______________________________________________________________________ 14 Templates [temp] ______________________________________________________________________ 1 A class template defines the layout and operations for an unbounded set of related types. [Example: a single class template List might provide a common definition for list of int, list of float, and list of pointers to Shapes. ] A function template defines an unbounded set of related functions. [Example: a single function template sort() might provide a common definition for sorting all the types defined by the List class template. ] 2 A template defines a family of types or functions. template-declaration: template < template-parameter-list > declaration template-parameter-list: template-parameter template-parameter-list , template-parameter The declaration in a template-declaration shall declare or define a function or a class, define a static data member of a template class, or define a template member of a class. A template-declaration is a declaration. A template-declaration is a definition (also) if its declaration defines a function, a class, or a static data member of a template class. There shall be exactly one definition for each tem plate in a program. [Note: there can be many declarations. ] How ever, if the multiple definitions are in different translation units, the behavior is undefined (and no diagnostic is required). 3 The name of a template obeys the usual scope and access control rules. A template-declaration can appear only as a global declaration, as a member of a namespace, as a member of a class, or as a member of a class template. A member template shall not be virtual. A destructor shall not be a template. A local class shall not have a member tem plate. 4 A template shall not have C linkage. If the linkage of a template is something other than C or C++, the behavior is implementation-defined. 5 [Example: An array class template might be declared like this: template<class T> class Array { T* v; int sz; public: explicit Array(int); T& operator[](int); T& elem(int i) { return v[i]; } // ... }; The prefix template <class T> specifies that a template is being declared and that a type-name T will be used in the declaration. In other words, Array is a parameterized type with T as its parameter. ] 6 [Note: a class template definition specifies how individual classes can be constructed much as a class definition specifies how individual objects can be constructed. ] 7 A member template can be defined within its class or separately. [Example: template<class T> class string { public: template<class T2> int compare(const T2&); template<class T2> string(const string<T2>& s) { /* ... */ } // ... }; template<class T> template<class T2> int string<T>::compare(const T2& s) { // ... } --end example] 14.1 Template names [temp.names] 1 A template can be referred to by a template-id: template-id: template-name < template-argument-list > template-name: identifier template-argument-list: template-argument template-argument-list , template-argument template-argument: assignment-expression type-id template-name 2 A template-id that names a template class is a class-name (_class_). 3 A template-id that names a defined template class can be used exactly like the names of other defined classes. [Example: Array<int> v(10); Array<int>* p = &v; --end example] [Note: template-ids that name functions are discussed in _temp.fct_. ] 4 A template-id that names a template class that has been declared but not defined can be used exactly like the names of other declared but undefined classes. [Example: template<class T> class X; // X is a class template X<int>* p; // ok: pointer to declared class X<int> X<int> x; // error: object of undefined class X<int> --end example] 5 The name of a template followed by a < is always taken as the begin ning of a template-id and never as a name followed by the less-than operator. Similarly, the first non-nested > is taken as the end of the template-argument-list rather than a greater-than operator. [Example: template<int i> class X { /* ... */ } X< 1>2 >x1; // syntax error X<(1>2)>x2; // ok template<class T> class Y { /* ... */ } Y< X<1> > x3; // ok --end example] 6 The name of a class template shall not be declared to refer to any other template, class, function, object, enumeration, enumerator, namespace, value, or type in the same scope. Unless explicitly speci fied to have internal linkage, a template in namespace scope has external linkage (_basic.link_). A global template name shall be unique in a program. 7 In a template-argument, an ambiguity between a type-id and an expres sion is resolved to a type-id. [Example: template<class T> void f(); template<int I> void f(); void g() { f<int()>(); // ``int()'' is a type-id: call the first f() } --end example] 14.2 Name resolution [temp.res] 1 A name used in a template is assumed not to name a type unless it has been explicitly declared to refer to a type in the context enclosing the template declaration or is qualified by the keyword typename. [Example: // no B declared here class X; template<class T> class Y { class Z; // forward declaration of member class void f() { X* a1; // declare pointer to X T* a2; // declare pointer to T Y* a3; // declare pointer to Y Z* a4; // declare pointer to Z typedef typename T::A TA; TA* a5; // declare pointer to T's A typename T::A* a6; // declare pointer to T's A T::A* a7; // T::A is not a type name: // multiply T::A by a7 B* a8; // B is not a type name: // multiply B by a8 } }; --end example] 2 In a template, any use of a qualified-name where the qualifier depends on a template-parameter can be prefixed by the keyword typename to indicate that the qualified-name denotes a type. elaborated-type-specifier: ... typename ::opt nested-name-specifier identifier full-template-argument-listopt full-template-argument-list: < template-argument-list > 3 If a specialization of that template is generated for a template- argument such that the qualified-name does not denote a type, the spe cialization is ill-formed. The keyword typename states that the fol lowing qualified-name names a type. [Note: but gives no clue to what that type might be. ] The qualified-name shall include a qualifier containing a template parameter or a template class name. 4 Knowing which names are type names allows the syntax of every template declaration to be checked. Syntax errors in a template declaration can therefore be diagnosed at the point of the declaration exactly as errors for non-template constructs. Other errors, such as type errors involving template parameters, cannot be diagnosed until later; such errors shall be diagnosed at the point of instantiation or at the point where member functions are generated (_temp.inst_). Errors that can be diagnosed at the point of a template declaration shall be diag nosed there or later together with the dependent type errors. [Exam ple: template<class T> class X { // ... void f(T t, int i, char* p) { t = i; // typecheck at point of instantiation, // or at function generation p = i; // typecheck immediately at template declaration, // at point of instantiation, // or at function generation } }; --end example] No diagnostics shall be issued for a template defini tion for which a valid specialization can be generated. 5 Three kinds of names can be used within a template definition: --The name of the template itself, the names of the template- parameters (_temp.param_), and names declared within the template itself. --Names from the scope of the template definition. --Names dependent on a template-argument (_temp.arg_) from the scope of a template instantiation. 6 [Example: #include <iostream> using namespace std; template<class T> class Set { T* p; int cnt; public: Set(); Set<T>(const Set<T>&); void printall() { for (int i = 0; i<cnt; i++) cout << p[i] << '\n'; } // ... }; --end example] When looking for the declaration of a name used in a template definition the usual lookup rules (_class.scope0_) are first applied. [Note: in the example, i is the local variable i declared in printall, cnt is the member cnt declared in Set, and cout is the stan dard output stream declared in iostream. However, not every declara tion can be found this way; the resolution of some names must be post poned until the actual template-argument is known. For example, even though the name operator<< is known within the definition of sum() an a declaration of it can be found in <iostream>, the actual declaration of operator<< needed to print p[i] cannot be known until it is known what type T is (_temp.dep_). ] 7 If a name can be bound at the point of the template definition and it is not a function called in a way that depends on a template-parameter (as defined in _temp.dep_), it will be bound at the template defini tion point and the binding is not affected by later declarations. [Example: void f(char); template<class T> void g(T t) { f(1); // f(char) f(T(1)); // dependent f(t); // dependent } void f(int); void h() { g(2); // will cause one call of f(char) followed // by two calls of f(int) g('a'); // will cause three calls of f(char) } --end example] 14.2.1 Locally declared names [temp.local] 1 Within the scope of a class template or a specialization of a template the name of the template is equivalent to the name of the template followed by the template-parameters enclosed in <>. [Example: the constructor for Set can be referred to as Set() or Set<T>(). ] Other specializations (_temp.spec_) of the class can be referred to by explicitly qualifying the template name with appropriate template- arguments. [Example: template<class T> class X { X* p; // meaning X<T> X<T>* p2; X<int>* p3; }; template<class T> class Y; class Y<int> { Y* p; // meaning Y<int> }; --end example] [Note: see _temp.param_ for the scope of template- parameters. ] 2 A template type-parameter can be used in an elaborated-type-specifier. [Example: template<class T> class A { friend class T; class T* p; class T; // error: redeclaration of template parameter T // (a name declaration, not an elaboration) // ... } --end example] 3 However, a specialization of a template for which a type-parameter used this way is not in agreement with the elaborated-type-specifier (_dcl.type_) is ill-formed. [Example: class C { /* ... */ }; struct S { /* ... */ }; union U { /* ... */ }; enum E { /* ... */ }; A<C> ac; // ok A<S> as; // ok A<U> au; // error: parameter T elaborated as a class, // but the argument supplied for T is a union A<int> ai; // error: parameter T elaborated as a class, // but the argument supplied for T is an int A<E> ae; // error: parameter T elaborated as a class, // but the argument supplied for T is an enumeration --end example] 14.2.2 Names from the template's enclosing scope [temp.encl] 1 If a name used in a template isn't defined in the template definition itself, names declared in the scope enclosing the template are consid ered. If the name used is found there, the name used refers to the name in the enclosing context. [Example: void g(double); void h(); template<class T> class Z { public: void f() { g(1); // calls g(double) h++; // error: cannot increment function } }; void g(int); // not in scope at the point of the template // definition, not considered for the call g(1) --end example] [Note: a template definition behaves exactly like other definitions. ] [Example: void g(double); void h(); class ZZ { public: void f() { g(1); // calls g(double) h++; // error: cannot increment function } }; void g(int); // not in scope at the point of class ZZ // definition, not considered for the call g(1) --end example] 14.2.3 Dependent names [temp.dep] 1 Some names used in a template are neither known at the point of the template definition nor declared within the template definition. Such names shall depend on a template-argument and shall be in scope at the point of the template instantiation (_temp.inst_). [Example: class Horse { /* ... */ }; ostream& operator<<(ostream&,const Horse&); void hh(Set<Horse>& h) { h.printall(); } In the call of Set<Horse>::printall(), the meaning of the << operator used to print p[i] in the definition of Set<T>::printall() (_temp.res_), is operator<<(ostream&,const Horse&); This function takes an argument of type Horse and is called from a template with a template-parameter T for which the template-argument is Horse. Because this function depends on a template-argument the call is well-formed. ] 2 A function call depends on a template-argument if the call would have a different resolution or no resolution if a type, template, or named constant mentioned in the template-argument were missing from the pro gram. [Example: some calls that depend on an argument type T are: 1)The function called has a parameter that depends on T according to the type deduction rules (_temp.deduct_). For example: f(T), f(Array<T>), and f(const T*). 2)The type of the actual argument depends on T. For example: f(T(1)), f(t), f(g(t)), and f(&t) assuming that t has the type T. 3)A call is resolved by the use of a conversion to T without either an argument or a parameter of the called function being of a type that depended on T as specified in (1) and (2). For example: struct B { }; struct T : B { }; struct X { operator T(); }; void f(B); void g(X x) { f(x); // meaning f( B( x.operator T() ) ) // so the call f(x) depends on T } 3 This ill-formed template instantiation uses a function that does not depend on a template-argument: template<class T> class Z { public: void f() { g(1); // g() not found in Z's context. // Look again at point of instantiation } }; void g(int); void h(const Z<Horse>& x) { x.f(); // error: g(int) called by g(1) does not depend // on template-parameter ``Horse'' } The call x.f() gives raise to the specialization: Z<Horse>::f() { g(1); } The call g(1) would call g(int), but since that call in no way depends on the template-argument Horse and because g(int) wasn't in scope at the point of the definition of the template, the call x.f() is ill- formed. 4 On the other hand: void h(const Z<int>& y) { y.f(); // fine: g(int) called by g(1) depends // on template-parameter ``int'' } Here, the call y.f() gives raise to the specialization: Z<int>::f() { g(1); } The call g(1) calls g(int), and since that call depends on the tem plate-argument int, the call y.f() is acceptable even though g(int) wasn't in scope at the point of the template definition. ] 5 A name from a base class (of a non-dependent type) can hide the name of a template-parameter. [Example: struct A { struct B { /* ... */ }; int a; int Y; }; template<class B, class a> struct X : A { B b; // A's B a b; // error: A's a isn't a type name }; --end example] 6 However, a name from a template-argument cannot hide a name declared within a template, a template-parameter, or a name from the template's enclosing scopes. [Example: int a; template<class T> struct Y : T { struct B { /* ... */ }; B b; // The B defined in Y void f(int i) { a = i; } // the global a; Y* p; // Y<T> }; Y<A> ya; The members A::B, A::a, and A::Y of the template argument A do not affect the binding of names in Y<A>. ] 7 A name of a member can hide the name of a template-parameter. [Exam ple: template<class T> struct A { struct B { /* ... */ }; void f(); }; template<class B> void A<B>::f() { B b; // A's B, not the template parameter } --end example] 14.2.4 Non-local names declared within a template [temp.inject] 1 Names that are not template members can be declared within a template class or function. When a template is specialized, the names declared in it are declared as if the specialization had been explicitly declared at its point of instantiation. If a template is first spe cialized as the result of use within a block or class, names declared within the template shall be used only after the template use that caused the specialization. [Example: // Assume that Y is not yet declared template<class T> class X { friend class Y; }; Y* py1; // ill-formed: Y is not in scope // Here is the point of instantiation for X<C> void g() { X<C>* pc; // does not cause instantiation Y* py2; // ill-formed: Y is not in scope X<C> c; // causes instantiation of X<C>, so // names from X<C> can be used // here on Y* py3; // ok } Y* py4; // ok --end example] 14.3 Template instantiation [temp.inst] 1 A class generated from a class template is called a generated class. A function generated from a function template is called a generated function. A static data member generated from a static data member template is called a generated static data member. A class defined with a template-id as its name is called an explicitly specialized class. A function defined with a template-id as its name is called an explicitly specialized function. A static data member defined with a template-id as its name is called an explicitly specialized static data member. A specialization is a class, function, or static data member that is either generated or explicitly specialized. 2 [Note: the act of generating a class, function, or static data member from a template is commonly referred to as template instantiation. ] 14.3.1 Template linkage [temp.linkage] 1 A function template has external linkage, as does a static member of a class template. Every function template shall have the same defini tion in every translation unit in which it appears. 14.3.2 Point of instantiation [temp.point] 1 The point of instantiation of a template is the point where names dependent on the template-argument are bound. That point is immedi ately before the declaration in the nearest enclosing global or names pace scope containing the first use of the template requiring its def inition. [Note: this implies that names used in a template definition cannot be bound to local names or class member names from the scope of the template use. They can, however, be bound to names of namespace members. For example: // void g(int); not declared here template<class T> class Y { public: void f() { g(1); } }; void k(const Y<int>& h) { void g(int); h.f(); // error: g(int) called by g(1) not found // local g() not considered } class C { void g(int); void m(const Y<int>& h) { h.f(); // error: g(int) called by g(1) not found // C::g() not considered } }; namespace N { void g(int); void n(const Y<int>& h) { h.f(); // N::g(int) called by g(1) } } --end note] 2 Names from both the namespace of the template itself and of the names pace containing the point of instantiation of a specialization are used to resolve names for the specialization. Overload resolution is used to chose between functions with the same name in these two names paces. [Example: namespace NN { void g(int); void h(int); template<class T> void f(T t) { g(t); h(t); k(t); } } namespace MM { void g(double); void k(double); // instantiation point for NN::f(int) and NN::f(double) void m() { NN::f(1); // indirectly calls NN::g(int), // NN::h, and MM::k. NN::f(1.0); // indirectly calls MM::g(double), // NN::h, and MM::k. } } --end example] If a name is found in both namespaces and overload resolution cannot resolve a use, the program is ill-formed. 3 Each translation unit in which the definition of a template is used in a way that require definition of a specialization has a point of instantiation for the template. If this causes names used in the tem plate definition to bind to different names in different translation units, the one-definition rule has been violated and any use of the template is ill-formed. Such violation does not require a diagnostic. 4 A template can be either explicitly instantiated for a given argument list or be implicitly instantiated. A template that has been used in a way that require a specialization of its definition will have the specialization implicitly generated unless it has either been explic itly instantiated (_temp.explicit_) or explicitly specialized (_temp.spec_). A specialization will not be implicitly generated unless the definition of a template specialization is required. [Example: template<class T> class Z { void f(); void g(); }; void h() { Z<int> a; // instantiation of class Z<int> required Z<char>* p; // instantiation of class Z<char> not required Z<double>* q; // instantiation of class Z<double> not required a.f(); // instantiation of Z<int>::f() required p->g(); // instantiation of class Z<char> required, and // instantiation of Z<char>::g() required } Nothing in this example requires class Z<double>, Z<int>::g(), or Z<char>::f() to be instantiated. ] An implementation shall not instantiate a function or a class that does not require instantiation. However, virtual functions can be instantiated for implementation pur poses. 5 If a virtual function is instantiated, its point of instantiation is immediately following the point of instantiation for its class. 6 The point of instantiation for a template used inside another template and not instantiated previous to an instantiation of the enclosing template is immediately before the point of instantiation of the enclosing template. [Example: namespace N { template<class T> class List { public: T* get(); // ... }; } template<class K, class V> class Map { List<V> lt; V get(K); // ... }; void g(Map<char*,int>& m) { int i = m.get("Nicholas"); // ... } --end example] This allows instantiation of a used template to be done before instantiation of its user. 7 Implicitly generated template classes, functions, and static data mem bers are placed in the namespace where the template was defined. [Example: a call of lt.get() from Map<char*,int>::get() would place List<int>::get() in the namespace N rather than in the global names pace. ] 8 If a template for which a definition is in scope is used in a way that involves overload resolution or conversion to a base class, the defi nition of a template specialization is required. [Example: template<class T> class B { /* ... */ }; template<class T> class D : public B<T> { /* ... */ }; void f(void*); void f(B<int>*); void g(D<int>* p, D<char>* pp) { f(p); // instantiation of D<int> required: call f(B<int>*) B<char>* q = pp; // instantiation of D<char> required: // convert D<char>* to B<char>* } --end example] 9 If an instantiation of a class template is required and the template is declared but not defined, the program is ill-formed. [Example: template<class T> class X; X<char> ch; // error: definition of X required --end example] 10Recursive instantiation is possible. [Example: template<int i> int fac() { return i>1 ? i*fac<i-1>() : 1; } int fac<0>() { return 1; } int f() { return fac<17>(); } --end example] 11There shall be an implementation quantity that specifies the limit on the depth of recursive instantiations. 12The result of an infinite recursion in instantiation is undefined. In particular, an implementation is allowed to report an infinite recur sion as being ill-formed. [Example: template<class T> class X { X<T>* p; // ok X<T*> a; // instantiation of X<T> requires // the instantiation of X<T*> which requires // the instantiation of X<T**> which ... }; --end example] 13No program shall explicitly instantiate any template more than once, both explicitly instantiate and explicitly specialize a template, or specialize a template more than once for a given set of template- arguments. An implementation is not required to diagnose a violation of this rule. 14An explicit specialization or explicit instantiation of a template shall be in the namespace in which the template was defined. [Exam ple: namespace N { template<class T> class X { /* ... */ }; template<class T> class Y { /* ... */ }; template<class T> class Z { void f(int i) { g(i); } // ... }; class X<int> { /* ... */ }; // ok: specialization // in same namespace } template class Y<int>; // error: explicit instantiation // in different namespace template class N::Y<char*>; // ok: explicit instantiation // in same namespace class N::Y<double> { /* ... */ }; // ok: specialization // in same namespace --end example] 15A member function of an explicitly specialized class shall not be implicitly generated from the general template. Instead, the member function shall itself be explicitly specialized. [Example: template<class T> struct A { void f() { /* ... */ } }; struct A<int> { void f(); }; void h() { A<int> a; a.f(); // A<int>::f must be defined somewhere } void A<int>::f() { /* ... */ }; --end example] Thus, an explicit specialization of a class implies the declaration of specializations of all of its members. The defini tion of each such specialized member which is used shall be provided in some translation unit. 14.3.3 Instantiation of operator-> [temp.opref] 1 If a template class has an operator->, that operator-> can have a return type that cannot be dereferenced by -> as long as that opera tor-> is neither invoked, nor has its address taken, isn't virtual, nor is explicitly instantiated. [Example: template<class T> class Ptr { // ... T* operator->(); }; Ptr<int> pi; // ok Ptr<Rec> pr; // ok void f() { pi->m = 7; // error: Ptr<int>::operator->() returns a type // that cannot be dereference by -> pr->m = 7; // ok if Rec has an accessible member m // of suitable type } --end example] 14.4 Explicit instantiation [temp.explicit] 1 A class or function specialization can be explicitly instantiated from its template. 2 The syntax for explicit instantiation is: explicit-instantiation: template declaration Where the unqualifier-id in the declaration shall be a template-id. [Example: template class Array<char>; template void sort<char>(Array<char>&); --end example] 3 A declaration of the template shall be in scope at the point of explicit instantiation. 4 A trailing template-argument can be left unspecified in an explicit instantiation or explicit specialization of a template function pro vided it can be deduced from the function argument type. [Example: // instantiate sort(Array<int>&): // deduce template-argument: template void sort<>(Array<int>&); --end example] 5 The explicit instantiation of a class implies the instantiation of all of its members not previously explicitly specialized in the transla tion unit containing the explicit instantiation. 14.5 Template specialization [temp.spec] 1 Except for a type member or template class member of a non-specialized template class, the following can be declared by a declaration where the declared name is a template-id: a specialized template function, a template class, or a static member of a template; that is: specialization: declaration [Note: a static member of a template can only be specialized in a def inition due to syntactic restrictions. ] [Example: template<class T> class stream; class stream<char> { /* ... */ }; template<class T> void sort(Array<T>& v) { /* ... */ } void sort<char*>(Array<char*>&) ; Given these declarations, stream<char> will be used as the definition of streams of chars; other streams will be handled by template classes generated from the class template. Similarly, sort<char*> will be used as the sort function for arguments of type Array<char*>; other Array types will be sorted by functions generated from the template. ] 2 A declaration of the template being specialized shall be in scope at the point of declaration of a specialization. [Example: class X<int> { /* ... */ }; // error: X not a template template<class T> class X { /* ... */ }; class X<char*> { /* ... */ }; // fine: X is a template --end example] 3 If a template is explicitly specialized then that specialization shall be declared before the first use of that specialization in every translation unit in which it is used. [Example: template<class T> void sort(Array<T>& v) { /* ... */ } void f(Array<String>& v) { sort(v); // use general template // sort(Array<T>&), T is String } void sort<String>(Array<String>& v); // error: specialize after use void sort<>(Array<char*>& v); // fine sort<char*> not yet used --end example] If a function or class template has been explicitly specialized for a template-argument list no specialization will be implicitly generated for that template-argument list. 4 It is possible for a specialization with a given function signature to be generated by more than one function template. In such cases, explicit specification of the template arguments must be used to uniquely identify the template function instance that is being spe cialized. [Example: template <class T> void f(T); template <class T> void f(T*); void f<>(int*); // Ambiguous void f<int>(int*); // OK void f<>(int); // OK --end example] 5 Note that a function with the same name as a template and a type that exactly matches that of a template is not a specialization (_temp.over.spec_). 14.6 Class template specializations [temp.class.spec] 1 A primary class template declaration is one in which the class tem plate name is an identifier. A template declaration in which the class template name is a template-id, is a partial specialization of the class template named in the template-id. The primary template shall be declared before any specializations of that template. 2 [Example: 3 template<class T1, class T2, int I> class A { }; // #1 template<class T, int I> class A<T, T*, I> { }; // #2 template<class T1, class T2, int I> class A<T1*, T2, I> { }; // #3 template<class T> class A<int, T*, 5> { }; // #4 template<class T1, class T2, int I> class A<T1, T2*, I> { }; // #5 4 The first declaration declares the primary (unspecialized) class tem plate. The second and subsequent declarations declare specializations of the primary template. ] 5 The template parameters are specified in the angle bracket enclosed list that immediately follows the keyword template. A template also has a template argument list. For specializations, this list is explicitly written immediately following the class template name. For primary templates, this list is implicitly described by the template parameter list. Specifically, the order of the template parameters is the sequence in which they appear in the template parameter list. [Example: the template argument list for the primary template in the example above is <T1, T2, I>. ] 6 A nontype argument is nonspecialized if it is the name of a nontype parameter. All other nontype arguments are specialized. 7 Within the argument list of a class template specialization, the fol lowing restrictions apply: --A specialized nontype argument expression shall not involve a tem plate parameter of the specialization. --The type of a specialized nontype argument shall not depend on another type parameter of the specialization. --The argument list of the specialization shall not be identical to the implicit argument list of the primary template. 8 14.6.1 Matching of class template [temp.class.spec.match] specializations 1 When a template class is used in a context that requires a complete instantiation of the class, it is necessary to determine whether the instantiation is to be generated using the primary template or one of the partial specializations. This is done by matching the template arguments of the template class being used with the template argument lists of the partial specializations. --If no matches are found, the instantiation is generated from the primary template. --If exactly one matching specialization is found, the instantiation is generated from that specialization. --If more than one specialization is found, the partial order rules (_temp.class.order_) are used to determine whether one of the spe cializations is more specialized than the others. If none of the specializations is more specialized than all of the other matching specializations, then the use of the template class is ambiguous and the program is ill-formed. 2 A specialization matches a given actual template argument list if the template arguments of the specialization can be deduced from the actual template argument list (_temp.deduct_). A nontype template parameter can also be deduced from the value of an actual template argument of a nontype parameter of the primary template. [Example: 3 A<int, int, 1> a1; // uses #1 A<int, int*, 1> a2; // uses #2, T is int, I is 1 A<int, char*, 5> a3; // uses #4, T is int A<int, char*, 1> a4; // uses #5, T1 is int, T2 is char, I is 1 A<int*, int*, 2> a5; // ambiguous: matches #3 and #5 --end example] 4 In a class template reference, (e.g., A<int, int, 1>) the argument list must match the template parameter list of the primary template. The template arguments of a specialization are deduced from the argu ments of the primary template. The template parameter list of a spe cialization shall not contain default template argument values.1) 14.6.2 Partial ordering of class template [temp.class.order] specializations 1 For two class template partial specializations, the first is at least as specialized as the second if: --the type arguments of the first template's argument list are at least as specialized as those of the second template's argument list using the ordering rules for function templates (_temp.func.order_), and --each nontype argument of the first template's argument list is at least as specialized as that of the second template's argument list. 2 A nontype argument is at least as specialized as another nontype argu ment if: --both are formal arguments, --the first is a value and the second is a formal argument, or --both are the same value. _________________________ 1) There is no way in which they could be used. 3 A template class partial specialization is more specialized than another if, and only if, it is at least as specialized as the other template class partial specialization and that template class partial specialization is not at least as specialized as the first. Otherwise the two template class partial specializations are unordered. 14.7 Template parameters [temp.param] 1 The syntax for template-parameters is: template-parameter: type-parameter parameter-declaration type-parameter: class identifieropt class identifieropt = type-id typename identifieropt typename identifieropt = type-id template < template-parameter-list > class identifieropt template < template-parameter-list > class identifieropt = template-name [Example: template<class T> class myarray { /* ... */ }; template<class K, class V, template<class T> class C = myarray> class Map { C<K> key; C<V> value; // ... }; --end example] 2 Default arguments shall not be specified in a declaration or a defini tion of a specialization. 3 A type-parameter defines its identifier to be a type-name in the scope of the template declaration. A type-parameter shall not be redeclared within its scope (including nested scopes). A non-type template- parameter shall not be assigned to or in any other way have its value changed. [Example: template<class T, int i> class Y { int T; // error: template-parameter redefined void f() { char T; // error: template-parameter redefined i++; // error: change of template-argument value } }; template<class X> class X; // error: template-parameter redefined --end example] 4 A template-parameter that could be interpreted as either an parameter- declaration or a type-parameter (because its identifier is the name of an already existing class) is taken as a type-parameter. A template- parameter hides a variable, type, constant, etc. of the same name in the enclosing scope. [Example: class T { /* ... */ }; int i; template<class T, T i> void f(T t) { T t1 = i; // template-arguments T and i ::T t2 = ::i; // globals T and i } Here, the template f has a type-parameter called T, rather than an unnamed non-type parameter of class T. ] There is no semantic differ ence between class and typename in a template-parameter. 5 There are no restrictions on what can be a template-argument type beyond the constraints imposed by the set of argument types (_temp.arg_). In particular, reference types and types containing cv- qualifiers are allowed. A non-reference template-argument cannot have its address taken. When a non-reference template-argument is used as an initializer for a reference a temporary is always used. [Example: template<const X& x, int i> void f() { &x; // ok &i; // error: address of non-reference template-argument int& ri = i; // error: non-const reference bound to temporary const int& cri = i; // ok: reference bound to temporary } --end example] 6 A non-type template-parameter shall not be of floating type. [Exam ple: template<double d> class X; // error template<double* pd> class X; // ok template<double& rd> class X; // ok --end example] 7 A default template-argument is a type, value, or template specified after = in a template-parameter. A default template-argument can be specified in a template declaration or a template definition. The set of default template-arguments available for use with a template in a translation unit shall be provided by the first declaration of the template in that unit. 8 If a template-parameter has a default argument, all subsequent tem plate-parameters shall have a default argument supplied. [Example: template<class T1 = int, class T2> class B; // error --end example] 9 The scope of a template-argument extends from its point of declaration until the end of its template. In particular, a template-parameter can be used in the declaration of subsequent template-parameters and their default arguments. [Example: template<class T, T* p, class U = T> class X { /* ... */ }; template<class T> void f(T* p = new T); --end example] A template-parameter cannot be used in preceding tem plate-parameters or their default arguments. 10A template-parameter can be used in the specification of base classes. [Example: template<class T> class X : public Array<T> { /* ... */ }; template<class T> class Y : public T { /* ... */ }; --end example] [Note: the use of a template-parameter as a base class implies that a class used as a template-argument must be defined and not just declared. ] 14.8 Template arguments [temp.arg] 1 The types of the template-arguments specified in a template-id shall match the types specified for the template in its template-parameter- list. [Example: Arrays as defined in _temp_ can be used like this: Array<int> v1(20); typedef complex<double> dcomplex; // complex is a standard // library template Array<dcomplex> v2(30); Array<dcomplex> v3(40); v1[3] = 7; v2[3] = v3.elem(4) = dcomplex(7,8); --end example] 2 A non-type non-reference template-argument shall be a constant- expression of non-floating type, the address of an object or a func tion with external linkage, or a non-overloaded pointer to member. The address of an object or function shall be expressed as &f, plain f (for function only), or &X::f where f is the function or object name. In the case of &X::f, X shall be a (possibly qualified) name of a class and f the name of a static member of X. A pointer to member shall be expressed as &X::m where X is a (possibly qualified) name of a class and m is the name of a nonstatic member of X. In particular, a string literal (_lex.string_) is not an acceptable template-argument because a string literal is the address of an object with static link age. [Example: template<class T, char* p> class X { // ... X(const char* q) { /* ... */ } }; X<int,"Studebaker"> x1; // error: string literal as template-argument char* p = "Vivisectionist"; X<int,p> x2; // ok --end example] 3 Similarly, addresses of array elements and non-static class members are not acceptable as template-arguments. [Example: int a[10]; struct S { int m; static int s; } s; X<&a[2],p> x3; // error: address of element X<&s.m,p> x4; // error: address of member X<&s.s,p> x5; // error: address of member (dot operator used) X<&S::s,p> x6; // ok: address of static member --end example] 4 Nor is a local type or a type with no linkage name an acceptable tem plate-argument. [Example: void f() { struct S { /* ... */ }; X<S,p> x3; // error: local type used as template-argument } --end example] 5 Similarly, a reference template-parameter shall not be bound to a tem porary, an unnamed lvalue, or a named lvalue with no linkage. [Exam ple: template<const int& CRI> struct B { /* ... */ }; B<1> b2; // error: temporary required for template argument int c = 1; B<c> b1; // ok --end example] 6 An argument to a template-parameter of pointer to function type shall have exactly the type specified by the template parameter. This allows selection from a set of overloaded functions. [Example: void f(char); void f(int); template<void (*pf)(int)> struct A { /* ... */ }; A<&f> a; // selects f(int) --end example] 7 If a template-argument to a template class is a function type and that causes a declaration that does not use the syntactic form of a func tion declarator to have function type, the program is ill-formed. [Example: template<class T> struct A { static T t; }; typedef int function(); A<function> a; // ill-formed: would declare A<function>::t // as a static member function --end example] 8 A template has no special access rights to its template-argument types. A template-argument shall be accessible at the point where it is used as a template-argument. [Example: template<class T> class X { /* ... */ }; class Y { private: struct S { /* ... */ }; X<S> x; // ok: S is accessible }; X<Y::S> y; // error: S not accessible --end example] 9 When default template-arguments are used, a template-argument list can be empty. In that case the empty <> brackets shall still be used. [Example: template<class T = char> class String; String<>* p; // ok: String<char> String* q; // syntax error --end example] The notion of " array type decay" does not apply to template-parameters. [Example: template<int a[5]> struct S { /* ... */ }; int v[5]; int* p = v; S<v> x; // fine S<p> y; // error --end example] 14.9 Type equivalence [temp.type] 1 Two template-ids refer to the same class or function if their template names are identical and in the same scope and their template-arguments have identical values. [Example: template<class E, int size> class buffer; buffer<char,2*512> x; buffer<char,1024> y; declares x and y to be of the same type, and template<class T, void(*err_fct)()> class list { /* ... */ }; list<int,&error_handler1> x1; list<int,&error_handler2> x2; list<int,&error_handler2> x3; list<char,&error_handler2> x4; declares x2 and x3 to be of the same type. Their type differs from the types of x1 and x4. ] 14.10 Function templates [temp.fct] 1 A function template specifies how individual functions can be con structed. [Example: a family of sort functions, might be declared like this: template<class T> void sort(Array<T>&); --end example] A function template specifies an unbounded set of (overloaded) functions. A function generated from a function template is called a template function, so is an explicit specialization of a function template. Template arguments can either be explicitly speci fied in a call or be deduced from the function arguments. 14.10.1 Explicit template argument [temp.arg.explicit] specification 1 Template arguments can be specified in a call by qualifying the tem plate function name by the list of template-arguments exactly as tem plate-arguments are specified in uses of a class template. [Example: void f(Array<dcomplex>& cv, Array<int>& ci) { sort<dcomplex>(cv); // sort(Array<dcomplex>) sort<int>(ci); // sort(Array<int>) } and template<class U, class V> U convert(V v); void g(double d) { int i = convert<int,double>(d); // int convert(double) char c = convert<char,double>(d); // char convert(double) } --end example] Implicit conversions (_conv_) are accepted for a func tion argument for which the parameter has been fixed by explicit spec ification of template-arguments. [Example: template<class T> void f(T); class Complex { // ... explicit Complex(double); }; void g() { f<Complex>(1); // ok, means f<Complex>(Complex(1)) } --end example] 2 For a template function name to be explicitly qualified by template arguments, the name must be known to refer to a template. When the name appears after . or -> in a postfix-expression, or after :: in a qualified-id where the nested-name-specifier depends on a template parameter, the member template name must be prefixed by the keyword template. Otherwise the name is assumed to name a non-template. [Example: 3 class X { public: template<size_t> X* alloc(); }; void f(X* p) { X* p1 = p->alloc<200>(); // ill-formed: < means less than X* p2 = p->template alloc<200>(); // fine: < starts explicit qualification } 4 --end example] If a name prefixed by the keyword template in this way is not the name of a member template function, the program is ill- formed. 14.10.2 Template argument deduction [temp.deduct] 1 Template arguments that can be deduced from the function arguments of a call need not be explicitly specified. [Example: void f(Array<dcomplex>& cv, Array<int>& ci) { sort(cv); // call sort(Array<dcomplex>) sort(ci); // call sort(Array<int>) } and void g(double d) { int i = convert<int>(d); // call convert<int,double>(double) int c = convert<char>(d); // call convert<char,double>(double) } --end example] 2 Type deduction is done for each parameter of a function template that contains a reference to a template parameter that is not explicitly specified. The type of the parameter of the function template (call it P) is compared to the type of the corresponding argument of the call (call it A), and an attempt is made to find types for the tem plate type arguments, and values for the template non-type arguments, that will make P after substitution of the deduced values and explic itly-specified values (call that the deduced P) compatible with the call argument. Type deduction is done independently for each parame ter/argument pair, and the deduced template argument types and values are then combined. If type deduction cannot be done for any parame ter/argument pair, or if different parameter/argument pairs yield dif ferent deduced values for a given template argument, or if any tem plate argument remains neither deduced nor explicitly specified, tem plate argument deduction fails. 3 If P is not a reference type: --if A is an array type, the pointer type produced by the array-to- pointer standard conversion (_conv.array_) is used in place of A for type deduction; otherwise, --if A is a function type, the pointer type produced by the function- to-pointer standard conversion (_conv.func_) is used in place of A for type deduction; otherwise, --the cv-unqualified version of A is used in place of A for type deduction. If P is a reference type, the type referred to by P is used in place of P for type deduction. 4 In general, the deduction process attempts to find template argument values that will make the deduced P identical to A. However, there are three cases that allow a difference: --If the original P is a reference type, the deduced P (i.e., the type referred to by the reference) can be more cv-qualified than A. --If P is a pointer or pointer to member type, A can be another pointer or pointer to member type that can be converted to the deduced P via a qualification conversion (_conv.qual_). --If P is a class, A can be a derived class of the deduced P having the form class-template-name<arguments>. Likewise, if P is a pointer to a class, A can be a pointer to a derived class of the underlying type of the deduced P having the form class-template- name<arguments>. These alternatives are considered only if type deduction cannot be done otherwise. If they yield more than one possible deduced P, the type deduction fails. When deducing arguments in the context of taking the address of an overloaded function (_over.over_), these inexact deductions are not considered. 5 A template type argument T or a template non-type argument i can be deduced if P and A have one of the following forms: 6 T cv-list T T* T& T[integer-constant] class-template-name<T> type(*)(T) type T::* T(*)() T(*)(T) type[i] class-template-name<i> where (T) represents parameter lists where at least one parameter type contains a T, and () represents parameter lists where no parameter contains a T. Similarly, <T> represents template argument lists where at least one argument contains a T, and <i> represents template argu ment lists where at least one argument contains an i. These forms can be used in the same way as T is for further composition of types. [Example: X<int>(*)(char[6]) is of the form class-template-name<T> (*)(type[i]) which is a variant of type (*)(T) where type is X<int> and T is char[6]. ] 7 In addition, a template-parameter can be deduced from a function or pointer to member function argument if at most one of a set of over loaded functions provides a unique match. [Example: template<class T> void f(void(*)(T,int)); void g(int,int); void g(char,int); void h(int,int,int); void h(char,int); int m() { f(&g); // error: ambiguous f(&h); // ok: void h(char,int) is a unique match } --end example] Template arguments cannot be deduced from function arguments involving constructs other than the ones specified in here (_temp.deduct_). 8 Template arguments of an explicit instantiation or explicit special ization are deduced (_temp.explicit_, _temp.spec_) according to these rules specified for deducing function arguments. 9 [Note: a major array bound is not part of a function parameter type so it can't be deduced from an argument: template<int i> void f1(int a[10][i]); template<int i> void f2(int a[i][20]); void g(int v[10][20]) { f1(v); // ok: i deduced to be 20 f1<10>(v); // ok f2(v); // error: cannot deduce template-argument i f2<10>(v); // ok } --end note] 10Nontype parameters shall not be used in expressions in the function declaration. The type of the function template-parameter shall match the type of the template-argument exactly. [Example: template<char c> class A { /* ... */ }; template<int i> void f(A<i>); // error: conversion not allowed template<int i> void f(A<i+1>); // error: expression not allowed --end example] 11If function template-arguments are explicitly specified in a call they are specified in declaration order. Trailing arguments can be left out of a list of explicit template-arguments. [Example: template<class X, class Y, class Z> X f(Y,Z); void g() { f<int,char*,double>("aa",3.0); f<int,char*>("aa",3.0); // Z is deduced to be double f<int>("aa",3.0); // Y is deduced to be char*, and // Z is deduced to be double f("aa",3.0); // error X cannot be deduced } --end example] 12A template-parameter cannot be deduced from a default function argu ment. [Example: template <class T> void f(T = 5, T = 7); void g() { f(1); // fine: call f<int>(1,7) f(); // error: cannot deduce T f<int>(); // fine: call f<int>(5,7) } 13Here is example in which different parameter/argument pairs produce inconsistent template argument deductions: template<class T> void f(T x, T y) { /* ... */ } struct A { /* ... */ }; struct B : A { /* ... */ }; int g(A a, B b) { f(a,a); // ok: T is A f(b,b); // ok: T is B f(a,b); // error T could be A or B f(b,a); // error: T could be A or B } 14Here is an example where a qualification conversion applies between the call argument type and the deduced parameter type: template<class T> void f(const T*) {} int *p; void s() { f(p); // f(const int *) } 15Here is an example where the deduced parameter type is a derived class of a class template reference: template <class T> struct B { }; template <class T> struct D : public B<T> {}; struct D2 : public B<int> {}; template <class T> void f(B<T>&){} void main() { D<int> d; D2 d2; f(d); // calls f(B<int>&) f(d2); // calls f(B<int>&) } --end example] 14.10.3 Overload resolution [temp.over] 1 A function template can be overloaded either by (other) functions of its name or by (other) function templates of that same name. When a call to that name is written (explicitly, or implicitly using the operator notation), template argument deduction (_temp.deduct_) is performed on each function template to find the template argument val ues (if any) that can be used with that function template to generate a function that can be invoked with the call arguments. For each function template, if the argument deduction succeeds, the deduced template arguments are used to generate a single template function, which is added to the candidate functions set to be used in overload resolution. The complete set of candidate functions includes all the template functions generated in this way and all of the non-template overloaded functions of the same name. The template functions are treated like any other functions in the remainder of overload resolu tion, except as explicitly noted.2) 2 [Example: _________________________ 2) The parameters of template functions contain no template parameter types. The set of conversions allowed on deduced arguments is limit ed, because the argument deduction process produces template functions with parameters that either match the call arguments exactly or differ only in ways that can be bridged by the allowed limited conversions. Non-deduced arguments allow the full range of conversions. template<class T> T max(T a, T b) { return a>b?a:b; }; void f(int a, int b, char c, char d) { int m1 = max(a,b); // max(int a, int b) char m2 = max(c,d); // max(char a, char b) int m3 = max(a,c); // error: cannot generate max(int,char) } 3 Adding int max(int,int); to the example above would resolve the third call, by providing a function that could be called for max(a,c) after using the standard conversion of char to int for c. 4 Here is an example involving conversions on a function argument involved in template-parameter deduction: template<class T> struct B { /* ... */ }; template<class T> struct D : public B<T> { /* ... */ }; template<class T> void f(B<T>&); void g(B<int>& bi, D<int>& di) { f(bi); // f(bi) f(di); // f( (B<int>&)di ) } 5 Here is an example involving conversions on a function argument not involved in template-parameter deduction: template<class T> void f(T*,int); // #1 template<class T> void f(T,char); // #2 void h(int* pi, int i, char c) { f(pi,i); // #1: f<int>(pi,i) f(pi,c); // #2: f<int*>(pi,c) f(i,c); // #2: f<int>(i,c); f(i,i); // #2: f<int>(i,char(i)) } --end example] 6 The template definition is needed to generate specializations of a template. However, only a function template declaration is needed to call a specialization. [Example: template<class T> void f(T); // declaration void g() { f("Annemarie"); // call of f<char*> } The call of f is well formed because of the declaration of f, and the program will be ill-formed unless a definition of f is present in some translations unit. 7 Here is a case involving explicit specification of some of the tem plate arguments and deduction of the rest: template<class X, class Y> void f(X,Y*); // #1 template<class X, class Y> void f(X*,Y); // #2 void g(char* pc, int* pi) { f(0,0); // error: ambiguous: f<int,int>(int,int*) // or f<int,int>(int*,int) ? f<char*>(pc,pi); // #1: f<char*,int>(char*,int*) f<char>(pc,pi); // #2: f<char,int*>(char*,int*) } --end example] 14.10.4 Overloading and linkage [temp.over.link] 1 It is possible to overload template functions so that specializations of two different template functions have the same type. [Example: // file1.c // file2.c template<class T> template<class T> void f(T*); void f(T); void g(int* p) { void h(int* p) { f(p); // call f_PT_pi f(p); // call f_T_pi } } --end example] 2 Such specializations are distinct functions and do not violate the ODR. 3 The signature of a specialization of a template function consists of the actual template arguments (whether explicitly specified or deduced) and the signature of the function template. 4 The signature of a function template consists of its function signa ture and its return type and template parameter list. The names of the template parameters are significant only for establishing the relationship between the template parameters and the rest of the sig nature. 14.10.5 Overloading and specialization [temp.over.spec] 1 A template function can be overloaded by a function with the same type as a potentially generated function. [Example: template<class T> T max(T a, T b) { return a>b?a:b; } int max(int a, int b); int min(int a, int b); template<class T> T min(T a, T b) { return a<b?a:b; } --end example] Such an overloaded function is a specialization but not an explicit specialization. The declaration simply guides the overload resolution. [Note: this implies that a definition of max(int,int) and min(int,int) will be implicitly generated from the templates. If such implicit instantiation is not wanted, the explicit specialization syntax should be used instead: template<class T> T max(T a, T b) { return a>b?a:b; } int max<int>(int a, int b); --end note] 2 Defining a function with the same type as a template specialization that is called is ill-formed. [Example: template<class T> T max(T a, T b) { return a>b?a:b; } int max(int a, int b) { return a>b?a:b; } void f(int x, int y) { max(x,y); // error: duplicate definition of max() } If the two definitions of max() are not in the same translation unit the diagnostic is not required. If a separate definition of a func tion max(int,int) is needed, the specialization syntax can be used. If the conversions enabled by an ordinary declaration are also needed, both can be used. template<class T> T max(T a, T b) { return a>b?a:b; } int max<>(int a, int b) { /* ... */ } void g(char x, int y) { max(x,y); // error: no exact match, and no conversions allowed } int max(int,int); void f(char x, int y) { max(x,y); // max<int>(int(x),y) } --end example] 3 An explicit specialization of a function template shall be inline or static only if it is explicitly declared to be, and independently of whether its function template is. [Example: template<class T> void f(T) { /* ... */ } template<class T> inline T g(T) { /* ... */ } inline void f<>(int) { /* ... */ } // ok: inline int g<>(int) { /* ... */ } // ok: not inline --end example] 14.10.6 Partial ordering of function templates [temp.func.order] 1 Given two function templates, whether one is more specialized than another can be determined by transforming each template in turn and using argument deduction to compare it to the other. 2 The transformation used is: --For each type template parameter, synthesize a unique type and substitute that for each occurrence of that parameter in the func tion parameter list. --for each nontype template parameter, synthesize a unique value of the appropriate type and substitute that for each occurrence of that parameter in the function parameter list. 3 Using the transformed function parameter list, perform argument deduc tion against the other function template (_temp.deduct_). The trans formed template is at least as specialized as the other if, and only if, the deduction succeeds. 4 A template is more specialized than another if, and only if, it is at least as specialized as the other template and that template is not at least as specialized as the first. [Example: template<class T> class A {}; template<class T> void f(T); template<class T> void f(T*); template<class T> void f(const T*); template<class T> void g(T); template<class T> void g(T&); template<class T> void h(const T&); template<class T> void h(A<T>); void m() { const int *p; f(p); // f(const T*) is more specialized than f(T) or f(T*) float x; g(x); // Ambiguous: g(T) or g(T&) A<int> z; h(z); // h(A<T>) is more specialized than f(const T&) const A<int> z2; h(z2); // h(const T&) is called because h(A<T>) is not callable } --end example] 14.11 Member function templates [temp.mem.func] 1 A member function of a template class is implicitly a template func tion with the template-parameters of its class as its template- parameters. [Example: template<class T> class Array { T* v; int sz; public: explicit Array(int); T& operator[](int); T& elem(int i) { return v[i]; } // ... }; declares three function templates. The subscript function might be defined like this: template<class T> T& Array<T>::operator[](int i) { if (i<0 || sz<=i) error("Array: range error"); return v[i]; } 2 The template-argument for Array<T>::operator[]() will be determined by the Array to which the subscripting operation is applied. Array<int> v1(20); Array<dcomplex> v2(30); v1[3] = 7; // Array<int>::operator[]() v2[3] = dcomplex(7,8); // Array<dcomplex>::operator[]() --end example] 14.12 Friends [temp.friend] 1 A friend function of a template can be a template function or a non- template function. [Example: template<class T> class task { // ... friend void next_time(); friend task<T>* preempt(task<T>*); friend task* prmt(task*); // task is task<T> friend class task<int>; // ... }; Here, next_time() and task<int> become friends of all task classes, and each task has appropriately typed functions preempt() and prmt() as friends. The preempt functions might be defined as a template. template<class T> task<T>* preempt(task<T>* t) { /* ... */ } --end example] 2 A friend template shall not be defined within a class. [Example: class A { template<class T> friend B; // ok template<class T> friend void f(T); // ok template<class T> friend BB { /* ... /* }; // error template<class T> friend void ff(T){ /* ... /* } // error }; --end example] [Note: a friend declaration can add a name to an enclosing scope (_temp.inject_). ] 14.13 Static members and variables [temp.static] 1 Each template class or function generated from a template has its own copies of any static variables or members. [Example: template<class T> class X { static T s; // ... }; X<int> aa; X<char*> bb; Here X<int> has a static member s of type int and X<char*> has a static member s of type char*. ] 2 Static class member templates are defined similarly to member function templates. [Example: template<class T> T X<T>::s = 0; int X<int>::s = 3; 3 Similarly, template<class T> f(T* p) { static T s; // ... }; void g(int a, char* b) { f(&a); // call f<int>(int*) f(&b); // call f<char*>(char**) } Here f<int>(int*) has a static member s of type int and f<char*>(char**) has a static member s of type char*. ]