______________________________________________________________________

  26   Numerics library                         [lib.numerics]

  ______________________________________________________________________

1 This clause describes components that C++ programs may use to  perform
  seminumerical operations.

2 The following subclauses describe components for complex number types,
  numeric ( n-at-a-time) arrays,  generalized  numeric  algorithms,  and
  facilities included from the ISO C library, as summarized in Table 1:

                    Table 1--Numerics library summary

     +--------------------------------------------------------------+
     |                   Subclause                       Header(s)  |
     +--------------------------------------------------------------+
     |_lib.numeric.requirements_ Requirements                       |
     +--------------------------------------------------------------+
     |_lib.complex.numbers_ Complex numbers              <complex>  |
     +--------------------------------------------------------------+
     |_lib.numarray_ Numeric arrays                      <valarray> |
     +--------------------------------------------------------------+
     |_lib.numeric.ops_ Generalized numeric operations   <numeric>  |
     +--------------------------------------------------------------+
     |_lib.c.math_ C library                             <cmath>    |
     |                                                   <cstdlib>  |
     +--------------------------------------------------------------+

  26.1  Numeric type requirements             [lib.numeric.requirements]

1 The  complex  and valarray components are parameterized by the type of
  information they contain and manipulate.  A C++ program shall  instan­
  tiate   these   components  with  types  that  satisfy  the  following
  requirements:1)

  --T is not an abstract class (it has  no  pure  virtual  member  func­
    tions);

  --T is not a reference type;

  _________________________
  1) In other words, value types.   These  include  built-in  arithmetic
  types,  pointers,  the  library  class  complex, and instantiations of
  valarray for value types.

  --T is not cv-qualified;

  --If T is a class, it has a public default constructor;

  --If T is a class, it has a public copy constructor with the signature
    T::T(const T&)

  --If T is a class, it has a public destructor;

  --If T is a class, it has a public assignment operator whose signature
    is either
    T& T::operator=(const T&) or T& T::operator=(T)

  --If T is a class, its assignment operator, copy and default construc­
    tors, and destructor must correspond to each other in the  following
    sense:  Initialization of raw storage using the default constructor,
    followed by assignment, is semantically equivalent to initialization
    of  raw  storage  using  the  copy  constructor.   Destruction of an
    object, followed by initialization of its raw storage using the copy
    constructor,  is semantically equivalent to assignment to the origi­
    nal object.
    [Note: This rule states that there must not be  any  subtle  differ­
    ences  in  the  semantics of initialization versus assignment.  This
    gives an implementation considerable flexibility in how  arrays  are
    initialized.
    [Example:  An  implementation is allowed to initialize a valarray by
    allocating storage using the new operator (which implies a  call  to
    the  default  constructor  for each element) and then assigning each
    element its value.  Or the implementation can allocate  raw  storage
    and  use  the  copy  constructor to initialize each element.   --end
    example]
    If the distinction between initialization and assignment  is  impor­
    tant  for a class, or if it fails to satisfy any of the other condi­
    tions listed above, the programmer should use vector  (_lib.vector_)
    instead of valarray for that class;  --end note]

  --If T is a class, it does not overload unary operator&.

2 In  addition,  many member and related functions of valarray<T> can be
  successfully instantiated and will exhibit  well-defined  behavior  if
  and  only  if  T  satisfies additional requirements specified for each
  such member or related function.

3 [Example: It is valid to  instantiate  valarray<complex>,  but  opera­
  tor>()  will  not  be  successfully instantiated for valarray<complex>
  operands, since complex does not have any ordering operators.    --end
  example]

  26.2  Complex numbers                            [lib.complex.numbers]

1 The  header <complex> defines a template class, and numerous functions
  for representing and manipulating complex numbers.

  Header <complex> synopsis

  namespace std {
    template<class T> class complex;
    class complex<float>;
    class complex<double>;
    class complex<long double>;
    // _lib.complex.ops_ operators:
    template<class T>
      complex<T> operator+(const complex<T>&, const complex<T>&);
    template<class T> complex<T> operator+(const complex<T>&, T);
    template<class T> complex<T> operator+(T, const complex<T>&);
    template<class T> complex<T> operator-(const complex<T>&, const complex<T>&);
    template<class T> complex<T> operator-(const complex<T>&, T);
    template<class T> complex<T> operator-(T, const complex<T>&);
    template<class T> complex<T> operator*(const complex<T>&, const complex<T>&);
    template<class T> complex<T> operator*(const complex<T>&, T);
    template<class T> complex<T> operator*(T, const complex<T>&);
    template<class T> complex<T> operator/(const complex<T>&, const complex<T>&);
    template<class T> complex<T> operator/(const complex<T>&, const T>&);
    template<class T> complex<T> operator/(T, const complex<T>&);
    template<class T> complex<T> operator+(const complex<T>&);
    template<class T> complex<T> operator-(const complex<T>&);
    template<class T> complex<T> operator==(const complex<T>&, const complex<T>&);
    template<class T> complex<T> operator==(const complex<T>&, T);
    template<class T> complex<T> operator==(T, const complex<T>&);
    template<class T> complex<T> operator!=(const complex<T>&, const complex<T>&);
    template<class T> complex<T> operator!=(const complex<T>&, T);
    template<class T> complex<T> operator!=(T, const complex<T>&);
    template<class T> istream& operator>>(istream&, complex<T>&);
    template<class T> ostream& operator<<(ostream&, const complex<T>&);
    // _lib.complex.value.ops_ values:
    template<class T> T real(const complex<T>&);
    template<class T> T imag(const complex<T>&);
    template<class T> T abs(const complex<T>&);
    template<class T> T arg(const complex<T>&);
    template<class T> T norm(const complex<T>&);
    template<class T> complex<T> conj(const complex<T>&);
    template<class T> complex<T> polar(T, T);
    // _lib.complex.transcendentals_ transcendentals:
    template<class T> complex<T> acos (const complex<T>&);
    template<class T> complex<T> asin (const complex<T>&);
    template<class T> complex<T> atan (const complex<T>&);
    template<class T> complex<T> atan2(const complex<T>&, const complex<T>&);
    template<class T> complex<T> atan2(const complex<T>&, T);
    template<class T> complex<T> atan2(T, const complex<T>&);
    template<class T> complex<T> cos  (const complex<T>&);
    template<class T> complex<T> cosh (const complex<T>&);
    template<class T> complex<T> exp  (const complex<T>&);
    template<class T> complex<T> log  (const complex<T>&);
    template<class T> complex<T> log10(const complex<T>&);

    template<class T> complex<T> pow(const complex<T>&, int);
    template<class T> complex<T> pow(const complex<T>&, T);
    template<class T> complex<T> pow(const complex<T>&, const complex<T>&);
    template<class T> complex<T> pow(T, const complex<T>&);
    template<class T> complex<T> sin  (const complex<T>&);
    template<class T> complex<T> sinh (const complex<T>&);
    template<class T> complex<T> sqrt (const complex<T>&);
    template<class T> complex<T> tan  (const complex<T>&);
    template<class T> complex<T> tanh (const complex<T>&);
  }

  26.2.1  Template class complex                           [lib.complex]
  namespace std {
    template<class T>
    class complex {
    public:
      complex();
      complex(T re);
      complex(T re, T im);
      template<class X> complex(const complex<X>&);
      T real() const;
      T imag() const;
      template<class X> complex<T>& operator= (const complex<X>&);
      template<class X> complex<T>& operator+=(const complex<X>&);
      template<class X> complex<T>& operator-=(const complex<X>&);
      template<class X> complex<T>& operator*=(const complex<X>&);
      template<class X> complex<T>& operator/=(const complex<X>&);
    };

1 The class complex describes an object that  can  store  the  Cartesian
  components, real() and imag(), of a complex number.

  26.2.2  complex specializations                  [lib.complex.special]
    class complex<float> {
    public:
      complex(float re = 0.0f, float im = 0.0f);
      explicit complex(const complex<double>&);
      explicit complex(const complex<long double>&);
      float real() const;
      float imag() const;
      template<class X> complex<float>& operator= (const complex<X>&);
      template<class X> complex<float>& operator+=(const complex<X>&);
      template<class X> complex<float>& operator-=(const complex<X>&);
      template<class X> complex<float>& operator*=(const complex<X>&);
      template<class X> complex<float>& operator/=(const complex<X>&);
    };
    class complex<double> {
    public:
      complex(double re = 0.0, double im = 0.0);
      complex(const complex<float>&);
      explicit complex(const complex<long double>&);

      double real() const;
      double imag() const;
      template<class X> complex<double>& operator= (const complex<X>&);
      template<class X> complex<double>& operator+=(const complex<X>&);
      template<class X> complex<double>& operator-=(const complex<X>&);
      template<class X> complex<double>& operator*=(const complex<X>&);
      template<class X> complex<double>& operator/=(const complex<X>&);
    };
    class complex<long double> {
    public:
      complex(long double re = 0.0L, long double im = 0.0L);
      complex(const complex<float>&);
      complex(const complex<double>&);
      long double real() const;
      long double imag() const;
      template<class X> complex<long double>& operator= (const complex<X>&);
      template<class X> complex<long double>& operator+=(const complex<X>&);
      template<class X> complex<long double>& operator-=(const complex<X>&);
      template<class X> complex<long double>& operator*=(const complex<X>&);
      template<class X> complex<long double>& operator/=(const complex<X>&);
    };

  26.2.3  complex member functions                 [lib.complex.members]

  template<class T> complex(T re = T(), T im = T());

  Effects:
    Constructs an object of class complex.

1 Postcondition: real() == re  && imag() == im.

  26.2.4  complex member operators              [lib.complex.member.ops]

  template<class T> complex<T>& operator+=(const complex<T>& rhs);

  Effects:
    Adds the complex value rhs to the complex value *this and stores the
    sum in *this.
  Returns:
    *this.

  template<class T> complex<T>& operator-=(const complex<T>& rhs);

  Effects:
    Subtracts the complex value rhs from the  complex  value  *this  and
    stores the difference in *this.
  Returns:
    *this.

  template<class T> complex<T>& operator*=(const complex<T>& rhs);

  Effects:
    Multiplies  the  complex  value  rhs  by the complex value *this and
    stores the product in *this.
  Returns:
    *this.

  template<class T> complex<T>& operator/=(const complex<T>& rhs);

  Effects:
    Divides the complex value rhs  into  the  complex  value  *this  and
    stores the quotient in *this.
  Returns:
    *this.

  26.2.5  complex non-member operations                [lib.complex.ops]

  template<class T> complex<T> operator+(const complex<T>& lhs);

  Notes:
    unary operator.
  Returns:
    complex<T>(lhs).

  template<class T>
    complex<T> operator+(const complex<T>& lhs, const complex<T>& rhs);
  template<class T> complex<T> operator+(const complex<T>& lhs, T rhs);
  template<class T> complex<T> operator+(T lhs, const complex<T>& rhs);

  Returns:
    complex<T>(lhs) += rhs.

  template<class T> complex<T> operator-(const complex<T>& lhs);

  Notes:
    unary operator.
  Returns:
    complex<T>(-lhs.real(),-lhs.imag()).

  template<class T>
    complex<T> operator-(const complex<T>& lhs, const complex<T>& rhs);
  template<class T> complex<T> operator-(const complex<T>& lhs, T rhs);
  template<class T> complex<T> operator-(T lhs, const complex<T>& rhs);

  Returns:
    complex<T>(lhs) -= rhs.

  template<class T>
    complex<T> operator*(const complex<T>& lhs, const complex<T>& rhs);
  template<class T> complex<T> operator*(const complex<T>& lhs, T rhs);
  template<class T> complex<T> operator*(T lhs, const complex<T>& rhs);

  Returns:
    complex<T>(lhs) *= rhs.

  template<class T>
    complex<T> operator/(const complex<T>& lhs, const complex<T>& rhs);
  template<class T> complex<T> operator/(const complex<T>& lhs, T rhs);
  template<class T> complex<T> operator/(T lhs, const complex<T>& rhs);

  Returns:
    complex<T>(lhs) /= rhs.

  template<class T>
    bool operator==(const complex<T>& lhs, const complex<T>& >rhs);
  template<class T> bool operator==(const complex<T>& lhs, T rhs);
  template<class T> bool operator==(T lhs, const complex<T>& rhs);

  Returns:
    lhsP.real() == rhs.real() && lhs.imag() == rhs.imag().
  Notes:
    The  imaginary  part  is  assumed to be T(), or 0.0, for the T argu­
    ments.

  template<class T>
    bool operator!=(complex<T>& lhs, complex<T>& rhs);
  template<class T> bool operator!=(complex<T>& lhs, T rhs);
  template<class T> bool operator!=(T lhs, complex<T>& rhs);

  Returns:
    !(lhs==

  template<class T> istream& operator>>(istream& is, complex<T>& x);

  Effects:
    Extracts a complex number x of the form: u, (u), or (u,v),  where  u
    is    the    real    part    and    v    is   the   imaginary   part
    (_lib.istream.formatted_).
  Requires:
    The input values be convertible to T.
    If bad input is encountered, calls is.setstate(ios::failbit)  (which
    may throw ios::failure (_lib.iostate.flags_).
  Returns:
    is.

  template<class T>
    ostream& operator<<(ostream& os, complex x);

  Returns:
    os << '(' << x.real() << ',' << x.imag() << ')'.

  26.2.6  complex value operations               [lib.complex.value.ops]

  template<class T> T real(const complex<T>& x);

  Returns:
    x.real().

  template<class T> T imag(const complex<T>& x);

  Returns:
    x.imag().

  template<class T> T arg(const complex<T>& x);

  Returns:
    the TBS of x.

  template<class T> T norm(const complex<T>& x);

  Returns:
    the squared magnitude of x.

  template<class T> complex<T> conj(const complex<T>& x);

  Returns:
    the TBS of x.

  template<class T> complex<T> polar(T rho, const t& theta);

  Returns:
    the  complex value corresponding to a complex number whose magnitude
    is rho and whose phase angle is theta.

  26.2.7  complex transcendentals          [lib.complex.transcendentals]

  template<class T> complex<T> acos (const complex<T>& x);
  template<class T> complex<T> asin (const complex<T>& x);
  template<class T> complex<T> atan (const complex<T>& x);
  template<class T> complex<T> atan2(const complex<T>& x);
  template<class T> complex<T> atan2(const complex<T>& x, T y);
  template<class T> complex<T> atan2(T x, const complex<T>& y);
  template<class T> complex<T> cos  (const complex<T>& x);
  template<class T> complex<T> cosh (const complex<T>& x);
  template<class T> complex<T> exp  (const complex<T>& x);
  template<class T> complex<T> log  (const complex<T>& x);
  template<class T> complex<T> log10(const complex<T>& x);
  template<class T>
    complex<T> pow(const complex<T>& x, const complex<T>& y);
  template<class T> complex<T> pow  (const complex<T>& x, T y);
  template<class T> complex<T> pow  (T x, const complex<T>& y);
  template<class T> complex<T> pow  (const complex<T>& x, int y);
  template<class T> complex<T> sin  (const complex<T>& x);
  template<class T> complex<T> sinh (const complex<T>& x);
  template<class T> complex<T> sqrt (const complex<T>& x);
  template<class T> complex<T> tan  (const complex<T>& x);
  template<class T> complex<T> tanh (const complex<T>& x);

1 For each of these functions F, returns a complex  value  corresponding
  to the mathematical function (_lib.c.math_) computed for complex argu­
  ments.

  26.3  Numeric arrays                                    [lib.numarray]

  Header <valarray> synopsis

  #include <cstddef>    // for size_t
  namespace std {
    template<class T> class valarray;       // An array of type T
    class slice;                            // a BLAS-like slice out of an array
    template<class T> class slice_array;
    class gslice;                           // a generalized slice out of an array
    template<class T> class gslice_array;
    template<class T> class mask_array;     // a masked array
    template<class T> class indirect_array; // an indirected array
    template<class T> valarray<T> operator*
      (const valarray<T>&, const valarray<T>&);
    template<class T> valarray<T> operator* (const valarray<T>&, const T&);
    template<class T> valarray<T> operator* (const T&, const valarray<T>&);
    template<class T> valarray<T> operator/
      (const valarray<T>&, const valarray<T>&);
    template<class T> valarray<T> operator/ (const valarray<T>&, const T&);
    template<class T> valarray<T> operator/ (const T&, const valarray<T>&);
    template<class T> valarray<T> operator%
      (const valarray<T>&, const valarray<T>&);
    template<class T> valarray<T> operator% (const valarray<T>&, const T&);
    template<class T> valarray<T> operator% (const T&, const valarray<T>&);

    template<class T> valarray<T> operator+
      (const valarray<T>&, const valarray<T>&);
    template<class T> valarray<T> operator+ (const valarray<T>&, const T&);
    template<class T> valarray<T> operator+ (const T&, const valarray<T>&);
    template<class T> valarray<T> operator-
      (const valarray<T>&, const valarray<T>&);
    template<class T> valarray<T> operator- (const valarray<T>&, const T&);
    template<class T> valarray<T> operator- (const T&, const valarray<T>&);
    template<class T> valarray<T> operator^
      (const valarray<T>&, const valarray<T>&);
    template<class T> valarray<T> operator^ (const valarray<T>&, const T&);
    template<class T> valarray<T> operator^ (const T&, const valarray<T>&);
    template<class T> valarray<T> operator&
      (const valarray<T>&, const valarray<T>&);
    template<class T> valarray<T> operator& (const valarray<T>&, const T&);
    template<class T> valarray<T> operator& (const T&, const valarray<T>&);
    template<class T> valarray<T> operator|
      (const valarray<T>&, const valarray<T>&);
    template<class T> valarray<T> operator| (const valarray<T>&, const T&);
    template<class T> valarray<T> operator| (const T&, const valarray<T>&);
    template<class T> valarray<T> operator<<
      (const valarray<T>&, const valarray<T>&);
    template<class T> valarray<T> operator<<(const valarray<T>&, const T&);
    template<class T> valarray<T> operator<<(const T&, const valarray<T>&);
    template<class T> valarray<T> operator>>
      (const valarray<T>&, const valarray<T>&);
    template<class T> valarray<T> operator>>(const valarray<T>&, const T&);
    template<class T> valarray<T> operator>>(const T&, const valarray<T>&);
    template<class T> valarray<T> operator&&
      (const valarray<T>&, const valarray<T>&);
    template<class T> valarray<T> operator&&(const valarray<T>&, const T&);
    template<class T> valarray<T> operator&&(const T&, const valarray<T>&);
    template<class T> valarray<T> operator||
      (const valarray<T>&, const valarray<T>&);
    template<class T> valarray<T> operator||(const valarray<T>&, const T&);
    template<class T> valarray<T> operator||(const T&, const valarray<T>&);
    template<class T>
      valarray<bool> operator==(const valarray<T>&, const valarray<T>&);
    template<class T> valarray<bool> operator==(const valarray<T>&, const T&);
    template<class T> valarray<bool> operator==(const T&, const valarray<T>&);
    template<class T>
      valarray<bool> operator!=(const valarray<T>&, const valarray<T>&);
    template<class T> valarray<bool> operator!=(const valarray<T>&, const T&);
    template<class T> valarray<bool> operator!=(const T&, const valarray<T>&);

    template<class T>
      valarray<bool> operator< (const valarray<T>&, const valarray<T>&);
    template<class T> valarray<bool> operator< (const valarray<T>&, const T&);
    template<class T> valarray<bool> operator< (const T&, const valarray<T>&);
    template<class T>
      valarray<bool> operator> (const valarray<T>&, const valarray<T>&);
    template<class T> valarray<bool> operator> (const valarray<T>&, const T&);
    template<class T> valarray<bool> operator> (const T&, const valarray<T>&);
    template<class T>
      valarray<bool> operator<=(const valarray<T>&, const valarray<T>&);
    template<class T> valarray<bool> operator<=(const valarray<T>&, const T&);
    template<class T> valarray<bool> operator<=(const T&, const valarray<T>&);
    template<class T>
      valarray<bool> operator>=(const valarray<T>&, const valarray<T>&);
    template<class T> valarray<bool> operator>=(const valarray<T>&, const T&);
    template<class T> valarray<bool> operator>=(const T&, const valarray<T>&);
    template<class T> T min(const valarray<T>&);
    template<class T> T max(const valarray<T>&);
    template<class T> valarray<T> abs  (const valarray<T>&);
    template<class T> valarray<T> acos (const valarray<T>&);
    template<class T> valarray<T> asin (const valarray<T>&);
    template<class T> valarray<T> atan (const valarray<T>&);
    template<class T> valarray<T> atan2(const valarray<T>&, const valarray<T>&);
    template<class T> valarray<T> atan2(const valarray<T>&, const T&);
    template<class T> valarray<T> atan2(const T&, const valarray<T>&);
    template<class T> valarray<T> cos  (const valarray<T>&);
    template<class T> valarray<T> cosh (const valarray<T>&);
    template<class T> valarray<T> exp  (const valarray<T>&);
    template<class T> valarray<T> log  (const valarray<T>&);
    template<class T> valarray<T> log10(const valarray<T>&);
    template<class T> valarray<T> pow  (const valarray<T>&, const valarray<T>&);
    template<class T> valarray<T> pow  (const valarray<T>&, const T&);
    template<class T> valarray<T> pow  (const T&, const valarray<T>&);
    template<class T> valarray<T> sin  (const valarray<T>&);
    template<class T> valarray<T> sinh (const valarray<T>&);
    template<class T> valarray<T> sqrt (const valarray<T>&);
    template<class T> valarray<T> tan  (const valarray<T>&);
    template<class T> valarray<T> tanh (const valarray<T>&);
  }

1 The header  <valarray>  defines  five  template  classes  (  valarray,
  slice_array,   gslice_array,   mask_array,  and  indirect_array),  two
  classes ( slice and gslice), and a series of related  function  signa­
  tures for representing and manipulating arrays of values.

2 The  valarray array classes are defined to be free of certain forms of
  aliasing, thus allowing operations on these classes to be optimized.

3 These  library  functions  are  permitted  to   throw   an   bad_alloc
  (_lib.bad.alloc_)  exception  if  there  are  not sufficient resources
  available to carry out the operation.  Note that the exception is  not
  mandated.

  26.3.1  Template class valarray                [lib.template.valarray]
  namespace std {
    template<class T> class valarray {
    public:
      // _lib.valarray.cons_ construct/destroy:
      valarray();
      explicit valarray(size_t);
      valarray(const T&, size_t);
      valarray(const T*, size_t);
      valarray(const valarray&);
      valarray(const slice_array<T>&);
      valarray(const gslice_array<T>&);
      valarray(const mask_array<T>&);
      valarray(const indirect_array<T>&);
     ~valarray();
    // _lib.valarray.assign_ assignment:
      valarray<T>& operator=(const valarray<T>&);
      valarray<T>& operator=(const slice_array<T>&);
      valarray<T>& operator=(const gslice_array<T>&);
      valarray<T>& operator=(const mask_array<T>&);
      valarray<T>& operator=(const indirect_array<T>&);
    // _lib.valarray.access_ element access:
      T                 operator[](size_t) const;
      T&                operator[](size_t);
    // _lib.valarray.subset_ subset operations:
      valarray<T>       operator[](slice) const;
      slice_array<T>    operator[](slice);
      valarray<T>       operator[](const gslice&) const;
      gslice_array<T>   operator[](const gslice&);
      valarray<T>       operator[](const valarray<bool>&) const;
      mask_array<T>     operator[](const valarray<bool>&);
      valarray<T>       operator[](const valarray<size_t>&) const;
      indirect_array<T> operator[](const valarray<size_t>&);
    // _lib.valarray.unary_ unary operators:
      valarray<T> operator+() const;
      valarray<T> operator-() const;
      valarray<T> operator~() const;
      valarray<T> operator!() const;
    // _lib.valarray.cassign_ computed assignment:
      valarray<T>& operator*= (const T&);
      valarray<T>& operator/= (const T&);
      valarray<T>& operator%= (const T&);
      valarray<T>& operator+= (const T&);
      valarray<T>& operator-= (const T&);
      valarray<T>& operator^= (const T&);
      valarray<T>& operator&= (const T&);
      valarray<T>& operator|= (const T&);
      valarray<T>& operator<<=(const T&);
      valarray<T>& operator>>=(const T&);

      valarray<T>& operator*= (const valarray<T>&);
      valarray<T>& operator/= (const valarray<T>&);
      valarray<T>& operator%= (const valarray<T>&);
      valarray<T>& operator+= (const valarray<T>&);
      valarray<T>& operator-= (const valarray<T>&);
      valarray<T>& operator^= (const valarray<T>&);
      valarray<T>& operator|= (const valarray<T>&);
      valarray<T>& operator&= (const valarray<T>&);
      valarray<T>& operator<<=(const valarray<T>&);
      valarray<T>& operator>>=(const valarray<T>&);
    // _lib.valarray.members_ member functions:
      size_t length() const;
      operator T*();
      operator const T*() const;
      T    sum() const;
      void fill(const T&);
      T    min() const;
      T    max() const;
      valarray<T> shift (int) const;
      valarray<T> cshift(int) const;
      valarray<T> apply(T func(T)) const;
      valarray<T> apply(T func(const T&)) const;
      void free();
    };
  }

1 The  template class valarray<T> is a one-dimensional smart array, with
  elements numbered sequentially from zero.  It is a  representation  of
  the mathematical concept of an ordered set of values.  The illusion of
  higher dimensionality may be produced by the familiar  idiom  of  com­
  puted indices, together with the powerful subsetting capabilities pro­
  vided by the generalized subscript operators.2)

2 An implementation  is  permitted  to  qualify  any  of  the  functions
  declared in <valarray> as inline.

  26.3.1.1  valarray constructors                    [lib.valarray.cons]

  valarray();

  Effects:
    Constructs  an  object of class valarray<T>,3) which has zero length
    until it is passed into a library function as a modifiable lvalue or
    through a non-constant this pointer.  This  default  constructor  is
  _________________________
  2) The intent is to specify an array template  that  has  the  minimum
  functionality  necessary  to address aliasing ambiguities and the pro­
  liferation of temporaries.  Thus, the valarray template is  neither  a
  matrix class nor a field class.  However, it is a very useful building
  block for designing such classes.
  3)  For  convenience,  such  objects  are  referred  to  as ``arrays''
  throughout the remainder of subclause _lib.numarray_.

    essential,  since  arrays  of  valarray  are likely to prove useful.
    There must also be a way to change the size of an array  after  ini­
    tialization;  this  is  supplied  by the semantics of the assignment
    operator.

  explicit valarray(size_t);

1 The array created by this constructor has a length equal to the  value
  of  the argument.  The elements of the array are constructed using the
  default constructor for the instantiating type T.

  valarray(const T&, size_t);

2 The array created by this constructor has a length equal to the second
  argument.  The elements of the array are initialized with the value of
  the first argument.

  valarray(const T*, size_t);

3 The array created by this constructor has a length equal to the second
  argument  n.   The values of the elements of the array are initialized
  with the first n values pointed to by  the  first  argument.   If  the
  value  of  the  second  argument  is greater than the number of values
  pointed to by the first argument, the  behavior  is  undefined.   This
  constructor  is  the  preferred  method  for converting a C array to a
  valarray object.

  valarray(const valarray<T>&);

4 The array created by this constructor has the same length as the argu­
  ment  array.  The elements are initialized with the values of the cor­
  responding elements of the argument array.  This copy constructor cre­
  ates  a distinct array rather than an alias.  Implementations in which
  arrays share storage are permitted, but they must implement a copy-on-
  reference mechanism to ensure that arrays are conceptually distinct.

  valarray(const slice_array<T>&);
  valarray(const gslice_array<T>&);
  valarray(const mask_array<T>&);
  valarray(const indirect_array<T>&);

5 These  conversion  constructors convert one of the four reference tem­
  plates to a valarray.

  ~valarray();

  26.3.1.2  valarray assignment                    [lib.valarray.assign]

  valarray<T>& operator=(const valarra<T>y&);

1 The assignment operator modifies the length of the *this array  to  be
  equal  to that of the argument array.  Each element of the *this array
  is then assigned the value of the corresponding element of  the  argu­
  ment  array.   Assignment  is the usual way to change the length of an
  array after initialization.  Assignment results in  a  distinct  array
  rather than an alias.

  valarray<T>& operator=(const slice_array<T>&);
  valarray<T>& operator=(const gslice_array<T>&);
  valarray<T>& operator=(const mask_array<T>&);
  valarray<T>& operator=(const indirect_array<T>&);

2 These operators allow the results of a generalized subscripting opera­
  tion to be assigned directly to a valarray.

  26.3.1.3  valarray element access                [lib.valarray.access]

  T  operator[](size_t) const;
  T& operator[](size_t);

1 When applied to a constant array, the subscript operator  returns  the
  value  of  the  corresponding element of the array.  When applied to a
  non-constant array, the subscript operator returns a reference to  the
  corresponding element of the array.

2 Thus,  the  expression (a[i] = q, a[i]) == q evaluates as true for any
  non-constant valarray<T> a, any T q, and for any size_t  i  such  that
  the value of i is less than the length of a.

3 The expression &a[i+j] == &a[i] + j evaluates as true for all size_t i
  and size_t j such that i+j is less than the length of the non-constant
  array a.

4 Likewise,  the expression &a[i] != &b[j] evaluates as true for any two
  non-constant arrays a and b and for any size_t i  and  size_t  j  such
  that  i  is less than the length of a and j is less than the length of
  b.  This property indicates an absence of aliasing and may be used  to
  advantage by optimizing compilers.4)
  _________________________

5 The  reference  returned  by the subscript operator for a non-constant
  array is guaranteed to be valid until  the  array  to  whose  data  it
  refers  is  passed into any library function as a modifiable lvalue or
  through a non-const this pointer.

6 Computed assigns [such as valarray& operator+=(const valarray&)  ]  do
  not  by  themselves  invalidate references to array data.  If the sub­
  script operator is invoked with a size_t argument whose value  is  not
  less than the length of the array, the behavior is undefined.

  26.3.1.4  valarray subset operations                [lib.valarray.sub]

  valarray<T>       operator[](slice) const;
  slice_array<T>    operator[](slice);
  valarray<T>       operator[](const gslice&) const;
  gslice_array<T>   operator[](const gslice&);
  valarray<T>       operator[](const valarray<bool>&) const;
  mask_array<T>     operator[](const valarray<bool>&);
  valarray<T>       operator[](const valarray<size_t>&) const;
  indirect_array<T> operator[](const valarray<size_t>&);

1 Each  of  these  operations returns a subset of the array.  The const-
  qualified versions return this subset as a  new  valarray.   The  non-
  const  versions  return  a  class  template object which has reference
  semantics to the original array.

  26.3.1.5  valarray unary operators                [lib.valarray.unary]

  valarray<T> operator+() const;
  valarray<T> operator-() const;
  valarray<T> operator~() const;
  valarray<T> operator!() const;

1 Each of these operators may only be instantiated for a type T to which
  the  indicated  operator  can  be  applied and for which the indicated
  operator returns a value which is of type &T or which may be unambigu­
  ously converted to type T.

2 Each  of these operators returns an array whose length is equal to the
  length of the array.  Each element of the returned array  is  initial­
  ized  with the result of applying the indicated operator to the corre­
  sponding element of the array.

  _________________________
  4)  Compilers  may  take  advantage of inlining, constant propagation,
  loop fusion, tracking of pointers obtained from operator new, and oth­
  er techniques to generate efficient valarrays.

  26.3.1.6  valarray computed assignment          [lib.valarray.cassign]

  valarray<T>& operator*= (const valarray<T>&);
  valarray<T>& operator/= (const valarray<T>&);
  valarray<T>& operator%= (const valarray<T>&);
  valarray<T>& operator+= (const valarray<T>&);
  valarray<T>& operator-= (const valarray<T>&);
  valarray<T>& operator^= (const valarray<T>&);
  valarray<T>& operator&= (const valarray<T>&);
  valarray<T>& operator|= (const valarray<T>&);
  valarray<T>& operator<<=(const valarray<T>&);
  valarray<T>& operator>>=(const valarray<T>&);

1 Each of these operators may only be instantiated for a type T to which
  the  indicated  operator can be applied.  Each of these operators per­
  forms the indicated operation on each of its elements and  the  corre­
  sponding element of the argument array.

2 The array is then returned by reference.

3 If  the  array and the argument array do not have the same length, the
  behavior is undefined.  The appearance of an array on  the  left  hand
  side of a computed assignment does not invalidate references or point­
  ers.

  valarray<T>& operator*= (const T&);
  valarray<T>& operator/= (const T&);
  valarray<T>& operator%= (const T&);
  valarray<T>& operator+= (const T&);
  valarray<T>& operator-= (const T&);
  valarray<T>& operator^= (const T&);
  valarray<T>& operator&= (const T&);
  valarray<T>& operator|= (const T&);
  valarray<T>& operator<<=(const T&);
  valarray<T>& operator>>=(const T&);

4 Each of these operators may only be instantiated for a type T to which
  the indicated operator can be applied.

5 Each  of  these operators applies the indicated operation to each ele­
  ment of the array and the scalar argument.

6 The array is then returned by reference.

7 The appearance of an array on the left hand side of a computed assign­
  ment does not invalidate references or pointers to the elements of the
  array.

  26.3.1.7  valarray member functions             [lib.valarray.members]

  size_t length() const;

1 This function returns the number of elements in the array.

  operator T*();
  operator const T*() const;

2 A non-constant array may be converted to a pointer to the  instantiat­
  ing  type.   A  constant  array  may  be converted to a pointer to the
  instantiating type, qualified by const.

3 It is guaranteed that &a[0] == (T*)a for any non-constant  valarray<T>
  a.   The  pointer returned for a non-constant array (whether or not it
  points to a type qualified by const) is valid for the same duration as
  a  reference  returned  by the size_t subscript operator.  The pointer
  returned for a constant  array  is  valid  for  the  lifetime  of  the
  array.5)

  T sum() const;

  This function may only be instantiated for a type T  to  which  opera­
  tor+=  can  be applied.  This function returns the sum of all the ele­
  ments of the array.

4 If the array has length 0, the behavior is undefined.   If  the  array
  has  length  1,  sum  returns  the value of element 0.  Otherwise, the
  returned value is calculated by applying operator+= to a  copy  of  an
  element of the array and all other elements of the array in an unspec­
  ified order.

  void fill(const T&);

  This function assigns the value of the argument to all the elements of
  the array.  The length of the array is not changed, nor are any point­
  ers or references to the elements of the array invalidated.

  valarray<T> shift(int) const;

  _________________________
  5) This form of access is essential for reusability and cross-language
  programming.

5 This function returns an array whose length is identical to the array,
  but whose element values are shifted the number of places indicated by
  the argument.

6 A positive argument value results in a left shift, a negative value in
  a right shift, and a zero value in no shift.

7 [Example:  If the argument has the value -2, the first two elements of
  the result will be constructed  using  the  default  constructor;  the
  third  element  of  the result will be assigned the value of the first
  element of the argument; etc.   --end example]

  valarray<T> cshift(int) const;

8 This function returns an array whose length is identical to the array,
  but  whose element values are shifted in a circular fashion the number
  of places indicated by the argument.

9 A positive argument value results in a left shift, a negative value in
  a right shift, and a zero value in no shift.

  valarray<T> apply(T func(T)) const;
  valarray<T> apply(T func(const T&)) const;

10These  functions  return  an array whose length is equal to the array.
  Each element of the returned array is assigned the value  returned  by
  applying  the  argument  function  to the corresponding element of the
  array.

  void free();

11This function sets the length of an array to zero.6)

  26.3.2  valarray non-member operations       [lib.valarray.nonmembers]

  26.3.2.1  valarray binary operators              [lib.valarray.binary]

  _________________________
  6) An implementation may reclaim the storage used by  the  array  when
  this function is called.

  template<class T> valarray<T> operator* (const valarray<T>&, const valarray<T>&);
  template<class T> valarray<T> operator/ (const valarray<T>&, const valarray<T>&);
  template<class T> valarray<T> operator% (const valarray<T>&, const valarray<T>&);
  template<class T> valarray<T> operator+ (const valarray<T>&, const valarray<T>&);
  template<class T> valarray<T> operator- (const valarray<T>&, const valarray<T>&);
  template<class T> valarray<T> operator^ (const valarray<T>&, const valarray<T>&);
  template<class T> valarray<T> operator& (const valarray<T>&, const valarray<T>&);
  template<class T> valarray<T> operator| (const valarray<T>&, const valarray<T>&);
  template<class T> valarray<T> operator<<(const valarray<T>&, const valarray<T>&);
  template<class T> valarray<T> operator>>(const valarray<T>&, const valarray<T>&);
  template<class T> valarray<T> operator&&(const valarray<T>&, const valarray<T>&);
  template<class T> valarray<T> operator||(const valarray<T>&, const valarray<T>&);

1 Each of these operators may only be instantiated for a type T to which
  the indicated operator can be applied  and  for  which  the  indicated
  operator  returns a value which is of type T or which can be unambigu­
  ously converted to type T.

2 Each of these operators returns an array whose length is equal to  the
  lengths of the argument arrays.  Each element of the returned array is
  initialized with the result of applying the indicated operator to  the
  corresponding elements of the argument arrays.

3 If  the  argument  arrays do not have the same length, the behavior is
  undefined.

  template<class T> valarray<T> operator* (const valarray<T>&, const T&);
  template<class T> valarray<T> operator* (const T&, const valarray<T>&);
  template<class T> valarray<T> operator/ (const valarray<T>&, const T&);
  template<class T> valarray<T> operator/ (const T&, const valarray<T>&);
  template<class T> valarray<T> operator% (const valarray<T>&, const T&);
  template<class T> valarray<T> operator% (const T&, const valarray<T>&);
  template<class T> valarray<T> operator+ (const valarray<T>&, const T&);
  template<class T> valarray<T> operator+ (const T&, const valarray<T>&);
  template<class T> valarray<T> operator- (const valarray<T>&, const T&);
  template<class T> valarray<T> operator- (const T&, const valarray<T>&);
  template<class T> valarray<T> operator^ (const valarray<T>&, const T&);
  template<class T> valarray<T> operator^ (const T&, const valarray<T>&);
  template<class T> valarray<T> operator& (const valarray<T>&, const T&);
  template<class T> valarray<T> operator& (const T&, const valarray<T>&);
  template<class T> valarray<T> operator| (const valarray<T>&, const T&);
  template<class T> valarray<T> operator| (const T&, const valarray<T>&);
  template<class T> valarray<T> operator<<(const valarray<T>&, const T&);
  template<class T> valarray<T> operator<<(const T&, const valarray<T>&);
  template<class T> valarray<T> operator>>(const valarray<T>&, const T&);
  template<class T> valarray<T> operator>>(const T&, const valarray<T>&);
  template<class T> valarray<T> operator&&(const valarray<T>&, const T&);
  template<class T> valarray<T> operator&&(const T&, const valarray<T>&);
  template<class T> valarray<T> operator||(const valarray<T>&, const T&);
  template<class T> valarray<T> operator||(const T&, const valarray<T>&);

4 Each of these operators may only be instantiated for a type T to which
  the  indicated  operator  can  be  applied and for which the indicated
  operator returns a value which is of type T or which can be  unambigu­
  ously converted to type T.

5 Each  of these operators returns an array whose length is equal to the
  length of the array argument.  Each element of the returned  array  is
  initialized  with the result of applying the indicated operator to the
  corresponding element of the array argument and the scalar argument.

  26.3.2.2  valarray comparison operators      [lib.valarray.comparison]

  template<class T> valarray<bool> operator==(const valarray<T>&, const valarray<T>&);
  template<class T> valarray<bool> operator!=(const valarray<T>&, const valarray<T>&);
  template<class T> valarray<bool> operator< (const valarray<T>&, const valarray<T>&);
  template<class T> valarray<bool> operator> (const valarray<T>&, const valarray<T>&);
  template<class T> valarray<bool> operator<=(const valarray<T>&, const valarray<T>&);
  template<class T> valarray<bool> operator>=(const valarray<T>&, const valarray<T>&);

1 Each of these operators may only be instantiated for a type T to which
  the indicated operator can be applied  and  for  which  the  indicated
  operator  returns  a value which is of type bool or which can be unam­
  biguously converted to type bool.

2 Each of these operators returns a bool array whose length is equal  to
  the length of the array arguments.  Each element of the returned array
  is initialized with the result of applying the indicated  operator  to
  the corresponding elements of the argument arrays.

3 If  the  two array arguments do not have the same length, the behavior
  is undefined.

  template<class T> valarray<bool> operator==(const valarray&, const T&);
  template<class T> valarray<bool> operator==(const T&, const valarray&);
  template<class T> valarray<bool> operator!=(const valarray&, const T&);
  template<class T> valarray<bool> operator!=(const T&, const valarray&);
  template<class T> valarray<bool> operator< (const valarray&, const T&);
  template<class T> valarray<bool> operator< (const T&, const valarray&);
  template<class T> valarray<bool> operator> (const valarray&, const T&);
  template<class T> valarray<bool> operator> (const T&, const valarray&);
  template<class T> valarray<bool> operator<=(const valarray&, const T&);
  template<class T> valarray<bool> operator<=(const T&, const valarray&);
  template<class T> valarray<bool> operator>=(const valarray&, const T&);
  template<class T> valarray<bool> operator>=(const T&, const valarray&);

4 Each of these operators may only be instantiated for a type T to which
  the  indicated  operator  can  be  applied and for which the indicated
  operator returns a value which is of type bool or which can  be  unam­
  biguously converted to type bool.

5 Each  of these operators returns a bool array whose length is equal to
  the length of the array argument.  Each element of the returned  array
  is  initialized  with the result of applying the indicated operator to
  the corresponding element of the array and the scalar argument.

  26.3.2.3  valarray min and max functions        [lib.valarray.min.max]

  template<class T> T min(const valarray<T>& a);
  template<class T> T max(const valarray<T>& a);

1 These functions may only be instantiated for a type T to which  opera­
  tor>  and  operator< may be applied and for which operator> and opera­
  tor< return a value which is of type bool or which  can  be  unambigu­
  ously converted to type bool.

2 These  functions  return the minimum ( a.min()) or maximum ( a..max())
  value found in the argument array a.

3 The value returned for an array of length  0  is  undefined.   For  an
  array  of length 1, the value of element 0 is returned.  For all other
  array lengths, the determination is made using  operator>  and  opera­
  tor<,  in  a manner analogous to the application of operator+= for the
  sum function.

  26.3.2.4  valarray transcendentals            [lib.valarray.transcend]

  template<class T> valarray<T> abs  (const valarray<T>&);
  template<class T> valarray<T> acos (const valarray<T>&);
  template<class T> valarray<T> asin (const valarray<T>&);
  template<class T> valarray<T> atan (const valarray<T>&);
  template<class T> valarray<T> atan2(const valarray<T>&, const valarray<T>&);
  template<class T> valarray<T> atan2(const valarray<T>&, const T&);
  template<class T> valarray<T> atan2(const T&, const valarray<T>&);
  template<class T> valarray<T> cos  (const valarray<T>&);
  template<class T> valarray<T> cosh (const valarray<T>&);
  template<class T> valarray<T> exp  (const valarray<T>&);
  template<class T> valarray<T> log  (const valarray<T>&);
  template<class T> valarray<T> log10(const valarray<T>&);
  template<class T> valarray<T> pow  (const valarray<T>&, const valarray<T>&);
  template<class T> valarray<T> pow  (const valarray<T>&, const T&);
  template<class T> valarray<T> pow  (const T&, const valarray<T>&);
  template<class T> valarray<T> sin  (const valarray<T>&);
  template<class T> valarray<T> sinh (const valarray<T>&);
  template<class T> valarray<T> sqrt (const valarray<T>&);
  template<class T> valarray<T> tan  (const valarray<T>&);
  template<class T> valarray<T> tanh (const valarray<T>&);

1 Each of these functions may only be instantiated for a type T to which
  a  unique  function  with  the  indicated  name  can be applied.  This

  function must return a value which is of type T or which can be  unam­
  biguously converted to type T.

  26.3.3  Class slice                                  [lib.class.slice]
  namespace std {
    class slice {
    public:
      slice();
      slice(size_t, size_t, size_t);

      size_t start() const;
      size_t length() const;
      size_t stride() const;
    };
  }

1 The  slice  class  represents a BLAS-like slice from an array.  Such a
  slice is specified by a starting index, a length, and a stride.7)

  26.3.3.1  slice constructors                          [lib.cons.slice]

  slice();
  slice(size_t start, size_t length, size_t stride);
  slice(const slice&);

1 The default constructor for slice creates a slice which  specifies  no
  elements.  A default constructor is provided only to permit the decla­
  ration of arrays of slices.  The  constructor  with  arguments  for  a
  slice takes a start, length, and stride parameter.

2 [Example:  slice(3, 8, 2) constructs a slice which selects elements 3,
  5, 7, ... 17 from an array.   --end example]

  26.3.3.2  slice access functions                    [lib.slice.access]

  size_t start() const;
  size_t length() const;
  size_t stride() const;

1 These functions return the start, length, or  stride  specified  by  a
  slice object.

  _________________________
  7) C++ programs may instantiate this class.

  26.3.4  Template class slice_array          [lib.template.slice.array]
  namespace std {
    template <class T> class slice_array {
    public:
      void operator=  (const valarray<T>&) const;
      void operator*= (const valarray<T>&) const;
      void operator/= (const valarray<T>&) const;
      void operator%= (const valarray<T>&) const;
      void operator+= (const valarray<T>&) const;
      void operator-= (const valarray<T>&) const;
      void operator^= (const valarray<T>&) const;
      void operator&= (const valarray<T>&) const;
      void operator|= (const valarray<T>&) const;
      void operator<<=(const valarray<T>&) const;
      void operator>>=(const valarray<T>&) const;
      void fill(const T&);
     ~slice_array();
    private:
      slice_array();
      slice_array(const slice_array&);
      slice_array& operator=(const slice_array&);
      //   remainder implementation defined
    };
  }

1 The  slice_array  template is a helper template used by the slice sub­
  script operator
  slice_array<T> valarray<T>::operator[](slice);
  It has reference semantics to a subset of  an  array  specified  by  a
  slice object.

2 [Example:  The  expression  a[slice(1,  5,  3)] = b; has the effect of
  assigning the elements of b to a slice of the elements in a.  For  the
  slice  shown,  the elements selected from a are 1, 4, ..., 13.   --end
  example]

3 [Note: C++ programs may not instantiate  slice_array,  since  all  its
  constructors are private.  It is intended purely as a helper class and
  should be transparent to the user.   --end note]

  26.3.4.1  slice_array constructors                [lib.cons.slice.arr]

  slice_array();
  slice_array(const slice_array&);

1 The slice_array template has no public constructors.  These  construc­
  tors  are  declared  to  be  private.   These constructors need not be
  defined.

  26.3.4.2  slice_array assignment                [lib.slice.arr.assign]

  void         operator=(const valarray<T>&) const;
  slice_array& operator=(const slice_array&);

1 The second of these two assignment operators is declared  private  and
  need not be defined.  The first has reference semantics, assigning the
  values of the argument array elements  to  selected  elements  of  the
  valarray<T> object to which the slice_array object refers.

  26.3.4.3  slice_array computed             [lib.slice.arr.comp.assign]
       assignment

  void operator*= (const valarray<T>&) const;
  void operator/= (const valarray<T>&) const;
  void operator%= (const valarray<T>&) const;
  void operator+= (const valarray<T>&) const;
  void operator-= (const valarray<T>&) const;
  void operator^= (const valarray<T>&) const;
  void operator&= (const valarray<T>&) const;
  void operator|= (const valarray<T>&) const;
  void operator<<=(const valarray<T>&) const;
  void operator>>=(const valarray<T>&) const;

1 These computed assignments  have  reference  semantics,  applying  the
  indicated operation to the elements of the argument array and selected
  elements of the valarray<T> object to  which  the  slice_array  object
  refers.

  26.3.4.4  slice_array fill function               [lib.slice.arr.fill]

  void fill(const T&);

1 This  function  has  reference  semantics,  assigning the value of its
  argument to the elements  of  the  valarray<T>  object  to  which  the
  slice_array object refers.

  26.3.5  The gslice class                            [lib.class.gslice]

  namespace std {
    class gslice {
    public:
      gslice();
      gslice(size_t s, const valarray<size_t>& l, const valarray<size_t>& d);

      size_t           start() const;
      valarray<size_t> length() const;
      valarray<size_t> stride() const;
    };
  }

1 This  class  represents a generalized slice out of an array.  A gslice
  is defined by a starting offset (s), a set of lengths (lj), and a  set
  of  strides  (dj).   The  number  of  lengths must equal the number of
  strides.

2 A gslice represents a mapping from a set of  indices  (ij),  equal  in
  number  to  the  number of strides, to a single index k.  It is useful
  for building multidimensional array classes using  the  valarray  tem­
  plate,  which  is  one-dimensional.   The set of one-dimensional index
  values specified by a gslice are k=s+>ijdj where the  multidimensional
  indices ij range in value from 0 to ljij-1.

3 [Example: The gslice specification
  start  = 3
  length = {2, 4, 3}
  stride = {19, 4, 1}
  yields the sequence of one-dimensional indices

                    k=3+(0,1)×19=(0,1,2,3)×4+(0,1,2)×1
  which are ordered as shown in the following table:
      (i0, i1, i2, k) =
              (0, 0, 0, 3),
              (0, 0, 1, 4),
              (0, 0, 2, 5),
              (0, 1, 0, 7),
              (0, 1, 1, 8),
              (0, 1, 2, 9),
              (0, 2, 0, 11),
              (0, 2, 1, 12),
              (0, 2, 2, 13),
              (0, 3, 0, 15),
              (0, 3, 1, 16),
              (0, 3, 2, 17),
              (1, 0, 0, 22),
              (1, 0, 1, 23),
              ...
              (1, 3, 2, 36)
  That is, the highest-ordered index turns fastest.   --end example]

4 It  is  possible  to  have  degenerate  generalized slices in which an
  address is repeated.

5 [Example: If the stride parameters in the previous example are changed
  to  {1,  1,  1},  the  first few elements of the resulting sequence of
  indices will be
              (0, 0, 0, 3),
              (0, 0, 1, 4),
              (0, 0, 2, 5),
              (0, 1, 0, 4),
              (0, 1, 1, 5),
              (0, 1, 2, 6),
              ...
   --end example]

6 If a degenerate slice is used as the argument to the non-const version
  of operator[](const gslice&), the resulting behavior is undefined.

  26.3.5.1  gslice constructors                        [lib.gslice.cons]

  gslice();
  gslice(size_t start, const valarray<size_t>& lengths,
                             const valarray<size_t>& strides);
  gslice(const gslice&);

1 The  default constructor creates a gslice which specifies no elements.
  The constructor with arguments builds a gslice based on  a  specifica­
  tion of start, lengths, and strides, as explained in the previous sec­
  tion.

  26.3.5.2  gslice access functions                  [lib.gslice.access]

  size_t           start()  const;
  valarray<size_t> length() const;
  valarray<size_t> stride() const;

  These  access  functions  return  the  representation  of  the  start,
  lengths, or strides specified for the gslice.

  26.3.6  Template class gslice_array        [lib.template.gslice.array]

  namespace std {
    template <class T> class gslice_array {
    public:
      void operator=  (const valarray<T>&) const;
      void operator*= (const valarray<T>&) const;
      void operator/= (const valarray<T>&) const;
      void operator%= (const valarray<T>&) const;
      void operator+= (const valarray<T>&) const;
      void operator-= (const valarray<T>&) const;
      void operator^= (const valarray<T>&) const;
      void operator&= (const valarray<T>&) const;
      void operator|= (const valarray<T>&) const;
      void operator<<=(const valarray<T>&) const;
      void operator>>=(const valarray<T>&) const;
      void fill(const T&);
     ~gslice_array();
    private:
      gslice_array();
      gslice_array(const gslice_array&);
      gslice_array& operator=(const gslice_array&);
      //  remainder implementation defined
    };
  }

1 This  template is a helper template used by the slice subscript opera­
  tor
  gslice_array<T> valarray<T>::operator[](const gslice&);
  It has reference semantics to a subset of  an  array  specified  by  a
  gslice object.

2 Thus,  the  expression a[gslice(1, length, stride)] = b has the effect
  of assigning the elements of b to a generalized slice of the  elements
  in a.

3 [Note:  C++  programs  may not instantiate gslice_array, since all its
  constructors are private.  It is intended purely as a helper class and
  should be transparent to the user.   --end note]

  26.3.6.1  gslice_array constructors            [lib.gslice.array.cons]

  gslice_array();
  gslice_array(const gslice_array&);

1 The gslice_array template has no public constructors.  It declares the
  above constructors to be private.   These  constructors  need  not  be
  defined.

  26.3.6.2  gslice_array assignment            [lib.gslice.array.assign]

  void operator=(const valarray<T>&) const;
  gslice_array& operator=(const gslice_array&);

1 The  second  of these two assignment operators is declared private and
  need not be defined.  The first has reference semantics, assigning the
  values  of  the  argument  array  elements to selected elements of the
  valarray<T> object to which the gslice_array refers.

  26.3.6.3  gslice_array computed         [lib.gslice.array.comp.assign]
       assignment

  void operator*= (const valarray<T>&) const;
  void operator/= (const valarray<T>&) const;
  void operator%= (const valarray<T>&) const;
  void operator+= (const valarray<T>&) const;
  void operator-= (const valarray<T>&) const;
  void operator^= (const valarray<T>&) const;
  void operator&= (const valarray<T>&) const;
  void operator|= (const valarray<T>&) const;
  void operator<<=(const valarray<T>&) const;
  void operator>>=(const valarray<T>&) const;

1 These  computed  assignments  have  reference  semantics, applying the
  indicated operation to the elements of the argument array and selected
  elements  of  the  valarray<T> object to which the gslice_array object
  refers.

  26.3.6.4  gslice_array fill function           [lib.gslice.array.fill]

  void fill(const T&);

1 This function has reference semantics,  assigning  the  value  of  its
  argument  to  the  elements  of  the  valarray<T>  object to which the
  gslice_array object refers.

  26.3.7  Template class mask_array            [lib.template.mask.array]

  namespace std {
    template <class T> class mask_array {
    public:
      void operator=  (const valarray<T>&) const;
      void operator*= (const valarray<T>&) const;
      void operator/= (const valarray<T>&) const;
      void operator%= (const valarray<T>&) const;
      void operator+= (const valarray<T>&) const;
      void operator-= (const valarray<T>&) const;
      void operator^= (const valarray<T>&) const;
      void operator&= (const valarray<T>&) const;
      void operator|= (const valarray<T>&) const;
      void operator<<=(const valarray<T>&) const;
      void operator>>=(const valarray<T>&) const;
      void fill(const T&);
     ~mask_array();
    private:
      mask_array();
      mask_array(const mask_array&);
      mask_array& operator=(const mask_array&);
      //  remainder implementation defined
    };
  }

1 This template is a helper template used by the mask  subscript  opera­
  tor:
    mask_array<T> valarray<T>::operator[](const valarray<bool>&).
  It  has  reference  semantics  to  a subset of an array specified by a
  boolean mask.  Thus, the expression a[mask] = b;  has  the  effect  of
  assigning  the  elements  of  b to the masked elements in a (those for
  which the corresponding element in mask is true.

2 [Note: C++ programs may not declare instances of mask_array, since all
  its  constructors  are  private.   It  is  intended purely as a helper
  class, and should be transparent to the user.   --end note]

  26.3.7.1  mask_array constructors                [lib.mask.array.cons]

  mask_array();
  mask_array(const mask_array&);

1 The mask_array template has no public constructors.  It  declares  the
  above  constructors  to  be  private.   These constructors need not be
  defined.

  26.3.7.2  mask_array assignment                [lib.mask.array.assign]

  void operator=(const valarray<T>&) const;
  mask_array& operator=(const mask_array&);

1 The second of these two assignment operators is declared  private  and
  need not be defined.  The first has reference semantics, assigning the
  values of the argument array elements  to  selected  elements  of  the
  valarray<T> object to which it refers.

  26.3.7.3  mask_array computed             [lib.mask.array.comp.assign]
       assignment

  void operator*= (const valarray<T>&) const;
  void operator/= (const valarray<T>&) const;
  void operator%= (const valarray<T>&) const;
  void operator+= (const valarray<T>&) const;
  void operator-= (const valarray<T>&) const;
  void operator^= (const valarray<T>&) const;
  void operator&= (const valarray<T>&) const;
  void operator|= (const valarray<T>&) const;
  void operator<<=(const valarray<T>&) const;
  void operator>>=(const valarray<T>&) const;

1 These computed assignments  have  reference  semantics,  applying  the
  indicated operation to the elements of the argument array and selected
  elements of the valarray<T> object to which the mask object refers.

  26.3.7.4  mask_array fill function               [lib.mask.array.fill]

  void fill(const T&);

  This function has reference semantics,  assigning  the  value  of  its
  argument  to  the  elements  of  the  valarray<T>  object to which the
  mask_array object refers.

  26.3.8  Template class                   [lib.template.indirect.array]
       indirect_array
  namespace std {
    template <class T> class indirect_array {
    public:
      void operator=  (const valarray<T>&) const;
      void operator*= (const valarray<T>&) const;
      void operator/= (const valarray<T>&) const;
      void operator%= (const valarray<T>&) const;
      void operator+= (const valarray<T>&) const;
      void operator-= (const valarray<T>&) const;
      void operator^= (const valarray<T>&) const;
      void operator&= (const valarray<T>&) const;
      void operator|= (const valarray<T>&) const;
      void operator<<=(const valarray<T>&) const;
      void operator>>=(const valarray<T>&) const;

      void fill(const T&);
     ~indirect_array();
    private:
      indirect_array();
      indirect_array(const indirect_array&);
      indirect_array& operator=(const indirect_array&);
      //  remainder implementation defined
    };
  }

1 This  template  is  a  helper  template used by the indirect subscript
  operator
    indirect_array<T> valarray<T>::operator[](const valarray<int>&).
  It has reference semantics to a subset of an  array  specified  by  an
  indirect_array.   Thus  the expression a[indirect] = b; has the effect
  of assigning the elements of b to the  elements  in  a  whose  indices
  appear in indirect.

2 [Note: C++ programs may not declare instances of indirect_array, since
  all its constructors are private.  It is intended purely as  a  helper
  class, and should be transparent to the user.   --end note]

  26.3.8.1  indirect_array constructors        [lib.indirect.array.cons]

  indirect_array();
  indirect_array(const indirect_array&);

  The indirect_array template has no public constructors.  The construc­
  tors listed  above  are  private.   These  constructors  need  not  be
  defined.

  26.3.8.2  indirect_array assignment        [lib.indirect.array.assign]

  void operator=(const valarray<T>&) const;
  indirect_array& operator=(const indirect_array&);

1 The  second  of these two assignment operators is declared private and
  need not be defined.  The first has reference semantics, assigning the
  values  of  the  argument  array  elements to selected elements of the
  valarray<T> object to which it refers.

2 If the indirect_array specifies an element in the  valarray<T>  object
  to which it refers more than once, the behavior is undefined.

3 [Example:
  int addr = {2, 3, 1, 4, 4};
  valarray<int> indirect(addr, 5);
  valarray<double> a(0., 10), b(1., 5);
  array[indirect] = b;
  results  in  undefined  behavior since element 4 is specified twice in

  the indirection.   --end example]

  26.3.8.3  indirect_array              [lib.indirect.array.comp.assign]
       computed assignment

  void operator*= (const valarray<T>&) const;
  void operator/= (const valarray<T>&) const;
  void operator%= (const valarray<T>&) const;
  void operator+= (const valarray<T>&) const;
  void operator-= (const valarray<T>&) const;
  void operator^= (const valarray<T>&) const;
  void operator&= (const valarray<T>&) const;
  void operator|= (const valarray<T>&) const;
  void operator<<=(const valarray<T>&) const;
  void operator>>=(const valarray<T>&) const;

1 These  computed  assignments  have  reference  semantics, applying the
  indicated operation to the elements of the argument array and selected
  elements  of the valarray<T> object to which the indirect_array object
  refers.

2 If the indirect_array specifies an element in the  valarray<T>  object
  to which it refers more than once, the behavior is undefined.

  26.3.8.4  indirect_array fill function       [lib.indirect.array.fill]

  void fill(const T&);

1 This  function  has  reference  semantics,  assigning the value of its
  argument to the elements of the valarray<T> object to which the  indi­
  rect_array object refers.

  26.4  Generalized numeric operations                 [lib.numeric.ops]

  Header <numeric> synopsis

  namspace std {
    template <class InputIterator, class T>
      T accumulate(InputIterator first, InputIterator last, T init);
    template <class InputIterator, class T, class BinaryOperation>
      T accumulate(InputIterator first, InputIterator last, T init,
                   BinaryOperation binary_op);

    template <class InputIterator1, class InputIterator2, class T>
      T inner_product(InputIterator1 first1, InputIterator1 last1,
                      InputIterator2 first2, T init);
    template <class InputIterator1, class InputIterator2, class T,
              class BinaryOperation1, class BinaryOperation2>
      T inner_product(InputIterator1 first1, InputIterator1 last1,
                      InputIterator2 first2, T init,
                      BinaryOperation1 binary_op1, BinaryOperation2 binary_op2);
    template <class InputIterator, class OutputIterator>
      OutputIterator partial_sum(InputIterator first, InputIterator last,
                                 OutputIterator result);
    template <class InputIterator, class OutputIterator, class BinaryOperation>
      OutputIterator partial_sum(InputIterator first, InputIterator last,
                                 OutputIterator result, BinaryOperation binary_op);
    template <class InputIterator, class OutputIterator>
      OutputIterator adjacent_difference(InputIterator first, InputIterator last,
                                         OutputIterator result);
    template <class InputIterator, class OutputIterator, class BinaryOperation>
      OutputIterator adjacent_difference(InputIterator first, InputIterator last,
                                         OutputIterator result,
                                         BinaryOperation binary_op);
  }

  26.4.1  Accumulate                                    [lib.accumulate]

  template <class InputIterator, class T>
    T accumulate(InputIterator first, InputIterator last, T init);
  template <class InputIterator, class T, class BinaryOperation>
    T accumulate(InputIterator first, InputIterator last, T init,
                 BinaryOperation binary_op);

  Effects:
    Initializes the accumulator acc with the initial value init and then
    modifies it with acc = acc + *i or  acc  =  binary_op(acc,  *i)  for
    every iterator i in the range [first, last) in order.8)
  Requires:
    binary_op shall not cause side effects.

  26.4.2  Inner product                              [lib.inner.product]

  _________________________
  8) accumulate is similar to the APL reduction operator and Common Lisp
  reduce function, but it avoids the difficulty of defining  the  result
  of  reduction on an empty sequence by always requiring an initial val­
  ue.

  template <class InputIterator1, class InputIterator2, class T>
    T inner_product(InputIterator1 first1, InputIterator1 last1,
                    InputIterator2 first2, T init);
  template <class InputIterator1, class InputIterator2, class T,
            class BinaryOperation1, class BinaryOperation2>
    T inner_product(InputIterator1 first1, InputIterator1 last1,
                    InputIterator2 first2, T init,
                    BinaryOperation1 binary_op1,
                    BinaryOperation2 binary_op2);

  Effects:
    Computes its result by initializing the  accumulator  acc  with  the
    initial  value  init  and then modifying it with acc = acc + (*i1) *
    (*i2) or acc = binary_op1(acc, binary_op2(*i1, *i2)) for every iter­
    ator  i1  in  the  range  [first, last) and iterator i2 in the range
    [first2, first2 + (last - first)) in order.
  Requires:
    binary_op1 and binary_op2 shall not cause side effects.

  26.4.3  Partial sum                                  [lib.partial.sum]

  template <class InputIterator, class OutputIterator>
    OutputIterator
      partial_sum(InputIterator first, InputIterator last,
                  OutputIterator result);
  template
    <class InputIterator, class OutputIterator, class BinaryOperation>
      OutputIterator
        partial_sum(InputIterator first, InputIterator last,
                    OutputIterator result, BinaryOperation binary_op);

  Effects:
    Assigns to every iterator i in the range [result, result +  (last  -
    first)) a value correspondingly equal to
    ((...(*first + *(first + 1)) + ...) + *(first + (i - result)))
    or
    binary_op(binary_op(...,   binary_op(*first,   *(first  +  1)),...),
    *(first + (i - result)))
  Returns:
    result + (last - first).
  Complexity:
    Exactly (last - first) - 1 applications of binary_op.
  Requires:
    binary_op is expected not to have any side effects.
  Notes:
    result may be equal to first.

  26.4.4  Adjacent difference                  [lib.adjacent.difference]

  template <class InputIterator, class OutputIterator>
    OutputIterator
      adjacent_difference(InputIterator first, InputIterator last,
                          OutputIterator result);
  template
    <class InputIterator, class OutputIterator, class BinaryOperation>
      OutputIterator
        adjacent_difference(InputIterator first, InputIterator last,
                            OutputIterator result,
                            BinaryOperation binary_op);

  Effects:
    Assigns to every element referred to by  iterator  i  in  the  range
    [result  + 1, result + (last - first)) a value correspondingly equal
    to
    *(first + (i - result)) - *(first + (i - result) - 1)
    or
    binary_op(*(first + (i - result)), *(first + (i - result) - 1)).
    result gets the value of *first.
  Requires:
    binary_op shall not have any side effects.
  Notes:
    result may be equal to first.
  Returns:
    result + (last - first).
  Complexity:
    Exactly (last - first) - 1 applications of binary_op.

  26.5  C Library                                           [lib.c.math]

1 Headers <cmath> and <cstdlib> ( abs(), div(), rand(), srand()).

                     Table 1--Header <cmath> synopsis

                +----------------------------------------+
                | Type               Name(s)             |
                +----------------------------------------+
                |Macro:   HUGE_VAL                       |
                +----------------------------------------+
                |Functions:                              |
                |acos     cos        fmod    modf   tan  |
                |asin     cosh       frexp   pow    tanh |
                |atan     exp        ldexp   sin         |
                |atan2    fabs       log     sinh        |
                |ceil     floor      log10   sqrt        |
                +----------------------------------------+

                    Table 1--Header <cstdlib> synopsis

                      +----------------------------+
                      | Type          Name(s)      |
                      +----------------------------+
                      |Macros:   RAND_MAX          |
                      +----------------------------+
                      |Types:    div_t      ldiv_t |
                      +----------------------------+
                      |Functions:                  |
                      |abs       labs       srand  |
                      |div       ldiv       rand   |
                      +----------------------------+

2 The contents are the same as the Standard C library, with the  follow­
  ing additions:

3 In  addition  to  the  int versions of certain math functions in <cst­
  dlib>, C++ adds long overloaded versions of these functions, with  the
  same semantics.

4 The added signatures are:

  long   abs(long);        // labs()
  ldiv_t div(long, long);  // ldiv()

5 In  addition  to the double versions of the math functions in <cmath>,
  C++ adds float and long double overloaded versions of these functions,
  with the same semantics.

6 The added signatures are:

  float abs  (float);
  float acos (float);
  float asin (float);
  float atan (float);
  float atan2(float, float);
  float ceil (float);
  float cos  (float);
  float cosh (float);
  float exp  (float);
  float fabs (float);
  float floor(float);
  float fmod (float, float);
  float frexp(float, int*);
  float modf (float, float*);
  float ldexp(float, int);
  float log  (float);
  float log10(float);
  float pow  (float, float);
  float pow  (float, int);
  float sin  (float);
  float sinh (float);
  float sqrt (float);
  float tan  (float);
  float tanh (float);

  double abs(double);         // fabs()
  double pow(double, int);

  long double abs  (long double);
  long double acos (long double);
  long double asin (long double);
  long double atan (long double);
  long double atan2(long double, long double);
  long double ceil (long double);
  long double cos  (long double);
  long double cosh (long double);
  long double exp  (long double);
  long double fabs (long double);
  long double floor(long double);
  long double frexp(long double, int*);
  long double fmod (long double, long double);
  long double frexp(long double, int*);
  long double log  (long double);
  long double log10(long double);
  long double modf (long double, long double*);
  long double pow  (long double, long double);
  long double pow  (long double, int);
  long double sin  (long double);
  long double sinh (long double);
  long double sqrt (long double);
  long double tan  (long double);
  long double tanh (long double);

  SEE ALSO: ISO C subclauses 7.5, 7.10.2, 7.10.6.