The Common Object Request Broker:
Architecture and Specification

Revision 2.0, July 1995
Updated: July 1996
Revision2.1, August 1997
Revision2.2, February 1998

Copyright 1995, 1996 BNR Europe Ltd.

Copyright 1991, 1992, 1995, 1996 by Digital Equipment@oation
Copyright 1995, 1996 Expsoft Corporation

Copyright FUJITSU LIMITED 1996, 1997

Copyright 1996 Genesis Development Corporation

Copyright 1989, 1990, 1991, 1992, 1995, 1996 bwldi-Packard Company
Copyright 1991, 1992, 1995, 1996 by HyperDesk Corporation
Copyright hternational Business Mhaines Corporation 1996, 1997
Copyright 1995, 1996 ICL, plc

Copyright hternatbnal Computers Limited 1996, 1997

Copyright 1995, 1996 IONA Technologies, Ltd.

Copyright Micro Focus Limited 1996, 1997

Copyright 1991, 1992, 1995, 1996 by NCR Corporation

Copyright 1995, 1996 Novell USG

Copyright 1991,1992, 1995, 1996 by Object Design, Inc.
Copyright 1991, 1992, 1995, 1996 Object Management Group, Inc.
Copyright 1996 Siemens Nixdorf Informationssysteme AG
Copyright 1991, 1992, 1995, 1996 by Sun Microsystems, Inc.
Copyright 1995, 1996 SunSoft, Inc.

Copyright 1996 Sybase, Inc.

Copyright 1998 &lefonica Investigacion y Desallo S.A. Urnpersonal
Copyright 1998 \8igenic Software, Inc.

Copyright 1996 Visual Edge Software, Ltd.

BNR Europe Ltd., Expsoft Corporabn, FUJITSU LIMITED, Genesis Delopment Corporation, IBM Corporation,

ICL plc, IONA Technologies Ltd., Digital Equipment Corporation, Hewlett-Packard Company, HyperDesk Corpora-
tion, NCR Corporation, Novell USG, Object Design, Incengtns Nixdorf Informationssysteme AG, Sun Microsys-
tems, Inc., SunSoft, Inc., Sybase, Inelefonica Investigacion Pesarrollo S.A. Unipersonal, Visigenic Software, Inc.,
and Visual Edge Software, Ltd., hergiiant to the Object Management Group, Inc. a nonexclusiyaltyefree, paid

up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the
modified \ersion.

Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright in
the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the sjpeaibn.

NOTICE
The information contained in this document is subject taghavthout notice.

The naterial in this document details &bject Management Group speciiion in acordance with the license and
notices set forth on thjzage. This document does not represenantitment to implemnt any portion of this specifi-
cation in any companies' products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE,

THE OBJECT MANAGEMENT GROUP, IGITAL EQUIPMENT CORPORAION, FUJITSU LTD, GENESIS
DEVELOPMENT CORPORATION, HEWLETT-PACKARD COMPANY, HY PERDESK CORPORATION, NCR
CORPORATIONOBJECT DESIGN, INC., SIEMENS NIXDORF INFORMATIONSSYTEME AG, SYBASE INC.,
SUN MICROSYSTEMS, INC., VISIGENIC SOFTWARE, INC., VISUAL EDGE SOFTWARE LTD, AND X/OPEN
CO. LTD. MAKE NO WARRANTY OF ANY KIND WITH REGARDS TO THIS MATERIAL INCLUDING, BUT

NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE. Thefarementoned copyight holders shall not be liable for errors contained herein or for incidental
or consequential damages in connection with the furnishing, performance, or use ofatis.mat

The copright holders listed above acknowledge that the Object Management @mnting tself orirough its desig-
nees) is andhall at all times be the soletiy that may authorize delopers, suppliers and sk of computer software

to use certitation marks, trademarks other special designations to indicate compliance with these materials.

This document contains informatiarhich isprotected by copyright. All RighReserved. Npart of thiswork covered

by copyright herein may be reproduced or used in any form or by any means—graphic, electronic or mechanical,
including photocopying, recording, taping, ordmhation storage and retrieval systems—without permission of the
copyrightowner.

RESTRICTED RIGHTS LEGENDUSse, duplication, or disclosure by government is subjeetimictons as set forth
in subdivision (c) (1) (ii) of the Rightin Technical Data and Computer Software Clause at DFARS 252.227.7013.

OMG and Obgct Management are registered trademarks of the Object Management Group, Inc.
Object Request Broker, OMG IDL, ORB &BA, CORBAfacilities,and CORBAsendges are trademarks of the Object
Management Group.

Hewlett-Packard Company is a trademark of Hewlett-Packard Company.

HyperDesk is a trademark of HyperDesk Corporation.

Microsoft and Visual Basic are registered trademarks of Micr@xmfporation.

Smalltalk/V is a regitered trademark digitalk, Inc.

SunSoft is a trademark of Sun Microsystems, Inc., licensed to SunSoft, Inc.

Telefénica Investigacion y Desarrollo S.A. Peisonal is a registered trademark of Telefonica.
X/Open and the "X" symbol are ttamarks oX/Open Company Limited.

VisualAge is a trademark of International Business Machines Corporation.

VisualWorks is registered trademark of ParcPlace Systems, Inc.

Other names, products, and services may be the trademarksstereztjirademarks of their respective holders.

ISSUE REPORTING

All OMG specifcationsare subject to continuous review and improvement. As part of this process we encourage readers to
report any ambiguities, inconsistencies, or inaccuracies they may find Ipjetiog the issue reporting form at
http:/www.omg.org/libary/issuerpt.htm.

Contents

Preface
0.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8

1. The Object Model

1.1
1.2

1.3

2.1

CORBAV2.2

About This Document
0.1.1 Object Management Group.
0.1.2 X/Open.

Intended Audience e
Contextof CORBA
Associated Documents. e
Definition of CORBA Campliance.

Structure of ThisManual
Acknowledgements
References e

OVEIVIBW & o ot et et e e e e e e
Object Semantics i

1.2.1 Objects.
1.2.2 Requests

1.2.3 ObjectCreatlon and Desutlon

1.24 TYPeS ..t e
125 Inteffaces
1.26 Oprationst

1.2.7 Attributes .
Object Implementatlon

XXVii

XXViii

. XXViii

. XXViii

XXiX

XXX
XXXi

. XXXiii

XXXV

1.3.1 The Execution Model Performlng SerV|ces. .. 18

1.3.2 The Constrction Model.

2. CORBA Overview

Structure of an Object Request Broker.
2.1.1 ObjectRequestBroker...................

2.1.2 Clients

2.1.3 ObJectIm)Iementatlons

2.1.4 Object References. .

2.1.5 OMG hterface Deflnltlon Language ... 2-8

2.1.6 Mapping of OMG IDL to Pra@mmlng

Languages
2.1.7 ClientStubs

2.1.8 Dynamic Invocation Interface ce
2.1.9 Implemerdtion Skeleton
2.1.10 Dynamic Skeletomterface
2.1.11 ObjectAdapters

Februahp98

2-10
. 210

Contents

2.2

2.3
2.4
2.5
2.6

2.7

2.1.12
2.1.13
2.1.14

Exanple ORBs.

2.2.1
222
2.2.3
224

ORB Iterface.

hterface Repository
Implementation Repository

Cient- and Implementation-resident ORB. .
SrverbasedORB L
Systenbased ORB.
Library-based ORB

Structureof aClient.

CORBA Required Object Adapter.

2.6.1

The Integration of Foreign Object Systems

Portable Object Adapter

3. OMG IDL Syntax and Semantics.

3.1
3.2

3.3
3.4
3.5

3.6
3.7

3.8

3.9

OVEIVIEW . o oo o e e e e e e e e

Lexical Conventions.,
TOKENS e
Comments.
Idenffiers.
Keywords
Literals

3.2.1
3.2.2
3.2.3
3.24
3.2.5

Preprocessing.o
OMG IDL Grammar.ot i e e
OMG IDL Specification. i,

Module Declation
Interface Declaration

3.5.1
3.5.2

Inheriance
ConstantDeclaration
Syntax.
Semantics.

3.7.1
3.7.2

Type Declaration
Basic Types.

3.8.1
3.8.2
3.8.3
3.8.4
3.8.5

CORBAV2.2

Constucted ypes

Tenplate Types. i
Complex Declator
Native Types.ot

Exception Declaration

breary 1998

2-10

2-11
2-11
. 2:11

2:11

.2-12
.2-12
2-12
.2-12
Structure of an Object Implementation

Structure of an Object Adapter.

Contents

3.10

3.11
3.12
3.13
3.14
3.15

4. ORSB Interface

4.1

4.2

4.3
4.4
4.5
4.6
4.7
4.8

4.9

CORBAV2.2

Operation Declaration
3.10.1 Operation Attribute.
3.10.2 Parameter Declarations.
3.10.3 Raises Expressions..................
3.10.4 Context Expressions.

Attribute Declaration

CORBA Module.co i

Names andc®pingttt it i

Differencesfrom C++

Standard Exceptions. .

3.15.1 Standard Exceptlons Deflnltlons
3.15.2 Object Non-Existence................
3.15.3 Transaction Exceptions.

Overview . .
4.1.1 Convertlng Ob$ct Reérences to Strlngs
Getting Service Infanation .

Object Reference Operations . e
Determining the Objecnﬂerface

Duplicating and Releasing Coples of Object
References
Nil Object References. e
Equivalence Checking Operation e
Probing for Object Non-Existence
Object Reference Identity. .

GettingPolicy Associated W|th the Object

4.1.2

4.2.1
4.2.2

4.2.3
4.2.4
4.2.5
4.2.6
4.2.7
4.2.8

48.1
4.8.2

Thread-related operations
work pending. 4

491

.3-31
3-31
.3-32
.3-32
. 3-33

3-33
3-34
3-35

. 3:37
.. 3237

..3-38
. 3:-39
. 3:39

4-5
4-5
4-5
4-6
4-6

47

Getting the Domain Managers Associated Wlth

theObject...........
ORB and OA Inialization and Initial References.
ORB Initialization
Obtaining Initial Object References.
Current Object
Policy Object

Management of Policy Domains4
BasicConcepts.4
Domain Management Oggions.

Februahp98

4-8

Contents

4.9.2
4.9.3
49.4

performwork.

sh@idown

5. Dynamic Invocation Interface

5.1 Overview

5.1.1 CommonDataSitctures

5.1.2
5.1.3

521
5.2.2
5.2.3
524

53.1
5.3.2
5.3.3
534

54.1
5.4.2
5.4.3
5.4.4
5.4.5
5.4.6

5.6.1
5.6.2
5.6.3
5.6.4
5.6.5
5.6.6
5.6.7

MemoryUsage..
Retrrn Status and Exceptions.
5.2 RequestOperations i n..
create_request.
adl_arg. ...
INVOKe
delete

5.3 Deferred Synchronous Operations.

send

send_mtiple requests
BLrespnse.ot i e
get_next_response

5.4 ListOperations.t
create list...........
add item..........
free..
freememory
getcount
create jperation_list

5,5 ContextObjects i

5.6 Context ObjectOperations.
et_default_context
set one value.......................
set values.........
get values.............
delete values
create child
delete

5.7 Native Data Manipulation

6. Dynamic Skeleton Interface

6.1
6.2

CORBAV2.2

INtrodUuCtion
OVEIVIEW . . oo e e e e e e e e

breary 1998

Contents

6.3 ServerRequestPseudo-Object. . ce ... 6-3
6.3.1 ExplcﬂRequest State: ServerRequestPseudo—
Object. . o £
6.4 DSI: Language Mamng ce ciee.... 64
6.4.1 SarverRequestHandImg of Operatlon
Parameters ie..... 64
6.4.2 Registering Pnamic Implementatlon Routlnes 6-5
7. Dynamic managementof Anyvalues. 7-1
7.1 OVEIVIEW . ot e e e e 12
7.2 DynAnyAPI........ Y £
7.2.1 Locality and usage constraints . B £
7.2.2 Creatinga DynAnyobject 75
7.2.3 The DynAnymterface 7-7
7.2.4 The DynFixed interface7-10
7.2.5 The DynEnumnterface7-10
7.2.6 The DynStructinterface7-11
7.2.7 The DynUnion interface................7-12
7.2.8 The DynSequenceterface 7-13
7.2.9 The DynArraynterface7-13
7.3 Usagein C++language 7-14
7.3.1 Dynamic creation of CORBA Any values .7.-14
7.3.2 Dynamic intgoretation of CORBA::Any values 7-15
8. TheInterface Repository. 8-1
8.1 OVerviewt e B8]
8.2 Scope of an Interface Repository 82
8.3 Implementation Dependencies. . .. P <
8.3.1 Managing Interface Reposﬂones ceiiieeo.. 85
84 BasiCS............. 86
8.4.1 Namesandlddfiers.................... 86
8.4.2 TypesandTypeCodes.................... B8-6
8.4.3 Interface Objects. . - ... 87
8.4.4 Stuctureand Na\vgatlon of Interface Objects . 87
8.5 Interface Repository Interfaces 89
8.5.1 Supporting Type Definitions. 89
852 IRObject...........................810
853 Contained..........................811
854 Cottainer 813
855 IDLTYPE ... o'ovvee e, ..817
856 Repository 817
CORBA V2.2 Februafp9s v

Contents

8.5.7
8.5.8
8.5.9
8.5.10
8.5.11
8.5.12
8.5.13
8.5.14
8.5.15
8.5.16
8.5.17
8.5.18
8.5.19
8.5.20
8.5.21
8.5.22
8.6
8.6.1
8.6.2
8.6.3
8.6.4
8.6.5
8.6.6
8.7
8.7.1
8.7.2
8.7.3
8.8

9.1

9.2
9.2.1
9.2.2
9.2.3
9.24
9.25
9.2.6
9.2.7
9.2.8

Vi CORBAV2.2

Repositorylds. .

TypeCodes .

OMG IDL for Interface Repository

9. The Portable Object Adaptor
OVEIVIEW . .. e e e
Abstract Model Description.

ModuleDef
ConstantDef Interface.
StructDef
UnionDef
EnumDef
AliasDef
PrimitiveDef.
StringDef
WstringDef.
FixedDef.
SequenceDef.
ArrayDef.
ExceptionDef L
AttributeDef826
OperationDef8:27
hterfaceDef

.8-19
. 8:-19
8-20
8-21
. 8:22
.8-22
.8-23
8-23
.8-24
. 8-24
.8-24
.8-25
8-26

8-29
.. 8-31
... 831
...831

..8-32

8-32
. 8-34
. 8-34

. ...8:35
The TypeCodenterface e8-36
TypeCode Constants.840
Creating TypeCodes841
.8-44

OMG IDL Format

DCE UUID Format

LOCAL Format . Ceee
Pragma Dlrectlves for Repa&ryld

For More Infomation.

RepositorylDs for OMCSpecmed 'l]pes

Model Conponents

Model Archiecture.

POACreation.
Reference Creation.
Object Activation States.
Request Processing.
Impicit Activation
Multi-threading

breary 1998

Contents

9.3

9.4
9.5
9.6

10. Interoperability Overview

9.2.9 Dynamic Skeletomterface..............9-12
9.2.10 LocHon Transparency 9-13
Interfaces 9-13
9.31 The Servant IDL Type e 924
9.3.2 POAManager Interface. 914
9.3.3 AdpterActivator Interface.9:19
9.3.4 ServantManagerterface. 9-20
9.3.5 Servantétivator Interface9-21
9.3.6 SrvantLocator Interface9-24
9.3.7 POAPolicy Objects925
9.38 POAlnerface.......................... 930
9.3.9 Currentoperations. 9-38
IDL for PortableServer module 9-38
UML Description of PortableServer.9:46
Usage Scenarios. cee ... 947
9.6.1 Getting the root POA ...9-48
9.6.2 Creatinga POA.. 9:48
9.6.3 Expilcit Activation W|th POAaSS|gned
Object Ids . .. 9-48
9.6.4 Explcit activation W|th user aSS|gned Object Ids 9-49
9.6.5 Creating references before activation 9:50
9.6.6 Servant Manager Definition and Creation ..9-51
9.6.7 Object activationondemand9:52
9.6.8 Persistent objects with POA-assigned Ids. . 9-54
9.6.9 Multiple Object Ids Mapping to a Single Servaxsy
9.6.10 One Servant for all Objects. 954
9.6.11 Single Servant, many objge and types,
usingDSI. 9-57
.......................... 10-1
10.1 Elements ofriteroperability . . e 10-1
10.1.1 ORB Imeroperablllty Archltecture . 10-2
10.1.2 hter-ORB Bridge Sipport 10-2
10.1.3 Generalrter-ORB Prdocol (GIOP) 10-3
10.1.4 hternet InterORB Prdocol (IIOP) 10-3
10.1.5 Environment- Specificnter-ORB Prdocols
(ESIOPS) . i ... 104
10.2 Relationship to Previous VersionS&XDRBA . .10-4
10.3 Examples of Interoperability Solutions 105
1031 Examplel..........................105
10.3.2 Example2..........................105
Februahp98 Vi

CORBAV2.2

Contents

10.3.3 Example 3. .
10.3.4 hteroperablllty Com phnce

10.4 Motivating Factors. e
10.4.1 ORB ImpIementatlon DlverS|ty
10.4.2 ORB Boundaries.

.. 105
.10-5
..10-8
. 10-8

. 10:8

10.4.3 ORBs Vary in Scope Dlstance and Llfetlmelo 9

10.5 Interoperability DesignGoals

1051 Nm-Goals

11. ORB Interoperability Architecture

11.1 Owverview .
11.1.1 Domalns

11.1.2 BrldglngDomalns

11.2 ORBs and ORB Services . .
11.2.1 The Nature of ORB Serwces

11.2.2 ORB Services and Object Requests e

11.2.3 Selection of ORB Services.............
11.3 Domains. ..

11.3.1 Defnltlon of a Domam .

11.3.2 Mapping Between Domalns Bgnng B
11.4 Interoperability Bateen ORBs

11.4.1 ORB Servicesand Domains............

11.4.2 ORBsandDomains

11.4.3 nhteroperability Approaches.

11.4.4 Policy-Mediated Bridging
11.4.5 Coffigurations of Bridges in Networks

11.5 Object Addressing . :
11.5.1 Danain- relatlve Object Referencmg

11.5.2 Handling of Referencing Between Domalns.

11.6 An Information Model for Object References
11.6.1 What Infomation Do Bridjes Need?..
11.6.2 hteroperable Object Refemces: IORs
11.6.3 Standard IOR Components.

10-9
10-10

1-1D

L1411
co1-111
112

1-12

1-14
L1314
1114
.1-171

11.6.4 Profile and Component Composition in IOR<1-18

11.6.5 IOR Creationand Scope...............
11.6.6 Stringified Object Refences.
11.6.7 Object Service Context.
11.7 Code Set Conversion
11.7.1 Character Processmg Termlnology

viii CORBAV2.2 briary 1998

119

.1119

.12

12221
.1:22

Contents

11.7.2

Set Conversion Framework.

. Code

1-2%

11.7.3 Mapping to Generic Character Environmentd.-33

11.8 Example of Generic Environment Mapping.
.1:33
.1-35
...1B5
..1-351
.1-361

11.8.1 Generic Mappings

11.8.2 hteroperation and Generic Mapplngs Ce

11.9 Relevant OSFM Registmterfaces. .
11.9.1 Character and Code Set Reglstry

11.9.2 AccessRoutmes....................

12. Building Inter-ORB Bridges

12.1 In-Line and Request-Level Bridging
12.1.1 In-lineBridging
12.1.2 Request-level Btging.
12.1.3 CollocatedORBS

12.2 Proxy Creation and Management.
12.3 Interface-specific Bridges and Generic Bridges.
12.4 Bulding GenericRequest-Level Bridges.
12.5 Bridging Non-Referencing Domains
12.6 BootstrappingBridges

13. General Inter-ORB Protocol.
13.1 Goals of the Generalter-ORB Prdocol

13.2 GIOP Overview . .
13.2.1 Common Data Representatlon (CDR)

13.2.2 GIOP Messag@verview.
13.2.3 GIOP Messagedmsfer

13.3 CDR Transfer Syntax. .
13.3.1 Primitive Types

13.3.2 OMG IDL Constructed Types ..
13.3.3 Encapsulatlon.......................
13.3.4 Pseudo-ObjectTypes

13.3.5 Object References. .

13.4 GIOP Message Formats . .
13.4.1 GIOP Message Header

1342 ReplyMessage
13.4.3 CancelRequest Message
13.4.4 LocateRequest Message
13.4.5 LocateReply Message.................
13.4.6 CloseConection Message

CORBAV2.2 Februatp98

.11-34

Contents

13.4.7 MessageError Message.
13.4.8 FragmentMessage
13.5 GIOPMessage Transport. e
13.5.1 Connection Management
13.5.2 Messagedering.

13.6 Obiject Location . . e
13.7 Internetmter-ORB Protocol (IIOP)

13.7.1 TCP/IP Connection Usage e

13.7.2 1IOP IOR Pofiles.

13.7.3 1IOP IOR Pufile Components

13.8 OMG IDL. .
13.8.1 GIOP Module

13.8.2 IIOPModuIe.........................
14. The DCE ESIOP.

14.1 Goals of the DCE Common Inter-ORB Protocol
14.2 DCE Common Inter-ORB Protocol Overview

14.2.1 DCE-CIOP RPC.

14.2.2 DCE-CIOP Data Representatlon e

14.2.3 DCE-CIOP Messages. . .
14.2.4 hteroperable Object Reﬁemce (IOR)

14.3 DCE-CIOPMessage Tansport
14.3.1 Rpe-based Interface.

14.3.2 Array-basednterface. .
14.4 DCE-CIOPMessage Formats.

14.4.1 DCE_CIOP Invoke Request Message ce A
14.4.2 DCE-CIOP Invoke Response Message. . . .4
14.4.3 DCE-CIOP Locate Request Message4
14.4.4 DCE-CIOP Locate Response Message. . . .

14.5 DCE-CIOP Object Refemces.

14.5.1 DCE-CIOP String Blndlng Component e 4
14.5.2 DCE-CIOP Binding Name Component
14.5.3 DCE-CIOP No Pipes @Gmponent.
14.5.4 Complete Object Key Component 4-
14.5.5 Endpoint ID Position Component.4-
14.5.6 Location Policy Component............ .4-

14.6 DCE-CIOP Object Location.

14.6.1 Location Mechanism Overview4-

14.6.2 Activation.

14.6.3 Ba3|cLocat|onAIgor|thm

CORBAV2.2 briary 1998

Contents

14.7
14.8

15. Interworking Architecture

151

15.2

15.3
154

15.5

15.6

15.7

15.8

15.9

14.6.4 Use of the Location Policy and the Endpoint4E24

OMG IDL for the DCE CIOP Module.
References forthisChapter

Purpose of thenterworking Architecture

4-2b
4:26 1

15-2

15.1.1 ConparingCOM Objects to CORBA Objects 15-2

Inerworking Object Model . .
15.2.1 Relationship to CORBA Object Model

15.2.2 Relationship to the OLEOM Model
15.2.3 Basic Description of thaterworking Model. .

InerworkingMapping Isues.

Interface Mapping i
154.1 CORBA/ICOM,
15.4.2 CORBAAutomation
154.3 COM/CORBA
15.4.4 AutomatiolCORBA

Interface Composition Mappings..
...5-11

. 5-13
. 514
.5-16

15.5.1 CORBA/COM .
15.5.2 Detailed Mappmg Rules

15.5.3 Example of Applying Orderlng Rules Ce
15.5.4 Mapping Interface ldentity
Object Identity, Binding, and Life Cycle
15.6.1 Object Identity Issues.
15.6.2 Bnding and LifeCycle

Inerworking Intefaces
15.7.1 SlmpIeFactoranterface .
15.7.2 IMonikerPovider Interface and Moﬂxer Use

15.7.3 ICORBR\Factory Interface
15.7.4 IForeignObjectriterface.

15.7.5 ICORBADbject Interface .
15.7.6 |IORBObjectnterface. .

15.7.7 Naming Conventions for V|ew ﬁqnonents ..

Distibution
15.8.1 Bridge Locallty

15.8.2 Detribution Archltecture e

Inerworking Targets

15.10 Canpliance to COM/CORBA IrHrworklng

CORBAV2.2

15.10.1 Products Subject to Compllance. e

Februahp98

..15-3

. 15-3

15-4
15-4

15-8

.15-8
.15-9

15-9

.5-10
.5110

5-111

9-18

. 5:18
.520
...5-2ZB
. .5-23

. B-23

2-24

.5-26
.. 57
. 5-28

15-29
.15-32

..5-32

15-33
.15-34

.. 15-34
.5-341

Xi

Contents

15.10.2 Compliance Points
16. Mapping: COM and CORBA

16.1 Data Type Maping .

16.2 CORBA to COM Data Type Mapplng e
Mapping for Basic Data Types. e
Mapping for Constants.
Mapping for Bumerators.
Mapping for String Types.
Mapping for Suct Types.
Mapping for Union Types.
Mapping for Sequence Types.
Mapping for Array Types.
Mapping for the any Type.6-
16.2.10 hterface Mapping
16.2.11 Inheritance Mapping.
16.2.12 Mapping for PseodObjects
16.2.13 hterface Repository Mapping

16.3 COM to CORBA Data Type Mapping
Mapping for Basic Data Types..........
Mapping for Constants.
Mapping for Bumerators.
Mapping for String Types.
Mapping for Sticture ypes
Mapping for Union Types.
Mapping for Array Types
Mapping for VARIANT

16.2.1
16.2.2
16.2.3
16.2.4
16.2.5
16.2.6
16.2.7
16.2.8
16.2.9

16.3.1
16.3.2
16.3.3
16.3.4
16.3.5
16.3.6
16.3.7
16.3.8
16.3.9

Mapping for Pinters .

16.3.10 hterface Mapping .

16.3.11 Mapping for Read- Only Attrlbutes
16.3.12 Mapping for Read-Write Attrlbutes e

17. Mapping: OLE Automation and CORBA

17.1 Mapping CORBA Objects to OLE Automation.
Architectural Overview
Main Features of the Mapping
Mapping for Interfaces.
Mapping for Basic Data Types..........
SpeciaCases of Basic &ta Type Mapping . . .
Mapping for Strings

17.1.1
17.1.2
17.1.3
17.1.4
17.1.5
17.1.6

Xii CORBAV2.2

breary 1998

6-32
6-32

6-33
16-33

.6-34
. 6136
.6-3Y
.6-39
.6-40

.16-43

..6-4B
..6-4B
. 6-4B

17-1

.17-2
L17-2
17:-3
A17-3
17-9

17-11

7-11

Contents

17.1.7 A Complete IDL to ODL Mapplng for the Basic

Data Types . .. e .17-12
17.1.8 Mapping for Object Refences e 17—16
17.1.9 Mapping for Bumerated ypes7:18
17.1.10 Mapping for Arrays and Sequences7-191
17.1.11 Mapping for CORBA Complex Types 7-2D
17.1.12 Mapping for TypeCodes7:23
17.1.13 Mappingforanys 724
17.1.14 Mapping for Typedefs7-28
17.1.15 Mapping for Constants 728

17.1.16 Getting InitiaCORBA Object References . 7126
17.1.17 Creating Initial in Parameters for Complex

Types17-27
17.1.18 Mapping CORBA Exceptlons to Autatmn

Exceptions17-29
17.1.19 Conventions for Namlng Componentma‘

Automation View . .. - .17-36
17.1.20 Naming Conventlons for Pseudo Structs Pseudo—

Unions, and Pseudo-Exceptions . ..7-34
17.1.21 Automation View Imrface as a Dispatchthface

(Nondual) . i ... 17-36
17.1.22 Aggregation of AutomatloneWs oL 8-37
17.1.23 DIl and DSI 731

17.2 Automation @jects as CORBA Objects7-3B

17.2.1 Architectural Overview7-3B
17.2.2 Main Features of the Mapping7-34
17.2.3 Getting Irtial Object Refegnces.......... 7139
17.2.4 Mapping for Interfaces. Y il]
17.2.5 Mapping for lheritance.0-40

CORBAV2.2

17.2.6 Mapping for ODL Prpnerﬂes and Methods ..141
17.2.7 Mapping for Automation Basic Data Types . 7-4P

17.2.8 Conversion Errors. R £ 7%}
17.2.9 SpeciaCases of Iata Type Conver3|on . 743
17.2.10 A Complete OMG IDL to ODL Mapplng for
the Basic Data Types17-43

17.2.11 Mapping for Object Refences17-46
17.2.12 Mapping for Enumerategges7x47
17.2.13 Mapping for SefArrays.17-47
17.2.14 Mapping for Typedefs7-48
17.2.15 Mapping for VARIANTs7-48

17.2.16 Mapping Automation Exceptis to CORBA . I-48

Februahp98 Xiii

Contents

17.3

Older OLE Aitomation Controllers.

17.3.1 Mapping for OMG IDL Arays and Sequences to

Collections .

17.4 Exanple Mappings. .

18. Interceptors

18.1

18.2

18.3

18.4

18.5

18.6

19. C Language Mapping

Requirements for a Language Meqm
19.1.1 BasicDataTypes
19.1.2 Consucted Dataypes
19.1.3 Constants

19.1

19.2
19.3

17.4.1 Mapping the OMG Namrng Servrce to OLE

Automation. .
17.4.2 Mapping a COM Servrce to OMG IDL
17.4.3 Mapping an OMG Object Service to OLE

Automation.

Introduction.
18.1.1 ORB Core and ORB Serwces
Interceptors
18.2.1 Generic ORB Serwces and Interceptors

18.2.2 Request-Level Interceptors
18.2.3 Message-Levehterceptors
18.2.4 Selecting Interceptors.

Client-Target Binahg. .
18.3.1 Bnding Model

18.3.2 Establishing the B|nd|ng and Interceptors ..

Using Interceptors . e
18.4.1 Request- Levehterceptors

18.4.2 Message-Levehterceptors

Interceptornterfaces . .

185.1 CllentandTargetInvoke...............
18.5.2 Send and Receildessage.
IDL for Interceptors. i

19.1.4 Obijects.

19.1.5 Invocatlon ofOperatlons
19.1.6 EXxceptionscoi ...
19.1.7 Attributes
19.1.8 ORBltterfaces.
ScopedNamest

Mapping foriterfaces.

Xiv CORBAV2.2 briary 1998

.17-49

.17-49

L7504

.17-50
7.-51

Contents

19.4

19.5

19.6

19.7

19.8

19.9

19.10
19.11
19.12
19.13
19.14
19.15
19.16
19.17
19.18
19.19
19.20
19.21
19.22
19.23
19.24
19.25

19.26

19.27

19.28

CORBAV2.2

Inheritance and Operation Names
Mapping for Attributes. L.
Mapping forConstants.
Mapping for Basic Data Types.
Mapping Considerations for Constructed Types.
Mapping for Strature Types i
Mapping forUnion Types
Mapping for Sequence Types.
Mapping for Strings..
Mapping for Wide Strings..
MappingforFixed.
Mapping for Arrays
Mapping for Exception Types
Implicit Arguments to Operations
Inerpretation of Fun@bns with Empty Argument Lists . !
ArgumenPassing Considerations
Return Result Passing Considerations9
Summary of Argument&Rult Passing.
Handling Exceptions
Method Routine Signatures
. 9-291

. 9-29
. 9:3d

.9-301

Include Files. .
Pseudo- obpts

19.25.1 ORB Operatlons
Mapping for Object Implementatlons. e
19.26.1 Operation-specific Details
..9-311

19.26.2 PortableServer Functions .

19.26.3 Mapping for PtableServer: Servant
Locator::Cookie . e

19.26.4 Servant Mapping
19.26.5 hterface Skeletons e
19.26.6 Servant Stature In|t|aI|zat|on

19.26.7 Application Servants.
19.26.8 Method Signatures .

Mapping of the Dynamic Skeletortdrface to C .

19.27.1 Mapping of ServBequesttoC

19.27.2 Mapping of Dynamic Implementation

RoutinetoC
ORB hitialization Operations

Februahp98

.9-261

9-291

9-31

.19-31

.. 9:32
.9-33

.19-35

.. 931
...9-39
.. 340
.9-10

19-42
19-44

XV

Contents

XVi

20. Mappingof OMG IDL toC++..............

20.1 Preliminary Information.
20.1.1 OVEerIVIEW ittt i i it e e
20.1.2 Scoped Names
20.1.3 C++ Type Size Requwements...........
20.1.4 CORBAModule......................

20.2 Mapping for Modules.
20.3 Mapping for mterfaces.

20.3.1 Object Reference Types e
20.3.2 Widening Object References e
20.3.3 Object Reference Operations
20.3.4 Narowing Object Redrences.
20.3.5 Nil Object Reference
20.3.6 Object Reference Out Parameter e
20.3.7 hterface Mapping Example
20.4 Mapping forConstants.
20.5 Mapping for Basic Data Types.
20.6 MappingforEnums
20.7 Mapping for String Types.
20.8 Mapping for Wide Stringypes.
20.9 Mapping for Strotured Types oo
2091 T varTypes
20.9.2 T outTypes

20.10 Mapping for Struct Types. .
20.11 Mapping for Fixed .

20.11.1 Fixed T_var and T ouyﬂ'es
20.12 Mapping forUnionTypes

20.13 Mapping for Sequence Types. .
20.13.1 Sequence Example .

20.13.2 Using the “release” Constructor Parameter
20.13.3 Additional Memory Management Functions
20.13.4 Sequence T_varand T_oyp@s.
20.14 Mapping For Arrayylpes oL
20.15 Mapping For Typedefs.0-
20.16 Mappingforthe Any Type......................
20.16.1 Handling Typed Values.
20.16.2 Insertionintoany
20.16.3 Extractionfromany0-

CORBAV2.2 briary 1998

Contents

20.16.4 Distinguishing boolean, ett charwchar, bounded

string, and bounded wstring20-52
20.16.5 Widening to Object. . i ... 052
20.16.6 Handling Untyped Values 0-5@
20.16.7 Any Constictors, Destuctor ASS|gnment
Operator . e e e . 2057
20.16.8TheAnyCIass I o EoY 24
20.16.9 The Any varClass...................0:5%2
20.17 Mapping for Exception Types0-56&
20.18 Mapping For Operations and Attributes.0-612
20.19 Implicit Arguments to Operations . e ... 0-62
20.20 ArgumenPassing Considerations . Ce0:62
20.20.1 Operation Parameters and Slgnatures. ... 0652
20.21 Mapping of Pseudo Gfgjtsto C++ 0-88
20.22 Usage. I o FL oY ot
20.23 MapplngRuIes .. e .. 0692
20.24 Relation to the C PIDL Mappmg I 0 (974622
20.25 Environment. e e 207
20.25.1 Envwonmentriterface R ¢ K.
20.25.2 EnvironmentC+€lass0Z2
20.25.3 DfferencesfromC-PIDL. O-®2
20.25.4 Memory Management.0:72
20.26 NamedValue. .. e 07722
20.26.1 NamedVaIue Interface N 0 Ly ¢ 24
20.26.2 NamedValueC++ Class0:72
20.26.3 Dfferences fromC-PIDL. 023
20.26.4 Memory Management.0:72
20.27 NVList. e ... 20-73
20271NVL|sthterface P 0 24}
20.27.2 NVLlstC++CIass N 0 1y ¢
20.27.3 DfferencesfromC-PIDL. 0?5
20.27.4 Memory Management. 072
20.28 Request. . . N 0 AW
20281Requesnterface N 0 1Y /4
20.28.2 RequestC++Class...................0-782
20.28.3 DfferencesfromC-PIDL. 0-29
20.28.4 Memory Management.0:8@2
20.29 Context. T 22 [0
20291Context|terface e e20-80

CORBAV2.2 Februahp98 XVii

Contents

xviii

20.29.2 ContextC+€lass 0:&
20.29.3 Dfferencesfrom C-PIDL. 081
20.29.4 Memory Management.0:82
20.30 TypeCode. . . e ... 0812
20.30.1 TypeCode Interface ... 082
20.30.2 TypeCode C++ Class I 0 1S V224
20.30.3 Dfferencesfrom C-PIDL. 0-83
20.30.4 Memory Management.0:82
20.31 ORB. .. N 0 S R 4
203110RBImerface C e e ..., 20-83
203120RBC++CIass N 0 13527}
20.31.3 Dfferences from C PIDL 0-85
20.31.4 Mapping of ORB In|t|aI|zat|on Operatlons. . 0:85
20.32 Object. 0862
203210bjectlnterface.....................0-.872
20.32.2 ObjectC+€lass0:&
20.33 Server-Side Mapping . e20-88
20.34 Implementing Intéaces. 038
20.34.1 Mapping of PortabIeServer Servant .. 0:-82
20.34.2 Skeleton Operations0-902
20.34.3 Inheritance-Based Interface Implementat|0n0 9P
20.34.4 Delegation-Based Interface Implementation 0:92
20.35 Implementing Operations. . C . . .0-972
20.35.1 Skeleton Derlvatlon From Object0-99
20.36 Mapping of Dynamic Skeleton Interface to C++ 0:92
20.36.1 Mapping of ServerRequestto C++. 0:92
20.36.2 Handling Operation Parameters and Results10R20
20.36.3 Mapping of PortableServer Dynamic
Implementation Routine. 20-100
20.37 PortableServer Functions.:1020
20.38 Mapping for PortableServer::ServantManager.-1020
20.38.1 Mapping for Cookie-1PQ
20.38.2 ServantManagers and AdapterActlvators 1020
20.39 C++ Deihitions for CORBA . L K
20.39.1 Primitive Types. . .. ce ..., 71028
20.39.2 String_var and Strlng cmtass 2004
20.39.3 WString_var and WStrlng_out. e -100
20394 AnyClass..............ccive L 1O
20.395Any varClass:1@0

CORBAV2.2 briary 1998

Contents

20.39.6 ExceptionClass
20.39.7 SystemExceptionClass.
20.39.8 UserException Class.
20.39.9 UnknownUserExceptionClass
20.39.10release andis_nil
20.39.110bjec€Class. o
20.39.12EnvionmentClass.
20.39.13NamedValue Class.
20.39.214NVListClasso vt v
20.39.15ExceptionListClass
20.39.16ContextlstClass.
20.39.17RequestClass.
20.39.18ContextClass.
20.39.19TypeCode Class.o
20.39.200RBClass. i i i e s
20.39.210RSB Initialization
20.39.22General T_outTypes=

20.40 Alternative Mappings For C++ Dialects.:
20.40.1 Without Namespaces=
20.40.2 Without Exception Handling

2041 CH+Keywords.ot
21. Mapping of OMG IDL to Smalltalk

21.1 Mapping 8mmary. .
21.2 Key Design Decisions .

21.2.1 Consistency of Style FIeX|b|I|ty and Portablllty
of Implementation

21.3 Implementation Constraints .

21.3.1 Avoiding Name Space CoII|S|0ns ..
21.3.2 Limtations on OMG IDL Types.

21.4 Smalltalk Implementation Requirements.
21.5 Conversion of Names taorfalltalk Identfiers
21.6 Mapping formterfaces.
21.7 MemoryUsage..
21.8 MappingforOleects
21.9 Invocation of Operations

21.10 Mapping for Attributes.

21.10.1 Mapping for Constants
21.11 Mapping for Basic Data Types.

CORBAV2.2 Februatp98

.=1080
-1020
.=1030
-129
.-1020

-201
.-1120
20-111
20-112

-1120
.=1130
-1130

20-115

21-4

. 215
.. .21
.21-5
21-6
.21-6
21-7
.21-8
21-8
.21-8
21-8
.. 219
11
1-102

Xix

Contents

21.12
21.13
21.14
21.15
21.16

21.17
21.18
21.19
21.20
21.21
21.22
21.23
21.24
21.25
21.26

21.27
21.28
21.29
21.30
21.31
21.32

22. Mapping of OMG IDL to Cobol

221
22.2

22.3
22.4
22.5

22.6
22.7

XX CORBAV2.2

Mapping forthe Any Type..
MappingforEnums1-
Mapping for Struct Types.1-
Mapping for Fixed Types.1-

Mapping for Union Types14
21.16.1 Implicit Binding
21.16.2 Explicit Binding

Mapping for Sequence Types.
Mapping for String Types.
Mapping for Wide Stringypes.
Mapping for Array Types.
Mapping for Exception Types
Mapping for Operations.
Implicit Arguments to Operations
ArgumenPassing Considerations
Handling Exceptions

Exception Values .

21.26.1 The CORBAEceptlonValue Protocol
CORBA:Request. i
CORBA:Context.t
CORBA:Object. i
CORBA:ORB
CORBA:NamedValue.
CORBAINVLISto e

Overview . .
Mapping of IDL to COBOL.

22.2.1 Mapping of IDL Idenﬁersto COBOL
Scoped Names
Memory Management

Mapping forteffaces.
22.5.1 ObjectReferences....................
22.5.2 Object Refances as Arguments
22.5.3 Inheritance andhlerface Names

Mapping for Attributes.
Mapping forConstants.

breary 1998

Contents

22.8 Mapping for Basic Data Types.22-7
228.1 Boolean22:8
22.82 enum. 22-8
2283 ANy ... 2299
22.9 Mapping forFixed Types.2:1®
22.10 Mapping for Struct Types.2-102
22.11 Mapping forUnionTypes2:1®
22.12 Mapping for Sequence Types.2:112
22.12.1 Bounded Sequence...................2-112
22.12.2 Unbounded Sequence................ 2-122
22.12.3 Sequence Elemehtcessorunctions.22-12
22.12.4 Nested Sequences. 2:132
22.12.5 Sequence paramepassmgponaderatlons. .. 22-14
22.13 Mapping for Strings . . . e .. .2-152
22.13.1 How string is mapped to COBOL ...2-18
22.13.2 How wstring is mapped to COBOL e ... 2-1B
22.13.3 string / wstring argumepéssing
considerations.22-18
22.14 MappingforArrays i 2212
22.15 Mapping for Exception Types2:19
22.16 Argument Conventions. ce v, .. .2-192
22.16.1 Implicit Arguments to Operatrons e ... 2-19
22.16.2 Argument passing Considerations2-2@®
22.16.3 Summary of Argument/Result Passing. . . . 2:22
22.17 Memory Management . C e .. 2232
22.17.1 Summary of Parameter Storage
Responsibilites2-23
22.18 Handling Exceptions2-252
22.18.1 Passing Exception detalls back to the caIIer2 252
22.18.2 Exception Handling Functions2-2@
22.18.3 Example of how to handle the CORBA-
Exception parameter.22-27
22.19 Pseudo Objects. . .. e ..2:29.2
22.19.1 Mappmg Pseudo Objects to COBOL . 2:22
22.19.2 Pseudo-Object mapping example2-302

22.20 Mapping of the Dynamic Skeletortdrface to COBOL . . 2-39
22.20.1 Mapping of the ServerRequest to COBOL . .2-4@

22.20.2 Mapping of Dynamic Implementation Routine
toCOBOL i, 2241

CORBAV2.2 Februahp98 XXi

Contents

XXii

22.21 ORSB hitialization Operations . - - . 22-44
22.22 Operations for Obtaining Initial Object Refeces . .2-45
22.23 ORB Supplied Functions for Mapping.............2:4&
22.23.1 Memory Management routines. 2:4@
22.24 AccessoFunctions22-47
22.24.1 CORBAsequence element get and CORBA—
sequence-eleant-set . - . . 22-47

22.24.2 CORBA-sing-get and CORBA strlng -set. 2218
22.24.3 CORBAwstring-get & CORBAwstring-set . . 22-49

22.25 Extensions to COBOL 85.2-492
22.25.1 Untyped Pomters andlﬁter manlpulatlon . 22-50
22.25.2 Pointer Manlpulat|on..................259
22.25.3 Floatingpoint.2-5Q
22254 Constants2-512
22255 Typedefs..2512
22.26 References2632
Mapping of OMG IDLtoAda. 23-1
23.1 Overview . 23
23.1.1 Ada Implementatlon Rerqelments cee e232
23.2 Mapping 8mmary. 232
23.2.1 hterfacesand Tagge(yﬂ'es . 232
23.2.2 Operatlons.........................23—.3
23.2.3 Attributes 233
23.24 Inheritance234
2325 DataTypes i234
23.2.6 Exceptions234
23.2.7 Namesand Scoping235
23.3 OtheMapping Requirements23:5
23.3.1 Implementation Considerations 23:5
23.3.2 Calling Convention.235
23.3.3 Memory Management.................23:5
23.3.4 Tasking. 2 £ 1)
23.4 Lexical Mapping . e ... 2356
23.4.1 Mapplngofldenﬁers ... 236
23.4.2 Mapping of Literals . .. e, ..23-6
23.4.3 Mapping of Constant Expressmns ce.....23:8
23,5 Mappingof IDLtoAda31@
2351 Names..t ... 3102
23.5.2 IDLFiles 0312

CORBAV2.2 briary 1998

Contents

23.5.3 CORBA &bsystem 32
23.5.4 Mapping Modules.3-12
23.5.5 Mapping for Interfaces (Cllent Sldeéémc) 23-12
23.5.6 MappingforTypes3-2Q
23.5.7 MappingforAny Type.................32D
23.5.8 Mapping for Exception Types.3-32
23.5.9 Mapping for Operations and Attributes
(Client-Side Specific)23-35
23.5.10 Argument Passing Considerations3-362
23.5.11 Tasking Considerations.3-3&
23.6 Mapping of Pseudo-OdjtstoAda.3-26
23.6.1 NamedvValue........................332
23.6.2 NVList332
23.6.3 Request.3-382
23.6.4 Context. 3:32
23.6.5 Principal34@Q
23.6.6 TypeCode..........................34Q@
236.7 ORB........ . i ... 342
23.6.8 Object............................. 342
23.6.9 Environment........................3:42
23.7 Server-Side Mapping . e e e ... 23443
23.7.1 Implementlngnterfaces - .. .324
23.7.2 Implementing Operations and Attrlbutes .3-42
23.7.3 Examples3442
23.8 Predefined Language Environment: Subsystem CORB3:-452
23.8.1 Packge CORBA . . - . 3:45
23.8.2 Packge CORBA. Bouded Stnngs ...23-50
23.8.3 Packge CORBA.Context. 330
23.8.4 Packge CORBA.Enviroment.............23-51
23.8.5 Packge CORBA.Foward2351
23.8.6 Packge CORBA.lteate_Over_Any Elements 23-51
23.8.7 Packge CORBA.NVList................3B2
23.8.8 Packge CORBA.Ofect.23-52
23.8.9 Packge CORBAORB................. 323
23.8.10 Packhge CORBA.Pnicipal23-54
23.8.11 Pachge CORBA.Request. . N o
23.8.12 Pachige CORBA. Sequences e, ..3-58
23.8.13 Paciage CORBA.Sequences. Bounded ..3-58
23.8.14 Pachge CORBA.Sequences.Unbmied.23-61
239 Glossaryof AdaTerms.3-652

CORBAV2.2 Februahp98 XXiii

Contents

XXV

24. Mapping of OMG IDL to Java

24.1

24.2

24.3

24.4

24.5

24.6

24.7

24.8

24.9

24.10

2411

2412

24.13
24.14

Names
24.1.1 Reserved Names

MapplngofModuIe...........................
2421 Example

Mapping forBasic Types.t
24.3.1 Introduction
2432 Boolean ol
24.3.3 Character Types
2434 Octet.
2435 StiNQVPES .. oo v
24.3.6 IntegerTypes
24.3.7 Floating Point Types.
24.3.8 Future Fixed Point Types
24.3.9 Future Long Double Types.

HelperClasses i
2441 Examples i s

Mapping for Constant . ..
24.5.1 Constants Wrthrn An Interface

24.5.2 Constants Not Within Amterface.

MappingforEnum.4-
2461 Example o 4

Mapping for Struct.4
24.7.1 Example A

Mapping forUnion.4:
2481 Example o 4

Mapping for Sequence. 4
249.1 Example 4

MappingforArray. b
24.10.1 Example A

Mapping for Interface

24.11.1 Basics.

24.11.2 Parameter Passrng Modes

Mapping for Exception. .

24121UserDeflnedExceptlons................
24.12.2 System Exceptions L.
Mapping forthe Any Type. 4

Mapping for Certain Nested Types.
24141 Example 4

CORBAV2.2 briary 1998

Contents

24.15 Mapping for Typedef4302
24.15.1 SimpleIDL types4-3@
24.15.2 Complex IDL types4-32

24.16 Mapping Pseudo ObjectstoJava................4312
24.16.1 Introduction 432
24.16.2 Certain Exceptions4:32
24.16.3 Environment.4:32
24.16.4 NamedValue432
2416 5NVList 432
24.16.6 ExcepbnList.24-34
2416.7Context. 43R
24.16.8 CotextList. ... 24-36
24.16.9 Request.4 372
24.16. 1OServerRequest and Dynamlc Implementatloha&
24.16.11TypeCode. 432
24.16.120RB. e e .. 24442
24161300RBAObJect ... 24-46
24.16.14Current...............................24-47
24.16.15Principal. 24447

24.17 Server-SideMapping i i 24448
24.17.1 Introduction4:48
24.17.2 Transient Objects448

24.18 Java ORB Portability Interfaces.4-492
24.18.1 Introduction4:49
24.18.2 Architecture4:52
24.18.3 Streamable APIs.452
24.18.4 Streaming APIs.4:52
24.18.5 Portability Stub berfaces...............455
24186 Delegate4-572
24.18.7 Skeleton, .45
24.18.8 ORB Initialization4538

CORBA V2.2 Februahp98 XXV

Contents

XXVi CORBAV2.2 breary 1998

Preface

0.1 AbouflThis Document

Under theterms ofthe collaboration between OMG and X/Open Co Ltis
document is a candidate for endorsement by X/Opetglly as a Prelirmary
Specification and later as a full CAE Specification. The collaborationdestvOMG
and X/Open Co Ltd. ensures joint reviand cohesive support for emerging object-
based specifications.

X/Open Preliminary Specifications undergo close scrutiny through a review process at
X/Open before publication and are inherently stable §ipatons. Ugrade to full

CAE Specification, after a reasonable interval, takes place following further review by
X/Open. This further review considers the implementation experience of members and
the full implications of conformancand branding.

0.1.1 Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supported
by over 800 members, including information systeandors, software developers and
users. Founded in 1989, the OMG puates the theory and practice of object-oriented
technology insoftware development. The organization's charter includes the
establishment of industry guidelinasd object management specifications to provide a
common framework for application development. Primary goals are the ritysabi
portability, and interoperahtly of object-based software wlistributed, heterogeneous
environments. Conformance to these specifications will make it possible to develop a
heterogeneous applications environment acatissiajor hardwareplatforms and

operating systems.

OMG's objectives are to foster theowth of object technology aridfluence its
direction by establishing the Object Management ArchitectuMAJ The OMA
provides the conceptuaifrastructureupon which all OMGspecifications are based.

CORBA V2.2 ebrulry 1998 XXVii

0.2

0.1.2 X/Open

X/Open is an independent, worldwide, open systems organization suppo rtexsbyf

the world's largest information system suppliers, user organizatimhsoftware
companies. Its mission is to bring to users greater value from computing, through the
practical implementation ofpen systems. X/Open’s strategy for achievingritssion

is to combine existing and emerging standards into a comprehensive, integrated
systems environment called the Common Applications Environment (CAE).

The components of the CAE are defined in X/Open CAE fipations. These contain,
among other things, an evolving portfolio of practical application programming
interfaces (APIs), which significantignhanceportability of application programs at
the source codkevel. The APIs also enhance the interopditgbof applications by
providing definitions of, and references to, protocols and protocol profiles.

The X/Open spefitationsare also supported by an extensive set ofaomance tests
and by the X/Open trademark (XPG brand), which is licensed by X/Open and is carried
only on products that comply with the CAE specifications.

Intended Audience

The architectureand spedicationsdescribed in this manual are aimed at software
designers and developers who want to produce applications that comply with OMG
standards for the Object Request Broker (ORB). The benefit of compliance is, in
general, to be able to produce interoperable applications that are badistlibuted,
interoperating objects. As defined by the Object Managementl5(OMG) in the

Object Maagement Athitecture Guidethe ORB provides the mechanisms by which
objects transparently make requests and receive responses. Hence, the ORB provides
interoperability betwen applications on different machines in hejereeous

distributed environmentand seamlessly interconneatsultiple object systems.

0.3 Context of CORBA

XXVill

The key to undrstanding the structure of the CORBA architecture isRéference
Model, which consists of the following components:

» Object Request Broker which enables objects to transparently make and receive
requests and responses in a distributed environment. It is the foundation for
building applications from distributed objects and for interoperaliktyveen
applications in hetero- and homogeneous environmentsafiectureand
specifications of the Object Baest Broker are described in this manual

» Object Services a collection of services (interfacaad objects}hat support
basic functions for usingndimplementing objects. Services are necessary to
construct anydistributed applicatiorand are always independentayplication
domains. For example, the Life Cycle Service defines conventions for creating,
deleting, copying, and movingpjects; it does not dictate how the objects are
implemented in an application. Specifications for Object Services are contained in
CORBAservices: Common Object Services Specification.

CORBAV2.2 February 1998

Common Faclities, a collection of services that many applications may share,
but which are not as fundamtal as the Object ServicelSor instance, a system
management or electronmgail facility could be classified as a commfaility.
Information about Common Facilities will be containedCi@RBAfacilities:

Common Facilities Architecture

Application Objects, which are products of a single vendor on in-house
development group which controls their interfaces. Application Objects
correspond to the traditional notion of applications, so they are not standardized
by OMG. Instead, Application Objects mstitute the uppermost layer of the
Reference Model.

The Object RequestrBker, then, is the core of the Reference Model. It is like a
telephone exchange, providing the basic mechanism for makingeaeiting calls.
Combined with the Object Services, it ensures meaningful communidetioreen
CORBA-compliant applicatios.

0.4 Associated Documents

The CORBA documetation set includes the foing books:

ObjectManagement Ahitecture Guidedefines the OMG's technical objectives

and terminology and describes the conceptual models upon which OMG standards
are based. It algorovides information about the policies and procedures of OMG,
such as how standards are proposed, evaluated, and accepted.

CORBA: Common Object Request Brokerhitecture and Specificatiocontains
the architecture and specifications for the Object RecBredter.
CORBAservices: Common Object Services Specificatotains specifications
for the Object Services.

CORBAfacilities: Common Facilities Architectuzentains the architecture for
Common Facilities.

OMG collects information foeach book in the documentation set by issuing Requests
for Information, Requests for Proposals, and Requests for Commendigh its
membership, evaluating the responses. Specifications are adopted as standards only
when representatives of the OMG membership accept them as such by vote.

To obtain books in the documentation set, or other OMG publicatiefes, to the
enclosed subscription card or contact the Object Manage@renp, Inc. at:

OMG Headquarters
492 Old Connecticut Path
Framingham, MA 01701
USA
Tel: +1-508-820 4300
Fax: +1-508-820 4303
pubs@omg.org
http://www.omg.org

CORBAV2.2 #sociated Documents February 1998 XXIX

0.5 Definition of CORBA Compliance

As described in th®MA Guide the OMG’s Core ®ject Model consists of a coeand
components. Likewise, the body GORBAspecifications is divided into core and
component-like specificationhe structure othis manual reflects that division.

The CORBAspecifications are categorized as follows:

CORBA Core, as specified in Chapters 1-9

CORBA Interoperability, as specified in Chapters 10-14

CORBA Interworking , as specified in Chaptet$, 16, and 17

Mapping of OMG IDL to the C programming language as specified in Chapter 18

Mapping of OMG IDL to the C++ programming language as specified in
Chapter 19

Mapping of OMG IDL to the Smalltalk programming language, as specified in
Chapter 20

Mapping of OMG IDL to the COBOL programming language as specified in
Chapter 21

Mapping of OMG IDL to the Ada programming language as specified in
Chapter 22

Mapping of OMG IDL to the Java programming language as specified in
Chapter 23

The ninimum required for a CORBA-compliant system is adherence to the
specifications in CORBA Core and one mappiigch additional language mapping is
a separate, optional compliance point. Optional means users aren’t required to
implement these points if they are unnecessary at their site, impl#dmentedthey
must alhere to th&€€ORBAspecifications to be called CORBA-compliant. For instance,
if a vendor supports C++, their ORBust comply with the OMG IDL to C++ binding
specified in this manual.

Interoperabilityand Interworking are separatempliance points. For detailed
information about Interworking compliance, refer to “Products Subject to Compliance”
on page 15-34.

XXX CORBAV2.2 February 1998

0.6 Structure of This Manual

This manualis divided into the categories Gfore, Interoperabty, Interworking, and
individual Language Mappings. Thesdgvisions reflect thecompliance points of
CORBA. In addition to this prefac€ORBA: Common Kject Request Broker
Architectureand $ecificationcontains the followng chapters

Core

Chapter 1 -- The Object Modeldescribes the computation model that underlies the
CORBA architecture.

Chapter 2 -- CORBA Overview describes the overall structure of the ORB
architectureand includesnformation about CORBA interfaces amdplementations.

Chapter 3 -- OMG IDL Syntax and Semanticsdescribes OMG inteate definition
language (OMG IDL), which is the language used to describe the interfaces that client
objects calland object implementations provide.

Chapter 4-- ORB Interface describes the interface to the ORB functions that do not
depend on object adapters: thepemtions are the same for all ORBs and object
implementations.

Chapter 5-- The Dynamic Invacation Interface describeghe DI, theclient’s side of
the interface that allows dynamic creatiand invocation of request to objects.

Chapter 6 -- The Dynamic Skeleton Interfacelescribegshe DSI, the server's-side
interface that can dekr requests from an ORB to an object implementation that does
not havecompile-time knowledge of the type of the object it is implementing. DSl is
the server’s analogue of tleient’'s Dynamic Invocation Interface (DII).

Chapter 7 -- Dynamic Management of Any Valueslescribes the interface for the
DynamicAny type. This interface allows statically-typed programmiagguages such
as C and Java to createreceive values of type Any without cortgitime knowledge
that the typer contained in the Any.

Chapter 8 -- Interface Repositorydescribes the component of the ORB that manages
and provides access tocallection of object défitions.

Chapter 9-- Portable Object Adapterdescribes a group of IDinterfaces than an
implementation uses to access ORB functions.

Interoperability

Chapter 10-- Interoperability Overview explains the interoperability architecture and
introduces the subjects pertaining to interoperabilityeri@RB bridges; general and
Internet inter-ORB protocols (GIOP and 1IOP); and environment-specific, inter-ORB
protocols (ESIOPSs).

CORBAV2.2 t&icture of This Manual February 1998 XXXi

Chapter 11 -- ORB Interoperability Architecture introduces the framework of ORB
interoperability, including information aboubthains; @proaches tonter-ORB
bridges; what it means to be compliant with ORB interoperabditg ORB Services
and Requests.

Chapter 12 -- Building Inter-ORB Bridges explains how to build bridges for an
implementation of interoperating ORBs.

Chapter 13 - General Inter-ORB Protocoldescribes the general inter-ORBotocol
(GIOP) andincludes information about thelGP’s goals, syntaxformat, transport,
and object lgation. Thischapter also includes information about the Internet inter-
ORB protocol (I1OP).

Chapter 14 -- DCE ESIOP - Environment-Specific Inter-ORB Protocol (ESIOP)
describes a protocol for the OSF DCE environmé&he proteol is called the DCE
Environment Inter-ORB Protocol (DCESEOP).

Interworking

Chapter 15 -- Interworking Architecture describes the architecture for
communication betweetwo object management sgsis: Microsoft's COM (including
OLE) and the OMG’s CORBA.

Chapter 16 -- Mapping: COM and CORBA describes the data type and interface
mapping between COM and CORBA. The mappings are described in the context of
both Win16 and Win32 COM.

Chapter 17 -- Mapping: OLE Automation and CORBA describes the two-way
mapping between OLE #omation (in ODL)and CORBA(in OMG IDL).

Note: Chapter 17 also includes appendix describing solutions thagndors might
implement to suppokxistingand older OLE Aitomation controllers and appendix
that provides an example of how the Naming Service could be mapped to an OLE
Automation interface according to the Interworking sfieation.

Language Mappings

Chapter 18 -- C Language Mappingdefines themapping of OMG IDL to the C
programming language.

Chapter 19 -- Mapping of OMG IDL to C++ - Includes the following information:
* Mapping of OMG IDL to C++ maps the nstructs of OMG IDL to the C++
programming language.
* Mapping of Pseudo Objects to C++ maps OMG IDL pseudo objects to the C++
programming language.
» Server-Side Mapping explains the portability constraints for an object
implementation written in C++.

e The C++ language mapping also includes several appendices. One contains C++
definitions for CORBA, another contains alternate C++ mappiagd,another
contains C++ keywrds.

XXXii CORBAV2.2 February 1998

Chapter 20-- Mapping OMG IDL to Smalltalk - includes the following information:
» Mapping of OMG IDL toSmalltalk maps the constructs of OMG IDL to the
Smalltalk programmindanguage.

» Mapping of Pseudo Objects to Sittelk maps OMG IDL pseudo-objects to
Smalltalk.

Chapter 21 -- Mapping of OMG IDL to COBOL maps the constructs of OMG IDL
to the COBOL programming language.

Chapter 22 - Mapping of OMG IDL to Ada maps the constructs of OMG IDL to the
Ada programming language.

Chapter 23 - Mapping of OMG IDL to Java maps the constructs of OMG IDL to the
Java programming layuage.

Appendix A- containsOMG IDL tags that can identify an Object Service, a
component, or a profile.

0.7 Acknowledgements

The following companies submitted partstbé specifications thatere approved by
the Object Management Group to becoG@RBA:

* BNR Europe Ltd.

» Defense Information Systendggency
» Expersoft Corporation

e FUJITSU LIMITED

» Genesis Development Corporation
e Gensym Corporation

* IBM Corporation

* ICL plc

* IONA Technologies Ltd.

+ Digital Equipment Corporation

» HewlettPackard Company

* HyperDesk Corporation

» Micro FocusLimited

* MITRE Corporation

* NCR Corporation

» Novell USG

* Object Design, Inc.

» Objective Interface Systems, Inc.

* OC Systems, Inc.

» Open Group - Open Softwe Fourdation
» Siemens Nixdorf Informationssysteme AG
* Sun Microsystems Inc.

* SunSoft, Inc.

» Sybase, Inc.

CORBAV2.2 Ackwledgements February 1998 XXXili

0.8 References

XXXIV

* Telefénica Investigacion y Desarrollo S.A. Unipersonal
 Visual Edge Software, Ltd.

In addition to the preceding contributors, the OMG would like to acknowledge Mark
Linton at Silicon Graphics and Doug Lea at the Statevé&fsity of New York at
Oswego for their work on the C++ mapping.

IDL Type Extensions RFP, March 1995. OMG TC Document 95-1-35.

The Common Object Requestd&er: Archiecture and Specification, Revisi@nl,
August 1997.

CORBAservices: Common Object Services Specificationjded Edition, OMG TC
Document 95-3-31.

COBOL Language Mapping RFP, December 1995. OMG TC document 95-12-10.
COBOL 85 ANSI X3.23-1985 / ISO 1989-1985.
IEEE Standard for Binary Floating-Point Arithmetic, ANIS/IEEE Std 754-1985.

XDR: External Data Representation Standard, RBR21&. Srinivasan, SuMlicro-
systems, August 1995.

OSF Character and Code Setdistry, OSF DCE SIG RFQX1 (Public Version), S.
(Martin) O’Donnell,June 1994.

RPC Runtime Support Fot8N Characters — Functional Spédcition, OSF DCE
SIG RFC 41.2, M. Romagna, R. Mackey, November 1994.

X/Open Systeninterface Definitions, Issue 4 Version 2995.

CORBAV2.2 February 1998

The Object Model 1

This chapter dscribes the concrete object model that underlies the CORBA
architecture. The model is derived from the abstrace®bject Model defined by the
Object Managemen®roup inthe Object Management Ahitecture Guide
(Information about th©MA Guideand other books in the CORBAdumentation set
is provided in this document's preface.)

Contents

This chapter contains tHellowing sections.

Section Title Page
“Overview” 1-1
“Object Semantics” 1-2
“Object Implementation” 1-8

1.1 Overview

The object model provides an organized presentation of object concepts and
terminology. It defines a partial model for computation that embodies the key
characteristics of objects as realized by the submitted technologies. The OMG object
model isabstractin that it is not directlyrealized byany particular techology. The

model described here iscancreteobject model. A concrete object model may differ
from the abstract object model in several ways:

CORBA V2.2 ebruary 1998 1-1

* It may elaboratethe abstract object model by making it more specific, for
example, by defining the form of request parameters or the dgegused to
specify types.

* It may populatethe model by introducing specific instancesaofities defined by
the model, for example, specific objects, specific operations, or specific types.

* It may restrictthe model by eliminating entities or placing additional restrictions
on theiruse.

An object system is a collection of objects that isolates the requestors of services
(clients) from the providers of services by a well-defieadapsulatingnterface. In
particular, clients are isolated from the implementations of services as data
representations and executable code.

The object model first describes concepts that are meaningful to clients, including such
concepts as object creation aneritity, requests and operat® types and signatures.

It then describes concepts related to object implementations, including such concepts
as methods, execution engines, and activation.

The object model is most specifendprescriptive in defining concepts meaningful to
clients. The discussion of object implementation is nsuggestive, with the intent of
allowing maximal freedom for different object technologies to provide differaysw
of implemening objects.

There are some other characteristics of object systems that are outside the scope of the
object model. Some of these concepts are aspects of application architecture, some are
associated with specific domains to which object technology is applied. Such concepts
are more properly dealt with in an architectural reference model. Examples of excluded
concepts are compound objects, links, copying of objects, change management, and
transactions. Also outside theoge of the object model are tdetails of control

structure: the object model does not say whether clients and/or servers are single-
threaded omult-threaded, and does not spedifyw event loops are programmed nor

how hreads are created, destroyed, or synchronized.

This object model is an example of a classical object model, where a client sends a
message to an object. Conceptually, the objeetprets the message to decide what
service to perform. In the classical model, a message identifies an abjezero or

more actual parameters. As in most classical object models, a diskieg first

parameter is required, which identifies the operation to be performed; the interpretation
of the message by the object involves selecting a method based on the specified
operation. Operationally, of course, method selection could be performed either by the
object or the ORB.

1.2 Object Semantics

An object system provides services to clientlié@nt of a service is any entity
capable of requesting the service.

This section defines the concepts associated with object semantics, that is, the concept:
relevant to clients.

CORBAV2.2 February 1998

1.2.1 Objects

An object system includes entitigsown asobjects. Anobjectis an identifiable,
encapsulateéntity that provide®ne or more services that can be requested by a
client.

1.2.2 Requests

Clients request services by issuing requesteeqiestis an event (i.e., something that
occurs at a particular time). The information associated with a request consists of an
operation, a target object, zero or more (actual) parametedsan optional request
context.

A request formis a description or pattern thedin be evaluated or performeulltiple

times to cause the issuing of requests. As described in the OMG IDL Synmdax
Semantics chapter, request forms are defined by particulpudge bindings. An
alternative request form consists of calls to the dynamic invocation interface to create
an invocation structure, add arguments to the invocation structure, and to issue the
invocation (refer to the Dynamic Invocation Interface chapter for descriptions of these
request forms).

A valueis anything that may be aditimate (actual) parameter irrequest. More
particularly, a value is an instance of an OMG IDL data type. There are non-object
values, as well as values that reference obijects.

An objectreferenceis a value that reliably denotes a particular object. Specifically, an
object reference will identify the same objeetch time the refenee is used in a
request (subject to certain pragmaditoits of space and time). An object may be
denoted bymultiple, distinct object referares.

A request may have parameters that are used to pass data to the target object; it may
also have a request context which provides additional information about the request. A
request context is a mapping fratrings tostrings.

A request causes a service to be performed on behalf of the client. One possible
outcome of performing a service is returning to the client the results, if any, defined for
the request.

If an abnormal condition occurs during the performance of a request, an exception is
returned. The exception may carry additional refpanameters particular to that
exception.

The request parameters are identified by position. A parameter may be an input
parameter, an output parameter, or an input-output parameter. A request may also
return a singleeturn result valugas well as the results stored into the output and
input-output parameters.

The followingsemantics hold for all requests:

* Any aliasing of parameter values is neither guaranteed removed nor guaranteed to
be preserved.

» The order in which aliased output parameters are written is not guaranteed.

CORBAV2.2 Object Semantics February 1998 1-3

1-4

The return result and the values stored into the output and input-output
parameters are undefined if an exception is returned.

For descriptions of the values andceptions that are peitted,see “Types” on
page 1-4 and “Exceptions” on page 1-7.

1.2.3 Object Creadn and Destruction

Objects can be created and destahy-rom eclient’s point of view, there is no special
mechanism for creating or destroying an object. Objects are created and destroyed as
an outcome of issuing requests. The outcome of object creation is revealed to the client
in the form of an object reference that denotes the new object.

1.2.4 Types

A typeis an identifiable entity ith an associated predicate (a single-argument
mathematical function with a boolean result) defined over values. A salisfiesa
type if the predicate is true for that value. A value Hadisfies a type is called a
member of the type

Types are used in signaturesréstrict a possible parameter or to characterize a
possible result.

The extension of a typis the set of values that satisfy the typamt paticular time.

An object types a type whose members are object references. In other words, an
object type is satisfied only by object references.

Constraints on the data types in this model are shown in this section.

Basic types
» 16-bit, 32-bit, and 64-bit signed and unsigned 2's complement integers.
* Single-precision (32-bitdouble-precision @&-bit), and double-extended (a
mantissa of at least 64 bits, a signdmntd an exponent of &ast 15 bits) IEEE
floating point numbers.

 Fixed-point decimal numbers of up to 31 significant digits.

» Characters, as defined in ISO Latin-1 (8859.1) and other single- or multi-byte
character sets.

» A boolean type taking the values TRUE and FALSE.

* An 8-bit opaque detectable, guaranteeddbundergo any conversion during
transfer between sgems.

* Enumerated types consisting of ordered sequences of identifiers.

» A stringtype, which consists of a variable-length array of characters (a null
character is one whose character code is 0); the length of the stripgs#iae
integer, and is available at run-time.

* A container type “any,” which can represent any possible basic or constructed
type.
» Wide characters that may represent characters &myrwide characteset.

CORBAV2.2 February 1998

1

» Wide charactestrings, which consist of a length, available at runtime, and a
variable-length array of (fixed width)ide characters.

Constructed types:

* A record type (called struct), which consists of an ordered set of (name,value)
pairs.

* A discriminated union type, which consists adiacriminator (wlose exact value
is always availablefollowed by aninstance of a type appropriate to the
discriminator value.

* A sequence type, which consists of a variable-length array of a single type; the
length of the sequence is available at riumet

» An array type, which consists of a fixed-shapeltdimensional array of a single

type.
* An interfacetype, which specifies the set of operations which an instance of that
type must support.

Values in a request arestricted to values that satisfy these type constraints. The legal
values areshown in Figure 1-1 on page 1-5. Notparar representation for values is
defined.

Short
Object Reference Long
LongLong
UShort
Ulong
UlongLong
Float
Double
LongDouble
Fixed

Char
Wochar
String

Value Basic Value

Constructed Value

Figure 1-1 Legal Values

1.2.5 Interfaces

Struct
Sequence
Union
Array

Wstring
Boolean
Octet
Enum
Any

An interfaceis a description of a set of possible operations that a client may request of
an object. An objecsatisfiesan interface if it can be specified as the target object in
each potential request described by ititerface.

An object typés a type that is satisfied by any object reference whose referent satisfies
an interface that describes the object type.

CORBAV2.2 Object Semantics

February 1998

1-5

1-6

Interfaces are specified in OMG IDL. Interface inheritance provides the @sifop
mechanism for permitting an object to suppatltiple inerfaces.The principal
interfaceis simply the most-specific interface that the object suppanis,consists of
all operations in the transitive closure of the interface inheritance graph.

1.2.6 Operations

An operationis an identifiable entity that denotes a service that can be reqaested
is identified by aroperation identifier An operation is not a value.

An operation has a signature that describeseabiimate values afequest parameters

and

returnedesults. In particular, aignatureconsists of:
A specification of the parameters required in requests for that operation.
A specification of the result of the operation.

An identification of the user exceptions that may be raised by a request for the
operation.

A specification of additional contextual information that may affect the request.

An indication of the execution semantics the client should expect from a request
for the operation.

Operations are (potentially) generic, meaning that a single operation can be uniformly
requested on objects with differa@ntplementabns, possibly resulting in observably
different behavior. Genericity is achieved in this model via interface inheritance in IDL
and the total decoupling of implementatiwom interface specification.

The generaform for an operation signature is:

[oneway] <op_type_spec> <identifier> (p araml, ..., paramL)

[raises(exceptl,...,exceptN)] [context(hamel, ..., nameM)]

where

The optionaloneway keyword indicates that best-effort semantics are expected
of requests for this operation; the default semantics are exactly-once if the
operation successfully returns results or at-most-once if an exception is returned.

The<op_type_spec> is the type of the return result.
The<identi fier> provides a name for the operation in the interface.

The operation parameters needed for the operation; they agedlagth the
modifiersin, out, orinout to indicate the direction in which the information
flows (with respect to the object performing the request).

The optionakaises expression indicates which user-defined exceptions can be
signaled taterminate a request for this operation; if such an expression is not
provided, no user-defined exceptions will be signaled.

The optionalcontext expression indicates which request contefdrimation

will be available to the object implementation; no other contextual information is
required to be transported with the request.

CORBAV2.2 February 1998

Parameters

A parameter is characterized by its mode and its typenidueindicates whether the
value should be passed from client to seri), from server to clientqut), or both
(inout). The parameter’s type constrains the possible valbhich may be passed in
the directions dictated by the mode.

Return Result

The returnresult is a distiguishedout parameter.

Exceptions

An exception is an indication that an operation request was not performed successfully.
An exception may be accompanied by additional, exception-specific information.

The additional, exception-specific fiarmation is a specialized form of record. As a
record, it may consist afny of the types described in “Types” on page 1-4.

All signatures implicitly include the system exceptions; the standard system exceptions
are described in “Standard Exceptions” on page 3-37.

Contexts

A request context provides additional, operation-specific information that may affect
the performance of a request.

Execution Semantics

Two styles of execution semantics are defined by the object model:
» At-most-once: if an operation request returns successfuilgstperformed
exactly once; if it returns an exception indicationyéts perfomed at-most-once.
» Best-effort: a best-effort operation is a uegt-only operatiori,e. it cannot return
any results and the requester never synchronizes with the completion, if any, of
the request.

The executiorsemantics to be expected is associated with an operation. This prevents
a clientand object implementaticinom assuming different execution semantics.

Note that a client is able tovioke anat-most-aice ogeration in a syahronous or
deferred-synchronous manner.

1.2.7 Attributes

An interface may have attributes. An attribute is logically equivalent to declaring a pair
of accessor functions: one to retrieve the value of tidate andone to set the value
of the attribute.

CORBAV2.2 Object Semantics February 1998 1-7

An attribute may be read-only, in which case only rihteievalaccessor function is
defined.

1.3 Object Implementation

This section defines the concepts associated with object implementation, i.e. the
concepts relevant teealizing the behavior of objects in a computational system.

The mplementation of an object system carries out the computationatiastheeded
to effect the behavior of requested services. Tlaeseities may includeomputing
the results of the requeahd updating the system state. In the process, additional
requests may be issued.

The mplementation model consists o parts: the execution model and the
construction modelThe execution moel describes how services are performed. The
construction model describéew servicesre defined.

1.3.1 The Execution Model: Performi&grvices

A requested service is performed in a computational system loyitingcode that

operates upon some data. The data represents a component of the state of the
computational system. The code performs the requested service, which may change the
state of the system.

Code that is executed to perform a service is calledthod A method is an

immutable description of a computation that can be interpreted by an execution engine.
A method has an immutable attributalled amethod formathat defines the set of
execution engines that can interpret the methodexXecution enginé an abstract
machine (not a program) that can interpret methodsdfin formatscausing the
described computations to be performed. An execution engine defines a dynamic
context for the execution of a methdthe execution of anethod is called anethod
activation

When a client issues a request, a method of the target object is called. The input
parameters passed by the requestor are passed to the method and thenduitgauit-
output parameters and return result value (or exceptiohts parameters) angassed
back to the requestor.

Performing a requested service causes a method to execute that may upmrade
object’s persistent state. If the persistent form ofrlethod orstate isnot accessible
to the execution engine, it may be necessaryrét dopy the method cstate into an
execution context. This process is calbattivation the reverse process is called
deactivation

1.3.2 The ConstructioModel

A computational object system must provide mechanisms for realizing behavior of
requests. These mechanisms includénitefns of object state, definitions of methods,
anddefinitions of how the object infrastructure is to select the oustho execute and

CORBAV2.2 February 1998

1

to select the relevant portions of object state to be made accessible to the methods.
Mechanisms must also be provided to describe theretes actions associated with
object creation, such as association of the new object with appropriate methods.

An object implerentation—or implementationfor short—is a definition thgirovides

the informationneeded to create an object and to allow the objepattcipate in
providing an appropriate set of services. An implementation typically includes, among
other things, definitions of the methods that opewgten thestate of an object. It also
typically includes informatiombout the intended types of the object.

CORBA V2.2 ObjectImplementation February 1998 1-9

1-10 CORBAV2.2 February 1998

CORBAOverview

The Common Object Request Broker Architecture (BARis structured to allow

integration of a wide variety of object systems. The motivation for some of the features

may not be apparent at first, but as we discuss the range of implenmes)tptidicies,
optimizations, and usages we expect to encompass, the value aoétiwsliftly becomes

more clear.

Contents

This chapter contains tHellowing sections.

Section Title Page
“Structure of an Object Request Broker” 2-2
“Example ORBs” 2-11
“Structure of a Client’ 2-12
“Structure of an Object Implementation” 2-13
“Structure of an Object Adapter” 2-15
“CORBA Required Object Adapter” 2-17
“The Integration of Foreign Object Systems” 2-18

CORBA V2.2 ebruary 1998

2-1

2.1 Structure of an Object Request Broker

Figure 2-1 on page 2-2 shows a request being sent by a client toeah obj
implementation. The Client is the entity that wishes to perform an operation on the
object and the Gject Implementation is the code and data that actually implements the
object.

Client) @bject Implementation

RESIES

ORB

Figure 2-1 A Request Being Sent Through the Object Request Broker

The ORB is respnsible for all of the mechanisms required to find the object
implementation for the request, to prepare the object implementation to receive the
request, and to communicate the data making up the rediesinerface the client
sees is completely independent of where the object is located prdgaamming
language it is implementad, or any other aspect which is not reflected in thgct's
interface.

Figure 2-2 on page 2-3 shows the structure of an individbf@dd Request Broker
(ORB). The interfaces to the ORB asleown bystriped oxes, and the arrows indicate
whether the ORB is called or performs an up-call across the interface.

2-2 CORBAV2.2 February 1998

Client Object Impl ementation

Z
Dynamic IDL ORB Static IDL | | Dynamic Object
Invocation Stubs Interface Skeleton Skeleton Adapter
ORB Core
AN Interface identical for all ORB implementations .
Up-call interface

w277 There may be multiple object adapters
There are stubs and a skeleton for each object type * Normal call interface
| ORB-dependentinterface

Figure 2-2 The Structure of Object Request Interfaces

To make a request, the Client can use the Dynamic Invocation interface (the same
interface independent of the target objentterface) or an OMG IDL stub (the specific
stub depending on the interface of the target obj@t®. dient can also directly
interact with the ORB for some functions.

The Objecimplementation receives a request as an up-call either through the OMG
IDL generated skeleton or through a dynamic skeleton. The Object Implementation
may call the Object Adapter and the ORB wiitecessing a request or at other times.

Definitions of the interfaces to objects can be definetivimm ways. Interfaces can be
defined statically in an interface definititenguage, called the OMG Interface

Definition Language (OMG IDL). This language aefs the types of objects according

to the operations that may be performed on them and the parameters to those
operations. Alternatively, or in addition, interfaczs be added to an Interface
Repository service; this service represents the components of an interface as objects,
permitting run-time access to thesemponents. In any ORB implementation, the
Interface DefinitionLanguage (which may be extended beyond itendief in this
document) and the Interface Repository have equivalent expressive power.

CORBA V2.2 Structure of an Object Request Broker February 1998 2-3

2-4

The clientperforms a request by having access to an Object Reference for an object
and knowing the type of the object and the desigeration to be performed. The

client initiates the request byalting stub routines that are specific to the object or by
constructing the request dynamically (see Figure 2-3 on page 2-4).

Client

Invocation

ORB Core

AN - Interface identical for all ORB implemen tations

There are stubs and a skeleton for each object type
| ORB-dependent interface

Figure 2-3 A Client Using the Stub or Dynamic Invocation Interface

The dynamic and stuibterface for invoking a request satisfy the same request
semanticsand thereceiver of the message cannot tell how the requastinvoked.

The ORB locateshe appropriate implementati@mode transmits parameters, and
transfers control to the Object Implemeitatthrough an IDL skeleton or a dynamic
skeleton (see Figure 2-4 on page 2-5). Skeletonspeific to the interfacand the
object adapter. In performing the request, the objeptementation may obtain some
services from the ORB through the Object Adapter. When the request is complete,
control and output values are returned todhent.

CORBAV2.2 February 1998

Object Implementation

Z

Object
Adapter

ORB Static IDL | | Dynamic
Interface Skeleton Skeleton

ORB Core

L1

Interface identical for all ORB implemen tations .

Up-call interface
There may be multiple object adapters
There are stubs and a skeleton for each object type ‘ Normal c all interface

ORB-dependent interface
Figure 2-4 An Object Implementation Receiving a Request

The (bject Implementation may choose which Object Adapter to use. This decision is
based on what kind of services the Objaeplementabn requires.

Figure 2-5 on page 2-6 shows hawerfaceand implementatioinformation is made

available to clients and object implementatiofise inerface is defined in OMG IDL
and/or in the InterfacReposiory; the deihition is used to generate the client Stubs
and the objectmplemenétion Skeletons.

CORBA V2.2 Structure of an Object Request Broker February 1998 2-5

2-6

IDL

Definitions Installation

Implementation

Interface
Repository

Implementation
Repository

Stubs Skeletons

Client) @bject Implementation

Figure 2-5 Interfaceand InplementatiorReposdiories

The objectimplementaibn information is provided at installation time and is stored in
the ImplementatiorRepostory for use during request delivery.

2.1.1 Object Request Broker

In the architecture, the ORB is not required to be implemented as a single component,
but rather it is defined by its interface®sy ORB implementation that provides the
appropriate interface is acceptabléne inerface is organized into three categories:

1. Operations that are the same for all ORB implementations
2. Operations that are specific to particular types of objects
3. Operations that are specific to particular styles of object implementations

Different ORBs may make quite different implementation choices, and, together with
the IDL compilers, repositories, and various Object Adapters, provide a set of services
to clientsandimplementations of objects that have different properties and qualities.

There may be multiple ORB implementations (also described as multiple ORBSs) which
have different representations for object references and different mepagariming
invocations. It may be possible for a client to simultaneously have access to two object

CORBAV2.2 February 1998

2

references managed bifferent ORB implementations. When two ORBs etended
to work together, those ORBs must be abléigiinguish their object references. It is
not the responsibility of the client to do so.

The ORB @re is that part of the ORB that provides the basic representation of objects
and communication of requests. CORBA is designed to support different object
mechanisms, and it does so by structuring the ORB with components above the ORB
Core, which provide interfaces that can mask the differences between ORB Cores.

2.1.2 Clients

A client of an object has access to an object reference for the object, and invokes
operations on the object. A client knows only the logical structure of the object
according to its interface and experiences the behavior of the object through
invocations. Although wevill generally consider a client to be a program or process
initiating requests on an object, it is important to recognize that something is a client
relative to a particular object. For example, the implementatianefobject may be a
client of other objects.

Clients generallysee objects and ORB interfaces through the perspective of a language
mapping, bringing the ORB right up to the programmer’s level. Clients are maximally
portable and should be able to workheut source changes on any ORB that supports
the desired language mapping with any object instance that implements the desired
interface. Clients have no knowledge of the implementation of the object, which object
adapter is used by the implementation, or which ORB is used to access it.

2.1.3 Object Implementations

An object implementatioprovides the semantics of the object, usually by defining
data for the object instwe and code for the object’s methods. Often the
implementation will use other objects or additional software to implement the behavior
of the object. In some cases, the primary function of the object is to have side-effects
on other things that are not objects.

A variety of object implementations can be supported, including separate servers,
libraries, a program per method, an encapsulated application, an object-oriented
database, etc. Through the use ddiional object adapters, it is possiblestapport
virtually any style of object implementation.

Generally, object implementations dot depend on the ORB or how the client invokes
the object. Object implementations may select interfaces to GipBrdienservices
by the choice of Object Adapter.

CORBA V2.2 Structure of an Object Request Broker February 1998 2-7

2.1.4 Object References

An Object Reference is thieformation needed to specify an object within an ORB.
Both clients and objedétmplementationdiave an opaque notion of object references
according to the language mapping, and thus are insulatiedthe actual
representation of them. Two ORB implementations méfedin their choice of Object
Reference representations.

The representation of an object reference handeddieat is only valid for the
lifetime of thatclient.

All ORBs must provide the sameniguage mapping to an object refereifgsually
referred to as an Object) for a particular programnamguage. Thigpermits a
program written in garticularlanguage to access object referencespetident of the
particular ORB.The language mappingay also provide additional ways to access
object references in a typeday for the convenience dtie programmer.

There is aistinguished object reference, guaranteed to be different &lbobject
references, that denotes no object.

2.1.5 OMG Interface Defition Language

The OMG Interface Dehition Language (OMG IDL)defines the types of objects by
specifying their interfaes. Aninterface consists of a set of named operatamsthe
parameters to those operations. Note #ithiough IDL provides the conceptual
frameworkfor describing the objects manipulated by the ORB, it is not necessary for
there to be IDL source code available for the ORB to work. As long as the equivalent
information is available in the form of stub routines or a run-time interface repository,
a particular ORB may be able to function correctly.

IDL is the means by which a particular object implementation tells its potential clients
what operations are availabded how they should be invokedo the IDL

definitions, it is possible to map CORBA objects into particular programming
languages or object systems.

2.1.6 Mapping of OMG IDL to Programming Languages

Different object-oriented or non-object-oriented programming languages may prefer to
access CORBA objects in different ways. For object-oriented languages, it may be
desirable to see CORBA objects as programminguage objects. Even for non-
object-oriented languages, it is a good idea to hide the exact ORB raptieseof the
object reference, method names, etc. A particular mapping of OMG IDL to a
programming language should be the same for all ORBementatios. Language
mapping includes definition of the language-specific data tgpdsprocedure

interfaces to access objects through the ORB. It includes the structure of the client stub
interface (not required for object-oriented languages), the dynamic invocation
interface, the implementation skeleton, the object adapters, and the direct ORB
interface.

CORBAV2.2 February 1998

2

A language mapping also defines the interaction between object invocations and the
threads of control in the client or implementation. The most common mappings
provide synchronousalls, in that the routine returmghenthe object operation
completes. Additional mappings may be provided to allow a call ioibated and
control returned to the program. In such cases, additional language-specific routines
must beprovided to synchronize the program’s threads of control with the object
invocation.

2.1.7 Client Stubs

For the mapping of a non—object-oriented language, there will be a pragrgm

interface to the stubs for each interface type. Generally, the stubs will present access to
the OMG IDL-defined oprations on ambject in a way that is easy for programmers to
predict once they amamiliar with OMG IDL andthe language mapping for the

particular programminganguage. The stubs make calls on the rest of the ORB using
interfaces that are private to, and presumably optimized for, the particular ORB Core.
If more than one ORB is available, there may be different stubs corresponding to the
different ORBs. In this case, it is necessary for the ORB and language mapping to
cooperate to associate the correct stubs with the particular object reference.

Object-oriented programmingriguages, such as C++ and &htalk, donot require
stub interfaces.

2.1.8 Dynamic Invocation Interface

An interface is also available that allows the dynamic construction of object
invocations, that is, rather thaalling a stub routine that is specific to a particular
operation on a particular object, a client may specify the object toviokdd, the

operation to be performed, and the set of parameters for the operation through a call or
sequence of calls. The client coahist sypply information about the operation to be
performed and the types of the parameters being passed (perhaps obtaining it from an
InterfaceRepostory or other run-time sourceJhe nature ofthe dynamic invocation
interface may vary substantially froome programming language mapping to another.

2.1.9 Implementatioskeleton

For aparticular laguage mapping, and possibly depending on the objeqitad there

will be an interéce to the methods that implement each type of objectintadace

will generally be an up-call interface, in that the object implementation writes routines
that conform to the interface and the ORB calls them through the skeleton.

The existence of a skeleton does not imply the existence of a corresponding client stub
(clients can also make requests via the dynamviodationinterface).

It is possible to write an object adapter tHaés not use skeletons to invoke
implementation methods. For example, it may be possible to create implementations
dynamically for languages such @malltalk.

CORBA V2.2 Structure of an Object Request Broker February 1998 2-9

2.1.10 Dynamic Sketlen Interface

An interface is availablerhich allows dypamichandling of object invocations. That is,
rather than being accessed through a skeleton that is specific to a particular operation,
an object’'s implementation is reached thgh aninterface that provides access to the
operation name and parameters in a manner analogous to the client side’s Dynamic
Invocation Interface. Purelstatic knowledge of thos@arameters may be used, or

dynamic knowledge (perhaps determined through an Interface Repository) may be also
used, todetermine the parameters.

The mplementation code must provide descriptions of all the operaticameters to

the ORB, and the ORB provides the values of any ipauameters for use in

performing the operation. The implementation code provides the valey afutput
parameters, or an exception, to the ORB after performing the operaiemature of

the dynamic skeleton interface may vary substantially from one programming language
mapping or object adapter to another, but will typically be an up-call interface.

Dynamic skeletons may bevioked both through client stubs and tingb the dynamic
invocation interface; either style of client request construction interface provides
identical results.

2.1.11 Object Adapters

An object adapter is therimary way that an olgict implementation accesses services
provided by the ORB. There are expected to be a few object adapters that will be
widely available, with interfaces that are appropriate for specific kinds of objects.
Services provided by the ORB through an Object Adapter often include: generation
and interpretation of objeceferences, method invocation, security of interactions,
object and implementation agdition and deactivation, mapping object references to
implementations, and registration of implementations.

The wide range of lgect granularities,ifetimes, policies, implement&in styles, and
other properties make it difficult for the ORBof@ to provide a single interface that is
convenient and dffient for all objects. Tus, through Object Adapters, it is possible
for the ORB to target particular groups of objaaplementaibns that have similar
requirements with interfaceailored tothem.

2.1.12 ORB Interface

The ORBInterface is the interface that goes directly to the ORB which is the same for
all ORBs and does not depend on the object&rface or object adaptBecause most

of the functionality of the ORB is provided through the object adapter, stubs, skeleton,
or dynamic invocation, there are only a feperations that are common across all
objects. These @pations are useful to both cliersisd mplementations of objects.

2-10 CORBAV2.2 February 1998

2.1.13 Interface Repository

The Interface Repository is a service tipabvides persistent objects that represent the
IDL information in a form available at run-tim&he InterfaceRepostory information
may be used by the ORB to perform requests. Moreover, usingftren@tion in the
InterfaceReposdiory, it is possible for a program to encounter an object whose
interfacewas not known whethe progranwas comged, yet, be able to determine
what operations are valid on the object and make an invocation on it.

In addition to its role in the functioning of the ORB, the Interface Repository is a
common place to store additional information associated with interfaces to ORB
objects. For example, debuggiingormation, libraries of stubs or skeletons, routines
that canformat orbrowseparticular kinds of objects, etc., might be associatihd the
InterfaceRepostory.

2.1.14 Implementation Repository

The Inplementation Repository contains information théves the ORB to locate
and activatemplementations of object<hough most of the information in the
Implementation Repository is specific to an ORB or operating environment, the
Implementation Repository is the conventional place for recordingistmtmation.
Ordinarily, installation of implementations and control of policies related to the
activationand execution of objedmplementations islone through perations on the
Implementation Repository.

In addition to its role in the functioning of the ORB, the Implementation Repository is
a common place to store additional information associatedimjttementaibns of

ORB objects. For example, debuggindoirmation, administrative controlesource
allocation, security, etc., might be associated with the ImplementationsReyy.

2.2 Example ORBs

There are a wideariety of ORB implementations possible within the Common ORB
Architecture. his section will illustrate some of the differesptions. Note that a
particular ORB might supporhultiple optionsand protocols for communication.

2.2.1 Client- and Implementation-resident ORB

If there is a suitable communication mechanism present, an ORB c¢arpleenented
in routines resident in the clients aimiplementations. The stubs in the client either
use a location-transpareli®C meclanism or directly access aclation service to
establish communication with the implementationsd€ linked with the
implementation is responsible feetting up apropriate databases for use by clients.

CORBA V2.2 Example ORBs February 1998 2-11

2.2.2 Server-based ORB

To centralize the management of the ORB, all cliants$ implementations can
communicate with one or more servers whose job it is to route requests from clients to
implementations. The ORB could be a normal program as far asmtieslying

operating system is concerned, and normal IPC could be used to communicate with the
ORB.

2.2.3 System-based ORB

To enhance security, robustness, and performance, the ORB could be provided as a
basic service of the underlying operating system. Object references could be made
unforgeable, reducing the expense of authentication on each regeestise the
operating system coukhow thelocationand structure of clients anshplementations,

it would be possibldéor a variety of optimizations to be implemented, éxample,
avoiding marshallingvhen both are othe same machine.

2.2.4 Library-based ORB

For objects that are light-weight and whose implementations can be shared, the
implementation might actually be in a library. In this case, the stubs could be the actual
methods. This assumes that it is possible for a cliergrpm to get access to the data

for the objects and that the implementation trusts the atiento damage the data.

2.3 Structure of a Client

A client of an object has an object reference that refers to that object. An object
reference is a token that may be invoked or passed as a parameter to cati@mvon

a different object. Invocation of an object involves specifying the object to beddyok
the operation to be performed, and parameters to be given toehatiop or returned
from it.

The ORB managethe control transfer and data tréersto the object implementation
and back to the client. In the event that the ORB cannot complete the invocation, an
exception response is provided. Ordinarily, a client calls a routine in its program that
performs the invocation and returns when the operation is complete.

Clients access object-type-specific stubs as library routines in their program (see
Figure 2-6 on page 2-13). Thdient program thus sees routines callable in the normal
way in its programming language. All implementations will provide a language-
specific data type to use to refer to objects, oftenmayoe pointer. The client then
passes that object reference to the stub routingsttate an invocationThe stubs

2-12 CORBAV2.2 February 1998

have access to the object reference representatiomtzndct with the ORB to
perform the invocation. (See the C Language Mapping chapter for additional, general
information on langage mapping of object references.)

-

Client Program)

Language-dependent object references

ORB object references

Dynamic Invocation Stubs for Stubs for

Interface Interface A Interface B

-

J

Figure 2-6 The Stucture of a Typical Client

An alternative set of library code is available to perform invocations on objects, for
example when the objeatas notdefined at compile time. In that case, the client
program provides additional information to name the type of the object and the method
being invoked, and performs a sequence of calls to specify the paraaratargiate

the invocation.

Clients most commonly obtain object references by receiving them as output
parameters from invocations on other objects for which they have references. When a
client is also an implementation, it receives object references as input parameters on
invocations to objects it implements. An object reference can also be converted to a
string that can be stored in files or preserved or communicatedfbyedt means and
subseqently turned back into an object reference by the ORBpratuced the string.

2.4 Structure of an Object Implementation

An object implementatioprovides the actual state and behavior of an objdus.
objectimplemenation can be structured in a variety of ways. Besides defining the
methods for the operations themselves,raplémentation will usually define

CORBA V2.2 Structure of an Object Implementation February 1998 2-13

2-14

procedures foactivatingand deactiating objects and willise other objects or non-
object facilities to make the objestate persistent, to contratcess to the object, as
well as to implement the methods.

The object implementation (see Figure 2-7 on page 2-14) interdthstine ORB in a
variety of ways toestablish its identity, to create new objeetsd to obtain ORB-
dependent services. primarily does this via access to an Object Adapter, which
provides an interface to ORB services that is convenient for a particular style of object
implementation.

Object Implementation

~

Methods for
Interface A

© Object data

Skeleton for
Interface A

Dynamic Object adapter
Skeleton routines

/

Figure 2-7 The Stucture of a Typical Object Implementatio

Because of the range of possible objegtlementations, it is difficult to be definitive
about how an object implementation is structured. See the chapters on the Portable
Object Adapter.

When an inveation occurs, the ORB Core, object adapter, and skeletongarthat a

call is made to the appropriate method of the implementation. A parameter to that
method specifies the object being invoked, which the method can use to locate the data
for the object. Additional parameters are supplied according to the skeletoitiatef

When the method is complete, it returns, causing output parameters or exception
results to be transmittelshck to the client.

CORBAV2.2 February 1998

2

When a new object isreated, the ORB may be notified so that it knows where to find
theimplemenation for that object. Usually, tHenplementaibn also registers itself as
implementing objects of a particular interég and specifies how start up the
implementation if it is not already running.

Most object implementains provide their behavior usifgcilities in addition to the

ORB and ®ject adapter. For example, atigh the Portable ject Adapter provides
some persistent data associated with an object (its OID or Object ID), that relatively
small amount of data is typically used as an identifier for the actual object data stored
in a storage service of the object implementatiehsosing. Vith this structure, it is

not only possible for different object implementations to use the same storage service,
it is also possible for objects to choose the service that is most appropriate for them.

2.5 Structure of an Object Adapter

An object adapter (see Figure 2-8 on page 2-16) is the primary means for an object
implementation to access ORB services such as object referereratim An object
adapter exports a public interface to the object implementatittha private interface

to the skeleton. It is built on a private ORB-dependetarface.

Object adapters are responsible for the following functions:
» Generation and interpretation of object references
* Method invocation
» Security of interactions
» Object and implementatioactivation and deactivation
» Mapping object references to the corresponding object implementations
* Registration of implementations

These functions are performed using the ORB Core andditiamal components
necessary. Often, an object adapter will maintain its state to acemplish its tasks.
It may be possible for a particular object adapter to delewaeor more ofts
responsibilities to the @e upon which it is aestructed.

CORBA V2.2 Structure of an Object Adapter February 1998 2-15

2-16

o

~

Object Implementation

Interface A Interface B
Methods Methods

/

Dynamic Interface A Interface B Obiect
Skeleton Skeleton jec
Skeleton Adapter
Interface
ORB Core

Figure 2-8 The Stucture of a Typical Object Adapte

As shown in Figure 2-8 on page 2-16, the Object Adaptenpdicitly involved in
invocation of the methods, although the direct interface is through the skeletons. For
example, the Object Adapter may be involvedadativating the implementation or
authenticating the request.

The Object Adapter diefes most of the services from the ORB that the Object
Implementation can depend on. Different ORBs will provide different levels of service
and different operating environments may provide some propeértj@iitly and

require others to be added by the Object Adapter. For examplesatmison for

Object Implementations to want to store certain values in the object refererszesyor
identification of the object on anviacation. If the ObjecAdapter allows the
implementation to specify such values whemea object ixcreated, it may be able to
store them in the object reference for those ORBs that permit it. If the ORB Core does
not provide this feature, the Object Adapter would record the value in its own storage
and provide it to thémplementation on amvocation. With Object Adapters, it is
possible for an Object Implementationhtave access to a service whether or not it is
implemented in the ORB Core—if the ORB Core provides it, the adapter simply
provides an interface to it; if not, the adapter mgilement it ortop of the ORB

Core. Every instance of a particular adapter must provide the same interface and
service for all the ORBs it is implemented on.

It is also not necessary for all Object Adapterprovide the same interface or
functionality. Some Object Implementations have special requirements, for example, an
object-oriented database system may wish to implicitly registenany thousands of
objects without doing individual calls to the Object Adapter. In such a case, itwould be

CORBAV2.2 February 1998

2

impractical and unnecessary for thgext adapter to maintainy per-objecstate. By
using an object adapter interface that is tuned towards such phjEetmentatios, it
is possible to take advantage of particular ORB Core details to provide the most
effective access to the ORB.

2.6 CORBA Required Object Adapter

There are aariety of possible object adaptersowkver, since the object agter

interface is something that object implementatidepend on, it is desirable that there
be as few as practical. Most object adapters are designed to cover a range of object
implementations, so only when @amplementation requires radically different services
or interfaces should mew dject adapter be considered. In this section, we briefly
describe the object adapter defined in this specification.

2.6.1 Portable Object Adapter

This spedication defines a Portabl®bject Adapter that can be used for most ORB
objects with conventional implementations. (See the Portable Object Adhpister
for more information.) The intent of theOR, as its namsuggests, is to provide an
Object Adapter that can be used wittultiple ORBs with a minimum of rewing
needed to deal with different vemid’ implementations.

This specification allows several ways of using servers but it does not deal with the
administrative issues of starting server programmeeGstarted, howevetherecan be a
servant startednd ended for arggle mehodcall, aseparate servant feach object, or

a shared servant for all instances of the object type. It allows for groups of objects to be
associated by means of being registered with different instances of the POAaoldject
allows implementations to specify thewn actiation techniques. If the

implementation is noactive when an inveation is performed, the POA will start one.

The POA isspecified in IDL, so its mapping tanguages is largely automatic,

following the language mapping rules. (Themary task left for a langage mapping

is the definition of the Servant type.)

CORBAV2.2 CORBRequired Object Adapter February 1998 2-17

2.7 Thentegration of Foreign Object Systems

The Gommon ORB Architecture is designed to allow interoperation with a wide range

of object systems (see Figure 2-9 on page 2-B8rause there are manyisting

object systems, a common desire will be to allow the objects in those systems to be
accessible via the ORB. For those object systems that are ORBs themselves, they may
be connected to other ORBs through the mechanisms described throtinghout

manual.
Object system as Object system as
~aPOA object an impleme ntation
implementation ith a special-purpose
object adapter
Portable Object Special-purpose
Adapter Adapter
Object system as
ORB Core another ORB
interoperating via a
atewa
Gateway - i

Figure 2-9 Different Ways to Integrate Foreign Object Systems

For object systems that simply want to map their objects into ORB objecte@aide
invocations through the ORB, one approach is to have those object systems appear to
be implementations of the corresmling ORB objects. The object system would

register its objects with the OR&hd handle incoming requests, and could act like a
client and peorm outgoing requests.

In some cases, it will be impractical for another object system to act like a POA object
implementation. An object adapter could be designed for objects that are created in
conjunction with the ORB and that ardrparily invoked through the ORB. Another
object system may wish to create objects without consulting the ORB, and might
expect most invocations to occur within itself rather thanuthinothe ORB. In such a
case, a more appropriate object adapter might allow objectsitaptieitly registered

when they are passed through the ORB.

2-18 CORBAV2.2 February 1998

OMG IDL Syntax and Semantics 3

This chapter describes OMG Interface Definition Language (IDL) semantics and gives
the syntax for OMG IDL grammatical constructs.

Contents

This chapter contains tHellowing sections.

Section Title Page
“Overview” 3-2
“Lexical Conventions” 3-3
“Preprocessing” 3-9
“OMG IDL Grammar” 3-10
“OMG IDL Specification” 3-14
“Inheritance” 3-16
“Constant Declaration” 3-18
“Type Declaration” 3-22
“Exception Declaration” 3-30
“Operation Declaration” 3-31
“Attribute Declaration” 3-33
“CORBA Module” 3-34
“CORBA Module” 3-34
“Differences from C++” 3-37
“Standard Exceptions” 3-37

CORBA V2.2 Febloag/ 3-1

3-2

3.1 Overview

The OMG Interface Dehition Language (IDL) is the language used to describe the
interfaces that client objects calhd objectmplementations provide. An interface
definition written in OMG IDL completely defines the interface and fully specifies
each operation’s parameters. An OMG IDL interface providesnflioemation needed
to develop clients that use the interface’s operations.

Clients are not written in OMG IDL, which is purely a descriptive lagg) but in
languages for which mappings from OMG IDL concepts have been defined. The
mapping of an OMG IDL concept to a client language construct wiledd on the
facilities available irthe client language. For ample, an OMG IDL exception might
be mapped to a structure in a language that has no notion of exception, or to an
exception in a language that does. The binding of OMG IDLcepts to several
programming languages is described in this manual.

OMG IDL obeys the same lexical rules as &zalthough new keywords are
introduced to suppodistributionconcepts. It also providdall support for standard
C++ preprocessing featuréBhe OMG IDL specification is expected to track relevant
changes to C++ introduced by the ANSI standardization effort.

The description of OMG IDL's lexical conventions is presented in “Lexical
Conventions” on page 3-3. A description of OMG IDL preprocessing is presented in
“Preprocessing” on page 3-9. The scope rules for identifiers in an OMG IDL
specification are described in “CORBA Module” on page 3-34.

The OMG IDLgrammar is a subset of the proposed ANSI C++ standard, with
additional constructs to support the operation invocation mechanism. OMG IDL is a
declarative languge. It supports C++ syntax for constant, type, anerafon
declarations; it does not includay algoithmic structures or variables. The grammar
is presented in “OMG IDL @mmar” on pag8-10.

OMG IDL-specific pragmas (those not defined for C++) may appear anywhere in a

specification; the textual location of these pragmas may be semantically constrained by

a particular implementation.

A source file containing interface specifications written in OMG IDL must have an
“.idl” extension. The file orb.idl contains OMG IDL type di@fionsand is available on
every ORB implementation.

1. Ellis, Margaret A. and Bjarne Stroustrife Annotated C++ Reference Manuadid-
ison-Wesley Publishing Company, Reading, Massachusetts, I8 0-201-51459-1

CORBAV2.2 February 1998

The description of OMG IDL grammar uses a syntax notation thsinidlar to
Extended Backus-Naur Format (EBNF). Table 3-1 lists the symbols useid fiormat
andtheir meaning.

Table 3-1 IDL EBNF

Symbol Meaning

= Is defined to be

| Alternatively

<text> Nonterminal

“text” Literal

* The preceding syntactic unit can be repeated zero or more times
+ The preceding syntactic unit can be repeated one or more times

{ The enclosed syntactic units are grouped as a single syntactic unit

1] The enclosed syntactic unit is optional—may occur zero or one time

3.2 Lexical Conventions

This sectioR presents the lexical conventions of OMG IDL. It defines tokens in an
OMG IDL specificationand describes commentdentifiers, kewvords, and
literals—integer, characteand floating point constants astting literals.

An OMG IDL specification logically consists of one or more files. A file is
conceptually translated in several phases.

The frst phase is preprocessing, which performs file inclusion and macro substitution.
Preprocessing is controlled byrelctives introduced by lines having # as tiretf

character other than white space. The result of preprocessing is a sequence of tokens.
Such a sequence of tokens, that is, a file after premiocgss called a translation unit.

OMG IDL uses the ISO Latin-1 (8859.1) character shis Tharacter set is divided
into alphabetic characters (letters), diggsaphic characters, the space (blank)
character andormatting characters. Tab82 shows the OMG IDL alphabetic
characters; upper- and lower-case equivalencies are paired.

Table 3-2 The 114 Alphabetic Characters (Letters)

Char. Description Char. Description

Aa Upper/Lower-case A Aa Upper/Lower-case A with grave accent

Bb Upper/Lower-case B Aa Upper/Lower-case A with acute accent

Cc Upper/Lower-case C Aa Upper/Lower-case A with circumflex accent
Dd Upper/Lower-case D A& Upper/Lower-case A with tilde

Ee Upper/Lower-case E Aa Upper/Lower-case A with diaeresis

Ff Upper/Lower-case F Ad Upper/Lower-case A with ring above

2. This section is an adaptationfie Annotated C++ Reference Manu@hapter 2; it
differs in the list of legal keywords and punctuation.

CORBAV2.2 Lexical Conventions February 1998 3-3

Table 3-2 The 114 Alphabetic Characters (Letter&}ontinued)

Char. Description Char. Description
Gg Upper/Lower-case G fExe Upper/Lower-case dipthong A with E
Hh Upper/Lower-case H Cc Upper/Lower-case C with cedilla
li Upper/Lower-case | Ee Upper/Lower-case E with grave accent
Jj Upper/Lower-case J Eé Upper/Lower-case E with acute accent
Kk Upper/Lower-case K Ee Upper/Lower-case E with circumflex accent
LI Upper/Lower-case L Eé Upper/Lower-case E with diaeresis
Mm Upper/Lower-case M I Upper/Lower-case | with grave accent
Nn Upper/Lower-case N fi Upper/Lower-case | with acute accent
Oo Upper/Lower-case O i Upper/Lower-case | with circumflex accent
Pp Upper/Lower-case P Ti Upper/Lower-case | with diaeresis
Qq Upper/Lower-case Q NA Upper/Lower-case N with tilde
Rr Upper/Lower-case R 0o Upper/Lower-case O with grave accent
Ss Upper/Lower-case S 06 Upper/Lower-case O with acute accent
Tt Upper/Lower-case T (o)) Upper/Lower-case O with circumflex accent
Uu Upper/Lower-case U (oh] Upper/Lower-case O with tilde
Vv Upper/Lower-case V 06 Upper/Lower-case O with diaeresis
Ww Upper/Lower-case W (%]} Upper/Lower-case O with oblique stroke
XX Upper/Lower-case X U] Upper/Lower-case U with grave accent
Yy Upper/Lower-case Y Ua Upper/Lower-case U with acute accent
Zz Upper/Lower-case Z Oa Upper/Lower-case U with circumflex accent
Uu Upper/Lower-case U with diaeresis
3 Lower-case German sharp S
y Lower-case Y with diaeresis

Table 3-3lists the decimal digit characters.

Table 3-3 Decimal Digits
0123456789

Table 3-4 shows the graphic characters.

Table 3-4 The 65 Graphic Characters

Char. Description Char. Description
! exclamation point i inverted exclamation mark
" double quote ¢ cent sign
number sign £ pound sign
$ dollar sign a currency sign
% percent sign ¥ yen sign
& ampersand broken bar
CORBAV2.2 February 1998

Table 3-4 The 65 Graphic Character&ontinued)

Char. Description Char. Description
’ apostrophe § section/paragraph sign
(left parenthesis diaeresis
) right parenthesis © copyright sign
* asterisk a feminine ordinal indicator
+ plus sign « left angle quotation mark
, comma - not sign
- hyphen, minus sign soft hyphen
period, full stop ® registered trade mark sign
/ solidus N macron
colon ° ring above, degree sign
; semicolon * plus-minus sign
< less-than sign 2 superscript two
= equals sign 8 superscript three
> greater-than sign ’ acute
? question mark 1] micro
@ commercial at T pilcrow
[left square bracket . middle dot
\ reverse solidus , cedilla
] right square bracket 1 superscript one
A circumflex ° masculine ordinal indicator
_ low line, underscore » right angle quotation mark
‘ grave vulgar fraction 1/4
{ left curly bracket vulgar fraction 1/2
| vertical line vulgar fraction 3/4
} right curly bracket inverted question mark

~ tilde

multiplication sign
division sign

The formatting characters aghown in Téle 3-5.

Table 3-5 The Formatting Characters

Description Abbreviation ISO 646 Octal Value
alert BEL 007
backspace BS 010
horizontal tab HT 011
newline NL, LF 012
vertical tab VT 013
form feed FF 014
carriage return CR 015

CORBAV2.2

Lexical Conventions

February 1998

3.2.1 Tokens

There are five kinds of tokeniglentifiers,keywords, literals, operators, and other
separators. Blanks, horiatal andvertical tabs, newlines, formfde, and comments
(collective, “white space”), as described below, are ignored except as they serve to
separate tokens. Some white space is required to separate otherwise adjacent
identifiers,keywords, ancdtonstants.

If the input stream has been parsed into tokens up teea gharacter, the next token
is taken to be the longest string of characters that could possibltatma token.

3.2.2 Comments

The characters /* start a comment, which terminates with the characters */. These
comments do not nest. The characters // start a comment, which terminates at the end
of the line on which they occur. The comment characters /And,*/ have no special
meaning within a // comment and are tregtest like other characters.8ilarly, the
comment characters // and /* have no special meanitigrva /* comment. Comments

may contain alphabetic, digit, graphic, space, horizontal tab, vertical tab, form feed,
and newline characters.

3.2.3 ldentifiers

An identifier is an arbitraripffjong sequence of alphabetic, digit, and underscore (*_")
characters. The first character must be an alphabetic character. All characters are
significant.

Identifiers that differ only in case collidend yield acompilation error. An identifier
for a definition must be spelled consistently (with respect to dass)ghout a
specification.

When comparingwo identifiers to see if they collide:

« Upper- and lower-case letters are treated as the same letter. Table 3-2 on page 3-3
defines the equivalence mapping of upper- and lowerledtees.

» The comparison doesot take into account equivalences between digraphs and
pairs of letters (g., “ae” and “ae” are not considered e@l@nt) or equivalences
between accented and non-accenéttdrs (eg., “A” and “A” are not considered
equivalent).

 All characters are significant.

There is only one namespace for OMG IDEndifiers.Using the same identifier for a
constant and an interface, for example, produces a compilation error.

CORBAV2.2 February 1998

3.2.4 Keywords

The identifiers listed in Tabl8-6 are reserved for use as keywords and may not be
used otherwise

Table 3-6 Keywords

any double interface readonly unsigned
attribute enum long sequence union
boolean exception module short void
case FALSE Object string wchar
char fixed octet struct wstring
const float oneway switch

context in out TRUE

default inout raises typedef

Keywords obey the rules fadentifiers (see“Identifiers” opage 3-6) and must be
written exactly as shown in the abos. For example, boolean ” is correct;
“Boolean ” produces a compilation error. Thkeyword “Object” can be used as a
type specifier.

OMG IDL specificationause the characteshown in Table 3-7 as punctuation.

Table 3-7 Punctuation Characters
; { } : : = + - () < > [|
' " \ | N & * / % ~

In addition, the tokens listed in Table 3-8 are used by the preprocessor.

Table 3-8 Preprocessor Tokens

#Hoo| [&&
3.2.5 Literals
This section describes the followinitetals:
* Integer

» Character

* Floating-point
» String

» Fixed-point

Integer Lierals

An integer literal consisting of sequence of digits is taken to be decimal (base ten)
unless it begins with 0 (digit zero). A sequence of digits startitly Ovis taken to be
an octal integer (base eight). The digits 8 and 9 are not octal digits. A sequence of

CORBAV2.2 Lexical Conventions February 1998 3-7

3-8

digits preceded by Ox or OX is taken to be a hexadal integel(base sixteen). The
hexadecimal digits include a or A through f or Rhndecimal values ten through
fifteen, respectivelyFor example, the number twelve canvaetten 12, 014, or OXC.

Character Literals

A character literal is one or more characters enclosed in single quotes, as in 'X'.
Character literals havigpe char.

A character is an 8-bit quantity with a numerical vahetween 0 and 25@lecimal).

The value of a space, alphabedigit, or graphic character literal is themerical

value of the character as defined in the ISO Lat{8859.1) character set standard

(See Table 3-2 on page 3-3, Table 3-3 on page 3-4, and Table 3-4 on page 3-4). The
value of a null is 0. The value of a formatting character literal is the numerical value of
the character as defined in the ISO 646 standard (See Table 3-5 on pad&&-5).
meaning of all other characters is implementation-dependent.

Nongraphic characters must be represented using escape sequences as defined below
Table 3-9. Note that escape sequemmast be used to represent single quantd
backslash characters in character literals.

Table 3-9 Escape Sequences

Description Escape Sequence
newline \n
horizontal tab \t
vertical tab \v
backspace \b
carriage return \r
form feed \f
alert \a
backslash \
guestion mark \?
single quote \
double quote \"
octal number \ooo
hexadecimal \xhh
number

If the character following a backslash is ook of those specified, the behavior is
undefined. An escape sequence specifies a single character.

The escape \ooconsists of the backslash followed by one, two, or three octal digits
that are taken to specify the value of the desired chardtterescape \xhh consists of
the backslasHollowed by x followed byone or two hexagcimal digits that areaken

to specify the value of the desired character. A sequence of octal or hexalddigits

CORBAV2.2 February 1998

3

is terminated by the first character that is not an octal digit or a hexadecimal digit,
respectively. The value of a character constant is implementdipandent if it
exceeds that of the largest char.

Wide character and widgtring literals are specified exactly like character and string
literals. All character and stringtdrals, both wde and non-wide, may only be

specified (portably) using the characters found in the 8860-1 character set, that is
interface names, operation names, type names, etc., will continue to be limited to the
ISO 8859-1 characteset.

Floating-point Literals

A floating-point literal consists of an integer part, a decimal point, a fraction part, an e
or E, and an optionally signed integer exponent. ifegerand fraction parts both

consist of a sequence of decimal (base ten) digits. Either the integer part or the fraction
part (but not both) may be missing; either the decimal point or the letter e (or E) and
the exponent (but not both) may iméssing.

String Literals

A string literal is asequence of characters (as defined in “Character Literals” on page
3-8) surrounded by double quotes, as.id'.

Adjacent string literals are concatenated. Characters in concatenated strings are kept
distinct. For example,

II\XAlI IIBII

contains the two characters "\xA' and &8er concatenation (and not the single
hexadecimal character "\xAB').

The size of atring literal is the nulmer of character literals enclosed by the quotes,
after concatenation. The size of the literal is associated with the liteithin\&string,
the double quote charactémust be preceded by a \.

A string literal may not contain the character \0'.

Fixed-Point Literals

A fixed-point decimal literal consists of an integer part, a decimal point, a fraction part
and a d or D. The integer afrdiction parts both consist of a sequenceagfichal (base

10) digits. Either the integer part or the fraction part (but not both) may be missing; the
decimal point (but not the letter d (BY)) may be missing.

3.3 Preprocessing

OMG IDL preprocessing, which is based on ANSI C++ preprocessing, provides macro
substitution,conditional compilation, and sourciéefinclusion. In addition, directes
are provided to control line numbering in diagnostics and for symbolicggéim to

CORBAV2.2 Preprocessing February 1998 3-9

generate a diagnostic message with a given tskeuence, and to perform
implementation-dependent actions (#@agma directive). Certairpredefined names
are available. These féittes are conceptually handled by a preprocessor, which may
or may not actually be implemented as a separate process.

Lines beginning with # (also called ‘féctives”) communicate ith this preprocessor.
White space may appear before the #. These lines have syntax independem¢stf the

of OMG IDL; they may appear anywhere and have effects that last (independent of the
OMG IDL scoping rules) until the end of the translation ufiite &xtual location of

OMG IDL-specific pragmas may be semantically constrained.

A preprocessing déctive (oranyline) may be continued on the next line in a source
file by placing abackslash character (*\"), imrdetely before the newline at the end

of the line to be continued. The preprocessor effects the continuation by deleting the
backslash and the newline before the input sequence is divided into tokens. A
backslash character may not be the last character in a source file.

A preprocessing token is an OMG IDL token (see “Tokens” on page 3-6), a file name
as in a#include directive, or any single character other than white space that does not
match another preprocessing token.

The primary use of the preprocessingifdies is to include definitions from other
OMG IDL specificatins. Text in fles included with a#include directive is treated as
if it appeared in the including file. A complete description of the preprocessing
facilities may be found iThe Annotated C++ Reference Manu@he #pragma
directive that isused to include Repositorylds is described in Section 8.6,
“Repositorylds,” on page 8-32.

3.4 OMG IDL Grammar

3-10

1)
)

®)
(4)

®)
(6)
(@)
(8)
9)

(10)

<definit ion>"*

<specification>

<definition> = <type_dcl>*“}"
| <const_dcl> "
| <except_dcl>*;"
| <interface>"*;"
| <module>"*;"
<module> := “module” <identi fier> “{" <definition> **}"
<interface> := <interfa ce_dcl>
| <forward_dcl>
<interface_dcl> := <interfa ce_header> “{" <interface_body> “}"
<forward_dcl> := “interface” <identifier>
<interface_header> := “interface” <identifier> [<inheri tance_spec>]
<interface _body> := <exp ort>"
<export> = <type_dcl>*“;"
| <const _dcl>*"
| <except dcl>*"
| <attr_dcl>*”
| <op_dcl>*}
<inheritance_spec> := “”<scoped_name>{ *“”<sc oped _name>}"

CORBAV2.2 February 1998

(11)

12)

(13)

(14)
(15)

(16)
17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

<scoped_name>

<const_dcl>

<const_type>

<const_exp>
<or_expr>

<xor_expr>
<and_expr>

<shift_expr>

<add_expr>

<mult_expr>

<unary_expr>

<unary_oper ator>

<primary_expr>

<literal>

<identif ier>
“" <identifier>
<scoped_ name> “:;" <identif ier>
“const” <const_type> <identifi er>"“="
<const_exp>
<integer_type>
<char_type>
<wide_char_type>
<boolean_type>
<floating_pt_type>
<string_type>
<wide_string_type>
<fixed_pt_const_type>
<scoped_ name>
<or_expr>
<X or_expr>
<or_expr> “|" <xor_expr>
<and_expr>
<xor_expr>“N" <and_expr>
<shift_expr>
<and_expr>“&” <shift_expr>
<add_expr>
<shift_expr> “>>" <add_expr>
<shift_expr> “<<” <add_expr>
< mult_expr>
<add_expr> “+"<mul t_expr>
<add_expr> “-"<m ult_expr>
<unary_expr>
<mult_expr>“*" <u nary_expr>
<mult_expr> “/" <un ary_expr>
<mult_expr>“%" <u nary_expr>
<u nary_operat or> <prima ry_expr>
<primary_expr>
wyn
<s coped_ name>
<literal>
“(" <const_exp>")"
<integer_literal>
<string_literal>
<wide_string_literal>
<character_literal>
<wide_character_literal>
<fixed_pt_literal>
<floating_pt_literal>
<boolean_literal>

CORBAV2.2 OMG ID&rammar February 1998 3-11

3-12

(25)

(26)
(27)

(28)
(29)

(30)

(1)

(32)

(33)

(34)
(39)

(36)
(37)
(38)

(39)
(40)
(41)
(42)

(43)
(44)

<boolean_| iteral>

<positive_int_const>
<type_dcl>

<type_declarator>
<type_spec>

<simpl e_type_spec>

<base_type_spec>

<template_type_spec>

<constr_type_spec>
<declarators>
<declarator>

<simple_declarator>
<complex_declarator>
<floatin g_pt_type>

<inte ger_type>
<signed_int>

<sig ned_sho rt_int>
<sig ned_long_int>

<sign ed_longlong_int>
<unsigned_int>

CORBAV2.2

“TRUE”
| “FALSE”

= <const_exp>
= “typedef” <type_dec larator>

| <struct_type>
| <union_type>
| <enum_type>
|

“native” <simple_declarator>
<type_spec> <declarators>

;= <simple_type spec>

<constr_type spec>

.= <base_type_spec>
<template_type spec>
<scoped_ name>

< floating_pt_type>
<integer_type>
<char_type>
<wide_char_type>
<boolean_type>
<octet_type>
<any_type>
<object_type>

<sequence_type>
<string_type>
<wide_string_type>
<fixed_pt_type>

<struct_type>
<union_type>
<enum_type>

== <declarator>{ *“” <declarator>} "
::= <simple_declarator>

| <complex_declarator>
<identif ier>
<array_declarator>
n= “float”

| “double”

| “long” “double”

= <signed_int>
| <unsigned_int>

= <sign ed_short_int>

| <signed_long_int>
| <signed_longlong_int>
= “short”

= “long”
= “long” “long”
;= <unsigned_short_int>

| <unsigned_long_int>

February 1998

(45) <unsig ned_sho rt_int>
(46) <unsig ned_long_int>
(47) <unsigned _longlong_int>

(48) <char_type>
(49) <wide_char_type>
(50) <boolean_type>
(51) <octet_type>
(52) <any_type>
(53) <object_type>
(54) <struct_type>
(55) <member _list>
(56) <member>
(57) <union_type>
(58) <switch_type_spec>
(59) <switch _body>
(60) <case>
(61) <case_label>
(62) <element_ spec>
(63) <enum_type>
(64) <enumerator>
(65) <sequence_type>
(66) <strin g_type>
(67) <wide_string_type>
(68) <array_declarator>
(69) <fixed_array_size>
(70) <attr_dcl>
(71) <except_dcl>
(72) <op_dcl>
(73) <op_attribute>

CORBAV2.2

= “unsigned
= “unsigned” “long” “long”

= “struct” <identif

OMG IDG&rammar

| <unsigned_longlong_int>
;= “unsigned” “short”
” ulongn

= “char”

== “wchar’

= “boolean”

= “octet”

= “any”

= “Object”

ier>“{" <member_list>“}”

== <member> *

= <type_spec> <declarators>*“;"

= “union” <identif ier>“switch” “("
<switch_type_spec> *“)"“{" <swi tch_body>
ot

= <integer_type>

| <char_type>

| <boolean_type>

| <enum_type>

| <scoped_ name>

n= <case> *

= <case_label> * <element_spec> “}"

= “case” <const_exp>*“."

| “default” “”

= <type_spec> <declarator>

= “enum”<identi fier>“{" <enumerator> {“,
<enumerator>} 5}

= <identif ier>

= “sequence” <" <si mple_ty pe_spec>
<positive_int_const> “>"

| “sequence” “<” <si mple_ty pe_spec> “>"

= “string” “<” <positive_int_const> “>”

| “string”

= “w string
| “wstring”

= <identif ier><fixed_array_size>
= “[" <positive_int_const>“]"

[“readonly”] “attribute”
<param_type_spec> <simple_declarator> {
“ <simple_declarat or>}*

“exception” <identifier> “{* <member>*“}”

i:= [<op_attribute>] <op_type_spec> <identi-

fier> <parameter_dc Is>[<raises_expr>] [
<context_expr>]

= “oneway”

<" <positive_int_¢ onst>“>"

+

February 1998 3-13

(74) <op_type_spec> = <param_typ e_spec>
| “void”
(75) <parameter_dcls> := “(" <param_dcl>{ “,” <param_dcl>} Duyr
¢
(76) <param_dcl> := <param_attribute> <param_type sp ec>
<simple_declarator>
77) <param_attribute> := “in”
| “out”
| “inout”
(78) <raises_expr> := “raises” “(" <scoped_name>{")
<scoped_ name> }7%)”
(79) <context_expr> := “context” “("<str ing_literal>{""
<string_literal>} %"
(80) <param_type_spec> := <b ase_type_spec>
| <string_type>
| <wide_string_type>
| <fixed_pt_type>
| <scoped_ name>
(81) <fixed_pt_type> := “fixed” “<" <positive_int_const>
<integer_literal> “>"
(82) <fixed_pt _const_type> = “fixed”

3.5 OMG IDLSpecification

An OMG IDL specification consists of one or more type definiticm)stant
definitions, exception definitions, or module whétions. The syntax is:

<specification>::=<definition> *

<definit ion>::=<type_dcl> *;’
| <const_dcl> ;"
| <except_dcl>*;"
| <interface>*;”
|

<module>*;"

See “Constant Declaration” on page 3-18, “Typec@ration” on page 3-22nd
“Exception Declaration” on pad®30, respectively, for spditations of
<const_dcl> , <type_dcl>, and<except_dcl> .

3.5.1 Module Declaration

A module definition safies the following syntax:

<module>::="module” <identif ier>“{" <definition> **}"

The module construct is used to scope OMG IDL ideartifisee “CORBA Module” on
page 3-34 for details.

3-14 CORBAV2.2 February 1998

3.5.2 Interface Declaration

An interface definition satisfies tHfellowing syntax:

<interface> = <interfa ce_dcl>

| <forward_dcl>
<interfa ce_dcl> := <interfa ce_header> “{" <interface_body> “}"
<forward_dcl> = “interface” <identif ier>

<interfa ce_header>::= “int erface” <identifier> [<inheri tance_spec>]
<interfa ce_body> := <exp ort>"

<export> = < type_dcl>*"
| <const dcl>*“;”

| <except dcl>*"
| <attr_dcl>*"

| <op_dcl>*"

Interface Header

The interface header consists of two elements:
» The interface name. The name must be preceded by thenicinterface , and
consists of an identifier that names the irsteet

» An optional inheritance specification. The inheritance $pation is described in
the next section.

The<identifier> that names an interface defines a legal type naoeh & type name

may be use@dnywhere ar<identifier> is legal in the grammar, subject to semantic
constraints as described in the following sections. Since one can only hold references
to an object, the meaning of a parameter or structure member which is an interface
type is as aeferenceto an object supporting that interfaégach language binding
describes how the programmer must represent such interface references.

Inheritance Specification

The syntaxfor inheritance is as follows:
<inheritance_spec>::= “:" <scoped_name> {*,” <scoped_name>}*
<scoped_ name> ::= <identifier>

| “:" <identif ier>

| <scoped_name> “:\" <identifier>

Each<scoped n ame>in an<inheritance_spec> must denote a previously defined
interface. See “lheritance” onpage 3-16 for the description wfheritance.

CORBAV2.2 OMG ID&pecification February 1998 3-15

3.6

3-16

Inheritance

Interface Body

The

inerface body cotains the following kinds of declarations:

Constant declarations, which specify the constants thahtbdace exports;
constant declaration syntax is described in “Constant Declaratiopage 3-18.

Type declarations, which specify the typeiditibns thatthe interface exports;

type declaration syntax is described in “Type Declaration” on page 3-22.
Exception declarations, which specify the exception structures that the interface
expots; exception declaration syntax is described in “Exception Declaration” on
page 3-30.

Attribute declarations, which specify the associated attributes exported by the
interface; attribute declaration syntax is described in “Attribute Declaration” on
page 3-33.

Operation declarations, which specify the operations that the interface exports and
the format of each, including operation name, the type of data returned, the types
of all parameters of an operation, legal exceptions which may bmedtas a

result of an invocationand contextual information which mayfedt method

dispatch; operation declaration syntax is described in “Operation Declaration” on
page 3-31.

Empty interfaces are paitted (that is, those containing no declarations).

Some implementations may require interface-specific pragmas to precede the interface
body.

Forward Declaation

A forward declaration declares the name of an interface without defining it. This
permits the definition of interfaces that referetmch other. The syntax csists simply
of thekeyword interface followed by an<identifier> that names the interfac&he
actual definition must follow later in the specification.

Multiple forward declarations of the saritgerface name are legal.

An interfacecan bederived from another integfce, which is then calledkmse
interface of the derived interface. A dexdl interface, likall interfaces, may declare
newelements (constants, typedtributes,exceptions, and operations). In addition,
unless redefined in the deed interface, thelements of dase interface can be
referred to as if they were elements of thetiinterface. The name resolution
operator (“::") may beaused to refer to a base element explicitly; figsmits reference
to a name that has been redefined in thevddrinterface.

A derived interface may redefine any of the type, constant, and exception names which
have been iherited; the scope rules fsuch names are described in “CORBA
Module” on page 3-34.

CORBAV2.2 February 1998

3

An interface is called a direct base if it is mentioned in<tnberitance_spec> and
an indirect base if it is not a direct base but is a rde€ace of one of the interfaces
mentioned in theinherita nce_spec>.

An interface may be derived froemy number of base interfaces. Such useofe
than one direct base interface is often called multiple inheritarmeeader of
derivation is not significant.

An interface may not be specified as a direct basaface of a derived interface more
than once; it may be an indirect base interface more than once. Consitidiothiag
example:

interface A { ... }
interface B: A { ... }
interface C: A{ ...}
interface D: B, C{... }

The reationships between these interfaceshiewn in Figure on page 3-17hi§
“diamond” shape is legal.

A

D

Figure 3-1 Legal Multiple Inheritance Example

Reference to base interface elements must be unambiguous. Reference to a base
interface element is ambiguous if the expression used refers to a constant, type, or
exception in more than one base interfqtteis currently illegal to inherit from two
interfaces with the same operationadiribute name, or to redefine an operation or
attribute name in the dedd interface.) Anbiguitiescan be resolved byualifying a
name with its interface name (that is, usingsaoped_name>).

References to constants, types, and exceptions are bound to an interface when it is
defined (i.e., replaced with the equivalent globsdoped _n ame>s). This guarantees
that the syntax and semantics ofiarerface are not @nged when the interface is a
base interface for a deed interface. Consider the following example:

CORBAV2.2 Inheritance February 1998 3-17

constlong L =3;

interface A {
typedef float coord[L]):
void f (in coord s); // s has three floats

k

interface B {
const long L = 4;

|3
interface C: B, A {}// whatis f())s signature?

The early binding of constants, types, and exceptions at interfagetidef guarantees
that the signature of operatidrin interfaceC is

typedef float coord[3];
void f (in coord s);

which is identical to that in interfack. This rule also prevents redefinition of a
constant, type, or exception in the derivetbrface from affecting the operatioasd
attributes inherited from a base interface.

Interface inheritance causes all identifiers in the closure of the inheritance tree to be
imported into the current naming scope. A type name, constant name, enumeration
value name, or exception name from an enclosing scope can be redefined in the curren
scope. An attempt to use an ambiguous name withaalifigation is a compilation

error.

Operation names are used at run-timebbth the stub and dynamic interfaces. As a
result, all operations that might apply to a particular object maxs unique names.
This requirement prohibits redefining an operation name in seddrterface, as well
as inheritingtwo operations with theame name.

3.7 Constant Declaration

This section describes the syntax for constant declarations.

3.7.1 Syntax

The syntaxfor a constant declaration is:

<const_dcl> 1= “const” <const_type> <identifi er>*“="
<const_exp>

<const_type> = <integer_type>
| <char_type>

| <boolean_type>
| <floating_pt_type>

3-18 CORBAV2.2 February 1998

<const_exp>

<or_expr>

<xor_expr>

<and_expr>

<shift_expr>

<add_expr>

<mult_expr>

<unary_expr>

<unary_operator>

<primary_expr>

<literal>

<boolean_literal>

<positive_int_const>

<string_type>
<scoped_ name>

<or_expr>

<xor_expr>
<or_expr> “|" <xor_expr>

<and_expr>
<xor_expr>“" <and_expr>

<shift_expr>
<and_expr>“&” <shift_expr>

<add_expr>
<shift_expr> “>>" <add_expr>
<shift_expr> “<<” <add_expr>

< mult_expr>
<add_expr> “+" <mul t_expr>
<add_expr> “-"<m ult_expr>

<unary_expr>

<mult_expr>“*" <u nary_expr>
<mult_expr> “/" <un ary_expr>
<mult_expr>“%" <u nary_expr>

<unary_operat or><prima ry_expr>
<primary_expr>

uyn

<s coped_ name>
<literal>
H()! <COnSt_eXp> H)”

<integer_literal>
<string_literal>
<character_literal>
<floating_pt_literal>
<boolean_literal>

“TRUE”
“FALSE”

<const_exp>

CORBAV2.2 Constant Declaration February 1998

3-19

3.7.2 Semantics

The <scoped_ name> in the<const_type> production must be a previously defined
name of ar<integer_type> , <char_type>, <wide_ char_type> ,

<boolean_type> , <floating_pt_type> , <fixed_pt_const_type> , <strin g_type>,

or <wide_string_type> constant.

An infix operator can combine two integers, floats or fixeds, but not mixtures of these.
Infix operators are applicable only to integer, float axdditypes.

If the type of an integer constantlis\g or unsigned long , then each subexpression
of the associated constant expression is treated assigned long by default, or a
signedlong for negated literals or negative integer constants. It is an error if any
subexpression values exceed the precision of the assignedoygeof unsigned
long), or if a final expression value (of typesigned long) exceeds the precision of
the target typelgng).

If the type of an integer constantlamg long or unsigned long long , then each
subexpression of the associated constant expression is treatedrasgaed long

long by default, or a signelbng long for negated literals or negative integer
constants. It is an error if any subexpression values excegudbision of the
assigned typelgng long or unsigned long long), or if a final expression value (of
typeunsigned long long) exceeds the precision of the target tyload long).

If the type of &floating-point constant idouble , then each subexpression of the
associated constant expression is treateddmible. It is an error if any
subexpression value exceeds the precisiotiooble .

If the type of a floating-point constantleng double , then each subexpression of the
associated constant expression is treatedlasgadouble . It is an error if any
subexpression value exceeds the precisidorg double .

Fixed-point decimal constant expressions are evaluated as follows. A fixed-point literal
has the apparent numbertotal and fractional digits, except that leading and trailing
zeros are factored out, including non-significant zeros before the decimal point. For
example 0123.450d is considered to bixed<5,2> and3000.00 is fixed<1,-3>.

Prefix operators do not affect the precision; a prefis optional, and does not change

the result. The upper bounds on the number of digits and scale of the result of an infix
expressionfixed<d1,s1> op fixed<d2,s2> , areshown inthe following table:

Op Result: fixed<d,s>

+ fixed<max(d1-s1,d2-s2) + max(s1,s2) + 1, max(sl,s2)>
- fixed<max(d1l-s1,d2-s2) + max(sl,s2) + 1, max(sl,s2)>
* fixed<d1+d2, s1+s2>

/ fixed<(d1-s1+S2) +S juf, Sinf™

3-20 CORBAV2.2 February 1998

3

A quotient may have an arbitrary number of decimal places, denoted by a sggle of
The compitation proceeds pairwise, with the usual ruleddétrto-right association,
operator precedence, and parentheses. If an individualutatign between a pair of
fixed-pointliterals actuallygenerates more than 31 significant digits, then a 31-digit
result is retained as follows:

fixed<d,s> => fixed<31, 31-d+s>

Leading andrailing zeros are not considered significafihe omitted diits are
discarded; rounding is not performed. The result of the individual computation then
proceeds as onédral operand of the next pair of fixed-point literals to be computed.

Unary ¢+ -) and binary {/ + -) operators are applicable in floating-poamtd fixed-
point expressions. Unarny (- ~) and binary{/ % + - << >> & | *) operators are
applicable in integer expressions.

The “~" unary ogrator indicates that tHat-complement of the expression tdeh it
is applied should be genated For the purposes of suchpessions, the values are 2’s
complement numbers. As such, the complement can be generated as follows:

Integer Constant Expression Type | Generated 2's Complement Numbers
long long -(value+1)

unsigned long unsigned long (2**32-1) - value

long long long long -(value+1)

unsigned dng long unsigned long (2**64-1) - value

The“%” binary operator yields the remainder from the division of the first expression
by the second. If the second operand of “%” is O,résalt isundefined; otherwise

(a/b)*b + a%b

is equal to a. If both operands are nonnegative, then the remainder is nonnegative; if
not, the sign of the remainder is implementation dependent.

The “<<”"binary operator indicates that the value of the lgftecand should behifted
left the number of bits specified by the right operand, withl Gdr the vacated bits.
The right operand must be ihe range 0 <= right operand < 64.

The “>>" binary operatomdicates that the value of the lefperand should be shifted
right the number of bits specified by the right operanith @ fill for the vacated bits.
The right operand must be ihe range 0 <= right operand < 64.

The “&” binary operator indicates that the logical, bitwise AND of the left and right
operands should be generated.

The “|” binary operator indicates that the logical, bitwise OR of thealadt right
operands should be generated.

CORBAV2.2 Constant Declaration February 1998 3-21

The “7” binary goerator indicates that the logical, bitwise EXCLUSIVE-OR of the left
and right operands should be generated.

<positive_int_const> must evaluate to a positive integer constant.

3.8 Type Declaration

OMG IDL provides constructs for naming data types; that is, it provides C language-
like declarations that associate an identifier with a type. OMG IDL usdgpadef
keyword to associate a name with a data type; a name is also associated with a data
type via thestruct , union, enum, andnative declarations; the syntax is:

<type_dcl> = “typedef” <type_declarator>
| <struct type>
| <union_type>
| <enum_type>
| “native” <simple_declarator>

<type_declarator> ::= <type_ spec> <declarators>

For type declarations, OMG IDL defines a set of type specifiers to represent typed
values. The syntax is dsllows:
<type_spec> e <simple_type_spec>

| <constr_type_spec>

= <base_type_spec>
| <template_type_ spec>
| <scoped_ name>

<simple_type_spec>

<base_type spec> n= < floating_pt_type>
| <integer_type>
| <char_type>
| <wide_char_type>
| <boolean_type>
| <octet_type>
| <any_type>

<template_type_spec>::=<sequence_type>
| <string_type>
| <wide_string_type>
| <fixed_pt_type>

<constr_type_spec> = <struct_type>
| <union_type>
| <enum_type>

<declarators>::=<declarator> { " <declarator>} "

<declarator> e <simple_declarator>

| <compl ex_declarator>
<simple_declarator> i= <identif ier>
<compl ex_declarator> e <array_declarator>

3-22 CORBAV2.2 February 1998

3

The <scoped_n ame> in <simple_type_spec> must be a previously defined type.

As seen above, OMG IDL type spéeit consist of scalar data types and type
constructors. OMG IDL type specifiers can be used in operation declarations to assign
data types to operation parameters. The next sections describe basic and constructed

type specifiers.

3.8.1 Basic Types

The syntaxfor the supported basic types is as follows:

<floating_pt_type> = “float”

| “double”

| “long” “double”
<integer_type>: = <signed_int>

| <unsigned_int>

<signed_int> ;= <signed_long_int
| <signed_short_int>
| <signed_longlong_int>

<signed_long_int> = ‘“long”
<signed_short_int> = “short”
<signed_longlong_int> := “long” “long”

;= <unsigned long_int>
| <unsigned_short_int>
| <unsigned_longlong_int>

<unsigned_int>

<unsigned_long_int> = “unsigned” “long”
<unsigned_short_int> = ‘“unsigned” “short”
<unsigned_longlong_int>::= *“unsigned” “long” “long”
<char_type> = “char”
<wide_char_type> = “wchar”
<boolean_type> = “boolean”
<octet_type> = ‘“octet”

<any_type> w= fany”

Each OMG IDL data type is mapped tmative data type via the appropriate laage
mapping. Conversion errors between OMG IDL data types and the native types to
which they are mapped can occur during the performance ofexatmm ivocation.
The invacation mechanism (client stulynamic invocation engine, and skeletons) may
signal an exception condition to the client if atempt is made to convert an illegal
value. The standard exceptions which are tgigealled in such situations are defined
in “Standard Exceptions” opage 3-37.

CORBAV2.2 Ty@eeclaration February 1998 3-23

3-24

Integer Types

OMG IDL integer types arshort, unsigned short, long, unsigned long, long
long andunsigned long long , representing integer values in the range indicated
below in Table 3-10.

Table 3-10Range of integer types

short 215 2151
long 281 2811
long long 268 263 .1
unsigned short 0.2%.1
unsigned long 0..2%-1
unsigned long long 0.2%4.1

Floating-Point Types

OMG IDL floating-point types arfloat, double andlong double . Thefloat type
represents IEEE single-precision floating point numbersdthuble type represents
IEEE dowble-precision floating point numbetfée long double data type represents
an IEEE double-extended floating-point number, which has an exponenteakatl5
bits in length and a signed fraction of at least 64 BigIEEE Standard for Binary
Floating-Point Arithmetic ANSI/IEEE Standard 754-198fgr a detailed specification.

Char Type

OMG IDL defines achar data type that is an 8-bit quantishich (1) encodes a
single-byte character fromny byte-oriented code set, or (2) when used in an array,
encodes anulti-byte character from a multi-byte code set. In otlverds, an
implementation is free to use any cazit internally for encoding character data,
though conversion to another form may be required for transmission.

The I1SO 8859-1 (Latinl)laracter set standard defines the meaning and representation
of all possible graphic charactarsed in OMG IDL (i.e., the space, alphabetic, digit
and graphic characters defined in Table 3-2 on page 3-3, Table 3-3 on page 3-4, and
Table 3-4 on page 3-4). The meaning and representation of the ndtéramating
characters (see Table 3-5 on page 3-5) is the numerical value of the character as
defined in the ASCII (ISO 646) standard. The meaning of all other characters is
implementation-dependent.

During transmission, characters may be converted to other appropriate forms as
required by a particular lgmage binding. Such conversions may change the
representation of a character but maintain the character’s meaning. For example, a
character may be converted to dmmim the appropriate representation in international
character sets.

CORBAV2.2 February 1998

Wide Char Type

OMG IDL defines awchar data type which encodes wide characters from any
character set. As with character datajraplemenation is free to use any codet
internally for encoding wide characters, though, again, conversion to another form may
be required for transmissioithe size ofwchar is implementation-dependent.

Boolean Type

The boolean data type is used to denote a data itemdhatonly take one of the
values TRUE and FALSE.

Octet Type

The octet type is an 8-bit quantity that is guaranteed notrtdargo any conversion
when transmitted by the communication system.

Any Type

The any type perrts the specification of values that carpress any OMG IDL type.

3.8.2 Constructed Types

The constructed typesre:
<constr_type_spec> = <struct_type>
| <union_type>
I

<enum_type>

Although the IDL syntaxallows the generation of recursive constructed type
specifications, the only recursigermitted for constructed pyes is through the use of
the sequence template type. For example, thalowing is legal:

struct foo {
long value;
seque nce<foo> chain;

}

See “Sequences” on page 3-27 details of thesequence template tpe.

Structures

The structure syntax is:

<struct_type> := “struct’ <identif ier>"“{" <member_list>*“}"
<member_list>::= <member> *

<member> = <type_spec> <declarators>*“;"

The <identifier> in <struct_type> defines a new legal type. Structure types may
also be named usingtgpedef declaration.

CORBAV2.2 Ty@eeclaration February 1998 3-25

3-26

Name scoping rules require that the member declaratorpantigular structure be
unique. The &lue of astruct is the value of all of its members.

Discriminated Unions

The discriminatedunion syntax is:

<union_type> 5= “union” <identif ier> “switch” “("
<switch_type_spec>)"
“{” <switch_ body> "}

<integer_type>
<char_type>
<boolean_type>
<enum_type>
<scoped_ name>

<switch_type spec>

+

<switch_bhody> n= <case>
<case> n= <case_label> * <element_spec> *”
<case_label> n= “case” <const_exp>"“."
| “default” “”
<element_spec> = <type_spec> <declarator>

OMG IDL unions are a cross between thenon andswitch statements. IDL
unions must be discriminated; that is, timdon header must specify a typed tag field
that determines whichnion member to use for the current instance oéla The
<identif ier> following theunion keyworddefines a new legal type. Union types may
also be named usingtgpedef declaration.The <const_exp> in a<case_label>

must beconsistent with theswitch_type spec> . A default case can appear at most
once. The<scoped_n ame> in the<switch_type spec> production must be a
previously definednteger, char, boolean or enum type.

Case labels must match or @etomatically castable to the defined type of the
discriminator. The complete set of matching rulessm@wn in Table 3-11.

Table 3-11Case Label Matching
Discriminator Type Matched By

long any integer value in the value range of long

long long any integer value in the range of long long

short any integer value in the value range of short
unsigned long any integer value in the value range of unsigned long
unsigned long long any integer value in the range of unsigned long long
unsigned short any integer value in the value range of unsigned short
char char

wchar wchar

boolean TRUE or FALSE

enum any enumerator for the discriminator enum type

CORBAV2.2 February 1998

Name scoping rules require that the element declaratorpantigular union be

unique. If the<switch_type_spec> is an<enum_type>, the identifier for the
enumeration is in the scope of the union; as a resultydt be distinct from the
element declarators.

It is not required that all possible values of the union discriminator be listed in the
<switch_body> . The value of a union ithe value of the discriminator together with
one of thefollowing:
« If the discriminator valuavas expkitly listed in acase statement, thealue of
the element associated with tltatse statement;

« If a defaultcase label was spcified, thevalue of the element associated with the
defaultcase label;
* No additional value.

Access to the discriminat@nd the relate@élement is laguage-mapping dependent.

Enumerations

Enumerated types consist of ordetists of identifiers. The syntax is:

<enum_type> = “enum” <identi fier>“{” <enumerator> {*,
<enumerator>} Y}

<enumerator > 1= <identif ier>

A maximum of 22 identifiers may be specified in an enumerationswach, the

enumerated names must be mapped native data type capable of representing a
maximally-sized enumeratioifhe order in whichhe identifiers are named in the
specification of an enumeration defines the relative order of the identifiers. Any
language mapping which peitsitwo enumerators to be compared or defines
successor/predecessor functions on enumerators must conform to this ordering relation.
The <identifier> following theenum keyword defines a new legal type. Enumerated
types may also be named usintypedef declaration.

3.8.3 Template Types

The tenplate types are:

<template_type_spec> ::= <s equence_type>
[<string_type>
[<wide_string_type>
[<fixed_pt_type>

Sequences

OMG IDL defines the sequence typequence . A sequence is a one-dimensional
array with two characteristics:rmaximum size (Wich is fixed at compile time) and a
length (which is determined at run time).

CORBAV2.2 Ty@eeclaration February 1998 3-27

3-28

The syntax is:
<sequence_type> = “sequence” ‘<" <si mple_ty pe_spec> "/
<positive_int_const> “>"

| “sequence” “<” <si mple_ty pe_spec> “>"

The secongarameter in a sequence declaration indicatesntsdmum size of the
sequence. If a positive integer constant is specified for the maximum size, the sequence
is termed a bounded sequence. Prior to passing a bounded sequence as a function
argument (or as a field in a structure or union), the length of the sequence must be set
in a language-mapping dependent manner. After receiving a seqesuttefrom an
operation invocation, the length of the returned sequence will have been set; this value
may be obtained in a language-mapping dependent manner.

If no maximum size is specified, size of the sequence is unspecified (unbounded). Prior
to passing such a sequence as a function argument (dieds ia a structure or

union), the length of the sequence, the mmxn size of the sequee, and the address

of a buffer to hold the sequence must be set in a language-mapping dependent manner
After receiving such a sequence result from an operation invocation, the length of the
returned sequence will have besat; this value may be obtained in a language-

mapping dependent manner.

A sequence type may be used as the type parameter for another sequence type. For
example, the following:

typedef sequence< se quence<long> > Fred;

declares Fred to be of type “unbounded sequence of unbounded sequence of long”.
Note that for nested sequence declarations, white space must be usetdte sbe
two “>" tokens ending theleclaration so they are not parsed as a single “>>" token.

Strings

OMG IDL defines the string typstring consisting of all possible 8-bit quantities
except null. A string isimiar to a sequence of char. As with sequenceangftype,
prior to passing atring as a functiomrgument (or as a field in a structure or union),
the length of thestring must beset in a language-mapping dependent marnries.
syntax is:

<string_type> := “string” “<” <positive_int_const> “>"
| “string”

The argument to the strirdeclaration is the maximum size of the string. If a positive
integer maximum size is specified, the string is terméduamdedstring; if no
maximum size is spe@#fd, the string is termed an unboundsdng.

Stringsare singled out as a separate type because many languages have special built-ir
functions or standard library functions for string manipulation. A sepateteytype

may permit substantial optimizationtime handling of strings compared to what can be
done with sequences of general types.

CORBAV2.2 February 1998

Wide Char String Type

Thewstring data type represents a ntdrminated (note: a ide character null)
sequence ofvchar. Typewstring is analogous tetring , except that its element type
is wchar instead ofchar.

Fixed Type

The fixed data type represents a fixed-point decimal number of up to 31 significant
digits. The scale factor is normally a non-negative integer less than or equal to the total
number of digits (note that constants witfeefively negative scale, such as 10000, are
always pemitted.). However, some languages and environments may be able to
accommodate types that have a negative scale or a scale greater than the number of
digits.

3.8.4 Complex Declarator

Arrays

OMG IDL defines multidimensional, fixed-size arrays. &may includes explicit sizes
for each dimension.

The syntaxfor arrays is:

<array_declarator> :=<identif ier><fixed array_size> *
<fixed_array_size> := "["<positi ve_int_const> “T’

Thearray size (in each dimension) is fixed at compile time. When an array is passed as
a parameter in an operation invocation,eéiments of the array are transmitted.

The mplementation of array indices is language mapping spepdssing an array
index as a parameter may yield incorrect results.

3.8.5 Native Types

OMG IDL provides a declaration for use by object adapters to define an opaque type
whose representation is specified by the language mapping forbjeat adapter.

The syntax is:

<type_dcl>::="native" <simple_declarator>
<simple_declarator> ::= <identifier>

This declaration defines rrew type with thespecified name. A native typesemiar

to an IDL basic type.The possible values of a native type &aguage-mapping
dependent, as are the means fanstaucting thenand manipulating them. Any
interface that defines a native type requeash language mapping to define how the
native type is maped into that programming language.

CORBAV2.2 Ty@eeclaration February 1998 3-29

A native type may be used to define operation paramatetgesults. However, there
is no requirement that values of the typepeemitted in remote invocatis, either
directly or as a component of a construdigae. Any attempt teransmit a value of a
native type in a remote invocation megise the MARSHAL staratd exception.

It is recommended that native types be mapped to equivalent type names in each
programming language, subject to the normal mapping rules for type names in that
language. For example, in a hypothetical Object Adapter IDL module

module HypotheticalObjectAdapter {
native Servant;
interface HOA {
Object activate_object(in Servant x);
|3
|3
the IDL type Servant would map to HypotheticalObjectAdapter::Servant ingDe+

the actvate_object operation would map to theldaling C++ member function
sighature:

CORBA::Object_ptr activate_object(
HypotheticalObjectAdapter::Servant x);

The deinition of the C++ type HyptheticalObjectAdpter::Servant wuld be provided
as part of the C++ mapping for the HypotheticalObjectAdapter module.

Note —The native type declaration jsovided specifically for use in object adapter
interfaces, which require parameters whose values are concrete representations of
objectimplemenation instances. It is strongly recommended that it not be used in
service or application interd@s. Thenative type declaration allows objeadapters to
define new primitive tpes without requiringhanges to the OMG IDL language or to
OMG IDL com

3.9 Exception Declaration

Exceptiondeclarations permit the declaration of struct-like data structunéshvwnay
be returned to indicate that an exceptional condition has occurred during the
performance of a request. The syntax is as follows:

<except_dcl>: :="exception” <identifier> “{* <member>* “}"

Each exception is characterized by its OMG lidentifier, an exception type

identifier, andthe type of the associated return value (as specified byrnigmber>

in its declaration). If an exception is returned as the outcome to a request, then the
value of the exeption identifier is accessible tbe programmer foreterminingwhich
particular exception was raised.

If an exception is declared with members, a programmer will be able to access the
values of those members when an exception is raised. If no members are specified, no
additional information is accessiblehen an exception is raised.

3-30 CORBAV2.2 February 1998

A set of standard exceptions is defined corresiryg to standardun-time errors
which may occur during the execution of a request. These standaptiors are
documented in “Standard Esptions” onpage 3-37.

3.10 Operation Declaration

Operation declarations in OMG IDL are similar to C function declarations. The syntax
is:

<op_dcl> := [<op_attribute>] <op_type spec> <identifier>
<parameter_dcls>

[<raises_expr>] [<context_expr>]
<op_type_spec>::=<param_type_spec>

| “void”

An operation declaration consists of:
» An optional operatiomttribute that specifies which invocation semantics the
communication system should providdenthe operation is invoked. Operation
attributes are described in “Operation Attribute” on p8ge#l.

» The type of the operation’s return result; the type magrbetype which can be
defined in OMG IDL. Operations that do not return a result must specifyottie
type.

* An identifier that names the operation in the scope of the interface in which it is
defined.

» A parametetist thatspecifies zero or more parameter declarations for the
operation. Parameter declaration is described in “Retearbeclarations” on page
3-32.

» An optional raises expression which indicatdsch exceptions may baised as
a result of an invocation of this operation. Raises expressions are described in
“Raises Expressions” on page 3-32.

* An optional context expression which indicates which elements of the request
context may be consulted by the method that implementeglemtion. Context
expressions are described in “Context Expressions” on page 3-33.

Some implementations and/or laragge mappings may requir@earation-specific
pragmas to immediatelgrecede the affected operation declaration.

3.10.1 Operation Attribute

The operatiorattribute specifies which invocation semantics the communication
service must provide for invocations of a particular operation. An ope iatiisute is
optional. The syntax for its specification is as follows:

<op_attribute>::="oneway”

When a client invokes an operation with threeway attribute, the invocation
semantics are best-effort, which does not guaraseéecry of the call; best-effort
implies that the operation will bevioked at most once. An operatiotithvthe oneway

CORBAV2.2 Operation Declaration February 1998 3-31

attribute must not contaiany outputparameterandmust specify aoid return type.
An operation defined with theneway attrbute may not include a raises expression;
invocation of such an operation, however, may raise a standard exception.

If an <op_attribute> is not specified, the inwation semantics is at-most-once if an
exception is raised; the semantics are exactly-once if the operation invocation returns
successfully.

3.10.2 Parameter Declarations

Parameter declarations in OMG IDL operation declarations have the following syntax:

<parameter_dcls>::= “(" <param_dcl>{“” <par am_dcl>}"")”
I G
<param_dcl>::=<param_attribute> <param_type_spec> <simple_declarator>
<param_attribute>::="in"
| “out”
| “inout”
<param_type_spec>::=<base_type_spec>
| <string_type>
| <scoped_ name>

A parameter declaration musave a dectional attribute that informs the
communication service in both the client and the server of the direction in which the
parameter is to be passed. The directi@atalbutes are:

 in - the parameter is passed from client to server.
* out - the parameter is passed from server to client.
 inout - the parameter is passed in both directions.

It is expected that an implementation witht attempt to modify ain parameterThe
ability to even atempt to do so is language-mapping specific; the effestiofi an
action is undefed.

If an exception is raised as a result of an invocation, the values of the returranesult
anyout andinout parameters are undefined.

When an unboundestring or sequence is passed as dnout parameter, the
returned value cannot be longer than the input value.

3.10.3 Raises Expressions

A raises expression specifieshich exceptions may be raised aseault of an
invocation of the operation. The syntax ftw specification is as follows:

O wyn

<raises_expr>::="raises” “(” <scoped_name> {“,” <scope d_name>}

The <scoped_n ame>s in theraises expression must be previously defined
exceptions.

3-32 CORBAV2.2 February 1998

3

In addition to any operation-specific excepti@pecified in theaises expression,

there are a standard set of exceptions that may bellsig by the ORBThese

standard exceptions are described in “Standard Exceptions” on page 3-37. However,
standard exceptions mawpt be listed in aaises expression.

The absence of mises expression on an operation implies that there are no
operation-specific exceptis. Invocations of such an operation are still liable to
receive one of the standard exceptions.

3.10.4 Context Expressions

A context expression specifies which elements of the client’s context may affect the
performance of a request by the object. The syntax for its specification is as follows:

<context_expr>::=“context” “(” <string_literal> { “,” <string_literal> } Dy

The run-time system guarantees to make the value (if any) associatedasfth
<string_literal> in the client's context available to the object implementation when
the request is delivered. The ORB and/or object is free to use information in this
request contexduring request resolution and performance.

The absence of a caxt expression indicates that there is no request context
associated with requests for this operation.

Eachstring_literal is an arbitrarilylong sequence of alphabetic, digit, period (“.”),
underscore (*_"), and asterisk (“*") characters. The first character of the string must be

an alphabetic character. An asterisk may only be used as the last character of the string
Some implementations may use the period characteartition the name space.

The medanism by which a client associates values with the context identifiers is
described in the Dynamic Invocation Interfadtepter.

3.11 Attribute Declaration

An interface can have attributes as well as operatiorsjas attributes are defined as
part of an interface. An atinite definition is logically equivalent to declaring a pair of
accessor functions; one tonieve the value of the attribute ande to set the value of
the attibute.

The syntaxfor attribute declaration is:

<attr_dcl> ::=[“readonly”] “attribute” <param_type_sp ec>
<simple_declarator>
{",” <simple_declarator> }*

The optionalreadonly keywordindicates that there is only a single accessor
function—the retrieve value function. Consider thddiwling example:

CORBAV2.2 Attribute Declaration February 1998 3-33

interface foo {

enum material_t {rubber, glass};
struct position_t {

float x, y;

¥

attribute float radius;
attribute material_t material,
readonly attribute position_t position;

k

The attibute declarations are equivalent to the following pseudo-fpation
fragment:

float _get_radius ();

void _set _radius (infloatr);
material t _get material ();

void _set_mater ial (in material_t m);
position_t _get position ();

The actual accessor function names are language-mapping specific. The C, C++, and
Smalltalk mappings are described in separate chapters. tfibatatname is subject to
OMG IDL's name scoping rules; the accessor function names are guarantéed

collide with any legal operation names specifiable in OMG IDL.

Attribute operations return errors by means of standard exceptions.

Attributes are inherited. Aattribute namecannotbe redefined to be a differentpty.
See “CORBA Module” on page 3-34 for mardormation on redefinitiorconstraints
and the handling acimbiguity.

3.12 CORBA Module

In order to prevent names defined in ®®RBAspecification fromclashing with
names in programming languages and other software sysitémames defined in
CORBAare treated as if they were defined within a module named CORBA. In an
OMG IDL specification, however, OMG IDkeywords such as Object must not be
preceded by a “CORBA::" prefix. Othémterface namesuch as TypeCodare not
OMG IDL keywords, so they must be referred to by tHally scoped names (e.g.,
CORBA:: TypeCodewithin an OMG IDL specitation.

3-34 CORBAV2.2 February 1998

3.13 Names and Scoping

An entire OMG IDL file forms anaming scope. In addition, the following kinds of
definitions form nested scopes:

e module

* interface

* structure

e union

» operation
e exception

Identifiers for the following kinds of defitions are scoped:
* types
* constants
* enumeration values
e exceptions
* interfaces
* attributes
* operations

An identifier can only be defined once in a scope. Howeidemtifierscan be
redefined in nested scopes. An identifier declaring a module is considered to be
defined by its firsbccurrence in a scope. Subsequent occurrences of a module
declaration within the same scop®pen the module allowing additional definitions to
be added to it.

Due to possible restrictions imposed by future language bindings, OMG IDL identifiers
are case insensitive; that is, two identifiers thffer only in the case of their

characters are considered redefinition®é another. Howeveall references to a
definition must use the same case as the defining occurrence. (This allows natural
mappings to case-sensitive languages.)

Type names defined in a scope are availablenfionédiate use within that scope. In
particular, see “Constructed Types” page 3-25 on cycles in type dsfions.

A name can be used in an unqualified forithi a particularscope; it will be

resolved by successively searching farther out in enclosing scopes. Once an unqualified
name is used in a scope, it cannotrédefined (ie., if one has used a name defined in

an enclosing scope in the current scope, one cannot then redefine a version of the name
in the current scope). Suckdefinitions yield a compilation error.

A qualified name (one of thierm <scoped-name>::<identifier>) is resolved hgfi
resolving the qualifier <scoped-name> to a scope S, anddbating the definition of
<identifier> within S. The identifier must be directly defined in S or (if S is an
interface) inherited into S. The <identifier> is not searched for in enclosimgsco

When a qualified name begins with “::", the resolution process starts with the file
scope and locates subsequemidfiers in the qualified name by the rule described in
the previous paragraph.

CORBAV2.2 Names and Scoping February 1998 3-35

Every OMG IDL definition in a file has a global name within that file. The global
name for a ddfition is constructed as follows.

Prior to starting tscan aife containing an OMG IDL specification, the name of the
current root ignitially empty (") and the name of the current scop@isally empty
(“"). Whenever amodule keyword is encountered, tis¢ring “::” and the associated
identifier are appnded to the name of the current root; upon detection of the
termination of thenodule , the trailing “::” and icentifier are deleted from the name of
the current root. Whenever amerface , struct , union , or exception keyword is
encountered, the strifg” and the associated idefiir are appended to the name of
the current scope; upatetection of the termination of theterface , struct , union ,

or exception , the trailing “::” and identifier are deleted from the name of the current
scope. Additionally, a new, unnamed, scope is entered when the parameters of an
operation declaration are processed; this allows #narpeter names to duplicate other
identifiers;when parameter processing has completed, the unnamed scope is exited.

The global name of an OMG IDdefinition is the concatenation of the current root,
the current scope, a “::”, and the <identifier>, which is the local name for that
definition.

Note that the global name in an OMG IDL files corrasp®to an absolute
ScopedName in the Interface Repository. (Seeuigpoting Type Deifhitions” on
page 8-9).

Inheritance produces shadow copies of the inheritedtifiers; that is, it introduces

names into the derived interface, but these names are considered to be semantically the
same as the original deition. Two shadow copies of theame original (as results

from the diamond shape in Figure 3-1 on page 3-17) introduce a single name into the
derved interface and don't cdidt with each other.

Inheritance introduces multiple global OMG IDL names for itifeerited identifiers.
Consider the following example:

interface A {
exception E {
long L;

|8
void f() raises(E);

interface B: A {
void g() raises(E);
|

In this example, the exceptionkaown bythe global namesA::E and:B:E.

Ambiguity can arise in specificatiorttie to the nested naming scopes. For example:
interface A {

typedef string<128> string_t;
b

3-36 CORBAV2.2 February 1998

interface B {
typedef string<256> string_t;

k

interface C: A, B {
attribute string_t Ti tle;/* AMBI GUOUS!I! */

k

The attibute declaration in C is ambiguous, since the compiler doeknowt which
string_t is desired. Ambiguous declarations yield compilation errors.

3.14 Differences from C++

The OMG IDL grammar, while attempting to conform to the C++ syntax, is somewhat
more resictive. Thecurrent restrictions are as follows:

* A function return type is mandatory.
« A name must be supplied with eafciimal parameter to an operation declaration.

» A parameter list consisting of the single tokeid is not permitted as a synonym
for an empty parametéist.

» Tags are required for structures, discriminated unions, and enumerations.

Integer types cannot be defined as simply int or unsigned; they must be declared
explicitly asshort orlong .

» char cannot be qualified bgigned or unsigned keywords.

3.15 Standard Exaptions

This section presents the standard exceptions defined for the ORB. These exception
identifiers may be returned as a resulaaf ogeration nvocation, regardless of the
interface specification. Stdard exceptions may not be listedritises expressions.

In order to bound the complexity in handling the standard exceptions, the set of
standard exceptions should be kept to a tractable size. This constraint forces the
definition of equivalence classes of exceptions rather than enumeratingsimalay
exceptions. For example, an operation invocation adraf many different points due

to the inability to allocate dynamic memomRather than enumerate several different
exceptions corresponding to the different ways that memory allodaiiore causes

the exception (during marshalling, unmarshalling, in the client, in the object
implementation, allocating network packets, ...), a single exception corresponding to
dynamic memory allocation failure is dedih. Each standard exception includes a
minor code to designate the subcategory of the exception; the assignment of values to
the minor codes is left to each ORBplementaibn.

CORBAV2.2 Differences from C++ February 1998 3-37

Each standard exception also include®mpletion_status code which takes one of
the values {COMPLETED_YES, GOPLETED_NO, COMPLETED_MAYBE}.
These have thiollowing meanings:

COMPLETED_YES The object implementation has completed
processing prior to the exception being raised.

COMPLETED_NO The object implementation was nevigitiated
prior to the exception being raised.

COMPLETED_MAYBE The satus of implementation completion is
indeterminate.

3.15.1 Standard Exceptions Definitions

The standard exceptions are defined below. Clients must be prepared to handle system
exceptions that are not on this list, both because future versions of this specification
may define additional standard exceptions, and because ORB implementations may
raise non-standard system exceptions.

#define ex_body {unsigned long minor; completion_status completed;}

enum completion_status {COMPL ETED_YES, COMPLETED_NO,
COMPLETED_MAY BE};

enum exception_type {NO_EXCEPTION, USER_EXCE PTION,
SYSTEM_EXCEPTION};

exception UNKNOWN ex_body; // the unknown exception
exception BAD_PARAM ex_body; //anin valid parameter was

/I passed
exception NO_MEMORY ex_body; // dynamic memory allocation

/I failure
exception IMP_LIMIT ex_body; // violated implementat ion limit
exception COMM_FAILURE ex_body; // communication failure
exception INV_OBJREF ex_body; //in valid object r eference
exception NO_PERMISSION ex_body; // nopermission for attempted op.
exception INTERNAL ex_body; // ORB internal error
exception MARSHAL ex_body; //er rormarshalling param/result
exception INITIALIZE ex_body; //ORB initialization failure

exception NO_IMPLEMENT ex_body; // operation implementation
/I unavailable
exception BA D_TYPECODE ex body; // bad typecode
exception BA D_OPERATION ex_body; //in valid operation
exception NO_RESOURCES ex_body; // insufficient resources forreq.
exception NO_RESPONSE ex_body; // response toreg. not yet
[/l available
exception PERSIST_STORE ex_body; // per sistent storage failure
exception BA D_INV_ORDER ex_body; // routine invocations out of order

3-38 CORBAV2.2 February 1998

exception TRAN SIENT ex_body; /I transient failure - reissue
Il request

exception FREE_MEM ex_body; // cannot free memory

exception INV_IDENT ex_body; //in valid identifier syntax

exception INV_FLAG ex_body; //in valid flag was specified

exception INT F_REPOS ex_body; /I er ror accessing interface

/I repository
exception BAD_CON TEXT ex_body; // er ror processing cont ext object
exception OBJ_ ADAPTER ex_body; // failure detected by object

/I adapter
exception DATA_ CONVERSION ex_body; // data conversion error
exception OBJECT_NO T_EXIST ex_body; // non-existent object, delete

/I reference
exception TRAN SACTION_REQUIRED ex_body; //transact ion required
exception TRANSACTION_ROLLEDBACK ex_body; // transact ion rolled
/I back

exception INVALID _TRANSACTION ex_body; // in valid transaction

3.15.2 Object Non-Existence

The OBJECT_NOT_EXIST exception is raised whenever an invocation on a deleted
object was performed. It is an authoritative “hard” fault reportygaereceiving it is
allowed (even expected) to delete all copies of this object refeesmcéo perform

other appropriate “final recovery” style procedures.

Bridges forward this exception to clients, also destroying any records they may hold
(for example, proxy objects used in reference translation). The clients could in turn
purge any otheir own data structures.

3.5.3 Transaction Exceptions

The TRANSACTION_REQUIRED exception indicates that the request carried a null
transaction context, but attive transaction isequired.

The TRANSACTION_ROLLE DBACK exception indicates that the transaction
associated with the request has already been rolled back or maridicbick. Thus,

the requested operation either could not be performed or was not performed because
further computation otbehalf of the transaction would be fruitless.

The INVALID_TRANSACTION indicates that the request carried an invalid
transaction contextFor example, this exception could be raised if an error occurred
when trying to register a resource.

CORBAV2.2 Standard Exceptions February 1998 3-39

3-40 CORBAV2.2 February 1998

4.1 Overview

ORB Interface 4

Contents

This chapter contains tHellowing sections.

Section Title Page
“Overview” 4-1
“Object Reference Operations” 4-4
“ORB and OA Initialization and Initial Bferences” 4-8
“ORB Initialization” 4-8
“Obtaining Initial ObjectReferences” 4-10
“Current Object” 4-12
“Policy Object” 4-12
“Management of Policy Domains” 4-14
“Thread-related operations” 4-19

The ORB interface is the interface to those ORB functions that ddepeind on

which object adapter is used. These operations are the same for all ORBs and all object
implementations, andan be performed either by clients of the objects or
implementations. Some of these operations appear to be on the ORB, others appear tc
be on the object reference. Because the operatiothgsirsection are implemented by

the ORB itself, they are not in fact operations on objects, wdfhahey may be

described that wagnd the language binding will, for consistency, make them appear

CORBA V2.2 Febloag/ 4-1

4-2

that way. The ORB interface also defines operations for creligiisgand determining
the default context used in the Dynamic Invocation Interface. Those operations are
described in the Dynamic Invocation Interfadtepter.

module CORBA {

typedef unsigned short Serviceype;
typedef unsigned long Service@tion;
typedef unsigned long ServiceDetailpe;

const ServiceType Security = 1;

struct ServiceDetail {
ServiceDetailType service detl type;
sequence <octet> service_detail;

h

struct Servicelnformation {
sequence <ServieOption> service_options;
sequence <ServiceDetail> service_details;

h

interface ORB { // PIDL
string object_to_string (in Object obj);
Object string_to_object (in string str);

Status create_list (
in long count,
out NVList new_list

Status create_operation_list (
in OperationDef oper,
out NVList new_list

)i

Statusget_default_context (out Context ctx);
boolean get_service_information (
in ServiceType servie_type;
out Servicelnformation service_nformation;
);
/l get_current deprecated operation - should not besed by new code
/I new code should use resadv initial_reference operation instead
Current get_current();
%
%

All types defined in this chapter are part of the CORBA module. When referenced in
OMG IDL, the type names must be prefixed by “CORBA::".

CORBAV2.2 February 1998

4

The get_current operation is described in “Thread-related operations” on page 4-19.

4.1.1 Converting Object Refarces tdstrings

Because anlgect reference is opaque and naliffer from ORB to ORB, the object
referenceitself is not a convenient value for storing references to objects in persistent
storage or communicating references by means other than invocation. Two problems
must be solved: alloiwg an object reference to be turned into a value that a client can
store in some other medium, andsaring that the value can subsequently be turned
into the appropriate object reference.

An object reference may be translated into a string by the operation
object_to_string. The value may bstored or communicated in whatever ways
strings may be manipulated. Subsequently, giing_to_object operation will
accept a string produced bgbject_to_string and return the corresponding object
reference.

To guarantee that an ORB will understand the string form of an object reference, that
ORB's object_to_string operation must based to produce the string. For all
conforming ORBSs, if obj is a valid reference to an object, then
string_to_object(object _to_string(obj)) will return a valid

reference to the same object, if the two operations are performed on the same ORB.
For all conforming ORB's supporting IOP, this remains true even if the two operations
are performed on different ORBs.

For a daecription of thecreate_listandcreate_operation_listoperations, see “List
Operations” on pags-11. Theget default_contextoperation is described in the
section “get_default_context” on pag€ls.

4.1.2 Getting Service Information

get_service_information

boolean get_service_infor mation (
in ServiceType service_type;
out Servicelnformation service_information;

)i

Theget_service_information operation is used to obtain information about CORBA
facilities and services that are supportedthig ORB. The service type for which
information is being requested is passed in as thaiameteiservice_type , the
values defined by constants in tB®RBA module. If service information is available
for that type, that is returned in the out parame&vice_information , and the
operation returns the vald&RUE. If no information for the requested services type is
available, the operation returRALSE (i.e., the service is not supported by this ORB).

CORBAV2.2 Overview February 1998 4-3

4

4.2 Object Referend@perations

There are some @pations thatan be done on any object. These are not operations in
the normal sense, in that they are implemented directly by the ORB, not passed on to
the object implementation. We will describe these as being operations on the object
reference, although the interfaces actually depend on the language binding. As above,
where we used interface Object to represent the object reference, we will define an
interface for Object:

module CORBA {

interface Object { /[PIDL
ImplementationDef get_implementation (); /deprecated as of 2.2
InterfaceDef get_interface ();
boolean is_nil();
Object duplicate ();

void release ();

boolean is_a (in string logial_type_id);
boolean non_existent();

boolean is_equivalent (in Object other_object);
unsigned long hash(in unsigned long marium);

Status create_request (

in Context ctx,

in Identifier operation,
in NVList arg_list,
inout NamedValue result,
out Request request,
in Flags req_flags

);
Policy get_policy (
in PolicyType policy type
)i
omainManagersListget_domain_managers ();
%
%

The create_requestoperation is part of the Object intece because it creates a
pseudo-bject (a Request) for an object. It is described with the dReguest
operations in the section Sectibr2, “Request Operans,” on page 5-5.

4.2.1 Determming the Object Interface

Note —Theget_implementationoperation is deprecated in this version of the
CORBA specification. Namew code sbuld make use of thisiterface and peration,
since they will be eliminated in a future version of the CORBA $jpatibn.

4-4 CORBAV2.2 February 1998

4

An operation on the object referenggt_interface returns an object in the Interface
Repository, which provides type information that may be useful to a pro§eenthe
Interface Repository chapter for a definition of operations on the Interface Repository.
An operation on the Object callg®et_implementationwill return an object in an
implementation repository that describes the implementation of the object.

InterfaceDef get_interface (); /I PIDL
ImplementationDef get_implementation ();

4.2.2 Duplicating and Releasing CopiesQifject References

Because olgict references are opaque and ORB-dependent, it is not possible for clients
or implemenations to allocate storage for them. Therefore, there are operations
defined to copy or release an object reference.

Object duplicate (); /[PIDL
void release ();

If more than one copy of an objaefferance is needed, theieht may create a
duplicate. Note that the object implementation is not involvedrieating the
duplicate, and that the implementaticannot distinguish whether the original or a
duplicate was used in a particular request.

When an object reference is no longer needed by a progeasigrage may be
reclaimed by use of theeleaseoperation. Note that the object implementation is not
involved, and that neither thabject itself norany other references to it are affected by
the releaseoperation.

4.2.3 Nil Object References

An object reference whose value is OBJECT_NIL denotes no object. An object
reference can be tested for this value by ilenil operation. The object
implementation is not involved in the nil test.

boolean is_nil (); /[PIDL

4.2.4 Equivalence Checking Operation

An operation is defined to facilitate maintaining type-safety for object refeseover
the scope of an ORB.

boolean is_a(inRepositoryID logical_type_id); /I PIDL

Thelogical_type_idis a stringdenoting a shared typdentifier (Repositoryld). The
operation returns true if the object is really an instance otypat including if that
type is an ancestor of the “most ded” type of that object.

CORBAV2.2 Object Reference Operations February 1998 4-5

This operation exposes to application programmers functionality that must already
exist in ORBs which support “type safe narrow” and allowgpmmers working in
environments that do not have compile time tghecking to explicitly maintain type
safety.

4.2.5 Probing for Object Non-Existence

boolean non_existent (); // PIDL

The non_existentoperation may be used test whether an object (e.g.peoxy

object) has been destroyed. It does this without invokimgapplication level

operation on the object, and so will never affect the object itself. It returns true (rather
than raisingCORBA::OBJECT_NOT_EXIST) if the ORB knowsauthoritatively

that the object does not exist; otherwise, it returns false.

Services that maintain state that includes object nefer® such as bridges, event
channels, and base relationship services, might useparation in their “idle time” to
sift through object tables fabjects that no longer exist, deleting them as tqwyas a
form of garbage collection. In the case of proxies, this kindativity can cascade,
such that cleaning up one table allows others then to be cleaned up.

4.2.6 Object Reference ldentity

In order to efficiently managstate thainclude large numbers of object references,
services need to support a notion of object refererestityf. Such services include not
just bridges, but relationship services and other layéaedities.

unsigned long hash(in unsigned long maxiom); // PIDL
boolean is_equivalent(in Object other_object);

Two identity-related operations are provided. One maps object references into disjoint
groups of potentially equivalent referencasd the other supports more expensive
pairwise equivalence testing. Together, these operatiomgort efficient maintenance

and search of tables keyed by object references.

Hashing: Object Identifiers

Object references are assated with ORB-internal identifienshich may indirectly be
accessed by applications using trash() operation. The value of this id€fidir does
not change during the lifee of the object reference, and so neither anly hash
function of that identifier.

The value othis operation is not guaranteed to be unique; that is, another object
reference may return the same hash value. However, if two object references hash
differently, applications can determine that the object references armt identical.

CORBAV2.2 February 1998

4

The maximum parameter to theashoperation specifies an uppeound on the hash
value returned by the ORB. The lower bound of that value is zero. Since a typical use
of this feature is to construand access a Bision chained hash table of object
references, the more randomdistributed the values are within that range, and the
cheaper those values are to compute, the better.

For bridge construction, note that proxy objects are themselves objects, so there could
be many proxy objects representing a given “real” object. Those proxies would not
necessarily hash to the same value.

Equivalence Testing

Theis_equivalent() operation is used to determinetifo object references are
equivalent, so far as the ORB can eadiyermine. It return§RUEiIf the target object
reference isknown to beequivalent to the other object reference passed as its
parameter, anéALSE otherwise.

If two object references are idésdl, they are equivalent. Twdifferent object
references which in fact refer to the same object are also equivalent.

ORBs are allowed, but not required, to attempt determination of whethetistirct
object references refer to the same object. In general, the existence of reference
translation and encapsulation, in the absence of an omniscient topology service, can
make suchdetermination impractically expensive. This means thaABSE return

from is_equivalent()should be viewed as only indicating that the object references
are distinctand not necessarily anditation that the references indicate distinct
objects.

A typical application use of this operation is to match object references in a hash table.
Bridges could use it to shorten the lengths of chains of proxy object references.
Externalization services could use it to “flatten” graphs that represent cyclical
relationships between objects. Some might do this as they construct the table, others
during idletime.

4.2.7 Getting Policy Associated with tdject

The get_policy operation returns the policy object of the specified type (see “Policy
Object” on page 4-12), which appliesttds object.

Policy get_policy (
in PolicyType poli cy_type
);

Parameters

policy type The type of policy to be obtained.

Return Value

policy A policy object of the type specified by tpelicy type
parameter.

CORBAV2.2 Object Reference Operations February 1998 4-7

Exceptions
CORBA::BAD_PARAM raised when the value of policy type is not valid either
because the specified type is not supported by this ORB
or because a policy object thiat type is not associated
with this Object.

4.2.8 Getting the Domain Managers Associated with the Object

Theget_domain_managers allows administration services (and applications) to
retrieve the domain managers (see “Management of Policy Domains” on page 4-14),
and hence the security and otlpeticies applicable to individual objects that are
members of the domain.

DomainManagersList get_domain_managers ();
Return Value

The list of inmediately enclosing domain managers of this object. At least one domain
manager is always returned in the list since by default each object is associated with at
leastone domain manager at creation.

4.3 ORB and OMnitializationandInitial References

Before an application can enter the CORBA environment, it mst fir
® Be initializedinto the ORB and possibly the objectapter environments.

®* Get references to ORB pseudo-object (for use in future ORB operations) and
perhaps other objects (including some Object Adapter objects).

CORBA V2.2 provides operationspecified inPIDL, to initialize applicationand
obtain the appropriate object referencise following is provided:

® QOperations providing access to the ORB. These operations reside in the CORBA
module, but not in the ORB interface and are described in “ORialization” on
page 4-8.

® Operations providing access to Object Adapters, Interfacediepy, Naming
Service, and other Object Services. Theserajonsreside in the ORB interface
and are described in “Obtainingitial Object References” opage 4-10.

In addition, this manual provides a mapping of HBL initialization andobject
reference operations to several languages.

4.4 ORB Initialization

When an application requires a CORBA environment it needs a mechanism to get the
ORB pseudo-bject referencand possibly an OA object reference. This setwes
purposes. First, it initializes an application into the ORB and OA environments.
Second, it returns the ORB pseudo-object reference and the OA object reference to the
application for use in future ORBnd OA @erations.

CORBAV2.2 February 1998

4

The ORB and OAriitialization operations must lrdered with ORB ocurring before

OA: anapplication cannotall OA initialization routines until ORB initialization
routines have been called for the given ORB. Therafion to initialize ampplication

in the ORB and get itgseudo-object reference is not performed on an object. This is
because applications do not initially have an object on which to invoke operdtiens.
ORB initialization operation is an application’s bootstrap call into the CORBA world.
The PIDLfor the call(Figure 7-1) shows that the ORB_iill is part of the CORBA
module but not part of the ORB interface.

Applications can be initialized in one or more ORBs. When an ORB initialization is
complete, itpseudo reference is returned and can be used to obtain other references
for that ORB.

In order to obtain an ORB pseudo-object reference, applications c&IRE: init
operation. The parameters to ttedl comprise an identifier for the ORB fohieh the
pseudo-bject referace is required, and aarg_list, which is used to allow
environment-specific data to be passed into the call. PIDL for the iBR&ization is
as follows:

// PIDL
module CORBA {
typedef string ORBId;
typedef sequence <string> arg_list;
ORB ORB_init (inout arg_list argv, in ORBId orb_identifier);
I
Figure 7-1

The identifier for the ORB will be a name of type CORBA::Oi@B All ORBId strings
other than the emptstringare allocated by ORB administrators and are not managed
by the OMG. ORBIdstringsother than the empty string are intended to be used to
uniquely identify each ORB used within the same address space in a multi-ORB
application. These special BRI strings are specific to each ORBplemenation

and the ORBadministrator is responsible for ensuring that the names are
unambiguous.

If an empty ORBId string is passed to ORB_init, then the mtgatguments shall be
examined to determine if they indicate an ORB reference that should be returned. This
is achieved by searching the arg_list parametersrierpreceded b{*ORBId," for

example, "-ORBid example_orb" (the whitespace aftet'{®®Bid" tag is ignored) or
"-ORBidMyFavoriteORB" (with no whitespace following the "-ORBid" tag).
Alternatively, two sequential parameters with the fireing the string "-ORBid"

indicates that the second is to be treated as an ORBater. If an empty string is
passed and no arg_list parameters indicate the ORB reference to be returned, the
default ORB for the environment will be returned.

Other parameters of significance to the ORB can alsdéwified in arg_list, for

example, "Hostname," "SpawnedServer," andesth. To alow for otherparameters

to be specified without causing applications to be re-written, it is necessargcify sp

the parameter format that ORB parameters may take. In general, parameters shall be
formatted as eithesne single argidt parameter:

CORBAV2.2 ORBitialization February 1998 4-9

—ORB<suffix><optional whitespace> <value>

or as two sequeial arg_list parameters:
-ORB<suffix>

<value>

Regardless of whether an empty or non-empty ORBId string is passed to ORB _init, the
arg_list arguments are examined to determirenif ORB parameters are given. If a
non-empty ORBId string is passed to ORB_init, ORBid parameters in the arg_list

are ignored. All other -ORB<suffix> parameters in the arg_list may be of significance
during the ORB initialization process.

The ORB_init operatiomay be called any number ofnies and shall return the same
ORB reference when the same ORBIidng is @mssed, either explicitly as an argument
to ORB_init or through the arg_list. All other -ORB<suffix> parameters in the arg_list
may be considered on subsequent calls to ORB _init.

4.5 Obtaining Initial Object References

4-10

Applications require a portable means by which to obtain their initial object references.
References are required for the root POA, POA Current, Interface Repository and
various Object Services instances. (The POA is described in Chapter 9 of this manual,
The Interface Repository is described in Chapter 8 of this manual; Object Services are
described inCORBAserges: Common Object Services Specificajidine

functionality required by the application is similar to that provided byNaming

Service. However, the OMG does noant to mandate that the Naming Service be

made available to all applications in order that they may be portably initialized.
Consequently, the operatioaBown inthis section provide a simplified, local version

of the Naming Service that applications can use to obtain a small, defined set of object
references which are essential to itsepption. Because only a small well defined set of
objects are expected with this menlsmn, the naming contextn be flattened to be a
single-level name space. Thisngilification results in onlywo operations being

defined to achieve the functionality required.

Initial references are obtained via operations on the ORB pseudo-mitggéice,
providing facilities to listand resolvenitial object referencesihe PIDL for these
operations ishown below.

/ PIDL interface for getting initial object references
module CORBA {

interface ORB {

typedef string Objectld;

typedef sequence <Objectld> ObjectldList;

exception InvalidName {};

CORBAV2.2 February 1998

ObjectldList list_initial_services ();

Object resolve_initial_references (in Objectldidentifier)
raises (InvalidName);

}

Theresolve _initial_referencesoperation is an operation on the ORB rather than the
Naming Service’dNamingContext. The interface differs from the Naming Service’s
resolve in thaObjectld (a string) replaces the more complex Naming Service
construct (a sequence of structures containing string pairs for the components of the
name). This snplification reduces the name space to one context.

Objectlds are strings that identify the object whose reference is required. To maintain
the simplicity of the interface for obtainingitial references, only a limited set of
objects are expected to have their references founthigiaoute. Unlike the ORB
identifiers, theObjectld name space requires careful management. To achieve this.
the OMG may, in the future, define which services are required by applications through
this interface and specify names for those services.

Currently, reserve@bjectlds for CORBA Core ardRootPOA, POACurrent, and
InterfaceRepository, for CORBA Services, they aidameService,
TradingService, SecurityCurrent, and TransactionCurrent.

To allow an application to determine which objects have references available via the
initial references mechanism, thist_initial_servicesoperation (also a call on the

ORB) is provided. It returns a@bjectldList, which is a sequence @bjectlds.
Objectlds are typed as strings. Each object, which may need to be anadable at
initialization time, is allocated a stringalue to represent it. In addition to defining the

id, the type of object being returned must be defined, i.e. "InterfaceRepository" returns
a object of type Repository, and “Nanme@ice” returns &£0sNamingContext

object.

The application is responsible for narrowing the object refegereturned from
resolve_initial_referencego the type whiclwas requested ithe Objectld. For
example, for InterfaceRepository the object returned would be narrowed to
Repository type.

In the future, specifications for Object Services @D RBAservices: Common Object
Services Specificatignvill state whether it is expected that a servideiSal reference
be made available via tlresolve_initial_referencesoperation or not (i.e., whether
the service is necessary or desirable for bootstrap purposes).

CORBAV2.2 Obtaining Initial Object References February 1998 4-11

4

4.6 Current Object

ORB and CORBA services may wish to provide access to information (context)
associated with the thread of execution in which they are running.infbisnation is
accessed in a structured manner using interfacegedeiiom theCurrent interface
defined in theCORBA module.

Each ORB or CORBA service that needs its own cordexives arinterface from the
CORBA module'sCurrent . Users of the service can obtain an instance of the
appropriateCurrent interface by imoking ORB::resolve_initial_references

For example the &urity service obtains théurrent relevant to it by invoking

ORB::resolve_i nitial_references('SecurityCurrent")

A CORBA service does not have to use this method of keeping context but may choose
to do so.

module CORBA {
Il interface for the Current object
interface Current {
|3

|3

Operations on interfaces derived fr@@arrent access state associated with the thread
in which they are invoked, not state associated with the thread from whiClutient

was dtained. This prevents one thread from mandgting another thread's stasnd
avoids the need to obtaand narrow a newurrent in each method's thread context.

Current objects must not bexported to other processes, or externalized with
ORB::object to_string . If any attempt is made to do so, the offending operation will
raise aMARSHAL system exceptiorCurrent s are per-process singleton objects, so
no destroy operation is needed.

4.7 Policy Object

An ORB or CORBA service may choosedlow access to certain choices that affect
its operation. This information is accessed in a structured manner using interfaces
derived fom thePolicy interface defined in th€EORBA module. A CORBA service
does not have to ugkis method of accessing operating options, but may choose to do
so. As examples, in CORBA Core tRertableServer module uses this technique to
specify how the POA operatesd TheSecurity Serviceises this technique for
associatingsecurity Policywith objects in the system.

4-12 CORBAV2.2 February 1998

module CORBA {
typedef unsigned long PolicyType;

/I Basic IDL definition
interface Policy

{
readonly attri bute PolicyType policy_type;
Policy copy();
void destroy();

|3

typedef sequence <Pol icy> PolicyList;

k

PolicyType defines the type dPolicy object. The values d?olicyType s are

allocated by OMG. New values for PolicyType should be obtained from OMG by
sending mail to request@omg.org. In general the constant values that are allocated are
defined in conjunction with the definition of the correspondiadicy object.

Copy

Policy copy();
Return Value

This operation copies the policy object. The copy does not retain
any relationships that the polibad with anydomain, or object.
Destroy

void destroy();

This operation destroys the policy object. It is the respditgiof
the policy object to determine whether it can be destroyed.

Exceptions
CORBA::NO_PERMISSION raised when the policy object determines that it

cannot be destroyed.
Policy_type
readonly attribute policy_type

Return Value

This readonly attribute returns the constant value of type
PolicyType that corresponds to the type of the Policy object.

CORBAV2.2 Poligybject February 1998 4-13

4

4.8 Management of Policy Domains

4-14

4.8.1 Basic Concepts

This section describes how policies, such as security policies, are associated with
objects that are managed by an ORB. The interfandsperations that facilitate this
aspect of management is described in this section together with the section describing
Policy Objects.

PolicyDomain

A policy domain is a set of objects to which the policy(ies) associated with that
domain applies. The objects are the domain members. The policy(ies) represent(s) the
rules and dteria that constrain agities of theobjects which belong to the domain.

On object creation, the ORBplicitly associateshe object withone or more policy
domains. Policy domains provide leverage for dealing with the problem of scale in
policy management by allowing application of policy at a domaindeaity rather

than at an individual object instance granularity.

PolicyDomain Manager

A policy domain includes a unique object, one per poliogndin, called thelomain
manager, which has associated with it the policy objects for that domain. The domain
manager also records the membership of the domain and provides the means to add
and remove members. The domain managésédf a member of a domaippssibly

the domain it manages.

PolicyObjects

A policy object encapsulates a policy of a specific type. The policy encapsulated in a
policy object is associated with the domain by associating the policy object with the
domain manager of the policy domain.

There may be several policies associated with a domain, with a policy object for each.
There is at most one policy of each type associated with a policy doTepolicy

objects are thus shared betwedsjeats in the domain, rather than being associated

with individual objects. Consequently, if an object needs to have an individual policy,
then must be a singleton member of a domain.

Object Membership of Policy Domains

An object can simultaneously be a member of more than one policy domain. In that
case the object is governed by all policies of its enclosing donEiesreference

model allows an object to be a membemnufltiple domains, which may overlap for

the same type of policy (for example, be subject to overlapping access policies). This
would require conflicts among policies defined by the multiple overlapping domains to

CORBAV2.2 February 1998

4

be resolved. Thepecification does not include explicit support for such overlapping
domains and, therefore, the use of policy composition rules required to resolve
conflicts at policy enforcement time.

Policy domain managers amablicy objectshave two types of interfaces:

®* The operational interfaces used when enforcing the policies. These are the
interfacesused by the ORB during an object invocation. Sqrokicy objects may
also be used by applications, which enfotteeir own policies.

The caller asks for the policy of a particular typey(ethedelegation policy), and

then uses the policy object returned to enforce the policy. The caller finding a policy
and then enforcing it does not see the domain manager objects and the domain
structure.

®* The administrativénterfaces used to set policies (e.g., specifyirfgch events to
audit or who can access objects of a specified type in this domain). The
administrator seeand navigates the domain structure, so is aware of the scope of
what he is administering.

Note that this specification does not include arplicit interfaces for managing the
policy domains themselves: creating and deleting theaving objects between them;
changing the domain structure and adding, changing and removing policies applied to
the domains. Such interfaces are expected to be the province of othetr sshyices

and fadlities such as Maagement Facilities and/or Collection Service in the future.

Domains Association at Object Creation

When a new bject is created, the ORiBplicitly associates thebject with the
following elements forming its environment:

®* One or mordPolicy Domains defining all the policies tavhich the object is subject.

®* TheTechnologypomains,characterizing the particular variants of mechanisms
(including security) available in the ORB.

The ORBwill establish these associationfi@n thecreating object calls
CORBA::BOA:.create or an equivalent. Some or all of these a&sions may
subseqgently be explicitly refemced andnodified by adminisative or application
activity, which might be specifically security-related lmauld also occur as a side-
effect of some other activitguch as moving an object to another host machine.

In some cases, when a new object is created, it needs to be createsividamain.

Within agiven domain a construction policy can be assed vith a specific object

type thus causing a new domain (i.e., a domain manager object) to be created wheneve
an object of that type is created and the new object associated witbwh@main

manager. This construction policy is enforced at the same time as the domain
membership (i.e., biBOA:.create or equivalent).

CORBAV2.2 Management of Policy Domains February 1998 4-15

4-16

Implementor’s View of Object Creation

For policy domains, the construction policy of the application or faatoegting the
object proceeds as follow$he application (which may be a gendactory) object
calls BOA:.create or equivalent to create the new object referefite. ORB
obtains the construction policy associated with the creating object, or the default
domain absent a creating object.

By default, the new object that is created is made a member of the domain to which the
parent object belongs. Non object applications on the client side amadsdonth a
default, per process policy domain by the ORB. Thus, when they create objects the
new dojects are by default associated with the default domain associated with them.

Each domain manager has anstiuction policy associated with it, which controls
whether, in addition to creating the specified new object, a new domain manager is
created with it. This object provides a single operati@ke domain_manager

which can be invoked with theonstr_policy parameter set tdRUE to indicate to

the ORB thanhew objects of the specified type are to be created within their own
separate domains. Once such a construction policy is set, it can be reversed by
invoking make_domain_manager again with the constr_policy parameter set to
FALSE.

When creating an object of the type specified inrtteke_domain_manager call

with constr_policy set toTRUE, the ORB must also create a new domain for the
newly created object. If a new domain is needed, the ORB creates both the requested
object and a domain manager object. A reference to this domain managerfeancbe

by callingget domain_managers on the newlycreated object’s reference.

While the management interface to the construction policy object is standardized, the
interface from the ORB to the policy object is assumed to be a privatevbith, may
be optimized for different implementations.

If a new domain is createthe policiesinitially applicable to it are the policies of the
enclosing domain. The ORB will always arranggtovide a default enclosing domain
with default ORB policies associated with it, in those cases where there would be no
such @main as in the case of a non-object client invoking object creation operations.

The caling application, or an administrative application latan change the domains
to which this object belongs, using the domain managem#taces, which will be
defined in the future.

4.8.2 Domain Management Operations

This section defines the intedas and oprationsneeded to find domain managers and
find the policies associated with these. However, it does not include operations to
manage domain membership, structure of domains, and manage whdtaspaie
associated with domains, as these are expected to be developed in a future
Management Facility specification (for exampdee based on the X/Open Systems
Management Preliminary Specification); the Collection Service is also relevant here.

CORBAV2.2 February 1998

4

This section also includes the interface to the construction policy object, as that is
relevant to domains. The basic definitions of the interfacesoperations related to
these are part of theORBA module, since other definitions in tAEORBA module
depend on these.

module CORBA
{

interface DomainManager {
Policy get_domain_policy (
in PolicyType policy_type
);
|3

const Policy Type SecConstruct ion =11;

interface ConstructionPol icy: Policy{
void make_domain_manager(
in CORBA::Inter faceDef object_type,
in boolean constr_policy
);
|3

typedef sequence <DomainManager> DomainManagerList;

ki

Domain Manager

The domain manager providesechanisms for:
® Establishing and navigating relationships to superiat subordinate domains.

® Creating and a@ssing policies.

There should be no unnecessary constraints on the ordering oftitestes, for
example, it must be possible &ld new policies to a domain with a preexisting
membership. In this case, some means of determining the members that do not
conform to a policy that may be imposed is required.

All domain managers provide tlgeet_ domain_policy operation. By virtue of being
an object, the Domain Managers alsve theget_policy and

get_domain_managers operations, which is available on all objects (see “Getting
Policy Associated with the Object” on page 4-7 and “Getting thm@n Managers
Associated with the Object” on page 4-8).

CORBA::DomainManager::get_domain_policy
This returns the policy of the specified type for objects in this domain.

Policy get_ domain_policy (

in PolicyType policy_type
);

CORBAV2.2 Management of Policy Domains February 1998 4-17

4-18

Parameters

policy type The type of policy for objects in the domain which the egtidin
wants to administer. For securitile posible policy ypes are
described irCORBAserges: Common Obje&ervices
Specification Securitychapter, Security Policies Introduction
section.

Return Value

A reference to the policy object for the specified type of policy in
this domain.

Exceptions

CORBA::BAD_PARAM raised when the value of policy type is not valid
either because the specified type is not supported
by this ORB or because a policy object of that
type is not associated with this Object.

Construction Policy

The construction policy object allowsallers to specify that aen instances of a
particular interface are created, theyddddbe automatically assigned membership in a
newly created domain at creatiime.

CORBA::ConstructionPolicy::make_domain_manager

This operation enables the invoker to set the construction policy that is to be in effect
in the domain with which thi€onstructionPolicy object is associated. Construction
Policy can either be set so that when an instance of theaiegespecified by the input
parameter is created, a new domain manager will be craatbthe newly created

object will respond tget _domain_managers by returning a reference to this

domain manager. Alternatively the policy can be set to associate the newly created
object with the domain associated with the creator. This policy is implemented by the
ORB during execution oBOA::create (or equivalent) andesults in the

construction of the application-specified objantd a Domain Manager object if so
dictated by the policy in effect at the time of the creation of the object.

void make_domain_manager (
in Inter faceDef object_type,
in boolean constr_policy

Parameters

object_type The type of the objects for which Domain Managers will be
created. If this is nil, the policy applies to all objects in the domain.

CORBAV2.2 February 1998

constr_policy IfTRUE the consuction policy is set to createnew domain
manager associated with the newly created object of this type in
this domain. IfFFALSE construction policy is set @ssociate the
newly created object with the domain of the creator or a default
domain as described above.

4.9 Thread-related operations

To support single-threaded ORBs, aslivas multithreaded ORBs that runulti-
thread-unaware code, several operations are included in their@®tce.These
operations can be used by single-threaded amti-threaded applications. An

application that is a pure ORB client would not need to use these operations. Both the
ORB::run()and ORB:shutdown() are useful in fully multi-thréad programs.

Note —These operations are defined on the ORB rather than on an object adapter to
allow the main thread to be used for all kinds of asynchronous processing by the ORB.
Defining these oerations on the ORB also allows the ORBstpportmultiple object
adapters, without requiring the application mairktow about all the object adapters.

The inerface between the ORB and an object adapter is not standardized.

module CORBA
{

interface ORB {

boolean work_pending();

void perform_work();

void shutdown(in boolean w ait_for_compl etion);
void run();

4.9.1 work_pending

boolean work_pending();

This operation returns an indication of whether the ORB needs the main thread to
perform some work.

A result of TRUE indicates that the ORB needs the main thread to perform worke
and aresult of FALSE indicates that the ORB does not need the main thread.

4.9.2 perform_work

void perform_work();

If called by the main thread, this operation performs an implementation-defined unit of
work. Otherwise, it does nothing.

CORBAV2.2 Thread-related operations February 1998 4-19

It is platform specifichow theapplication and ORB arrange to use compatible
threadingprimitives.

Thework_pending() andperform_work() operations can be used to write a
simple polling loop that multiples the main thread among the ORB and other
activities. Such a loop wouldnost likely beneeded in a single-threaded server. A
multi-threaded server would need a polling loop only if there wetle ®RB and other
code that required use of the main thread.

Here is an example of such a polling loop:

/I C++
for (;;) {
if (orb->work_pending()) {
orb->perform_work();

}
// do other things
/I sleep?
}
4.9.3 run
void run();

This operation returns ren the ORB has shut down. If called by thaimthread, it
enables the ORB to performork using the rain thread. Otherwise, it simply waits
until the ORB has shut down.

This operation can be used insteagbefform_work() to give the main thread to the
ORB if there are no other activities thated to share the main threadeh in a pure
multi-threaded server, callingin() in the main thread is useful to ensure that the
process does not exit until the ORB has been dbwn.

4.9.4 shutdown

void shutdown(in boolean wait_for_completion);

This operatiorinstructs the ORB to shut dowBhutting down the ORB causes all
object adapters to be shut down. If thait_for_completion parameter is TRUE,
this operation blocks until all ORB processing (including request procemsihgbject
deactivation or other operations associated with object adaptexr€omleted.

4-20 CORBAV2.2 February 1998

Dynamic Invocation Interface 5

The Dynamic Invocation Interface (DII) describes the client’s side of the interface that
allows dynamic creatioand invocation of request to objects. All types defined in this
chapter are part of the CORBA module. When referenced in OMG IDL, the type
names must be prefixed by “CGBR.:.".

Contents

This chapter contains thellowing sections.

Section Title Page
“Overview” 5-2
“Request Operations” 5-5
“Deferred Synchronous izrations” 5-8
“List Operations” 5-11
“Context Objects” 5-13
“Context Object Operations” 5-14
“Native Data Manipulation” 5-17

CORBA V2.2 Febloag/ 5-1

5-2

5.1 Overview

The Dynamic mvocation Interface (DIl) allows dynamic creation and invocation of
requests to objects. A client using this irded to send a request to an object obtains
the same semantics as a client using the operation stub generated from the type
specification.

A request consists of an object reference, an operatiahalist of parameters. The
ORB applies the implementation-hidifjgncapsulation) principle to requests.

In the Dynamic Invocatiomnterface, parameters in a request are suppliedeasents
of a list. Each element is an instance damedValue (see “Common Data
Structures” on page 5-2). Each parameter is passed ratite data form.

Parameters supplied to a request may be subject to run-time type checking upon
request invocation. Parameters must be supplied in the same order as the parameters
defined for the operation in the Interface Repository.

The user exceptiowrongTransaction is defined in the CORBA module, prior to the
definitions of the ORB and Request interfacesfoliews:

exception WrongTransaction {};

This exception can be raised only if the requegsnhidicitly associated with a
transaction (the current transaction at the time that the reguassissued).

5.1.1 Common Data Structures

The typeNamedValue is a well-known data type in OMG IDL. It can be used either

as a parameter type directly or as a mechanism for describing arguments to a request.
The typeNVList is a pseudo-object useful formstructing parameter lists. The types

are described in OMG IDL and C, respectively, as:

typedef unsigned long Flags;

struct NamedValue {

Identifier name; /l ar gument name
any argument; // argument
long len; /I length/count of argument value
Flags arg_modes;// argument mode flags
|3
CORBA_NamedValue * CORBA_NVList; [*C*

NamedValue andFlags are defined in the CORBA module.

The NamedValue andNVList structures are used in the requestraions to

describe arguments and return values. They are also used in the context object routines
to pass lists of property names and values. Despitaltbee declaration falVList ,

the NVList structure is partialjopaque and may only be created by using the ORB
create_listoperation.

CORBAV2.2 February 1998

3

For out mrameters, applicatiorcan set theargument member of thd&NamedValue
structure to a value that includes either a NULL or a non-NULL storage pointer. If a
non-null storage pointer is provided for an out parameter, the ORB teifhpt to use

the storage pointed to for holding the value of the out parameter. If the storage pointed
to is not sufficient to hold the value of the out parameter, the behavior is undefined.

A named value includes an argument name, argument value éay griength of the
argument, and a set of argument mode flags. When named value structures are used t
describe arguments to a request, the names are the argument identifiers specified in the
OMG IDL definition for a specific operation.

As described in Section 19.7, “Mapping for Basic Data Types,” on page 19-Adyan
consists of &ypeCodeand a pointer to the data value. ThgdCode is a @ll-known
opaque type that can encode a description of any type specifiable in OMG IDL. See
this section for a full description ofyfpeCodes.

For most data typegn is the actual number of bytes that the value occupies. For
object referenceden is 1. Table 5-1 shows the length of data valoeeghe C
language binding. The behavior of a NamedValue is undefintge [En value is
inconsistent with the ypeCode.

Table 5-1 C Type Lengths

Data type: X

Length (X)

short

unsigned short
long

unsigned long
long long
unsigned long long

sizeof (CORBA_short)

sizeof (CORBA_unsigned_short)
sizeof (CORBA_long)

sizeof (CORBA_unsigned_long)
sizeof (CORBA_long_long)

sizeof (CORBA_unsigned_long_long)

float sizeof (CORBA_float)

double sizeof (CORBA_double)

long double sizeof (CORBA_long_double)

fixed<d,s> sizeof (CORBA_fixed_d_s)

char sizeof (CORBA_char)

wchar sizeof (CORBA_wchar)

boolean sizeof (char)

octet sizeof (CORBA_octet)

string strlen (string) /* does NOT include \O’ byte! */

wstring number of wide characters in string, not including wide null
terminator

enum E {}; sizeof (CORBA_enum)

union U { }; sizeof (U)

struct S { }; sizeof (S)

Object 1

CORBAV2.2 Overview February 1998 5-3

Table 5-1 C Type Lengths(Continued)

Data type: X Length (X)

array N of type T1 Length (T1) * N

sequence V of type T2 Length (T2) *V [*V is the actual, dynamic, number of
elements */

Thearg_modes field is defined as a bitmask (long) and may contain the following

flag values:
CORBA:ARG_IN The associated value is an input oalgument.
CORBA:ARG_OUT The associated value is an output only argument.

CORBA:ARG_INOUT The associated value is arout argument.

These flag valueglentify the parameter passing mode for arguments. Additional flag
values have specific meanings for request lestdoutines, and are documented with
their associated routines.

All other bits are reserved. The high-order 16 bits are reserved for implementation-
specific flags.

5.1.2 Memory Usage

The \alues for output argument data types that an@oundedstrings or mbounded
sequences are returned as pointers tadhcally allocated memory. In order to

facilitate thefreeing of all “out-arg memory,” the request routines provide a

mechanism for grouping, or keeping track of, this memory. If so specified, out-arg
memory is associated with the argument list passed to the create request routine. When
thelist is deletedthe associated out-arg memory will automatically be freed.

If the programmer chooses not to associate out-arg memory with an ardisthenée
programmer is responsible for freeing each out parameter GSIRBA_free()
which is discussed in Section 19.9, “Mappiiog Structure Types,” on page 19-12.

5.1.3 Return Status and Exceptions

In the Dynamic Invocation interface, routines typically indicate errors or exceptional
conditions either via programming language exception mechanisms, or via an
Environment parameter for those languages that do not support exceptions. Thus, the
return type of these routines is void.

Previous versions of CORBA allowed implementationstioose the type they

returned from these routines by specifying the return type as a typedef named
CORBA::Status. Implementations were allowed to define this typedef as either type
void or asunsigned long . Due to the portabilitproblems resulting from this
approach, the unsigned lodgfinition of Status is deprecated. Use ahsigned

long status, while legal, is not portable.

CORBAV2.2 February 1998

The Statustype has beeleft in the CORBA module for reasons leickwards
compatibility. In the next major revision of CORBA it will be removed entiselg
all instances oftatus will be replaced withvoid.

5.2 Request Operations

Therequest operations are defined in terms ofReguest pseudo-object. The Request
routines use th&lVList definition defined in the preceding section.

module CORBA {

interface Request { /I PIDL
Statusadd_arg (
in Identifier name, /[l argument name
in TypeCode arg_type, /argument datatype
in void * value, /I argument value to be added
in long len, I/ lergth/count of argument
value
in Flags arg_flags /I argument flags
);
Status invoke (
in Flags invoke_flags // invocation flags
);

Statusdelete ();
Status send (

in Flags invoke_flags// invocation flags
)i
Statusget_response (
in Flags response_flags // response flags

) raises (WrongTransaction);
%
|3

5.2.1 create_request
Because it creates a pseudo-object, this operation is defintbe iBbject interface (see

“Object Reference Operations” @age 4-5 for the complete interfadefinition). The
create_request operation is performed on the Object which is to be invoked.

CORBAV2.2 Request Operations February 1998 5-5

5-6

Status create_request (/I PIDL
in Context ctx, I/ context objectfor operation
in Identifier operation, /l intended operation on object
in NVList arg_list, /I args to operation
inout NamedValue result, // operation result
out Request request, /I newly created request
in Flags req_flags /I request flags

)i

This operationcreates an ORB request. The actual @atmnoccurs bycalling invoke
or by using thesend / get_re sponse calls.

The operation namgpecified orcreate_request is the same operation identifier that
is specified in the OMG IDL definitiofor this operation. In the case of attributes, it is
the name as constructéallowing the rules specified in the ServerRequest interface as
described in the DSI in “ServerRequestPseudo-Object” on page 6-3.

The arg_list , if specified, contains a list of arguments (inpautfput, and/or
input/output) which become associated with the requeatglflist is omitted
(specified as NUL), the arguments (if anyhust be specifiedsing theadd_arg call
below.

Arguments may be associated with a requestdsgipg in an argument list or bging
repetitive calls taadd_arg . One mechanism or the other may be useddpplying
arguments to a given request; a mixture oftthe approaches is not supported.

If specified, thearg_list becomes associated with the request; untilitkieke call
has completed (or the request has béeleted), the ORB assumes thag list (and
any values it pointo) remains unchanged.

When sgcifying an argument list, thealue andlen for each argument must be
specified. An argument's datatype, name, and usage flags (i.e., in, out, inout) may also
be specified; if so indicated, arguments are validated for data type, order, name, and
usage correctness against the set of arguments expected for the indicated operation.

An implementation of the request services may relax the order constraint (and allow
arguments to be specified out of order) by doing ordering basad argument name.

The contexiproperties associated with the operation are passed to the object
implementation. The object implementation may not modify the context information
passed to it.

The operationesult is placed in theesult argument after the invocation completes.

The req_flags argument is defined as a bitmadbng) that may contain the
following flag values:

CORBA::OUT_LIST_MEMORY indicates that any out-arg memory is associated with
the argument listNVList).

Settingthe OUT_LIST_MEMORY flag combls the memory allocation mechanism for
out-arg memory (output arguments, for which memory is dynamically allocated). If
OUT_LIST_MEMORY isspecified, an argument list must also have been specified on

CORBAV2.2 February 1998

3

thecreate_request call. When output arguments tfis type are allocated, they are
associated with the list structure. When ftisé dtructure is freed (see belovapy
associated out-arg memory is also freed.

If OUT_LIST_MEMORY isnotspecified, then each piece of out-arg memory remains
available until the programmer explicitly frees it with procedures provided by the
language mappings (See Section 19.19, “Argument Passing Considerations,” on
page 19-21; Section 20.27, “NVList,” on page 20-71; and Section 22.24, “Argument
Passing Considerations,” on page 21-17.

5.2.2 add_arg

Statusadd_arg (/[PIDL
in ldentifier name, /[argument name
in TypeCode arg_type, /argument datatype
in void * value, /l argument value to be added
in long len, /l length/count of argument value
in Flags arg_flags /l argument flags

);

add_arg incrementally adds arguments to the request.

For each argument, minimally #slue andlen must be specified. An argument’s data
type, name, and usage flags (i.e., in, out, inout) may alsodwified. If so indicated,
arguments are validated for data type, order, name, and usage correctness against the
set of arguments expected for the indicated operation.

An implementation of the request services may relax the order constraint (and allow
arguments to be specified out of order) by doing ordering baged argument name.

The arguments added the request become associated with the recarestre
assumed to be unchangedtil the hnvoke hascompleted (or the request has been
deleted).

Arguments may be associated with a request by specifying them on the
create_request call or by adding them via calls smld_arg . Using both methods for
specifying arguments, for the same request, is not currently supported.

In addition to the argument modes defined in “Common Data Structurgsigm5-2,
arg_flags may also take the flag value:IN_COPY_VALUE. The argument passing
flags defined in “Common Data Structures” may be used here to indicate the intended
parameter passing mode of an argument.

If the IN_COPY_VALUE flag is set, a copy of the argument value is made and used
instead. This flag is ignored for inout and out arguments.

CORBAV2.2 Request Operations February 1998 5-7

5-8

5.2.3 invoke

Status invoke (/I PIDL
in Flags invoke_flags /l invocation flags
)i

This operatiorcalls the ORB, which performs method resolutaord invokes an
appropriate method. If the method returns successfully, its result is placedésuhe
argument specified ocreate_request . The behavior is undefined tiie Request
pseudo-bject has alreadpeen used with a previoasll to invoke, send or
send_multiple_requests

5.2.4 delete

Statusdelete (); // PIDL

This operation deletes the request. Any memory associated with the request (i.e., by
using thelN_COPY_VALUE flag) is also freed.

5.3 Deferred Synchronous Operations

5.3.1 send

Status send (// PIDL
in Flags invoke_flags Il invocation flags

send initiates anoperation according to theformation in the Rquest. Unlike

invoke, send returns control to the caller without waiting for the operation to finish.
To determine \wen the operation is done, theleaimust use thget_response or
get_next_response operations describdgkelow. The out parameters and return value
mustnot be used until theperation isdone.

Although it is possible for some standard exceptions to be raised Isgrile

operation, there is no guarantee that all possible errors will be detEotegixample,

if the object reference is not validend might detect it and raise an exception, or
might return before the object reference is validated, in which case the exception will
be raised wheget_response is called.

If the operation is defined to lmmeway or if INV_NO_RESPONSE is specified, then
get_response does not need to bmalled. In sucltases, some errors might go
unreported, since if they are not detected be$erel returns there is no way to
inform the caller of the error.

The following invocatiorflags are currently defined f@end:

CORBAV2.2 February 1998

3

CORBA::IINV_NO_RESPONSE indicates that the invoker does not intend to wait for a
response, nor does it expect any of the output arguments (in/out and out) to be updated.
This option may be specified even if the operation has not been define dneway.

5.3.2 send_multiple_requests

C

CORBA _Status CORBA _send_multi ple_requests (
CORBA_Requestregs], [* array of Re quests *
CORBA_Enviro nment*env,

CORBA_long count, /* number of Requ ests */

CORBA_Flagsinvoke f lags
);

/I C++

class ORB

{
public:
typedef sequence<R equest_ptr> RequestSeq;

Status send_mul tiple_req uests_oneway(const R equestSeq &);
Status send_mul tiple_req uests_deferred(const R equestSeq &);

|

The Smalltalkmapping of sendnultiple requests is as follows:

sendMultipleRequests: aCol lection
sendMultipleRequestOne way: aCollection

send_multiple_requests initiates morehan one request in parallel. Likend,
send_multiple_requests returns to the caller without waiting for thearations to
finish. To determine when each operation is@cthe cdér must use the
get_response orget_next_response operations described below.

The degree of patfalism in theinitiation and execution of the requests is system
dependent. There are no guarantees about the order in which the requegtiataict in
If INV_TERM_ON_ERR is specified, and the ORB detects an énitinting one of
the requests, it will nanitiate any further requestsom this list. If
INV_NO_RESPONSE is specified, it applies to all of the requests in the list.

The following invocatiorflags are currently defined faend_multiple_requests

CORBA::IINV_NO_RESPONSE indicates that the invoker does not intend to wait for a
response, nor does it expect any of the output arguments (inout and out) to be updated.
This option may be specified even if the operation has een ldefined to beneway .

CORBA:INV_TERM_ON_ERRmeans that if one of the requests causes an error, the
remaining requests are not sent.

CORBAV2.2 Deferred Synchronous Operations February 1998 5-9

5-10

5.3.3 get_response

Statusget_response (/I PIDL
in Flags response_flags /I response flags
) raises (WrongTransaction);

get_response determines whether a request has completegktlfresponse
indicates that the operation is done, the arameterand return values defined in the
Request are valilgnd they may be treated as if the Requeaike operationhad
been used to perform the request.

If the RESP_NO_WAIT flag is segiet_re sponse returns immediately even if the
request isstill in progress. Otherwisget_response waits until the request is done
before returning.

The following response flag idefined forget_response:

CORBA::RESP_NO_WAIT indicates that the caltkyes not want to wait for a
response.

A request has an associated transaction context if the thread originating the request hac
a non-null transaction conteahd the target object is a transactional obj€be
get_responseperation may raise th&/rongTransaction exception if the request

has an associated transaction context, and the thread ilgaingesponsesither has

a null transaction context or a non-null transaction context that differs from that of the
request.

5.3.4 get_next_response

CH

CORBA _Status CORBA_get _next_response (
CORBA_Enviro nment*eny,

CORBA_Flags response_f lags,
CORBA_Request *req

)

/I C++
class ORB
{
public:
Boolean poll_next_response();
Status get_next_res ponse(RequestSeq*&);

h

CORBAV2.2 February 1998

The Smalltalkmapping of get_next_response is as follows:

polINextR esponse
getNextResponse

get_next_response returns the next request that completes. Despite the name, there
is no guaranteed ordering among the completed requests, so the order in which they are
returned from successiget _next_response calls is not necessarily related to the

order in which they finish.

If the RESP_NO_WAITlag is set, and there are no completed requests pending, then
get_next_response returns immediately. Otherwisget _next_response waits
until some request finishes.

The following response flag idefined forget _next_response:

CORBA:RESP_NO_WAIlTindicates that the caller does not want to wait for paese.

A request has an associated transaction context if the thread originating the request hac
a non-null transaction conteahd the target object is a transactional obj€be
get_next_responseperation may raise th&/rongTransaction exception if the

request has an associated transaction context, and the thread invoking
get_next_responsdas a non-null transaction context thdfeds from that of the

request.

5.4 List Operations

The Ist operations use the named-value structure defined abovissTbperations that
createNVList objects are defined in the ORB interface described in the ORB Interface
chapter, but are described in this section. MW&ist interface isshown below.

interface NVList { /[PIDL
Status add_item (
in Identifier item_name, / name ofitem
in TypeCode item_type, I/ item datatype
in void *value, /l item value
in long value_len, /I length of item value
in Flags item_1lags Il item flags
);

Status free ();
Status free_memory ();
Statusget_count (
out long count /I number of enties in thelist
);
%

Interface NVList is defined in the CORBA module.

CORBAV2.2 List Operations February 1998 5-11

5.4.1 create_list

This operation, which creates a pseudo-object, is defined in the ORB interface and
excerpted below.

Status create_list (//PIDL
in long count, / number of items to allocate for list
out NVList new_list /I newly created list

);

This operation allocateslst of the specified size, and clears it faitial use. List
items may beadded to the list using tteeld_item routine. Alternativelythey may be
added by indexing directly into tHist structure. A mixture of the two approaches for
initializing a list, however, is10t supported.

An NVList is a partially opque structure. It may only be allocated via a call to

create_|ist.
5.4.2 add_item

Status add_item (// PIDL
in Identifier item_name, /l name ofitem
in TypeCode item_type, /l item datatype
in void *value, /l item value
in long value_len, /l'length of item value
in Flags item_flags Il item flags

);

This operation adds rmewitem to the indicated lisfTheitem isadded after the
previously added item.

In addition to the argument modes defined in SectiérStem_flags may also take

the following flag values: IN_COPY_VALUE, DEPENDENT_LIST. The argument
passing flags defined in “Common Data Structures” on page 5-2 may be used here to
indicate the intended parameter passing mode of an argument.

If the IN_COPY_VALUE flag is set, a copy of the argument value is made and used
instead.

If a list structure is added as @am (e.g., a “sublist”), the DEPENDENTIST flag
may be specified to indicate that the sublist should be fréeshuvhe parenist is
freed.

5.4.3 free
Status free (); /I PIDL

This operation frees thést structire and any associated memory (aplicit call to
thelist free_memory operation is done).

5-12 CORBAV2.2 February 1998

5.4.4 free_memory

Status free_memory (); /I PIDL

This operation freeany dynamically allocated out-arg memory associated with the
list. The list structure itself is not freed.

5.4.5 get_count

Statusget _count (/I PIDL
out long count /I number of entres in thelist
);

This operation returns the total number of items allocated forighis |

5.4.6 create_opation_list

This operation, which creates a pseudo-object, is defined in the ORB interface.

Status create_operation_list (// PIDL
in OperationDef oper, /I operation
out NVList new_list /I argument definitions

);

This gperation returns aNVList initialized with the argument descriptions for a given
operation. The information is returned in a form that may be us&ynmamic
Invocationrequests. The arguments are returned in the same order as they were defined
for the operation.

The [st free operation is used to free the returned information.

5.5 Context Objects

A context object contains a list of properties, each consisting of a aatha string
value associated with that name. By convention, context properties represent
information about the client, environment, or circumstances of a request that are
inconvenient to pass as parameters.

Context propertiegan represent a portion of a client's or application’s environment

that is meant to be propagated to (and mag#icitly part of) a server’s environment

(for example, a /mdow identifier, or usepreference information). Once a server has
been invoked (i.e., after the properties are propagated), the server may query its context
object for these properties.

In addition, the context associated with a particular operation is passed as a
distinguished parameter,@king particular ORBs to takadvantage of context
properties, for example, using the values of certain properties to influence method
binding behavior, server location, activation policy.

CORBAV2.2 Context Objects February 1998 5-13

An operation defition may contain a clause specifying those context properties that
may be of interest to a particular operatidhese context properties comprise the
minimum set of properties that will be propagated to the servers environment
(although aspecified property may have no value associated with it). The ORB may
choose to pass more properties than thoseifspd in the operation declaration.

When a context clause is present on an operation declaratiaddéional argument is
added to the stub and skeleton interfaces. When an operation invocation occurs via
either the stub or Dynamic Invocation interface, the ORB causqwdperties which
were named in the operatidefinition in OMG IDL and which are present in the
client's context object, to be provided in the context object parameter to the invoked
method.

Context property names (which are strings) typically have the form of an OMG IDL
identifier, or aseries of OMG IDL identifiers separated by pdgoA context property
name pattern is either a property name, or a property hame followed by a single “*.”
Property nameatterns areised in the&ontext clause of an operation definition and in
the get_values operation (describedelow).

A property name pattern withouttailing “*” is said to match onlyitself. A property
name pattern of the forfikname>*" matches any property name that staiith w
<name> and continuesithr zero or more additional characters.

Context objects may be creatadd deleted, and individual context properties may be
setandretrieved. There will often be context objects associatill particular
processes, users, or other things depending on the opeswsitegn,and there may be
conventions for having them supplied to calls by default.

It may be possible to keep context information in persistent implementations of context
objects, while otheimplementaibns may be transientThe creation andhodification
of persistent context objects, however, is not addressed in thigictéam.

Context objects may be “chained” together to achieve a particular defaulting behavior.

Properties defined in a particular context objet¢atively override those properties in
the next higher level. This searching behavior may be restricted by specifying the
appropriate scope and threestrict scge” option on the Contexget values call.

Context objects may be named for purposes of specifystgringsearch scope.

5.6 Context Object Operations

5-14

When performing operations on a context object, properties are represented as named
value lists. Each property value corresponds to a named it@ién the list.

A property name is represented by a string of characters (see “ldentifiers” on page 3-6
for the valid set of characters that are alolu Property names are stored preserving
their case, however names cannot differ simply by their case.

The Conéxt interface isshown below.

CORBAV2.2 February 1998

module CORBA {

interface Context { // PIDL
Status set_onevalue (
in ldentifier prop_name, I/ property name to add
in string value I/l property value to add
);
Status set_values (
in NVList values // property values to be
changed
);
Statusget_values (
in Identifier start_scope, I/l search scope
in Flags op_flags, /I operation flags
in Identifier prop_name, /l name of property(s) to
retrieve
out NVList values Il requested property(s)
);
Statusdelete_values (
in Identifier prop_name /I name of property(s) to
delete
);
Status create_child (
in Identifier ctx_name, /I name of context object
out Context child_ctx /I navly created context
object
);
Statusdelete (
in Flags del flags I flags controlling deletion
);
¢

h

5.6.1 get_default context

This operation, which creates a Context pseudo-object, is definkd @RB interface
(see “Converting Object References to Strings” on page 4-3 for the complete ORB

definition).

Statusget_default_context (/I PIDL
out Context Cctx // context object
);

This operation returns a reference to the default process context object. The default
context object may be chained into other context objects. For example, an ORB
implementation may chain the default context object into its Wenip, and System
context objects.

CORBAV2.2 Context Object Operations February 1998 5-15

5-16

5.6.2 set_one value

Status set_onevalue (/I PIDL
in Identifier prop_name, /l property name to add
in string value I/ property value to add

);

This operation sets a single context object property. Currently, only string values are
supported by the contexbject.

5.6.3 set values

Status set_values (/[PIDL
in NVList values Il property values to be changed

)i

This operation setsne or more property values in the context object. In the NVList,
the flags field must be set to zero, and tgpelCodefield associated with an attribute
value must be T_string. Currently, only string values are supported by the context
object.

5.6.4 get values

Statusget_values (/I PIDL
in ldentifier start_scope, /[search scope
in Flags op_flags, /l operation flags
in ldentifier prop_name, / name of property(s) to retrieve
out NVList values /I requested propery(s)

);

This operatiorretieves the specified context property value(sprtfip_name has a
trailing wildcard character (“*”), then all matching propert@sdtheir values are
returned. The values returned may be freed by a call to thieekstoperation.

If no properties aréound, an error is returned and no propeisy ik returned.

Scope indicates the context object level at which tiaiei the search for the specified
properties (e.g., “_USER”, “*_SYSTEM"). If the property is not found at the indicated
level, the search continues up the context object tree until a match is found or all
context objects in the chain have been exhausted.

Valid scope names are implementation-specific.

If scope name is omitted, the search begins with the specified context object. If the
specified scope name is not found, an exception is returned.

The following operatiorilags may be specified:

CORBA:CTX_RESTRICT_SCOPE - Searching idsimited to the specified search
scope or context object.

CORBAV2.2 February 1998

5.6.5 delete_ values

Statusdelete_values (/I PIDL
in Identifier prop_name /I name of property(s) to delete
);

This operation deletes the specified property value(s) from the context object. If
prop_name has a trailingwildcard character (“*"), then all property names that
match will be deleted.

Search scope is alwaysniited to the specified context object.

If no matching property is found, an exception is returned.

5.6.6 create_child

Status create_child (// PIDL
in ldentifier ctx_name, / name of context object
out Context child_ctx I nevly created context object

);

This operation creates a child context object.

The returned coekt object is chained intiss parent context. That is, searches on the
child context object will look in the parent context (and so on, up the context tree), if
necessary, for matching property names.

Context object names follow the rules for OMG IDL identifiers (see “Identifiers” on

page 3-6).
5.6.7 delete
Statusdelete (/I PIDL
in Flags del flags / flags controlling deletion
)i

This operation deletes the indicated context object.
The following optionflags may be specified:

CORBA::CTX_DELETE_DESCENDENTS deletes the indicated context object and all
of its descendent context objects, as well.

An exception is returned if there are one or more child contagrctsand the
CTX _DELETE _DESCENDENTS flag was not set.

5.7 Native Data Manipulation

A future version of this specification will define routines to facilitatedbeversion of
data between the list layout foundN¥VList structures and the compiler native layout.

CORBAV2.2 Native Data Manipulation February 1998 5-17

5-18 CORBAV2.2 February 1998

6.1

Introduction

Dynamic Skeleton Interface 6

The Dynamic Skeleton Interface (DSI) allows dynamic handling of object invocations.
That is, rather than being accessed through a skeleton that is specifiarticalar
operation, an object’s implementation is reached through an interface that provides
access to the operation naamd parameters in a manner analogous to the clidat
Dynamic Invocation Interface. Purely static knowledge of those parameters may be
used, or dynamiknowledge (perhaps determined through an Interface Repository)
may be also used, to determine the parameters.

Contents

This chapter contains tHellowing sections.

Section Title Page
“Introduction” 6-1
“Overview” 6-2
“ServerRequestPseudobf@ct” 6-3
“DSI: Language Mapping” 6-4

The Dynamic Skeleton Interface isvay to deliverrequests from an ORB to an object
implementation thatloes not haveompile-time knowledge of the type of the object it
is implemening. This contrasts with the type-specific, OMG IDL-based skeletons, but
serves the same architectural role.

CORBA V2.2 ebruary 1998 6-1

6-2

DSl is the server side’s analogue to the client side’s Dynamic Invocation Interface
(DI1). Just as the implementation of an object cannot distinguish whigthaient is

using type-specific stubs or the DII, the client who invokes an object cannot determine
whether the implementat is using a type-specific skeleton or the DSI to connect the
implementation to the ORB.

Dynamic Object Implementation

Dynany€ Skeleton Skeleton

/ Object Adapter

/ ORB Core

6.2 Overview

Figure 6-1 Requests are delivered through skates, hcluding dynamic ones

DSlI, like DI, has many applications bayd interoperaliity solutions. es include
interactive software development tools based on interpreters, debuggers and monitors
that want to dynamically interpose on objects, and support for dynamically-typed
languages such as LISP.

The basic idea athe DSl is to implement all requests on a particular object by having
the ORB invoke the same upcall routine, anBgnic Implementation Routine (R).

Since in any language binding all DIRs have the same signature, a single DIR could be
used as the implementation for many objects, with differgetfaces.

The DIR is passed dlhe explicit operation parameteesd an indication of the object

that was invoked anthe operation thavas requested. THaformation isencoded in

the request parameters. The DIR can use the invoked object, its object adapter, and the
InterfaceRepostiory to learn more about the particular object and invocation. It can
access and operate on individual parametearitmake the same use of an object
adapter as other objeichplementations.

This chapter describes the elements of the DSI that are common to all object adapters
that provide @SI. See “Single Servant, manpjects and types, using DSI” on
page 9-57 for the spdication of the DSI for the Portable Object Adapter.

CORBAV2.2 February 1998

6.3 ServerRequestPseudo-Object

6.3.1 ExplicitRequest State: ServerRequestPs@lnjiect

The ServerRequest pseudoadttjcaptures the explicit state of a request for the DSI,
analogous to the Request pseudo-object in the THe dject adapter dispatches an
invocation to a DSl-based object imapientation by passing an instance of
ServerRequest to the DIR associated with the object implenmmtafhe following
shows how iprovides access to the request information:

module CORBA {

pseudo interface ServerRequest {
readonly attribute Identifier operation;

void arguments(inoutNVList nv);
Context ctx();

void set_resut(in Any val);

void set_exception(in Any val);

h
h

The identity and/or reference of the target object of the invocation is provided by the
object adapter and its language mapping. In the context of a bridge, the target object will
typically be a proxy for an object in some other ORB.

The operation attribute provides the idéfier namingthe operation being invoked,;
according to OMG IDL's rules, these names musirigue among all operations
supported by the object's "most-derived" interfaceteNhat the operation names for
getting and setting aithutes are_get <attribute_name>and
set<attribute_name> respectively. The op&tion attributecan be accessed by the
DIR at any time.

Operation pameter ypes will be specified, and "in" and "inout" argument values will
be retrieved, wittarguments Unless it callset_exceptiontheDIR must call
argumentsexactly once, even if the operation signature contains rzongters. @ce
argumentsor set_excegion has been calledtaling argumentson the same
ServerRequestwill resultin aBAD_INV_ORDER system exceptionThe DIR
must pass in targumentsanNVList initialized with TypeCodesandFlags
describing the paraster types for the operation, in the ordewinich they appear in the
IDL specification (left to right). A potentially-differerdVList will be returned from
arguments with the "in" and "inout" argument values supplied. If it does not call
set_exceptiontheDIR must supply the returnedVList with return values for any
"out" arguments before returning, and may also changethmvalues foany "inout"
arguments.

CORBAV2.2 3$eerRequestPseudo-Object February 1998 6-3

When the operation is not an attributeess, and the opaion's IDL definition contains
a context expressiotX will return the context information specified lidL for the
operation. Otherwise it willeturn a nilContext refeence. Callingctx before
arguments has been called or aftetx, set_resultor set_exceptiorhas been called
will resultin aBAD_INV_ORDER system exception.

The set_resultoperation is used to specify amgturn value for theall. Unless
set_exceptions called, if the invoked operation has a non-void result typk, result
must be called exactignce before the DIRetuns. If the operation has a void result
type,set_resultmay optionally be called once with &my whose type i¢k_void.
Calling set_resultbeforeargumentshas beeralled or afteset_resultor
set_exceptiorhas been called will result inBAD_INV_ORDER system excepin.
Calling set_resultwithout having previously calleetx when theoperation IDL
contains a context expression, drem theNVList passed t@rgumentsdid not
describe all parameters passed by the client, may resuMiARSHAL system
exception.

The DIRmay callset_excefion at any time toeturn an exception to the client. The
Any passed t@et_exceptionmust contain either a system exception or one afisee
exceptions specified ieraises expession of thenvoked operation’s IDL definibin.
Passing in a\ny that does not contain an exception will result BAD PARAM
system exception. Passing in an unlisted user exception suilt ie either theDIR

receiving aBAD_PARAM system exception or in the client receiving an
UNKNOWN_EXCEPTION system exception.

See each languageapping for a description of the memory management aspects of the
parameters to thBerverRequestoperations.

6.4 DSI: Language Mapping

Because DSl is defined tarms of a pseudo-object,espal attention must be paid to it
in the language mapping. Theectionprovides general information about mapping the
Dynamic Skeleton Interface to programming ¢arages.

Each language providéts own magping for DSI.

6.4.1 ServerRequestHandling of Operation Parameters

There is no requirement thatServerRequest pseudo-object be usable as a general
argument in OMG IDL operations, or listed in “orb.idl.”

The client side memorngnanagement rules normally applied to pseudo-objects do not
strictly apply to a ServerRequest's handling of operation parameters. Instead, the
memory associated with parameters follows the memory management rules applied to
data passeffom skeletons into statically typed implemeidatroutines, and vice

versa.

CORBAV2.2 February 1998

6.4.2 Registering Dynamic Implentation Routines

In an ORB implementatiothe Dynamic Skeleton Interface is supported entitelyugh
the Object Adapter. An Object Adapter does not have to support the Dynamic Skeleton
Interface but, if it does, th@bject Adapter is responsible for thetails.

CORBAV2.2 DSI:Languatytapping February 1998 6-5

6-6

CORBAV2.2

February 1998

Dynamic management of Anyvalues /

An any can be passed to a program that doesn’t havestaig infornation for the
type of theany (code generated for the type by an IDL compiler has not been
compiled with the object implementation). As a result, the object receivingnthe
does not have a portable method of using it.

The facility presented here enables traversal of the data value associatedamighadn
runtime and extraction of the pritive consituents of the data value. This is especially

helpful for writing powerful generic servers (bridges, event channels supporting
filtering, etc.).

Similarly, this facility enables the construction of any at runtime, without having
staticknowledge of itsype. This is especially helpful for writing generic clients
(bridges, browsers, debuggers, usgerface tools, etc.).

Contents

This chapter contains tHellowing sections.

Section Title Page
“Overview” 7-2
“DynAny API” 7-3
“Usage in C++ language” 7-14

CORBA V2.2 ebruary 1998 7-1

7.1 Overview

Any values can be dynamically interpreted (traversed) and constructed through
DynAny objects. ADynAny object is associated with a data value which may
correspond to a copy of the value inserted intaay TheDynAny object may be

seen as owning a pointer to an external buffer which holds some representation of the
data value.

A constructeddynAny object is aDynAny object associated with a constructefddy
There is a different interface, inheriting from thgnAny interface, associated with

each kind of constructed type in IDL (struct, sequence, union, or array). A constructed
DynAny object exports operations that enable the creation oflhavAny objects,

each of them associated with a component of tmstaocted data value.

As an example, ®ynStruct is associated with a struct value. This means that the
object may be seen as owning a pointer to a external buffer which holds a
representation of struct. THeynStruct object exports perations thaenable the

creation of newDynAny objects, each of them associated with a member of the struct.

If a DynAny object has been created from another (a construbygdny object
then the buffer pointed to by thiest DynAny object is logically contained within the
buffer pointed by the secordynAny object.

Destroying éDynAny object implies deleting the buffer it points to and also
destroying allDynAny objects obtained from it. Invoking operatiamsing references

to descendants of a destroy@gnAny object leads to unpredictable results. Note that
releasing a reference toDynAny object will not delete the buffer pointed by the
object, since the object indeed exi@tshas not been explicitly destroyed).

If the programmer wants to destroypgnAny object butstill wants to manipulate
some component of the data value associated with it, then he or she steburbéite
aDynAny for the component and, after that, make a copy of the cr&atediny
object.

The behavior oDynAny objects has been defined in order to enable efficient
implementations in terms of allocated memory spacesapeeéd of accesRynAny
objects are intended to be used for traversing values extractedrfiysror
constructing values ainy s at runtime. Their use for otheuyposes is not
recommaded.

CORBAV2.2 February 1998

7.2 DynAny API

The DynAny API comprises the following IDL definitions to be included in the
CORBA module:

/I DL

interface DynAny {
exception Invalid {};
exception Invali dValue {};
exception TypeMismatch {};
exception InvalidSeq {};

typedef sequence<oct et> OctetSeq;
TypeC ode type ();

void assign (in DynAny dyn_any) raises (Inval id);
void from_any (in any value) raises (Inval id);
any to_any() raises (In valid);

void destroy();

DynAny copy();

void insert_boolean(inb oolean value) raises (In validValue);

void insert_octet(in octet value) raises (Invalidvalue);

void insert_char(in char value) raises (Invali dValue);

void insert_short(in short value) raises (Invalidvalue);

void in sert_ushort (in unsig ned short value) raises (InvalidValue);
void insert_long(in long value) raises (InvalidValue);

void insert_ulong(in unsigned long value) raises (Invalidvalue);

void insert_float(in float value) raises (InvalidValue);

void insert_double(in double value) raises (I nvalidValue);

void insert_string(in string value) raises (Invali dVvalue);

void insert_ref erence (in Object value) raises (Invalidv alue);

void insert_ty pecode (in TypeC ode value) raises (Invalidvalue);
void insert_longlong(in long long value) raises(Invalidvalue);

void insert_ulonglong(in unsigned long long value) raises(InvalidValue);
void insert_lo ngdouble(in long double value) raises(In validValue);
void insert_wchar (in wchar value) raises(Invalidvalue);

void insert_wstring(in wstring value) raises(I nvalidValue);

void insert_any(in any value) raises(InvalidVvalue);

boolean get_boolean() raises (TypeMismatch);

octet get_octet() raises (T ypeMismatch);

char get_char() raises (TypeMismatch);

short get_short() raises (TypeMismatch);

unsigned short get u short () raises (TypeMismatch);
long get_long() raises (TypeMismatch);

unsigned long get_ulong() raises (TypeMismatch);
float get_float() raises (TypeMismatch);

CORBAV2.2 DynAmPI February 1998 7-3

double get_doubl e() raises (TypeMismatch);

string get_string() raises (TypeMismatch);

Object get_reference() raises (TypeMismatch);

TypeC ode get_typecode () raises (TypeMismatch);

long long get_longlong() raises(TypeMismatch);

unsigned long long get_ulonglong() raises(TypeMismatch);
long double get_lon gdoubl e() raises(TypeMismatch);
wchar get_wchar() raises(TypeMismatch);

wstring get_wstring() rai ses(TypeMismatch);

any get_any() raises (TypeMismatch);

DynAny current_component ();
boolean next ();

boolean seek (in long index);
void rewind ();

k

interface DynFixed : D ynAny {
OctetSeq get_value ();
void set_value (in OctetSeq val) raises (InvalidValue);

k

interface DynEnum: DynAny {
attribute string value_as_string;
attribute unsigned long value_as_ulong;

|3
typedef string FieldName;

struct NameValuePair {
FieldName id;
any value;

|3
typedef sequence<NameValuePair> NameValuePairSeq;

interface DynSt ruct: DynAny {
FieldName current _member_name ();
TCKind current_member_kind ();
NameValuePairSeq get_members();
void set_members(in N ameValuePairSeq value)
raises (InvalidSeq);

CORBAV2.2 February 1998

interface DynUnion: DynAny {
attribute boolean set_as_default;
DynAny di scriminator ();
TCKind discriminator_kind ();
DynAny member ();
attribute FieldName m ember_name;
TCKind member_kind ();

|3
typedef sequence<any> AnySeq;

interface DynSequence: DynAny {
attribute unsigned long length;
AnySeq g et_elements ();
void set_elements (in AnySeq v alue)
raises (InvalidSeq);

k

interface DynArr ay: DynAny {
AnySeq g et_element s();
void set_elements(in A nySeq value)
raises (InvalidSeq);

k

7.2.1 Locality and usage constraints

DynAny objects are intended to be local to the process in which they are created and
used. This means that reference®ymAny objects cannot be exported to other
processes, or externalized wWittiRB::object_to_string . If any attempt is made to do

so, the offending operation will raiseMARSHAL system exception.

Since theilinterfaces are specified in IDDynAny objects export operations defined
in the standar@ ORBA:: Object interface. However, anytampt to ivoke gerations
exported through th®bject interface may raise the standad® IMPLEMENT
exception.

An attempt to use BynAny object with the DIl may raise ttéO_IMPLEMENT
exception.

7.2.2 Creating a DynAny object
A DynAny object can be created as a result of:
® invoking an operation on aexisting DynAny object
® invoking an operation exported by the ORB

Actually, a constructe@ynAny object support perations thaenable thecreation of
newDynAny objects encapsulating access to the value of some constifDygmAny
objects also support tleopy operation for creating ne@ynAny objects.

CORBAV2.2 DynAmPI February 1998 7-5

7-6

In addition, the ORB can act as a factoryDyhAny objects in the sameay as vith
TypeCode objects. Therefore, the standd®@iRB interface includes th#llowing
operations:

interface ORB {

DynAny create_dyn_any (in any value);
DynAny create_basic_dyn_any(in T ypeC ode type)
raises (Inconsistent TypeCo de);
DynStruct create_dyn_struct(in T ypeC ode type)
raises (Inconsistent TypeCo de);
DynSequence create_dyn_sequ ence(in T ypeC ode type)
raises (Inconsistent TypeCo de);
DynArray create_dyn_array(in T ypeC ode type)
raises (Inconsistent TypeCo de);
DynUnion create_dyn_union(in Ty peCode type)
raises (Inconsistent TypeCo de);
DynEnum create_dyn _enum(in T ypeC ode type)
raises (Inconsistent TypeCo de);
DynFixed create_dyn_fixed(in T ypeC ode type)
raises (Inconsistent TypeCo de);

>

The create_dyn_any operation creates a nddynAny object from arany value. A
duplicate of theTypeCode associated with thany value is assiged to theresulting
DynAny object. The valuassociated with thBynAny object is a copy of the value
in the original any.

The rest of the operains used to creat®ynAny objects receive @aypeCode input
parameter and throw tHeconsistentT ypeCode exception if theTypeCode passed
as a parameter is not consistent with the operation.

Dynamic interpretation of aany usually involves creating BynAny object using
create_dyn_any as the first step. 8pending on the type of tlamy, the resulting
DynAny object reference can be narrowed DymStruct , DynSequence ,
DynArray , DynUnion or DynEnum object reference.

Dynamic creation of aany containing a struct data value typically involves creating a
DynStruct object usingcreate_dyn_struct , passing th@8ypeCode associated with

the struct data value to be creatétden, components of thersgtt can be initialized by
means of invoking operations on the resulti?iynStruct object orDynAny objects
generated for each member of the struct. Finally, once the data value pointed by the
DynStruct object has been propeiilyitialized, theto_any operation can be invek.

The same approach would be followfed dynamic creation of sequences, unions, etc.

Dynamic creation of aany containing a value of a basic data type typically involves
creating aDynAny object usingcreate_basic_dyn_any , passing th&@ypeCode
associated with the basic data type value to be created. Then, the value can be

CORBAV2.2 February 1998

initialized by means of invoking operations on the resulidlygAny object
(insert_boolean if the DynAny is of typeboolean , etc.). Finally, theéo_any
operation can be invoked.

7.2.3 The DynAny interface

The following operations can be applied t®ynAny object:

® Obtaining theTypeCode associated with thBynAny object

® Generating amny value from theDynAny object

® Destroying theDynAny object

® Creating aDynAny object as copy of thBynAny object

® |nserting/getting a value of some basic type into/fromDgeAny object
® |[teraing through the components oDynAny

® Obtaining the yYpeCodeassociated to the Dymy object

® |nitializing a DynAny object from anothebynAny object

® |Initializing a DynAny object from arany value

® Generating amny value from theDynAny object

® Destroying theDynAny object

® Creating aDynAny object as copy of thBynAny object

® Inserting/Getting a value of some basic type into/fromRigeAny object

® lteraing through the components oDy/nAny

Obtaining the TypeCode associated with a DynAny object

A DynAny object is created with 8ypeCode value assigned to it. Thig/peCode
value determines the type of the value handled througbyhé&ny object. Theype
operation returns th&ypeCode associated with ®ynAny object:

TypeC ode type();

Note that thelTypeCode associated with BynAny object is initialized at the time the
DynAny is created and cannot be changed dulifiegme of theDynAny obiject.
Initializing a DynAny object froranother DynAny object

The assign operation initializes the value associated ©yaAny object with the
value associated to anothHeynAny object:

void assign(in DynAny dyn_any) raises(Inval id);

If an invalid DynAny object is passed (it has a different typecode or doesn't contain a
meaningful value), thénvalid exception is returned.

CORBAV2.2 DynAmPI February 1998 7-7

Initializing a DynAny object from an any value

Thefrom_any operation initializes the value associated @yaAny object with the
value contained in aany:

void from_any(in any value) raises(Inval id);

If an invalidany is passed (it has a different typecode or hasn't been assigned a value)
thelnvalid exception is returned.

Generating an any value from a DynAny object

Theto_any operation creates amy value from aDynAny object:

any to_any() raises(Inv alid);

If the DynAny object has not been correctly created or doesn’t contain a meaningful
value (it hasn’t been properly initialized, for example), linalid exception is
returned.

A duplicate of theTypeCode associated with thBynAny object is assigned to the
resultingany. The value associated with tBynAny object is copied into thany.

Destroying a DynAny object

Thedestroy operation destroys RynAny object. This operation frees any resources
used to represent the data value associated wiynany object.

void destroy();

Destruction of @DynAny object implies destruction of dllynAny objects obtained
from it.

Destruction ofDynAny objects should be handle with care taking into account issues
dealing with representation of data values associatedDyittAny objects.

If the programmer wants to destroyDgnAny object butstill wants to manipulate
some component of the data value associated with it, he or she shsiuddefate a
DynAny for the component and then make a copy of the crdayedny object.

Creating a copy of ®BynAny object

The copy operation enables the creation of a rigynAny object whose value is a
deep copy of the value pointed by thgnAny obiject:

CORBAV2.2 February 1998

DynAny copy();

Accessing a value of some basic type in a DynApgcbb

Theinsert and get operations have been defined to enable insertion/extraction of basic
data type values into/fromBynAny object.

Insert operations raise thevalidValue exception if the value inserted is not
consistent with the type of the accessed component iDyhény object.

Get qperations raise th€ypeMismatch exception if the accessed component in the
DynAny is of a type that is not consistent with the requested type.

These operations are necessary to handle Dgsidny objects but are also helpful to
handle constructeBynAny objects. Inserting a basic data type value into a
constructeddynAny object impliesnitializing the next component of the constructed
data value associated with tbenAny object. For example, invoking

insert_boolean in aDynStruct implies inserting a boolean data value as the next
member of the associated struct data value.

In addition, availability of these operations enable the traversalyd associated with
sequences of basic data types without the need ®rgenaDynAny object for each
element in thesequence.

Iterating through components oDynAny

The DynAny interface allows a client to iteraterough the components of the struct
data value pointed by BynStruct object.

As mentined above, ®ynAny object may be seen as owning a pointer to an external
buffer that holds some representation of a data value. In additioDyttfeny object
holds a pointer to a buffer offset where the current component is being represented.

The buffer pointer effectiely points to the space used to representiteiedompnent
of the data value when the programmer create®tm&\ny object. It also points to
the firstcomponent eachine rewind is invoked.

void rewind();

The next operation logically advances the pointer and returns TRUE if the resulting
pointer points to a component, or FALSE if there are no more components. Invoking
next on aDynAny associated with a basic data type value is allowed, but it always
returns FALSE.

boolean next();

The programmer is able to inspéaitialize the component of the data value associated
with the DynAny object by means of invokingurrent_component at each step
during the iteration.

CORBAV2.2 DynAmPI February 1998 7-9

DynAny current_component();

The resultingDynAny object reference would be used to get/set the value of the
component currently accessed. In order to get access to specific oyse o
resultingDynAny object reference may be narrowed based omyigeCode .

In order to construct aany associated with a sequence data value, for example, the
programmer may first create tiynAny object invokingcreate_dyn_sequence .

After doing so, the programmer mégrate thraigh theelements of thsequence. At
each step, an element in the sequence woulditigized by means ofnivoking
current_component and using the returnddynAny . After that,next will be
invoked. The end of thimitialization process would be detected wheext returns
FALSE. At that point, the programmemould invoketo_any to create amny.

Operationseek logically sets anew ofset for this pointer, returning TRUE if the
resulting pointer points to @mponent or FALSE if there is no component at the
designated offset. Invokingeek on aDynAny associated to a basic data type value is
allowed but it only return§RUE if the value passed as argument equals to zero.

boolean seek(in long index);

7.2.4 The DynFixed interface

DynFixed objects are associated with values of the fided type.

typedef sequence<oct et> OctetSeq;
interface DynFixed : D ynAny {
OctetSeq get_value ();
void set_value (in OctetSeq val) raises (InvalidValue);

k

The get_value operation returns the value of tBgnFixed as a sequence of octet.
Eachoctet contains either one or two decimal digits. If the fixed type has an odd
number of decimal digits (which can be determined from the

TypeCode:: fixed_digits operation), then the representation begins with the first
(most significant) digitOtherwise, the first half-octet is all zero, and thstfdigit is in

the second half-octet. The sign of the value, which is stored in the last half-octet of the
sequence, shall be 0xD for negative numbers and Ox@ofitive and zero values.

The set_value operation sets the value of tBgnFixed with anOctetSeq having
the same format as that descritsabve. If theOctetSeq does not conform to the
expected number of digits as determined byTyeCode , thelnvalidvalue
exception is raised.

7.2.5 The DynEnum interface

DynEnum objects are associated with enumerated values.

7-10 CORBAV2.2 February 1998

interface DynEnum: DynAny {
attribute string value_as_string;
attribute unsigned long value_as_ulong;

|3
The DynEnum interface consists of two attributes: tveue _as_string attibute

which contains the value of the enum value as a string arndathe as_ulong
which contains the value of the enum value as an unsigned long:

attribute string value_as_string;
attribute unsigned long value_as_ulong;

7.2.6 The DynStruct interface

DynStruct objects are associated with struct valaed exeption values.
typedef string FieldName;

struct NameValuePair {
FieldName id;
any value;

|3
typedef sequence<NameValuePair> NameValuePairSeq;

interface DynSt ruct: DynAny {
FieldName current _member_name ();
TCKind current_member_kind ();
NameValuePairSeq get_members();
void set_members(in N ameValuePairSeq value)
raises (InvalidSeq);

h

The current_member_name operation returns the name of the member currently
being accessed.

FieldName current _member_name ();

This operation may return an emgtying since theTypeCode of the struct being
manipulated may not contain the names of members in the struct.

current_member_kind returns the TCKind associated with the current member
being accessed.

TCKind current_member_kind ();

It is possible to obtain a sequence of name/value pairs describing the name and the
value of each member in the struct associated widlyreStruct object using the
get_members operation:

CORBAV2.2 DynAmPI February 1998 7-11

NameValuePairSeq get_members();

The set_members operation initializeshe struct data value associated with a
DynStruct object from a sequence of name vahars:

void set_members(in N ameValuePairSeq value)
raises (InvalidSeq);

Members must appear in thameValuePairSeq in the order in which they appear in
the IDL specification of the struct. This operation raiseslitialidSeq exception if

an inconsistent name or value is passed as argument (for example, the
NameValuePairSeq does not match the members of the struct, it’s too long/short, or
member values are passed in the wrong order).

DynStruct objects can also be used for handling exception values. In that case,
members of the exceptions are handled in the same way as membaeaisuct.a

7.2.7 The DynUnion interface

DynUnion objects are associated with unions.

interface DynUnion: DynAny {
attribute boolean set_as_default;
DynAny di scriminator ();
TCKind discriminator_kind ();
DynAny member ();
attribute FieldName m ember_name;
TCKind member_kind ();

>

The DynU nion interface allows for the insertion/extraction of an OMG IDiiam
type into/from aDynUnion object.

Thediscriminator operation returnsCynAny object reference that must be narrowed
to the type of the discriminator in order to insert/get thsenitninator value:

DynAny di scriminator ();
Note that the type of the discriminator is contained inTyeCode of the union.

The member operation returns BynAny object reference that is used in order to
insert/get the member of the union:

DynAny member ();

discriminator_kind andmember_kind return the TCKind associated with the
discriminator and member of thaion, respectely:

7-12 CORBAV2.2 February 1998

TCKind discriminator_kind ();
TCKind member_kind ();

The member_name attribute allows for the inspection/assignment of the name of the
union member without checking the value of thgcriminator.

The set_as_default attribute determines whether the discriminator associated with
the union has been assignedadid default value.

Union values can be traversed using tperations defined in “Iterating through
components of a DynAny” on page 7-9. In that case,itbecdomponent in the union
corresponds to thdiscriminatorwhile the second corresponds to the actual value of
the union. Operationext should then be called twice.

7.2.8 The DynSequence interface

DynSequence objects are associated with sequences.
typedef sequence<any> AnySeq;

interface DynSequence: DynAny {
attribute unsigned long length;
AnySeq g et_element s();
void set_elements(in A nySeq value)
raises (InvalidSeq);

h

Thelength attibute contains the number of elements contained in (or to be contained
in) the sequence; its value is initalized to zero foraumued sequeres:

attribute unsigned long length;

The get_elements andset_elements operations return and receive respectively a
sequence ofinys containingeach of the elements of the sequence:

AnySeq g et_element s();
void set_elements(in A nySeq value);

Theset_elements operation raises thavalidSeq exception if an inconsistent value
is passed in the sequenceanfy values passed as argument (for exampleAthySeq
is too long/short).

7.2.9 The DynArray interface

DynArray objects are associated with arrays.

interface DynArr ay: DynAny {
AnySeq g et_element s();
void set_elements(in A nySeq value)
raises (InvalidSeq);

CORBAV2.2 DynAmPI February 1998 7-13

The get_elements andset_elements operations return and receive respectively a
sequence afinys containingeach of the elements of the array:

AnySeq g et_element s();
void set_elements(in A nySeq value);

Theset_elements operation raises thavalidSeq exception if an inconsistent value
is passed in the sequenceaaf/ values passed as argument (for exampleAtlySeq
is too long/short).

Note that the dimension of the array is containethé@TypeCode which is accessible
through thetype attrbute.

7.3 Usage in C++ language

7-14

7.3.1 Dynamic creation of CORBA::Any values

Creating amany which contains asict

Consider the following IDL dédition:

/I IDL

struct My Struct {
long memberl;
boolean member2;

|

The following exampléllustrates how &£ORBA::Any value may be constructed on
the fly containing a value of typdyStruct :

CORBAV2.2 February 1998

/I C++

CORBA::ORB var orb;
CORBA::StructMemberSeq mems(2);
CORBA::Any result;

long valuel,;

boolean value?;

mems|[0].name = CORBA::string_dup("memberl");
mems[1].type = CORBA:: TypeCode::_duplicate(CORBA::_tc_long);
mems[0].name = CORBA::string_dup("member2");

mems[1].type =
CORBA::TypeCode::_duplicate(CORBA::_tc_boolean);

CORBA::TypeCode_var new_tc = orb->create_struct_tc (
"IDL:MyStruct:1.0",
"MyStruct”,
mems

);

/I construct the DynStruct object. Values for members have
/l read in the valuel and value?2 variables

DynStruct_ptr dyn_struct = orb->create_dyn_struct (new_tc);
dyn_struct->insert_long(valuel);
dyn_struct->insert_boolean(value2);

result = dyn_struct->to_any();

dyn_struct->destroy ();

CORBA::release(dyn_struct);

7.3.2 Dynamic interpretation of CORBA::Any values

Filtering of events

Supposedhere is a CORBA object which receives events amtgall those events
which correspond to a data structure containing a member ialladggent whose
value is TRUE.

Thefollowing fragment of code correspds to a method whidfletermines if an event
should be printed or not. Note that the program allows several struct events to be
filtered with respect to some common member.

CORBAV2.2 Usagein C+ahguage February 1998 7-15

Il C++
CORBA::Boolean Tester::eval_filter(const CORBA::Any &event)

{
CORBA::Boolean success = FALSE;

/I First, typecode is extracted from the event. This
/I is necessary to get struct member names:
CORBA::TypeCode_var event_type = event->type();

/I The filter only returns true if the event is a struct:

if (event_type->kind() == CORBA::tk_struct)

{
DynAny_ptr dyn_any = orb->create_dyn_any(event);
DynStruct_ptr dyn_struct= DynStruct::_narrow(dyn_any);
CORBA::release(dyn_any);

CORBA::Boolean found = FALSE;

do
{
CORBA::String_var member_name =
dyn_struct->current_member_name();

found = (strcmp(member_name, "is_urgent") == 0);
} while (ffound && !dyn_struct->next());

if (found)
{
/' We only create a DynAny object for the member
/I we were looking for:
CORBA::DynAny_var dyn_member =
dyn_struct->current_component ();
success = dyn_member->get_boolean();

h

dyn_struct->destroy();
CORBA::release(dyn_struct);

h

return success;

7-16 CORBAV2.2 February 1998

The Interface Repository 8

Contents

This chapter contains tHellowing sections.

Section Title Page
“Overview” 8-1
“Scope of an Interface Repository” 8-2
“Implementation Ependencies” 8-4
“Basics” 8-6
“Interface Repository Interfaces” 8-9
“Repositorylds” 8-31
“TypeCodes” 8-35
“OMG IDL for Interface Repository” 8-44

8.1 Overview

The Interface Repository is tltemponent of the ORB that provides persistent storage
of interface dehitions—it manages and provides access to a collection of object
definitions speciéd in OMG IDL.

CORBA V2.2 ebruary 1998 8-1

An ORB providedistributed access to@llection of objects using the objects’
publicly defined interfaces specified in OMG IDIhe Inteface Repostory provides
for the storage, distribution, and management of a collection of related objects’
interface dehitions.

For an ORB to correctly process requests, it rhase access to thaefinitions of the
objects it is handling. Object deitions can be made available to an ORBoime of
two forms:

1. By incorporating the informatioprocedurally into stub routines (e.g., as ctiokt
maps C language subroutines icmmmunication protocols).

2. As objects accessed through the dyically accessible Interface Repository (i.e.,
as interface objects” accessed through OMG IDL-specified interfaces).

In particular, the ORB can use object definitions maintained in the InterfguesRay
to interpretand handle the values provided in a request to:

® Provide type-checking of request signatures (whether the regassssued
through the DIl or through a stub).

® Assist in checking the correctness of interface inheritance graphs.

® Assist in providing interoperability between different ORBplementaibns.

As the interface to the object ddfions maintained in an Intirce Repogory is
public, the information maintained in the Repository can also be used by clients and
services. For example, the Repository can be used to:

® Manage the installation ardistribution of interdce definitions.
® Provide components of a CASE environment (foaraple, an interfacbrowser).
® Provide interface information to langge bindings (such as a compiler).

®* Provide components of end-user environments (for example, a menu bar
constructor).

The complete OMG IDL specification for the Interface Repository is in Section 8.8,
“OMG IDL for Interface Repository,” on page 8-44; however, fragments of the
specification are used throughout this chapter as necessary.

8.2 Scope of an Interface Repository

Interface dehitions are maintained in the Interface Repository as a set of objects that
are accessible through a set of OMG IDL-specified interfadaitiehs. An interface
definition contains a description of the operations it supports, including the types of the
parameters, exceptions it may raise, and context information it may use.

In addition, the interface repository stores constahies, which might be used in
other interface definitions or might simply be defined for programmer convenience and
it stores typecodes, which are values that describe a type in struetanal

CORBAV2.2 February 1998

8

The Inteface Repo#ory uses modules as a way to grdoperfacesand to navigate
through those groups by name. Modules can contain constants, typedefs, exceptions,
interface definitions, and other modules. Modules may, for example, conesp the
organization of OMG IDL definitions. They may also be used to represent
organizations defined for administration or other purposes.

The Inteface Repo#tory is a set of objects that represent the information in it. There
are operations that operate on this apparent object structure. It is an implementation’s
choice whether these objects exist persistently or are cre&ted neferenced in an
operation on the repository. There are also operations that extract information in an
efficient form, obtaining a block of information that describes a whole interface or a
whole operation.

An ORB may have access to fiplle Interface Repositories. This may occur because

* two ORBs have diérent requirements for the implementation of the Interface
Repository,

® an object implementation (such as an OODB) prefers to provide its own type
information, or

® itis desired to havdifferent additional informadn stored in different regsitories.

The use of typecodes anepository identifiers is intended to allow different
repositories to keep theinformation consistent.

As shown in Figure 8-1 on page 8-4, the same inteffme s installed intwo
different repositories, one at SoftCo, Inc., which sells Doc objects, and one at
Customer, Inc., which buys Doc objects from SoftCo. SoftCo sets plositery id for
the Doc interface tven itdefines it. Customer might first install the interface in its
repository in a module where it could testedbefore exposing it for general use.
Because it has the sameository id,even though the Doc interface is stored in a
different repository and is nested in a different module, knhswvn to be thesame.

CORBAV2.2 Scope of aterface Repository February 1998 8-3

Meanwhile at SoftCo, someone working omew Doc nterface has given it a new
repository id 456, which allows the ORBsdistinguish it from the current product
Doc interhce.

SoftCo, Inc., Repository Customer, Inc., Repository

module softco {

interface Doc id 123 { module testfirst {
void print();
}; module softco {
}; interface Doc id 123 {
void print();
|3
module ne wrele ase { }
interface Doc id 456 {
void print(); }
h

h
Figure 8-1 Using Repository IDs to establish correspondence between repositories

Not all interfaces will be visible in all repositories. For example, Customer employees
cannot see the new release of the Doc interface.eMenvwidely usedhterfaces will
generally be visible in most repositories.

This Interface Repository specification defines operationsefivieving information
from the repository as well as creatingidigbns within it. There may be additional
ways toinsert informationnto the repository (for example, compiling OMG IDL
definitions, copying objects from one repository to another, etc.).

A critical use of the interface repository information is éonnecting ORBs together.
When an object is passed in a request from one ORB to another, it magdssary to
create a new object to represent the passed object in the receiving ORB. This may
require locating the interface information in an interface repository in the receiving
ORB. By getting the repository id from a repository in seading ORB, it is possible

to look up the interface in a repository in the receiving ORB. To succeed, the interface
for that object must be installed in both repositories with the same repository id.

8.3 Implementation Dependencies

An implementation of an Interfadeepostory requires some form of persistent object
store. Normally the kind of persistent object store used determines how interface
definitions are distributed and/or replicated tigbout a network domain. For
example, if an Interface Repository is implemenisthg a filing system to provide
object storage, there may be only a single copy of a set of interfeaiatained on a
single machine. Alternatively, if an OODB used to provide object storagaultiple
copies of interface dafitions may be maintained each of whichdstributed across
several machines to provide both higlaidability and load-balancing.

CORBAV2.2 February 1998

8

The kind of object store used mdgtermine the scope of interface definitions provided
by an implementation of the Interfa&epogory. For example, it may determine
whether each user has a local copy of a set of interfaces or if there égspnper
community of users. The object store may also determine whether or not all clients of
an interface set see exactly the same seahwfgiven point in time or whether latency

in distributing copies of the setwgis different users different views of the setay

point in time.

An implementation of the Interface Repository is alspendent on the security
mechanism in use. The security mechanissuélly operating in conjunction with the
object store) determines the natared gramlarity of access controls available to
constrain access to objects in the repository.

8.3.1 Managing Interface Repositories

InterfaceReposdtories contain the information necessary to allow programs to
determineand manipulate the tygaformation at run-timePrograms may attempt to
access the interface repository at any time by usingéheinterface operation on

the object reference. Onga&formation has ben installed in the repository, programs,
stubs, and objects may dependitbrupdates to the repository must be done with care
to avoid disrupting the environment. A variety of techniques are available to help do
So.

A coherent repository is one whose contents can be expressed ascNedition of

OMG IDL definitions. For example, all inherited interfaces exist, there are no duplicate
operation names or other name collisions, all parameters have knpes) and so

forth. As information isadded to the repository, it is possible that it may pass through
incoherent states. Media failures or communication errors might also cause it to appear
incoherent. In general, such problems cannot be completely eliminated.

Replication is one technique to increase the availability and performance of a shared
database. It is likely that the same interface information will be storeuliftiple
repositories in a computing environmebising regository IDs, the repositories can
establish the identity of the interfaces and other information across the repositories.

Multiple repositories might also hesed to insulate production environments from
development activity. Developers might be permitted ékewarbitrary updates to their
repositories, but administrators may contptlates to widely usemtpositories. Some
repository implementations might permaharing of information, for example, several
developers’ repositories may refer to parts of a shared repository. Other repository
implementations might instead copy the common informatiomnincase, theesult
should be a repositoradility that createshe impression of a single, coherent
repository.

The inerface repository itsefannot make all repositories have coheiefdrmation,
and it may be possible tenter information thatloes not make sense. The repository
will report errors that it detects (e.g., definitvgp atributes with the same name) but
might not report all errors, for example, addingadtibute to a base interface may or
may not detect a name conflict with a derived interf&@espitethese linitations, the

CORBAV2.2 mplementation Dependencies February 1998 8-5

8-6

8.4 Basics

expectation is that a combination of conventions, admatigé controls, and tools that
addinformation to the repository willvork to create a coherent view of the repository
information.

Transactions and concurrency control mechanisms defined by the Object Services may
be used by some repositoriebem updating the repository. Those services are
designed so that they can be used without changing the operations that update the
repository. For example, a repository that supports the Transaction Seouitok

inherit the Repository interface, which contains tipelate oprations, as well as the
Transaction interface, which contains the transaction management operations. (For
more information about Object Services, including the Transaat@hConcurrency
Control Services, refer t6ORBAservices: Common Object Service Sigations)

Often, rather than change the information, new versions will be created, allowing the
old version to continue to be valid. The nearsions will have distinct repository IDs
and becompletely different types as far as the repository and the ORBs are cathcern
The IR provides storag®r version identifiers for named types, but does not specify
any additional versioning mechanism or semantics.

This section introduces some basic ideas that are important to understanding the
InterfaceReposdtory. Topics addressed in ttsgction are:

® Names and IDs
®* Types and TypeCodes

® |nterface Objects

8.4.1 Names and Identifiers

Simple names are not necessarily unique within an Interface Repository; they are
alwaysrelative to an explicit or implicimodule. In this context, interface definitions
are considered explicit modules.

Scoped names uniqueigentify modules, interfaces, constant, typedefs, exceptions,
attributes, and operations in an Interface Repository.

Repository identifiers globally identify modules, interfaces, constants, typedefs,
exceptionsattributes,and operations. They can be used to synchradefiaitions
across multiple ORBand Repositories.

8.4.2 Types and TypeCodes

The Interface Rpository stores information about types that are not interfaces in a data
value called a Typeode.From the TypeCodealone it is possible to determine the
complete structure of a type. See “TypeCodes” on page 8-35 for nforenation on

the internal structure ofypeCodes.

CORBAV2.2 February 1998

8.4.3 Interface Objects

Each interface managed in &rterface Repository is maintained as a collection of
interface objects:

® Repository: the top-level module for the repository name space; it contains
constants, typedefs, exceptiongerface definitionsand modules.

®* ModuleDef: a logical grouping of interfaces; it contains constants, typedefs,
exceptions, interface daftions, andother modules.

* |nterfaceDef: an interface definition; it contailists of constants, types, exceptions,
operations, and tibutes.

* AttributeDef: the dehition of an attibute of the interface.

® OperationDef: the dafition of anoperation on the interface; it contailists of
parameters and exceptions raised by this operation.

* TypedefDef: base interface for daftions of named types that are nioterfaces.
® ConstantDef: the defition of anamed constant.

* ExceptionDef: the definition of an exception that can be raised by an operation.

The inerface specifications farach interface object lists thdrdtutes maintained by
that object (see “Interface Repository Interfaces” on page 8-9). Many of these
attributes correspond directly to OMG IBtatements. An implemeatton can choose
to maintain additionahttibutes to facilitate managing the Repository oreoord
additional (proprietary) information about arterface. Implementations that extend
the IR interfaces should do so by deriving naeterfaces, not by modifying the
standard interfaces.

The CORBAspecification defines a minimal set of operations for iaterfobjects.
Additional operations that an implementation of the Interface Repository may provide
could include operations that provide for the versioningnterfacesand for the

reverse compilation of specifications (i.e., the generation of a file containing an
object's OMG IDL specification).

8.4.4 Structure and Navigation of InterfaGdbjects

The deinitions in the Interfacdkepo#ory are structured as a set of objects. The
objects are structured the same way definitions are structured—some objects
(definitions) “contain” other objects.

The montainment relationships for the objects in the Interface Repositorsharen in
Figure 8-2 on page 8-8.

CORBAV2.2 &Bics February 1998 8-7

Repository Each interface repository is represented
by a global root repository object.

ConstantDef The repository object represents the constants,
TypedefDef typedefs, exceptions, interfaces and modules
ExceptionDef that are defined outside the scope of a module.
InterfaceDef
ModuleDef
ConstantDef The module object represents the constants,
TypedefDef typedefs, exceptions, interfaces, and other modules
ExceptionDef defined within the scope of the module.
ModuleDef
InterfaceDef
ConstantDef An interface object represents constants,
TypedefDef typedefs, exceptions, attributes, and operations
ExceptionDef defined within or inherited by the interface.
AttributeDef
OperationDef Operation objects reference

exception objects.

Figure 8-2 Interface Repository Object Containment

There are three ways to locateiaterface in the Interface Repository, by:
1. Obtaining arnterfaceDef object directly from the ORB.
2. Navpating though the module name space using a sequence of names.

3. Locating thdnterfaceDef object that corresponds to a particular répog
identifier.

Obtaining aninterfaceDef object directly is useful when an object is encountered
whose type was ndthown atcompile time. By using thget_interface()operation

on the object reference, it is possible to retrieve the Interface Repository information
about the object. That information could then be used to perform operations on the
object.

Navigating the module name space is useful when information abouticulaar
named interface is desired. Starting at the root module of the repository, it is possible
to obtain entries by name.

Locating thelnterfaceDef object by ID is useful when looking for an entry in one
repository that corresponds to another. A repository identifier must be globally unique.
By using the same identifier two repositories, it is possible to obtain the interface
identifier for an interface in one repository, and then obtain information about that
interface from another repository that may be closer or contain additional information
about the interface.

8-8 CORBAV2.2 February 1998

8.5 Interface Repository Interfaces

Several abstract interfaces are used as inéadaces for other objects in the IR.

A common set of operations ised to locate objects within theterface Repaository.
These operations are defined in the absirgetfacesRObject, Container , and
Contained described below. All IR objects inherit from tHeObject interface,

which provides an operation for identifying the actual type of the object. Objects that
are containers inherit navigation operations fromQbatainer interface. Objects that

are contained by other objects inherit navigation operations frof@ah&ained

interface.

The IDLType interface is inherited by all IR objects that represent IDL types,
including interfaces, typedefs, and anonymous types.TypedefDef interface is
inherited by all named non-intede types.

The IRObject, Contained , Container , IDLType, andTypedefDef interfaces are not
instantiable.

All string data in the Interface Repository aecoded as defined by the 1ISO 8859-1
coded characteset.

8.5.1 Supporting Type Definitions

Several types are used throughout the IR interfadaitiefis.

module CORBA {

typedef string Identifier;
typedef string Scop edName;
typedef string Repositoryld;

enum Defi nition Kind {
dk_no ne, dk_all,
dk_Attri bute, d k_Constant, dk_Exception, dk_Interface,
dk_Module, dk_Operation, dk_T ypedef,
dk_Alias, dk_Struct, dk_Union, dk_Enum,
dk_Primitive, dk_St ring, dk _Sequ ence, dk_Array,
dk_R epository,
dk_Wstring, dk_Fixed

Identifier s are the simple names that identify modules, interfaces, constants, typedefs,
exceptionsattributes,and operations. They correspond exactly to OMG IDL

identifiers. Anldentifier is not necessarily unique within @mtire Interface

Repository; it is unique only within a particulRepository, ModuleDef,

InterfaceDef , or OperationDef .

A ScopedName is a hame made up of one or madentifier s separated by the
characters “::". They correspond to OMG IDL scoped names.

CORBAV2.2 nterface Repository Interfaces February 1998 8-9

An absoluteScopedName is one that begins with “::” and unambiguously identifies
a definition in aRepository . An absoluteScopedName in a Repository

corresponds to global namein an OMG IDL file. Arelative ScopedName does not
begin with “::” andmust be resolved relative to some context.

A Repositoryld is an identifierused to uniquely and globally identify a module,
interface, constant, typedef, exception, attribute or operatiofRefsgsitoryld s are
defined as strings, they can be mardted(e.g., copied and compared) using a
language binding’s string manipulation routines.

A Definitio nKind identifies the type of an IR object.

8.5.2 IRObject

The IRObject interface represents the most generic interface from which all other
InterfaceRepodiory interfaces are derivedyen the Repositorytgelf.

module CORBA {
interface IRObject {
/l read interface
readonly attribute DefinitionKind def_kind;

/l write interface
void destroy ();
|8
|8

Read Interface

The def _kind attrbute identifies the type of the definition.

Write Interface

The destroy operation causes the object to cease to exist. If the object is a
Container , destroy is applied to all its contents. If the object containditType
attribute for an anonymous type, thBLType is destroyed. If the object is currently
contained in some other object, it is removed. Invokiegtroy on aRepository or

on aPrimitiveDef is an error. Implementations may vary in their handling of
references to an object that is being de®dyyout the Repository should not be left in
an incoherenstate.

8-10 CORBAV2.2 February 1998

8.5.3 Contained

The Contained interface is inherited by all Interface Repository interfaces that are
contained by other IR objects. All objects within the InterfRepo#ory, except the
root object Repository) and dehitions of aronymous ArrayDef , StringDef , and
SequenceDef), and pimitive types are contained by other objects.

module CORBA {
typedef string VersionSpec;

interface Contained : IRObject {
/l read/write interface

attribute Repositoryld id;
attribute Identifier name;
attribute Versio nSpec version;

/l read interface

readonly attribute Container defined_in;
readonly attribute Sco pedName absolute_name;
readonly attribute Repository containing_repository;

struct Description {
Definitio nKind kind;
any value;

ki

Description describe ();

/[write interface

void move (
in Container new_container,
in Identifier new_name,
in VersionSpec new_version
);
|3

ki

Read Interface

An object that is contained by another object hagaattibute that identifies it
globally, and aname attribute that identifies itiniquely within the enclosing
Container object. It also has gersion attribute that distiguishes it from other
versioned objects \th the samename. IRs are not required to support simultaneous
containment of multiple versions of the sarmamed object. Supporting ntiple
versions most likely requires mechanismd policy not specified in thislocument.

CORBAV2.2 nterface Repository Interfaces February 1998 8-11

8-12

Contained objects also have @efined_in attribute that identifies th€ontainer
within which they are defined. Objects can be contained either because they are
defined within the containing object (for example, an interface is defined within a
module) or because they are inherited by thetaining object (for example, an
operation may be contained by an irdedf because thaterface inherits the operation
from another interface). If an object is contained through inheritancelefiveed_in
attribute identifies thénterfa ceDef from which the object is inherited.

The absolute_name attribute is arabsoluteScopedName that identifies a
Contained object uniquely withirits enclosingRepository . If this object's
defined_in attibute references Repository , theabsolute_name is formed by
concatenating the string “::” arttlis object'sname attribute. Otherwise, the
absolute_name is formed by concatenating tiabsolute_name attribute of the
object referenced by this objectiefined_in attribute, the string “::”, and this object’s
name attrbute.

The containing_repository attibute identifies theRepository that is eventually
reached by recursively following the objeafsfined_in attrbute.

Thedescribe operation returns a structure containing informa#ibout the interface.
The description structure associated with each interface is providiedv with the
interface’s definition. Th&ind of definition described by the structure returned is
provided with the returned structure. For example, ifdéscribe operation is
invoked on an &tibute object, th&ind field containsdk_Attri bute and thevalue
field contains arany, which contains théttributeDe scription structure.

Write Interface

Setting thed attributechanges the global identity of this defion. An error is
returned if an object with the specifi@tl attribute already exists within this object's
Repository .

Settingthename attribute changes the identity of this idéfon within its Container .
An error is returned if an object with the specifiemime attribute already egis within
this object'sContainer . Theabsolute_name attibute is also updated, along with
any other atibutes that reflecthe name of the object. If this object i€antainer ,
theabsolute_name attribute of any objects it contains are also updated.

The move operation atomically removes this object from its cur@mttainer , and
adds it to theContainer specified bynew_container , which must;

®* Be in the sam®&epository,

® Be capable of containing this object's type (see “Structure and Navigation of
Interface Objects” on page 8-7); and

® Not already contain an object withis object’'s name (unless multiple versions are
supported by the IR).

Thename attribute is chaged tonew_name , and theversion attribute is banged to
new_version .

CORBAV2.2 February 1998

The defined_in andabsolute_name attributes araipdated taeflect thenew
container andhame. If this object is also &ontainer , theabsolute_name
attributes of any objects it contains are also updated.

8.5.4 Container

The Container interface isused toform a containmenhierarchy in the Interface
Repository. AContainer can contain any number of objectsrived from the
Contained interface. AllContainer s, except folRepository , are also derivettom
Contained .

module CORBA {
typedef sequence <Contained> ContainedSeq;

interface Container : IRObject {
/l read interface

Contained lookup (in Sc opedN ame search_name);

ContainedSeq contents (

in Definit ionKind limit_type,
in boolean exclude_inherited
);
ContainedSeq lookup_name (
in Identifier search_name,
in long levels_to_search,
in Definit ionKind limit_type,
in boolean exclude_inherited
);
struct Description {
Contained contained_obj ect;
Definitio nKind kind;
any value;
|3

typedef sequence<D escription> DescriptionSeq;

Description Seq describe_contents (

in Definit ionKind limit_type,
in boolean exclude_inher ited,
in long max_returned_objs

)i

/[write interface

CORBAV2.2 nterface Repository Interfaces February 1998 8-13

ModuleDef create_module (

in Repositoryld id,
in Identifier name,
in VersionSpec version

);

ConstantDef create_constant (
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in IDLType type,
in any value

);

StructDef create_struct (

in Repositoryld id,

in Identifier name,

in VersionSpec version,

in StructMemberSeq members

);

UnionDef create_union (

in Repositoryld id,

in Identifier name,

in VersionSpec version,

in IDLType discriminator_type,

in UnionMemberSeq members

);

EnumDef create_enum (

in Repositoryld id,

in Identifier name,

in VersionSpec version,

in EnumMemberSeq members

);

AliasDef create_alias (

in Repositoryld id,

in Identifier name,

in VersionSpec version,

in IDLType original_type

);

InterfaceDef create_interface (

in Repositoryld id,

in Identifier name,

in VersionSpec version,

in Inter faceDefSeq base_interfaces

);

8-14 CORBAV2.2 February 1998

ExceptionDef create_exception(

in Repositoryld id,
in Identifier name,

in VersionSpec ver sion,

in StructMemberSeq members

)i

Read Interface

The lookup operation locates a deition relative to this cominer given a scoped

name using OMG IDL’s name scoping rules. An absolute scoped name (beginning with

“") locates the definition relative to thenclosingRepository . If no object is found,
a nil object reference is returned.

The contents operation returns thiést of objects directly contained by or inherited
into the objectThe operation is used to navigate through the hierarchy of objects.
Starting with the Repsitory object, a clientses this operation test all of the objects

contained by the Repository, all of the objects contained by the modules within the

Repository,and then all of thénterfaces within a specific moduland so on.

limit_type

exclude_inherited

search_name

levels_to_search

If limit_type is set todk_all , objects of all interface
types are returned. For example, if this is an
InterfaceDef , the attribute, operation, and exception
objects are all returned. limit_type is setto a
specific interface, only objects of that interface type
are returned. For example, only attribute objects are
returned iflimit_type is set todk_Attri bute.

If set to TRUE jnherited objects (if there are any) are
not returned. If set to FALSE, all contained
objects—whether contained due td@mitance or
because they were defined within the object—are
returned.

The lookup_name operation is used to locate an
object by name within a particular object or within
the objects contained by that object.

Specified which name is to be searched for.

Controls whether the lookup is constrained to the
object the operation iswoked on or whether it

should search through objects contained by the object
as well. Settindevels_to_search to -1 searches the
current object and all contained objects. Setting
levels_to_search to 1 searches only the current
object.

CORBAV2.2 nterface Repository Interfaces February 1998 8-15

8-16

limit_type If limit_type is set todk_all , objects of all interface
types are returned (e.g., attributesei@giions,and
exceptions are all returned). lifnit_type is setto a
specific interface, only objects of that interface type
are returned. For example, only attribute objects are
returned iflimit_type is set todk_Attri bute.

exclude_inherited If set to TRUE jnherited objects (if there are any) are
not returned. If set to FALSE, all contained objects
(whether contained due tohiaritance or bcause they
were defined within the object) are returned.
The describe_contents operation combines the
contentsoperation and thdescribe operation. For
each object returned by tlentents operation, the
description of the object is returned (i.e., the object’s
describe operation isnvoked and theesults
returned).

max_returned_objs Limits the number of objects thaan be returned in
an invocation of the call to the number provided.
Setting the parameter to -1 means return all contained
objects.

Write Interface

The Container interface provides operations to crelteduleDef s, ConstantDef s,
StructDef s, UnionDef s, EnumDef s, AliasDef s, andinterfac eDefs as contained
objects. Thalefined_in attribute of a definition created widmy of these operations
is initialized to identify theContainer on which the operation is invoked, and the
containing_repository attribute isinitialized to itsRepository .

The create_<type> operations all tak&l andname parameters which are used to
initialize the identity of the created digfion. An error is returned if an object with the
specifiedid already exists within this objectRepository , or, assuming multiple
versions are not supported, if an object with the specifeade already exists within
this Container .

The create_module operation returns aew emptyModuleDef . Definitions can be
added usingContainer::create_<type> operations on theew malule, or by using
the Contained::move operation.

Thecreate_constant operation returns aew ConstantDef with the specifiedype
andvalue .

The create_struct operation returns aew StructDef with the specifiednembers .
The type member of thé&tructMember structures is ignored, and should st to
TC_void . See “StructDef” on page 8-20 for more information.

CORBAV2.2 February 1998

The create_union operation returns a neldnionDef with the specified
discriminator_type andmembers . Thetype member of théJnionMember
structures is ignored, and should be sef@o void . See “UnionDef” on page 8-21 for
more information.

The create_enum operation returns aew EnumbDef with the specifiednembers .
See “EnumDef” on page 8-Zar more information.

The create_alias operation returns a nediasDef with the specified
original_type .

Thecreate_interface operation returns mew emptyinterfaceDef with the specified
base_interfaces . Type, exception, and constat#finitions can be dded using
Container::.create_<type> operations on the neimterfaceDef . OperationDefs
can be added usirigterfaceDef:: create_operation andAttributeDefs can be
added usingnterface:.create_attribute . Definitionscan also be added using the
Contained::move operation.

The create_exception operation returns aew ExceptionDef with the specified
members. Théype member of th&tructMember structures is ignored, and should
be set tolC_void .

8.5.5 IDLType

The IDLType interface is an abstract interface inherited by all IR objects that represent
OMG IDL types. It provides access to thgpeCode describing the typeand is used
in defining other interfaces wherever ihtfons of IDL types must beeferenced.

module CORBA {
interface IDLType : IRObject {
readonly attribute T ypeCode type;
|3
|3

Thetype attibute describes the type defined by an objectvddifrom IDLType.

8.5.6 Repository

Repository is an interface that provides global access to the Interface Repository. The
Repository object can contain constants, typedefs, exceptioterfaces.and

modules. As it inherits fronContainer , it can be used to look up any definition
(whether globallydefined or defined within a module or interface) eithenasne or

by id.

There may be more than one Interface Repository in a particular ORB environment
(although some ORBsight require that definitions they use be registered with a
particular repository)Each ORB environmentill provide a means for obtaining
object references to the Repositories availatithin the environment.

CORBAV2.2 nterface Repository Interfaces February 1998 8-17

8-18

module CORBA {
interface Reposi tory : Container {
/l read interface

Contained lookup_id (in Repositoryld search_id);
PrimitiveDef get_primitive (in PrimitiveKind kind);

/I write interface

StringDef create_string (in unsig ned long b ound);
WstringDef create_wst ring(in unsigned long bound);

SequenceDef create_sequence (
in unsigned long bound,
in IDLType element_type

)i

ArrayDef create_array (
in unsigned long length,
in IDLType element_type

)i

FixedDef create_fixed(
in unsigned short digits,
in short scale

h
h

Read Interface

The lookup_id operation is used to ¢kup an olgct in aRepository given its
Repositoryld . If the Repository does not contain a definition fgsearch_id , a nil
object reference is returned.

Theget_primitive operation returns a reference t®dmitiveDef with the specified
kind attribute. AllPrimitiveDef s are immutable and owned by tRepository.

Write Intefface

The threecreate_<type> operations create new objects defining anonymous types. As
these interfaces are not dexil from Contained , it is the caller’s responsibility to
invokedestroy on the returned object if it is not successfully used in creating a
definition that is derived fronr€ontained . Each anonymous type ddfion must be

used in defining exctly one other object.

The create_string operation returns a neftrin gDef with the specifiecdbound ,
which must be non-zero. Thget_primitive operation is used for unbounded strings.

CORBAV2.2 February 1998

8

Thecreate_wstring operation returns a newstrin gDef with the sgcified bound ,
which must be non-zero. Thget_primitive operation is used for unbounded strings.

The create _sequence operation returns a nesequenceDef with the sgcified
bound andelement type .

The create_array operation returns a nedrrayDef with the specifiedength and
element_type .

The create_fixed operation returns a nelixedDef with the specified number of
digits and scale. The number of digiaist be from 1 to 31, inclusive.

8.5.7 ModuleDef

A ModuleDef can contain constants, typedefs, epiions, interfaes, and other
module objects.

module CORBA {
interface ModuleDef : Container, Contained {

>

struct ModuleDescr iption {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
\ersio nSpec version;
|3
|3

The inheriteddescribe operation for aModuleDef object returns a
ModuleDescription

8.5.8 ConstantDef Interface

A ConstantDef object defines a named constant.

module CORBA {
interface ConstantDef : Contained {
readonly attribute T ypeCode type;
attribute IDLType type_def;

attribute any value;

|3
struct ConstantDescription {

Identifier name;

Repositoryld id;

Repositoryld defined_in;

Versio nSpec version;

TypeC ode type;

any value;

CORBAV2.2 nterface Repository Interfaces February 1998 8-19

8-20

h
h
Read Interface

The type attibute specifies th@ypeCode describing the type of the constant. The
type of a constant must be one of the simple types (long, short, float, char, string, octet,
etc.). Thetype def attribute identifieghe deinition of the type of the constant.

Thevalue attributecontains the value of the constant, not the computation of the value
(e.g., the fact that was defined as “1+2.

The describe operation for &ConstantDef object returns &onstantDescription

Write Interface
Setting thetype_def attribute also updates tiype attribute.

Whensetting thevalue attrbute, theTypeCode of the supplied anynust be equal to
TypedefDefinterface

TypedefDef is an abstract interfaagsed as a baseterface for all named non-object
types (structures, unions, enumeraticarg] alises). TheTypedefDef interface is not
inherited by the d@fition objects for pimitive or anonymous types.

module CORBA {
interface TypedefDef: Co ntained, IDLType {
|3
struct TypeD escription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
Versio nSpec version;
TypeC ode type;
|3
|3

The inheriteddescribe operation for interfaces deed from TypedefDef returns a
TypeD escription .

8.5.9 StructDef

A StructDef represents an OMG IDL structure definitioncéin catain structs,
unions, and enums.

module CORBA {
struct StructMember {
Identifier name;

TypeCode type;

CORBAV2.2 February 1998

IDLType type_def;
|3

typedef sequence <StructMember> StructMemberSeq;

interface StructDef : TypedefDef, Container{
attribute StructMemberSeq members;

h
h
Read Interface

The members attributecontains a description of each structure member. It can
contain structs, unions, and enums.

The inheritedtype attrbute is atk_struct TypeCode describing the structure.

Write Interface

Setting themembers attrbute also updates thgpe attribute. Whersettingthe
members attrbute, thetype member of theStructMember structure is ignored and
should be set tdC_void .

8.5.10 UnionDef

A UnionDef represents an OMG IDL union definition. It can contain structs, unions,

and enums.
module CORBA {
struct UnionMember {
Identifier name;
any label;
TypeCode type;
IDLType type_def;
|3

typedef sequence <UnionMember> UnionMemberSeq;

interface UnionDef : TypedefDef, Container {
readonly attribute T ypeCode discriminator_type;
attribute IDLType discriminator_type_def;
attribute UnionMemberSeq members;
|3
|3

Read Interface

The discriminator_type anddiscrimi nator_type_def attributes describe and
identify the union’s discriminator type.

CORBAV2.2 nterface Repository Interfaces February 1998 8-21

The members attributecontains a description of each unim@mber.Thelabel of
eachUnionMemberDescription is a distinct value of thdiscrimi nator_type .
Adjacent members can have the sarame. Members with the santeame must also
have the samgpe. A label with typeoctet and value 0 indicates the default union
member.

The inheritedtype attrbute is atk_union TypeCode describing the union.

Write Interface

Setting thediscriminator_type_def attribute alsaupdates thaliscriminator_type
attribute and setting thaiscrimi nator_type_def ormembers attrbute also updates
thetype attribute.

When setting thenembers attribute, theype member of th&JnionMember
structure is ignored and should be seT@ void .

8.5.11 EnumDef

An EnumDef represents an OMG IDL enumerationid#ion.

module CORBA {
typedef sequence <Id entifier> E numMemberSeq,;

interface EnumDef : T ypedefDef {
attribute EnumMemberSeq members;

h
h
Read Interface

The members attributecontains a distinct name for each possible value of the
enumeration.

The inheritedtype attrbute is atk_enum TypeCode describing the enumeration.

Write Intefface

Setting themembers attrbute also updates thgpe attribute.

8.5.12 AliasDef

An AliasDef represents an OMG IDL typedef that aliases anothénitief.

module CORBA {
interface AliasDef : TypedefDef {
attribute IDLType original_type_def;
|3
|3

8-22 CORBAV2.2 February 1998

Read Interface
The original_type_def attribute identifies théype being aliased.

The inheritedtype attrbute is atk_alias TypeCode describing the alias.

Write Interface

Setting theoriginal_typ e_def attibute also updates thgpe attribute.

8.5.13 PrimitiveDef

A PrimitiveDef represents one of the OMG IDL itive types. As pritive types
are unnamed, this interface is not derived fifiypedefDef or Contained .

module CORBA {
enum PrimitiveKind {
pk_null, pk_void, pk_short, pk_long,p k_ushort, pk_ulong,
pk_float, pk_double, pk_boolean, pk_char, pk_octet,
pk_any, pk_Typ eCode, pk_Principal, pk_string, pk_obj ref,
pk_longlong, pk_ulonglong, pk_longdouble, pk_wchar, pk_w string
b

interface PrimitiveDef: IDLType {

readonly attribute PrimitiveKind kind;

|3
|3
The kind attibute indicates which primitive type therimitiveDef represents. There
are noPrimitiveDef s with kindpk_null . A PrimitiveDef with kind pk_string

represents an unbounded stringPAmitiveDef with kind pk_objref represents the
IDL type Object.

The inheritedtype attrbute describes thgrimitive type.

All PrimitiveDef s are owned by the Repitory. References to them are obtained
usingRepository::get_primitive

8.5.14 StringDef

A StringDef represents an IDL boundetring type. Thaunbounded string type is
represented asRrimitiveDef . As string types are anonymous, this interface is not
derved fom TypedefDef or Contained .

module CORBA {
interface Str ingDef : IDLType {
attribute unsigned long bound;
|3
|3

CORBAV2.2 nterface Repository Interfaces February 1998 8-23

The bound attribute specifies the maximum number of characters in the sindg
mustnot be zero.

The inheritedtype attrbute is atk_string TypeCode describing the string.

8.5.15 WstringDef

A WstringDef represents an IDL wide string. The unbounded gidiag type is
represented asRrimitiveDef . As widestringtypes are anonymous, this interface is
not derived fromTypedefDef or Contained.

module CORBA {
interface WstringDef : IDLType {
attribute unsigned long bound;
|3
|3
The bound attibute specifies the maximum number of wide characters in a wide

string, and must not be zero.

The inheritedtype attrbute is atk_wstring Typ eCode describing the wide string.

8.5.16 FiedDef

A FixedDef represents an IDL fixed point type.

module CORBA {
interface FixedDef : IDLType {
attribute unsigned sh ort digits;
attribute short scale;
|3
|3

The digits attrbute specifies the total number of decimal digits in the nunamet,
must be from 1 t@1, inclusive. Thescale attrbute specifies thegsiion of the
decimal point.

The inheritedtype attrbute is atk_fixed T ypeCode , which describes a fixed-point
decimal number.

8.5.17 SequaeceDef

A SequenceDef represents an IDL sequence type. As sequence types are anonymous,
this interface is not deréd fom TypedefDef or Contained .

module CORBA {
interface Seque nceDef : IDLType {
attribute unsigned long bound;
readonly attribute T ypeCode element _type;
attribute IDLType element_type_def;

8-24 CORBAV2.2 February 1998

h
h
Read Interface

The bound attribute specifies the maximum number of elements in theeseg. A
bound of zero indicates annbounded sequence.

The type ofthe elements is described blement_type and identified by
element_type_def .

The inheritedtype attrbute is atk_sequence TypeCode describing the sequence.

Write Interface
Setting theelement_type _def attribute alsaupdates thelement type attribute.

Setting thebound or element_type_def attibute also updates thgpe attribute.

8.5.18 ArrayDef

An ArrayDef represents an IDL array type. As array types are anonymous, this
interface is not dered fromTypedefDef or Contained .

module CORBA {
interface ArrayDef : IDLType {
attribute unsigned long length;
readonly attribute T ypeCode element _type;
attribute IDLType element_type_def;
|3
|3

Read Interface

Thelength attribute specifies the number elements in the array.

The type ofthe elements is described blement_type and identified by
element_type def . Since amrrayDef only represents a single dimension of an
array, multi-dimensional IDL arrays are represented by muliplayDef objects, one
per array dimension. Thelement_type_def attibute of theArrayDef representing
the leftmost index othe array, as defined in IDL, will refer to therayDef
representing the next index to the right, and soTtw.innermostArrayDef represents
the rightmost index and the element type ofindti-dimensional OMG IDL array.

The inheritedtype attrbute is atk_array TypeCode describing the array.

Write Interface

Setting theelement_type_def attribute alsaupdates thelement type attribute.

CORBAV2.2 nterface Repository Interfaces February 1998 8-25

Setting thebound or element_type_def attibute also updates thgpe attribute.

8.5.19 ExceptionDef

An ExceptionDef represents an exception definitioncéin contain structs, unions,
and enums.

module CORBA {
interface ExceptionDef : Contained, Contai ner {
readonly attribute T ypeCode type;
attribute StructMemberSeq members;

|3

struct ExceptionD escription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
Versio nSpec version;
TypeC ode type;

|3

>

Read Interface
The type attibute is atk_except TypeCode describing the exception.
The nembersattribute describesany exception members.

The describe operation for &xceptionDef object returns an
ExceptionD escription .

Write Interface

Setting themembers attrbute also updates thgpe attribute. Whersettingthe
members attrbute, thetype member of theéStructMember structure is ignored and
should be set tdC_void .

8.5.20 AttributeDef

An AttributeDef represents the information that definesastibute of an interface.

module CORBA {
enum AttributeMode {AT TR_NORMAL, ATTR_READONLY},

interface AttributeDef : Contained {
readonly attribute T ypeCode type;
attribute IDLType type_def;
attribute AttributeMode mode;

8-26 CORBAV2.2 February 1998

struct AttributeDescription {

Identifier name;
Repositoryld id;
Repositoryld defined_in;
Versio nSpec version;
TypeC ode type;

AttributeMode mode;
h
h
Read Interface

The type attibute provides th@ypeCode describing the type of thisttibute. The
type_def attrbute identifies the object defining the type of tatribute.

The mode attrbute specifies read only or read/write access forattibute.

Write Interface

Setting thetype_def attribute also updates tiype attribute.

8.5.21 OperationDef

An OperationDef represents the informatiareeded to define an operation of an
interface.

module CORBA {
enum OperationMode { OP_NORMAL, OP_ONEWAY},

enum ParameterMode {PARAM_IN, PARAM_OUT, PARAM_INOUT};
struct ParameterDescription {

Identifier name;
TypeC ode type;
IDLType type_def;

ParameterMode mode;
h

typedef sequence <ParameterDe scription> ParDescr iptio nSeq;

typedef Identif ier C ontextldentif ier;
typedef sequence <Cont extldentifier> ContextldSeq;

typedef sequence <ExceptionDef> ExceptionDefSeq;
typedef sequence <ExceptionD escription> ExcDescriptionSeq;

interface OperationDef : Contained {

readonly attribute T ypeCode result;
attribute IDLType result_def;
attribute ParDescriptionSeq params;
attribute OperationMode mode;

CORBAV2.2 nterface Repository Interfaces February 1998 8-27

8-28

attribute ContextldSeq contexts;
attribute ExceptionDefSeq exceptions;
|3
struct OperationD escription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
Versio nSpec version;
TypeC ode result;
OperationMode mode;
ContextldSeq contexts;

ParDescriptionSeq parameters;
ExcD escriptionSeq exceptions;

h
h

Read Interface

Theresult attribute is alypeCode describing the type of the value returned by the
operation. Theesult_def attrbute identifies the definition of the returned type.

The params attibute describes the parameters of the operation. It isweseq of
ParameterDescr iption structures. The order of tliRarameterDescription s in the
sequence is significant. Tmame member of each structure provides the parameter
name. Thaype member is aypeCode describing the type of the parameter. The
type_def member identifies the definition of the type of the param@étez.mode
member indicates whether the parameter is an in, out, or inout parameter.

The operation’smode is either oneway (i.e., no output is returned) or normal.

The contexts attribute specifies the list of context identifiers that apply to the
operation.

The exceptions attribute specifies the list of exception types that can be raised by the
operation.

The inheriteddescribe operation for arDperatio nDef object returns an
OperationD escription .

The inheriteddescribe_contents operation provides a complete description of this
operation, including a description edch parameter defined for this operation.
Write Interfface

Setting theresult_def attrbute also updates thesult attrbute.

Themode attrbute can only be set ©OP_ONEWAY if the result isTC_void and all
elements oparams have amode of PARAM_IN.

CORBAV2.2 February 1998

8.5.22 InterfaceDef

An InterfaceDef object represents an interfaceidiibn. It can contain constants,
typedefs, exceptiws, operations, andtebutes.

module CORBA {
interface InterfaceDef;
typedef sequence <InterfaceDef> InterfaceDefSeq;
typedef sequence <Reposi toryld> R epositoryldSeq;
typedef sequence <OperationD escription> OpDescript ionSeq;
typedef sequence <AttributeDescription> AttrDescript ionSeq;

interface InterfaceDef : Container, Contained, IDLType {
/I read/write interface

attribute InterfaceDefSeq base_interfaces;
I/l read interface
boolean is_a (in Repositoryld interface_id);

struct FullinterfaceDescription {

Identifier name;
Repositoryld id;

Repositoryld defined_in;
Versio nSpec version;
OpDescriptionSeq operations;
AttrDescriptionSeq attributes;
RepositoryldSeq base_interfaces;
TypeCode type;

|3
Fullinterface Description describe_interface();
/I write interface

AttributeDef create_attribute (

in Repositoryld id,

in Identifier name,
in VersionSpec version,
in IDLType type,
in AttributeMode mode

)

OperationDef create_operation (

in Repositoryld id,

in Identifier name,
in VersionSpec version,
in IDLType result,
in Operati onMode mode,

in ParDescriptionSeq params,

CORBAV2.2 nterface Repository Interfaces February 1998 8-29

in Exception DefSeq exceptions,

in ContextldSeq contexts
);
|3
struct InterfaceDescription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
Versio nSpec version;

RepositoryldSeq base_interfaces;
|3

Read Interface

The base_interfaces attribute lists all the interfaces from which this interface
inherits. Thes_a operation returns TRUE if the interface on which it i©ked either
is identical to or inherits, directly or indirectly, from the interface identified by its
interface_id parameter. Otherwise it returns FALSE.

The describe_interface operation returns BRullinter faceDescription describing
the interface, including its operatioand atributes.

The inheriteddescribe operation for annterfac eDef returns an
InterfaceDescription

The inheritedcontents operation returns thiést of constants, typedefs, and
exceptions defined in this InterfaceDef and the list tftattesand operations either
defined or inherited in this InterfaceDef. If terclude _inherited parameter is set to
TRUE, onlyattibutes and operations defined within this interface are returned. If the
exclude_inherited parameter is set to FALSE, all ditites and ogrations are
returned.

Write Interface

Setting thebase_interfaces attribute returns an error if theame attrbute of any
object contained by thimterfaceDef conflicts with thename attribute of any object
contained by any of the specified basterfaceDefs.

The create_attribute operation returns a nedttributeDef contained in the
InterfaceDef on which it is invoked. Thal, name, version, type_def , andmode
attributes are set as specififithe type attribute is also set. Thidefined _in attribute
is initialized to identifythe containingnterfaceDef . An error is returned if an object
with the specifiedd already exists within this objectRepository , or if an object
with the specifiechame already exists within thikterfa ceDef.

The create_operation operation returns a ne@perationDef contained in the
InterfaceDef on which it is invoked. Th&l, name, version , result_def , mode,
params , exceptions , andcontexts attributes are set as specified. Thsult
attribute is also set. Thiefined_in attribute is initialized tadentify the containing

8-30 CORBAV2.2 February 1998

8

8.6 Repositorylds

InterfaceDef . An error is returned if an object with the specifieédalready exists
within this object’sRepository , or if an object with the sgrifiedname already exists
within this InterfaceDef .

Repositorylds are values that can be usedegiablish the identity of information in
the repository. ARepositoryld is represented as a string, allowing programs to store,
copy, and compare them without regard to the structure of the value. It does teot mat
what format is sed for anyparticularRepositoryld . However, conventions are used
to manage the name space created by these IDs.

Repositoryld s may be associated with OMG IDL definitions in a varietyvajs.
Installation tools might generate them, they might be defined with pragmas in OMG
IDL source, or they might be supplied with the package tms@lled.

The format of the id is a short format name followed bgadon (“:") followed by
characters according to the format. This specification defines three foomats:
derved fom OMG IDL namespne that uses DCE UUIDs, and another intended for
short-term usesuch as in a development environment.

8.6.1 OMG IDL Format

The OMG IDL fomat for Repositorylds primarily uses OMG IDL scoped names to
distinguishbetweendefinitions. It also includes an optional unique prefix, and major
and minor version numbers.

The Repositoryld consists of three components, separated by colons, (“:")
The frst component is théormatname, “IDL.”

The second component is a list of identifiers, separated bghdfacters. These
identifiers are arbitrarily longequences of alpbatic, digit, underscore (“_"hyphen

(“-"), andperiod (“.”) characters. Typically, the first identifier isuaique prefix, and
the rest are the OMG IDL Identifiers that make up thgpedoname of thdefinition.

The third component is made up of major amdor version humbers, in decimal
format, separated by a “.”. When twinterfaceshaveRepositoryld s differing only in
minor version number it can be assumed that the definition with the higher version
number is upwardly compatible with (i.e., can be treatedeaged from) theone with
the lower minor version number.

8.6.2 DCE UUID Format

DCE UUID formatRepositoryld s start with the characters “DCEahd are followed
by the printable form of the UUID, a colon, and a decimal minor version number, for
example: “DCE:700dc518-0110-11ce-ac®0090b5d3e:1".

CORBAV2.2 dpositorylds February 1998 8-31

8.6.3 LOCAL Format

LocalformatRepositoryld s start with the characters “LOCAL:” and dmdlowed by

an arbitrarystring. Lacal formatIDs are not intended for useltside a particular
repository, and thus do not need to conform to any particular convention. Local IDs
that are just consecutivetegers might beised within a development environment to
have a very cheap way to manufacture the IDs while avoidindictsmivith well-

known interfaces.

8.6.4 Pragma Directivefor Repositoryld

Three pragmalirectives (id, prefix, and version), are specified to accommodate
arbitraryRepositoryld formats and stilsupport the OMG IDLRepositoryld format
with minimal annotationThe pragma directives can hesed with the OMG IDL, DCE
UUID, and LOCAL formats. An IDLcompiler must either interpret these annotations
as specified, or ignore them completely.

The ID Pragma

An OMG IDL pragma of the format

#pragma ID <name> “<id>"

associates an arbitraRepositoryld string with a specific OMG IDL name. The
<name> can be a fully opartially scoped name or a simple identifier, interpreted
according to the usual OMG IDL name lookuyes relative to the spe within which
the pragma is contained.

The Prefix Pragma

An OMG IDL pragma of the format:

#pragma prefix “<string>"

sets the current prefix used in generating OMG IDL forRepiositoryld s. The
specified prefix applies tRepositoryld s generated after the pragma until &émal of
the current scope is reached or another prefix pragmacisuntered.

For example, th&®epositoryld for theinitial version of interfacérinter defined on
moduleOffice by an organization known as “SoftCo” might be
“IDL:SoftCo/Office/Printer:1.0".

This format makes it convenient to generate and manage a set of IDs for a collection of
OMG IDL definitions. The person creating tdefinitions sets a prefix (“SoftCo”), and
the IDL compiler or other tool can synthesize all the needed IDs.

BecauseRrepositoryld s may be used in manyffiirentcomputing environments and
ORBs, as well as over a long period of time, care must be taken in choosing them.
Prefixes that are distincsuch as trademarked names, domain names, UUIDs, and so
forth, are preferable tgeneric names such as “document.”

8-32 CORBAV2.2 February 1998

The Version Pragma

An OMG IDL pragma of the format:

#pragma version <name> <major>.<minor>

provides the version specification used in generating an OMGfdbrhat
Repositoryld for a specific OMG IDL name. Thename> can be a fully opartially
scoped name or a simpldentifier, interpreted according to theual OMG IDL name
lookup rules relative to the scope within which the pragma is containedriajer>
and<minor> components are decimal unsigned shorts.

If no version pragma is supplied for a definition, verslod is assumed.

Generation o©OMG IDL - Fomat IDs

A definition is globally identified by an OMG IDL - form#&epositoryld if no ID
pragma is encountered fitr

The ID string can be generated by starting with string “IDL:”. Then, if any prefix
pragma applies, it is appendddilowed by a “/” character. Next, the components of
the scoped name of the definitiowrjative tothe scope in which any prefix that applies
was encounteredire appended, separated by “/’ characters. Finally, a “:” and the
version specification areppended.

For example, the following OMG IDL:

module M1 {
typedeflong T1;
typedef long T2;
#pragma ID T2 “DCE:d62207a2-011e-11ce-88b4-0800090b5d3e:3”

|

#pragma prefix “P1”

module M2 {
module M3 {
#pragma prefix “P2”
typedef long T3;
|3
typedef long T4;
#pragma version T4 2.4

k

CORBAV2.2 dpositorylds February 1998 8-33

specifies types with the following scoped names Bagositoryld s:
M1:T1 IDL:M1/T1:1.0
M1::T2 DCE:d62207a2-011e-11ce-88b4-0800090b5d3e:3
M2:M3::T3 IDL:P2/T3:1.0
M2::T4 IDL:P1/M2/T4:2.4

For this scheme to provideliable global identity, the prefixes used must be unique.
Two non-colliding options are suggested: Internet domain names and DUES.UU

Furthermore, in a distributed world heredifferent entitiesndependently evolve
types, a convention must be followed to avoid the sReyositoryld being used for
two different types. Only theentity that created the prefhas authority to creatgew
IDs by simply incrementing theersion number. Other entities muste a new prefix,
even if they are only making a minor change tceaisting type.

Prefix pragmas can be used to preserve the existing IDs when a module or other
container is renamed or moved.

module M4 {
#pragma prefix “P1/M2”
module M3 {
#pragma prefix “P2”
typedef long T3;
|3
typedef long T4;
#pragma version T4 2.4
|3

This OMG IDL declares types with the same globaintities as those declared in
module M2 above.

8.6.5 For More Information

Section 8.8, “OMG IDLfor Interface Repository,” on page 8-4hows the OMG IDL
specification of thdR, including the #pragmédirective. “Preprocessing” on page 3-9
contains additional, general information on the pragma diecti

8.6.6 RepositorylDs for OMGpecified Types

Interoperability between implementations of official OMgecifications, including but
not limited to CORBA, CORBAservices, and CORB&i(lities, depends on
unambiguous specification &eposito ryld s for all IDL-defined types in such
specifications. Unlespragma directives establishinRepositoryld s for all
definitions are present in an IDL definition iefhlly published by the OMG, the
following directive is implicitlypresent at filescope preceding all such definitions:

8-34 CORBAV2.2 February 1998

#pragma prefix “omg.org”

For example, if an existing official specification included the IDL fragment:

module CORBA {// non-normative example IDL
interface Nothing {
void do_nothing();
b
b

the Repositoryld of the interface would be

“IDL:omg.org/CORBA/Nothing: 1.0".

Revisions to OMG specifications must also ensure that theititafs associated with
existing Repositoryld s are not changed. pragma version or pragma id
directive should be included with any revised IDL definition to specify a distinct
identity for the revised type. If the revised definition is compatible with the previous
definition, such as when a new operation is added tex&ting interface, only the
minor version should be incremented.

A revision of the previous example might look something like:

module CORBA {// revised non-nor mative example IDL
interface Nothing {
void do_nothing();
void do_something();
|3
#pragma version Nothing 1.1

¥
for which theRepositoryld of the interface would be

“IDL:omg.org/CORBA/Nothing: 1.1".

If an implementabn must extend an OMG-specified interface, interoperability
requires it to derive aewinterface from the standard inteck, rather than modify the
standard défition.

8.7 TypeCodes

TypeCode s are values that represent invocation argument types ittt types.
They can be obtaingdom the Interface Repository or from IDL compilers.

TypeCode s have a nhumber of uses. They are used in the dynamic invocation interface
to indicate the types of the actual argumenteyare used by an Interface Repository

to represent the type specifications that are part of many OMG IDL declarations.
Finally, they are crucial to the semantics of #mg type.

CORBAV2.2 Tegodes February 1998 8-35

TypeCode s are themselves values that can be passed asatiomwarguments. To
allow different ORB implement&ins to hide extra information ifiypeCode s, the
representation ofypeCode s will be opaque (like lnject references). However, we
will assume that the representatiorsisch thafTypeCode “literals” can be placed in
C include files.

Abstractly, TypeCode s consist of a “kindfield, and aset of parameters appropriate
for that kind. For example, tHEypeCode describing OMG IDL typdong has kind
tk_long and no parameter¥he TypeCode describing OMG IDL type
sequence<boolean,10> has kindtk_sequence and twoparametersiO and
boolean .

8.7.1 The TypeCode Interface

The PIDLinterface forTypeCodes is as follows:

module CORBA {
enum TCKind {
tk_null, tk_void,
tk_short, tk_long, tk_ushort, tk_ulong,
tk_float, tk_double, tk_boolean, tk_char,
tk_octet, tk_any, tk_TypeCode, tk_Principal, tk_objref,
tk_struct, tk_union, tk_enum, tk_string,
tk_sequence, tk_array, tk_alias, tk_except,
tk_longlong, tk_ulonglong, tk_longdouble,
tk_wechar, tk_wstring, tk_fixed

interface TypeCode {
exception Bounds {};
exception BadKind {};

I/ for all TypeCode kinds

boolean equal (in TypeCode tc);

TCKind kind ();

[l for tk_objref, tk_struct, tk_union, tk_enum, tk_alias, and
tk_except

Repositoryld id () raises (BadKind);

I for tk_objref, tk_struct, tk_union, tk_enum, tk_alias, and
tk_except
Identifier name () raiseg(BadKind);

I for tk_struct, tk_union, tk_enum, and tk_except

unsigned long member_count () raises (Badkid);

Identifier member_name (in unsigned long indexjaises
(BadKind, Bounds);

8-36 CORBAV2.2 February 1998

I for tk_struct, tk_union, and tk_except
TypeCode member_type (in unsigned long indexgises
(BadKind, Bounds);

/[for tk_union

any member_label (in unsigned long index) raises
(BadKind, Bounds);

TypeCode discriminator_type () raises (BadKind);

long default_index () misegBadKind);

I for tk_string, tk_sequence, and tk_array
unsigned long length () raises (BadKid);

[/l for tk_sequence, tk_array, and tk_alias
TypeCode content_vype () raises (Badind);

I for tk_fixed
unsigned short fixed_digits(raises(BadKind);
short fixed_scale(raises(BadKind);

// deprecated interface
long param_count ();
any parameter (in long index) raises (Bounds);
%
%

With theabove operations, anfypeCode can be decomposed into its constituent
parts. TheBadKind exception is raised if an operation is not appropriate for the
TypeCode kind it invoked.

The equal operation can be invoked on afiypeCode . EqualTypeCode s are
interchangeable, and give identicakults whenypeCode operations are applied to
them.

The kind operation can be invoked on afiypeCode . Its result determines what
other operations can be invoked on TiypeCode .

Theid operation can be invoked on object reference, structure, usmoammeration,
alias, and exceptiofypeCode s. It returns th&epositoryld globally identifying the
type. Object reference and exceptibypeCode s always have Repositoryld .
Structure, union, enumeration, anéhalTypeCode s obtained from the Interface
Repository or th@©ORB::create_operation_list operation als@lways have a
Repositoryld . Otherwise, théd operationcan return an empty string.

CORBAV2.2 Tegodes February 1998 8-37

The name operation can also be invoked on object reference, structure, union,
enumeration, alias, and exceptidypeCode s. It returns the simple name identifying
the type vithin its enclosing scope. Since names are local Repository, the name
returned from d@ypeCode may not match the name of the type in any particular
Repository , and may even be an empty string.

The member_count andmember_name operationsan be invoked on structure,
union, and enumeratiofypeCode s. Member_count returns the number of members
constituting the typeMember_name returns the simple name of the member
identified byindex . Since names are local tdR&pository , the name returned from a
TypeCode may not match the nhame of the member in antiqudar Repository , and
may even be an empty string.

The member_type operation can be invoked on structure and uiiigmeCode s. It
returns theTypeCode describing the type of the member identifie difogex .

The member_label , discriminator_type , anddefault_index operationsan only

be invoked on uniofypeCode s. Member_label returns the label of the union
member identified byndex . For the defaultnember, the label is the zero octet. The
discriminator_type operation returns the type of all non-default member labels. The
default_index operation returns the index of the default member, or -1 if there is no
default member.

The member_name , member_type , andmember_label operations raisBounds
if the index parameter is greater than or equal to the number of members constituting
the type.

The content_type operationcan be invoked on sequence, array, alas
TypeCode s. For sequences and arrays, it returns the element type. For aliases, it
returns the original type.

An arrayTypeCode only describes a single dimension of an OMG IDL array. Multi-
dimensional arrays are represented by nesiympCode s, one per dimension. The
outermostk_array Typecode describes the leftmost array index of the array as
defined in IDL. Itscontent_type describes the next index. The innermost nested
tk_array TypeCode describes the rightmost indexd the array element type.

Thelength operation can be invoked on string, wide string, sequence, and array
TypeCode s. For strings and sequences, it returns the bouitld,zeéro indicating an
unbounded string or sequence. For arrays, it returns the numekenwnts in the
array. For widestrings, it returns the bound, or zero for unbounded widags.

8-38 CORBAV2.2 February 1998

8

The deprecatedaram_count andparameter operations provide access to those
parameters thavere present in previous versions@DRBA Some information
available via otheffypeCode operations is not visible via thgarameter operation.
The meaning othe indexed parameters for eatypeCode kind arelisted in

Table 8-1, along with the information that is not visible via pfheameter operation.

Table 8-1 Legal TypeCode Kinds and Parameters

KIND PARAMETER LIST NOT VISIBLE

tk_null *NONE*

tk_void *NONE*

tk_short *NONE*

tk_long *NONE*

tk_longlong *NONE*

tk_ushort *NONE*

tk_ulong *NONE*

tk_ulonglong *NONE*

tk_float *NONE*

tk_double *NONE*

tk_longdouble *NONE*

tx_fixed {digits_integer, scale_integer}

tk_boolean *NONE*

tk_char *NONE*

tk_wchar *NONE*

tk_octet *NONE*

tk_any *NONE*

tk_TypeCode *NONE*

tk_Principal *NONE*

tk_objref {interface-id } interface name

tk_struct { struct-name, member-name, TypeCode, ... (repeat pairs) } Repositoryld

tk_union { union-name, discriminator-TypeCode, label-value, member- Repositoryld
name, TypeCode, ... (repeat triples) }

tk_enum { enum-name, enumerator-name, ... } Repositoryld

tk_string { maxlen-integer }

tk_wstring {maxlen-integer}

tk_sequence { TypeCode, maxlen-integer }

tk_array { TypeCode, length-integer }

tk_alias { alias-name, TypeCode } Repositoryid

tk_except { except-name, member-name, TypeCode, ... (repeat pairs) } Repositoryld

Thetk_fixed TypeCode has 2 parameters: a non-zero integer specifying the precision
of the fixed-point number in decimal digitand an integer giving the position of the

decimal point (scale).

CORBAV2.2 Tegodes February 1998

8-39

8-40

The tk_objref TypeCode represents an interface type. Its parameter is the
Repositoryld of that interface.

A structure with N members results irtkastruct TypeCode with 2N+1 parameters:
first, the simple name of the struct; the rest are member names alternating with the
corresponding membdiypeCode . Member names are represented as strings.

A union with N members results intla_union TypeCode with 3N+2parameters: the
simple name of the union, the discriminalgpeCode followed by a label value,
member name, and membBmpeCode for each of the N members. The label values
are all values of the data type designated by the discrimimgp®Code , with one
exception. The default membé@f present) is marked with a labehlue consisting of
the Ooctet. Recall that the operation “parameter(tc,i)” returnsaay, and that anys
themselves carry @ypeCode that can distinguish an octet fraany of thelegal

switch types.

Thetk_enum TypeCode has the simple name of the enum followed by the
enumerator names as parameters. Enumerator names are represented as strings.

Thetk_string TypeCode has one parameter: an integer giving the maximum string
length. A maximum of 0 denotes anbounded string.

The tk_wstring TypeCode has oneparameter, an integer specifying the maximum
length. A length of zero indicates an unbounded wide string.

The tk_sequence TypeCode has 2 parameters:ypeCode for the sequence
elementsand an integer giving th@maximum sequence. Again, 0 denotetounded.

Thetk array TypeCode has 2 parameters:ypeCode for the array elements, and
an integer giving the array length. Arrays are never unbounded.

Thetk_alias TypeCode has 2 parameters: the name of the alias followed by the
TypeCode of the type being aliased.

Thetk _except TypeCode has the samfrmat as theak struct TypeCode, except
that exceptions with no members are allowed.

8.7.2 TypeCode Constants

If “typedef ... FOO; " is an IDL type declaration, the IDL compiler w(iif asked)
produce a declaration ofTypeCode constant named TC_FOO for the C language
mapping. In the case of an unnamed, bounded string typedirsetly in an operation

or attibute declaration, @ypeCode constant named TC_string, where n is the
bound of the tsing is produced. (For example, “string<4> op1();” produces the
constant “TC_string_4".) These constants can be used with the dynamic invocation
interface, and any other routines that reqdiypeCode s.

The IDL compiler will generate fixed-point decim&ypeCode s on request, much as
it does for bounded strings. Where an unnamed fixed type of thefifaadxd,s> is
used directly in an operation or attribute declaratioly@eCode constant named
“TC_fixed_d_s 7" is generated. For examplefiged type with 10 decimal digitand

CORBAV2.2 February 1998

8

a scale factor of 4ixed<10,4>, produces the constantC_fixed_10_4 .” The sign
of a negative scale factor is represented by the letter “n;” thus the ID lfixgoe4 -
6> would produce TC_fixed_ 4 n6 .”

The predefinedTypeCode constants, named according to the C language mapping,
are:

TC_null

TC_void

TC_short

TC_long

TC_longlong

TC_ushort

TC_ulong

TC_ulonglong

TC_float

TC_double

TC_longdouble

TC_boolean

TC_char

TC_wchar

TC_octet

TC_any

TC_TypeCode

TC_Principal

TC_Object = tk_objref { Object }

TC_string= tk_string { 0 } // ubounded
TC_wstring =tk_wstring{0} /I unbounded
TC_CORBA_NamedValue= tk_struct.{ }
TC_CORBA _InterfaceDescription= tk_struct { ... }
TC_CORBA_OperationDescription= tk_struct.{}
TC_CORBA_AttributeDescription= tk_struct { ... }
TC_CORBA_ParameterDescription=tk_struct { ... }
TC_CORBA_ModuleDescription= tk_struct { ... }
TC_CORBA_ConstantDescription= tk_struct.{}
TC_CORBA_ExceptionDgcription= tk_struct {.. }
TC_CORBA_TypeDescription= tk_struct { ... }
TC_CORBA_InterfaceDef_Fullinterfaced3cription= tk_struct {.. }

The exact form forTypeCode constants is language mapping, aoggibly
implementation, specific.
8.7.3 Creating TypeCodes

When creating type digition objects in an Interface Repository, types are specified in
terms of object references, and thgeCode s describing them are generated
automatically.

CORBAV2.2 Tegodes February 1998 8-41

In some situations, such as bridges lEswORBsTypeCode s need to be constructed
outside of any InterfacReposdiory. This can be done using operations onQifRB
pseudo-bject.

module CORBA {
interface ORB {
/I other operations ...

TypeCode create_struct tc (
in Repositoryld id,
in Identifier name,
in StructMemberSeq members

)i

TypeCode create_union_tc (

in Repositoryld id,
in Identifier name,
in TypeCode discriminator_type,

in UnionMemberSeq members

)i

TypeCode create_enum_tc (
in Repositoryld id,
in Identifier name,
in EnumMemberSeq members

)i

TypeC ode create_alias_tc (

in Repositoryld id,
in Identifier name,
in TypeCode origi nal_type

)i

TypeCode create_exception_tc (
in Repositoryld id,
in Identifier name,
in StructMemberSeq members

)i

TypeCode create_interface_tc (
in Repositoryld id,
in Identifier name

)i

TypeCode create_string_tc (
in unsigned long bound

)i

8-42 CORBAV2.2 February 1998

TypeC ode create_w strin g_tc (
in unsigned long bound

)i

TypeC ode create_fixed_tc (
in unsigned short digits,
in short scale

)i

TypeCode create_sequence_tc (
in unsigned long bound,
in TypeCode element _type

)i

TypeCode create_recursive_sequence_tc (
in unsigned long bound,
in unsigned long offset

)i

TypeCode create_array_tc (
in unsigned long length,
in TypeCode element _type

Most of these operations asamilar to corresponding IR operations for creating type
definitions. TypeCode s are used here insteadlDL Type object references to refer to
other types. In th&tructMember andUnionMember structures, only thgype is
used, and théype_def should be set to nil.

The create_recursive_se quence_tc operation is used to creafgpeCode s
describing recursive sequences. The result of this operation is useusiructing
other types, with theffset parameter determining which enclosifigpeCode
describes the elements of this sequence. For instance, to congiypeCGode for the
following OMG IDL structure, the offset usedhen creatingts sequencdype Code
would be one:

struct foo {
long value;
seque nce <foo> chain;

>

Operations to create pritive TypeCode s are not needed, sin€gpeCode constants
for these are available.

CORBAV2.2 Tegodes February 1998 8-43

8.8 OMG IDL forinterface Repository

This section contains the complete OMG IDL specification for the Interface
Repository.

#pragma prefix “omg.org”

module CORBA {

typedef string Identi fier;
typedef string Sco pedN ame;
typedef string Repositoryld;

enum Defi nition Kind {
dk_no ne, dk_all,
dk_Attri bute, d k_Constant, dk_Exception, dk_Interface,
dk_Module, dk_Operation, dk_T ypedef,
dk_Alias, dk_Struct, dk_Union, dk_Enum,
dk_Primitive, dk_St ring, dk _Sequence, dk_Array,
dk_R epository,
dk_Wstring, dk_Fixed
|3

interface IRObject {
/l read interface
readonly attribute Defi nition Kind def_kind;
/I write interface
void destroy ();

typedef string VersionSpec;
interface Contained;
interface Repository;
interface Container,;

interface Contained : IRObject {
/I read/write interface

attribute Repositoryld id;

attribute Identifier name;

attribute Versio nSpec version;

/l read interface

readonly attribute Container defined_in;
readonly attribute S copedName absolute_name;

readonly attribute R epository containing_repository;

struct Description {

8-44 CORBAV2.2 February 1998

DefinitionKind kind;
any value;

|3
Description describe ();
/I write interface

void move (
in Container new_container,
in Identifier new_name,
in VersionSpec new_version
);
h

interface ModuleDef;

interface ConstantDef;

interface IDLT ype;

interface StructDef;

interface Unio nDef;

interface E numDef;

interface AliasDef;

interface Inter faceDef;

typedef sequence < InterfaceDef> Inter faceDefSeq;

typedef sequence <Contained> ContainedSeq;
struct StructMember {
Identifier name;
TypeC ode type;
IDLType type_def;
h
typedef sequence <StructMember> StructMemberSeq;
struct UnionMember {
Identifier name;
any label;
TypeC ode type;
IDLType type_def;
¥
typedef sequence <UnionMember> UnionMemberSeq;

typedef sequence < ldentifier> Enum MemberSeq;

interface Container : IRObject {
/l read interface

Contained lookup (in ScopedName search_name);

ContainedSeq contents (

CORBA V2.2 OMG IDL fonterface Repository February 1998 8-45

8-46

in DefinitionKind lim it_type,
in boolean exclude_inherited

);

ContainedSeq lookup_name (
in Identifier sear ch_name,
in long levels_to_sear ch,
in DefinitionKind lim it_type,
in boolean exclude_inherited

);

struct Description {
Contained contained_object;
Definit ionKind kind;
any value;

|3
typedef sequence<D escription> DescriptionSeq;

Description Seq describe_contents (
in DefinitionKind lim it_type,
in boolean exclude_inherited,
in long max_returned_obijs

);

/[write interface

ModuleDef create_module (
in Repositoryld id,
in Identifier name,
in VersionSpec version

);

ConstantDef create_constant (
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in IDLType type,
in any value

);

StructDef create_struct (
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in StructMemberSeq members

);

UnionDef create_union (
in Repositoryld id,

CORBAV2.2 February 1998

in Identifier name,

in VersionSpec version,

in IDLType discriminator_type,
in UnionMemberSeq members

);

EnumDef create_enum (
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in EnumMemberSeq members

);

AliasDef create_alias (
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in IDLType original_type
);

InterfaceDef create_interface (
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in Interfac eDefSeq base_interfaces

);

ExceptionDef create_exception(
in Repositoryld id,
in Identifier name,
in VersionSpec ver sion,
in StructMemberSeq members

interface IDLType : IRObject {
readonly attribute Ty peCode type;

>

interface Primitive Def;
interface Strin gDef;
interface S equence Def;
interface Ar rayDef;

enum PrimitiveKind {
pk_null, pk_void, pk_short, pk_long, p k_ushort, pk_ulong,
pk_float, pk_double, pk_boolean, pk_char, pk_octet,
pk_any, pk_Typ eCode, pk_Principal, pk_string, pk_obj ref,

CORBA V2.2 OMG IDL fonterface Repository February 1998

8-47

8-48

pk_longlong, pk_ulonglong, pk_longdouble, pk_wchar, pk_w
|3

interface Repository : Container {
/l read interface

Contained lookup_id (in Repositoryld search_id);
PrimitiveDef get_primitive (in PrimitiveKind kind);

/I write interface

StringDef create_string (in unsig ned long b ound);
WstringDef create_wst ring (in unsigned long bound);
SequenceDef create_sequence (

in unsigned long bound,
in IDLType element_type

)

ArrayDef create_array (
in unsigned long length,
in IDLType element_type

);
|3
FixedDef create_fixed (
in unsigned short digits,
in short scale
);
|3

interface ModuleDef : Container, Contained {

k

struct ModuleDescript ion {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
Versio nSpec version;

interface ConstantDef : Contained {
readonly attribute Ty peCode type;
attribute IDLType type_def;
attribute any value;

k

struct C onstantDe scription {

CORBAV2.2 February 1998

string

Identifier name;
Repositoryld id;
Repositoryld defined_in;
Versio nSpec version;
TypeC ode type;

any value;

interface TypedefDef : Contained, IDLType {
|3

struct Ty peDescr iption {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
Versio nSpec version;
TypeC ode type;

interface StructDef : T ypedefDef, C ontainer {
attribute StructMemberSeq members;

k

interface UnionDef : T ypedefDef, C ontainer {
readonly attribute Ty peCode di scriminator_type;
attribute IDLType discriminator_type_def;
attribute UnionMemberSeq members;

k

interface EnumDef : TypedefDef {
attribute EnumMemberSeq members;

k

interface AliasDef : TypedefDef {
attribute IDLType original_type_def;

>

interface Primitive Def: IDLType {
readonly attri bute PrimitiveKind kind;

>

interface StringDef : IDLType {
attribute unsigned long bound;

CORBA V2.2 OMG IDL fonterface Repository February 1998

8-49

k

interface WstringDef : IDLType {
attribute unsigned long bound;

k

interface FixedDef : IDLType {
attribute unsigned sh ort digits;
attribute short scale;

k

interface S equence Def: IDLType {
attribute unsigned long bound;
readonly attribute Ty peCode el ement_type;
attribute IDLType element_type_def;

k

interface Ar rayDef : IDLType {
attribute unsigned long length;
readonly attribute Ty peCode el ement_type;
attribute IDLType element_type_def;

k

interface ExceptionDef : Contained, Container {
readonly attribute Ty peCode type;
attribute StructMemberSeq members;
|3
struct Exceptio nDescription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
Versio nSpec version;
TypeC ode type;
|3
enum AttributeMode {ATTR _NORMAL, AT TR_READONLY};

interface Attri buteDef : Co ntained {
readonly attribute Ty peCode type;
attribute IDLType type_def;
attribute AttributeMode mode;

k

struct Attri buteD escription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
Versio nSpec version;

8-50 CORBAV2.2 February 1998

TypeC ode type;
AttributeMode mode;

k

enum OperationMode {OP _NORMAL, OP_ONEWAY};

enum ParameterMode {PARAM_IN, PARAM_OUT, PARAM_INOUT};
struct ParameterDescription {

Identifier name;

TypeC ode type;

IDLType type_def;

ParameterMode mode;
¥

typedef sequence <ParameterDescription> ParDescriptionSeq;

typedef ldentifier Contextldentifier;
typedef sequence <Contextldentif ier> ContextldSeq;

typedef sequence <ExceptionDef> Exceptio nDefSeq;
typedef sequence <Exceptio nDescription> Ex cDescriptionSeq;

interface OperationDef : Contained {
readonly attribute Ty peCode result;
attribute IDLType result_def;
attribute ParDescriptionSeq params;
attribute OperationMode mode;
attribute ContextldSeq contexts;
attribute ExceptionDefSeq exceptions;

>

struct Operatio nDescr iption {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
Versio nSpec version;
TypeC ode result;
OperationMode mode;
ContextldSeq contexts;
ParDescriptionSeq paramet ers;
ExcD escriptionSeq exc eptions;

typedef sequence <Repositoryld> RepositoryldSeq;
typedef sequence < Operatio nDescr iption> OpDescr iption Seq;
typedef sequence <AttributeD escription> AttrDescri ptionSeq;

interface Inter faceDef : Container, Cont ained, IDLType {
/I read/write interface

CORBA V2.2 OMG IDL fonterface Repository February 1998 8-51

8-52

k

attribute InterfaceDefSeq base_interfaces;

/l read interface

boolean is_a (in Repositoryld interface_id);

struct FullinterfaceDescription {
Identifier name;

Repositoryld id;

Repositoryld defined_in;
VersionSpec version;
OpDescriptionSeq operations;
AttrDescr iptio nSeq attributes;
RepositoryldSeq base_interfaces;
TypeCode type;

k

Fullinterface Description describe_interface();

/[write interface

AttributeDef create_attribute (
in Reposi toryld id,

in Identifier name,

in VersionSpec version,

in IDLType type,

in AttributeMode mode

)

OperationDef create_operation (
in Reposi toryld id,

in Identifier name,

in VersionSpec version,

in IDLType result,

in OperationMode mode,

in ParDescriptionSeq params,

in ExceptionDefSeq ex ceptions,
in ContextldSeq contexts

)

struct InterfaceDescription {

Identifier name;

Repositoryld id;

Repositoryld defined_in;

Versio nSpec version;
RepositoryldSeq base_interfaces;

enum TCKind {

CORBAV2.2

February 1998

tk_null, tk_void,

tk_short, tk_long, tk_ushort, tk_ulong,

tk_float, tk_double, tk boolean, tk_char,

tk_octet, tk_any, tk_TypeC ode, tk_Principal, tk_objref,
tk_struct, tk_union, tk_enum, tk_st ring,

tk_sequen ce, tk_array, tk_alias, t k_except
tk_longlong, tk_ulonglong, tk_longdouble,

tk_wchar, tk_wstring, tk_fixed

k

interface Typ eCode {// PIDL
exception B ounds {};
exception BadKind {};

/I for all T ypeC ode kinds
boolean equal (in T ypeC ode tc);
TCKind kind ();

I for tk_obijref, tk_st ruct, tk_union, tk_enum, tk_al ias, and tk_except
Repositoryld id () raises (BadKind);

I for tk_obijref, tk_st ruct, tk_union, tk_enum, tk_al ias, and tk_except
Identifier name () raises (BadKind);

/I for tk_struct, tk _union, tk_enum, and tk_except

unsigned long member_count () raises (BadKind);

Identifier member_name (in unsig ned long index) raises (BadKind,
Bounds);

/I for tk_struct, tk _union, and tk_except
TypeC ode member_type (in unsigned long index) raises (BadKind,
Bounds);

/l for tk_union

any member_label (inunsig ned long index) raises (BadKind, Bounds);
TypeC ode discriminator_type () raises (BadKind);

long default_index () raises (BadKind);

/I for tk_string, tk _sequen ce, and tk_array
unsigned long length () raises (BadKind);

/I for tk_sequence, tk_array, and tk_alias
TypeC ode content_type () raises (BadKind);

/I for tk_fixed
unsigned short fixed_digi ts() raises (BadKind);
short fixed_scal e() raises (BadKind);

/I deprecated interface

long param_count ();
any param eter (in long index) raises (B ounds);

CORBA V2.2 OMG IDL fonterface Repository February 1998 8-53

k

interface ORB {
/I other operations ...

TypeC ode create_struct_tc (
in Repositoryld id,
in Identifier name,
in StructMemberSeq members

);

TypeC ode create_union_tc (
in Repositoryld id,
in Identifier name,
in TypeCode di scriminator_type,
in UnionMemberSeq members

);

TypeC ode create_enum_tc (
in Repositoryld id,
in Identifier name,
in EnumMemberSeq members

);

TypeC ode create_alias_tc (
in Repositoryld id,
in Identifier name,
in TypeCode or iginal_type

);

TypeC ode create_exception_tc (
in Repositoryld id,
in Identifier name,
in StructMemberSeq members

);

TypeC ode create_interface_tc (
in Repositoryld id,
in Identifier name

);

TypeC ode create_string_tc (
in unsigned longb ound

);

TypeC ode create_w strin g_tc (
in unsigned longb ound

);

TypeC ode create_fixed_tc (
in unsigned short digits,

8-54 CORBAV2.2 February 1998

in short scale

);

TypeC ode create_sequence_tc (
in unsigned longb ound,
in TypeCode element type

);

TypeC ode create_recursive_sequence_tc (
in unsigned longb ound,
in unsigned long offset

);

TypeC ode create_array_tc (
in unsigned long length,
in TypeCode element_type

);

CORBA V2.2 OMG IDL fonterface Repository

February 1998

8-55

8-56 CORBAV2.2 February 1998

The Portable Object Adaptor 9

This chapter describes the Portable Object Adapter, or POA. It presents the design goals,
a description of the abstract model of the POA and its interfaces, followed by a detailed
description of the interfaces theeves.

Contents

This chapter contains ttHellowing sections.

Section Title Page
“Overview” 9-1
“Abstract Model Description” 9-2
“Interfaces” 9-13
“IDL for PortableServer module” 9-38
“UML Description of PortableServer” 9-46
“Usage Scenarios” 9-47

9.1 Overview

The POA is designed toeet the following goals:

® Allow programmers to construct objeatplementations that are portalidetween
different ORB products.

® Provide support for objects withersistent identities. More precisely, the POA is
designed to allow programmers to build object implementations#maprovide
consistent service for objects whoffetimes (from theperspective of a client
holding a reference for such an object) sparitiple server ifetimes.

CORBA V2.2 ebruary 1998 9-1

® Provide support for transparent activation of objects.
® Allow a single servant to suppartultiple object identities simultaneously.
® Allow multiple distinct instances of the POA to exist in a server.

® Provide support for transient objects with miai programming efforand
overhead.

® Provide support foimplicit activation of servants with POAllocated Objeclds.

* Allow object implementations to be maximally responsible for an object’s behavior.
Specifically, an implementatiocan control an lbject’s behavior by establishing the
datum that defines an object’s identity, determining the relatioristipeen the
object’s identityand the object'state,managing the storage anetrieval ofthe
object’s state, providing the code that will be executed in response to requests, and
determining whether or not the object existaua pint in time.

® Avoid requiring the ORB to maintain persistent state describing individual objects,
their identities, where their state is stored, whether certain identity values have been
previously used or not, whether an object has ceased to exist or not, and so on.

®* Provide an extensible mechanism for associating policy information with objects
implemented in the POA.

® Allow programmers to construct object implementations that inherit &taitic
skeleton clagss, generated bMG IDL compilers, or a DSI iplementation.

9.2 Abstract Model Description

The POA nterfaces desdred in this chapter imply a paniiar abstract computational
model. This section presents that model and defines terminology and basic concepts that
will be used in subsequent sections.

This section provides the rationale for the POA design, describes some daritetht
uses, and provides a background for understanding the interface descriptions.

9.2.1 Model Components

The model suppted by the POA is a specialization of @peneral object model
described in the OMA guideMost of the elements of the CORBA object model are
present in the model dedwed here, but there are some new componentss@né of
the names of existing components arergefimoreprecisely thanhey are in the
CORBA object model. The abstract model supported by the POA hasltwirigl
components:

® Client—A client is a computational context that makes requests on an object
through one of its references.

® Server—A server is a computational context in which the implementation of an
object exists. Generally, a server corresponds to a process. Notdieiand
serverare roles that programs play with respect tovargiobject. A program that
is a client for one object may be the server for another. The same process may be
both client and server for a single object.

CORBAV2.2 February 1998

® Object—In this discussion, we ussbjectto indicate a CORBA object in the
abstract sense, that is, a programming entity with an identitptariace,and an
implementation. From a client’s perspeetithe obgct’s identity is encapsulated in
the object's reference. This specification defines the server’s view of object
identity, which is explicitly managed by object implementations through the POA
interface.

® Servant—A servant is a programming language object or entity that implements
requests on one or more objects. Servants generally exist within the context of a
server process. Requests made on an object’s references are mediated by the ORE
and transformed into invocations on a particular servant. In the course of an
object’s lifetime it may bessociated with (that is, requests on its references will be
targeted at) multiple servants.

® Object I&—An Object Id is a value that is used g POA and by the user-supplied
implementation to identify a particular abstract CORBA object. Object Id values
may be assiged and managed by the POA, or they may be assigned and managed
by the implementation. Object Id values are hidden from clients, encapsulated by
references. Object Ids have no standarth; they arenanaged by the POA as
uninterpreted octet sequences.

Note —The Object Id defined in this spécation is amechanical device used by an
object implementation to correlate incoming requests with references it has previously
created and exposed to clients. It does not constitute a unique logical identity for an
object in any larger sens@heassignmenand inerpretaibn of Object Id values is
primarily the responsibility of the appitiondeveloper, although tHeYSTEM_ID

policy enables the POA to generate Object Id values for the application.

®* Object Referenee-An object reference in this model is the same as in the CORBA
object model. This model implies, however, that a reference specifically
encapsulates an Object Id and a POA identity.

Note —A concrete reference in a specific ORB implementation will contain more
information, such as the location of the server and POA in question. For example, it
might contain the full name of the POA (the names of all P&Aging from the root

and ending with thepecific POA). The reference might not, in fact, actually contain
the Object Id, but instead contain more compact values managed by the ORB which
can be mapped to the Object Id. This is a description of the abstract information model
implied by the POA. Whatever encoding is used to represerR@#fename andhe

Object Id must notestrict the ability tause any legal character in a POA name or any
legal octet in an Object Id.

®* POA—A POA is an identifiable entity within the context of a serveactitPOA
provides a namespace for Object Ids and a namespace for other (nested or child)
POAs. Policies associated with a POA describe characteristics of the objects
implemented in that BA. Nested POAs form a hierarchical name space lijecis
within a server.

CORBAV2.2 Abstrabtodel Description February 1998 9-3

9-4

® Policy—A Policy is an object associated with a POA by an application in order to
specify a characteristic shared by the objects implemented in that POA. This
specification defines policies controlling the POA's threading model as well as a
variety of other options related to the management of objects. Otheficqt®ais
may define other policies that affect how an ORB processes requests on objects
implemented in the POA.

* POAManager—A POA manager is an object that encapsulates the processing state
of one or more POAs. Using operations on a POA manager, the developer can cause
requests for the associated POAs to be queued or discarded. The developer can als
use the POA manager to deactivate the POAs.

® Servant ManagerA servant manager is an object that the application developer
can associate with a POA. The ORB will invokeemgtions on servant managers to
activate servants on den@, and to deactate servants. Servant managers are
responsible for managing the association of an object (as characterized by its Object
Id value) with a particular servant, and fitetermining whether an object exists or
not. There are two kinds of servant managers, c8lsgantActivator and
ServantLocator ; the type used in a particular situatbepends on policies in the
POA.

* Adapter Activator—An adapter activator is an object that the application developer
can associate with BOA. The ORBuwill invoke an operation on an adapter
activator vhen a request ieceved for a child POA that does notirrently exist.

The adapteactivator carthen create the required POA on demand.

9.2.2 Model Architecture

This section describes the atelsiture of the abstract modeiplied bythe POA, and the
interactons between various componeritae ORB is arabstraction visible to both the
clientand server. The POA is an objedilile to the serverlUser-supplied
implementations areegistered with the POA (this statement is a simplification; more
detail is provided below). Clients hold references upon which they can make requests.
The ORB, POA, and impmentation all cooperate to deténe which servant the

operation should be invoked on, andtrform the invocation.

CORBAV2.2 February 1998

Object Reference .
/ Object Id

/O:QB I

POA 6
-, O
O
User-supplied
servants
POA
O

N J

Server

Client

Figure 9-1 Abstract POA model

Figure 9-2 shows the detail of the relationship between the POA andptegriemtation.
Ultimately, a POA deals with a@bject Id and amctive serant. Byactive servantwe

mean a programming object thxisss in memonand has been presented to the POA

with one or more associated object identities. There are several ways for this association
to be made.

If the POA supports thRETAIN policy, it mantains a map, labeleiictive Object Map
that associates Object Ids with active servants, each assocatigtituting an active
object. If the POA has thdSE_DEFAULT_SERVANT policy, a default servant may
be registered with the®A. Altematiely, if the POA has the
USE_SERVANT_MANAGER policy, a user-written servant manager may be
registered with the POA. If the Active Object Map is not used, or a request arrives for an
object not present in the Active Object Map, the POA either uses theltdsdrvant to
perform the request oriitvokes the servant manager to obtain a servant forpethe
request. If theRETAIN policy is used, the servardtuned by a servant manager is
retaned in the Ative Object Map. Otherwise, the servant is used only to process the
one request.

In this specificatin, the termactiveis applied equally to servants, Object ldad
objects. An object is active in a POAtfe POA’s Active Object Map caaihs an entry
that associates d@dbject Id with an existing servant. When thiesificaton refers to
active Object Idsandactive servantsit means that the Object Id value or servant in
guestion is part of an entry in the Acti@bject Map.

CORBA V2.2 Abstrabtodel Description February 1998 9-5

/ root "\
POA

Object Id?

-0 ~T Q>

U'ser—supplied
servant

/

POA A

~

default servant

L —1

Object Id O]

Active Object Map
/

Object Id O——
Object Id O——

User-supplied
servant

User-supplied
servant

Object Id

User-supplied
servant

~?,F’OA B

servant mgr.

C

Obiject Id O
Obiject Id O

POAC

- A
Object1d O |

User-supplied
servant

User-supplied
ServantManagef.
.7

.

.

User-supplied
 servant

User-supplied
servant

/

|Object Id gi

AdapterActivato

Figure 9-2 POA Architecture

9.2.3 POA Creation

To implement an object using the POA requires that the servecafigii obain a POA
object. A distinguished POA objectlled theroot POA is managed by the ORB and

provided to the apaion using the ORB initi#aion interface under the initial object

h
servant

User-supplied

> Object réerence

—> Servant pointer

name “RootPOA.” Thapplication developer can createais using the root POA if
those dedult policies are suitabl@heroot POA has the following policies.

» Thread PolicyORB_CTRL_MODEL

« LifespanPolicy: TRANSIENT

CORBAV2.2

Object Id Uniqueness Hoy: UNIQUE_ID
¢ Id Assignment PolicySYSTEM_ID

» Servant Retention Polic\RETAIN
Request Processing PolicySE_ACTIVE_OBJECT_MAP_ONLY
Implicit Activation Policy:IMPLICIT_ACTIVATION

February 1998

9

Thedeveloper can alsa@ate new POAs. Creatingnaw POA allows tha@pplicaion
developer to declare sgéic policy choices for the new POA and to provide dediént
adapter activator and servant manager (these are callback olkjedtby the POA to

activate objects and neste@Rs ondemand). Creatingew POAs also allowthe

application developer to partition the name space of objects, as Object Ids are interpreted
relative to a POA. Finbl, by creatingnew POAsthe developer can independently

control request processing fouttiple sets of objects.

A POA is created as a child of an existing POA usincgctieate POA operation on
the parent POA. When a POA is created, the POA is given a name that must be unique
with respect to all othePOAs with the samparent.

POA objects are not persistent. No P&tAtecan be assumed to beved by the ORB.
It is the responsibility of the server apliion to create aniditialize the appropriate
POA objects during server initialization or to setfatapterActiater to create POA
objectsneeded lger.

Creating the appropriate POA objects is paltidy important for persistent objects,
objects whose existen@an span multiple server lifetimes. To support an object
reference created in a previous server process, thieajgyl must recreathe POA hat
created the object reference as well as all of its ancestor POAs. To ensaibdifyort

each POA must be created with the same name as the corresponding th@ Ariginal
server process and with the same policies. (It is the user’s responsibility to create the
POA with these conditions.)

A portable server applicatioran presume that there is no conflict between its POA
names and the POA names chosen by other applicalt is the responsibility of the
ORB implementation to providewsay to supprt this behavior.

9.2.4 Reference Creation

Object references amreated in servers.r@e theyare created, they may be exported to
clients.

From this model’'s perspeet, object eferences encapsulate object identity information
and information required by the ORB ttentify and locate the server and POA with
which the object is associatétthat is, inwhose scope theference was created.)
References are created in the following ways:

®* The server application may directly create a refegewith thecreate reference
andcreate_reference_with_id operations on a POA object. These operations
collect the necessary information to constitute the reference, either from
information associated with the POA or as parameters to the operation. These
operations only create a reference. In doing so, they bring the abstract object into
existerce, but do not associate it with aotive servant.

®* The server application may explicitly activate a servant, associating it with an object
identity using theactivate_object or activate_object_with_id operations. @ce
a servant is actated, the server application can map the servaits to
corresponding reference using #ervant_to_reference orid_to_reference
operations.

CORBAV2.2 Abstrabtodel Description February 1998 9-7

® The server application may cause a servaimhicitly activate itself. This
behavior can only occur if the POA has beseated with the
IMPLICIT_ACTIVATION policy. If an attempt is made to obtain an object
reference corresponding to an inactive servant, the POA may automatically assign a
generated unique Object Id to the servant and activateegudting object. The
reference may be obtained by invokiR@A::servant_to_reference with an
inactive servant, or by performing an explicitimplicit type conversionfrom the
servant to a reference type in programmingyleage mappings thaermit this
conversion.

Once aeference is created in the server, it can be mad&hbleaio clients in a variety
of ways. It can be advertised through @&IG Naning and Trading Services. It can be
converted to a string vi@RB::object_to_string and published isome way that
allows the client to discover the string and convert it tefarence using
ORB::string_to_object . It can be returned as the result of an operation invocation.

Once aeference becomes aladile to a client, that reference constitutes the identity of
the object from the client’s perspwet As long as the igint program holdand uses that
refeence, requas nade on the reference should be sent to the “same” object.

Note —It should be noted here that the meaning of object idemiti’sameness” is at
present the subject of heated debate in the OMG. This specification does not attempt
to resolve that debate in any way, tgadarly by defining a concrete notion of identity

that is exposed to clients, beyond thésting notions of identity described in the

CORBA specificationsand the OMA guide.

The states of servers and implementation objects are opaque to clients. Thisaspaci
deals primarily with the view of the ORIBom the server's perspective.

9.2.5 Object Activation States

At any point in time, a CORBAgect may or may not be associated with an active
servant.

If the POA has th&®ETAIN policy, the servant and itssaxiated Object Id are entered
into the Active Object Map of the appropriate POA. This type oVatidn can be
accomplished ione of the following ways.

® The serveapplicaton itself explicitly activates individual objects (via the
activate_object or activate_object with_id operations).

®* The serveapplication instructs the POA to activate objects anated by having the
POA invoke auser-supplied servant manager. The serveregtfh registers this
servant manager witket_servant_manager .

® Under some caumstanceéwhen thelMPLICIT_ACTIVATION policy is also in
effectand the language binding allows such an operation), the POA may implicitly
activate an objeavhenthe server application attempts to obtain areafee for a
servant that is not alreadgctive (that isnot associated with an Object Id).

CORBAV2.2 February 1998

9

If the USE_DEFAULT_SERVANT policy is also in effect, the server application
instructs the POA to activatenknownobjects by having the POA invoke a single
servant no matter what the Object Id is. The serveicgtion registers this servant with
set_servant .

If the POA has th&lON_RETAIN policy, for every request, the POA may use either a
default servant or a servant manager to locate an active servant. FronmAfsepBidt of
view, the servant is active only for the duration of thra¢ request. The POA does not
enter the servant-object association into the Active Object Map.

9.2.6 Request Processing

A request must be capable of conveying the Object Id of the target object as well as the
identification of the POA that created the target objeetresice. When aiehnt issies a
request, the ORB first locates an appropriate server (perhaps sterdinigneeded) and

then itlocates the appropriate POA within that server.

If the POA does not exist in the server process, the application has the opportunity to re-
create the required POA by using an adaattivator. An adapter activator is a user-
implemented object that can be associated with a POA.nvdaked by the ORB when a
request is received for a non-existent chi@A? The aapter activatohas the

oppotunity to create the required POA. Ifdbes not, the client receives the
OBJECT_NOT_EXIST exception.

Once the ORB has located the aypiate POA, it divers the request to that POAhe
further processing of that requegtpends both upon tipelicies associated with that
POA as well as the object's current state of adtimat

If the POA has th®ETAIN policy, the POA looks in the Active Object Map to find if
there is a servant associated with the Object Id value from the request. If such a servant
exists, the POA invokes the appropriate method on the servant.

If the POA has th&lON_RETAIN policy or has th&RETAIN policy but didn't find a
servant in the Active Object Map, the POA takes the folloveiatipns:

* |f the POA has th&JSE_DEFAULT_SERVANT policy, a default servartas been
associated with the POA so the POA will invoke the appropriataadetnthat
servant. If no servant has beencasated with the POA, the POA raises the
OBJ_ADAPTER system exception.

* |fthe POA has th&JSE_SERVANT MANAGER policy, a servant manager has
been associated with the POA so the POA will invioicarnate orpreinvoke on it
to find a servant that may handle the requ@ste choice of method depends on the
NON_RETAIN or RETAIN policy of the P@\.) If no servant manager has been
associated with the POA, the POA raises@f)_ ADAPTER system exception.

* |f the USE_OBJECT_MAP_ONLY policy is in effect, the POA raises the
OBJECT_NOT_EXIST system exception.

If a servant manager is located and invoked, but the servant manager igcttyt dir
capable of incarnating the object, it (the servant manager) may deal with the
circumstace in a variety of ways, all of which are the aggion’s responsibility. Any

CORBAV2.2 Abstrabtodel Description February 1998 9-9

9-10

system exception raised by the servant manager will be returned teetitercthe eply.

In addition to standard CORBA exceptions, a servant manager is capable of raising a
ForwardRequest exception. This exception includes arnjeat refeence. The ORB

will process this exception as stated below.

9.2.7 Implicit Activation

A POA can be created with a policy that indicates that itsotdjmay be implicitly
activated. This policyiMPLICIT_ACTIVATION, also requires th8 YSTEM_ID and
RETAIN policies. When a POA supports impliciti@etion, an inactive servant may be
implicitly activated in thaPOA by certain operations that logically require an Object Id

to be asgjned to that servant. pticit activation of an object involves allocating a
system-generated Object Id aradjistering the servant with th@tject Id in the Active
Object Map. Thenterface associated with the implicitly activated object is determined
from the servant (using static information from the skeleton, or, in the case of a dynamic
servant, using theprimary_interface() operatbn).

The operationshatsupport implicitactivation include:

®* ThePOA:servant_to_reference operation, whichiakes a servant paneterand
returns a reference.

®* ThePOA:servant_to_id operation, which takes a servantgmaeterand returns an
Object Id.

® QOperations supported by a language mapping to obtain an object reference or an
Object Id for a servant. For example, ththis() servant member function in C++
returns an object reference for the servant.

® |mplicit conversions supported by a language mapping that convert a servant to an
object reference or an Object Id.

The kst two categories of operations are language mapping dependent.

If the POA has th&NIQUE_ID policy, then implicit activation wilbccur when any of
these operations are performed on a semaitis not currently active (that is, itis
associated with no Obiject Id in the POA's Active Object Map).

If the POA has th&ULTIPLE_ID policy, theservant_to_reference and
servant_to_id operations willalwaysperform implicit activatin, even if the servant is
already associated with an Object Tdhe behavior of language mapping operations in
the MULTIPLE_ID case is specified by the language mapping. Fanpbe in C++, the
_this() servant member function will not implicitly activateV&JLTIPLE_ID

servant if the invocation ofthis() is immediately within the dynamic context of a
request invocation directed by the POA to that sentaskad, it returns the object
referenceused to issue the request.

Note —The exact timing of implicitactivation is ORB implementatiatependent. For
example, ingad of ativating the object immediatelypon ceation of a local object
refeence, the ORB could defer thetivation until the Object Id is actualheeded (for
example, vaen the object reference is exportedsimld the process).

CORBAV2.2 February 1998

9.2.8 Multi-threading

The POA does noequire the use of threads and does not specify what support is needed
from a threads package. However, in order to allow the developmentalflpaservers

that utilize threads, the behavior of the POA agldted intericeswhen used witin a

multiple thread environment must be specified.

Specifying this behavior does not require that an ORB must support being used in a
threaded environment, nor does it require that an ORB milize threads in the

processing of requests. The only requirement given here is that if an ORB does provide
support for multi-threadinghese are the behaviors that will be supported by that ORB.
This allows a programmer to take advantage of multiphB&that support tleads in a
portable manner across thos&Bx.

The POA's processing is affted by the thread-related calls available in the ORB:
work_pending , perform_work , run, andshutdown .

POA Threading Models

The POA supports two odels of threading when used in aomjtion with multi-
threaded ORB implementations; ORB controlled and single thread behabertwo
models can be used together or independently. Either model can be used in
environmentsvhere asingle-hreaded ORB is used.

The treading model associated with a POA is indicateémthe POA isreated by
including aThreadP olicy object in the policies parameter of theA®create POA
operaton. Once a POA isreated with one model, it cannot be changed to the other. All
uses of the POA within theesver must conform to that threading model associated with
the POA.

Using the Single Threadodel

Requests for a single-thasd POA are processed sequentially. In a multi-threaded
environment, all upcalls made by this POA to implementatoate (servants, servant
managers, and adapteriaators) are made in@anner that is safe for code that igltia
threadunawatre.

Using the ORE ontrolledModel

The ORBcontolled model of threading is used in environments where the developer
wants the ORB/POA to control the usetlmfeads in the manner prded by the ORB.
This model can also be used in environments that do not support threads.

In this model, the ORB is responsible for the camgtmanag®aent,anddestruction of
threads used with one or more RO

CORBAV2.2 Abstrabtodel Description February 1998 9-11

9-12

Limitations Whetusing Multiple Threads

There are no guarantettst the ORBand POA will do anythingpecific about

dispatching requests across threads with a single POA. Therefore, a server programmer
who wants to use one or more POAs withirultiple theads must take on all of the
serialization of access to objects within those threads.

There may be requests active for the same object being dispatched within multiple
threads at the same timEhe programmer must be aware of this possibility and code
with it in mind.

9.2.9 Dynamic Sketen Interface

The POA isdesgned to enable programmers to connect servants to:
® type-specific skeletons, typically generated by OMG IDL compilers; or

® dynamic skeletons

Servants that are members of type-specific skeleton classes are referred to as type-
specific servants. Servants connected to dynamic skeletons are used to implement the
Dynamic Skeleton Interface (DSI) and are referred to as DSI servants.

Whether a CORBA object is being incarmnated by a DSI servant or a type-specific servant
is transparent to its clientfwo CORBAobjects supporting the same interface may be
incarnated one by a DSI servant and the other with a type-specific servamtrifore,

a CORBA object may be incarnated b¥p&l sevant only during some period of time,
while the rest of the time is incarnated bgtatic servant.

The mapping for POA DSI servants is languageigipewith each language providing a
set of interfaces to the POAhese interfaces are used only by the PDe nterfaces
required are the following.

®* Take aCORBA::ServerRequest object from the POA and perform the processing
necessary to execute the request.

® Return the Interface Repository Id identifying the mostwéetinterface supported
by the target CORBA object in a request.

The reason fothe first interface is the entireason for existence of the DSI: to be able
to handle any request in the way the programmer wishes to handle it. A single DSI
servant may be used to incarnate several CORBA objects, potentially supporting
different interfaces.

The reason fothe second ietrfacecan be understood by comparing DSI servants to
type-speific sevants.

A type-specific servant may incarnate several CORBA objects but all of them will
support the samiDL interface as the most-derived IDL interface. In C++, for example,
an IDL interfaceWindow in moduleGraphicalSystem will generate a type-
specific skeleton class call®lindow in namespacOA_GraphicalSystem . A
type-speific sewant which is diectly derived from the

CORBAV2.2 February 1998

POA_GraphicalSystem::Window skeleton class may incarnate several
CORBA objects at a time, but all those CORBAealt§ will support the
GraphicalSystem::Window interface as the most-derivatterface.

A DSI servant may incarnate several CORBA objects, not necessarily supporting the
same IDL interface as the most-derived IDL interface.

In both cases (type-sgiéic and DSI) the POA may need to determineauatime, the
InterfaceRepository Id identifying thenost-deived interface supported by the target
CORBA object in a request. The POA should be able to deterimis by asking the
servant that is going to serve the CORBA object.

In the case of type-specific servants, the POA obtains that information from the type-
specific skeleton clagsom which the servant is a directly derived. In thsecofDSI
servants, the POA obtains that information by usingsdtend language-spéc
interfaceabove.

9.2.10 Location Transparency

The POA supportication transparency for objectaplemented usg the POA. Uless
explicitly stated to the contrary, all POA behavior describathimispecification applies
regardless of whether the client is local (same process) or refmtexample, like a
request from a remote client, a request from a local client may: cause object activation if
the object is not active; may block indefely if the target object's POA is in the tiolg

state; may be rejected if the target object's POA is in the discarding or irdet®s;

may be delivered to a threadawareobject implementation; or may be delivered to a
different object if the target object's servant manager raisdsatwardRequest

excepton. The Object Id and POA of the targeteaitjwill also be available to the server

via theCurrent object, regardless of whether the client is local or remote.

Note —The implcation of these requirements on the ORB implementation is to require
the ORB to mediate all requests to POA based obijects, even if the cliemeggdmit in

the same process. This spaafon is not intended to change CORBAServices
specifications that allow fdvehaviors that are not location transparent. This spatii

does not prohibit (nonstandard) POA extensions to support object behavior that is not
location transparent.

9.3 Interfaces

The POA-redted interfaces are defined in a module separate fro@@RBA module,
the PortableServer module. It consists of several interfaces:

« POA

* POAManager

« ServantManager

« ServantActivator

e ServantLocator

» AdapterActivator
ThreadPolicy

CORBAV2.2 lerfaces February 1998 9-13

9-14

* LifespanPolicy

* IdUniguenessPolicy

* IdAssignmentPolicy
 ImplicitActivatio nPolicy
» ServantRetentionPolicy

* RequestProcessingPolicy
» Current

In addition, the POA defines tfgervant native type.

9.3.1 The Servant IDL Type

This specification defines a native typPertableServer::Servant . Values of the type
Servant are programming-language-specific implementations of CORB&faces.
Each language mappingust specify howServant is mapped to the programming
language data type that corresponds to amcbljnplement#on. TheServant type has
the following characteristicand constraints.

® Values of typeServant are opagquérom the perspective of CORBA application
programmers. There are no operations that can be perfainsady on them by
user programs. fiey can be passed as parameterettain POA operations. Some
language mappings may alldervant values to be implicitly converted to object
references under appropriate conditions.

® Values of typeServant support a language-specific programming interface that can
be used by the ORB to obtain a default POA for that servant. This interface is used
only to supporimplicit activation. A hnguage mapping may provide a default
implementation of this inteate that returns the root POA of a default ORB.

® Values of typeServant must be testable for identity.

® Values of typeServant have no meaning outside of the process context or address
space in which they are generated.

9.3.2 POAManager Interface

Each POA olgct has an associattdDAManager object. A POA manager may be
associated with one or more POA objects. A POA manager encapsulates the processing
state of the POAs it is s@ciated with. Using operations on the POA manager, an
application can cause requests for those POAs to be queued or discarded, and can caus
the POAs to be deactivated.

POA managers are createdddestroyed implicitly. Unless an explicit POA manager
object is provided at POAreation time, a POA manager is creatdten a POA is
createdand is automatically associated witlat POA. A POA manager object is
implicitly destoyed when all of its aesiated POAdave beerestoyed.

CORBAV2.2 February 1998

deactivate

Processing States

A POA manager has four pdsie processing stateartive inactive holding and

discarding The pocessing state determines the capabilities of the associated POAs and
the disposition of requests reeed by those PBs. Figure9-3 illustrates the processing
states and theansitions betweethem.For sinplicity of presentatin, this speification
sometimes describes these states as POA states, referring to the POA or P@#&ðat
been associated with a particular POA manager. A P@Aager is created in the

holding state. The root POA is therefore initially in thelding state.

?

destroy
inactil.',le dEﬁEftiVEﬂE
deactivate
dizcard_requests
active dizcarding

activate

activate hald_requests

hold_requests

halding 1

dizcard_requests

create_POA

Figure 9-3 Processing States

Active State

When a POA manager is in thetive state, the associated POAs will receavel start
processing requests (assuming that appropriate thread resources areepvditddblthat
even in the active state, a POA maed to queue regsts dpending upon the ORB
implementatiorand resource limits. Theumber of requests that can be received and/or
gueued is an impmentation limit. If this limit is reaehl, the POA should return a
TRANSIENT system exception to indicate that the client shoel@&sue the request.

A user program can legally trsifon a POA manager from ttectivestate to either the
discarding holding or inactive state by calling théiscard_requests

hold_requests , or deactivate operations, rgectively. The POA enterthe active
state through the use of thetivate operationwhen inthe discardingor holding state.

CORBAV2.2 lerfaces February 1998 9-15

9-16

Discarding State

When a POA manager is in tHescardingstate, the associated POAs will discard all
incoming requests (whose processing has not yet begun). When a request is discarded,
the TRANSIENT system exception must be reted to the cént-side to indicate that

the request should be re-issued. (Of course, an ORB may always reject a request for
other reasons and raise some otlystesn exception.)

In addition, when a POA manager is in thiscardingstate, the adapter activators
regisered with the associated POAs will not get calledtehd, requests that require the
invocation of an adapter activator will be digted, as decrbed in the previous
paragraph.

The primary purpose of thdiscardingstate is to provide an apgdition with fow-
control capabilities when it determines that an object'semphtation or POA is being
flooded with requests. It is expected that theiapfbn will restore the POA amager to
the active state after correctinthe problem thataused flow-control to be needed.

A POA manager can legallyammsition from thediscardingstate to eithetheactive
holding orinactivestate by calhg theactivate , hold_requests , or deactivate
operations, rgeectively. The POA enterthe discardingstate though the use of the
discard_requests operationwhen in theactive or holding state.

Holding State

When a POA manager is in thelding state the associated POAs will queue incoming
requestsThe number of requests that candpgeued is an iplementation limit. If this

limit is reached, the ®BAs may discard requestnd eturn theTRANSIENT system
exception tahe client to indicate that the client should reissue the request. (Of course, an
ORB may always reject a request for other reaamisrise some other system

exceptdn.)

In addition, when a POA manager is in ttading state, the adapter actors registred
with the associated®As will notget called. Instead, requests that require the invocation
of an adapter activator will bgueued, as described in the previous paragraph.

A POA manager can legallyammsition from thenolding state to either thactive
discarding or inactive state by calling thactivate , discard_requests , or

deactivate operations, respectively. The POA entershbkling state through the use
of thehold_requests operation when in thactive or discardingstate. A POA manager
is created in the holding state.

Inactive State

Theinactive state is enteredthenthe associated POAs are to be sthawvn. Unlikethe
discardingstate, thénactivestate is not a temporary state. When a POA manager is in
theinactivestate, the assated POAs will reject new requests. Thgction mechanism
used is specific to the vendor. Th#OP locationforwarding mechanisrand
CloseConnection message are eplasiof mechanisms that could be used to indicate the
rejection. If the client is co-resident in the same process, the ORB could raise the
OBJ_ADAPTER exception to indicate that the object implementation is unavailable.

CORBAV2.2 February 1998

9

In additon, when a POA manager is in thactive state, the adapter activators registered
with the associated®As will notget called. Instead, requests that require the invocation
of an adapter activator will be rejedt as described in the previous paragraph.

Theinactive state is entered using tdeactivate operation. It is legal to enter the
inactive state from either thactive holding or discardingstates.

If the transition into thénactive state is a result of callindeactivate with an
etherealize_objects parameter of

®* TRUE - the associatedJAs will call etherealize for each active object associated
with the POA once all currently executing requests have completed procétsing
the POAs have thRETAIN andUSE_SERVANT_MANAGER policies). If a
servant manager has been registered for the POA, the POA will get rid of the object.
If there are any queued requests that have not yet started executing, they will be
treated as ithey were new requests and rejected.

® FALSE - No deactivations or etlealizatons will be attempted.

Locality Constraints

A POAManager object must not be exported to other processes, or externalized with
ORB::object to_string . If any attempt is made to do so, the offending operation will
raise aMARSHAL system exception. An attempt to usP@AManager object with

the DIl may raise th&lO_IMPLEMENT exception.

activate

void activate()
raises (Adapt erlnactive);

This operation changes the state of the POA managatite If issued while the POA
manager is in thnactive state, theAdapterlnactive exception is raised. Entering the
activestateenables the associated POAs to process requests.

hold_requests

void hold_requests(in boolean wait_for_completion)
raises(Adapterinactive);

This operation changes the state of the POA manageldimg If issued while the POA
manager is in thactive state, theAdapterinactive exception is raised. Entering the
holding state causes the associated POAs to queue incoming requests. Any requests tha
have been queued but have ratted executing wiltontinue to be queued while in the
holding state.

CORBAV2.2 lerfaces February 1998 9-17

9-18

If thewait_for_completion parameter i$ALSE, his operation returns immediately
after changing the state. If the pasdar is TRUE, this operatiaiioes noteturn until
either there are no actively executing requestmiy of the POAs associated with this
POA managertbat is, all requests thatere started prior to the state change have
completed) or the state of the POA manageh@&nged to a state other thiaolding

discard_requests

void discard_requests(in boolean wait_for_completion)
raises (Adapt erlnactive);

This operation changes the state of the POA managisdarding If issued while the
POA manager is in th@activestate, theAdapterinactive exception is raised. Entering
the discardingstate causes the associated POAs to discard incoming requests. In
addition, any requests that have been queued but have not started executing are
discaretd. When a request issdarded, ZRANSIENT system exception is rehed to
the client.

If thewait_for_completion parameter i$ALSE, his operation returns immediately
after changing the state. If the pagdar is TRUE, this operatiatoes noteturn until
either there are no actively executing requestmniyn of the POAs associated with this
POA managertat is, all requests thatere started prior to the state change have
completed) or the state of the POA manageh&nged to a state other thadiscarding

deactivate

void deactivate(in boolean etherealize _objects,
in boolean wait_for_completion);
raises (Adapt erlnactive);

This operation changes the state of the POA manageadtve If issued while the
POA manager is in thi@activestate, theAdapterinactive exception is raised. Entering
the inactive state causes the associated POAs to reject regaeb@ve not begun to be
executed as well as any new requests.

After changing the state, if thethereali ze_objects parameter is

®* TRUE - the POA manager will cause all associated POAs that haRET&IN and
USE_SERVANT_MANAGER policies to perform thetherealize operation on the
associated servant manager for all active objects.

® FALSE - theetherealize operation is not called. Theaupose is to provide
developers with a means to shiotvn POAs in arisis (for example, unrecoverable
error) situation.

If the wait_for_completion parameter i$ALSE, tis operation will return
immediately after changing the state. If the parameter SE[Rhisoperation does not
return until there are no ae#lly executing requests in any of th@/&s associated with
this POA manager (that is, all requests thate sarted prior tathe state change have

CORBAV2.2 February 1998

completed) and, in the case of a TRElEerealize_objects , all invocations of
etherealize have comleted for POAdaving theRETAIN and
USE_SERVANT_MANAGER policies.

If the ORB::shutdown operation is called, it makes a call d@activate with a TRUE
etherealize_objects parameter for each POA manageown in theprocess; the
wait_for_completion parameter taleactivate will be the same as the similarly
named parameter @RB::shutdown .

9.3.3 AdapterActivator Interface

Adapter advators are associated with POAs. An adapter activator supplies a POA with
the ability to create child®As ondemand, as a sidefeft of receiving a request that
names the child POA (ane of its cHdren), orwhenfind_POA is called with an

activate parameter value of TRUE. Applicationserver that creates all teeded POAs

at the beginning of execution does not need to use or provide an adAjvegor; it is
necessary only for the casevitnich POAs need to be created during request processing.

While a request from the POA to an adapter activator is in progressgadsts to
objects managed by timeew POA(or any descendant POAs) will be queued. This
serialization allows the adapter activator to compdetg initialization of thenew POA
before requests are delivered to that POA.

Locality Constraints

An AdapterActivator object must be local to the process containing the POA objects it
is registered with.

unknown_adapter

boolean unknown_adapter(in POA parent, in string name);

This operation is invokedhen the ORBeceives a request for an object reference that
identifies a target POA that does not exist. The ORB invokes thiata@peonce for each
POA that must be created in order for the target POA to estatifigwith the ancestor
POA closest to the root FX). The opertion is invoked on the ageer activator
associated with POA that is the parent of the POArnb&atls to be created. That parent
POA is passed as thparent parameer. The name of the POA to be created (relative to
the parent) is passed as th@me parameter.

The impementation of this operation should either create the specifieddp@Aeturn
TRUE, or it should return FIASE. If the operation returns TRUE, the ORB will proceed
with processing the request. If the operation retihisSE, the ORB will rairn
OBJECT_NOT_EXIST to the client. If multiple POAgreed to be eatedthe ORB will
invokeunknown_adapter once for each POA that needs to be created. If the parent of
a nonexistent POA does not have aspamted adapter acator, the ORB will return the
OBJECT_NOT_EXIST exception.

CORBAV2.2 lerfaces February 1998 9-19

If unknown_adapter raises a system excapti the ORB will report an
OBJ_ADAPTER exception.

For example, if the target object referemeas created by a POA whose full name is
“A”, “B”, “C”, “D” and only POAs “A” and “B” c urrently exist, the

unknown_ad apter operation will be ingked on the adapter activat@saciated with
POA “B” passing POAB” as the pagnt parameter antC” as the name of the missing
POA. Assuminghat the adapter activator creates POA “C” and retliRISE, the ORB
will then invokeunknown_adapter on the adapter aeator associated with POA “C”,
passing POA “C” athe parent parametand “D” as the name.

Theunknown_adapter operation is also invoked whénd_POA is called on the

POA with which theAdapterActivator is associated, the specified child does not exist,
and theactivate_it parameter tdind_POA is TRUE. Ifunknown_adapter creates
the specified POA and returns TRUE, that POA is returrad find_POA .

Note —This allows the same code, theknown_adapter implementatn, to be used
to initialize a POA whether that POA is created explicitly by the eafidin or as a side-
effect of processing a request. Furthere) it makes this initialization @nic with
respect to delivery of requests to the POA.

9.3.4 ServantManager Interface

Servant managers are associated WiliAR. A ®rvant manager supplies a POA with

the ability to activate objects on demamben the POAeceives a request targeted at an
inactive object. A servant manager is registered with a POA as a callback object, to be
invoked by the POAvhen necessary. Aapplicaton server that activates all its needed
objects at the beginning of execution does not need to use a servant managsedit is
only for the case in which an object mustdwmtivatedduring request processing.

The ServantManager interface is itself empty. It is inherited byo other interfaces,
ServantAct ivator andServantLocator .

The two types ofeyvant managers correspond to the PGRETAIN policy
(ServantActivator) and to theNON_RETAIN policy (ServantLocator). The
meaning of the policies and the operations that ardéataifor POAs using each policy
are listed under the two typesasrived interfaces.

Each servant manager type @nstwo operations, the first called to find and return a
servant and the second to deste a servant. The operation§feli accoding to the
amount of information usable for their situation.

Common information for servant manager types

The two types ofervant managers havertan semanticshiat are identical.

Theincarnate andpreinvoke operation may raise any system exception deemed
appropriate (for exampl©BJECT_NOT_EXIST if the object corresponding to the
Object Id value has beatestroyed).

9-20 CORBAV2.2 February 1998

Note —If a user-written routine (servant manager or method code) raises the
OBJECT_NOT_EXIST exception, the POA does nothing but pass on that exception.
It is the user’s responsibility to deactivate the object if it had been previously activated.

Theincarnate andpreinvoke operation may also raiseFarwardRequest

excepton. If this occurs, the ORB is responsible for delivering the current regnest
subsequent requests to the object denoted ifotherd reference member of the
excepton. The behavior of this rmkanism must be the functional equivalent of the
GIOP location forwarding mechanism. If the current requess delvered via an
implementation of the GIOP protocol (such as IIOP),réference in the exception
should be returned to the client in a reply message MGBATION _FORWARD reply
status. If some other protocol or deliy mechanism was usdtie ORB is responsible
for providing equivalent behavior, from the perspectives of the client and the object
denoted by the new reference.

Locality Constraints

A ServantManager object must be local to the process containing the POA obijects it
is registered with.

9.3.5 ServantActivator Interface

When the POA has tHRETAIN policy it uses servant managers that are
ServantAct ivator s. When using such servant managers, the followatgrsentapply
for a givenObjectld used in thencarnate andetherealize operations:

® Servants incarnated by the servant manager will be placed in the Stijget Map
with objects they havactivated.

® |nvocations ofincarnate on the servant manager are serialized.
® |nvocations ofetherealize on the servant manager are serialized.

® |nvocations ofincarnate andetherealize on the servant manager are mutually
exclusive.

® |ncarnations of a particular servant may not overlap; that is, if a servant is incarnated
by a servant manageéncarnate shall not be invoked using that same Object Id until
that servant is etherealized.

It should be noted that there may be a period of time between an objactisad®n

and the etherealization (during which outstanding requests are being procesgad) in
arriving requests on that object should not be passed to its servant. During tus peri
requests targeted for such an object act as if the POA wlrddimg state until
etherealize complegs. If etherealize is called as a consequence afemctivate call
with a etherealize_objects parameter of TRE, incoming requests are rejected.

It should also be noted that a similauation occurs withncarnate .There may be a
period of time after the POA invokegarnate and before that method returns in which
arriving request®ound for that olgict should not be passed to the servant.

CORBAV2.2 lerfaces February 1998 9-21

9-22

A single servant manager object may be concurrently registered with multiple POAs.
Invocations ofincamate andetherealize on a servant manager in the context of
different POAs are not necessy serialized or mutuallgxclusive. There are no
assumptions made about the thread in whitterealize is invoked.

incarnate
Servantincarnate (
in Objectld oid,
in POA adapter)

raises (Forward Request);

This operation is invoked by the POA whenether POA receives &quest for an object
that is not currently active, assuming the POA hadtJtBE_ SERVANT_MANAGER
andRETAIN policies.

Theoid parameter contains ti@bjectld value associated with the incoming request.
The adapter is an object reference for the POA in which the object is being activated.

The user-supplied servant manager impleta#on is responsible for locating or creating
an appropriate servant that capends to th®bjectld value if possibleincarnate
returns a value of typgervant, which is the servant that will be used to process the
incoming request (and femtially subsguent requests, since the POA hasREFAIN

policy).

The POA erdrs the returne@ervant value into the Active Object Map sbat
subsequent requests with the sadimgectld value will be delrered diectly to that
servant without invoking the servant manager.

If theincarnate operation returns a servant that is already active for a different Object
Id and if the POA also has thiNIQUE_ID policy, theincarnate has violatedhe POA
policy and is considered to be in error. The POA will rais©®Bd ADAPTER system
exception for the request.

Note —If the same servant is used in two different POAS, it is legal for the POAs to use
that servant even if the POAs havdeliént Object Id uniqueness podisi The PAs do
not interact with each other in this regard.

etherealize
void ethereal ize (
in Objectld oid,
in POA adapter,
in Servant serv,
in boolean cleanup_in_progress,
in boolean remaining_act ivations);

CORBAV2.2 February 1998

9

This operation is invoked whenever a servant for an object isiviadt assuming the
POA has th&JSE_SERVANT_MAN AGER andRETAIN policies. Note that an active
servant may be deactivated by the servant managethésealize even if it was not
incarnated by the servant manager.

Theoid parameter contains ti@bject Id value of the object being deactivated. The
adapter parameter is an object refeoe for the POA in whose scope the object was
active. Theserv parameter contains a referencéte servant that is associated with the
object being dediwated. If the servant denoted by terv parameter is associated with
other objects in the POdenoted by thadapter parameter (that is, ithe POA's Active
Object Map) at the time thatherealize is called, theemaining_activations

parameter has the value OE. Otherwise, it has the value FAE.

If the cleanup_in_progress parameter is TRUE, the reason for #iberealize
operation is that either thieactivate or destroy operation was called with an
etherealize_objects parameter of TRUE. If the parameter BUSE, theetherealize
operation is called for other reasons.

Deacivation occurs in the ftdwing crcumstances:

® When an object is deactivated exgliciby an irvocation of
POA::deactivate_object .

®* When the ORB or POA determines internally that an objacit be deactivated.
For example, an ORB implementation may provide policiesatat objects to be
deactivated after some period of quiersce, or when the number aétive objects
reaches some limit.

* |f POAManager ::.deactivate is invoked on a POA manager associated with a
POA that has currentlgctive objects.

Destroying a servarthat is in the Active Object Map or is otherwlsgown to the POA
can lead to undefinesults.

In a multi-theaded environment, the POA makestain guarantees that allow servant
managers to safely destroy servants. Spadifi the servant's entry in the At Object
Map corresponding to the target object isoged beforeetherealize () is calkd.
Becausecalls toincarnate () andetherealize () are serialized, this prevernisw
requests for the target object frdmaing invoked on the servamtiring etherealization.
After removing the entry from the Active Object Map, if the POA determines before
invoking etherealize () that other requests for the same target object are already in
progress on the servant, it delays tiad to etherealize () until all active methods for
the target object have completed. Therefoleemetherealize () is called, the servant
manager can safely destroy the servant if it wants to, unless the

remaining_act ivations argumentis TRUE.

CORBAV2.2 lerfaces February 1998 9-23

9.3.6 ServantLocator Interface

When the POA has tHdON_RETAIN policy it uses servant managers that are
ServantLocator s. Because the POA knowlsat the servant retoed by this servant
manager will be used only for a single request, it can supplg mformation to the

servant manager's operations and the servant manager’s pair of operations may be able t
coopeate to do something different tharsarvantActivator .

When the POA uses tt&ervantLocator interface, ifmediately after performing the
operation invocation on the servant returneglsinvoke , the POA will invoke

postinvoke on the servant manager, passing@igectld value and th&ervant

value as parameters (ang others). The next request with t@isjectld value will then
causepreinvoke to be invoked again. This feature may be used to force every request
for objects associated with a POA to be mediated by the servant manager.

When using such ServantLocator , the following sattementsapply for a given
Objectld used in thepreinvoke andpostinvoke operations:

®* The servant returned tpreinvoke is used only to process the single request that
causedpreinvoke to be invoked.

®* No servant incarnated by the servant manager will be placed in the Active Obiject
Map.

® When the invocation of the request on the servant is completénvoke will be
invoked for the object.

®* No serialization of imocations ofpreinvoke or postinvoke may be assumed;
there may be multipleoncurrent invocations gfrein voke for the samebjectid .

®* The same thread will be usedpeeinvoke the object, process the request, and
postinvoke the object.

preinvoke
Servant preinvoke(
in Objectld oid,
in POA adapter,
in CORBA::Identifier operation,
out Cookie th e_cookie)

raises (Forward Request);

This operation is invoked by the POA whenether POA receives &quest for an object
that is not currently active, assuming the POA hadJtBeé_ SERVANT_MANAGER
andNON_RETAIN policies.

Theoid parameter contains th@bjectld value associated with the incoming request.
The adapter is an object reference for the POA in which the object is being activated.

The user-supplied servant manager impleta#on is responsible for locating or creating
an appropriate servant that capends to th®bjectld value if possiblepreinvoke
returns a value of typgervant, which is the servant that will be used to process the
incoming request.

9-24 CORBAV2.2 February 1998

9

9.3.7 POA

TheCookie is a type opaque to the POA that can be set by the servant manager for use
later bypostinvoke . Theoperation is the name of the operation that will be called by
the POA when the servant is returned.

postinvoke

void postinvoke(
in Objectld oid,
in POA adapter,
in CORBA::Identifier operation,
in Cookie the_cookie,
in Servant the_servant);

This operation is invoked whenever a servantgetas a request, assuming the POA
has thetUSE_SERVANT_MANAGER andNON_RETAIN policies.

Theoid parameter contains ti@bject Id value of the object on which the requess
made. Theadapter parameter is an object reference for the POWhose scope the
objectwas ative. Theserv parameter contains a eeénce to the servant that is
associated with the object.

The Cookie is a type opaque to the POA; it contains any viia¢ was set by the
prein voke operation.The operation is the name of the operation that veafled by
the POA for the request.

Destroying a servanhat isknown tothe POA can lead to undefinegsults.

Policy Objects

Interfaces derived frol@ORBA::Policy are used with th®OA:.create POA

operation to specify policies that apply to a POA. Policy objects are created using factory
operations on any prexisting POAsuch as the root POA. Policy objects are specified
when a POA igreaéd. Policies may not be changed on aistng POA. Policies are
notinherited from the parent POA.

Thread Policy

Objects with thelhreadPolicy interface are obtained using the
POA:create_thread_policy operation and passed to R®A::.create POA

operation to specify the threading model used with the created POA. The vaugeattr
of ThreadPolicy contains the value supplied to R®A::create_thread_policy
operationfrom which itwasobtained.The following values can ®upplied.

®* ORB_CTRL_MODEL - The ORB is responde for assigning requests for an ORB
contolled POA to threds. In amulti-threaded environment, concurrent requests
may be deliered usingnultiple threads.

® SINGLE_THREAD_MODEL - Requests for a single-ttaded POA are processed
sequentlly. In a muli-threaded environment, all upcalls made by this POA to
implementation code (servants and servant managers) are made in a thaniser
safe for code thanulti-thread-unaware.

CORBAV2.2 lerfaces February 1998 9-25

If no Thread Policy object is passed treate POA , the thread policy defaults to
ORB_CTRL_MODEL.

Note —In some environments, calling niuthread-unaware code safefthat is, using
the SINGLE_THREAD_MODEL) may mean that the POA will use only the main
thread, in which case the application gn@mmer is responsible to ensure that the main
thread is given to the ORB, usi@RB::perform_work or ORB::run .

POAs using theSINGLE_ THREAD_MODEL may need to cooperate to ensure that
calls are safe evenhen implementation code (such as a servant manager) is shared by
multiple single-threaded POAs.

These models presume that the ORB and fipdiGation are using compatible
threadingprimitives in amulti-threaded environment.

Lifespan Policy

Objects with theLifespanPolicy interface are obtained using the
POA:create_lifespan_policy operation and passed to R®A::.create_ POA
operation to specify théfégpan of the objectsriplemented in the created POAhe
following values can be supplied.

® TRANSIENT - Theobjects implemented in the POA cannot outlive the process in
which they ardirst created. @ce the POA is deactivated, use of any object
references generated from it will result in @BJECT_NOT_EXIST exception.

® PERSISTENT - Theobjects implemented in the POA can outlive the process in
which they ardirst created.

 Persistent objects have a POA associated with tHenPOA which arated them).
When the ORBeceives a request on a persistent object, it first searches for the
matching POA, based on the names of the POA and all of itstarses

» Administrative action beyond the scopethi§ specification may be necessary to
inform the ORB's location service of theeationand eventual terimation of
existence of this POAgndoptionally to arrange for on-demandigation of a
process implementing this POA.

* POA names must henique within their enclosing scope (the parenflPG\
portable program can assume that POA names used in other processes will not
conflict with itsown POAnames. A conforming CORBA implementation will
provide a method fognsuring this property.

If no LifespanPolicy object is passed ttreate POA, the lifespan policy dafilts to
TRANSIENT.

9-26 CORBAV2.2 February 1998

Object Id Unigueness Policy

Objects with thddUniquenessPolicy interface are obtained using the
POA:create_id_uniqu eness_policy operation and passed to the
POA:create_ POA operation to specify whether the servants activated in the created
POA must have unique object identiti@he following values can tmupplied.

®* UNIQUE_ID - Servantactivated with that POA support exactly one Object Id.

® MULTIPLE_ID - a servant activated with that POA may support one or mbjecO©
Ids.

If no IdUniquenessPolicy is specified at POA creati, the defult isSUNIQUE_ID.

Id Assignrent Policy

Objects with thddAssignmentPolicy interface are obtaéd using the
POA:.create_id_assignment policy operation and passed to the
POA:.create_ POA operation to specify whether Object Ids in the created POA are
geneated by the applicain or by the ORB.The following values can baupplied.

® USER_ID - Objects created with that POA are assigned Objectriyshy the
application.

® SYSTEM_ID - Objects created with that POA are assigned Objectriyshy the
POA. If the POA also has ttHRERSISTENT policy, assigned Obiject Idaust be
unique across ailhstantiatons of the same POA.

If no IdAssignmentPolicy is specified at POA creati, the dedult isSYSTEM_ID.

Servant Retention Policy

Objects with theServantRetentionPolicy interface are obtaed using the
POA:.create_servant retention_policy operation and passed to the
POA:.create_ POA operation to specify whether the created POA retaitise
servants in an Active Object Maphe following values can bsupplied.

®* RETAIN - The POAwill retain active servants in it&ctive Object Map.
® NON_RETAIN - Servants are naetained by the POA.

If no ServantR etentionPolicy is specified at POA creation, the defaulRIETAIN.

Note —The NON_RETAIN policy requires either thd SE_DEFAULT_SERVANT or
USE_SERVANT_MANAGER policies.

CORBAV2.2 lerfaces February 1998 9-27

9-28

Request Processing Policy

Objects with theRequestProcessingPolicy interface are obtained using the
POA:create_request_processing_policy operation and passed to the
POA:.create_ POA operation to specify how requests are processed by the created
POA. The following vlues can be supplied.

® USE_ACTIVE_OBJECT_MAP_ONLY - If the Object Id is not found in the Active
Object Map, arOBJECT_NOT_EXIST exception is returned to the cliefihe
RETAIN policy is also required.

® USE _DEFAULT_SERVANT - If the Obiject Id is not found in the Active Object
Map or theNON_RETAIN policy is present, and a default servant has been
regisered with the POA using theet servant operation, the request is disgzed
to the default servant. If no defaultsant has been registered,@BJ_ADAPTER
exception is returned to the clienthe MULTIPLE_ID policy is also required.

® USE _SERVANT_MANAGER - If the Object Id is not found in the Active Object
Map or theNON_RETAIN policy is present, and a servant manager has been
regisered with the POA using thleet servant_manager operation, the servant
manager is given the opportunity to locate a servant or raise an ercelftno
servant manager has been regist, arOBJECT_ADAPTER exception is retued
to the client.

If no RequestProcessingPolicy is specified at POA aneathe dedult is
USE_ACTIVE_OBJECT_MAP_ONLY .

By means of combining thdSE_ACTIVE_OBJECT_MA P_ONLY /
USE_DEFAULT_SERVANT /USE_SERVANT_MANAGER policies and the

RETAIN / NON_RETAIN policies, the programmer is able to define a rich number of
possible behaviors.

RETAIN and USE_ACTIVE_OBJECT_MP_ONLY

This combination represents the situatioimere the POA does rautomatic object
activation (that is, the POA searches only the Active Object Map). The saugér
activate all objects served by the POA explicitly, using eithernttigate _object or
activate_object_with_id operation.

RETAIN and USE_SERVANT_MANAGER

This combination representsvary common sitaton, wherethere is an ActiveDbject
Map and &ervantManager .

BecauseRETAIN is in effect, the applicatiocan callactivate _object or
activate_object_with_id to establistknown sevants in the Active Object Map for
use in later requests.

If the POA doesn't find a servant in the Active Object Map for a given objeggsttd
determine the servant by means of invokimgarnate in theServantManager
(specifically aServantActivator) registered withthe POA. If ncServantManager is
available, the POA raises ti@BJE CT_ADAPTER system exception.

CORBAV2.2 February 1998

RETAIN and USE_DEFAULT_SERVANT

This combination represents the situation where there is a default servant defined for all
requests involvinginknownobijects.

BecauseRETAIN is in effect, the applicatiocan callactivate_object or
activate_object_with_id to establistknown sevants in the Active Object Map for
use in later requests.

The POA first tries to find a servanttine Active Object Map for a given object. If it
does not find such a servant, it uses the default servant. Ifaatdeervant is available,
the POA raises th®BJE CT_ADAPTER system exception.

NON-RETAIN and USE_SERVANT _MANAGER:
This combination represents the situatigimere one servant is used per methatl

The POA doest try to find a servant in the Active Object Mapcause the
ActiveObjectMap does not exist. In every request, it will pediin voke on the
ServantManager (specifically aServantLocator) registered with the ®A. If no
ServantManager is available, the POA will raise tt@BJE CT_ADAPTER system
exception.

NON-RETAIN and USE_DEFAULT_SERWANT:

This combination represents the sitoatwhere there is one single servant defined for all
CORBA objects.

The POA does not try to find argant in the Active Object Map because the
ActiveObjectMap doesn't exist. In every request, the POA will invoke the appropriate
operation on the default servangisgered with the POA. If no default servant is
available, the POA will raise theBJECT_ADAPTER system exception.

Implicit Activation Policy

Objects with thdmplicitActivat ionPolicy interface are obtained using the
POA:.create_impl icit_activatio n_policy operation and passed to the
POA:.create_ POA operation to specify whethenplicit activaion of servants is
supported in thereated POA.Thefollowing values can be supplied.

®* |MPLICIT_ACTIVATION - the POA will support implicifictivation ofservants.
IMPLICIT_ACTIVATION also requires th8YSTEM_ID andRETAIN policies.

® NO_IMPLICIT_ACTIVATION - the POA will not suppotimplicit activation of
servants.

If no ImplicitActivationPolicy is specified at POA creation, the default is
NO_IMPLICIT_ACTIVATION.

CORBAV2.2 lerfaces February 1998 9-29

9-30

9.3.8 POA Interface

A POA object manages the pementabn of a coléction of objectsThe POA spports
a name space for the objects, which asmiified by Object Ids.

A POA also provides a name space forAB0A POA is crated as a child of an existing
POA, which forms dierarchy starting with the root POA.

Locality Constraints

A POA object mushot be exported to other processes, or extegwhhvith

ORB::object to_string . If any attempt is made to do so, the offending operation will
raise aMARSHAL system exception. An athpt to use OA object with the DIl may
raise theNO_IMPLEMENT exception.

create_ POA

POA create_ POA(in string adapter_name,
in POAManager a_POAManager,
in CORBA::PolicyList policies)
raises (AdapterAlreadyExi sts, Invali dPolicy);

This operation createsreew POA as a child of thertget FOA. The gecified name
identifies the new POA with respect to other POAs with the same parent POA. If the
target POA already has a child POA with the specified name, the
AdapterAlreadyExists exception is raised.

If thea_POAManager parameter is null, a neROAManager object is creatednd
associated with theew POA. Ohherwise, the specifieBOAManager object is
associated with theew POA. ThePOAManager object can be obtained using the
attribute namehe_POAManager .

The speified policy objects are associated with the P@Ad used to control its
behavior. The pady objects are effectivelgopied before this operation returns, so the
application is free to destroy them while the POA isse. Policies araot inherited

from the parent POA.

If any of thepolicy objects specified are not valid for the ORBplementation, if
conflicting policy objects are specified, orafiy of the specified policy objects require
prior administrative ain that has not been pemed, aninvalidPolicy exception is
raised containing the index in the policiesgmaeter value of the first offending policy
object.

Note —Creating a POA using a POA manag®t is in the active statan lead to race
conditions if the POA supports mndsting objects, because thew POA mayeceive a
request before its adapteetivator, serant manager, or default servant have been
initialized. These problems do not occur if the POA is created by an adaptatoact
registered with a parent of tmew POA, becausequests are queuenhtil the adapter

CORBAV2.2 February 1998

9

activator retuns. To avoid these problems when a P@ést be explicitly initiaked,
the application can initialize the POA by invokifigd_POA with a TRUE activate
parameter.

find_POA

POA find_POA(in string adapter_name, in boolean activate_it)
raises (AdapterNonExistent);

If the target POA is the parent of a child POA with the specified name (relative to the
target P@\), that child POA is returned. If a child POA with the dfied namedoes

not existand the value of thactivate_it parameter is RUE, the target PA's
AdapterActivator , if one &ists, is nvoked, and, if it sucesfully activates the child
POA, that child POA is returned. Otherwise, &aapterNonExistent exception is
raised.

destroy

void destroy(in boolean etherealize_objects,
in boolean wait_for_completion);

This operation destroys the POA and all descendaitsPThe POA salestroyedthat

is, the POA with its name) may beaesated later in the same process. (This differs from
the POAManager::deactivate operation that does not allow agesation of its
associated POA in the same process.)

When a POA is destroyed, any requests that htareed execution contie to
completion.Any requests that have not started execution are processed as if they were
newly arrived, that is, the POA will attempt to cause recreation of the POA by invoking
one or more adapter aators.

If the etherealize_objects parameter is TRUBhe POA has theRETAIN policy, and

a servant manager isgistered with the POA, thetherealize operation on the servant
manager will be called for each active object in the Active Object Mdye appagnt
destruction of the POA occurs befany calls toetherealize are made. Thus, for
example, an etherealizeethod that attempts to invoke operations on the POA will
receive thelOBJECT_NOT_EXIST exception.

If thewait_for_completion parameteris TRUE, theeestroy operation will return
only after all requests in process have completed and all invocatietiseoéalize
have completed. Otherwise, testroy operation returns after destroying the POAs.

CORBAV2.2 lerfaces February 1998 9-31

Policy Creation Operations

ThreadPolicy
create_thread_policy(in ThreadPolicyValue value);
LifespanPolicy
create_lifespan_pol icy(in LifespanPolicyValue value);
IdUniquenessPolicy
create_id_uniqueness_policy(in IdUniquenessPolicyValue value);
IdAssignmentPolicy
create_id_assignment_policy(in IdAssignmentPolicyValue value);
ImplicitActivat ionPolicy
create_implicit_activat ion_policy
(in ImplicitActivat ionPolicyValue value);
ServantRetentionPolicy
create_servant_retention_policy(in ServantRetentionPolicyValue value);
RequestProcessingPolicy
create_request_processing_policy
(in RequestProcessingPolicyValue value);

These operations eaobturn a reference to a policy object with the specified valine
application is responsible for daly the inherited destroy operation on the returned
reference when it is no longer needed.

the _name

readonly attribute string the_name;

This attribute identies the POA relative to its pare This name is assigd wherthe
POA is created. The name of the root POA is system-dependent and should not be relied
upon by the application.

the_parent

readonly attribute POA the_ parent;
This attribute identies the parent of the POAhe paent of the root POA is null.

the_ POAManager

readonly attribute POAManager the_ POAManager;

This attribute identies the POA ranager associated with the POA.

9-32 CORBAV2.2 February 1998

the_activator

attribute AdapterActivator the_activator;

This attribute identies the adapter activator associated with the POAeWly created
POA has no adapter activator (the attribute is null). It is systg@mndent whether the
root POA hitially has an adaptexctivator; the application is free to assignoisn
adapter activator to the root POA.

get_servant_manager

ServantManager get_servant_manager()
raises(WrongPoli cy);

This operation requires tHdSE_ SERVANT_MANAGER policy; if not present, the
WrongPolicy exception is raised.

This operation returns the servant manager associated with the POA. If no servant
manager has been asimted with the POA, it returns a null reface. It is system-
dependent whether the root POA initially has &a®rmanager; the apgdition is free to
assign itsown sevant manager to the root POA.

set_servant_manager

void set_servant_manager(in ServantManager imgr)
raises(WrongPoli cy);

This operation requires tHdSE_ SERVANT_MANAGER policy; if not present, the
WrongPolicy exception is raised.

This operation sets the default servant manager associated with the POA.

get_servant

Servant get_servant()
raises(NoServant, Wrong Policy);

This operation requires tHéSE_DEFAULT_SERVANT policy; if not present, the
WrongPolicy exception is raised.

This operation returns the default servant associated with the POA. If no dasant
been associated with the POA, tleServant exception is raised.

CORBAV2.2 lerfaces February 1998 9-33

9-34

set_servant

void set_servant(in Servant p_servant)
raises(WrongPoli cy);

This operation requires tHéSE_DEFAULT_SERVANT policy; if not present, the
WrongPolicy exception is raised.

This operation registers the specified servant with the POA as the default servant. This
servant will be used for all requests for which no servant is found in the Active Object
Map.

activate_object

Objectld activate_object(in Servant p_servant)
raises (ServantAlreadyActive, WrongPol icy);

This operation requires tHe®YSTEM_ID andRETAIN policy; if not present, the
WrongPolicy exception is raised.

If the POA has th&NIQUE_ID policy and the spéfied sevant is already in the Active
Object Map, theéServantAlreadyActive exception is raised. Otherwise, the
activate_object operation generates an Objectalad enters the Object Id and the
specified servant in the Active Object Mdhe Obiject Id is returned.

activate_object_with_id

void activate_object_with_id(in Objectld oid,
in Servant p_servant)
raises (ObjectAlreadyActive, ServantAlre adyActive, WrongPoli cy);

This operation requires tHRETAIN policy; if not present, th&/rongPolicy exception
is raised.

If the CORBA object denoted by the j@ét Id value is alr@dy ative in this POA there

is a servant bound to it in the Active Object Map), @gectAlreadyActive exception

is raised. If the POA has tiiNIQUE_ID policy and the servant is already in the Active
Object Map, theServantAlreadyActive exception is raised. Otherwise, the
activate_object_with_id operation enters an association between the specified Object
Id and the gecified servant in the Active Object Map.

If the POA has th&€YSTEM_ID policy and it detectthat theObject Id valuewvas not
geneated by the system or for this POA, thativate object with_id operation may
raise theBAD_PARAM system exception. An ORB is not required to detectadh
invalid Object Id values, but a portable application musimatke
activate_object_with_id on a POA that has tf&Y STEM_ID policy with anObject
Id value thatwas notpreviously genmted by the system for that POA, or, if the POA
also has th®ERSISTENT policy, for a previous instantiation of the same POA.

CORBAV2.2 February 1998

deactivate_object

void deactivate_object (in Objectld oid)
raises (ObjectNotAct ive, WrongPolicy);

This operation requires tHRETAIN policy; if not present, th¥VrongPolicy
exception is raised.

This operation causes the association of the Object Id specified big tharameteand

its servant to be removed from the Active Object Map. If a servant manager is associated
with the POA ServantLocator::etherealize will be invoked with theoid and the

servant. (Theleactivate_object operation does not wait for tle¢herealize operation

to complete befordeactivate _object returns.) If there is no active object associated

with the specified Object Id, the operation raise©aijectNotActive exception.

Note —If the servant associated with the& is servingmultiple Object Ids,
ServantLocat or::etherealize may be invoked mtiple times with the same servant
when the other objects are deactivated. It is the responsibility of the object
implementation to refrain from destroying the servant while &citve wth any Id.

create_reference

Object create_reference (in CORBA::Reposi toryld intf)
raises (WrongPol icy);

This operation requires tH&YSTEM_ID policy; if not present, th&VrongPolicy
exception is raised.

This operation creates an object reference that encapsulates-gelR€rated Object Id
value and the specifigdterface repository id. Ais operation does not cause an
activation to take plac&.he esulting reference may be passed to clients, so that
subsequent requests on those efees will cause the appropriate servant manager to be
invoked, if one is avible. The generated Object Id value may be obtained by invoking
POA:reference_to_id with the created reference.

create_referene_with_id

Object create_reference_with_id (
in Objectld oid,
in CORBA::Reposi toryld intf);

This operation creates an object reference that encapsulates the specified Ginject Id
interface repository Id values. This operation does not cause aatiactiotake place.
The esulting refenrece may be passed to clients,tsatsubsequent requests on those
references will cause the object to bevated if necessy, or the default servant used,
depending on the applicable policies.

If the POA has th&YSTEM_ID policy and it detectthat theObject Id valuevas not
geneated by the system or for this POA, ttreate_reference_with_id operation
may raise th8AD_PARAM system exception. An ORB is not required to detect all

CORBAV2.2 lerfaces February 1998 9-35

9-36

such invalid Object Id values, but a portable eggibn must not invokehis operabn
on a POA that has tf@YSTEM_ID policy with an Object Id value thatas not
previously generated by the system for that POA, or, if the POA also has the
PERSISTENT policy, for a previousnstantiation of the same POA.

servant_to_id

Objectld servant_to_id(in Servant p_servant)
raises (ServantNotActive, WrongPoli cy);

This operation requires tHRETAIN and either th&JNIQUE_ID or
IMPLICIT_ACTIVATION policies; if not present, th&/rongPolicy exception is raised.

This operation has three possible behaviors.

* |f the POA has th&NIQUE_ID policy and the specified servant is active, the Object
Id associated with that servant isuraied.

® [f the POA has th&MPLICIT_ACTIVATION policy and either the POA has the
MULTIPLE_ID policy or the specified servant is not active, the servaattisated
using a POA-generated Object Id and the Interface Id associated with the servant, and
that Object Id is returned.

® Otherwise, th&ervantNotActive exception is raised.

servant_to_reference

Object servant_to_reference (in Servant p_servant)
raises (ServantNotActive, WrongPoli cy);

This operation requires tHRETAIN and either th&JNIQUE _ID or
IMPLICIT_ACTIVATION policies; if not present, th&/rongPolicy exception is raised.

This operation has three possible behaviors.

* |f the POA has th&NIQUE_ID policy and the spified sevant is active, an object
reference encapsulating the information usedctivate the servant is returned.

® |f the POA has théMPLICIT_ACTIVATION policy and either the POA has the
MULTIPLE_ID policy or the specified servant is not active, the servant is activated
using a POA-generated Obiject Id and the Interface Id associated with the servant, and
a corresponding object reference is neéa.

® Otherwise, th&ervantNotActive exception is raised.

Note —The allocation of an Object Id value aimgtallation in the Active Object Map
caused by imdit activation may actually be deferred until an attempt is made to
externalize the referee. The real requirement here is that a reference is produced that
will behave appropriately (that igjeld a consistent Object Id value whasked

politely).

CORBAV2.2 February 1998

reference_to_servant

Servant reference_to_servant (O bject reference)
raises (ObjectNotAct ive, WrongAdapter, WrongPol icy);

This operation requires tiRETAIN policy or theUSE_DEFAULT_SERVANT policy.
If neither policy is present, th&/rongPolicy exception is raised.

If the POA has th&ETAIN policy and the specified object is present in the Active
Object Map, this opation retirns the servant associated with that object in the Active
Object Map. Otherwise, if the POA has th8E_DEFAULT_SERVANT policy and a
default servanhas been regiered with the POA, thigperation returns the default
servant. Otherwise, th@bjectNotActive exception is raised.

If the object referencevas notcreated by this POA, th&/rong Adapter exception is
raised.

reference to_id

Objectld reference_to_id(in Objectref erence)
raises (WrongAdapter, WrongPol icy);

The WrongPolicy exception is declared tolal future extensions.

This operation returns the Object Id value encapsulated by the spesfiiezhce . This
operation is valid only if the reference was createthbyPOA on which the operation is
being performed. If the reference was not created by that P@%&oagAdapter
exception is raisedlhe object denoted by the reference does not have toile fort
this opeation to sicceed.

id_to_servant

Servant id_to_servant (in Objectld oid)
raises (ObjectNotAct ive, WrongPolicy);

This operation requires tHRETAIN policy; if not present, th&/rongPolicy exception
is raised.

This operation returns the active servant assediwith the specified Object Id value. If
the Object Id value is not active in the POA,@injectNotActive exception is raised.

id_to_reference

Object id_to_reference(in Objectld oid)
raises (ObjectNotAct ive, WrongPolicy);

This operation requires ttHRETAIN policy; if not present, th&/rongPolicy exception
is raised.

CORBAV2.2 lerfaces February 1998 9-37

9.4

9-38

If an object with the specified Object Id value is currently active, a reference
encapsulating the information used toivaate the object is returned. If ti@bject Id
value is not active in the POA, &bjectNotActive exception is raised.

9.3.9 Current operations

The PortableServer::Current interface, derived frol@ORBA::Current , provides
method implementations with access to the identity of the objeathah the method
was invoked. The&urrent interface is pyvided to support servants that implement
multiple objects, but can hesed within the context of POA-dispatched method
invocations on any servant. To provideadtion transpaney, ORBsare required to
support use o€urrent in the context of both locallytvoked and emotelyinvoked
operations.

An instance ofCurrent can be obtaied by theapplication by issing the
CORBA::ORB: resolve_initial_references(* POACurrent") operation.

Theeafter, itcan be used within the context of a method dispatched by the POA to
obtain the POA and Objectld thateintify the object on which that operatiotas
invoked.

get POA

POA get_POA() raises (NoContext);

This operation returns a reference to the POA implementing the object in whose context
it is called. Ifcalled outside the context of ®R-dispatched opation, aNoContext
exception is raised.

get_object_id

Objectld get_object_id() raises (NoContext);

This operation returns the Objectld idéyihg the object in whose context it is called. If
called outside the context of a POA-digjhetd operation, BloContext exception is
raised.

IDL for PorableServer module

#pragma prefix "omg.org"
module PortableServer

{

/I forward reference
interface POA;

native Servant;

typedef sequence<oct et> Objectld;

CORBAV2.2 February 1998

exception ForwardR equest

{
Object forward_reference;
|3
// kkkkkkkkkhkkkkkhhkhkkkhhhkhkkhhkhkkkhhkrhkhdhkkiik
I
/I Policy interfaces
I

// kkkkkkkkkkkkkkkkkhdhhkkkkkkkhkkdhhhkhkkkrrkkkkxk

enum ThreadPolicyValue {
ORB_CTRL_MODEL,
SINGLE_THREAD_MODEL

|3
interface ThreadPol icy : CORBA::Policy
{
readonly attribute ThreadPolicyValue value;
|3
enum LifespanPolicyValue {
TRANSIENT,
PERSISTENT
|3
interface LifespanPolicy : CORBA::Policy
{
readonly attribute LifespanPolicyValue value;
|3
enum IdU niquenessPolicyValue {
UNIQUE_ID,
MULTIPLE_ID
|3
interface 1dU niquenessPolicy : CORBA::Policy
{
readonly attribute IdUniqu enessPolicyValue value;
|3
enum IdAssignmentPolicyValue {
USER_ID,
SYSTEM_ID
|3
interface IdAssignmentPolicy : CORBA::Policy
{
readonly attribute IdAssignmentPolicyValue value;
|3

enum ImplicitActivat ionPolicyValue {
IMPLICIT_ACTIVATION,
NO_IMPLICIT_ACTIVATION

|3

interface ImplicitActivat ionPolicy : CORBA::Policy

CORBAV2.2 IDLfor PaableServer module February 1998 9-39

{
readonly attribute ImplicitAct ivatio nPolicyValue value;
|3
enum ServantRetentionPolicyValue {
RETAIN,
NON_RETAIN
|3
interface ServantRetentionPol icy : CORBA::Policy
{
readonly attribute ServantRetentionPolicyValue value;
|3

enum RequestProcessingPolicyValue {
USE_ACTIVE_OBJECT_MAP_ONLY,
USE_DEFAULT_SERVANT,
USE_SERVANT_MANAGER

|3
interface RequestProcessingPol icy : CORBA::Policy
{
readonly attribute RequestProcessingPolicyValue value;
|3
” kkkkkkkkkhkhkkkkkhhhkkkhhhkkhkhhhkkkkhhrhkkhhhkkkhhhrk
I
/ POAManager interface
I

/ kkkkkkkkkkkkkkkkhkhihkkkkkkkdhkhkhhkkhkkdkkkkhhkhkrkkkik

interface POAManager

{
exception Adapterinactived};
void activate()
raises(Adapterinactive);
void hold_requests(in boolean wait_for_completion)
raises(Adapterinactive);
void discard_requests(in boolean wait_for_completion)
raises(Adapterinactive);
void deactivate(in boolean etherealize _objects,
in boolean wait_for_completion)
raises(Adapterinactive);
|3
” kkkkkkkkkhkhkkkkkhhhkkkhhhkkhkhhhkkkkhhrhkhdhhkkkhhhrk
I
/I AdapterActivator interface
I

/ kkkkkkkkkkkkkkkkhkhihkkkkkkkdhkhkhhkkhkkdkkkkkkkhkhrkkkik

interface AdapterActivator

9-40 CORBAV2.2 February 1998

{
k

boolean unknown_adapter(in POA parent, in

string name);

” kkkkkkkkkkkkkkkkhkhihkkkkkkkdhkhkhhkkkkdkkkkhhkhkrdkkkik

I
/I ServantManager interface
I

” kkkkkkkkkkkkkkkkhkhihkkkkkkkdhkhkhhkkkkdkkkkkkhkhkrdkkkik

interface ServantManager

{:

interface ServantActivator : ServantManager {

Servant incarnate (
in Objectld
in POA
raises (Forward Request);

void etherealize (
in Objectld
in POA
in Servant
in boolean
in boolean

k

oid,
adapter)

oid,

adapter,

serv,
cleanup_in_progress,
remaining_act ivations);

interface ServantLocator : ServantManager {

native Cookie;

Servant preinvoke(
in Objectld
in POA

in CORBA::Identifier

out Cookie

raises (Forward Request);

void postinvoke(
in Objectld
in POA

in CORBA::Identifier

in Cookie
in Servant

oid,
adapter,

operation,

th e_cookie)

oid,
adapter,

operation,

th e_cookie,
the_servant);

/ kkkkkkkkkkkkkkkkhkhihkkkkkkkkhkkhhkkhkdkkkkkkkhkrkkkik

/i
/| POA interface
/i

/ kkkkkkkkkkkkkkkkhkhihkkkkkkkdhkkhhkkkkdkkkkhkkhkrkkkrk

CORBAV2.2

IDL for PaableServer module

February 1998 9-41

interface POA

{
exception AdapterAlreadyExists {};
exception Adapterinactive {};
exception AdapterNonExistent {};
exception InvalidPolicy { unsigned short index; };
exception NoServ ant {};
exception ObjectAlreadyAct ive {};
exception ObjectNotAct ive {};
exception ServantAlreadyAct ive {};
exception ServantNotAct ive {};
exception WrongAdapter {};
exception WrongPolicy {};

= e e e e

i
/| POA creation and destruction
i

S —

POA create_ POA(in string adapter_name,
in POAManager a_P OAManager,
in CORBA::PolicyList policies)
raises (AdapterAlreadyExists, Inval idPolicy);

POA find_POA(in string adapter_name, in booleanact ivate_it)
raises (AdapterNonExistent);

void destroy(in boolean etherealize_objects,
in boolean wait_for_completion);

” kkkkkkkkkkkkkkkkhhihkkkkkkkdhkhkhhkkkkdkkkkhkkhkrkkkik

I
/I Factories for Policy objects
I

/ kkkkkkkkkkkkkkkkhkhihkkkkkkkkhkhkhhkkhkdkkkkhhkhkrkkkik

ThreadPolicy
create_thread_policy(in ThreadPolicyValue value);
LifespanPolicy
create_lifespan_pol icy(in LifespanPolicyValue value);
IdUniquenessPolicy
create_id_uniqueness_policy
(in IdUniquenessPolicyValue value);
IdAssignmentPolicy
create_id_assignment_policy
(in IdAssignmentPolicyValue value);
ImplicitActivat ionPolicy
create_implicit_activat ion_policy

9-42 CORBAV2.2 February 1998

(in ImplicitActivat ionPolicyValue value);
ServantRetentionPolicy
create_servant_retention_policy
(in ServantRetentionPolicyValue value);
RequestProcessingPolicy
create_request_processing_policy
(in RequestProcessingPolicyValue value);

S —

/i
/I POA attr ibutes
/i

S —

readonly attribute string the_name;

readonly attribute POA the_parent;

readonly attribute POAManager the_POAManager;
attribute AdapterActivator the_activator;

I
/I Servant Manager registration:
I

S —

ServantManager get_servant_manager()
raises (WrongPol icy);

void set_servant_manager(in ServantManager imgr)
raises (WrongPol icy);

= mm e e e e e

I
/I operations for the USE_DEFA ULT_SERVANT policy
i

S —

Servant get_servant()
raises (NoSer vant, Wro ngPolicy);

void set_servant(in Servant p_servant)
raises (WrongPol icy);

/ kkkkkkkkkkkkkkkhkhihkkkkkkkkhkkhhkkkkdkkkkkhkhkrkkkik

i
/I object activation and deactivation
i

// kkkkkkkkkkkkkkkhkhihkkkkkkkkhkkhhkkkkdkkkkkhkhkrkkkik

CORBAV2.2 IDLfor PaableServer module February 1998 9-43

Objectld activate_object(in Servant p_servant)
raises (ServantAlreadyActi ve, WrongPolicy);

void activate_object_with_id(
in Objectld id,
in Servant p_servant)
raises (ServantAlreadyActi ve, ObjectAlre adyActive,
WrongPol icy);

void deactivate_obj ect(in Objectld oid)
raises (ObjectNotActive, Wrong Policy);

/ kkkkkkkkkkkkkkkkhkhihkkkkkkkkhkkhhkkkkdkkkkkkkhkrkkkik

I
/I reference creation operations
I

// kkkkkkkkkkkkkkkkhkhihkkkkkkkdhkkhhkkkkdkkkkhhkhkrkkkik

Object create_reference (
in CORBA::Reposi toryld intf)
raises (WrongPol icy);

Object create_reference_with_id (
in Objectld oid,
in CORBA::Reposi toryld intf)
raises (WrongPol icy);

S —

I
/I ldentity mapping operations:
I

= e e e e

Objectld servant_to_id(in Servant p_servant)
raises (ServantNotActi ve, WrongPolicy);

Object servant_to_reference(in Servant p_servant)
raises (ServantNotActi ve, WrongPolicy);

Servant reference_to_servant(in Object reference)
raises (ObjectNotActive, Wrong Adapt er, WrongPoli cy);

Objectld reference_to_id(in Object reference)
raises (WrongAd apter, Wro ngPol icy);

Servant id_to_servant(in Objectld oid)
raises (ObjectNotActive, Wrong Policy);

9-44 CORBAV2.2 February 1998

CORBAV2.2 IDLfor PaableServer module February 1998

Object id_to_reference(in Objectld oid)
raises (ObjectNotActive, Wrong Policy);

// kkkkkkkkkkkkkkkhhihkkkkkkkdhkkhhkkkkdkkkkkkkhkrkkkik

i
/I Current interface
i

// kkkkkkkkkkkkkkkkhkhihkkkkkkkdhkhkhhkkkkdkkkkkkhkhkrdkkkik

interface Current : CORBA::Current

{
exception NoContext { };
POA get_POA() raises (NoContext);
Objectld get_object_id() raises (NoContext);
|3

9-45

9.5 UMLDescription of PortableServer

9-46

The following dagramswere geneted by an automated tool and then annotated with
the cardinalities of the associatioff$iey are intended to be an aid in comprehension to
thosewho enjoy such representations. They are are not normative.

PortableServer::AdapterActivator PortableServer::POAManager the_parent
(from Portable Server) (from Portable Server) =
unknown_adapter() activate()
hold_requests()
disca_rd_requests() 1.1 0.n
deactivate() PortableServer::POA
(from Portable Server)
the_manager | —thg name : string
PortableServer::ServantManager :Ee_parent : Poétaﬁletﬁeéver::PO;OAM
e_manager : PortableServer: anager
(from Portable Server) the_activator : PortableServer:.:AdapterActivator
< the_servant_manager : PortableServer::ServantManage
create_POA ()
find_POA()
PortableServer::ServantLocator PortableServer::ServantActivator 0.1 destroy() .
(from Portable Server) (from Portable Server) create_ﬂwread_pollqy()
create_lifespan_policy()
preinvoke() incarnate() create_!d_unlqueneSSJJol!cy()
postinvoke() etherealize() create_id_assignment_policy()
create_implicit_activation_policy()
create_servant _retention_policy()
% create_request_processing_policy()
PortableServer.:Cookie PortableServer::Servant get_servant_manager()
(from Portable Server) (from Portable Server) / set_servant_manager()
get_servant()
set_servant()
activate_object()
activate_object_iwth_id()
PortableServer:Current deactivate_object()
CORBA::Current (from Portable Server) create_reference()
(from CORBA Core) | create_reference_with_id()
get_POA() servant_to_id()
get_object id() servant_to_reference()
reference_to_servant()
reference_to_id()
CORBA::Policy :g—:g—fggﬁeﬁég()
CORBA::PolicyList (from CORBA Core) -
(from CORBA Core) o.n ;)
= policy_type : CORBA::PolicyType %
: CORBA::Policy 1n ;
copy() PortableServer::Objectld
destroy() (from Portable Server)

Figure 9-4 UML for main part of PortableServer

CORBAV2.2 February 1998

IdAssignmentPolicyValue IdUniquenessP olicyValue ImplicitActivationPolicyValue
USER_ID UNIQUE_ID IMPLICIT_ACTIVATION
SYSTEM_ID MULTIPLE_ID NO_IMPLICIT_ACTIVATION
value value 4\value
IdAssignmentPolicy IdUniquessPolicy ImpliciActivationtPolicy
value:ldAssignmentPolicyValue value:ldUniquenessPolicyValue value:ImpliciActivationPolicyValue

v

CORBA::Policy : n
ServantRetentionPolic;
CORBA::PolicyList o.n (from CORBA core) — : e
(from CORBA core) - policy_type - CORBA:PolicyType value:ServantRetentionPolicyValue
. -Poli 1.n —
: CORBA::Policy copy()
destroy() v’alue
ServantRetentionPolicyValue
RETAIN
NON_RETAIN
LifespanPolicy RequestProcessingPolicy ThreadPolicy
value:LifespanPolicyValue value:RequestProcessingPolicyValue value:ThreadPolicyValue
value value value
LifespanPolicyValue RequestProcessingPolicyValue ThreadPolicyP olicyValue
TRANSIENT USE_ACTIVE_OBJECT_MAP_ONLY| ORB_CTRL_MODEL
PERSISTENT USE_DEFAULT_SERVANT SINGLE_THREAD_MODEL
USE_SERVANT_MANAGER

Figure 9-5 UML for PortableServer policies

9.6 Usage Scenarios

This sectionllustrateshow diffelent capabilities of the POA may be used in
applications.

Note —In some of the following C++ exates, PortableServer names are not explicitly
scoped. Itis assumed that all the examples have the Cemetat
using namespace PortableServer;

CORBAV2.2 Usage@&tarios February 1998 9-47

9-48

9.6.1 Getting the root POA

All server applications must obtain a refiece to the root POA, either to use itedily
to manage objects or to createw POAobjects.The following exanple demonstrates
how the application server can obtain a reference to the root POA.

/I C++

CORBA::ORB_ptr orb = CORBA::ORB_init(argc, argv);

CORBA::Object_ptr pfobj =
orb->resolve_initial_references("RootPOA");

PortableServer::POA_ptr rootPOA,

rootPOA = PortableServer::POA::narrow(pfobj);

9.6.2 Creating a POA

For a variety of reasons, a server agadion mightwant to create a new POAhe POA
is created as a child of an existing POA. In this example, it is created as a child of the
root POA.

/I C++

CORBA::PolicyList policies(2);

policies[0] = rootPOA->create_thread_policy(
PortableServer::ThreadPolicy::ORB_CTRL_MODEL);

policies[1] = rootPOA->create_lifespan_policy(
PortableServer::LifespanPolicy:: TRANSIENT);

PortableServer::POA_ptr poa =

rootPOA->create POA("my_little_poa",

PortableServer::POAManager::_nil(), policies);

9.6.3 Explicit Activation with POA-assigné€bject Ids

By specifying theSYSTEM_ID policy on a POA, objects may be explicitly activated
through the POA without providing aarsspecified identitwalue. Using this approach,
objects are activated by performing tetivate object operation on the POA with the
object in question. For this operation, the POA allocatgsgns, and returns a unique

identity value for the object.

Generally this capability isiost useful for transient objects, where the Object Id needs to
be valid only asdng as the servant étive in the seer. The Objectds can remain
completely hilden and no servant manager need be provided. When this is the case, the
identity and lifetime of the servant and thbstract object are essentially equivalent.

When POA-assigned Object Ids are used wélsistent objects or objects that are
activated on demand, the application must be able to associate the generated Obiject Id
value with its corresponding object state.

This example illugates a siple implementation of transient objects using POA-
assigned Object Ids. Itggumes a POA that has tB¥ STEM_ID,
USE_SERVANT_MANAGER, andRETAIN policies.

CORBAV2.2 February 1998

Assume this interface:

/I IDL
interface Foo

{
long doit();

This might reult in the generain of the following skeleton:

class POA_Foo : public ServantBase

{
public:

virtual CORBA::Long doit() = 0;
}

Derive your implementation:

class MyFooServant : public POA_Foo
{
public:
MyFooServant(POA_ptr poa, Long value)

: my_poa(POA::_duplicate(poa)), my_value(value) {}
~MyFooServant() { CORBA::release(my_poa); }
virtual POA_ptr _default_POA()

{ return POA::_duplicate(my_poa); }
virtual Long doit() { return my_value; }

protected:
POA_ptr my_poa;
Long my_value;

h

Now, somewhere in the program during initialization, probablnain()

MyFooServant* afoo = new MyFooServant(poa,27);

PortableServer::Objectld_var oid =
poa->activate_object(afoo);

Foo_var foo = afoo->_this();

poa->the_POAManager()->activate();

orb->run();

This object isactivated with a generated Object Id.

9.6.4 Explicit activation with user assignédject Ids

An object may be explicitly activated by a server using a user-assigned identity. This
may be done for several reasons. For example, a programmémmwayhat cetain
objects are commonlysed, or act as initial points of contact through which clients

CORBAV2.2 Usage@&tarios February 1998 9-49

access other objects (for example, factories). The seoudd be inplemented to create
and explicitly activatehiese objects during initizkton, avoiding the need for a servant
manager.

If an implementatiorhas a reasonably small number of servants, the server may be
designed to keeghem all active continuously (asrlg as theesver is executing). If this
is the case, the iplementatiomeed not provide a servant manager. When the server
initializes, it could create all available servants, loadirayr state and identities from
some persisht store. The POA supports an explicit activation oerati
activate_object_with_id , that associates a servant with an Object Id. This operation
would be used to aehte all of the existing objectsanaged by the server during server
initialization. Assuming the POA has thiSE_SERVANT_MANAGER policy and no
servant manager is associated with a POA, any request received by the POA for an
Object Id value not present in the Active Object Map will result in an
OBJECT_NOT_EXIST exception.

In simple cases of well-known, long-lived objects, it mayb#ficient to activate them
with well known Object Id values during ser initializaton, before activating the POA.
This approach ensures that the objects are alwaylalleavhen the POA is active, and
doesn’t require writing a servant manager. It has severdgaidanitaions for a large
number of objects, though.

This example lustrates the explicit activation of an objecingsa user chosen Object Id.
This example presumes a POA that hasd8ER_ID, USE_SERVANT_MANAGER,
andRETAIN policies.

The code is like the previous example, but replace the last portion of the example shown
above with thdollowing code:

/I C++

MyFooServant* afoo = new MyFooServant(poa, 27);

PortableServer::Objectld_var oid =
PortableServer::string_to_Objectld("myLittleFoo");

poa->activate_object_with_id(oid.in(), afoo);

Foo_var foo = afoo->_this();

9.6.5 Creating references before activation

It is sometimes useful to create references for objects before activating them. This
exampleextends the previous example tostrate this option:

9-50 CORBAV2.2 February 1998

Il C++
PortableServer::Objectld_var oid =
PortableServer::string_to_Objectld("myLittleFoo");
CORBA::Object_var obj = poa->create_reference_with_id(
oid.in(), "IDL:Fo0:1.0");
Foo_var foo = Foo::_narrow(obj);

/I ...|ater...

MyFooServant* afoo = new MyFooServant(poa, 27);
poa->activate_object_with_id(oid.in(), afoo);

9.6.6 Servant Manager Definition and Creation

Servant managers are object implemeaoitesti and are required $atsfy all of the
requirements of object implementations necessary for their intended funBmause
servant managers are local objects, and their use is limited to a singie nale, some
simplificaions in their implementation are possible. Note that thespliications are
suggestions, not normative regnrents. They arenterded as exapies of ways to
reduce the programming effort required to define servant managers.

A servant manager implementatiorust provide the following things:

®* implementation code for either
- incarnate() andetherealize(), or
 preinvoke() andpostinvoke()

®* implementation code for the servant operations, as for all servants

The first two are obviougheir content is dictated by the requirements of the
implementation that the servant manager is magagior the thirgoint, the default
servant manager on the root POA already supplies tipementation ade. User
written servant managers will have to provide thisrtbeles.

Since servant managers are objects, they themselves must be activateghdttied that
most servant managers can be activated on the root POA withatdtdedt of policies
(see “POA Creation” on page 9-6). It is for this reatdmat the root POAas the
IMPLICIT_ACTIVATION policy: so that a servant managan easily bactivated.
Users may choose tota@te a servant manager on other POAs.

The following is anexample servant manager to activate objects on demand. This
example presumes a POWat has th&) SER_ID, USE_SERVANT_MANAGER, and
RETAIN policies.

Since RETAIN is in effect, the type of servant manager used is a SenigatctThe
ORB supplies a servant activator skeleton class in a library:

Il C++
namespace POA_PortableServer

{

class ServantActivator : public virtual ServantManager

{

CORBAV2.2 Usage@&tarios February 1998 9-51

public:
virtual ~ServantActivator();
virtual Servant incarnate(
const Objectld& POA_ptr poa) = 0;
virtual void etherealize(
const Objectld&, POA_ptr poa,
Servant, Boolean remaining_activations) = 0;

%
}
A ServantActivator servant manager migteri look ike:
/I C++
class MyFooServantActivator : public POA_PortableServer::Ser-
vantActivator
{
public:
...
Servant incarnate(
const Objectld& oid, POA_ptr poa)
{
String_var s = PortableServer::Objectld_to_string
(oid);
if (stremp(s, "myLittleFoo0") == 0) {
return new MyFooServant(poa, 27);
}else {
throw CORBA::OBJECT_NOT_EXIST();
}
}
void etherealize(
const Objectld& oid,
POA_ptr poa,
Servant servant,
Boolean remaining_activations)
{
if (remaining_activations == 0)
delete servant;
}
..
I3

9.6.7 Object activation on demand

The pecondition for this scenario is the existence of a client with a reference for an
object with which no servant is associated at the time the client makes a request on the
refeence. It is the responsibility of the ORB, iwlleboration with the POAnd the

server application to find or create an appropriate servanperiorm the requested
operation on it. Such an object is said tartmarnatedwhen it has aactive servant (or,
incarnatior). Note that the client had to obtain the reference in question previously from

9-52 CORBAV2.2 February 1998

9

some source. From the client's perspective, the abstract object exatg as lit holds a
refeence, until it receives a@BJECT_NOT_EXIST system exception in a reply from
an attempted request on the object. Incarnatiatedoes not imply existence or non-
existence of the albysict object.

Note —This specification does not address the issueooifmunication or server
processactivation, as they are immaterial to tROA inerface and operation. It is
assumed that the ORB activates the server if necessary, and can deliver the request tc
the appropriate POA.

To support object aiwlation on denand, the server application must register a servant
manager with the appropriate POA. Upeiteiving the request, if the POA consults the
Active Object Map and discovers that there is no active servant associated with the target
Object Id, the POA invokes thiecarnate operation on theervant manager.

Note —An implication that this mdel has for GIOP is that the object key in the

request message must encapsulate the Object Id value. In addition, it may encapsulate
other values as necessitatedtfoy ORBimplementation.For example, the server must

be able to determine to which POA the request should be directed. It could assign a
different communication endpoint to each POA so that the POA identity is implicit in
the request, or it could use a single endpoint for the entire server and encapsulate POA
identities in objeckey values. Note thahis isnot a concrete requirement; the object

key may not actually contain any of those values. Whatever the comdfeetaation

is, the ORB and POA must be able to use it to find the servant manager, invoke activate
if necessary (which requires the actual Object Id value), and/or find the active servant
in some map.

Theincarnate invocation passes the Object Id value to the servant manager. At this
point, the servant manager may take aogionnecessary to produce a servinat it
considers to be a valid inceation of the object in questioifhe operation returns the
servant to the ®A, whichinvokes the operation on it. Threcarnate operation may
alternatively raise a@BJE CT_NOT_EXIST system exception that will be reted to
the invoking client. In this way, the user-supplied implementation is responsible for
determining object existence and non-existence.

After activation, the POA maintains the association of the searahthe Object Id in
the Active Object Map. (This example presumesREFAIN and
USE_SERVANT_MANAGER policies.)

As an obvious example of transparentwation, the Object Id value could contain a key
for a record in a databa#igat contains the object's stalhe servant manager would
retrieve the state fromhe database, construct a servant of the appropriatenmntation
class (assuming an objemtiented programming language), initialize it with #tate

from the databasand eturn it to thePOA.

The example servant manager in the last section (“Servant ManagjeitiDe and
Credion” on page 9-51) could be used for this scenario. Réleaithe POA would have
the USER_ID, USE_SERVANT_MANAGER , andRETAIN policies.

CORBAV2.2 Usage@&tarios February 1998 9-53

Given such a Servantficator, all that remains is initializatiocode such as the
following.

PortableServer::Objectld_var oid =
PortableServer::string_to_Objectld("myLittleFoo");
CORBA::Object_var obj = poa->create_reference_with_id(
oid, "IDL:fo0:1.0");
MyFooServantActivator* foolM = new MyFooServantActivator;
ServantActivator_var IMref = foolM->_this();
poa->set_servant_manager(IMref);
poa->the_POAmanager()->activate();
orb->run();

9.6.8 Persistent objects with POA-assigned Ids

It is possible to access the Object Id value assigned to an object by the POA, with the
POA:reference_to_id operation. If the reference is for an object managed by the
POA that is the operation’s target, the operation will return the Object Id vahaether

it was assigned by the POA or the user. By doing this, atementation may provide

a servant manager that associatesPtBé-allocated Object Id values with petsigly

stored state. It may also pass the POA-allocated Object Id values to Pfiaszesuch
asactivate_object_with_id andcreate_reference_w ith_id .

A POA with thePERSISTENT policy may be destroyed and latensgantiated in the
same or a differergrocess. A POA with both tHfeYSTEM_ID andPERSISTENT
policies generates Object Id values aregquaiacross all itgntiations of the same POA.

9.6.9 MultipleObject Ids Mapping to a Single Servant

Each POA is created withpolicy that indicates whether or not servants #ieevad to
support mulple object identitiesiswultaneously. If a POA allows multiple identities per
servant, the POA's treatment of the servants is affected in flosviiog ways:
» Servants of the type may be explicitlgtivated multiple times with different
identity values without raiisg an exception.
» A servant cannot be mapped onto or converted todinidual object reference
using that POA, since the idliity is potentially ambiguous.

9.6.10 One Servant for all Objects

By using theaUSE_DEFAULT_SERVANT policy, the developer caneate a POA that
will use a single servant to implement all of its objects. Thp@ach is usefuivhen
there is very little data associated with each object, so little that the data eacoded
in the Object Id.

The following example illustrates thagpproach by using a single servant to incarnate all
CORBA objects that exportgiven interface in the context of a server. This example
presumes a POA thhas theUSER_ID, NON_RETAIN, and
USE_DEFAULT_SERVANT policies.

9-54 CORBAV2.2 February 1998

9

Two interfaces are defined in IDL. TléleDescriptor interface is supported by objects
that will encapsulate access to operations in a file, associated wittsgstien. Global
operations in a file system, such as the ones necessary toRileagscriptor objects,
are supported by objects that export file System interface.

/I DL
interface FileDe scriptor {
typedef sequence<o ctet> DataBuf fer;

long write (in DataBuffer buffer);
DataBuffer read (in long num_bytes);
void destroy ();

|3
interface FileSystem {

FileDescriptor open (in string file_name, in long flags);

ki

Implementation of thesevo IDL interfaces may inherit from static skeleton sks
geneated by an IDL to C++ compiler as follows:

/I C++
class FileDescriptorimpl : public POA_FileDescriptor
{
public:
FileDescriptorimpl(POA_ptr poa);
~FileDescriptorimpl();
POA ptr _default POA();
CORBA::Long write(
const FileDescriptor::DataBuffer& buffer);
FileDescriptor::DataBuffer* read(
CORBA::Long num_bytes);
void destroy();
private:
POA_ptr my_poa,;

3
class FileSystemImpl : public POA_FileSystem
{
public:
FileSystemImpl(POA_ptr poa);
~FileSystemImpl();
POA ptr _default POA();
FileDescriptor_ptr open(
const char* file_name, CORBA::Long flags);
private:
POA_ptr my_poa,;
FileDescriptorimpl* fd_servant;
3

CORBAV2.2 Usage@&tarios February 1998 9-55

9-56

A single servant may be used to serve all requests issued-iteBiéscriptor objects
created by &ileSystem object. The following fragment of codéustrates the steps to
perform when &ileSystem servant is created.

/I C++

FileSystemImpl::FileSystemImpl(POA_ptr poa)
: my_poa(POA::_duplicate(poa))

{
fd_servant = new FileDescriptorimpl(poa);
poa->set_servant(fd_servant);

}

The following fagment of code ilistrateshow FileDescriptor objects are created as a
result of hvoking an operationofpen) exported by &ileSystem object. First, a local

file descriptor is created using the appropriate operating systerilvafi, a CORBA

object reference is creatadd returned to the client. The value of the local filedp®r

will be used to distinguish the newileDescr iptor object from othefFileDe scriptor

objects. Note that FileDescriptor objects in the example are transient, since they use the
value of their file desiotors for their Objetlds,and of course the file descriptors are

only valid for the life of a process.

Il C++
FileDescriptor_ptr
FileSystemImpl::open(
const char* file_name, CORBA::Long flags)
{
int fd = ::open(file_name, flags);
ostrstream ostr;
ostr << fd;
PortableServer::Objectld_var oid =
PortableServer::string_to_Objectld(ostr.str());
Object_var obj = my_poa->create_reference_with_id(
oid.in(),"IDL:FileDescriptor:1.0");
return FileDescriptor::_narrow(obj);

}

Any request issued toEileDescriptor object is handled by the same servant. In the
context of a method invocation, the servarteduines which particular odgt is being
incarnated by invoking an operation that returns a reference to the target object and, after
that, invokingPOA::ref erence_to_id . In C++, the operation used to obtain a reference

to the target object isthis() . Typically, theObjectld value associated with the

refeence will be used to retrieve the state of Hrgdt obgct. However, in this example,

such step is not required since the only thing that is needed is the value for the local file
descriptor and that value coincides with @lejectld value associated with the

reference.

Implementation of theead operation is rather simple. Tkervant determines which
object it is incarnating, obtains the local file descriptor hiatgits identity, pdorms
the appropriate operating systeall, and reéurns the result in BataBuffer sequence.

CORBAV2.2 February 1998

Il C++
FileDescriptor::DataBuffer*
FileDescriptorimpl::read(CORBA::Long num_bytes)

{
FileDescriptor_var me = _this();
PortableServer::Objectld_var oid =
my_poa->reference_to_id(me.in());
CORBA::String_var s =
PortableServer::Objectld_to_string(oid.in());
istrstream is(s);
int fd;
is >> fd;
CORBA::Octet* buffer = DataBuffer::alloc_buf(num_bytes);
int len = :iread(fd, buffer, num_bytes);
DataBuffer* result = new DataBuffer(len, len, buffer, 1);
return result;
}

Using asingle servant per interface is useful in at |éaststuations.

® |n one case, it may be appropriate for encapsulating access to legacy APIs that are
not object-oriented (system calls in the Unix environment, abave shown in the
example).

® |n another case, this technique is useful in handling scalability issues related to the
number of CORBA objects that can be associated with a server. In the example
above, there may be aliitn FileDescriptor objects in the same server ahib
would only require one entry in the ORB. Although there are operating system
limitations in this respect (@nix server is not able to open so maogdl file
desciptors)the important point to take int@eount is that usage of CORBA doesn't
introduce scalaility problemsbut provides mechanisms to handle them.

9.6.11 Single Servant, many objects and types, using DSI

The ability toassociate a single DSI servant witmg CORBA objets is rather
powerful in some scenarios. It can be the basis for development of gateways to legacy
systems or software that mediates with extenaatlware, for example.

Usage of the DSl is llistrated in the following example. This example presumes a POA
that supports thISER_ID, USE_DEFAULT_SERVANT , andRETAIN policies.

A single servant will be used to incarnatauge number of CORBA objects, each of

them representing a separate entry in a Database. There may be several types of entrie:
in the Database, representinffetient atity types in the Database model. Each type of
entry in the Database is associated with a separate intarffacie omprises operations
supported by the Database on entriethaftype. All these interfaces inherit from the
DatabaseEntry interface. Finally, an object supporting tBatabaseAgent interface
supports basic op&tions in the database such asating anew entry, destroying an

existing entry, etc.

CORBAV2.2 Usage@&tarios February 1998 9-57

/I IDL
interface DatabaseEntry {
readonly attribute string name;

k

interface Employee : DatabaseEntry {
attribute long id;
attribute long salary;

k

interface DatabaseAgent {
DatabaseEntry create_entry (
in string key,
in CORBA::Identifier entry_type,
in NVPairSeque nce initial_att ribute_values
);
void destroy_entry (in string key);

k

Implementation ofthe DatabaseEntry interface may inherit from the standard dynamic
skeleton class as follows:

/I C++
class DatabaseEntrylmpl :
public POA_PortableServer::Dynamiclmplementation

{
public:
DatabaseEntrylmpl (DatabaseAccessPoint db);
virtual void invoke (ServerRequest_ptr request);
~DatabaseEntrylmpl ();
virtual POA_ptr _defaultPOA()
{
return poa;
}
2

On the other hand, implementation of DatabaseAgent interface may inherit from
a static skeleton class generated by an IDL to C++ compiler as follows:

9-58 CORBAV2.2 February 1998

/I C++
class DatabaseAgentimpl :
public DatabaseAgentimplBase
{
protected:
DatabaseAccessPoint mydb;
DatabaseEntrylmpl * common_servant;
public:
DatabaseAgentimpl ();
virtual DatabaseEntry_ptr create_entry (
const char * key,
const char * entry_type,
const NVPairSequence& initial_attribute_values
);
virtual void destroy_entry (const char * key);
~DatabaseAgentimpl ();

h

A single servant may be used to serve all requests issuedatatlaseEntry objects
created by @atabaseAgent object. The dllowing fragment otode illusrates the
steps to performvhen aDatabaseAgent servant is creatl. First, access to the
database iqiitialized. As aesult, some kind of descriptor RatabaseAccessPoint local
object) used to operate on the database is obtained. Finallyaatseill be created and
associated with the POA.

/I C++
void DatabaseAgentimpl::DatabaseAgentimpl ()

{
mydb = ..,;
common_servant = new DatabaseEntrylmpl(mydb);
poa->set_servant(common_servant);

h

The code used to eateDatabaseEntry objects representing entries in the database is
similar to the one used for creatiRleDescriptor objects in the example of the

previous sectin. In his case, amewentry is created in the databasel the key

associated with that entry will hesed to represent the identity for the corresponding
DatabaseEntry object. All requests issued tMatabaseEntry object are handled by

the same servant because references to this type of object are associated with a commo
POA created with thelSE_ DEFAULT_SERVANT policy.

CORBAV2.2 Usage@&tarios February 1998 9-59

9-60

Il C++
DatabaseEntry ptr DatabaseAgentimpl::create_entry (
const char * key,
const char * entry_type,
const NVPairSequence& initial_attribute_values)

/I creates a new entry in the database:
mydb->new_entry (key, ...);

/l creates a reference to the CORBA object used to
/I encapsulate access to the new entry in the database.
/I There is an interface for each entry type:
CORBA::Object_ptr obj = poa->create_reference_with_id(
string_to_Obijectld (key),
identifierToRepositoryld (entry_type),
);

DatabaseEntry ptr entry = DatabaseEntry::_narrow (obj);
CORBA::release (obj);
return entry;

h

Any request issued to@atabaseEntry object is handled by the same servant. In the
context of a method invocation, the servariedaines which particular odgt it is
incarnating, obtains the databdsy matching itsdentity, invokes the appropriate
operation in the database and returns déiselt as an output gameter in the
ServerRequest object.

Sometimes, a program may need to determine the type of an entry in the database in
order to invoke operations on the entry. If that is the case, the servant may obtain the
type of an entry based on thedrface supported by thgatabaseEntry object
encapsulating access to that entry. This interface may beettay means of invoking

the get_interface operationexported by the reference to tbatabaseEntry object.

CORBAV2.2 February 1998

Il C++
void DatabaseEntrylmpl::invoke (ServerRequest_ptr request)

{
CORBA::Object_ptr current_obj = _this ();

/I The servant determines the key associated with

/I the database entry represented by current_obj:

PortableServer::Objectld oid =
poa->reference_to_id (current_obj);

char * key = Objectld_to_string (oid);

/I The servant handles the incoming CORBA request. This
/I typically involves the following steps:

/I 1. mapping the CORBA request into a database request
1 using the key obtained previously

/I 2. constructing output parameters to the CORBA request
1 from the response to the database request

h

Note that in this example, we may have a billdatabaseEntry objects in a server
requiring only a single entry in map tables supgubby the POA (that is, the ORB at the
server). No permanent storage is required for references to DatabaseEntry objects at the
server. Actually, references to DatabaseEntry objects nliyl occupy space:

® at clients, as long as those references are used; or

® atthe server, only while a request is being served.

Scalability problems can bdeandled using this technique. There are many scenarios
where this scalability causes nmpdy in terms of performance (badlgawhen there is
no need to restore the state of an object, each time a request to it is being served).

CORBAV2.2 Usage@&tarios February 1998 9-61

9-62 CORBAV2.2 February 1998

Interoperability Overview 10

ORB interoperability specifies a comprehensive, flexég@roach to supporting

networks of objects that are distributed across and managed by multiple, heterogeneous
CORBA-compliant ORBs. The approach to “interOaHity” is universal,becauseéts
elements can be combined in many ways to satisfy a very brogd od needs.

Contents

This chapter contains tHellowing sections.

Section Title Page
“Elements of Interoperability” 10-1
“Relationship to Previous Versions of CORBA” 10-4
“Examples of Interoperability Solutions” 10-5
“Motivating Factors” 10-8
“Interoperability Design Goals” 10-9

10.1 Elements of Interopaiility

The elements of interoperability are as follows:

®* ORB interoperability architecture

® Inter-ORB bridge suport

® General andnternet inter-ORB Protocol&GIOPs and IIOPs)

In addition, the architecture accommodatesironment-specific inter-ORB
protocols (ESIOPs)that are optimized for particular environmesish as DCE.

CORBA V2.2 Febloag/ 10-1

10

10.1.1 ORB Interoperability Architecture

The ORB Interperability Architecture provides a conceptual framework for defining
the elements of interoperabilignd for icentifying its compliance points. It also
characterizemew meclanismsand spedies conventions necessary to achieve
interoperability beteen indepenehntly produced ORBSs.

Specifically, the architecture introduces the conceptmafediateand mediated

bridging of ORB domains. The Internet inter-ORB Protocol (Il@&)ms thecommon

basis for broad-scope mediated bridging. The inter-ORB bridge support can be used to
implement both immediate bridges and to buhdlf-bridges” to mediated bridge
domains.

By use of bridging techniques, ORBs can interoperate without knowingetayls of
that ORB’s implementation, such as wipatticular IPC or protocols (such as ESIOPS)
are used to implement tH@ORBAspecification.

The 1IOPmay be used in bridging two or more ORBs by implementing “half bridges”
which communicate using the 11OP. This approach works both for stand-aloBe, OR
and for networked ones which use an ESIOP.

The 1IOP mayalso be used to implement an ORB’s internal messaging, if desired.
Since ORBs are not required to use the IIOP internally, the goal of not requiring prior
knowledge of each othershplementation is fully sétfied.

10.1.2 Inter-ORB Bridge Support

The intergerability architecture clearly identifies the role of differkimds of
domains for ORB-specific informationugh domainscan include object reference
domains, type domains, security domajag., the scope of Rrincipal identifier), a
transaction domain, and more.

Where two ORBs are in the same domain, they can communicate directly. In many
cases, this is the preferable approach. This is not alwayshtueyver, since
organizations often need to establish local contoohdins.

Wheninformation in an invocation must leave its domdlre invocatiormust traverse
a bridge. The role of a bridge is to ensure that contensam@ntics are mapped from
the form appropriate tone ORB to that of another, so that users of any given ORB
only see their appropriate content and semantics.

The inter-ORB bridge supporterhent specifies ORB APBnd conventions to enable
the easy construction of interopel@bibridges ketween ORB domains. Such bridge
products could be developed by ORB vendors, Sieves, systegrators or other
third-parties.

Because the extensions required to support Inter-ORB Bridges are largely general in
nature, do not impact other ORB operation, aad be used for many other purposes
besides building bridges, they are appropriateafoORBs tosupport. Other

applications include debugging, interposing bjexts, implementing objects with
interpreters and scripting langges and dynamically generating implementations.

10-2 CORBAV2.2 February 1998

10

The inter-ORB bridge syport can also be used to provide interopditgbivith non-
CORBA systems, such as Microsoft's Component Object Model (CONS.ease of

doing this will depend on the extent that those systems conform to the CORBA Object
Model.

10.1.3 General Inter-ORB Ratocol (GIOP)

The Germral Iner-ORB Protocol (GIOP) elemespecifies a standard transfer syntax
(low-level data representation) and a set of message formats for communications
between ORBs. The GIOP specifically built for ORB to ORB interactiorend is
designed to work directly over any connection-oriented transport protocol that meets a
minimal set of assumptions. It does not require or rely on the use of higher level RPC
mechanisms. The protocol is simple (as simple as possible, but not simpler), scalable
and rdatively easy to implement. It is designed to allow portable implementations with
small memory footprints and reasonable performance, with mininpendiencies on
supporting software other than the underlying transport layer.

While versions of the GIOP running on different transports would not be directly
interoperable, their commonality would allow easy and efficient bridging between such
networking domains.

10.1.4 Internet Inter-ORB Protocol (IIOP)

The Internet Inter-ORB Protoc@llOP) element specifies how GIOP messages are
exchanged using TCP/IP connections. The IIOP spedi standardized
interoperability protocol for the Internet, providing “out of the box” interoperation
with other compatible ORBs based on the most popular productvearatbr-neutral
transport layer. It can also be used as the protoewveen half-bridges (see below).

The protocol is designed to Isaitableand appropriate for use by any ORB to
interoperate in Internet Protocol domains unless an alternative protocol is necessitated
by the specific design center or intended operating environment of the ORB. In that
sense it represents the basic inter-ORB protocol for TCP/IP environments, a most
pervasive transport layer.

The IIOP’srelationship to the GIOP similar to that of a specifianguage mapping

to OMG IDL; the GIOP may be mapped onto a number & int transportsand
specifies the protocol elements that are common to all such mappings. The GIOP by
itself, however, does not provide completeeroperability, just as IDIcannot be used

to built complete programs. THEDP, and other siitar mappings to different

transports, are concrete realizations of the abstract GIOP definitioslspwn in

Figure 10-1 on page 10-4.

CORBAV2.2 [Ements of Interoperability February 1998 10-3

10

Mandatory for CORBA CORBA/IDL

N

other GIOP
mappings...

ESIOPs

Figure 10-1 Inter-ORB Protocol Relationships.

10.1.5 Environment-Specific Inter-ORB Protocols (ESIOPS)

This specification also makes provision for an open ended set of Emérd-Specific
Inter-ORB Protocols (ESIOPs). Such protocols would be f@etbut of the box”
interoperation at user sites where a particular networkirdjstributingcomputing
infrastructure is aéady in general use.

Because of the opportunity teverageand build orfacilities provided by the specific
environmentESIOPsmight support specialized caphtiés such as thoseelating to
securityand administration.

While ESIOPsmay be optimizedor particular environments, aiSIOPspecifications
will be expected to conform to the general ORB interopétalarchitecture
conventions to enable easy bridging. Tier-ORB bridge support enables bridges to
be built between ORB domains that use ik and ORB domains that use a
particularESIOP.

10.2 Relaibnship to Previous Versions of CORBA

The ORB Interperability Architecture builds on Common Object Request Broker
Architecture by adding the notion of ORB Services, and their domains. (ORB Services
are described in “ORBs and ORB Services” on page 11-3). The architecture defines the
problem of ORB interoperability in terms of bridgibgtween those domains, and

defines several ways in which those bridges can betaocted: the bridges can be
internal (in-line) and external (request-level) to ORBs.

APls included in the interoperability specifications include compatible extensions to
previous versions c€ORBAto support request level bridging:

® A Dynamic Skeleton Interface (DSI) is the basic support needed for building
request level bridges; it is the server side analogue of the Dynamic Invocation
Interface,and in the same way it has geneapplicability beyond bridging. For
information about the Dyamic Skeleton Interface, refer to the Dynamic Skeleton
Interface chapter in thisook.

10-4 CORBAV2.2 February 1998

10

* APIs for managing object references have been defined, building on the support
identified for the Relationship Service. The APIs are defined in Object Reference
Operations in the ORB Interfackapter of thivook. The Relationship Service is
described iINCORBAservices: Common Object Service Specificatiefisr to the
CosObjectldentity Module section.

10.3 Examples of Interoperability Solutions

The elements of interoperabilitynter-ORB Bridges, General aridternet Inter-ORB
Protocols, Environment-Specific B1tORB Protocols) can be combined imaaiety of

ways tosatsfy particularproduct and customer needs. Théction provides some
examples.

10.3.1 Example 1

ORB product A is designed to support objecsributedacross a network and provide
“out of the box” interoprability with compatible ORBs from othgendors. In

addition it allows for bridges to be bubetween it and other ORBs that use
environment-specific or proprietary protocols. To accomplish this, ORB A uses the
[IOP and provides inter-ORB bridge support.

10.3.2 Example 2

ORB product B is designed to provide highly optimized, very high speed support for
objects located on a single machine; for example, to support thousands of Fresco GUI
objects operated on at near function-call speeds. In addition, some of the objects will
need to be accessibiem other mahines and objects on other machines will need to

be infrequently accessed. To accomplish this, ORB A provides a half-bridgpgort

the Internet IOP for communication with other “distributed” ORBS.

10.3.3 Example 3

ORB product C is optimized to work ingarticular operating environment. It uses a
particular environment-specific protoclodsed on ditributed computing services that

are commonly available at the target customer sites. In addition, ORB C is expected to
interoperate with arbitrary other ORBs from other vendors. To accomplish this, ORB C
provides inter-ORB bridge support and a conipa half-bridge product (supplied by

the ORB vendor or some third-party) provides the connection to other RBdualf-

bridge uses the IIOP to enable interopergbitith other compatible ORBs.

10.3.4 Interoperability Compliance

An ORB is considered to be interoperability-compliatien it meets théollowing
requirements:

CORBAV2.2 ¥amples of Interoperability Solutions February 1998 10-5

10

10-6

* In the CORBA Core part of this specification, standard APIs are provided by an
ORB to enable the construction of request lentdr-ORB bridgs. APIs are
defined by the DynamimVocation Interface, the Dynamic Skeleton Interface, and
by the object identity operations, which are described in the Interface Repository
chapter in this book.

® An Internet Iner-ORB Rotocol (IIOP) (explained in Chapter 12) defines a transfer
syntax and message foata (described independently as the General Inter-ORB
Protocol), and defines how to transfer messages via TCP/IP connections. The IIOP
can be supportedatively or via a half-bridge.

Supportfor additional ESIOPs and other proprietary protocols is optional in an
interoperability-compliant system.dwever, anymplementation that chooses to use

the other protocols defined by the CORBA interoperability specifications must adhere
to those spefications to be compliant ith CORBA interoperability.

Figure 10-2 on page 10showsexamples of interoperable ORB domains that are
CORBA-compliant.

Thesecompliance points support a range of interoperability solutions. For example, the
standard APIs may be used to construct “half bridges” to the IIOP, relying on another
“half bridge” to connect to another ORB. The standard APIs also support construction
of “full bridges,” without using the Internet IOP to mediate between separated bridge

components. ORBs may also use the Internet IOP internally. In addition, ORBs may

use GIOP messages to communicate over other network préaocities (such as

Novell or OSl), and provide transport-level bridges to the IIOP.

The GIOP is desdyed separately from th#OP to allow future specifications to treat
it as an independent compliance point.

CORBAV2.2 February 1998

10

ORB Domains ORB Domalins

Half
Bridge
[HOP
CORBA V2.0 Interoperable
CORBA V2.0 Interoperable
HOP Other
Protocol*

CORBA V2.0 Interoperable

*e.g. Proprietary protocol or
GIOP OSI mapping

Figure 10-2 Examples of CORBA Interoperability Compliance

CORBAV2.2 ¥amples of Interoperability Solutions February 1998 10-7

10

10.4 Motivatng Factors

10-8

This section eglains the factors thahotivatedthe creation of interoperability
specifications.

10.4.1 ORB Implenm¢ation Diversity

Today, there are many different ORB products that addressedyvaf user needs. A

large diversity of implementation teoiques is evident. For example, tivae for a

request ranges over at least 5 orders of magnitude, from a few microseconds to several
seconds. The scope ranges from a single application to entarptiserks. Some

ORBs have high levels of security, others are more open. Some ORBs are layered on a
particularwidely used protocol, others use higlygtimized, proprietary protocols.

The narket for object systems ang@ications that use them will grow as object
systems are able to be applied to more kinds of computing. From application
integration to process control, from loosely coupled operatingmssto the
information superhighway, CORBA-based objeststems can be the common
infrastructure.

10.4.2 ORB Boundaries

Even when it is not required by plementation differences, there are other reasons to
partition an environment into different ORBs.

For security reasons, it may be important ho that it is not gnerally possible to
access objects in one domain from another. For example, an “internet ORB” may make
public information widely available, but‘@ompany ORB” will want torestrict what
information can get outEven if they used theame ORB implementation, thetseo

ORBs would be separate, so that the company could allow access to public objects
from inside the company without allowing access to private objects from ouUEside.
though individual objects should protect themselves, prudetgrayadministrators

will want to avoid exposing sensitive objects to attacks from outside the company.

Supportingmultiple ORBsalso helps handle the difficult gstem of testingand

upgrading the object system. It would be unwise tortest infastructure without

limiting the set of objects that might be damaged by bugs, and it may be impractical to
replace “the ORB” everywher@multareously. Anew ORB night be teste@dnd

deployed in the same environment, interoperating with the existing ORB until either a
complete switch is made or it incrementally displaces the existieg

Management issues may alsmtivate partitioning an ORB. Just astworks are
subdivided into domains tallow decentralized control of databases, configurations,
resources, etc., management of sete in an ORB (object reference location and
translation information, interface repositories, per-object data, etc.) might alemée d
by creating sub-ORBs.

CORBAV2.2 February 1998

10

10.4.3 ORBs Vary in Scope, Distance, and Lifetime

Even in a single computing environment produced by a single vendor, there are reasons
why some of the objects an application might use would be in one ORB, and others in
another ORB. Some objects and services are accessed ovelidtanges, with more

global visibility, longerdelays, andess reliable communication. Other objects are
nearby, are not accessed frormes¥here, and provide highgquality service. By

deciding which ORB to use, an implementer sets expectations for the clients of the
objects.

One ORB might be used to retain links to information that is expected to accumulate
over decades, such as a library archives. Another ORB might be used to manage a
distributedchess program in which the objects should all be destroyed when the game
is over. Although while it is running, it makes sense for “chess ORB” objects to access
the “archives ORB,” we would not expect the archives to try to keep a reference to the
current board position.

10.5 Interoperabilitypesign Goals

Because of the dérsity in ORB implementations, multiple approaches to
interoperability are required. Options identified in previous versiorGOiRBA
include:

® Protocol Translationwhere a gateway residing somewhere in the system maps
requests from the format used by one ORB to that used by another;

* Reference Embeddinghere invocation using a native object reference delegates to
a special object whose job it is to forward that invocation to another ORB;

® Alternative ORBswhere ORBmplementations agree to coexist in the same address
space so easily that a client or implementatian transprently useany of them,
and pass object references created by one ORB to another ORB without losing
functionality.

In general, there is no single protocol that can meet everyone's needs, and there is no
single means to interoperate betwéwn differentprotocols. There are many
environments in which mtiple protocols exist, and there anays to bridge between
environments that share no protocols.

This spedication adopts a flexible architecture that allows a widdetsirof ORB
implementations to interoperate and that includes both bridging and common protocol
elements.

The following goals guidethe creation of interoperability specifications:

®* The architecture and specifications should allow high performanad, f@wtprint,
lightweight interoperaltity solutions.

®* The design should scale, should not be unduly difficult to implement and should not
unnecessarily restrict implementation choices.

CORBAV2.2 nteroperability Design Goals February 1998 10-9

10

® Interoperability solutionshould be able to work with any vendoexisting ORB
implementations, with respect to their CORBA compliant core feature set; those
implementations are diverse.

® All operations implied by the CORBA object model (i.e., the stringifig
destringify operations defined on tORBA:ORBseudo-bject, and all the
operations oifCORBA:Object) as well as type manageméatg., narrowing, as
needed by the C++ mapping) should be supported.

10.5.1 Non-Goals

The following were taken into account, but were not goals:
® Support for security

® Support for future ORB Services

10-10 CORBAV2.2 February 1998

ORB Interoperability Architecture 11

Contents

This chapter contains tHellowing sections.

Section Title Page
“Overview” 11-1
“ORBs and ORB Services” 11-3
“Domains” 11-5
“Interoperability Between ORBS” 11-7
“Object Addressing” 11-11
“An Information Model for Object References” 11-14
“Code Set Conversion” 11-22
“Example of Generic Environment Mapping” 11-34
“Relevant OSFM Registry Interfaces” 11-35

11.1 Overview

The original Request for Proposal on Interoperab{ifiG Document 93-9-15)
defines interoperability as the ability for a client on ORB A tmke an OMG IDL-
defined operation on an object on ORB B, where ORB A and ORB B are
independently developed. It furthiglentifies general requirements including in
particular:

® Ability for two vendors’ ORBs to interoperate withquior knowledge of each
other’s implementation.

® Support of all ORB factionality.

CORBA V2.2 ebruary 1998 11-1

11

® Preservation of content and seniesibf ORB-specifianformation across ORB
boundaries (for example, security).

In effect, the requirement is for invocations between client and server objects to be
independent of whether they are on the same or different ORBs, and not to mandate
fundamental modifications to existing ORB products.

11.1.1 Domains

The CORBA ject Model identifies various distribution transparencies that must be
supported within a single ORB environment, such as location transparency. Elements
of ORB functionality often corregmddirectly to such transparencies. Interoperability
can be viewed as extending transparencies to span multiple ORBs.

In this architecture domainis a distinctscope, within which certain common
characteristics are exhibited and common rules are observedwvbigér adistribution
transparency is preserved. Thus, interoperability is fundamentally involved with
transparently crossing such domain bouretar

Domains tend to be either administrative or temlbgical in nature, and need not
correspond to the boundaries of an OiRBtallation. Administrative domains include
naming domains, trust groups, resource managenwnaiisand othef‘run-time”
characteristics of a system. Technology domaiesitiiy common protocols, syntaxes
andsimilar “build-time” characteristics. In many cases, the need for technology
domains derives from basic requirements of administrative domains.

Within a single ORBmost domains are likely to have similar scope to that of the ORB
itself: common object referencaswtwork addresses, security mechanisms, and more.
However, it is possible for there to baultiple donains of the same type supported by
a given ORB: internal representation on different machypes, or security domains.
Conversely, a domain may span several ORBwrilar network addresses may be used
by different ORBs, typeidentifiers may be shared.

11.1.2 Bridging Domains

The abstract architecture describes ORB interoperabilitgims ofthe translation
required when an object request traverses domain boundariee@aally, a mapping
or bridging mechanismesides at the boundary between the domé&iassforming
requests expressed terms ofone dmain’s model into the model of the destination
domain.

The concretarchitecture identifies two approachesrtter-ORB bridging:
® At application level, allowingléxibility and portabdity

®* At ORB level, built into the ORB self

11-2 CORBAV2.2 February 1998

11

11.2 ORBs and ORB Services

The ORB Core is that part tiie ORB which provides the basic representation of
objects and the communication of requests. The ORB Core therefore supports the
minimum functionality to enable a client to invoke an operation on a server object,
with (some of) thelistribution transparencies required G@RBA

An object request may have implicit attributeki@h affect the way in which it is
communicated - though not threay in which aclient makes the request. These

attributes include security, transactional capabilities, recovery, and replication. These
features are provided by “ORB Services,” which will in some ORBs be layered as
internal services over the core, or in other cases be incorporated directly into an ORB’s
core. It is an aim of this spdiciation to allow fornew ORB ®rvices to be defined in

the future, without the need to modify or enhatite architecture.

Within asingle ORB, ORB services required to communicate a request will be
implemented and (implicitly) woked in a private manner. For interoperability between
ORBs, the ORB services used in the B3Randthe correspondence between them,
must be identified.

11.2.1 The Nature of ORB Services

ORB Services are invokathplicitly in the course of application-level interactions.

ORB Services range from fundamental mechanisms such as reference reswldtion
message encoding to advanced features such as support for security, transactions, or
replication.

An ORB Service is often related to a particular transparency. For example, message
encoding — the marshaling and unmarshaling of the components of a request into and
out of message buffers — provides transparency of the representation of the request.
Similarly, reference resolution supports location transparency. Some transparencies,
such as security, are supported by a combination of ORB Services and Object Services
while others, such agplication, may inolve interactions between ORB Services
themselves.

ORB Servicedliffer from Object Services in th#ttey are positioned below the
applicationand are invoked traparently to the application code. However, many ORB
Services include components which correspond to conventional Olgjedt&s in that
they are invoked explity by the application.

Security is an example of service with both ORB Servicerardhal Object Service
components, the ORB components being those associated with transparently
authenticating messages and controlling access to objects while the necessary
administration and management functions resemble conventional Object Services.

11.2.2 ORB Services and Object Requests

Interoperabilitybetween ORBs extends the scope striiution transparencies and
other request &tbutes tospan multiple ORBs. This requires the establishment of
relationships between supporting ORB Services in the different ORBs.

CORBAV2.2 ORBs and OB®&rvices February 1998 11-3

11

11-4

In order to discuss how threlationships between ORB Services are established, it is
necessary to describe an abstract vielwaaf an operation invocation @mmunicated
from client to server object.

® The client generates an operation request, using a reference to the server object,
explicit parametersand an imgtit invocation context. This iprocessed by certain
ORB Services on the client path.

®* On the server side, corresponding ORB Services process the incoming request,
transforming it into a form directly suitable for irking the operation on the server
object.

®* The server object performs the requested operation.

®* Any result of the operation is returned to the client simalar manner.

The correspondence betwedient-side and server-side ORB Services need not be
one-to-one and in some circumstances may be far more complex. For example, if a
client application requests an operation on a replicated server, there may be multiple
server-side ORB service instances, possibly interacting with each other.

In other cases, such as securifient-side or server-side ORB Services may interact
with Object Services such as authentication servers.

11.2.3 Selection of ORB Services

The ORB Services useaare determined by:

® Static properties of both clieand server bjects; for example, whether a server is
replicated.

®* Dynamic attributes determined by a particular invocation context; for example,
whether a request is transactional.

® Administrative policieqe.g., security).

Within asingle ORB, private mechanisms (amgtimizations)can be used to establish
which ORB Services are required amolw they are provided. Service selection might

in general require negotiation to select protocols or protocol options. The same is true
between different ORBSs: it is necessary to agree which ORB Services are used, and
how each trasforms the request. Ultimately, these choices become manifest as one or
more protocols between the ORBs ortr@smsformations of requests.

In principle, agreement on the use of each ORB Service can be independent of the
others and, in appropriately constructed ORBSs, services could be layered in any order
or in any grouping. Thisgtentially allows applications to specify selective
transparencies according to their requirements, adthatthis time CORBAprovides

no way to penetrate its transparencies.

A client ORB must be able to determine which ORB Servinast beused in order to
invoke operations on a&erver object. Correspondingly, where a client requiresohic
attributes to be associated with specific invocationgdoninistrative policies dictate,

it must be possible to cause the appropriate ORB Services to be used on client and

CORBAV2.2 February 1998

11

11.3 Domains

server sides of the invocatigrath. Where this is not possible - because, for example,
one ORB does not support thel set of services required - either the interaction
cannot proceed or it can only do so with redufzelities or transparencies.

From a computational viewpoint, the OMG Object Model identifies various
distribution transparencieshich ensure thatlient and server objects are presented
with a uniform view of a heterogeneodsstributed system. From an engineering
viewpoint, however, the system is not wholly uniform. There may be distinctions of
locationand possibly many others such as processor architecture, networking
mechanisms and data representati@ven when a single ORB ingrhentation is used
throughout the system, local instances may represent distinct, possibly optimized
scopes for some aspects of ORB functionality.

Representation Representation

Reference Reference

Networking

Security

Figure 11-1 Different Kinds of Domains can Coexist.

Interoperability, by definition, introduces further distinctions, notdidgween the
scopes associated with each ORB. Tealibe both the requirements for
interoperability and some of the solutions, this architecture introducesticept of
domainsto describe the scopasdtheir implications.

Informally, a domain is a set of objects sharing a common characteristic or abiding by
common rules. It is a powerful modelling concept which can simplify the analysis and
description of complex systems. There may be many types of domaijns (e.
management domains, naming domainsgleage domains, and technology domains).

11.3.1 Definition of a Domain

Domains allowpartitioning of systems into collections of components wihiahe

some characteristic in common. In this architecture a domain is a scope in which a
collection of objects, said to be members of the domain, is associated with some
common characteristic; any object for which the association doesxisbt or is

undefined, is not a member of the domain. A domain can be modelled as an object and
may be itself a member of other domains.

It is the scopes themselves and the object associations or bindings defined within them
which characterize a domain. This information is disjoint leefwvdmains. However,

an object may be a member of several domains, of similar kinds as well as of different
kinds, and so the sets of members of domains may overlap.

CORBAV2.2 Domains February 1998 11-5

11

11-6

The concept of a domain boundandisfined as theirhit of the scope in which a
particular characteristic is valid or meaningfhen acharacteristic irone domain is
translated to an equivalent in another domain, it is convenient to consider it as
traversing the boundary between the two domains.

Domains are generally either administrative or technological in nature. Examples of
domains related to ORB interoperability issues are:

®* Referencing domain — the scope of an object reference

®* Representation domain — the scope of a message transfer syntax and protocol
®* Network addressing domain — the scope of a network address

®* Network connectivity domain — the potential scope ofetiwvork message

® Secuity domain — the extent of a particular security policy

®* Type domain — thescope of a particular type identifier

® Transaction domain — the scope of a given transaction service

Domains can be related in two ways: containment, where a domain is contained within
another domain, anfiéderation, where two domains are joined in a manner ageed
set up by their administrators.

11.3.2 Mapping Between Domains: Bridging

Interoperabilitybetween domains is only possible if there isalxdeined mapping
between the behaviors of the domains being joined. Conceptually, a mapping
mechanism or bridge resides at the boundary between the domains, transforming
requests expressed tiarms ofone dmain’s model into the model of the destination
domain. Note that the use of ttexm “bridge” in this context isonceptual and refers
only to the functionality which performs the required mappingfsveen ditinct
domains. There are several implementation options for such bridges and these are
discussed elsewhere.

For full interoperability, it is essential that all the concepgsd in one dmain are
transformable into concepts in other domainghwhich interoperability is required,

or that if the bridge mechanism filters such a concept out, nothing is lost as far as the
supported objects are concerned. In other words, one domain may support a superior
service to others, but such a superior functionality will not be available to an
application system spanning thosenthins.

A special case of this requirement is that the object models ofvthdomains need to
be compatible. This specification assumes that both domairstriatey compliant

with the CORBA Object Model and tl@ RBAspecifications. This includes the use of
OMG IDL whendefining interfaces, thase of the CORBA Core Interfag@epogory,
and othemodifications that were made @ORBA Variances from this model could
easily compromise some aspects of interoperability.

CORBAV2.2 February 1998

11

11.4 Interoperability Between ORBs

An ORB “provides the mechanisms by which objects transparently avakeeceive
requests and responses. In so doing, the ORB provides interoperability between
applications on different machines in heterogeneabsisibuted environments...” ORB
interoperability extends this definition to cases in which client and server objects on
different ORBs “transparently make and receive requests...”

Note that a direct consequence of this transparency requirement is that bridging must
be bidirectional: that is, it mustork as efectively for object references passed as
parameters as for the target of an object invocation. Were bridging unidirectional (e.g.
if one ORB could only be elient to another) then transpareneguld not have been
provided, because objeferences passed as parameters would not work correctly:
ones passed as “callback objects,” for example, could not be used.

Without loss of generality, most of this specification focuses on bridging incrdy
direction. This is purely to simplify discussions, arad not imply that midirectional
connedivity satisfiesbasic interoperability requirements.

11.4.1 ORB Services and Domains

In this architecture, different aspects of ORB functionality - ORB Services - can be
considered independently and associated with different domain types. The architecture
does not, however, prescribay paticular decompsiton of ORB functionalityand
interoperability into ORB Services and corresponding domain types. There is a range
of possibilities forsuch a decomposition:

1. The simplest model, for interoperability, is to treat all objectgpetted by one
ORB (or, alternatively, all ORBs of avgin type) as comprising one domain.
Interoperability betweeany pair of different domains (or domain types) is then
achieved by a specific all-encompassing bridge between the domains. (This is all
CORBAiImplies.)

2. More detailed decompositions would identify particular domain types - such as
referencing, representation, security, and networking. A core set of domain types
would be pre-determined and allowance made for additional domain types to be
defined as future requirements dictateg(efor new ORB Services).

11.4.2 ORBs and Domains

In many respects, issues of interoperability between ORBsimikar to those which
can arise with a single type of ORB (e.g., a product). For example:

* Two installations othe ORB may be installed in different secudigmains, with
different Principal identifiers. Requests crossing those security domain boundaries
will need to establish locally meaningful Principals for the catlentity, and for
any Principals passed parameters.

* Different installations mighassign different type identifiers for equivalent types,
and so requests crossing type dontzonindaries would need to esiabllocally
meaningful type identifieréand perhaps more).

CORBA V2.2 Interoperability Between ORBs February 1998 11-7

11

11-8

Conversely, noall of these problemseed to appear when connecting two ORBs of a
different type (eg., two diferent products). Examples include:

®* They could be administered to share wdsible naming domains, so that naming
domains do not need bridging.

®* They might reuse the same networking infrastructure, so that messages could be
sent without needing to bridge different coningtgt domains.

Additional problems can arise with ORBs of different types. Ini@adar, they may

support diferentconcepts or models, between which there are no direct or natural
mappings. CORBA only specifies the applicatiendl view of object interactions, and
requires that distribution transparencies conceal a whole range of lower level issues. It
follows thatwithin any particular ORB, the mechanisms for supporting transparencies
are not visible at the application level and are entirely a mattienglémentaibn

choice. So there is no guarantee that any two ORBs support similar internal models or
that there is necessarily a straightforward mapping between those models.

These observations suggest that the concept of an ORB (instance) is too coarse or
superficial to allow detailed analysis of interoperability issoetsveen ORBs. Indeed,

it becomes clear that an ORB instance is an elusive notion: it can perhaps best be
characterized as the intersection or coincidence of ORB Service domains.

11.4.3 Interoperability Approaches

When aninteraction takes place across a domzonndary, a mapping mechanism, or
bridge, is required to transformalevant elements of the interactiontlasy traverse the
boundary. There aressentiallytwo approaches to achievitlgis: mediated bridging
andimmediate bridgingThese approaches are described inféllewing subsections.

Domain Domain Domain Domain
'D nerop |
Mediated Bridging Immediate Bridging

Figure 11-2 Two bridging technigues, different uses of an intermediate form agreed on between
the two domains.

Mediated Bridging

With mediated bridging, elements of the interaction relevant to the domain are
transformed, at the boundary of each domain, between the internal form of that domain
and an agreed, common form.

Observations on mediated bridging are as follows:

®* The scope of agreement of a common form can range from a private agreement
between twaarticular ORB/domain implementations to a universal standard.

CORBAV2.2 February 1998

11

® There can be more than one common form, each orienteptionized for a
different purpose.

® If there is more than one possible common form, then selection of which is used can
be static (e.g., administrative policy agreed hestw ORB vendors, or between
system administrators) or dynamic (e.g., established separately for each object, or
on each invocation).

® Engineering of this approach can range from in-line $jgatly compiled (compare
to stubs) or generic library code (such as encryption routines) code, to intermediate
bridges to the common form.

Immediate Bridging

With immediate bridging, elements of the interaction relevant to the domain are
transformed, at the boundary of each domain, directly between the irfftemaif one
domain and the internal form of the other.

Observations on immediate bridging are as follows:

® This approach has the potential to be optimal (in that the interaction is not mediated
via a third partyand can be ®zifically engineered foeach pair of domains) but
sacrifices flexibility and generality of interoperability to amba this.

® This approach is often applicable whempssing domain cundares which are
purely administrative (i.e., there is noasige of technology). For example, when
crossing security administration domalmstweensimilar ORBS, it is not ecessary
to use a common intermediate standard.

As a general observation, the two approaches can bealonost indistinguishable
when private mechanisms ansed between ORB/domaiimplementations.

Location of Inter-Domain Functionality

Logically, an inter-domain bridgleas components in both domains, whether the
mediated or immediate bridging appoh is used. However, domains can span ORB
bourdariesand ORBs can span machine and system boundaries; selyyer machine

may support, or a process may have access to more than one ORB (or domain of a
given type). From an engineering viewpoititis means that the components of an
inter-domain bridge may be dispersed or co-located, with respect to ORBSs or systems.
It also means that the distinction between an ORB and a bridge can beeraahat
perspective: there is a dualihetween viewing inter-system messaging as belonging to
ORBs, or to bridges.

For example, if a single ORB encompasses two security domainsitéinelomain

bridge could be implemented wholly within the ORB and thusbisible as far as
ORB interoperability is cocerned. A snilar situation arisesvhen abridge between

two ORBs or domains is implemented wholly within a process or system which has
access to both. In such cases, the engineering issues of inter-domain bridging are

CORBA V2.2 Interoperability Between ORBs February 1998 11-9

11

11-10

confined, ssibly to a single system or process. If it were practicahfdement all
bridging in this way, then interactions between systems or processes would be solely
within a single domain or ORB.

Bridging Level

As noted at the start of this section, bridges mainfemented bth internally to an
ORB and as layers above it. These are called respectively “indim*request-level”
bridges.

Request level bridges use the CORBA APIs, including the Dynamic Skeleton Interface,
to receive and issue requests. However, there is an emerging clasplioft context”

which may be associated with some invocations, holding ORB Service information
such as transaction and security contefdrimation, which is not at this time exposed
through general purpose public APIs. (Those APIs expose only OMG IDL-defined
operation parameters, not impliohes.) Rither, the precedent set with the Transaction
Service is that special purpose APIs are definealltov bridgi