
Object Orientation: 1 February 27, 1996
A Natural Evolution for HL7

Object Orientation: A Natural Evolution for HL7

Wes Rishel
Wes Rishel Consulting

(510) 522-8135
wes@wes.win.net

Abstract

Object-oriented technology is having a significant impact on the analysis and programming
techniques used in information systems.  The same concepts are also providing the basis for
standardizing interfaces among applications and components thereof.  These specifications
exist at both the conceptual level and in terms of the detailed level of specificity needed for
"plug and play" cooperation.  These specifications not only apply to functions developed using
object-oriented tools, but also provide a convenient model for interfacing legacy applications.
There is significant interest in providing a set of standards for exchanging healthcare data and
invoking healthcare functionality using object-oriented approaches.  Some probable
requirements for these interfaces are described in this paper including exchanging data by
query and update notification and interfacing with compound documents and other
componentized functions.  There are a number of competing specifications for object-oriented
interfacing in the information system industry.  A specific mapping is proposed from HL7
Version 2.2 to an abstract object model based on healthcare application objects and healthcare
data objects.  This abstract model would be independent of any specific specifications, and a
significant part of any complete specification for any of them.  It is further proposed that HL7
support special interest groups to develop implementation guides describing how to apply the
abstract object model to any of the specific, detailed approaches.

Why O-O?

"Object Oriented" has become one of the significant catch-phrases in the industry, subject to
all the misappropriation and other abuses of any significant trend and many passing fads.
Despite the confusion on what it means, we assert that object-oriented programming (OOP) is
in fact a significant trend.  This is based on our own observation that C++, Objective C, and
Smalltalk are the implementation language of choice for most new healthcare products that
we have seen, particularly those that are being developed for a Graphical User Interface
environment.  Of these three, the author has found C++ to be the predominant tool.

OOP techniques can also be used to create interfaces to new functionality from programs that
are not themselves written in object-oriented languages.  Examples of this include the creation
of custom controls for Visual BASIC programs in C++ and the creation of interfaces to legacy
systems that are described in object-oriented terms.

Features, Benefits, and Definitions

The features and benefits of OOP haven been amply described.  The fundamental feature is
"code hiding," where-in the program statements that support a data structure are unknown to
programmers who use that structure in their work.  The data structure, along with its



Object Orientation: 2 February 27, 1996
A Natural Evolution for HL7

programming methods, is known as an object.  Programmers that use the object know only a
formally defined set of methods for invoking procedures that perform operations on the data.
This makes object-oriented programs more robust and maintainable, because team members
working on part of an object-oriented programs cannot be impacted by most changes to an
object they use.

This conceptual model of an object is illustrated by Figure 1.

The term object has itself been used
differently in different OOP implementations.
We use it here to mean the combination of
data and program code that is bundled
together and represented as an atomic concept
to other parts of a program.  This definition
applies whether we are talking about the
object as an abstraction or a specific
incarnation in a running program.  We also
use the term method to describe the public
program call which is the means by which the
data and functions of the object are made
available to code in other objects.

Another fundamental feature of OOP is "inheritance," whereby one object can be derived
from another, inheriting most of its data definitions and methods.  The derived object will
generally differ from its predecessor in that it may have additional data and new methods.
The derived object will frequently re-implement selected methods of its predecessor as well.
One primary benefit of inheritance is that often drastically reduces the design and
programming necessary to produce a new object.  Indeed, one of the primary goals of Object
Oriented Design (OOD) is determining the hierarchy of inherited objects that is most
productive in terms of re-use and stable in the face of design changes.

Uniform Interfaces Lead to Significant Simplifications

These benefits can lead to dramatic simplification of implemented systems when the users of
OOP environments follow a practice of establishing uniform interfaces to their objects.  That
is to say, where the designers give a common set of methods to objects that represent different
things, the programs that manipulate those things can be drastically simplified.  Any object
that represents a printable document, for example, should have a "print myself" method with
the identical name and parameters as any other.  A "display myself"  method can be
implemented by diverse objects representing textual material, drawings, animations, and
sound.  Similarly, any object representing fundamental data (strings, numbers, arrays, etc.)
should have a "format myself for display" method.

If a discipline of uniform interfaces is followed, the programs that manipulate those objects
can use the same code to do the same function on these heterogeneous objects.  It becomes
easier, for example, to write a browser that has a function of displaying selected objects.

OBJECT

Code=
Methods

Data=Objects

Call=Invoke Method
Parameters=Objects

Figure 1.  An object contains and hides its
data, which is accessible through published
methods or calls.



Object Orientation: 3 February 27, 1996
A Natural Evolution for HL7

Other Uses of the Object-Oriented Metaphor

Object-orientation has had an impact on analysis techniques for applications as well.
Although object-oriented analysis shares many common characteristics with entity-
relationship analysis, it differs in that it offers the possibilities of inheritance and an
integrated view of data and function.  HL7's Quality Assurance Group and the Joint Working
Group for a Common Data Model (in healthcare) have adopted Coad and Yourdon's approach
to OOA for their underlying methodology.

The benefits of the object-oriented metaphor are being adopted at varying paces by the
implementors of a number of operating systems including various Unix implementations,
Microsoft Windows and Windows NT, NextSTEP, OS/2, and Taligent.  Use of OOP is almost
mandatory to develop the infrastructure necessary to provide a Graphical User Interface.
"Drag and drop" operations among the visual objects on a desktop are implemented, for
example, by having those objects make uniform object interfaces available to the window
manager implementing the operation.

Compound Documents

One important use of the object-oriented metaphor is to implement compound documents.
These are single documents composed of pieces created and maintained by different
application programs.  It is only practical to implement compound documents when a large set
of uniform interfaces has been established for objects representing the components of the
documents as they appear and are manipulated on secondary storage, the screen, and print
media.

Indeed, the object models discussed below are often explained as if developing compound
documents were their sole purpose.  In fact, objects are used to implement much more than
the compound document.  By establishing uniform interfaces independently written
applications can exchange data on demand or by notification of changes.  They can also offer
specific functions, such as creating drawings, performing complex calculations, retrieving
specific information, etc.  It would be easy to imagine applications providing specific
functions like MedLine lookups, body surface area calculations, eligibility checking, rules-
based searches of clinical databases and many other functions.  Creating and marketing such
objects will be greatly enhanced if there are standards to broaden the pool of potential users of
the objects

Objects as Function Wrappers

The emphasis on data hiding and formal interfaces permits object interfaces to be used to
interface applications that are not themselves written in an object-oriented language.  As long
as they can accept calls initiated by other objects, decode the objects that represent the
parameters and encode the response data, the actual implementation language is of no
concern.



Object Orientation: 4 February 27, 1996
A Natural Evolution for HL7

Object Brokering

In environments with multiple, independently developed applications, object brokering
systems are being used to implement inter-application messaging.  This is true whether the
applications reside on the same computer system or communicate across networks.
Intersystem transactions passing data and invoking procedures are defined using the
metaphors of object-oriented programming.  Object brokering systems also facilitate
establishing the association between applications by symbolic names, rather than more fragile
mechanisms that rely on knowing where the objects that represent the application can be
found in secondary storage or on a network.

The Common Object Group has published the Common Object Request Broker Architecture
(CORBA), a detailed conceptual framework for implementing object brokering.  It is notable
in that it includes mechanisms for implementing object oriented interfaces among legacy
applications written in diverse applications languages that are not object-oriented.  CORBA is
not a complete standard, in that it does not extend to the complete communications profiles
and binary formats necessary to create interoperable implementations.  It has, however,
influenced a number of implementations of object brokering system.

A given implementation of an object broker can be described in terms of its CORBA
compliance--the extent to which it includes the concepts of CORBA.

Complete Object Interface Specification = Objects + Interfaces +
Protocols

In order to achieve the benefits of an object-oriented approach in practice, the cooperating
applications must conform to a common specification that includes certain basic objects, their
interfaces (common methods) and protocols.  In this sense, a protocol is a specification of the
circumstances in which methods can be invoked.  If the Objects are the "Whats" and the
Methods are the "Hows," the protocol is the collection of "Whens."

Each object brokering system, then, must have a complete object interface specification.
Some complete object interface specifications that have been or are being implemented are
shown in the table below.



Object Orientation: 5 February 27, 1996
A Natural Evolution for HL7

Model1 Published
By

Venue Status

OLE2.0, based on the
Component Object Model
(COM)

Microsoft Windows, Windows
NT

Macintosh (beta)

Various Unix
environments

MVS, VMS, OSF and
various other Unix
Environments (future)

In production in OLE2.0.
Some major applications
available.

Being implemented by
Microsoft for Macintosh
OS.

Licensing agreements
signed, no product
announcements yet.

A subset, called the
Common Object Model to
be interfaced by DEC to its
Object Broker for
connectivity to OSF and
other OS environments.

System Object Model
(SOM)

IBM Windows, Windows
NT, OS/2, Macintosh,
various Unix, X-
windows

In use in AIX and OS/2.

Part of OpenDoc, expected
to be released to developers
in the Summer of 1994.

Part of Taligent.

Distributed Objects NeXT NextStep

HP/UX

SunSOFT

In production for several
years.

Available for HP/UX in
Portable Distributed
Objects.

To be available as part of
Sun's Distributed Objects
Everywhere (DOE)

Object Broker DEC VMS, MVS

Various Unix

In production.

Common Object Services
Specification (COSS)

SunSOFT Solaris Announcements pending.



Object Orientation: 6 February 27, 1996
A Natural Evolution for HL7

Complete Object Interface Specifications Compared

These complete object interface specifications vary considerably on a number of parameters.
OLE 2.0 can be considered the most widely available since Windows is at the most
workstation seats, and a number of applications vendors have shipped products or made
commitments to support it.  Its Component Object Model does not use true inheritance,
substituting a concept for re-use called aggregation 2.  Microsoft points out that the
implementors of OLE 2.0 still have full use of inheritance within their implementation
languages and that an advantage of its approach is that binding between cooperating
applications occurs entirely at runtime.  It claims that run-time inheritance across objects in
independently implemented applications is inappropriate and will be fragile.  Counter-claims
in favor of SOM claim that fragility is not an issue.

OLE 2.0 does not currently support distribution across networks, although this has been
announced and demonstrated.  It is frequently characterized as dependent on C++, although
implementation in other languages is feasible and will be easier as header libraries for those
languages are developed and distributed.  It is not CORBA compliant.

SOM supports inheritance and is "language neutral."  It is CORBA-compliant and it is a part
of the foundation of a number of current and future object environments including OpenDoc
and Taligent.  It appears to us, however, that SOM is a subset of the complete object interface
specifications in OpenDoc and Taligent, so that SOM-compliance is not a guarantee of
compatibility with either environment or of eventual interoperability between the
environments.

The mechanisms to implement the language-neutral and inheritance features of SOM imply
extra overhead at the time objects are instantiated.  It will be some time before the impact of
that overhead can be evaluated.  There is considerable skepticism in the industry whether or
how fast the various implementors of SOM-based object brokers and foundations can achieve
any degree of interoperability3

Who Will Win The Great Complete Object Interface Specification Battle?

Adopting any one of these complete object interface specifications represents a significant
investment for a software developer.  Developers of healthcare applications (vendors and in-
house) must make a fundamental strategic decision on complete object interface specification
early in a project.  The consequences of having to change are substantial.  The factors
effecting such a decision will include:

√ the probable availability of other applications with which to interoperate at the end of
the development cycle

√ affiliation with the operating system of choice

√ availability of software tools to support the chosen model

√ availability of software engineers experienced in the chosen mode.

√ the technical strengths and weaknesses of the complete object interface specification.



Object Orientation: 7 February 27, 1996
A Natural Evolution for HL7

For HL7 the corresponding question might be which complete object interface specification
must we support?  In fact in this paper we recommend an approach where HL7 remains
neutral with respect to this decision, while supporting its adoption in any of them.

Specific Issues Facing HL7

Historically, HL7 has adopted a policy of remaining independent of specific technologies such
as communications protocols, operating systems, database technologies, and implementation
languages.  We have stood firm to support legacy technical environments in the face of
criticism that we lacked the savoir faire of approaches that build on specific newer
technologies.  Why should we adapt ourselves any more to this particular new technology?  In
the author's opinion, there are several reasons.

• We have an "upstairs-downstairs" problem (figure 2).  While we meet our traditional
mission of sharing event-driven data among applications in a network, we have not
provided support to applications sharing a workstation.  Advances in Graphical User
Interfaces and GUI technology have created this compelling need for sharing among
workstation applications and those that are still running on dedicated systems.

• The kinds of data exchanges necessary to support the workstation environment are
being implemented now (figure 3) by many of the implementors that comprise our
constituency.4  While they are achieving a degree of interoperability among their own
products they are losing any opportunity to use the same investments to achieve
interoperability with other applications, because there is no standard way to
implement healthcare data and events.

• There is need to support componentized application develop, where system builders
will develop specific applications by piecing together components through object-
oriented interfaces.  Where there are multiple componentized healthcare applications

Legacy
System Gateway

Legacy
System

Legacy
System

Downstairs

Upstairs

Workstation
Healthcare
Application

Workstation
General

Application

Figure 2.  Solutions being implemented
without benefit of standardization.

Legacy
System

Legacy
System

Downstairs

Upstairs

Legacy
System Gateway

Workstation
General

Application

Workstation
Healthcare
Application

Object
Broker

Gateway
Surrogate

Legacy
Surrogate

Figure 3.  Solutions being implemented
without benefit of standardization.



Object Orientation: 8 February 27, 1996
A Natural Evolution for HL7

being assembled they must agree on the definition of the data objects that they take as
data and return as results.  (See figure 4.)

• There is a need to consider how healthcare objects interact with more general objects
(e.g., compound documents) and determine if new standard objects or methods are
needed.

Requirements Definition

What exactly are the requirements for object-oriented HL7?  This is an interesting question.
While we suggest some possibilities here, it clearly needs to be addressed by some canvas of
our constituency.

(a) sharing of data about specific patients, encounters, orders, results, etc. among
healthcare applications

(b) sharing of data about groups of patients, encounters, orders, results, etc. among
healthcare applications

(c) notification of events (admissions, transfers, order entry, results available, etc.) among
healthcare applications

(d) master file updating

Infection Control Application

Census Data
Component

Micro Data
Component

3-D Trend
Graphinc

Component

Census System

Figure 4.  Objects used to implement
componentized software.



Object Orientation: 9 February 27, 1996
A Natural Evolution for HL7

(e) sharing of events that are peculiar to workstation applications (for example, enabling
one application to share the identification of the patient the user has selected with
another application)

(f) enabling healthcare applications to provide the ability to query and update data about
patients encounters, orders, results, etc., through standard interfaces that are used by
general applications in the system's complete object interface specification (for
example, enabling an Excel user to write simple Visual Basic for Applications code to
get a list of admitted patients and, perhaps, be updated as locations change.)

(g) (perhaps) defining higher level graphical objects that represent results or result trends,
etc., so that healthcare application can offer them for embedding in compound
documents.

Object-Oriented HL7, A Proposed Approach

We observe that requirements (a) - (e), above, are very similar to the requirements fulfilled by
traditional HL7 messages.  The data and event information that should be transferred among
applications is essentially the same.  Requirements (f) and (g), however, are related much
more closely to the specifics of the complete object interface specification in use since they
rely on the specifications of the complete object interface specification to determine the
specific methods that must be offered.

It is possible to construct a fairly natural correspondence between HL7 messages and the
conceptual invoking of an object (figure 1).    We can divide the world of HL7 objects into
two broad categories:

• Healthcare application objects that model the interface behavior of healthcare
applications systems (e.g., ADT_Sender or Ancillary_ADT_Receiver)

• Healthcare data objects that model the subjects of concern in a healthcare
application (patients, providers, encounters, tests, observations, etc.)

In this correspondence an HL7 message, then, becomes call to a method offered by a
healthcare application object with parameters that are healthcare data objects.  The specific
methods offered by a healthcare application object map to the trigger events associated with
current HL7 messages.

Figure 5 illustrates the admit_patient method.



Object Orientation: 10 February 27, 1996
A Natural Evolution for HL7

An HL7 Abstract Object Model

If the HL7 group were to define a series of healthcare data objects, and healthcare application
objects with their associated messages, we might call the product of that exercise an HL7
Abstract Object Model.  By itself, the HL7 Abstract Object Model is not sufficient to use for
communication, because it does not include the additional facilities of an implementation-
specific complete object interface specification.  We assert, however, that it would be a
common subset of the definitions that would be required for developing specifications for
requirements listed above.  The HL7 Abstract Object Model should ultimately become a part
of the HL7 Standard.

Much of the material that would go into preparing an HL7 Abstract Object Model can be
found in existing resources. Trigger events and a starting list of attributes of Healthcare Data
Objects can be found in version 2.2.  The Joint Work Group for a Common Data Model will
soon publish the metamodel and some preliminary notion of an object-oriented analysis of the
entities that correspond to Healthcare Data Objects and their attributes. 5

Special Interest Groups for Complete object interface specifications

Groups of users interested in actually communicating, however, will need more.  They will
need the specifications and software associated with a complete object interface specification.
We would propose that special interest groups be formed within HL7 to produce complete
specifications for implementing all the listed requirements.  Their work product would
represent a consensus of the subset of HL7 users interested in a specific technology and would
be published in implementation guides.  HL7 would not endorse any specific Complete object
interface specification, but support groups of HL7 member that wished to gather around any
one model.

Summary

Object-oriented interfacing based on the detailed specifications associated with complete
object interface specifications holds the promise of providing plug and play interactions for
cooperation among a wide variety of healthcare applications.  While it is difficult to foresee
all the requirements for such interactions, the approach described here will provide a
conceptual basis for some of the most obvious requirements as a straight-forward extension to
existing HL7 specifications.

adt_receiver
 admit_patient

adt_sender

visitpatientpatient patient

visit others

provider provider

providervisit

Figure 5, an admit_patient message.



Object Orientation: 11 February 27, 1996
A Natural Evolution for HL7

                                                                                                                                                   

1This table was compiled largely from material in Peter Wayner, "Objects on the March," Byte v 19
number 1, January 1994.

2Kraig Brockschmidt, Inside OLE 2, Microsoft Press, 1994, p. 191.

3Jean Bozman, "Skeptical users" Computer World, Feb 7, 1994, p. 95.

4Minutes of the Control-Query Group, January, 1994, HL7 Meeting.

5George Beeler, Abdul-Malik Shakier, et al., Trial-Use Standard for Healthcare Data Interchange--
Information Model Methods, IEEE (in manuscript.)


