.3.3 Enumerations . 43
2.3.4 Calendar Date and Time 44

3 Abstract Data Types 45
3.1 Generic Data Types . 46

3.1.1 Structures . 46
3.1.2 Vector . 46
3.1.3 List . 46
3.1.4 Set . 47
3.1.5 Bag . 47

3.2 Fundamental Data Properties 47
3.2.1 Intervals . 47
3.2.2 Uncertainty . 48
3.2.3 Incomplete information 49
3.2.4 Update semantics . 50
3.2.5 Historic dimension of data 51

4 Strawman types for other technical comittees 51
4.1 CQ . 51
4.2 PAFM . 51
4.3 ORD . 52

4.3.1 TQ . 52
4.4 Automated data . 52

4

1 Introduction

#of components

Redesign Goals

Simplification

Rationalization
How can we keep track
of the meaning?

Maintainability
How can we manage
consistency and
coherence in the
set of types?

How can we contain the explosion of data types in number and complexity?

1.0 2.0 2.1 2.2 2.3 2.3.1 3.0

49

21
1720

10

30

40

50

HL7 version

6
8

15

#of types

5

1.1 Requirements

We want to produce an easy to implement standard.

Requirements

 We should aim for coverage to everyCompleteness a priori

Simplicity

independent semantic concepts to support.
Minimality

Coherence There should not be two competing data types for
one given use case. Relationship between types should be clear.

Stability

Usefulness and Reuseability The basic data types should be
equally useful to all technical comittees.

through signals - unambiguously.
Semantics first

conceivable logical extent - anticipate the future.

There should be just as many data types as there are

the impact of changes is extremely difficult to control.
Because one data type is used many times,

Communication is to exchange meaning

1.1.1 Semantics first

Data types are the basic building blocks of information exchanged in mes-
sages. Information is exchanged in the form of signals which are ordered
according to lexical and syntactical rules. These signals are exchanged to
convey a meaning (semantics) and to eventually serve a purpose (pragmat-
ics). Therefore, data types must have a precisely defined semantics that
is unambiguously related to their syntax (including the rules for building
lexemes).

1.1.2 Usefulness and reuseability

The basic set of data types must be equally useful for all HL7 technical
committees. This means, the data types must be meaningful enough so that
the technical committees can use them directly as the data types for encoding
the attributes of their information model classes. It also means that the basic
set of data types must be reuseable for many purposes and should not be too

6

highly specialized. This does not preclude a highly specialized data type to
be defined by a technical committee that uses it.

1.1.3 Coherence

The set of all data types should be coherent. There should not be two or
more competing data types for a certain use case. The relationships between
the data types should be well defined. This means that data types should be
organized similarly to the organization of domain information models (DIM)
in the reference information model (RIM). The RIM and RIM harmonizations
make sure that the DIM classes are in a close relationship and that there are
no competing alternatives to express the same information in different ways.

1.1.4 Minimality

From the coherence reqirement it follows that the number of data types in
the set should be minimal. There should be just as much data types as there
are independent basic semantic concepts to support. The lower boundary of
minimality is that each data type should have a well defined semantics on
a level that is relevant to the application domain of HL7. For example, we
could have only one data type “string of bits”, but bits do not have a general
relevant meaning on the application level of HL7.

1.1.5 Stability

It follows from the reusebalility requirement that every basic data type will
be used my many classes and attributes of almost every technical committee.
It becomes extremely difficult to coordinate changes to the data types and
to estimate the effect that those changes would have on the many different
areas in which the data types are used. Therefore the set of data types must
be designed for high stability.

1.1.6 Completeness

Usefulness, reuseablity, coherence and stability can be achieved by aiming
for maximal completeness a priori. This means that the data types of each
basic semantic area cover that area to every logical extent conceivable by the
time of design. Conversely completeness a posteriori would only make sure
that every current concrete use is covered by the design. Stability can only

7

be achieved by aiming for complete coverage of every conceivable current and
future use case.

1.1.7 Simplicity

The data types should be as simple as possible to ease implementation and

1.2 Material and Methods

Over 10 year’s experience with HL7.

The the goals and requirements to redesign of version 3 are similar,
i.e., rationalization, coherence, reusability and simplification.

We do not have to reinvent the weel (and we should not do so.)

Analysis of what we have, reverse engineering.

We should revise ideosyncrasies of traditional HL7.

Lessons learned from our own history.

version 3 data types.
Many MDF tools are equally applicable for defining and maintaining

Tools

Knowledge of computer science in general.

HL7 version 3 methodology.

8

1.2.1 Prior Knowledge and Experience

Dependencies of v2.3 Types

ST

QIP RCD

QSC

IS

TX

MO

MA

NA

NM

SI

TN

XAD

XPN SCV

CM

HD

VH

TSDR

TM

ID

DT
PT

EI

RPED

CQ

CP

CE
SN

DLN
FC

TQ
XTN

AD

CK

CX

XON

CD

PPN

XCN
PL

CN

RI JCC

CF

FT

PN

9

outbound arrows indicate composition.

Dependency Graph - lessons learned

PN, AD, EI, do have components.

... some are composite.

Some types are primitive ...
TX, DT, TM, TN, etc. do not have components.

CP, VH, RCD, RI, and many others are not reused by other types.

... some are advanced.

Some types are basic ...
ST, ID, IS, HD, NM are heavily reused by other types.

There is a hierarchy of types:
inbound arrows indicate importance.

History - many lessons to learn from

Imprecision and ranges: TS-DT, DR, SN.

Historical dimension: FC (effective date), DLN (expiry.)
Type codes: PN-XPN, AD, TN-XTN.
Different kinds of identifiers: ID/IS, CE, EI, HD, CK, DLN.
Assigning authority and type code: CK, CX, CN, XCN.
New uses: TN-XTN (e-mail.)
Multimedia: ED, RP.

Correcting past misdesigns: TN-XTN, CM-*, AD-XAD.
Coping with incoherence: TX-CE, FT-CF.
Minor distinctions: ID-IS, CE-LCE.

Avoiding new segments: XON, XCN, PPL, PL, TQ, CD.

10

Lesson #1 from history

Do not design a type system based only
on currently evident use cases.

Aim for consistency.
Aim for completeness.

Aim for generality.
Anticipate the future!

dimensions of data.

Define a concise basic type system.
Rationalize: explain your decision.
Watch out for principles, classify, divide and conquer.
Seek exhaustive coverage of logical domains.

Divide the plethora of advanced types into
maintainable sections, delegate maintenance.

Reuse MDF approach: RIM, DIM, stewardship, harmonization, MDF.

Work plan

Collections (List, Set, Bag, etc.) as generic data types.
Incomplete information, update semantics, uncertainty, history.

Watch out for orthogonal (i.e., independent)

For our design of HL7 data types we can build on two kinds of prior
knowlege and experience. There is more than ten years of experience with

11

data types in version 2 of HL7 and there is more than 40 years of experience
with data types in general computer science. In this proposal we will try to
maximize leverage of these two rich sources of knowledge.

1.2.2 Reuse of MDF Methodology

To further improve the overall coherence of the design of HL7 as a whole,
we will try to reuse the modeling methodology and tools of HL7 version 3 as
described in the message development framework (MDF). We will formulate
the relationships between data types as object oriented models in the uni-
fied modeling language (UML). We will have one common data type model
(CDTM) that is divided into subject areas or domains (domain data type
models, DDTM).

1.2.3 CDTM and DDTM

The CDTM plays the role that the RIM plays in HL7 information modeling,
i.e. to provide proof for coherence of the overall type model. The DDTMs
are used to focus the definition of domains of data types and thus resemble
the DIMs. However, the requirement for reuseability and coherence prohibit
any direct relationship between a DIM and a DDTM; we want most data
types to be generally used by all technical committees of HL7 instead of
every technical committee defining their own ideosyncratic set of data types
in isolation. Thus, the partitioning of the set of data types in domains is
not the same as the partitioning of the set of information model classes in
domains. The domains of the information model are application domains.
Conversely, the domains of the data type model are fundamental logical
domains.

12

1.2.4 Control query and other technical committees or BDTM
and EDTMs.

Maintenance

CQ maintains basic types.

Release advanced types to stewardship of
Technical Committees that use those types.

CQ keeps responsibility for coherence.

C/Q O/R

Sced.

ADT

The control/query committee offers a basic data type model (BDTM) as
a service for all other technical comitees. Control/query does, however, not
try to rule over the other comitees. The BDTM will be build towards max-
imal use for all technical comittees. This means, control/query appreciates
suggestions and tries to address the concrete needs of the other comittees.
However, control/query will be responsible for the coherence and stability
of the BDTM. Contentions will be resolved in harmoizations similar to RIM
harmonizations.

Control/query will not prevent technical committees to develop their own
extensions to the basic data types (EDTM) as needed. Our basic data type
model shall be enabling not restricing. In HL7 version 2 we had some highly
specialized data types for timing and quantity (TQ) and waveform informa-
tion. These data types are not fully addressed in this proposal. It is up to
the technical committees who uses these types to define and maintain them
as they see fit. However, we will make suggestions as to how these types can
be defined on the new basis of version 3 data types.

13

The data type(s) for coded information does not automatically fall under
the same category of highly specialized data types that would be maintainable
seperately by one technical comittee. Coded values are used by all techni-
cal committees as often as numeric types. Therefore, data types for coded
values must be considered fundamental, are subject to the requirements of
reuseability and coherence, and are defined as part of the BDTM not an
EDTM. However, we appreciates and seeks close guidance in the recent work
that has been done in this field by the technical comittee on vocabulary. It
is also possible for a distinct variant of a data type for coded values to be
used in only a few fields by a few technical committees. Such a type could
be maintained in an EDTM.

1.2.5 Abstract properties of data and abstract data types

There are common properties of all data that is independent from the specifics
of the data types and can therefore be specified in an abstract manner. These
issues fall into two categories: (1) fundamental properties of all data and (2)
aggregations of data types.

Fundamental properties of all data include incomplete information, un-
certainty and update semantics. To give account for these fundamental prop-
erties is very imortant not only to clinical medicine but whenever data about
the real world is collected honestly. We are honest about data when we do not
want to pretend certainty where we are in fact unsure, not pretend complete-
ness where we know we are missing some information. These fundamental
properties are elaborated in a fundamental data type model (FDTM).

There are different ways in which we can aggregate data, unordered and
ordered sets of fixed of variable cardinality with or without multiple occu-
rance of the same object. These collection data types are also called abstract
or generic data types. We will define those in the generic data type model
(GDTM).

1.2.6 From semantics to implementable specifications (ITS)

For every domain data type model we will give account for the semantic
properties aiming for complete coverage a priori. We will outline the version
2 approach and what we can learn from computer science in general. We
will then define data types by their semantic properties. From the semantic
structure of the field, we defere a description of the abstract syntax of the

14

data types. This abstract syntax serves as the basis for the mapping to
different implementable technology specifications (ITS).

We will sometimes show examples and caveats as to how these abstract
types can be incarnated in different ITSs and what the problems might be.
The ITSs that we look at include XML, object broker technologies, and
the simple encoding rules that may eventually replace the traditional HL7
encoding rules as the default encoding for HL7 messages. We do, however
not aim to completely specify those ITS mappings. And we will seek for
maximal independence from any specific ITS.

1.2.7 Literals

For many ITS it may be useful to have concrete lexical rules for specify-
ing literals. Literals can be used to specify data type instances in character
oriented encoding rules. It is useful in our oppinion to have a single standard-
ized form of literals to be used by different ITSs. Literals are not only useful
in inter-system messaging but also in discussions about the design of HL7
messaging, as we need them to write down example messages. The guideline
for the specification of literals is to be concise and easily understandable by
humans.

15

1.3 Roadmap

Thing

Phenomenology of Information

Text

Number

continuous
discrete/

Quantity

Symbol

strings
character

expressions
multimedial

artifact

HL7
protocol

application
domain

nominal

concept

Ordinal

proportion

Information

16

TN, XTN, EI, HD, RP

integer
rational SN
float NM
measurement CQ, MO*
point in calendar
calendar modulo

TS, DT
TM, ID (VH)

Q
u

an
ti

ty

string ST
text TX, FT, ED, (HTML, ...)T

ex
t

CE, CF, ID, ISreal world concept

person name PN, XPN
real world instance

organization name XON, HD
id number CK, CX, DLN

residential address AD, XAD
technical concept ID, IS

general location PL

Summary of basic types
O

b
je

ct

technical instance

NM

Summary of generic types

set
bag

NA, MA
QIP*

interval SN, DR, RI

uncertainty
incompleteness
update semantics

(all, ‘‘not present’’)
(all, ‘‘null’’)

history FC

merge CN and XCN
decompose PT (processing type) into two technical concepts
upgrade/merge CN, XCN, PPN, and TQ into RIM classes
manage QSC, QIP, RCD, SCV elsewhere.

All ‘‘repeated fields’’ will be one of the collections.

Remaining types:

list

Gutman (1944) and Stevens (1953) identified four categories of data.
Their classification coined the methodology for all sciences including biology,

17

medicine, and psychology. Guttman and Stevens identified four “scales” on
which we perform “measurements” or observations: the nominal scale, the
ordinal scale, the interval scale, and the ratio scale. We observe qualities
on nominal scales. A nominal scale is a colletion of all possible outcomes
of an observation with no particular order. For example, gender, colors, or
diagnoses are determined on nominal scales.

We have an ordinal scale when we can sensibly arrange the set of possible
outcomes of an observation in an order. For example the NYHA classification
of heart failure or tumore stagings are ordinal scales. We can determine the
stage of the disease, we can tell the worse condition from the better, but we
cannot measure distances.

Intervall scales are ordered quantitative scales, where you can measure
distances (intervals) between two points. The paradigmatic example are
temperature scales Fahrenheit and Celsius. It does, however, not make sense
to say 100 degree are twice as much as 50 degrees. However, the concept of
the absolute zero temperature allows to make those decisions on the Kelvin
scale.

For an information standard in medicine it would be appropriate to re-
flect these fundamental categories of observations. However, there are some
problems with this classification. You can artifically try to upgrade the scale
property. Thus you can define an order of qualitative observations (e.g.,
male = 0, female = 1). It often depends on the scope of observation how you
classify it, e.g., you can classify colors in any of those scales depending on
what you think colors are (qualitative observations, up to wavelengths of vi-
sual light). The distinction between ratio and interval scales seems artificial
because a simple translation of temparatures to the Kelvin scale is all that
makes the difference.

Common sense will justify to distinguish qualitative from quantitative
observations although the examples above show that even this boundary can
be blur. We can further distinguish between observations that are discrete
and those that are continuous. Many qualitative observations are continuous
(i.e. colour) but continuous qualitative observations are best understood
by quantization. This need not be a single dimensioned scale, as the color
example shows: the RGB color quantization is a three dimensional vector of
numbers.

Since qualitative and quantitative, discrete and continuous observations
are important in science as well as in everyday life, we will have to devote one
domain in our BDTM to discrete qualities and another domain to quantities,

18

both discrete and continuous. We will then have to show how to express
continuous qualitative observations.

There are other important kinds of information. Text is not just an
abstracted observation and does not fall into the distinction between qual-
ities and quantities, discrete and continuous. Text is ultimately exchanged
between humans. Computers and automatic messaging may be used to ex-
change text, but after having been entered by a human user, text is passed
through unchanged to be displayed to another human user. Text can ex-
press many observations, but this information content is not unlocked for
the purpose of messaging and computer processing.

Text does not only include letters, words and sentences of natural hu-
man language, but can also be graphics or pictures (still or animated) or
audio. Also, the same information content of natural language text can be
communicated in written (characters) or spoken form (audio). Thus, one
DDTM will cover text data of all those kinds. Since one property of text
data in messaging is that it is passed through unchanged and uninterpreted
and without respect to the destination or purpose, we can mention all other
uninterpreted (encapsulated) data in the category of text.

In the exposition of the BDTM we start with text data, continue with
qualities and end with quantities. We then describe three extended data type
models (EDTM) for technical support data types (entity descriptor, object
identifier, communication address, bits and bytes), for demographic types
(person name and person address) and the EDTM on waveform data.

19

2 The Basic Data Type Model (BDTM)

2.1 DDTM on Text

Constituents of text as written human language:

Human producer, human recipient.
Machine interpretation is difficult and limited.
Information theory: bits, bytes (octets), octet streams.

Language: characters, words, sentences, paragraphs.

What about paragraphs, fonts and other elements of style?

When do we use style elements?

Beyond written language.

Characters, character strings.

Text

between humans.
Text in is data that captures human utterances

Text is written human language.

20

2.1.1 From Bits to Characters

Yet, we can not be totally silent on it.

American Standard Code for Information Interchange (ASCII)
had great success over competitors (EBCDIC).

International extensions: code pages, ISO 8859, JIS, EUC JP/TW ...
- a variety of different character codes for different languages.

Unicode (ISO 10646) - one code for all languages of the world.

HL7 needs no data type ‘‘character’’ - too low abstraction level.

Single letter codes (‘M’, ‘F’, ...) are just strings.

Character strings

Characters relate to bits through character codes.

We assume the semantics of the Unicode.

Character string is the basic type for written text.

The equation ‘‘1 char = 1 byte’’ is no longer true.

Converting bits to characters is a task of the ITS-layer.

All information can be expressed by sequences of bits, this is the funda-
mental new discovery that started the era of digital information processing.
Written text consists of a strings of characters and characters are by them-
selves expressed by sequences of bits. Eight consecutive bits are called octetts
or bytes. Although we usually identify one byte with one character, this iden-
tification is not an eternal law of nature and we have to distinguish bytes
from characters.

The ease by which we express characters as bytes and bytes as characters
is due to the success of the American Standard Code for Information Inter-
change (ASCII) [?]. Most computers interpret bytes as characters according
to the ASCII code. But this does not mean complete peace of mind. On
the one hand, although ASCII is by far the most important character code,
there is another one: EBCDIC.

On the other hand, ASCII does not define sufficient characters to meet the
needs of non-english languages. ISO 8859-1 defines an international extension
to the ASCII code that fits most languages of the world that use roman
charcters (Latin-1). However, there are numerous other such extensions. And
there are numerous other languages, including Greek, Russian, and Japanese.

21

We cannot even count on the truth that one character is expressible in one
byte, as we learn from Japanese and Chinese character sets.

The solution to the Babylonian coding chaos seems to be the Unicode
standard [?, ?]. Unicode is a 16 bit per character code that covers all lan-
guages of the world, with even the rarest being added in upcoming versions
of Unicode. Unicode seems to be accepted in all major language communities
including America and western Europe, Russia and the China, Korea, Japan.
The latter three have submitted a newly created unified character set, called
Han, to the Unicode, which includes more than 20000 characters.

Although Unicode uses 16 bit per character, there are encodings which
allow variable length encoded characters. UTF-8 and UTF-7 both encode
the basic 7 bit ASCII characters unchanged. UTF-8 uses the high bit as a
marker to introduce a special sequence of variable length (2 up to 6 bytes)
to encode up to 32 bits, while UTF-7 uses 7 bit ASCII characters with
intermittent base64 encoded sequences. The advantage of the UTF encodings
are that messages containing only of 7 bit ASCII characters are not longer, i.e.
Unicode with UTF-8 and UTF-7 is backwards compatible to 7 bit ASCII.
Unfortunately neither UTF-8 nor UTF-7 is backwards compatible for ISO
8859-1 (Latin-1) even though the numeric character codes are the same.

Because the data type model must be independent from the bits that
are sent over the wire, we must depend on the ITS to reconstruct characters
from bits. We should require of every ITS for HL7 to be able to encode all
16 bits of Unicode characters. Individual HL7 applications might need to
restrict their supported character set to a subset of Unicode, for example, to
7 bit ASCII or to ISO Latin-1. These restrictions must be mentioned in the
conformace claim. However, HL7 in general and all its ITSs should support
the full range of Unicode characters.

2.1.2 From Characters to Strings

While single characters are data types defined by most programming lan-
guages, HL7 messages did not use single characters in the past and probably
will not do so in the future. A single character is on a too low level of ab-
straction. There is not clinical or administartional information expressed in
one character that stands for itself. There are single character codes, but in
those codes the characters do not stand for themselfes but for some other
meaning (e.g. ‘M’ for male and ‘F’ for female). Those codes are not text and
single character codes are but a subset of codes relevant to HL7 messaging.

22

Therefore we will probably not need single characters as a data type.

2.1.3 Display Properties

Lines, paragraphs, pages, displays, tables (flow objects.)

How do we encode style elements?

Distinguishing TX from FT is a non-rational decison.
Text and string are our only distinctions.

Text: a message from human to human.
String: merely an information element (name, address, code.)

The difference is in semantics, not in the length of the string.

Underlines, rules, and other simple graphical elements.
Font family, style, size, alignment, color.

Footnotes, cross references, logical markup.

Text is more than just a character string.

Text and appearence

When is it useful to have control over appearence?

A character code like ASCII, ISO 8859, or Unicode codifies only charac-
ters, i.e., the basic graphemes from which written utterances are constructed,
regardless of the variations in style. Often we are only interested in trans-
mitting the semantics of a few words or sentences. But sometimes we want
to enhance the expressiveness of text through a altered appearence of char-
acters. Options are font family (e.g., Times Roman, Helvetica, Computer
Modern), font style (e.g., roman, italics, bold), font size (e.g., 8 pt, 10 pt, 12
pt), alignment (e.g. subscript, superscript) or any other display properties.

The question is, for what use cases we need only plain character strings
and when do we need control over its appearance? When a data field contains
only one or a few words, we will probably not need control over appearance.
However, who is to say how many words may appear in a given data element
of type string? And what is the exact limit of words that do not require
formatting? Clearly the length of the string is no good criterion for when
formatting is required or not. Instead we need to look at fine semantic nu-
ances to find the answer: A string that encodes a value from a code table, or a
string that encodes a person’s first name or address will not need formatting.

23

This information is readily encoded only in the characters.
Conversely, there is no reason to prevent formatting for those data el-

ements that are placeholders for free text. Controlling appearence of text
will be useful in those data elements whose purpose it is to be shown to
human users. Even of only two words, we sometimes want to emphasize one
word by undelining or emboldening it. Thus we have to distinguish between
formalized information and free text to find out when we need control over
appearence.

2.1.4 Encoding of appearance

Do not define different types for different encodings.

Intrinsic features of the character code (return, backspace, formfeed.)

Escape sequences are most flexible:
Non-standard reserved code positions (e.g., WordPerfect files.)

MIME is a complete solution, we should attach to it.

For backwards compatibility we define ‘‘text/x-HL7-FT’’.
We should recommend using ‘‘text/plain’’ or ‘‘text/HTML’’.

Many alternatives require a general approach.

Encoding of appearence

Available options:

– Troff commands (‘‘.sp 1i’’) or escape commands (‘‘\s+2’’.)
– TeX commands (‘‘\it italics\footnote{a syle}\par’’.)
– HTML/SGML/XML (‘‘<p><it>italics</it></p>’’.)

– C-language string literals (e.g., ‘‘\t\234\g\n’’.)
– Terminals and printers (ASCII ‘‘escape’’ character.)

The format of a text is encoded in three different ways. (1) Through
deploying certain intrinsic features of the underlying character code, (2)
through specially reserved positions in the underlying characters code, or
(3) through escape sequences.

An example for (1) is the use of the ASCII control character number 8
(“backspace”) to overstrike an already printed letter. Thus one can print
the same letter twice or three times to yield an emboldened appearance on
a simple typewriter or dot matrix printer. One can also print the underbar
character over the previous letter to yield the effect of underlining. There
are simple software programs that emulate the behavior of a typewriter to

24

render this kind of simple formatting. The UNIX “more” utility, used to
display online manual pages, and some terminal devices have this emulation
built in.

(2) Many text processor use other control character in non-standard ways
to encode the formatting of the text. For example if you look at the raw file of
a Word Perfect text, you will find the words and characters interspersed with
control characters that obviously encode the style of the text. The problem
with this approach is that it is not standardized.

(3) Escape sequences are used by various printers and terminals. Origi-
nally these are sequences separated from the normal text by a leadng ASCII
character number 27 (“escape”). But escape sequences have since been used
in many different styles. In C string literals, troff, TeX and RTF we see
the backslash character (\) introducing escape sequences. Troff has a second
kind of escape sequences started by a period at the beginning of a new line.
HL7 version 2 also uses the backslash at the beginning and end of escape
sequences. SGML uses angle brackets to enclose escape sequences (markup
tags) but in addition there is another kind of escape sequence opened with
the ampersand and closed with a semicolon (entity references).

From the many choices to encoded formatted text HL7 traditionally used
a few special escape sequences and troff-style formatting commands. This
has the disadvantage that it is not very poweful and somewhat outdated
by the more recent developments. HTML has become the most deployed
text formatting system, available on virtually any modern computer display.
HTML has been designed to be simple enough to allow rendring in real time.
Thus HTML seems to be the format of choice to transmit style-enhanced free
text.

A considerable group of HL7 members also pursue using SGML or XML
to define text, although the purpose to using general SGML is slightly differ-
ent from using HTML. Where HTML is used to control logical appearance
of text, SGML is another way to structure information. Thus HL7 will use
SGML as one of its message presentation formats. General SGML in free
text fields is so powerful and general, that it comes with the risk of not being
interoperable. However we might want to allow for it in special circumat-
staces.

It will be difficult to limit the HL7 standard to just one of the possible
alternative encodings of appearance. There is an issue of backwards compat-
ibility that requires to keep the nroff-style formatting of HL7’s FT data type.
There is a tremendous and reasonable demand for supporting HTML, and

25

we should not exclude general SGML and XML upfront despite the concerns
for interoperability.

There are, in principle, two ways to support the multiple encodings of
apperanace. Either we define multiple data types, one for old FT, one for
HTML and one for general SGML/XML, or we define one data type that
can contain formatted text in variable encodings. Defining multiple data
types has the disadvantage that we need to descide at design time for one
of those alternatives whenever a free text data element is defined. This
decision is unchangeable at the time an individual message is constructed.
This inflexiblility seems to overweigh the conceivable advantage that special
types might accomodate the intrinsics of the special encoding formats in
greater detail and accuracy.

2.1.5 From appearance of text to multimedial information

Appearence of text and graphics - blur distinction.

Beyond written language

If written language why not also spoken language?

It can all appear in place of free text.

Graphics and handwriting - blur distinction.

Graphics and images - blur distinction.

A quick drawing can say more than a thousand words.
Pen&Pad input devices will soon be in wide use.

Technology is already used widely and will increase.

Imaging is especially important in medicine.

Dictation is the #1 input method in anciliary medical services.
Audio tapes will soon become obsolete.

The technology is available, HL7 can only benefit in using it.

Handwriting is often more user friendly.

Being able to format the appearance of free text adds a great deal of
expressiveness. But having control over graphical appearence of text begs
the question whether graphics, drawings and pictures should not also be
considered part of free text, for a picture says more than thousand words. In
human written communication, especially in business and science, we often

26

use drawings to illustrate the points we make in our words. The technology
to do these things on computers is available, HL7 only has to support it.

Another use for multimedial information is that this is the only way to
capture the state of a text that precedes its typed form: dictation and hand-
writing. An HL7 message that is sent of from a Radiologist’s or Pathologist’s
workplace will usually contain very little written information, but rather the
important information will be in dicated form. Again, the techology to cap-
ture voice data, to communicate, and replay it is available on almost any PC
now, HL7 only has to support it.

Two alternatives exist to support multimedial information in HL7. Since
HL7 version 2.3 we can use the “encapsulated data” (ED) type. The ED data
type is powerful enough to communicate all kinds of multimedial information.
The problem is that it is a special data type that can only be used in data
fields that are assigned to the ED data type. Currently none of the HL7
data fields is explicitly assigned to the ED data type which considerably
diminished its usefulness despite its power.

The only way to use the ED type is currently in the variable data type field
OBX-observation-value. While this serves the communication of diagnostic
data that is in image or sound form, it is not genereally useable. For any
multimedial data we want to send per HL7 we have to pretend that it is
diagnostic data even if it isn’t. If we want to send some descriptive drawing
to an order, we have to pretend it’s diagnostic data and send it in an OBX.
Furthermore, it isn’t even clear whether there will be a variable data type in
HL7 version 3.

The honest alternative to support multimedial data would be to admit
that any free text data can possibly be augmented or replaced by multimedial
information. This means, we have to allow for multimedial data in any free
text field, and thus, that free text and multimedia data share the same data
type. This is not hard to do since one flexible data type was already required
to accomodate the different encodings of text formats.

27

2.1.6 Pulling the pieces together

Text and multimedia data.

Wrapping up text

Used when we only want raw character information.
Defined based on the Unicode semantics.
Character encoding is an ITS layer issue.

Used for all free text data.
Components: MIME media type

MIME media subtype
(text, image, audio, application)

encoding (string, bits)
data

1
2
3
4

We can recommend and deprecate certain media types.
We can set a default media type ‘‘text/plain’’ and encoding ‘‘string’’
such that we are backwards compatible to old TX.
We do no longer need TX, FT, ED, and we can delete CF.

Character string.

In the previous exploration of the field of text, we separated out the differ-
ence between string data elements, where the raw inforamtion of characters
is sufficient and free text, where there is use for formatting the text and aug-
ment or even replace the text with multimedia information. We also found
that formatted text requires a flexible data type. This flexibility could be
reused for multimedial data.

This means that there will be a string data type on the one hand, and a
flexible data type that covers free text and multimedial data on the other.
For the string data type we can use the generality of the unicode character
set to define its semantics. We do not really care how string data is encoded
in bytes over the wire, as long as the character information is the same at
both ends of the HL7 communication link.

Formatted text can be defined on top of string data. Due to the backwards
compatibility of Unicode to ASCII and ISO Latin-1, the simple typewriter-
style formatting, the troff escape sequences and HTML/SGML formatting is
possible on top of Unicode strings. In addition to the string data, we have to
indicate the formatting method that should be used by the receiver to render
a given string correctly.

This is slightly different, however, with multimedial types. Multimedia

28

data is best regarded as an opaque sequence of bits (or bytes) that are ren-
dered by a special application or protocol software that understands the given
stream of bits. Consequently we have to specify the application along with
the raw data we transmit in a message. The two semantic composnents for
multimedia data is thus the media type and the raw data.

While we can built the formatted text data type on top of the string data
type, for multimedia types we need to go back behind the character strings to
raw bits and bytes. There are two options. Either we let it be the task of the
ITS layer (the encoding rules) to support the communication of raw bytes
data or we encode raw bytes in strings using the base64 and quoted-printable
encodings of MIME. It seems to be wasteful to first construct strings from
bytes and then transform the strings back to bytes. While in traditional HL7
encoding rules that were unable to encode raw bytes this was a sensible way
to go, it is wasteful, for example, in an object broker technology ITS.

Another alternative is to send the byte data and have it interpreted as
character strings in case of free text or as raw bytes in case of multimedia
types. This has the advantage that data is sent as bytes over the wire anyway
and the interpretation as string is already an aditional step beyond the wire-
form of messages. These distinctions, however, are not as clear when looked
at from the perspective of traditional HL7 encoding rules. This alternative
is supported by a closer look to standards such as HTML or SGML which
do not depend on abstract Unicode strings but have their own means to in-
terpet byte streams (e.g. HTML has a META element and XML defines the
character set in its !XML header element). More traditional formatting with
troff is not even able to handle the full abstraction of characters that comes
with Unicode and thus is also based on byte streams rather than character
streams.

As a conclusion, we can uniformly define the free text / multimedia data
type as the pair of media type selector and raw byte data, while we define
the format-free string of characters as a having the semantics of Unicode
character strings. If the sender does not want to use any of the format options
for free text but just wants to send the raw characters, he can indicate this
with a special media type. It seems justified to make the plain text media
type the default.

29

2.1.7 Requirements to ITS

ITS must be able to transfer character strings and byte strings. ITS based
on raw byte streams will supprt transmission of bytes in a straight forward
manner. For character strings the ITS must interpret the bytes according
to a character code. If it supports different character codes and encodings,
it must be able to convert the codes to the standard Unicode and must
provide ways to extend the underlying character set to include the Unicode
characters.

By default the ITS should support raw UCS-2 (16 bit) or UCS-4 (32
bit) Unicode characters, or UTF-8 or UTF-7 encodings that allow to encode
Unicode characters in 8-bit per character for only the basic ASCII compatible
characters.

ITS based on character streams must define a way to transfer raw byte
data through transfer-encodings such as hexadecimal digit pairs, base64, or
quoted-printable encoding.

Although, these issuse are below the scope of the data type model, they
had to be mentioned to assure the implementability of the data types speci-
fication.

30

2.2 DDTM on Symbols, Identifiers and Qualities

ThingText

Number

continuous
discrete/

Quantity

Symbol

strings
character

expressions
multimedial

artifact

HL7
protocol

application
domain

nominal

concept

Ordinal

proportion

Phenomenology of Information - Object

31

Things

Real world concepts.
Disease, anatomic structures, organisms, substances, roles.
Controlled vocabulary terms refer to ‘‘real world’’ concepts.

Real world instances.
People, organizations, locations, devices.
Names, identification numbers (SSN, DLN, ...), inventory numbers...

HL7: Message type, segment tag, order control code ...
Fixed predefined sets of values, identifiers.

Internet address, URL, e-mail addresses, telephone numbers.

Technical instances.
Processes, agents, machines, communication devices, ‘‘users’’.

Such terms have ‘‘meaning’’ (semantics.)

The meaning of such identifiers is their ‘‘effect’’ (pragmatics.)

Technical concepts.

The previous section dealt with the basic properties of textual data. Tex-
tual data is information that stands for itself. Text is usually interpreted
directly by humans, though it may sometimes be the input to an automatic
interpretation process (e.g., indexing, natural language processing). In any
case, the meaning of text is best represented by the text itself. One use of
character strings was to encode text. However, the other use of character
strings is to act as symbols. Symbols are information that does not stand for
itself but for something else, its meaning, that can be conceived separated
from the symbol.

In semiotics and linguistics, the sciences about signs, symbols and mean-
ing, there is no such hard difference between text and symbols, but in com-
puter science we usually make up such a difference. We do so for good reason,
because the meaing of our symbols can be described much easier than the
meaning of a piece of natural language. For our discussion in HL7 there are
two kinds of symbols: (1) symbols that refer to protocol artifacts of HL7
(e.g., message type, event code, data type code, segment tag, order control
code, etc.) (2) symbols that refer to “real world” entities. Both kinds of
symbols have different requirements.

Qualities are values on a nominal scale, i.e., a quality is one out of a set
of possible qualities of one modality of reckoning. For instance if we have a

32

set of five or six possible colors of urine, we select one of those colors when
we report the color of a given urine specimen. We cannot abstract out much
more about a quality than that it is one observation from a set. In this
sense, a quality is not different from any term from a dictionary. Sometimes,
there one can define an order relation on a set of qualities, which turns the
nominal scale into an ordinal. Since the most often method to specify a set is
to enumerate its elements, the enumeration introduces an artificial ordering.
However, this does not turn just any nominal scale into an ordinal. The
ordering should make sense for the terms of an ordinal scale.

2.2.1 Boolean values

Information theory according to Shannon and Weaver (1949) defines the
smallest amount of information as one value out of a set of two values. This
smallest unit of information is called 1 bit. The amount of information I in
one quality depends on the cardinality n of the set of possible values, where
I =2 log n. For example, one value out of 4 possible values contains the 2 bit
of information. One value out of a set of only one possible values contains 0
bit of information. Thus the smallest set of possible qualities contains two
elements.

Many informations of the real world are codeable in one bit. This is every
question that can be posed in such a way that either “yes” or “no” answers
the question. For example, the question is the patient dead is answered
completely by either “yes, (he is dead)” or “no, (he is not dead)”. HL7 uses
to call those attributes that are answered by either yes or no “indicators”.

Because the bit as the smallest unit of information assumed such a funda-
mental practical importance in digital computers, all machine languages and
almost all higher level programming languages have the notion of the boolean
data type, with the possible values true or false. The boolean data type is
often the data type that is most easyly handled, most quckly manipulated,
and uses up the least amount of memory.

For an unknown reason, HL7 never defined the “indicator” data elements
explicitly as of type boolean, but rather treated them as one kind of quality
among others. Yet the set of possible values for an indicator contained two el-
ements ‘Y’ and ‘N’. Hence, the indicator data elements encode are equivalent
to boolean values.

HL7 version 3 will have a boolean data type to be used for “indicator”
kind of data elements. One objection to this might be that sometimes we

33

cannot answer a question with either “yes” or “no”, because we do not know
the answer or are unsure about it. The problem of incomplete informartion
or uncertainty, however, is not a problem only for boolean data, but any
kind of information can be subject to incompleteness of uncertainty. This is
a general problem that will be dealt with by general solutions specified in the
Fundamental Data Type Model in section ??. In no way does the problem of
incomplete information or uncertainty preclude the notion of a boolean kind
of quality or the use of the boolean type.

2.2.2 Real world concepts (Nominal values)

Terms t1and s2 are synonyms

Different terminologies use different
methods to order reality.

Real world concepts

Different terms have almost always
different connotations.

Real world entities can be classified differently over specialty and time.
There is an inherent need for translation.

RealityDream

because they refer to the same
concept.

t2

t4

t1
t3

s1
s2

s3

s4

Translation is doing ‘‘best effort’’ in finding synonyms.

Concept Concept

s2
t1 t2 s1

34

a term may have a quality or translation order component

The approach of the code system (i.e. clinical, biochemical, genetic)
Every term is in opposition to the other terms in the system.

... leads to accumulation of multiple translations.
Inherent need for translation.

Masarie FE, Miller RA et al. 1991; Rocha RA, Rocha BH, Huff SM 1994;
or Nolan WA, Rector AL et al. 1994, and others.

... though there is not one ‘‘standard’’ score.

But we can score the quality of a translation ...
Synonymity is a problematic relation between terms.

Real world concepts

The ‘‘meaning’’ of a term is difficult to define.

The real world concept is communicated as:
a list of ‘‘best effort’’ synonymic terms

a term may have a textual name (character string)

we also want to keep the original text.

a term is a pair of term, code system (including version)

Most medical information comes as qualitative information: complaints,
symptoms, signs, diagnoses, goals, interventions, surgeries or medications, all
of these are informations on a nominal scale. But not only medical informa-
tion, administrative data often is on nominal scales, patient class (inpatient,
outpatient, etc.), insurance, health plan, and many other data elements.
These nominal scaled values are variables that can take on one value of a
list of possible values. Information theory can not tell us more about those
qualities than the amount of information represented by one such variable,
yet, what we are often more interested in is the meaning of each of the values
that the variable can take on.

The branch of science that teaches us about the codes and their meaning
is semiotics and linguistics, on which we have to give a condensed overview to
prepare the necessary background on the nature of qualitative information.
The first Authors on modern Semiotics and Linguistics were Ferdinand de
Saussure (1916) and G. W. Pierce. They draw on a treasure of work in phi-
losophy reaching from Aristoteles to Gotlob Frege. Semiotics and linguistics
has grown rapidly to an elaborated science tightly interlinked with logics,
epistemology and, of course, computer science. It is impossible to present
a short overview. But it is still necessary to point out some problems with

35

current semantic theories used in medical informatics.
The assumption that the meaning of a sign has an objective reality in

the world is not quite true. The traditional example is the “unicorn.” We
know that unicorns do not exist in nature nor, we assume, did unicorns exist
at any time in the past. Nevertheless, “unicorn” certainly is still a sign. Of
course, science is supposed not to treat unicorns, but scientific terms are to be
reproducible and verifiable through experiments. However these experiments
still do not show the referent per se, but must rather be interpreted such that
the existence and nature of the referent becomes plausible. The referent is
a problematic notion and is not essential in the understanding of signs and
meaning. According to Eco, signs refer to “cultural entities” the meaning of
a sign can be explored through denotation and connotation.

In linguistics this exploration of signs through denotation and connota-
tion has led to the component analysis, where each token is linked with its
connotations or semantic markers (Katz and Fodor). Regardless of the de-
tails of these theories, we have to recognize one fact: the meaning of a sign is
in turn codified by other signs. We can never expose meaning without using
signs. The human ability to use signs is a powerful tool to convey meaning
and to create meaning, but meaning is always “locked” into signs. Thus
denotation of a term is basically translation into anoter code.

To understand the nature of meaning we are thus thrown back to un-
derstanding the nature of codes and translation between codes. Although
“code” is a term even more general than “language”, we often use code in a
more narrow sense, meaning a set of terms about a given scope, a so called
“semantic field.” A code divides its semantic field into elements that are con-
sidered atomic in the sense of the code. Thus, we say that a code assumes a
certain segmentation of its semantic field.

We can clarify this point more formally. Let R be the set of objects
in the “real world” (“referents” in the sense of Richard). Let S be the set
of symbols.1 The human mind approaches reality trough methods which
find similarities or equivalences in certain respects. These methods can be
understood as relations on R where some of them are equivalence relations
∼ (symmetric, reflexive and transitive relations). These relations allow us
to determine whether two individual entities in the real world r1, r2 ∈ R

1We do not argue whether the set R of referents exists “in reality” nor do we argue
whether there is an injective mapping f ′ : S 7→ R so that every sign s ∈ S refers to an
objective entity in the real world r ∈ R. We do argue, however, that we can not discuss
about real world entities r ∈ R directly.

36

are equivalent r1 ∼ r2 regarding the relation. The relation ∼ generates
equivalence classes ci ∈ 2R. Let C∼ ⊂ 2R be the set of equivalence classes
generated by the relation ∼. Any code system S may assume a different
equivalence relation ∼ so that there is a one-to-one and onto mapping f :
S 7→ C.

Thus any code C is a triple 〈S,∼, f〉 consisting of a set of symbols S, the
equivalence relation ∼ and the mapping f : S 7→ C. Every symbol s ∈ S
refers to one set of equivalence classes cs generated by the relation ∼, and
not directly to elements r in the real world R. Another code C′ = 〈S ′, ∼̇, f ′〉
will imply a different segmentation C ′ ⊂ 2R. Translation between C and
C′ is thus problematic. The translation may not be injective or surjective.
Hjelmslev has given a remarkable simple example of the problem by depicting
the different segmentations of the semantic field around wood, tree, forrest in
different languages shown in Figure ??. We can easily find similar examples
for medical coding systems.

Italienisch

forêt

bois

arbre

Französisch

Wald

Holz

Baum

Deutsch

skov

trae

Dänisch

foresta

bosco

legno

albero

37

2.2.3 Technical concepts

Technical concepts

The set must be selected in a declaration, but is implicit in an instance.

The set of allowable symbols and their function must be defined.

Having two different data types (ID vs. IS) does not help.

Tags for messages, ‘‘segments,’’ and data types: MET-graph (HMD)
Order status & control codes: state–transition–diagram.
Media type code: MIME specification.

The ‘‘meaning’’ of a symbol is defined in a model.

The symbol does not make sense apart from the model.
Symbols of other models do not apply.

Generally symbols are just distinct elements in a set.

Translations are impossible, synonyms do not exist.

The way a symbol table is defined may vary however.

38

2.2.4 Technical instances

if we really need an HL7 specific reinvention.

Technical instances

A telephone number is resolved by the global telephone network.
An Internet address is resolved by the Internet, DNS, routers, etc.
A URL is resolved by the specified protocol (e.g., ‘‘http:’’.)

Such symbols have their ‘‘meaning’’ through
a technology that can resolve the symbol.

Technical instances are agents of real persons.
... not the persons (individuals or organizations) themselves.
E.g., devices (computer, phone, fax), mailboxes, processes.

No difference between ‘‘agents’’ and ‘‘things’’.
Things (e.g., messages, files) can be seen as ‘‘living’’ objects.
No difference between, e.g., ‘‘show(obj)’’ and ‘‘obj.show().’’
No fundamental difference between EI and HD.

We should look at the URL/URI mechanism to see

We may want to retain an HL7 object id for ‘‘order number’’.

• entity descriptor (actor)

• object identifier (object)

• entity address (channel to actor)

39

2.2.5 Real world instances

Locations

Real world instances

Organizations

inventory #, lot #, equipment id, book signature, ...
Thing id: id string, type, issuing organization.

Postal address: coutry, ZIP, (PO.box; (street, house #, app #))
Residential address: country, state, city, street, house #, app #

Organizational affiliation applies just as for people.
An org. is a legal person: person id applies just as for people.
Org. name: name string, legal status (Inc., e.V., B.V., AG, ...)

Organizational affiliation: org., role (chair, CEO, ...)
patient id, SSN, driver’s license #, medical record # ...

Person id: id string, type, issuing organization.
Indiv. person name: first, last, prefix ...; type (maiden, legal, alias ...)

People (individual persons)

Things
General locators: loc1.loc2.locN (building, tract, floor, room)

• individual person name

• person address

• organization name

• (official) person identifier

40

2.2.6 Ordinal values

scale size (integer).

Ordinals

(tentative)
Components: 1

2
3
4
5

scale id (real world concept);
scale enumeration (list of strings);
scale position (integer);

Ordinals are different from real world concepts.
The ‘‘real world’’ meaning is usually hidden (e.g., GCS).
Translation is often very difficult.

Ordinals are different from numbers.
Differences (‘‘distances’’) between values are undefined.
Ratios are even ‘‘less’’ defined.

Ordinals are sets of symbols with an order relation.

Severity: ‘‘mild’’ < ‘‘moderate’’ < ‘‘severe’’.
Detection: ‘‘-’’ < ‘‘0’’ < ‘‘+’’ < ‘‘++’’ (‘‘2+’’) < ‘‘+++’’ (‘‘3+’’).
Clinical stagings: NYHA (1-4), lymphoma, other tumors.
Clinical scores: GCS, APGAR, APACHE, etc.

value (string) - required;

41

2.3 DDTM on Quantities

Semiquantitatives such as ‘‘-’’, ‘‘0’’, ‘‘+’’, ‘‘++’’, ‘‘+++’’;

Quantities

Numbers

Rational: the result of division of two integers, exact by definition.
Integer: the result of counting, exact by definition.

Real: only as floating point approximations.

Measurements
An approximation to a physical property of objects or processes.

Time
Point in time measured on ‘‘arbitrary’’ calendars.
A duration is a measurement of time.

Ordinals

‘‘mild’’, ‘‘moderate’’, ‘‘severe’’; clinical stagings and scores.

2.3.1 The number concept

A more exact approach to imprecision will rarely be necessary.

Numbers

Integer
The result of counting, exact by definition.

however, we should not impose an arbitrary limit.

Rational

Integers need quite a lot of bits (32 bit for only 4 billion.)

Numerator (integer) / denominator (integer), exact by definition.

‘‘SI’’ was a positive integer is this distinction really important?

Used in expression like 1:64, 1:128 for titers.

Floating point
The number approximation of a real number, imprecise.
Number of significant digits is an approximation to the precision.
Significant digits are implicit in digit strings (by standard rules,)
must be made explicit in binary encodings (IEEE float.)

42

2.3.2 Dimensioned quantities

v = . U

Measurements

Approximation to a quantitative physical property
objects or processes.

Needed for clinical observations, orders, scheduling, administration.

to a precept of measurement and an apparatus of postulates.
quantity Q with a standard object or process U according

thus, the quantity is

A measurement Q is a pair of value and unit.

Units are quantities themselves (not just codes.)
Units form an Abelian group regarding multiplication.
A code for units is an term algebra on an infinite set ...
... not just a finite set of concepts.

defines syntax and semantics of a units code.
‘‘The Unified Code for Units of Measures’’ completely

Q

U

A measurement value v is a the result of a comparison of a

Q = v

also deals with currencies

2.3.3 Enumerations

see section on Ordinals.

43

2.3.4 Calendar Date and Time

Age of life is a measurement of time, e.g., 40 a.

Time

Time durations are simply measurements.
Measurments of time: 1 s, 1 min, 1 h, 1 d, 1 a, ...

Various ‘‘modulo’’ expressions are defined in calendars.
Time of day, weekday, week of year, month of year, ...
in general: a point in time and a pair of calendar units.
Useful defaults are hour and minute of day and day of week.

A point in time is always an approximation.
Similar concept as significant digits, but not a decimal system.
Precision is usually rounded to calendar unit.

A point in time is a position in an arbitrary calendar.
Durations can be measured on ratio scales ...
... point in time is an interval scale arbitrarily fixed at some ‘‘Epoch.’’
The time axis is ‘‘convoluted’’ in arbitrary cycles:

second, minute, hour, day, week, month, year, decade, century, ...
A point in time is a pair of calendar and calendar expression.
Default: Gregorian calendar and Universal Coordinated Time (UTC.)

44

3 Abstract Data Types

‘‘Diagnosis: PNEUMONIA (P=0.01)’’ to yield ‘‘Diagnosis: PNEUMONIA.’’

Collections: the true meaning of ‘‘repeated’’ data.

Intervals: applicable for all ordered types.

Orthogonal issues

Probability: the challenge of the ‘‘real world.’’

Incomplete information: the other challenge.

Update semantics: how messages affect databases.

Historical data: providing for change.

These are generic types, used with other types in message specification.
Message instances can send a related generic type for a proper type.
Typecast operations can be defined to use one for the other.
Semantics and constraints of typecast operations must be defined,
to prevent:

45

3.1 Generic Data Types

We should be specific what ‘‘repeated’’ data is:

used to construct numeric array, multiplexed array, etc.

Set: an unordered collection without duplicates.

Bag: an unordered collection with duplicates.

Array, stack, queue, dqueue are not relevant,
for those collections differ from lists only in dynamic behavior.

List: an ordered collection of data,

Set of likely diagnoses, set of status flags, set of allowed values, etc.

Alias names, telephone numbers, identifiers, etc.

Type cast rules can be used to seamlessly take a
collection for a single value and vice versa.

Collections

3.1.1 Structures

This is the message element type – outside of the data type model. We define
specific composite types here but we won’t come up with the CM again. The
CM was a generic data type for structures. Defining a generic CM is quite
screwed. Not much to say here: kill this section.

3.1.2 Vector

A vector is a collection with a fixed number instances of a single type. Well,
that’s not even true. In LISP a vector is just a fixed length sequence of any
type (isn’t it Mark?). In mathmatics a vectors form an algebra. In physics
we think of a vector as a directed quantity. However, the RGB color scheme
is a vector. And the TNM tumor staging is a vector. So what?

3.1.3 List

Listst are collections of items (of the same type (except in LISP)) where the
order does matter and the same value can occur multiple times.

46

3.1.4 Set

unordered collection w/o duplicates.

3.1.5 Bag

unordered collection with duplicates.
Other common collections, stack, queue and dqueue, are irrelevant for us

because these are dynamic properties of lists.

3.2 Fundamental Data Properties

3.2.1 Intervals

was or what it will be.

Intervals

 ... always in the same way: lower limit, upper limit.

open or closed on either side.
limited or unlimited on either side.

Different kinds of intervals:

Intervals can be formed of all ordered sets.
Integers, rationals, floating point, measurement, time, ordinal, ...

Interval versus probability

continuing processes.
Intervals are used for regularly

low mid high

1
P

0.5
Probability distributions are
used when there is uncertainty
about what the ‘‘actual’’ value

47

3.2.2 Uncertainty

PdP
dx

rectangular
triangular
‘‘normal’’

Probability distributions

Continuous scale: probability density function.
lab tests, all kinds of measurements, statistic outcomes.

Discrete scale: histogram.
set of likely diagnoses.

distribution type and 1, 2, or more
parameters (mean, variance, etc.)

a set of pairs (value, probability)
x a b c d e f g h i j k

48

3.2.3 Incomplete information

oth: other than a-d.

Incomplete information

The ambiguous ‘‘NULL’’, what does it mean?

Domain extensions are the way to deal with those.

missing information, for various reasons.
not applicable information (e.g., my medicare number).

Domain extension apply to all types.
HL7 v2.x: ‘‘not present’’ (||) and ‘‘null’’ (|""|) are domain extensions.

Notation to understand domain extensions:
Decision tree is a way to sort things out.

ni

unk

oth

dne

ab cd

dne: does not exist

no information

unk: unknown

instead of documenting ‘‘not asked’’ one could as well go and ask.

The ‘‘human factor’’

obtain answerquestion ask question result

not applicable no responseshould have asked
but did not

unknown

but it is usually an (embarassing) mistake not to ask.

but problematic to document honestly in practice:
which is quite important in clinical medicine,

Only the one who didn’t ask can document ‘‘not asked,’’

There is a difference between ‘‘no’’ and ‘‘not asked,’’

49

a

Incomplete information

Merging the human factor into the decision tree:

ni (no) information

napp

nask

(not) applicable

(not) asked

dne does (not) exist

nans (no) answer

unk (un)known

oth other than a-d.

cdb

3.2.4 Update semantics

But we may sometimes want to ‘‘downgrade’’ status or probability.

Update semantics

If I know X and you tell me Y what should I believe?
Should I update?
Should I complain?

Should you be able to wipe out my information?
‘‘Not present’’ vs. ‘‘null’’ were distinguished by update semantics.

Update semantics must be specified for every
piece of data for every message definition.

Update semantics should be modifiable for many
pieces of data in message instances.

Relation to uncertainty and incomplete information:
If A knows nothing and B knows X, than A should belive X.
If A believes X (0.8) and B believes Y (0.9) and A believes B (0.8),
then P(Y) < P(X) for A, hence A will continue to believe X.

50

3.2.5 Historic dimension of data

is not an element of the set.

The historical dimension

We may sometimes want to know old information.
For example: old name, old address, old identification number.
HL7 v2.3 ‘‘financial class’’ has ‘‘effective date,’’
driver’s license or credit card numbers have ‘‘expiry date.’’

Abstract syntax:
Pair of base data and interval of calender time.
No low limit means: expiry date.
No high limit means: effective date.
Current time within interval: this is the actually valid data.

Historical data often comes in a set,
with the actual value being an element of the set.
a history set can be sent for all simple data, the typecast
picks the actual value or ‘‘no information’’ if actual value

4 Strawman types for other technical comit-

tees

4.1 CQ

Are there any left? RP, OID (EI) ?

4.2 PAFM

Real world instances: Person name, address, organization name ... It is
important to see those types in the context of PAFM, because some of those
former types are now modeled as RIM classes (e.g., stakeholder identifier,
person alternate name, ...)

51

4.3 ORD

4.3.1 TQ

We do not want Wes to commit suicide and thus we want TQ to be modeled
in the RIM or at least clean TQ up so that it is a ”‘good”’ data type. The
goal is again simplification and to design TQ so as to have only one way to
express every meaning. We can draw from the Work that Linda Quade, Tim
Snyder and I did for the USAMP initative.

4.4 Automated data

MA, NA, and CD need to be brought in line with what we define. This is
not a big deal.

52

