
+%2�	�&RPSDQ\

CORBA Based
HL7 Implementation Approaches
CorbaMed RFI 5 Response

November 14, 1997

David A. Schramm
Director, HBOC Application Framework

587 East State Road 434
Longwood, Florida 32750
dschramm@ipworld.com

,QWURGXFWLRQ

The requirement for interaction between various parts of the healthcare delivery system is
intensifying in volume, timeliness, and complexity. Our software solutions must mirror
these business requirements. Therefore, HBO & Company believes strongly in moving
away from message based interfacing of applications to object based integration of
application components. We are participating heavily in the OMG Business Object Facility
DTF (BODTF) both evaluating and influencing the Business Object Facility responses and
responding to CBO RFIs and RFPs.

While HBO & Company supports the direction to base all business objects on the
forthcoming OMG standard meta-models being established in the BODTF, we are using a
proprietary business object meta-model and application framework today as the basis for
our component development. An introduction to that meta-model can be found in OMG
document bom/97-12-15. It is our desire to evolve that meta-model and our application
framework to conform to the emerging OMG standards. Until that happens however, all
HBO & Company responses will assume the use of our proprietary Application
Framework.

HBO & Company recognizes the SIGOBT effort in the HL7 standards efforts. However, we
are concerned that this effort is focusing primarily on substituting one message structure
and transport protocol for another, while providing little improvement in the ability to deliver
component based products. We are therefore concerned about the value of any standards
arising from it. However, while moving to true component based solutions, we recognize
that interactions with legacy applications still need to be based upon HL7 messages. This
response discusses how we are bridging between these technologies.

• 3HUIRUPDQFH�H[SHULHQFHV� LQ�XVLQJ�&25%$�EDVHG�+/�� LPSOHPHQWDWLRQV��ZKDW�KDV�ZRUNHG
ZHOO��ZKDW�KDV�QRW"��

• %HQHILWV� DQG� GUDZEDFNV� �SURV� DQG� FRQV�� WR� LPSOHPHQWDWLRQ� RI� &25%$� EDVHG� +/�
LPSOHPHQWDWLRQV� �ZK\� ZRXOG� VRPHRQH� ZDQW� WR� EXLOG� RU� EX\� D� &25%$� EDVHG� +/�
LPSOHPHQWDWLRQ�RYHU�D�PHVVDJH�EDVHG�¶WUDGLWLRQDO·�LPSOHPHQWDWLRQ��

We have two concerns about a CORBA based HL7 implementation.

1. If the objects are of comparable complexity to current HL7 Version 2 messages, we
are concerned about performance ofORB marshalling and unmarshalling of these
massive objects.

2. Message based interfacing of applications supports only a relatively simple level of
interaction between large grained components. The requirements of the Healthcare
industry already greatly exceed the capability of this paradigm and call for more
complex interactions between medium grained components with higher performance
characteristics.

2YHUYLHZ

The HBO & Company HL7 Facility consists of four major parts which provide end-to-end
handling of HL7 messages into and out of our Application Framework based solutions.
They are:

• a HL7 message definition compiler,

• a HL7 message type class library,

• an abstract form component type, and

• a HL7 form implementation.

+/��0HVVDJH�'HILQLWLRQ�&RPSLOHU

• $XWRPDWHG� DSSURDFKHV� WR� WUDQVIRUPDWLRQ� RI� +/�� $6&,,� HQFRGHG� PHVVDJHV� WR� &25%$
¶REMHFWV·��IRU�H[DPSOH��XVH�RI�LQWHUIDFH�HQJLQH�WHFKQRORJ\�WR�PDQDJH�WUDQVIRUPDWLRQ��

This section describes a HL7 definition compiler. It takes a textual definition of a HL7 V2.x
message as input and creates a class library representing that message. Developers can
modify / introduce message definitions, segment definitions, composite data type
definitions and table definitions in the corresponding text files to accommodate their
special needs.

 Message definitions are defined in a message definition file which is used by the compiler
to generate the tree structure of the messages. A user can either modify a pre-defined
message or define her/his own message, as long as the new message is syntactically
correct. In practice, we don’t include optional groups/segments that are not used by the
application. When populating itself with an ASCII HL7 message, the message class is able
to pick up only the groups/segments it consists of. This approach avoids the trouble that
those optional groups/segments, which are not supported by the receiving application,
might cause, as well as improves performance.

The textual definition of a HL7 message is divided into four definition files; message
definition, segment definition, composite data type definition and table definition. The
following table contains an example of a message definition file.

"A01"
MSH EVN PID<NK1>PV1[PV2]<OBX><AL1><DG1><PR1><GT1><IN1[IN2][IN3]>[ACC][UB1][UB2]
//

"A06"
MSH EVN PID[MRG]<NK1>PV1[PV2]<OBX><AL1><DG1><PR1><GT1><IN1[IN2][IN3]>[ACC][UB1][UB2]
//

"RDE"
MSH<NTE>[PID<NTE><AL1>[PV1]]{ORC[RXO<NTE>{RXR}[{RXC}<NTE>]]RXE{RXR}<RXC><[OBX]<NTE>>}
//

"A17"
MSH EVN PID PV1[PV2]<OBX>PID PV1 PV2<OBX>
//

"DFT"
MSH EVN PID[PV1][PV2]<OBX>{FT1}
//

"RRE"
MSH MSA[ERR]<NTE>[[PID<NTE>]{ORC[RXE{RXR}<RXC>]}]
//

A segment definition file describes the segment’s field length, data type, optionality,
repetition number, and what HL7 tables are used and where they are used. The following
table contains an example. A usage flag is used for turning off unused fields in the C++
class library.

 Y; 15; ST; ; ; ;sending application
 Y; 20; ST; ; ; ;sending facility
 Y; 30; ST; ; ; ;receiving application
 Y; 30; ST; ; ; ;receiving facility
 Y; 26; TS; ; ; ;date/time of message
 N; 40; ST; ; ; ;security
 Y; 7; ZM; R; ;0076(1,1)|0003(0,2);message type
 Y; 20; ST; R; ; ;message control id
 Y; 1; ID; R; ;0103(1,1) ;processing id
 Y; 8; ID; R; ;0104(1,1) ;version id
 Y; 15; NM; ; ; ;sequence number
 N; 180; ST; ; ; ;continuation pointer
 Y; 2; ID; ; ;0155(1,1) ;accept acknowledgment type
 Y; 2; ID; ; ;0155(1,1) ;application acknowledgment type
 Y; 2; ID; ; ; ;country code

A composite data type file describes each component data type and its name. Generic
data type CM can be avoided by introducing new composite data types. Following is the
text file for AD type.

ST _street; //street address
ST _other; //other destination
ST _city; //city
ST _state; //state or province
ST _zip; //zip
ST _count; //country
ID _type; //type
ST _geogr; //other geographic designation

There is a text file for each HL7 table. Only those tables that have HL7 suggested entries
are pre-edited. They could be modified and new tables could be added.

The following is an example of the text file for HL7 table 0004:

 "B", // obstetrics
 "E", // emergency
 "I", // inpatient
 "O", // outpatient
 "P", // pre-admit
 "R", // recurring patient

Our implementation of the C++ classes parallels the CORBA IDL definition developed by
HL7 Object Brokering SIG. One of the major differences is that we use a list for each field,
each segment and each group, no matter what its requirement and repetition are. This
implementation yields the freedom to specify its requirement and repetition using two
integers. More importantly, it gives application programmers the convenience to create an
empty object and fill in data later on.

+/��0HVVDJH�7\SH�&ODVV�/LEUDU\

• 0DSSLQJV�ZKLFK�KDYH�EHHQ�XVHG� WR� LPSOHPHQW�&25%$�EDVHG�+/��VROXWLRQV� �FRXOG�EH� LQ
WKH�IRUP�RI�,'/�ZLWK�WH[WXDO�H[SODQDWLRQ��

This section describes the lightweight C++ class library built by the HL7 Message Definition
Compiler. The C++ class library serves as a C/C++ API to ASCII HL7 messages. It could
be used alone as an API, or used as intermediate data structure for converting between
ASCII HL7 messages and the CboForms. The system automatically generates the
appropriate complex CboForm structure to contain the message.

We take a little different approach than that of the HL7 Object Brokering SIG in dealing
with the data slots. We use a dynamic array for each data slot, no matter if it is optional,
repeating or required. This approach simplifies the user interface of the library, and it treats
data members uniformly.

 This library is automatically generated. Different versions of HL7 and other HL7 variants,
such as HBO & Company’s HBOCHI standard, as well as customized messages and
segments (Z message/Z segment) can be easily supported simultaneously. The
functionality it offers includes:

n Parsing a stream message

n Building a message

n Validating the segment pattern of an incoming/outgoing message

n Validating the format of each field against HL7 encoding rule

n Validating those fields that use the tabular values for both incoming/outgoing
messages

In HL7, a message is comprised of a group of segments in a defined sequence. The C++
class of a message in terms of segments is implemented as a tree structure with
segments as leaves and groups as internal nodes. Figure 1 below shows the tree structure
(without leaves) of a Pharmacy Encoded Order RDE message.

RXO<NTE>{RXR}[{RXC}<NTE>]

MSH<NTE>[PID<NTE><AL1>[PV1]]{ORC[RXO<NTE>{RXR}[{RXC}<NTE>]]RXE{RXR}<RXC><[OBX]<NTE>>}

1

0..*

MsgRDE

1

0..*
PID<NTE><AL1>[PV1] ORC[RXO<NTE>{RXR}[{RXC}<NTE>]]

RXE{RXR}<RXC><[OBX]<NTE>>

GrpG07

GrpG04

1

0..*

1

0..*

1

0..*

GrpG03

1

0..*

1

0..*

GrpG06

GrpG05

1

0..*

1

0..*

1

0..*

[OBX]<NTE>

{RXC}<NTE>

)LJXUH���

Each HL7 table is implemented as a C++ class that is associated with the HL7 message
on the segment level; i.e., its instance is used in the segment node.

+/��)RUPV

An overview of the abstract framework component types is presented in OMG document
bom/97-12-15. One of the types outlined in that document is a CboForm. Forms are
responsible for exchanging data into and out of the HBO & Company Application
Framework. CboForms can only contain CboAttributes and CboForms. This abstract type
provides all the interfaces used by other component types to send and receive HL7
messages.

+/��)RUP�,PSOHPHQWDWLRQV

When a business transaction or process uses the form’s Get() or Put() methods, the
abstract form methods ask a form implementation factory for a HL7 form implementation
based upon execution context information. This section briefly describes the architecture
of the HBOC Application Framework HL7 form implementation. The concentration is on
each step that the data format changes.

We shall discuss this issue in three categories:

n Inbound

n Outbound

n Real Time Query / Response

In all three cases, generated Abstract Form provides the programming interface.

,QERXQG

The HL7 listening socket is implemented in a separate executable which publishes
business event (CboEvent) objects. Business transactions subscribe to and process these
events. The following figure shows the design:

PharmCare

Socket

Event Publisher

TCP/CORBA

Interface Module
Screen

HL7 2.2

HBOCHI

HL7/HBOCHI
HL7Form

Business Data Model

Event Subsriber

HL7/HBOCHI

Event Broker

)LJXUH���

The listening application is responsible for:

• accepting messages from other systems,

• doing high level validation and sending ACK messages, and

• publishing the valid messages as business events.

Each HL7 message type is published as a separate business event subject. The business
transaction must:

1. Subscribe to the event of interest.

2. Instanciate a generated HL7 Form for the published message. The type of the
form depends only on the type of message, i.e., create a patient, and not on
protocol standard, HL7 2.2 or HBOCHI 0.5.

3. Call the form’s Get() method. The implementation of Get() accommodates
different protocol standards. The generated HL7 Form performs the following
operations.

a) Instanciates a proper HL7 message structure (different versions or
different mapping of the same version are handled here) and parses the
message into its C++ structure (the message class in HL7lib) including
lower level validation.

b) Converts the message structure into the corresponding form structure,
including converting between different encoding schemes and mapping
between different versions of tables, i.e., one is used by HL7 and the
other is used by the application.

c) Validates the form’s contents.

2XWERXQG

Outbound messages are created by the business transaction. Following is the description
of the architecture

PharmCare

Socket

Event Publisher

TCP/CORBA

Interface Module

HL7/HBOCHI
HL7Form

Business Data Model

Event Subsriber

HL7/HBOCHI

Screen

Event Broker

)LJXUH���

The form’s Put() method is designed to format and send outbound messages. As in the
inbound case, Put() is the function which deals with different protocols. The following is
performed by the IMhl7Form implementation.

• Check the interface configuration table to see which version of message should be
sent (HL7, HBOCHI, or both).

• Create corresponding HL7/HBOCHI class instance(s) and convert the form into the
HL7/HBOCHI structure(s).

• Convert the HL7/HBOCHI structure(s) into character string format.

• Send the string message(s) to the proper system.

5HDO�7LPH�4XHU\���5HVSRQVH

This interface is real time. The put method blocks until the response is received. The
following is the description of the architecture:

PharmCare

HL7Form

CKO

HL7 Query Msg

TCP/CORBA

Interface Module Business Data Model Screen

HL7 Result Msg

)LJXUH���

The CboForm::Put(Cboform &resultForm) method is designed for this purpose. The
following is performed by the IMhl7Form implementation.

• Create the corresponding HL7 class instance and convert the form into the HL7
structure.

• Convert the HL7 structure into character string format.

• Call the function string HelloCKO (string queryMessage), which returns result
message. The HelloCKO() function is responsible for communication to CKO, i.e.,
sending the query message and getting result message.

• Create the corresponding HL7 class instance for the result message and parsing the
result message.

• Convert the HL7 structure into the result Form

'LVFXVVLRQ

 The following is a discussion of some additional topics requested in this RFI.

• $XWRPDWHG� DSSURDFKHV� WR� WUDQVIRUPDWLRQ� RI� +/�� $6&,,� HQFRGHG� PHVVDJHV� WR� &25%$
¶REMHFWV·��IRU�H[DPSOH��XVH�RI�LQWHUIDFH�HQJLQH�WHFKQRORJ\�WR�PDQDJH�WUDQVIRUPDWLRQ��

 We use an abstraction called Forms which perform all communications to and from non-
object technologies including WWW Browsers, EDI protocols and HL7. Form objects have
Get() and Put() methods to convert between themselves and external stream protocols
such as HL7 messages. This provides the application programmer with only one object
type to perform any communications of this type.

• $Q\�REMHFW�PRGHO�H[DPSOHV�ZKLFK�PDNH�XVH�RI�WKH�+/����;�VSHFLILFDWLRQ�RU�9��PRGHO

 The HL7 library is the implementation of a HL7 2.X specification model. The HL7Form
implementation implements a sort of V3 model.

• 3HUIRUPDQFH�H[SHULHQFHV� LQ�XVLQJ�&25%$�EDVHG�+/�� LPSOHPHQWDWLRQV��ZKDW�KDV�ZRUNHG
ZHOO��ZKDW�KDV�QRW"��

 Since entire ASCII HL7 messages are exchanged as a blob at the communication level,
this approach yields very good communication performance.

• 'LVFXVVLRQ�RI�XVH�RI�&25%$�VHUYLFHV�LQ�UHODWLRQ�WR�WKH�YHUVLRQLQJ�FRQFHSWV�RI�+/��

 In order to support multiple versions/multiple mappings of the same version of HL7, we
use two data models to bridge the ASCII HL7 messages and their corresponding object
components. One is the HL7 Class Library, which represents the structure of HL7
message. The other is the Form, which is a subset of the message data relevant to a
transaction. While only one Form is used for each HL7 message, various HL7 Class
Library message structures are used to accommodate multiple versions and multiple
mappings. Both of the structures and the C++ code to convert between them are
automatically generated. This approach isolates the application from the interface issues,
and offers much more manageable coding.

)LJXUH���

• 'LVFXVVLRQ�RI�KRZ�JUHDWHU�LQWHURSHUDELOLW\�ZDV�DFKLHYHG�WKURXJK�WKH�DSSURDFKHV�GHVFULEHG�

1. Since ASCII HL7 messages are exchanged, this approach could be used to integrate
with any application that supports HL7.

2. Since different versions/flavors of HL7 could be supported at the same time, it can talk
to applications speaking different ‘dialects’ of HL7.

3. The overall framework supports the flexibility for dynamically change the execution
environment enabling the interface to be changed quickly and conveniently.

$SSHQGL[�$

,QIRUPDWLRQ�%HLQJ�5HTXHVWHG

This response does not address the following topics.

• Solutions developed in the healthcare arena that take advantage of general CORBA
services such as naming, security, etc.

• Descriptions of relationships between HL7 trigger events and other CORBA services.

•

