HL7 v3.0 Data Types Specification - Version 0.9

Table of Contents

:
1 Introductio

1.1Goal$. .
1.2Methods$.

[1.2.1 Analysis of Semantiéields .
[1.2.2 Form of Data TypBefinitions
[1.2.3 Generalizedlypes .
[1.2.4 Generidypes$.
[1.2.5Collection$
[1.2.6 The MetéModel|
[1.2.7 Implicit TypeConversioh
L
[1.2.9 Instancéotatio
[1.2.10Typustyporum Boolean
[1.2.11 Incompleténformation
[1.2.12 Updat&emantids.

[2.1Introduction
[2.1.1 From Characters 8tring$.
[2.1.2 DisplayProperties . . .
[2.1.3 Encoding odppearange
[2.1.4 From appearance of text to multimech&rmation
[2.1.5 Pulling the piecasgether

[2.2 Charactestring
[2.2.1 TheUnicode .
[2.2.2 No Escap8equencgs . .
[2.2.3 ITSResponsibilitigs
[2.2.4 HL7 Applications are "BladBoxes] .
[2.2.5 No Penalty for Legaystemks .
[2.2.6 Unicode anXML| .
[2.3.1 Multimedia Enabled Fraeex{
[2.3.2 BinaryData .
[2.3.3 Outstandinégsuep .

[3 Things, Concepts, arf@ualitie$.

[3.1 Overview of the Proble®pace .
[3.1.1 Concept vdnstance .
[3.1.2 Real World vs. Artificial Technic&Vorld .
[3.1.3 Segmentation of the Semarkiield

DRAFT version 1.0 22 Mar 1999

[3.2 Technicalnstances .
[3.2.1 Technical Instanddentifier .
[3.2.2 ISO Objecldentifiers
[3.2.3 Technical Instandebcatof .
[3.2.4 Outstandinégsuep .

[3.3 Real Worldnstance's ..
[3.3.1 Real World Instanddentifiel
[3.3.2 Postal and Resident/&dldress
[3.3.3 PersoNam -
[3.3.4 OrganizatioName. . .

[3.4 Technical Concepts and the Catidug

[3.4.1 Outstandinégsuep .

(3.5 Real WorldConcepts .
[3.5.1 The Concegdescriptof .
[3.5.2 CodeTranslation
[3.5.3 CoddéPhrask
[3.5.4Examplef . .
[3.5.5 Outstandinégsuep .

[Quantitiep. .
:
[4.2 IntegeNumbef

[4.3 Floating PoinNumbef .
4.4 Ratiq
[4.5Measurements
[4.5.1 PhysicaQuantities. . . .
[4.5.2 Monetary Quantitie€urrencies.
[4.5.3 Things as Pseudlinity .
[4.6.1 Point inTim .
[4.6.2 TimeDurations . .

[4.6.3 Other issues and curiosities abhutg

[4.6.4 Calendar Modulusxpressions .
[5 Orthogonalssuep .

5.1Interval . . .
[5.2 GeneralAnnotation$

[5.3 The HistoricaDimensiom

[5.3.1 Generic Data Type for Informatibinstory|

[5.3.2 Generic Data Type "Histohem']
[5.4 Uncertainty ofnformation .
[5.4.1 Uncertain Discreféalues

[5.4.2 Non-Parametric ProbabiliBistributio

[5.4.3 Parametric ProbabilifYistributior]

i 22 Mar 1999

62

65

67

71

72

73

74

84

88

94
114
116
118
120
122
123
124
124
128
132
132
133
134
137
138
139
140
143
144
144
147
147
148
149
149
152
154
154
155
156
158
159
161

DRAFT version 1.0

[5.4.4 Uncertain Value using Narrative ExpressionSaiffidence. 169
[Appendix A: All Data Types At &lanc¢ 171

DRAFT version 1.0 22 Mar 1999 iii

Abstract

HL7 v3.0 Data Type$Specification

Version0.9

Gunther Schadow
Regenstrief Institute for Healtbare

Abstract

This document is a proposal for a complete redesigned set of data types to be used by HL7.
Whereas in version 2.x data types where considered "formats" of character strings that
would appear in HL7 data fields, this proposal assumes a more fundamental position: data
types are the constituents of all meaning that can ever be communicated in messages. In
HL7 v2.x, data types where definagbosteriorion an as-needed basis. Conversely this
redesign defines data typagriori searching for fundamental semantic units in the space of
all possible data types. This redesign work is heavily based on experiences with HL7 v2.x.

Data types are defined for (1) character strings and multimedia enabled free text; (2) codes
and identifiers for concepts and instances both of the real world and of technical artifacts;
(3) all kinds of quantities including integer and floating point numbers, physical
measurements with units, various kinds of time. Data types are classified (generalized) in
various ways with respect to certain properties of interest.

A number of issues have been identified to be equally applicable to many if not all data
types. Intervals (of ordered types), uncertain information, incomplete information, update
semantics, historic information, and general annotations are defined as generic data types,
that can be used to enhance the meaning of any other type. Although this type system is
precisely defined, it has a lot of flexibility not found in many other type systems. Precise
conversions are defined between types so that data of one type can be used instead of
another if there is a conversion. As a special case, character string literals are defined for
most types which allows an instance of composite types to be sent in one compact character
string.

Copyright © 1999, Regenstrief Institute for Health Care. All rigaserved.

DRAFT version 1.0 22 Mar 1999 1

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

1 Introduction

This document proposes a redesigned system of HL7 data types to be used for HL7 version 3. It
is the result of a task force group spawned off Control Query at the San Diego Meeting in
September 1998. Since then, that group has been meeting in weekly phone conferences, chaired
by Gunther Schadow. The following people (mentioned in alphabetic order) contributed to this
endeavor: James Case (University of California, Davis), Norman Daoust (Health Partners),
Laticia Fitzpatrick (Kaiser Permanente), Mike Henderson (Kaiser Permanente), Stan Huff
(Intermountain Health Care), Matt Huges, Irma Jongeneel (HL7 The Netherlands), Anthony
Julian (Mayo), Joann Larson (Kaiser Permanente), Randy Marbach (Kaiser Permanente), John
Molina (SMS), Richard Ohlmann (HBO & Company), Larry Reis (Wizdom Systems), Dawid
Rowed (HL7 Australia), Carlos Sanroman, Mark Shafarman (Oacis Healthcare Systems), Greg
Thomas (Kaiser Permanente), Mark Tucker (Regenstrief Institute), Klaus Veil (Macquarie Health
Corp., HL7 Australia), David Webber, and Robin Zimmerman (Kaiser Permanente).

This task force planned to conclude its work by January 1999. Although we made tremendous
progress due to the commitment of the task force members, we were not completely finished. By
January (Orlando meeting) we were about 80% finished. By April 1999 (Toronto), we have about
90% of the work done. As usual, the last parts of a project consume the most amount of time and
energy. However, all data types are defined by now and the remaining work is to polish and
refine.

This report is divided into two major parts. (1) The remainder of this introductory section
explains the concepts and ideas that govern this proposed system of data types, while (2) the
sections 2 through 5 will define the data types in detail.

This document was compiled from the notes of the twentyfour (???) conferences. The conference
notes where issued in Hypertext (HTML) and publicly availablfofowsing
(http://aurora.rg.iupui.edu/v3dthn the notes | heavily utilized the unique advantages of the

hypertext medium, namely the ease by which one can follow cross references. It so happened that
general concepts and detailed definitions were mixed together as they came up in the
conferences. Hyperlinks have been an invaluable tool to recall definitions and explanations from
earlier notes and to show how ideas evolved over time.

This report is written as Hypertext too, but it is delivered to the general HL7 working group as a
paper document, which required to bring the material into a systematic order. However, the
division into a first part, explaining the overall concepts, and a second part, defining the data
types in detail, is problematic, since the usefulness of the general concepts are illustrated only by
how those concepts are actually used in the definitions of the data types. The definitions of the
data types, however, depend on general rules. Thus the reader faces a kind of "hermeneutic
circle", where one has to know about the first part before one can fully comprehend the second
part and vice versa. The Hypertext version of this report contains numerous forward and
backward links, which, in the printed form appear as cross references to page numbers in square

2 22 Mar 1999 DRAFT version 1.0

http://aurora.rg.iupui.edu/v3dt

1.1 Goals

brackets.

This ordering of the material comes in handy for the "impatient reader” who can explore
everything just by following cross references. The reader who wants to see just some actual type
definitions can use tiiadeX[p. 171] and directly proceed to the types he or she is interested in.
The reader who wants to read through all the data type definitions can directly proceed to the
[sections of the secopari[p. 36] and, if necessary, follow links back to the explanation of

general concepts. Those who want to read through all of the text from the beginning can start
with the general concepts and will be guided forward to the points where each concept is actually
used.

A final word of acknowledgment. Many of the great ideas reported here are born in numerous

and intense discussions that Mark Tucker and | had before and after the conference calls. Without
Mark Tucker, this whole type system work would have never evolved to a useful state. | also

want to acknowledge Mark Shafarman, whose great support was (and continues to be) vital for
linking our ideas back to the HL7 organization, which we wanted to serve. Without him, our

ideas might never have been able to touch ground. And last but most, | want to acknowledge
Clem McDonald who keeps Mark Tucker and myself going by providing us with "fuel" and time

to engage in HL7 work.

1.1 Goals

The overall goal of this redesign project has been rationalization and simplification of the HL7
data type system. This project is inspired by the tremendous redesign project "version 3" that
guides HL7 into a competitive future. It starts with the observation that the number and
complexity of HL7 v2.x data types has increased almost exponentially over the first 10 years of
HL7 (from approx. 10 to 50 types) The reason for that explosion of types was new requirements
that came up only in the recent years but were not anticipated by HL7’s "founding fathers" who
designed the data types system in 1988.

New requirements that we learned about in the version 2 period of HL7 had to do with the
discovery that data in health care (and business in general) is not as clean as we thought at first.
For example, the history of the TS data type shows the struggle with quantities that are imprecise
in the real world and that all real world information is uncertain to some extent. Information may
be wrong and needs to be updated, and most information items may change over time and we
may have to keep track of the history (recent XAD changes initiated by Susan Abernathy with the
National Immunization Program). Many data elements turned out to have more facettes to them
than was expected, which lead to various X-variants of preexisting data types. New technology
changed the way we think about telecommunication (TN-XTN) and formatted text (ST, TX, FT,
HTML, SGML, RP, ED).

DRAFT version 1.0 22 Mar 1999 3

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

New requirements to an existing data type system must be met by modifications to the existing
data types or by inventing new ones. In HL7 this sometimes lead to minor changes that could
well be reverted later (TS). Sometimes the changes were felt so radical that the changed types
were given other names (e.g., XPN, XAD, XTN, etc.). Over time the number of types grew and it
became hard not to lose oversight.

In some ways, however, the old HL7 data type system was inherently flawed. The CM type, for
instance, became a pain over time and we are still struggling to get rid of this undefined
composite type. We just had too many data types for free text (TX and FT, recently growing to
ED, HTML, etc.) and those arbitrary multiplicities multiplied the types that depend on free text,
such as CE and CF. Such types as PN and AD were not designed under an international
perspective.

The most deep flaw in HL7’s concept of data types was a wrong conceptualization of what a data
type is. Data types were considered mere "formats” of data elements. This notion of a "format" is
based on a focus on external representation (as character encodings) rather than on internal
meaning. Thus data types where supposed to be constraints on character strings that would
appear in data fields. This notion was in part supported by experience with programming
languages that had a poor and weak type system, such as COBOL, BASIC or PL/1, that were
widely used in business application programming.

Computer science, however, developed a much stronger concept of data types. Data types are
now understood as the basic constituents of all meaning that can be processed with computers.
The ALGOL family of programming languages (Pascal and MODULA 2) has a very strict data
type system. At the same time their data types are extensible. New semantic entities were created
by programmers through defining new types. Object oriented languages such as SMALLTALK,
Eiffel, C++, and recently Java, have further elaborated this approach of creating new domains of
meaning by defining types with operations. Common LISP and Scheme show a very well defined
type system with emphasis on the semantics of types rather than representation.

From a deep collective understanding of HL7 version 2.x and its problems and from considering
modern lessons of computer science, we can formulate specific goals and pathways of how to
redesign a system of data types that not only improve the old one, but would also serve better in
the future that may come with requirements that none of us may be able to conceive of today.

Semantics first

Data types are the basic building blocks of information exchanged in messages. Information is
exchanged in the form of signals which are ordered according to lexical and syntactical rules.
These signals are exchanged to convey a meaning (semantics) and to eventually serve a purpose
(pragmatics). Therefore, data types must have a precisely defined semantics that is
unambiguously related to their syntax (including the rules for building lexemes).

4 22 Mar 1999 DRAFT version 1.0

1.1 Goals

Usefulness and reuseability

The basic set of data types must be equally useful for all HL7 technical committees. This means,
the data types must be meaningful enough so that the technical committees can use them directly
as the data types for the attributes of their information model classes. It also means that the basic
set of data types must be reusable for many purposes and should not be too highly specialized.
This does not preclude a highly specialized data type to be defined by a technical committee that
uses it.

Coherence

The set of all data types should be coherent. There should not be two or more competing data
types for a certain use case. The relationships between the data types should be well defined. This
means that data types should be organized similarly to the organization of domain information
models (DIM) in the reference information model (RIM). The RIM and RIM harmonizations

make sure that the DIM classes are in a close relationship and that there are no competing
alternatives to express the same information in different ways.

Minimality

From the coherence requirement it follows that the number of data types in the set should be
minimal. There should be just as many data types as there are independent basic semantic
concepts to support. The lower boundary of minimality is that each data type should have a well
defined semantics on a level that is relevant to the application domain of HL7. For example, we
could have only one data type "string of bits", but bits do not have a generally relevant meaning
on the application level of HL7.

Stability

It follows from the reusability requirement that every basic data type will be used by many

classes and attributes of almost every technical committee. It becomes extremely difficult to
coordinate changes to the data types and to estimate the effect that those changes would have on
the many different areas in which the data types are used. Therefore the set of data types must be
designed for high stability.

Completeness

Usefulness, reusability, coherence and stability can be achieved by aiming for maximal
completenesa priori. This means that the data types of each basic semantic area cover that area
to every logical extent conceivable by the time of design. Conversely compledgroetsriori

would only make sure that every current concrete use case is covered by the design. Stability can
only be achieved through aiming for complete coverage of every conceivable current and future
use case.

DRAFT version 1.0 22 Mar 1999 5

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

Simplicity

The data types should be as simple as possible to ease implementation and use. This does not
mean oversimplifications or neglect of requirements. Simplicity does not mean that the definition
of the types would go with just a few simple words, because complete definitions are necessary
for interoperability. Simplicity, however, does mean that exceptions, duplications, and
dependencies are kept to a minimum. Simplicity mainly means that the type system should be
easy to use and that it should prevent the user from making mistakes as much as possible.
Simplicity also means that mistakes can be clearly seen as mistakes and prevented or fixed.
Mistakes should not be hidden by imprecise definitions.

1.2 Methods

For our design of HL7 data types we can build on two kinds of prior knowledge and experience.
There is more than ten years of experience with data types in version 2 of HL7 and there is more
than 40 years of experience with data types in general computer science. In this proposal we will
try to maximize leverage of these two rich sources of knowledge.

The redesign of data types is done in a top down fashion. We approach every semantic field by
trying to understand what goes on. This understanding flows from experience and the
identification of actual and possible requirements. But experience can only refer to the past. To
reach stability and conciseness, we have to develop a precise semantic model that defines what
exactly a type should mean and how it should be used. This definition is necessarily "theoretic"
rather than practical, but it is meant to serve current and future praxis, not just academical
curiosities. When the semantics is clearly enough defined, we proceed with specifying the
structure of the types, i.e. their "abstract syntax".

We generally stop defining types at the abstract syntax level and we do not define specific
mappings to XML, CORBA or other implementable technologies as part of this redesign work.
This mapping to implementable technologies is a task of the Implementable Technology
Specifications (ITS) prepared by special groups who focus on those technologies. However,
many of the participants in this task force group know pretty well the the pain of implementing
bad specifications, and some of us are part of the initial ITS definitions for XML and CORBA.
Thus we do not neglect the actual implementation constraints. We will also continue to work on
the ITS specifications as well as we will help the domain technical committees work with the
new types.

ITS definitions of the data types should take into account not only the abstract syntax definitions
but most of all the semantics and requirements of each data type. This is of utmost importance
since the abstract syntax that we identify hereisabsolutely normative. Variations in the

abstract syntax definitions given here are allowed to make use of features that are available in a
particular implementation technology. Variations of abstract syntax are permitted as long as the
semantic features of the data types are all mapped to and preserved in the ITS.

6 22 Mar 1999 DRAFT version 1.0

1.2.1 Analysis of Semantic Fields

Although we define data types top down, we will make sure that for every old HL7 v2.x data type
there is at least one appropriate v3 data type. The mapping of types between v2.3 and 3.0 will be
shown in an appendi [not done yet]. Some of our outstanding actions items are to provide help to
technical committees to migrate to the new data types. Since no data types are assigned in the
RIM so far and no durable messages specifications have been produced, this migration does not
require any changes to actual version 3 specifications.

The intention in doing this theoretical approachasto enforce some home-grown dogma of
information science on system developers. It can not be made clear enough that through the type
system proposed in this report, HL7 interfaces will not enforce new functionality on information
systems. This type system aims in supporting new requirements, such as conveying uncertainty
of information, but it does not force anyone to implement all of the features that it supports. We
have defined a methodology called "implicit type conversion”, to add enough flexibility to build
bridges between systems that do have advanced features and those systems that do not have or
need those features. We make sure that a sender can say all the detail that he wants to say about
data items (not more and not less) and that the receiver can find as much information in a
message as he can digest (not more).

1.2.1 Analysis of Semantic Fields

Guttman (1944) and Stevens (1953) identified four categories of data. Their classification coined
the methodology for all sciences including biology, medicine, and psychology. Guttman and
Stevens identified fouscaleson which we perforrmeasurementsr observations: (1) the

nominal scale, (2) the ordinal scale, (3) the interval scale, and (4) the ratio scale.

We observe qualities on nominal scales. A nominal scale is a collection of all possible outcomes
of an observation with no particular order. For example, gender, colors, or diagnoses are
determined on nominal scales.

We have an ordinal scale when we can sensibly arrange the set of possible outcomes of an
observation in an order. For example the NYHA classification of heart failure or tumor stagings
are ordinal scales. We can determine the stage of the disease, we can tell the worse condition
from the better, but we cannot measure distances, i.e. we cannot say that the step from NYHA |
to NYHA Il is as big as from NYHA Il to NYHA 1II.

Interval scales are ordered quantitative scales, where you can measure distances (intervals)
between two points. The paradigmatic example are the temperature scales Fahrenheit and
Celsius. It does, however, not make sense to say 100 degree are twice as much as 50 degrees.
However, the concept of the absolute zero temperature allows to make those decisions on the
Kelvin scale (a ratio scale).

For an information standard in medicine it would be appropriate to reflect these fundamental
categories of scientific observations. However, there are some problems with this classification.

DRAFT version 1.0 22 Mar 1999 7

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

® You can artificially try to upgrade the scale property. For instance, you can define an
arbitrary order in qualitative observations (e.g., for gender: male = 0, female = 1).

® |t often depends on the scope of the observation how you classify it, e.g., you can classify
colors in any of those scales depending on what you think colors are (qualitative
observations, up to wavelengths of visual light).

® The distinction between ratio and interval scales seems artificial because a simple translation
of temperatures to the Kelvin scale is all that makeslifference.

Common sense might justify to distinguish qualitative from quantitative observations, although
the color example shows that even the boundary between qualities and quantities can be blur.

We can further distinguish between observations that are discrete and those that are continuous,
but again those are not precise categories. Many qualitative observations are continuous (i.e.
color) but continuous qualitative observations are best understood by quantization. For instance,
color can be quantized by wavelength of visible light, which is a scalar (a one-dimensional scale).
But quantization can involve more than one dimension, as the color example shows: the RGB
color quantization is a three-dimensional vector of numbers representing the intensity of the
colors red, green and blue.

Since qualitative and quantitative, discrete and continuous observations are important in science
as well as in everyday life, we can distinguish the field of discrete qualities and the field of
guantities, both discrete and continuous. We will later have to show how to express continuous
gualitative observations.

There are other important kinds of information not covered by the Guttman/Stevens
classification: text. Text, is not just an abstracted observation and does not fall into the distinction
between qualities and quantities, discrete and continuous. Text is chunks of information that are
ultimately exchanged between humans. Computers and automatic messaging may be used to
exchange text, but after having been entered by a human user, text is passed through essentially
unchanged to be displayed to another human user. Text can express many observations, but this
information content is not unlocked for the purpose of messaging and computer processing.

Text does not only include letters, words and sentences of natural human language, but can also
be graphics or pictures (still or animated) or audio. Also, the same information content of natural
language text can be communicated in written (characters) or spoken form (audio). Thus, we
distinguish the field of textual information. Since one property of text data in messaging is that it

is passed through unchanged and uninterpreted and without respect to the destination or purpose,
we can subsume all other uninterpreted (encapsulated) data in the category of text.

There are thus three major areas of information that we identified by contemplating the broad
field of all information. Those areas are picturefffigureq][p. 9] .

8 22 Mar 1999 DRAFT version 1.0

1.2.1 Analysis of Semantic Fields

HL7
protocol

character artifact

strings

Text Thing

.) nominal
multimedial
expressions

Ordinal

discrete/

- roportion
continuous prop

Quantity

Figure 1: Phenomenology ofnformation.

Information usually consists of all three moments, text, thing and quantity: Information is always
represented in some textual form; information is about things and concepts, which may have
guantitative properties.

When talking about things, we have to use symbols to label the things and concepts we are
talking about. Symbols are a form of text. However, the reverse is also true: text consists of
things, i.e. letters, graphemes, or glyphs, that we recognize as distinguished concepts. Thus
symbols are at the an area between text and things.

Likewise, numbers are represented through digits, which are characters, that is text. On the other
hand, on computers, all text is stored in the form of binary numbers and only character code
tables or image maps allow us to interpret those binary numbers as text. Thus, numbers are at the
area between quantity and text.

DRAFT version 1.0 22 Mar 1999 9

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

A similar overlap exists between quantities and things. By enumerating concepts in coding
systems, we can assign an ordinal number to each concept. On the other hand, concepts can have
essential quantitative moments, if there is an order relationship, such as, for instance, in military
degrees.

Because everything seems so blur and the boundaries between those areas of interest are not
clearly demarcated, because there is no information that would not contains each of the three
moments to some extent, it is hard to come up with any honest classification. The method of
phenomenologydeveloped by G. W. F. Hegel (1807) and 100 years later by E. Hussel (1906), is
a much better approach to such a messy field, that has so many facettes to it. The
phenomenologic method basically observes how the meaning of the concepts drift and how
concepts are in opposition to each other but, at the same time, depend on each other.

In this data type redesign, we guided our attention by those three major moments of information
without neglecting the overlaps. Thus, our exposition of defined types will consist of the three
major sections about text, things and concepts, and quantities.

1.2.2 Form of Data Type Definitions

Having said that the essence of data types is their semantics not their abstract syntax, we now
introduce how we present the definition of some of the semantics and of the abstract syntax of
our types. We use type definition boxes. The following is such a type definition box. Text set in
italics stands for the fields that will be filled out for every defined type.

name of theéype
a brief textual description of treemantics
componentname| type/domain| optionality description
name; type; optionality; | brief description otomponent
name type, optionality, | brief description otomponent
name, type, optionality,, | brief description otomponeny

Some data types are so fundamental that there are no distinguishable semantic components. For
example, an integer number is a closed well defined concept that can not further be split into
components. We call such data typesnitive data types as opposedcmmpositedata types.

Note however, that complex vs. primitive are relative qualifiers. In some implementation
technology a primitive data type may well be implemented as having some internal structure and
what we define as a composite data type may well be implemented using a primitive of some
programming language. What is essential is that the semantics will be covered undistorted.

10 22 Mar 1999 DRAFT version 1.0

1.2.3 Generalized Types

Data types that are primitive in our system are defined using a simpler type definition box as
follows:

name of theype

a brief textual description of theemantic
PRIMITIVE TYPE

\°Z4

We initially considered to reuse the UML modeling tools for data types. However, after some
experiments we discovered an interesting dilemma with using UML. There are two possible
styles to define data types in a UML class diagram. Both styles have in common that every type
would be represented by one class box, labeled with the name of the type. The one style would
list all the semantic components as attributes in the box. Those attributes would again be defined
as having a data type. Thus the name of other data types would appear in the list of attributes,
almost like foreign keys. Obviously there are relationships between types but those relationships
are not made visible. Every data type’s class box would stand on its own.

The other style to model data types in UML would be to depict the semantic components as
relationship lines drawn from the containing type to the contained type. The role label at the side
of the containing type would be the name of the semantic component. This results in an
interesting diagram with just tiny little class boxes that maintain abundant relationships with each
other, a picture that resembles a spider’s web. It is quite difficult to navigate through those many
relationships.

Although using UML for data type definition is an interesting exercise it does not contribute very
much to understanding of the types. The main problem with using UML is, however, that it

evokes the impression as if the structure of the data types were all that needs to be said about the
types. But the opposite is true. The most important part of the type definition is the defining and
explanatory text.

1.2.3 Generalized Types

We use a notion of generalized types. Types can maintain an inheritance relationship with each
other. We explicitly allow (and use) "multiple inheritance". However, we did not (yet) use
inheritance as a way to specialize subtypes from general super-types. Rather we go the other way.
Abstract generalized types are used to categorize the concrete types in different ways. Thus, we
can get hold of all types that have a certain property of interest.

For instance, we define the generalized @oantityto subsume all quantitative types. This is
used to define one tyfRRatid[p. 137] as a ratio of any two quantities.

DRAFT version 1.0 22 Mar 1999 11

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

We defined a data tyfiaterva) [p. 149 that is a continuous subset of any type with an order
relation. All types with an order relation are subsumed uBdeeredTypeNote that not all

quantities are ordered (e.g. vectors are not) and there may be non-quantities that have an order
relationship (ordinals, e.g. military degrees).

This categorization currently is doad hocrather than systematically. We will at some point

revise and validate thed hoc categorization. For instance, it seems &3uéntitymay be too

broad a category as it should contain ordinals. Ordinals, however, should not occur in a Ratio. It
is unclear whether interval scaled quantities may properly occur in a Ratio, although most people
would not worry about that.

1.2.4 Generic Types

Generic data types are incomplete type definitions. This incompleteness is signified by one or
moreparameterdo the type definition. Usually parameters stand for other types. Using
parameters, a generic type might declare components (fields) of other not fully specified data
types. For example, the generic data [p. 149 is declared with a parameter T. In this
example, T can stand for a@yderedTypeThe component®w andhigh are declared as being

of type T.

Before you can instantiate a generic type, you must complete its definition. For example, if you
want to use [p. 149 , you have to say of whatse dataypethe interval should be,

i.e. you have tdind the parameter T. Say, you want an intervidhtdgerNumbef[p. 133 . You
would bind the parameter T to the type Integer Number through which the incomplete data type
Interval becomes completed as a data typperval ofIntegerNumber

You can complete the definition of a generic data type right at the point of instantiation. This
means, that you do not have to define all possible types generated by the generic type in advance.
For instance, given the generic typéerval [p. 149 and the ordered types

[IntegerNumbef[p. 133,
[Floating PointNumbef[p. 134 ,
[PhysicalQuantity[p. 13§ ,
[MonetaryAmount[p. 140 ,
[Ratio of Quantitief[p. 137] , and

[p. 144 .

You can use intervals of all those base types without having an actual specification of all the
specific types. The specification, what an Interval is, is given only once, generically. Whenever
you have a new ordered type, you can build an interval from it and use that new special interval,
without having to define the new interval type explicitly. Generic types are thus a more efficient
way of type specification.

12 22 Mar 1999 DRAFT version 1.0

1.2.4 Generic Types

Generic types became most popular in C++, where they are clagstiemplatesin the C++
notation the Interval type would be defined as:

tenpl ate <class T>
class Interval {

T | ow,

T hi gh;

3
this interval generic type can then be used as follows:

I nterval <int> el i gi bl eRanki ngNunber s;
I nt erval <f| oat > nor mal Range;
I nterval <Date> effectivePeriod;

Generic data types may have more than one parameters. E.g. a type could be defined as

tenpl ate <class N, class D>
class Ratio {

N nuner at or;

D denom nat or;

which is actually one way of making constraints: with this genericigpe o<T, U>,is

would be clear thaRat i o<i nt, i nt> would be a ratio of two integers (a rational number),
Rati o<fl oat, fl oat>would be a ratio of two floating point numbers, and

Rati o<f| oat, i nt>would be a ratio of a float and an int.

Note: Our data typRatio of Quantitie§p. 137 , is not defined as a generic type. Ratio is just
used here to make an example about what generic types are.

Generic data types can be used in a nested way. Suppose you want an Interval of Ratios of
fl oat s byi nts:

DRAFT version 1.0 22 Mar 1999 13

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

I nterval <Rati o<fl oat, int>> foo;

would be all you needed to do to instantiate that new type.

Note: We did not decide on using the C++ notation of generic types, it is just used here because
many people know C++ templates and thus C++ templates are a good illustration for what
generic types are and how they work.

We will define generic types using type definition boxes that look like this:

name of theéype

a brief textual description of treemantics
GENERIC TYPE

parameter name

allowedtypes

description

parametemame;

parametertypes

brief description oparametey,

parametemame,

parametertypes

brief description oparametep

parametename;,

parametertypes,

brief description oparametey,

componentname

type/domain

optionality description

componenhame

componentype;

optionality, | brief description otomponent

componenhame

componentype,

optionality, | brief description otomponent

componenhams,

componentype,

optionality,, | brief description otomponenj

As you see, the section defining the semantic components of the type is preceded by the keyword
"GENERIC TYPE" and a parameter section. In this parameter section, type parameters are

defined that are used in the subsequent section to define the semantic components. The parameter
section may define a smaller number of parameters than there are defined components. Usually
generic types go with just one parameter, sometimes there are two of them (as in the above Ratio
example).

Please confer to the definition of {lrterval [p. 149 to see a real life example of a definition
box for a generic data type. For the interval, there is just one pardnuefined. Both
boundaries of the interval are of the same flyp&ny ordered type may be bound to the
parameter.

14 22 Mar 1999 DRAFT version 1.0

1.2.5 Collections

1.2.5 Collections

HL7 v2.x used the word "repeating” to describe certain qualities of the definition of fields and
segments. This reflected the observation that "repeated" stuff could occur multiple times in the
message. However, obviously there must be a reason why someone would make the decision that
a segment or a field is to be repeatable in a message. It turns out that there are different reasons to
make that decision. It was never clear from the HL7 spec. what the meaning of repeatability was

in every instance.

The stuff that could repeat was either a segment or a field. For the purpose of this discussion we
will consider the v3 equivalent of a segment to lokaas whereas the v3 equivalent of a field is
anattribute

If segments repeated in v3 this expressed a relationship (with multiplicity "1..*") between classes.
When fields were declared "repeatable” this expressed a relationship between an attribute and its
data values. We will concentrate here on the relationship between attributes and data values
rather than on inter-class relationships, although what we say here is equally valid for class
relationships.

In general, when things end up being "repeatable” we hewkegtion of things.

Consider the example of Patient "telephone number” (tel) that was declared as a "repeatable”
field in version 2. The meaning of this is obviously that a patient has several telephones, we
usually say, a patient has a "set" of telephone numbers. The word "set" implies that (1) it would
not be meaningful if a given telephone occurred twice, and (2) that the order of telephone
numbers does not matter.

We can use those two criteria to sort out the field of all possible collections, as the following 2 x
2 table shows:

unordered ordered

no multiples | set *

multiples bag list

The ordered sequence without multiples is marked by an asterisk since this case is rarely
considered in the computer science literature. Actually we can construct the field of collections as
a lattice (a tree like structure) rather than a matrix. In such a construsttheuld be the parent

of bothbagandlist, and ordered without multiples would rextcur.

DRAFT version 1.0 22 Mar 1999 15

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

set
a collection of elements with no notion of order or duplicate element values. The number of
distinguished elements in tetis called the "cardinality” of theet An example of &etis
the available fruits on a menu of a restaurant, e.g., { apples, oranges, Bananas

list (or sequence
an ordered collection of elements where the same value can occur more than once at
different positions in the ordered collection. The notion ldtacan be constructed from the
notion of asetif we extend each element of thetby a position counter (a positive integer
number). The number of elements in liséis referred to as the "length” of thst. An
example of dist may be the list of my favorite fruits, where the fruit I like more precede the
ones | like less, e.g., thist (orange, apple, banana) can be represented ast{h@pple,
2), (orange, 1), (banana, B)

bag
unordered collection of elements where each element can occur more than once (think of a
shopping bag containing 3 apples, 2 oranges, and 5 banarzg) cAn be constructed from
asetif we extend each element with an occurrence counter (esgttheat contains the
elements { (apple, 3), (orange, 2), (banana, 5) }baa@ The total number of things in the
bagcan be called the "size" of thag the total number of different items can be called the
“cardinality”.

There are, however, other types of collections we frequently find, including vector and matrix.
Those collection types, however, can be constructed using the above three fundamental
collectionsset list andbag

vectoror array
alist with a specific length. Every position in that list represents one "dimension” (of the
vector) or one "field" of the array. A vector need not represent geometric points in the 3D
space and elements of a vector need not be numbers. Vectors are just a quantitative
restriction on thdist kind of collection, i.e. where tHesst must have a particular length.

(The length of dist can be restricted in other ways, e.g. lengths that must be between 1 and
5, those things are nweéctors.)

matrix
avectorof vectorsor a two dimensionarray. Matrices are used for vector transformations
or to describe network structures. Images could be thought of a matrices, but this is not the
only way to think of images. HL7 probably has not yet a use caseaftvices but that may
change as the Image Management SIG will contribute new contetits to

16 22 Mar 1999 DRAFT version 1.0

1.2.5 Collections

It should have become clear that there are many types of collections and subsuming them all
under the (weakly defined) notion of "repeated” and "repeatability” is not very helpful to clear up
the meaning of a collection. We thus want to do away with language that speaks of "repeated
attributes" in the MDF to promote clarity regarding what specific semantic flavor of collections is
meant in each case.

In case of waveforms, where "repeatedness” became quite tricky in v2.x, we can now define a
sample of am-channel waveform signal as a listretlimensional vectors, where each vector
stands for a particular sample point in time.

One question was always associated with collections in HL7: how do we update those
collections? We can distinguish the following cases:

1. The elements of the collection have identity (given to them thrtegfimical instance
lidentifierg[p. 65]). Thus we can change some values of those elements. For example, if we
have a list of individual practitioners, and if one practitioner changes her last name, we can
simply change the last name of that individual instance. The only requirement is that the list
elements have identity.

2. The elements of the collection have no identity. Changing the value of any given element is
replacing that value in the collection, which in turn means changing the collection itself.
Although we could change the value of the third element of a list of numbers, the position of
an element in a list does not determine its identity.datar bag of numbers there is no
“"third element”. The the only update one can do with a collection of values without
identities is to add or remove elements from the collection. Thus, the question boils down to:
How do we change the collectiotiemselves?

One solution is to allow a collection to be updated only through separate trigger events with
explicit message structures that would specify exactly what would be changed in which way.
While this strategy works fine for high level RIM objects, such as, Encounter_practitioner,
Clinical_observations, etc. However, for things liketof stakeholder phone numbers" it is a bit
too much of a burden to define specific trigger events.

But even if we had a trigger event "change patient phone numbers" it is not clear how we would
specify what exactly should be changed.

For v2.x the answer always was: you send a snapshot of the collection as you want it to be and
the recipient could simply throw away whatever he knows and would remember only what you
just sent. This somewhat works in situations with just one master information producer and
several slave information consumers, but it is totally insufficient for collaborative information
management. For example, my message could wipe out all the telephone numbers that you
already know.

DRAFT version 1.0 22 Mar 1999 17

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

We will give a solution below, when we talk abpgidatesemantiggp. 33] .

1.2.6 The Meta Model

The following is a first draft of a meta model for the data type definitions in UML. Since all the
concepts are described in the text above, this section does not have a lot of text. If you read this
with an HTML browser, you can click on the class boxes in the diagram to find the description of
the respective concepts embodied by that class.

If you are not concerned with the overall methodology, maintenance and quality control of the
HL7 v3 specification you can safely skip this section.

18 22 Mar 1999 DRAFT version 1.0

+is_element_type

1

1.2.6 The Meta Model

+has_supertype DTM_Generalization
0.* description : DescriptiveText
" |history : CompoundHx
0..* | +has_subtype
+is_supertype | 1
Data_type 1
name : NameString +is_subtype
isinternal : Boolean =false |0..*
|sGen_er!c : Boolean = falsiallowed for
description : DescriptiveText ‘ 1
history : CompoundHx ‘
+is_scope_of
1
. . type
+is_used_in +is_declared_as

element_type

Primitive_data_type

Composite_data_type

specification : DescriptiveText

1{) +contains

0.*

Collection_data_type

+has_element_type

collection_type : String
cardinality : MultiplicityString

+belongs_to ‘2,_*

Data_type_component

name : NameString
isReference : Boolean

description : DescriptiveText

Generic_type_paramete;

\
has_scope

0.*
0.*

+has_alloed_types

Figure 2: The meta model of data typelefinitions.

Data Type

Every data type has a name and a description. The history attribute exists for compatibility with

the current MDF meta modeling style.

A data type may be defined as being "internal”. An internal type is used only to define other
composite data types. Internal types are not supposed to be directly used in messages. For
example, we define a tyfig@nany [p. 55] that contains pure raw data bits, and that is used only by

[Multimedia Enabled Fregexi[p. 48] .

DRAFT version 1.0

22 Mar 1999

19

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

A data type may be defined as being "generidgehAerictypd [p. 12] is a type whose complete
specification is deferred until it is actually used in one or the other way. The missing pieces
(Generic_type_parameter) must be specified when used. This is what C++ knows as "templates".

Primitive Data Type

A primitive data type has only a textual specification of its semantics. The specification is
separate from the inherited description attribute, because it is essential for a primitive data type to
have a very careful (and likely long) specification that describes the exact semantics of such a
type. [Perhaps we can replace this DescriptiveText with a pointer to the data type specification
document.]

Composite Data Type

A composite datéype [p. 10] consists of one or more named and typed components.

Data Type Component

A component of gomposite datéype [p. 10] is like a variable, i.e. it has a name and a type. The

type can be declared to be included by reference instead of by value. This is useful if you know
such a component mentions an instance that is already mentioned elsewhere in the message. In
languages such as Java, where objects are always handled through references this does not make
any difference.

Most fields are declared as being of some specific type. However when bjgédiagctypes[p.

12] one sometimes wants to leave the type-declaration of a field unspecified. Instead of leaving
the type declaration completely unspecified, one can also constrain the allowable types to certain
specific types. When just some types are allowed for a given generic data type.

DTM Generalization

A data type may be categorized into possibly nigeneralizatior§p. 11] . For instancdinteger]
[Numbe}{p. 133 might be classified as @rderedType as aDiscreteTypeand as &uantity.
Generalizations are themselves data types.

All the rules of inheritance known from the object-oriented method apply here. l.e. generalized
types without attributes are called "abstract types" (all the above mentioned generalizations are
abstract). You can never instantiate an abstract type. A specialization type of a non-abstract type
inherits all the attributes of the parent. Specialized types can add additional attributes or can make
further constraints on inherited attributes.

20 22 Mar 1999 DRAFT version 1.0

1.2.6 The Meta Model

Collection Data Type

Acollection dataypg[p. 14] is a collection of one or many instances of a particular element
type. The particular semantic variant of the collection data type be specified in the
collection_type attribute.

The notion of a collection data type should once and forever supersede the traditional notion of
"repeatability.” [This means, the MDF meta model needs to be modified where it mentions
"repeated" etc.]

Collections are of one of the following types:

set an unordered collection of unique element tytances.

an unordered collection of element type instances. Instances may occur more than once

bag in thebag.

list an ordered collection of element tyijpstances.

Generic Type Parameter

This isn’t actually a type, but a parameter [giea [p. 12] template. However, generic

type parameters are usasiif they were types in the definition of the enclosing generic type. For
example, we define a generic type Interval on all types with a total order relation. In C++ this
would look like:

tenpl ate <class T> class Interval {

enum Limt Type |imtType;
T lowimt;
T highLimt;

Using|DTM _Generalizatiofjp. 20] we can define categories of data types and we can constrain
the template parameters to one of thgseeralizedypes[p. 11] .

Having such a general type it seems possible to declare the generic type Interval without using
templates and template parameters:

DRAFT version 1.0 22 Mar 1999 21

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

class Interval {

enum LimtType |imtType;
OrderedType |lowLimt;
O deredType highLimt;

however both declarations are not equivalent. While the first one did not constrain the template
parameter T to be of @rderedType the second declaration did not constrain lowLimit and
highLimit to actually refer to theamespecial type.

This meta model allows to make both constraints by using the Generic_type_parameter that can
be constrained using the association has_allowed_types.

1.2.7 Implicit Type Conversion

Implicit type conversion was an integral part of the technology that powered the flexibility of

HL7 v2.x. Without being aware of the concept, HL7 coincidentally had a form of implicit type
conversion that proved invaluable, especially for inter-version compatibility or localization
problems. For instance, you could promote a single data element to a "repeating” element (i.e. a
list of the base element) and vice versa without causing interoperability trouble with prior
versions. Likewise, you could cast a data element declared as a primitive data type in one version
of HL7 to a composite data type in another version. And you could "append" components "at the
end" of a type definition, all without causing HL7 agents of different versions to reject each
other’'s messages.

However, in HL7 v2.x, implicit type conversion was not a stated rule, it was sort of a by-product

of the way HL7 messages used to be encoded. Transfer to other technologies, like C++ classes in
ProtoGen/HL7 and IDL interfaces in SIGOBT’s work lost this convenience of the implicit type
conversion. If we want to preserve that invaluable technical feature of HL7 v2.x, we must
explicitly state the precise rules of implicit type conversion.

Type conversion is also called "type casting”. If a more primitive type is cast to a more complex
type we can call this "up-casting” or "promoting"” the lower to the higher level type. If a higher
level type is being cast to a lower level type we call that "down-casting"”.

Type conversion must be clearly defined by reasonable rules. The rules should transfer the
semantics of the data as good as possible. Especially the rules should not merely be driven by the
coincidence of representations. For instance, it makes no sense to cast an ICD-9 code 100.1 to a
floating point number 100.1 just because their representation happens to be the same.

22 22 Mar 1999 DRAFT version 1.0

1.2.7 Implicit Type Conversion

The easiest way to state the rule for type conversion is by using a conversion matrix such as
exemplified in the following table. The rows show the type you have and the columns show the

type you need to convert to.

Example type conversiamatrix

Biring [FreeTexiiCodeValudlCodePhrast{p. [CodeTranslatiol onceptDescrlpto-[133 [p. [PhysicalQaniiy [Ratid [p.
[p. 40 | [p.48 | [p. 11§ 124 [p. 123 [p. 122 p: 134 [p. 138 137
if code
system is by n o e n
P if string is alif string is a | L]
ST PIETELR | GBI 2, promote to promote to promote to IS B e valid valid BEMyBg
[p. 40 IN/A = . S‘”T‘ 9158 |0, jevaludirst |CodeValudirst |CodeValugirst Yahd s floating measurement Ya“d e
text/plainvalid code literal oo . literal
h pointliteral |literal
in the
system
if media try try try
FreeTexd . conversionitry conversion [try conversion totry conversion to [try conversion ticonversion |try conversion ticonversion
FreeTexi[p. 48 [typeis . A to string |to stringfirst [stringfirst stringfirst stringfirst to string |stringfirst to string
text/plain)))
first first first
use the
il convert make a phrase
ICodeValug[p. . LR
Eodevalid(p. |other to string [N/A with just one FENESDE [IEnEDiE none none none none
116 rule for |,. CodePhrasérst |CodePhrasérst
creating first CodeValue
literals
convert ake first new translation |promote to
ode” WasHp make a ko string QodeVaIueN/A with origin set to|CodeTransaltion |none none none none
124 literal? | in phrase ;
first NI L first
(cave!)
. convert |convert to
odeTranslatior] make a) use theerm make new
h to string [CodePhrag N/A . _Inone none none none
[p. 123 literal? |,.) component ConceptDescripto
first first
if a specifig
use code . -
use e . if a specific code
... |'original |system is . ;
orignial 2 down-castto |system is neede
onceptDescripto - text" or |needed, s¢ . o
text"? - “|CodeTransaltiasee whether it is|N/A none none none none
[p. 122 convert (whether it |)
make a N first in the set of
R to string |is in the se| 5
literal? | translations
first of
translation:
make a flog
] use as the
from an int,
use convert s 5 numerator,
[nteged [p. 133 |integer [to string [none none none none N/A 2umber of |make a floafirstiset
literal [first o denominatgr
all digits in o1
theinteger
use round the float LSE 5
floating (B to an int, cave: use "1" (the VSRR,
[Fload [p. 134 e to string [none none none none il e e N/A U set
) first - denominatqgr
literal pseudo-precisid
tol
return the
use value, may LS Esiie
Physicaloanty [floating |-0" et down-castto fthrow LIS
: ating |, string |none none none none) . IN/A set
[p. 138 point) float first exception iff .
- first o denominatgr
literal unit is not
o tol
1
convert
numerator |cast the ratio
e ratioconvert T and values to a floa
[p.-137 | to string [none none none none) denominatdmake a new uniN/A
literal) float first)
first to floats angas the ratio of
then build |units (if any)
thequotient|

DRAFT version 1.0

22 Mar 1999

23

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

As can be seen the conversion matrix is sizeable, even on a subset of our types. There are other
ways to picture the allowed conversions. For instance in a directed acyclic graph, where every
data type is a node and every allowable conversion is an arc pointing from the type you have to
the type you need. The arc would be labelled by the conversion rule used.

Conversions can be concatenated to eventually convert between "distant” types. This process is
guided by pre-formulated strategy rules of the form "conveFtfist”. In a directed acyclic

graph representation, finding those strategies resembles finding the shortest way between two
locations on a road map.

The matrix representation and the directed acyclic graph are equivalent, thus one can use either of
those representations of conversion rules. Since the matrix grows so big, we will probably go
with the graph, which is an action item for future work.

Type conversion matrices can be interpreted by computers quite easily. In C, for instance, the
matrix would be stored as a two dimensional array of function pointers:

t ypedef (*conv_func)(void*, void**);

conv_func conv_matri x[MAXTYPE, MAXTYPE] {

{ NULL, tltot2, ..., tltotN },

{ t2tot1, NULL, ..., t2totN },

{ tMotl, tMot2, ..., NULL },
b
convert(int til, void *vil, int ti2, void **vi2)
{

conv_func cnv = conv_matrix[til, ti2];
if(cnv !'= NULL)
(*cnv) (vil, vi2);

In C++ one can do the same or one can use polymorphism to make the process more obvious.
C++ even has its own rules of implicit type conversion using cast operators, which could be used
to some extent. In Java the process is mostly the same as in C++, but function pointers are not
available. The above example does not show how concatenation and strategic steps can be used
to convert between distant types.

24 22 Mar 1999 DRAFT version 1.0

1.2.7 Implicit Type Conversion

In order for conversion rules to be used, a receiver first has to know what data type he has in a
given message, in other words, the receiver needs to know the message element type (MET) of
any given message element instance (MEI). Only then can the receiver know whether or not the
type needs to be converted. Implementable Technology Specifications (ITS) of this type system
therefore must make sure that the receiver has all the data type information he needs. This is most
simply achieved by sending explicit data type information with every MEI.

The XML encoding designed in summer 98 and used in the '99 HIMSS demo, for example, uses
an XML-attribute "TY" and mentions the data type as the value to the TY attribute. For instance,
the following two MElIs for a simple integer number and a ratio of a float and an int could appear
in a message.

<foo ty="int">100</f 00>

<foo ty="ratio">
<nunerator ty="float">10.23</ nuner at or>
<denom nat or ty="int">5</denom nat or >
</ f oo>

The receiver might expetbo to be a floating point value. Using the conversion (coleve
[numerator and denominator to floats and then buildghetient[p. 23] the receiver can convert
the type he has to the type he needs.

Mark Tucker’s rule of minimal explicitness states that you only need to send TY attributes at a
place where the actual type used diverts from the specification. However, deciding that is a lot of
responsibility on the sender’s side. It is therefore safe to always send TY attributes. For the
HIMSS demo we simply made it the rule that the sender must supply explicit data type
information in TY attributes.

When generic types are used, the TY value only specifies the generic type. The type of the
parameters is found where the value of that type is expected to be. Thus, regardless of what is
otherwise decided, TY attributes are always required for the parameterized components of
generic types.

Conversion rules must be carefully validated to prevent surprises. For example, suppose we had a
generic data type "Qualifiedinformation” that would allow to add some oqalgdier to any

othervalue The conversion rule would say: whenever you netdid you get a qualified,

just take out thealuepart and do not consider tgaalifier part. Now consider that one
qualifiers,"NOT", would exist for negation. What would happen if a message element instance
contained

DRAFT version 1.0 22 Mar 1999 25

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

<mai n-concern ty="Qualifiedl nfo">
<val ue ty="ST">PNEUMONIA/ val ue>
<qual i fi er>NOK/ qualifier>

</ mai n- concer n>

While the sender would mean that the "main concermbtgneumonia the receiver would
understand just the opposite! This shows that conversion rules have to be specified with great
care. In this case, conversion to simply pneumonia should be prohibited, i.e., the conversion
routine would either return no value or raise an exception.

1.2.8 Literals

In thelexample type conversianatriy [p. 23] many special conversions exist betwigaractef

[p. 40] and any other type. This is because we want to define concise and nice looking
string literals for many of the data types, whether primitive or complex types. String literals can
be used in XML, for instance, to make the message more compact and human-readable.

Literals can be used to specify data type instances in character oriented encoding rules. It is good
to have a single standardized form of literals to be used by different ITSs. Literals are useful for
many ITSs, not just XML. For instance, SIGOBT did use character representations of most data
types in their v2.x mapping of HL7.

Literals are not only useful in inter-system messaging but also when we discuss about the design
of HL7 messages on a black board or in e-mail. Literals are much more handy than structured
instance notations, such as XML. The guideline for the specification of literals is that literals are
to be concise and easily understandable by humans.

1.2.9 Instance Notation

For the purpose of discussion and to be able to show examples of data types we will use an
instance notation that is both, readable and concise. We do not use XML as an instance notation
since XML is just too verbous, writing XML on a blackboard takes too much time, and the XML
markup is too distractive for the human eye to find the real information to be conveyed in the
example.

Our notation is borrowed fro@ommorLISP andSchemea syntax also used in the XML world
(DSSSL).

This instance notation has only filddoms

1. Atomic values (numbers, strings, symbols) are written in the usual character representation.
Atomic values are separated by spaces, unless the spaces are contained within double
guotes. For example

26 22 Mar 1999 DRAFT version 1.0

1.2.9 Instance Notation

1234. 45
the a numbet234.45
"hell o worl d"
astring
f oo
asymbol
2. Composite values start with an opening parenthesis and end with a closing parenthesis.
(...)
3. Composite values may contain atoms or other nested composites.
(foo :bar (nest :baz))

4. Composites always start with a symbol that denotes to the data type of that composite value.
In the example abovéoo would be the symbol of the daige.

5. After the type symbol, composites contain keyword-value pairs. Keywords are symbols that
start with a colon (e.g:,bar). For example

(CodeVal ue :val ue "100. 0"
. codeSystem "1 CD- 9")

would be gCodeValug[p. 116 representing the ICD-9 code 100.0 for Leptospirosis
icterohemorrhagica.

6. Symbols that start with a pound sign have special meaning. For instamees and
#f al se would be two values for tfigooleah[p. 28] type.

7. |Collectiong[p. 14] are composite expressions whose first symbol denotes the kind of
collection (i.e. SET, LI ST, or BAG). After the collection type symbol the elements of the
collections are enumerated. For example,

(SET appl e orange banana)
a set of fruits, cardinalit.

(LI ST orange appl e banana)

DRAFT version 1.0 22 Mar 1999 27

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

the list of fruits ordered by how much | like them, lengh:
(BAG 3 apple 2 orange 5 banana)

the shopping bag containing 3 apples, 2 oranges and 5 bananas, size: 10,
cardinality: 3. Note that the bag notation uses alternmaiatber-item-pairs.

The beauty of this instance notation is that it can be completely defined by just a few simple
rules. Moreover, the examples can usually be understood without the reader having to be able to
actively master the rules.

1.2.10 Typus typorum : Boolean

Let's define the first real data type, a primitive type to start with. Which type could be a better
starter than the Boolean type, the type of all types? A Boolean value can either be true or false.
The Boolean is the smallest quantum of all information (1 bit) and yet all digital information is
based on it. While Boolean values are the very basic values of all digital information processing
machinery, the Boolean data type is useful even in the highest sphere of abstract data analysis.
The Boolean type embodies the axioms of logic. This is a universality that only the Boolean type
has.

The Boolean type is defined as follows

Boolean

The boolean type stands for the values of two-valued logic. A boolean value can beusther
or false

PRIMITIVE TYPE

Use cases for the Boolean type are all RIM attribute with the "attribute type"'sufimd"
(indicators).

HL7’s position on Booleans used to be that of an ID data type with the special table that included
only the values "Y" and "N". Since the follow-up data type for |[CasleValug[p. 116 , we

could continue to serve the use case for BooleangGuitteValug[p. 116 constrained to the

"Y/N" table.

The reason not to continue with this habit is that Booleans are just so universally useful and by
the way are the simplest data type of the universe. Boolean information items exist and are useful
on virtually all levels of abstraction, so that it would be a move toward simplicity to define an
explicit Boolean data type for HL7 to be used for all "indicators". It is so much more easy to use
Booleans in program decisions, as the following example in a fictive programming language
shows:

28 22 Mar 1999 DRAFT version 1.0

1.2.10 Typus typorum: Boolean

VAR
X : BOOLEAN,

IF X
THEN

(* Xis true *)
ELSE

(* Xis false *)
END | F;

By contrast, dealing with an arbitrdBodeValud [p. 116 requires to first check whether the

code table used is the Y/N-table, then you would have to treat every possible case including that
the given value is neither "Y" nor "N" (because there is no guarantee that the Y/N-table never
changes, see below).

VAR
X : CodeVal ue;

| F X. codeSystem == CodeSystem Y_N TABLE

THEN
IF X value == "Y"
(* Xis true *)
ELSE
IF X value == "N’
THEN
(* Xis false *)
ELSE
(* EXCEPTION: X is neither true or false *)
END | F;
END | F;
END | F;

DRAFT version 1.0 22 Mar 1999 29

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

Why would we not want to use boolean data types?

® For backwards compatibility to the Y/N table?
® Because Technical Committees might want to refine the liatiele

Backwards compatibility to v2.x has never been (and should not be) the major issue for design
decisions for v3.0. However, through type conversions we can actually allow for backwards
compatibility. Thus, a Boolean would convert {€adeValug[p. 116 by using the Y/N table.
Any[CodeValud [p. 116 with the coding system set to the Y/N table can be converted to a
boolean.

Note: We should, however, not define a conversion fidegerNumbef[p. 133 to Boolean on

the basis of 0 = false, 1 = true. While the Y/N table’s semantics is clearly to represent Boolean
values, the mapping of Booleans to numbers is not semantically suggested nor is the mapping
style determined by semantics (e.g. one could map false to -1 and true to O, or false to 0 and true
to non-zero just as well).

Some people might think that using the Y/N table to capture Boolean semantics is more flexible,
because one could later extend the table to cover other (exceptional) values. For instance, some
might want to add the value P for "perhaps” and U for "unknown". Those two extensions to the
Y/N table can be called "generally applicable”, since they are conceivably valid for all cases
where the Y/N table is used.

The programming example above shows why you just not want to extend a table used as a
replacement for Booleans. Relying on Booleans means relying on one of the fundamental axioms
of logic (tertium nondatur), sneaking in a third code into the Y/N table would render this axiom

of logic invalid, which means thatevery ... then ... else ... statementwould

have to mutate into@ase ... of ... otherw se ... statement.

Those "generally applicable” extensions of the Y/N table are not just a bad idea, they are also not
necessary in the context of this data type proposal. The value "perhaps" is covered by all the
mechanisms to defifigncertaint}{p. 155 , and the "unknown" exception is covered by the

method to handllmcompleteinformation[p. 31] .

Other people might still think that the Y/N-table should be used to allow for subsequent
extensions. An example might be for the patagdthindicator, where Y/true means the patient

is dead and N/false means that the patient is alive. Now, one could make the case that a patient
after the diagnosis of "brain death" might be kept in a vegetative state until some organ
transplantation. This would be a status between live and death that neither falls in the category of
uncertainty nor incomplete information. So, one might need to extend the Y/N table by "B" for
"brain death".

30 22 Mar 1999 DRAFT version 1.0

1.2.11 Incomplete Information

Clearly, such extensions of the Y/N table could be made only at one point of use of the Y/N
table, e.g., only thdeathindicator would use the Y/N table extended by "B" for "brain death".
This means thateathindicator no longer would be defined as a code from the Y/N table, but
from a "death code" table. According to the MDF, the attribute type suffind” would have to
be changed tb cd".

If "death indicator" would have been defined as a Boolean in version 3.0 and later would have to
become a code of table "death code" one could either simply change the data type definition
between versions or, instead, add another field, such as "death detail status” if "death indicator" is
true. Those changes in the use of the field do require RIM changes regardless of whether we used
the Boolean data type or not.

If nothing else, a Boolean data type could help sharpen the analytic work of the committees,
because it would be absolutely clear whether or not there can be other values aside from the two
opposites represented by true and false.

1.2.11 Incomplete Information

In v2.x we had the special valuest present(| |) ornull (| ""|) that could be sent instead of

any other value in almost every field in a message. The semantics of those special values were
two fold (1) not present expressed that information was missing (2) null was able to remove
existing information at the side of the receiver so that this information was missing afterwards.
We will factor this "update” component out ifpfpdatesemantidgp. 33] below. Here we only

deal with the representation of incomplete information.

After having defined the Boolean, the type that underlies all information, we now define a data
type called "No Information" as follows:

No Information

A No Information value can occur in place of any other value to express that specific
information is missing and how or why it is missing. This is like a NULL in SQL but with the
ability to specify a certain flavor of missimgformation.

component . . . L
name type/domain optionality description
: The flavor of the null value. Can be
[ConceptDescriptor . .
flavor 0. 127 optional interpreted as the reason why the
P information ismissing.

The "flavor" of the null value can be interpreted as the reason why the information is missing.
For the time being we keep the list of possible flavors of null subject to open discussions.
Reported numbers of different flavors of null values range between 1 (SQL) and 70 (reported by

DRAFT version 1.0 22 Mar 1999 31

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

Angelo Rossi-Mori).

If No-Information flavors are to be used in a standard way, we will have to define a canonical
systematization of flavors of null.

For example, Stan Huff's CE proposal contains the following null values:

U unknown no information at all. I.e. nothing more is known about the
circumstances of missingformation.

UASK asked but the person asked could not supply the informaiamy?)
unknown

NAV notavailable the person asked does have the information somewhere but not
available right now (e.g. oh, | wrote down what the doctor said last
time, but | didn’t bring this piece of paper witie).

NA not e.g. an answer to "gestational age" for a patient who is not
applicable pregnant.

NASK notasked the person who should collect that information forgaigk.

The above example list provides no assurance to be complete or sufficient and it does not attempt
to systematize the many possible flavors of null. It serves here as an example to show what such
flavors of null can comprise. Now that we defined a fairly general data type for no information,

and as we factored update semantics into its own method, this issue of a canonical taxonomy of
null values is less important. In most cases, all what people need is a No Information value
without the flavor component.

For example, consider the patient’s date of birth is requested and we don’t know the date of birth
because the patient does not remember it. In that case we could send:

(Pati ent
:date-of-birth (Nolnformation
:flavor (CV :value " UASK"
: codeSyst em " SHNULLS")))

In this example instance notation we will use the syribail | to be equivalent with
(Nol nf or mat i on) without a flavor.

32 22 Mar 1999 DRAFT version 1.0

1.2.12 Update Semantics

Note that No Information is formally a composite data type, although it has but one component.
We will list No Information under the category "primitive" anyway, since it is so fundamental to
our type system.

1.2.12 Update Semantics

Update semantics deals with the problem of what a receiver is supposed to do with information in
the message. That information may be equal to prior information at the receivers data base, in
which case no questions occur. But what if the information is different?

We can categorize the modes of updates in the following taxonomy:

1. IGNORE: Ignore the value all together
2. VERIFY: Verify whether the value supplied matches the prior value. If the values do not
match, raise an exception.
3. REPLACE: Replace the value in the data base with the new value supplied in the message.
Replace operations may be of the two more kinds:
1. REPLACE VALUE: Change an old value to a new value
2. DELETE: Change an old value tg\a Information[p. 31] value (i.e. a null value).
4. EDIT COLLECTION: If the data is of some collection type, we can change the collection in
specific ways depending on the kind of collection:
1. A setcan be updated in one of the following ways:
1. include elements: build the union of the set and another set.
2. exclude elements: build the difference of the set and another set.
2. A list can be updated in one of the following ways:
1. add element
1. append
2. prepend
3. insert at giverposition
4. insert at element with giveralue
1. before
2. after
2. replace (either replace with new value, or set to no information)
1. by position
2. by value
1. first occurrence
2. last occurrence
3. n-th occurrence
4. all occurrences
3. delete element entirely, changing the positions of all other elements after the
deleted one.

DRAFT version 1.0 22 Mar 1999 33

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

1. by position
2. by value
1. first occurrence
2. last occurrence
3. n-th occurrence
4. all occurrences
3. A bagcan be updated in one of the following ways
1. include elements: build the union of the bag and another bag.
2. exclude elements: build the difference of this bag and another bag.
3. exclude all of elements of one kind: e.g., if a bag contains 5 apples and 3 oranges,
you could exclude all oranges without having to know that you actually remove 3
oranges.

In principle, the update mechanism will send an update action code along with each message
element instance (MEI). The update action code should be part of the MEI meta model.

It turns out that updatinglest is the most difficult task to do, since positions are relevant in the

list. The problem is concurrent updates; you never know exactly what the list looks like at the
receiver’s data base when your update message is being processed. For example, if you think the
listis(LI ST A B C) and you want to insert an elemé&ntio come befor€ you may send an

update expression

(I NSERT- AT 3 ’ D)

to insertD at position 3 (and shiff to position 4). However, if someone rearranged the list to
(LI ST C B A) just before your update message arrives, the receiver would insert the
betweerB andA and you would cause the list to changélid ST C B D A).

If what you really wanted was to ins&beforeC, you should have sent the update expression
(1 NSERT- BEFORE ' C ' D)
which, at the receiver’s side would updéatd ST A B C) to(LIST A B D C) but also

(LISTCB A to(LISTDCB A).

The sender of an update message has to be very sure whether he wants the new element to appear
in a particular position within the list or in a particular sequence relationship with another

element of the list. Concurrent edits to the same data at the receivers side can render the sender’s
assumptions invalid.

34 22 Mar 1999 DRAFT version 1.0

1.2.12 Update Semantics

Conversely, withsetsconcurrent updates are not a problem at all, because the only thing to do

with asetis adding or removing values to and from $le¢ which is independent on the prior

contents of theet For example, if you add a telephone number to a set of telephone numbers, it
doesn’t matter whether or not that telephone number is already known, since there are no
duplicates of the same value iset Likewise, if you remove a bad telephone number from the

set you can do so no matter if the number was element ckttieefore. Also, there is no

ordering that could get messed up, nothing to assume before the update, so no assumptions can be
invalidated through concurrent updates.

Updating abagis equally straight forward. If you want to add 2 apples into the bag, you do that
without having to know how many apples where there before. If you want to remove 3 oranges,
you can do that, no matter how many oranges were there before. Note that removal of items from
a bag does not mean here that you want to get hold of those items, you just want them to
disappear from the bag. Thus, if there are no more oranges left in the bag to be removed, your
removal request is satisfied without changes.

For the technical committees this means tHat &ollection semantics should only be chosen if

the ordereally matters semantically from the perspective of pure abstract application logic. If

the order probably is not important enough to justify the headache around concurrent updates, the
committee should choose teetor bagflavor.

Selectingsetandbag semantics should always be encouragesetds often exactly the right
kind of collection from the perspective of pure abstract application logic. Most collections, in
practice, aresets while bagsare quite rare.

If the collection element type is a class, such as Condition_node, and a ranking is important, the
ranking could be represented explicitly by a ranking number rather than imjiyisgmantics

on some association, even though it is possible in UML to assume list semantics of an
association.

Also note that there aprtially orderedcollections that often capture the application logic much
better than totally ordered lists. Partially ordered collections are collections where elements may
have the same ranking, so that you can not always decide whether one element has higher rank
than another.

DRAFT version 1.0 22 Mar 1999 35

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

2 Text

2.1 Introduction

All information can be expressed by sequences of bits, this is the fundamental new discovery that
started the era of digital information processing. Written text consists of characters and characters
are by themselves expressed as sequences of bits. Eight consecutive bits aretetsted

bytes Although we usually identify one byte with one character, this identification is not an

eternal law of nature and we have to distinguish bytes from characters.

The ease by which we express characters as bytes and bytes as characters is due to the success of
the American Standard Code for Informatiorterchangg(ASCIl) [ANSI X3.4]. Most computers

interpret bytes as characters according to the ASCII code. But this does not mean complete peace
of mind. On the one hand, although ASCII is by far the most important character code, there is
another one: EBCDIC.

On the other hand, ASCII does not define sufficient characters to meet the needs of non-English
languages. ISO 8859-1 defines an international extension to the ASCII code that fits most
languages of the world that use Roman charcters (Latin-1). However, there are numerous other
such extensions. And there are numerous other languages, including Greek, Russian, and
Japanese.

We cannot even count on the truth that one character is expressible in one byte, as we learn from
Japanese and Chinese character sets that have way more characters than would be enumerable
with just 8 bit.

The solution to the Babylonian coding chaos seems to be the Unicode standard [ISO/IEC 10646,
[Unicodé(http://www.unicode.org]) Unicode is aharacter setthat covers all languages of the
world, with even the rarest being added in upcoming versions of Unicode.

Unicode seems to be accepted in all major language communities including America and western
Europe, Russia and the three countries China, Korea, Japan that were so often left alone with
their character coding problems. China, Korea and Japan have submitted to the Unicode a jointly
compiled unified character set, called "Han", which includes more than 20000 characters. Of
course, those many characters can not be enumerated with only 8 bits, thus, one Unicode
character uses more than one byte.

2.1.1 From Characters to Strings

While most programming languages define data types for single characters, HL7 messages did
not use single characters as opposed to character strings in the past and probably will not do so in
the future. A single character is on a too low level of abstraction. There is no clinical or
administrational information expressed in one character that stands for itself. There are single

36 22 Mar 1999 DRAFT version 1.0

http://www.unicode.org/

2.1.2 Display Properties

character codes, such as the "sec code" consisting of the symbols "M" for male and "F" for
female. Those characters "M" and "F", however, do not stand for themselves but for some other
meaning. Therefore we will not need a data type for single characters.

2.1.2 Display Properties

A character code like ASCII, ISO 8859, or Unicode codifies only characters, i.e., the basic
graphemes from which written language is constructed, regardless of the style-variants of
characters. Often we are only interested in transmitting the semantics of a few words or
sentences. But sometimes we want to enhance the expressiveness of text through an altered
appearance of characters. One can modify font family (e.g., Times Roman, Helvetica, Computer
Modern), font style (e.g., roman, italics, bold), font size (e.g., 8 pt, 10 pt, 12 pt), alignment (e.g.
subscript, superscript) or any other display properties.

The question is, for what use cases we need only plain character strings and when do we need
control over the appearance of the characters?

When a data field contains only one or a few words, we will probably not need control over
appearance. However, who is to say how many words may appear in a given data element of type
string? And what is the exact limit of words that do not require formatting? Clearly the length of

a character string is no good criterion for whether formatting is required or not.

Instead we need to look at fine semantic nuances to find the answer: A string that encodes a value
from a code table (e.g., "M" or "F") will not need formatting. A string that encodes a person’s

first name or address will not need formatting too. These informations, code symbol, person
names, or address are readily conveyed only in the characters. To make this more clear. | always
refer to the same city Indianapolis, regardless whether | write its name in bold letters
(Indianapolis), italics (Indianapolig, underlinedIndianapoli$, or any combination of those or

other display properties.

Conversely, controlling appearance of text will be useful in those data elements whose purpose it
is to be shown to human users. Even of only two words, we sometimes want to emphasize one
word by underlining or emboldening it. There is no reason to prevent formatting for those data
elements that are placeholders for free text. Thus we have to distinguish between formalized
information and free text to find out when we need control over appearance.

2.1.3 Encoding of appearance
The format of a text is encoded in three different ways:

1. through deploying certain intrinsic features of the underlying character code,
2. through specially reserved positions in the underlying characters code, or
3. through escapsequences.

DRAFT version 1.0 22 Mar 1999 37

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

Ad 1: The ASCII control character number 8 ("backspace") can be used to overstrike an already
printed letter. Thus one can print the same letter twice or three times to yield an emboldened
appearance on a simple typewriter or dot matrix printer. One can also print the underbar character
over the previous letter to yield the effect of underlining. There are simple software programs that
emulate the behavior of a typewriter to render this kind of simple formatting. For example, the
UNIX "more" utility used to display online manual pages emulates a typewriter and some

terminal devices have this emulation binlt

Ad 2: Many text processors use other control character in non-standard ways to encode the
formatting of the text. For example if you look at the raw file of a Word Perfect text, you will

find the words and characters interspersed with control characters that obviously encode the style
of the text. The problem with this approach is that it is proprietory and not standardized.

Ad 3: Escapesequenceare used by various printers and terminals. Originally, those were control
sequences separated from the normal text by a leading ASCII character number 27 ("escape”),
hence the name "escape sequence". But escape sequences have since been used in many different
styles. In C string literals, troff, TeX and RTF we see the backslash chgkgatgroducing

escape sequences. Troff has a second kind of escape sequences started by a period at the
beginning of a new line. HL7 version 2 also uses the backslash at the beginning and end of

escape sequences. SGML uses angle brackets to enclose escape sequences (markup tags), but in
addition there are other kinds of escape sequences in SGML opened with the ampersand or

percent sign and closed with a semicolon (entity references).

From the many choices to encode formatted text HL7 traditionally used a few special escape
sequences and troff-style formatting commands. Those HL7 escape sequences have the
disadvantage that they are is not very powerful and somewhat arcane or at least outdated by the
more recent developments. HTML has become the most widely deployed text formatting system,
available on virtually any modern computer display. HTML has been designed to be simple
enough to allow rendering in real time. Thus HTML seems to be the format of choice to transmit
style-enhanced free text.

A considerable group of HL7 members also pursue using SGML or XML to define text, although
the purpose to using general SGML or XML is slightly different from using HTML. Where

HTML is used to control logical appearance of text, SGML is another way to structure
information. Thus HL7 will use SGML as one of its message presentation formats. SGML in free
text fields is so powerful and general, that it comes with the risk of not being interoperable.
However we might want to allow for it in special circumstances.

It will be difficult to limit the HL7 standard to just one of the possible alternative encodings of
appearance. There is an issue of backwards compatibility that requires to keep the nroff-style
formatting of HL7’s FT data type. There is a tremendous and reasonable demand for supporting
HTML, and we should not exclude general SGML and XML up front, despite the concerns for
interoperability.

38 22 Mar 1999 DRAFT version 1.0

2.1.4 From appearance of text to multimedial information

There are, in principle, two ways to support the multiple encodings of appearance. Either we
define multiple data types, one for old FT, one for HTML and one for general SGML/XML, or
we define one data type that can contain formatted text in variable encodings.

Defining multiple data types has the disadvantage that we need to decide at design time for one
of those alternatives whenever a free text data element is defined. This decision is unchangeable
at the time an individual message is constructed. In other words, technical committees would
have to decide to use the old FT type here, the HTML data type there, and a simple TX type for
yet another free text attribute. There is hardly any rationale for such a decision at design time of
the standard.

Thus, the irrationality and inflexibility of defining multiple data types for free text seems to
outweigh the conceivable advantage that a special data type might accommodate the intrinsics of
some special encoding formats in greater detail and accuracy. Thus, we define only one flexible
data type for free text, that can support all the techniques for encoding appearance of free text.

2.1.4 From appearance of text to multimedial information

Being able to format the appearance of free text adds a great deal of expressiveness. But having
control over graphical appearance of text begs the question whether graphics, drawings and
pictures should not also be considered part of free text, for "a picture says more than thousand
words"? In human written communication, especially in business and science, we often use
drawings to illustrate the points we make in our words. The technology to do these things on
computers is available, HL7 only has to support it.

Another use for multimedial information is that this is the only way to capture the state of a text
that precedes its typed form: dictation and handwriting. An HL7 message that is sent of from a
Radiologist’s or Pathologist’'s workplace will usually contain very little written information, but
rather the important information will be in dictated form. Again, the technology to capture voice
data, to communicate, and replay it is available on almost any PC now, HL7 only has to support
it.

Two alternatives exist to support multimedial information in HL7. Since HL7 version 2.3, we can
use the "encapsulated data" (ED) type. The ED data type is powerful enough to communicate all
kinds of multimedial information. The problem is that it is a special data type that can only be
used in data fields assigned to the ED data type. Currently none of the HL7 data fields is
explicitly assigned to the ED data type, which considerably diminished ED’s usefulness despite
its power.

The only way to use the ED type is currently in the variable data type field
OBX-observation-valueWhile this serves the communication of diagnostic data that is in image
or sound form, it is not generally usable. For any multimedial data we want to send per HL7 we
have to pretend that it is diagnostic data even if it isn't. If we want to send some descriptive
drawing to an order, we have to pretend it's diagnostic data and send it in an OBX. Furthermore,

DRAFT version 1.0 22 Mar 1999 39

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

it is not even clear whether there will be a variable data type in HL7 version 3.

The honest alternative to support multimedial data would be to admit that any free text data can
possibly be augmented or replaced by multimedial information. This means, we have to allow for
multimedial data in any free text field, and thus, that free text and multimedia data share the same
data type. This is not hard to do since one flexible data type was already required to
accommodate the different encodings of text formats.

2.1.5 Pulling the pieces together

In the previous exploration of the field of text, we separated out the difference between string
data elements, where the raw information of characters is sufficient and free text, where there is
use for formatting the text and augment or even replace the text with multimedia information.
This means that there will be a string data type on the one hand, and a flexible data type that
covers free text and multimedial data on the other.

2.2 Character String

The character string data type for HL7 is a primitive data type. We will not define any data type
for the character itself because there is hardly any use for single characters in medical
informatics. Therefore a character string is a primitive data type in HL7. Just as it always used to
be.

Character String

A string of characters where every character used by any language anywhere in the world is
represented by one uniquely identifiable entity within the string. This type is used when the
appearance of text does not bear meaning, which is true for formalized text and all kindg of
names.

PRIMITIVE TYPE

Too meet the requirements of international HL7 and globalization of the health care industry, the
new data type Character String is developed with this design goal:

A character string is a sequence of entities each of which uniquely identifies one character
from the joint set of all characters used by any language anywhere in the world, now and
forever.

For example, one should be able to send Michio Kimura’s (chair of HL7 Japan) name in Japanese
Hiragana script and Latin script as

40 22 Mar 1999 DRAFT version 1.0

2.2.1 The Unicode

&b BB (Kimura, Michio)
a string of 24 uniquely identified characters without any switching of character sets.

2.2.1 The Unicode

The[Unicodé(http://www.unicode.org/js a character code developed and maintained by an
international consortium. The Unicode contains characters of virtually all contemporary scripts,
and assigns a unique code to each one of them. Every character in the Unicode is called a "code
point”. All contemporary scripts fit into the first 65,000 code points. Thus every character can be
represented by a 16 bit number.

For example, the string displayed above, would be represented by the following sequence of code
points:

U+307F, U+3061, U+3049, U+0020, U+304D, U+3080, U+3089, U+0020,
U+0028, U+004B, U+0069, U+006d, W+0075, W+0072, W+0061, W+002c,

U+0020, U+004d, U+0069, U+0063, U+0068, WL+0069, U+006f, U+0029
Unicode code points are usually written with a leading "U+" followed by 4 hexadecimal digits.

16 bits, i.e., 65536 character code points are enough to accommodate the scripts of all
contemporary languages including Latin, Greek, Cyrillic, Armenian, Hebrew, Arabic,
Devanagari, Bengali, Gurmukhi, Gujarati, Oriya, Tamil, Telugu, Kannada, Malayalam, Thali,
Lao, Georgian, Tibetan, Japanese Kana, the complete set of modern Korean Hangul, and a
unified set of Chinese/Japanese/Korean (CJK) ideographs. More scripts and characters are
continuously added.

The unified Chinese/Japanese/Korean (CJK) set of ideographs (also called "Han") uses up more
than 20000 character positions which is still less than half of the available positions.
Acknowledgments should go to those three peoples of China, Japan and Korea, who made a
considerable effort of joint standardization work. Given the historical and political problems in
this important corner of the world, this is an almost invaluable achievement. If CIK would not
exist, we had to reserve for 60000 ideographs!

As the Unicode will expand its scope further into historical scripts (Egyptian or Sumerian) and
into such curiosities like the Klingon alphabet, the code would claim another 16 more bits. Since
Sumerian and Klingonian languages will not have to be supported by HL7 for even the widest
foreseeable future, one can safely assume that every character can be represented in 16 bits.

DRAFT version 1.0 22 Mar 1999 41

http://www.unicode.org/

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

2.2.2 No Escape Sequences

The most important practical difference to the old v2.x ST data type is that, on the application
layer, escape sequences are no longer defined. This is a great relief for application programmers
and it will reduce many interfacing problems.

In the example sequence of Unicode characters above, one can look at any position in the string
and find a character without having to keep track of escape sequences that switch character sets.
For example, we can randomly pick B character from the string, which is U+304D, a

Hiragana "mi". The20" character is a Latin "c". We can tell this without having to watch out for
character set switching escape sequences.

Again, there will be no escape sequences defined for the character string data type on the
application layer, not for switching of character sets, nor for any other purpose. Notably, the
application layer has no idea about "delimiter characters”, used by some Implementable
Technology Specifications (ITS). To be ignorant of delimitersrejairemenif HL7 is going to
support multiple ITSs (e.g., for XML, for CORBA, etc.)

This strong position will greatly improve robustness of HL7 interfaces, since application
programmers need not worry about whether some characters in strings might collide with a
delimiter used by some ITS. The application can use verticlé'pgrearats'", ampersands
"&", less-tharf<", quotes™ ", or any other character. No interference with the underlying
message encoding will happen.

2.2.3 ITS Responsibilities

The Unicode gives us a model and the tools to cleanly distinguish between the character string on
the application layer and the bytes on the transport layer. This data type specification is focused
on the application layer independent from underlying transport. On the application layer,
characters are characters, not bytes.

Ultimately those characters must be turned to bits sent over a "wire" to another application. On
the transport layer, the Unicode characters can be encoded in different ways. Most straight
forward, each Unicode character in the string is represented by two consecutive bytes. But there
are other encodings for Unicode characters defined by the Unicode,daibedie Transfer
Format(UTF). Major transfer formats are:

e UTF-16, where every Unicode character is represented by at least 16 bits. This encoding is
extensible so that 32 bit Unicode characters can be accommodatell as

e UTF-8, [cf.REC 227§ ftp://ftp.isi.edu/in-notes/rfc2279.t4t)where every Unicode
character is represented by a variable number of bytes ranging from 1 to 6 bytes, and
capable of encoding up to 32 bit Unicode characters. Notably, UTF-8 is backwards
compatible to 7 bit US-ASCII, which means that 7 bit US-ASCII strings that do not contain

42 22 Mar 1999 DRAFT version 1.0

ftp://ftp.isi.edu/in-notes/rfc2279.txt

2.2.4 HL7 Applications are "Black Boxes"

special escape sequences, are UTF-8 compliant. UTF-8 uses the highest bit to signal
multi-byte sequences, and thus requires 8 bit clean trariapers.

e UTF-7, [cf.REC 215]ftp://ftp.isi.edu/in-notes/rfc2152.t14t)is an encoding that uses only
seven bit on the transport layer. Like UTF-8, UTF-7 is backwards compatible to US-ASCII,
with the exception of the plus sig®" used to signal escape sequences consisting of base64
encoded multi-byte Unicodeharacters.

Underneath the application layer specification of HL7 there is an Implementable Technology
Specification (ITS). The task of encoding Unicode characters for transport through the wire is, by
and large, assigned to the ITS. The software components implementing a certain ITS must
translate characters from and to bytes using some encoding scheme, such as UTF-8.

HL7 interface toolkits that implement ITSs should deal with uniquely identified character entities
on the application programming interface (API) side and should always produce proper
encodings on the HL7 wire. Applications that would use such an HL7 interface toolkit should
have no obligation to deal with character set switching escape sequences or escaping of
characters that might interfere with the ITS.

2.2.4 HL7 Applications are "Black Boxes"

HL7 and this data type specification continues to make no assumptions on the internal working of
HL7 applications. Although we make recommendations that will help implement the standard,
HL7 does not specify the internal working of an HL7 application. A particular implementation

may violate all the rules of distinguishing application layer and transport layer. Applications may
treat character strings as arrays of bytes, if they so cha®$mg as this practice does not lead

to a different behavior of the HLiterface

If application designers decide to deal with lower layer issues like character representation on
their application layer, they can do so by selecting an ITS implementation that does not do the
mapping to and from uniquely identifiable character entities for them. Those application would
be HL7 compliantas long as they do not behave differently on the Wit&.

For example, a systeBICK-TOSwas written 40 years ago as a monolithic PDP-11 assembler
program. If this program behaves according to the HL7 specification, it would be HL7
conformant. On the other hand, a hyper-modern syS#&Ni-NETwould not be compliant with
HL7, if it fails every time it receives an ampersd& character in a message element instance
of type character string.

This is more important than it may seem: Suppose the sysAdhNETwould "support” two
HL7 ITS interfaces, for XML and for CORBA. If it would receiV&" with CORBA, it should
emit"&anp; " on the XML wire. And if it receives&anp; " on the XML wire it should emit
"&" on the CORBA wire. The easiest way to be HL7 compliant is through separation of the
application layer and the ITS layer through an application programming interface (API).

DRAFT version 1.0 22 Mar 1999 43

ftp://ftp.isi.edu/in-notes/rfc2152.txt

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

Again, HL7 does not specify the internal working of applications. Thus, the specification must
treat any application as a black box. The only issue, the specification may be concerned about is
what happens on the HL7 wire. Thus, this data type specification does not even mandate the use
of the Unicode. It does not look at how the strings are represented in the application program. All
it cares about is described by the following scenario:

Let systenSsend a messagdw to systenil. That messagk! contains a character stri@jat a

data element, for which promises it will store this data element unmodified and will report this
data element back later. Now, systé€rsends that messalye back to systen$s containing that
data element as a character sti@gBack at systensthe character strings andC’ must be
exactly equal. That is, every charaatemt position in C must be the same charactecgsat

the same positionin C'.

A more concrete example. Suppose your system promises to store a data element of type
character string and to report that same data element back to me later. My system uses Unicode
characters internally, and | send to you a Devanagari OM character (U+0950)

wEa

gp

This character would be encoded and sent to your system my means specified in an ITS. Your
system receives that message and does with that message whatever it chooses to do. My system
does not care what your system does internally, and the HL7 specification does not care what
your system does internally. All the HL7 specification claims is that when your system sends that
information back to my system, my system should see the same Devanagari OM character
(U+0950) on its application layer.

If my system does get back something else, then either my system’s ITS layer implementation is
broken or your system is broken. This is an operationalization for HL7 conformance on character
strings. This type specification demands nothing else.

2.2.5 No Penalty for Legacy Systems

We do not require any application to use Unicode characters internally. And, of course, we can
not require that every HL7 conformant application would have to be able to display Kaniji,
Devanagari or Thai on their user screens.

Applications that can replay any character of the Unicode can be called "high fidelity"
applications. But this specification does not even require every application to be high fidelity. For
instance, your application could chooses to transform any German umlaut "A", "O", "U" to "Ae",
"Oe", and "Ue", respectively, and would still conform to this data type specification. This
specification allows applications to be high fidelity quite easily, without requiring it from every

application.

44 22 Mar 1999 DRAFT version 1.0

2.2.5 No Penalty for Legacy Systems

Legacy systems can comply to this specification, can even be "high fidelity", without having to
significantly change their software! This is possible through UTF-8 encoding.

Suppose your application handles 8 bit characters internally and only displays US-ASCII
characters. Your application would be conformant to HL7 with any ITS that allows the use of
UTF-8 encoding. Any data that originates in your system would use only the US-ASCII character
set, which automatically conforms to UTF-8. If you receive data originating from other
applications, and if that data contains Unicode characters beyond US-ASCII, your application
will not be able to sensibly display the characters, but it can store the characters in its data base
byte by byte. Your application would later send those UTF-8 bytes in HL7 messages, thus it
would be a "high fidelity" application.

If your application chooses to transcribe foreign characters to US-ASCII (e.g. German umlauts to
"AE", "OE", and "UE", or "Kimura" in Hiragana to "KI-MU-RA"), it could display the character
strings on US-ASCII terminals. If it transcribes the characters only for the display purpose, but
keeps the original code in its the data base, it would still be a high fidelity application.

If your application transcribes the foreign characters as they come in over the HL7 interface, it
would no longer be a high fidelity application, but could still be compliant with this specification,
with the restriction that it could not claim "high fidelity". To be high fidelity on characters is not
so important for end user systems anyway, but it is quite important for data repositories that are
to be marketed or used internationally.

High fidelity is possible if you use an ITS with UTF-8 encoding and

1. your communication is 8 bit clean,

2. your data base storage is 8 bit clean

3. you do not use the 8th bit for string delimiters internally

4. your screens won't garble up when being sent 8 bit UTF-8 ensadgences.

For example, the Regenstrief Medical Record System (implemented using VAX BASIC) would
do fine with criteria 1 and 2. It's problems would be located at 3 and 4, though, since it uses
delimiters characters internally that are selected from the code range between 128 and 255.
Furthermore, the screens would probably garble up when being sent UTF-8 bytes greater than
128.

In this case, i.e., if your environment is not fully 8 bit clean, you can use UTF-7 encoding instead
of UTF-8. UTF-7 has the same backwards compatibility features as UTF-8, but does not use the
8th bit. So you won't have conflicts with your internal use of@Hebit and your communication

can strip off the8™ bit if it wants to.

DRAFT version 1.0 22 Mar 1999 45

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

For Europeans, who used ISO Latin-1, the backwards compatibility issue is not as easy as for
systems that used only US-ASCII characters. Even though the Unicode itself is backwards
compatible to ISO Latin-1, there is no Unicode transfer encoding that leverages this. In the
course of this data type working group, we tried to pursue the Unicode maintainers to adopting a
more flexible UTF character encoding that would allow backwards compatibility to Latin-1 and
other ISO 8859 character sets. However, we did not succeed, more UTF specifications are not
welcome. Notably, it were the European Unicode participants who did not think that such a UTF
would be a good idea.

It is the task of the ITS layer software to convert any incoming character encoding into the
encoding that the application can handle. There is no requirement for applications to use Unicode
internally and no requirement for ITS to not support other character encodings, such as ISO
Latin-1, or the various Japanese character encodings. The ITS layer software would translate the
characters to any kind of encoding that the application software can handieaRyole

® For most Java-based applications the ITS layer would most likely convert incoming UTF-8
byte format to Java Strings, which use 16 bit per character internally. This is a basic
functionality of the Java corkPI.

® Most UNIX-based C and C++ character functions treat one character as §h6 or 32
bits depending on the CPU native word size) not as a byte. However the quick and easy
approach in C is to usecdar * as a string, which is just an array of 8djiaracters.

For those and many other environments that stick to the equation 1 char = 1 byte, the
application could choose to use UTF-8 strings internally where the normal US-ASCII
characters are represented as single bytes. Those applications would tell their ITS software
that it should convert everything trF-8.

® A very old legacy system that internally usgsaaked array of char where a
character has only 7 bits, or that for some other reason strips 8#'th&, would tell their
ITS implementations to convert incoming characters to UTis{éad.

The key issue is that the ITS layer always performs some translations on the character encoding
according to the encoding of incoming messages and the needs of the application. Although
HL7’s scope is on the message format only, we do recommend that implementors of ITS layers
be aware of this character encoding feature they should implement. What is important is that the
notion of different character encodings does not exist on the HL7 application layer. No HL7
specification would be valid that makes any assumptions about character encodings or
encoding-related escape sequences on the application layer.

46 22 Mar 1999 DRAFT version 1.0

2.3 Free Text

2.2.6 Unicode and XML

Using Unicode with an XML-based ITS is the most natural thing to do, since XML is itself aware
of the Unicode and its encodings UTF-8 and UTF-16 are required features of every XML parser.
In fact, the XML concept of characters served as a model for this HL7 data type specification.
ThelXML specificatiop(http://www.w3.0rg/TR/1998/REC-xmI-19980218fates:

2.2 Characters

A parsed entity contains text, a sequence of characters, which may represent markup or
character data. A character is an atomic unit of text as specified by ISO/IEC 10646
[ISO/IEC 10646]. Legal characters are tab, carriage return, line feed, and the legal graphic
characters of Unicode and ISO/IEC 10646. [...]

[.]

The mechanism for encoding character code points into bit patterns may vary from entity
to entity. All XML processors must accept the UTF-8 and UTF-16 encodings of 10646;
the mechanisms for signaling which of the two is in use, or for bringing other encodings
into play, are discussed later, in "4.3.3 Character EncodiRgtities".

XML 1.0, 2.2Characterfhttp://www.w3.0rg/TR/1998/REC-xml-19980210#charsets)

Since XML uses Unicode internally, there is no need and no way to specify different character
encodings in different sections of an XML based HL7 message. There is no interference of
Unicode and XML whatsoever. Thus the requirements to character strings stated here are no
obstacle to using XML.

2.3 Free Text

To cope with the various encoding formats of appearance, there will be only one data type for
free text. This type will have essentially two semantic components: It will (1) contain the free
text data and (2) specify the application which can render that free text data. The application to
render the data will be specified by a media type code, similar to the Internet MIME standard [cf.
[REC 204H(ftp://ftp.isi.edu/in-notes/rfc2046.t4tpr HL7 v2.3's ED data type. The only problem

is what data type to use for the free text data.

Some formatted text could be defined on top of string data. Due to the backwards compatibility
of Unicode to ASCII and ISO Latin-1, the simple typewriter-style formatting, the troff escape
sequences that were used by HL7’s old data type FT and HTML/SGML formatting is possible on
top of Unicode strings. In addition to the string data, we have to indicate the formatting method
that should be used by the receiver to render a given string correctly.

DRAFT version 1.0 22 Mar 1999 47

ftp://ftp.isi.edu/in-notes/rfc2046.txt
http://www.w3.org/TR/1998/REC-xml-19980210#charsets
http://www.w3.org/TR/1998/REC-xml-19980210

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

Most proprietory text formatting tools, however, do not fit in the character string, because those
application use their own proprietory byte encoding of characters and their display properties.
Proprietory word processor files and multimedia data is best regarded as an opaque sequence of
bits (or bytes) that are rendered by a special application software that understands the given
stream of bits. For those, we need to go back behind the character strings to raw bits and bytes.

There seem to be two options. Either we consider it be the task of the ITS layer (the encoding
rules) to support the communication of raw bytes data, or we encode raw bytes in strings using
the base64 encoding.

With the traditional HL7 encoding rules that were unable to encode raw bytes, raw data had to be
sent on top of character strings. This, however, is wasteful for encoding rules and transport
channels that can send and receive raw bytes easily. In our definitif@hafacteStrind [p. 40]

it is wasteful to first construct character strings from bytes, only to transform the character strings
back to bytes.

It therefore seem reasonable to define a data type for raw byte strings to complement the
character string data type. The raw byte type would be used only by the data type for free text,
though. There is hardly any use case for HL7 application domain Technical Committees to use
byte string data types directly.

Using byte strings instead of character strings for free text is not only a good idea for proprietory
application data or multimedia data, but is also supported by a closer look to standards such as
HTML, SGML or troff. While those formats are defined on a notion of characters instead of
bytes, the applications that implement HTML, SGML or troff, have their own means to interpret
byte streams as character encodings (e.g. HTML MiS A element and XML defines the

character set in itsXML header element. More traditional formatting with troff is not even able

to handle the full abstraction of characters that comes with Unicode and thus is also based on
byte strings rather than character strings.

As a conclusion, we can uniformly define the free text / multimedia data type as the pair of media
type selector and raw byte data. If the sender does not want to use any of the format options for
free text but just wants to send the raw characters, he can indicate this with a special media type
(t ext/ pl ai n). It seems justified to make the plain text media type the default.

2.3.1 Multimedia Enabled Free Text

The multimedia-enabled free text data type consists of the following components:

48 22 Mar 1999 DRAFT version 1.0

2.3.1 Multimedia Enabled Free Text

Free Text

The free text data type can convey any data that is primarily meant to be shown to huma
for interpretation. Free text can be any kind of text, whether unformatted or formatted wr
language or other multi medikata.

n beings
tten

used fofCharactefString
[p. 40]

data

component . . . L
name type/domain optionality description
CodeValug|[p.
. 116 : used to select an appropriatd
media . optional
descriptor using IANA defaults tat ext / pl ai n method to render the free tey
defined MIME data
typecodes
. contains the free text data ag
data [Binary Datd[p. 55 |required rawb
ytes
- indicates that the raw byte data
. CodeValugp. : is compressed and what
compression 116 optional compression algorithm was
IANA definedcode P g
used
optional
for character-oriented in case of character based
CodeValug[p. mediatypes media, indicates the charactg
charset 116 defaults to the encoding |set/encoding of the raw byte
IANA definedcode 9 g y

Other components may be defined for certain media types. This serves as a way to map MIME
media type "parameters” to this Free Text data type. An exampledkdrsetcomponent,
which is a parameter of the MIME media tytpext / pl ai n.

The media type descriptor of MIMBFC 204{(ftp://ftp.isi.edu/in-notes/rfc2046.txgonsists of

two parts:

1. the "top level media type", and
2. the mediasubtype.

However, this data type specification treats the entire media type descriptor as on{Catbghic

[Valud [p. 11§ .

DRAFT version 1.0

22 Mar 1999

49

ftp://ftp.isi.edu/in-notes/rfc2046.txt

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

MIME media types and subtypes are defined byinternet Assigned Numbefsithority

(IANA). Currently defined media types are registered[databasé
(http://www.isi.edu/in-notes/iana/assignments/media-typaaihtained by IANA. Any of the

IANA defined media types is in principle allowed for use with the Free Text data type. But not
all media types have the same status in this specification.

The following top level media types are currently defined by the IANA:

NAME PURPOSE
t ext written textualinformation
I mage imagedata
audi o audiodata
vi deo videodata

appl i cat i on|some other kind ofiata

mul tipart data consisting of multiple MIMEntities

nessage an encapsulatediessage

"an electronically exchangeable behavioral or physical representation within a

model given domain'|[RFC 207 {(ftp://ftp.isi.edu/in-notes/rfc2077.tAt)

This data type is called Fr@ext , and so it seems strange, almost frightening, that the above list
contain media types likedeq application evenmessageShould there not rather be one data
typeonly for written text, one for audio, one for image, one for video, etc.?

The rationale that lead to the definition of the free text data type is that free text is information
sent from one human being to another human being. The receiving human being will - if she has
a method to render and see the information - be able to interpret this data. To understand the full
range of meaning of the word "text" we should have a lookWebster'sdictionary
(http://www.m-w.com/home.htm)

50 22 Mar 1999 DRAFT version 1.0

http://www.m-w.com/home.htm
ftp://ftp.isi.edu/in-notes/rfc2077.txt
http://www.isi.edu/in-notes/iana/assignments/media-types/

2.3.1 Multimedia Enabled Free Text

Main Entry:text

Pronunciation: t ekst

Function:noun

Etymology: Middle English, from Middle Frend¢axte,from Medieval Latintextus,from
Latin, texture, context, frotexereto weave -- more atECHNICAL

Date: 14thcentury

1 a(1): the original words and form of a written or printed work:(2h edited or
emended copy of an original wadbk a work containing suctext

2 a: the main body of printed or written matter on a plagehe principal part of a book
exclusive of front and back matter the printed score of a musicmposition

3 a(l): averse or passage of Scripture chosen especially for the subject of a sermon or for
authoritative support (as for a doctrine) (&) passage from an authoritative source
providing an introduction or basis (as for a speécha source of information @uthority
4 : THEME , TOPIC

5a: the words of something (as a poem) set to musimatter chiefly in the form of
words that is treated as data for processing by computerized equipntextediting
typewriter>

6 : a type suitable for printing runningxt

7 : TEXTBOOK

8 a: something written or spoken considered as an object to be examined, explicated, or
deconstructetd : something likened to a text <the surfaces of daily lif¢exsto be
explicated -- Michiko Kakutani> <he ceased to be a teacher as he betathe B. J.
Boorstin>

This multimedia data type remains totbgtin the sense of Webster’s definitidhb and8.

Clearly, word processor documents can contain images such as drawings or photographs. Modern
documents can embed video sequences and animations as well. Dictation (audio) is the most
important form of pre-written medical narratives. A scanned image of old medical records or of
handwriting is certainly text. In this sense, almost everything can be text, which is supported also
by thephenomenologianalysi§p. 7] given in the introduction.

There are currently more than 160 different MIME media subtypes defined with the list growing
quite fast. It makes no sense to list them all here. In general, all those types defined by the IANA
may be used. The downside is that so many options may lead to interoperability problems.

Therefore, this specification prefers certain media types over others and thus assures that there is
a greatest common denominator on which interoperability is not only possible, but that is
powerful enough to support even advanced multimedial communication needs.

DRAFT version 1.0 22 Mar 1999 51

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

Any IANA defined media type is classified as one of the followingcliegories:
mandatory

Every HL7 application must support at least the mandatory media types if it supports a
given kind of media. There should be one mandatory media type for each kind of media
(e.g. written text, image, audio, video, etc.). Without a very minimal greatest common
denominator we cannot guarantee interoperability. The set of mandatory media types,
however, is very small so that no undue requirements are forced on HL7 applications,
especially legacy systems.

In general, no HL7 application would be forced to support any given kind of media other

than written text. For example, many systems just do not want to receive audio data, because
those systems can only show written text to their users. It is a matter of application
conformance statements to say "l will not handle audio”. Only if a system claims to handle
audio media, it must support the mandatory media typauaio.

recommended

Other media types are recommended for a particular purpose. For any given purpose there
should be only very few additionally recommended media types and the rationale,
conditions and assumptions of such recommendations must be mad&gaery

other

By default, any media type falls into the categattyer. This category means, HL7 does

neither forbid nor endorse the use of this media type. Given that there will be a mandatory or
recommended type for most practically relevant use cases, the other media types should be
used veryconservatively.

deprecated

Some media types are inherently flawed, because there are better alternatives or because of
certain risks. Such risks could be security risks, for example, the risk that such a media type
could spread computer viruses. If a media type is classifiddm@ecatedthe rationale must

be stated and equally viable alternatives suggested. Not every flawed media type is marked
as deprecated, though. A media type that is not mentioned, and thus corwtiderby

default, may well béawed.

The following list shows the categorization of media types according to the above mentioned
rules.

52 22 Mar 1999 DRAFT version 1.0

2.3.1 Multimedia Enabled Free Text

Categorization of Important Medigypes

MEDIA TYPE CATEGORY USE CASE
Text
text/plain Lneafgﬂﬁtory for any plain text. This is our former TX détgoe.

text/x-hl 7-ft

recommended
for
compatibility to
HL7 v2.X

this represents the old FT data type. It's use is
recommendednly for backwards compatibility
with HL7 v2.x systems.

text/htm

recommended
could become
mandatory in

for any marked-up text, sufficient for most texty
reports, platform independent and widely
deployed.

al

L7

thefuture
for written text as completely laid out read-only
. . documents. PDF is a platform independent, wiglely
appl i cati on/ pdf recommended e .
deployed, and open specification with freely
available renderingpols.
There is a risk that general SGML/XML is too
recommended powerful to allow a sharing of general
text/sgm SGML/XML documents between different
for PRA .) . i
text/xm applications. However, this media type is to be
documents :
used to convey documents conforming to the H
Patient Recordvrchitecture.
this format is widely used, but it has its
text/rtf other compatibility problems, it is quite dependent on

the word processor, but may be useful if word
processor edit-able text shouldsieared.

appl i cati on/ nswor d

deprecated

this format is very prone to compatibility
problems. If sharing of edit-able text is required
text/plain,text/htm ortext/rtf

should be usenhstead.

Audio

DRAFT version 1.0

22

Mar 1999 53

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

this is the absolute minimum that should be

supported for any system claiming to be audio
capable. The content of the "audio/basic" subtype
is single channel audio encoded using 8bit ISDN

audi of basi ¢ mandatory mu-law [PCM] at a sample rate of 8000 Hz. This
format is standardized by: CCITT, Fascicle 1.4 -
Recommendation G.71Pulse Code Modulation
(PCM) of VoiceFrequenciesGeneval972.
this allows compressing audio data. It is an
recommended

Internet standard specificatiRFC 242]
(ftp://ftp.isi.edu/in-notes/rfc2421.t4t)its

implementation base imclear.

audi o/ k32adpcm for
compression

Image

portable networlgraphicdPNG
(http://www.cdrom.com/pub/png§ widely

supported lossless image compression standafd
with open source codevailable.

mage/ png mandatory

GIF is a nice format that is supported by almosf
everyone. But it is patented, and the patent holder,
Compuserve, has initiated nasty lawsuits in the
past. No use to discourage this format, but we fan
not raise an encumbered format to a mandatory
status.

mage/ gi f other

This format is required for high compression of
high color photographs. It is a "lossy"
compression, but the difference is almost
unnoticeable to the humansion.

mandatory
mage/ j peg for high color
images

this is recommended only for fax applications. The
format is not well compressed and G3 softwarg is
not verywidespread.

recommended

I mage/ g3f ax for EAX

although TIFF (Tag Image File Format) is an
international standard it has a lot of

mage/ tiff other interoperability problems in practice. Too many
different versions that are not handled by all
softwarealike.

not sure whether there is an interoperable image
I mage/ x- DI COM other file format in DICOM. | know of Papyrus, but is|it
a DICOMstandard?

54 22 Mar 1999 DRAFT version 1.0

http://www.cdrom.com/pub/png/
ftp://ftp.isi.edu/in-notes/rfc2421.txt

2.3.2 Binary Data

Video

this is an international standard, widely deployed,
vi deo/ npeg mandatory highly efficient for high color video; open sourc
code exists; highlynteroperable.

1%

the AVI file format is just a wrapper for many

vi deo/ x- avi deprecated different "codecs"; it is a source of lots of
interoperabilityproblems.
Other

this is an openly standardized format for 3D
models that can be useful for virtual reality typg of
nodel / vrmi recommended | applications and is used in biochemical researg¢h
(visualization of the steric structure of
macromolecules)

This major media type depends on the MIME
standard, the Free Text data type uses only wgnt to
use MIME multimedia type definitions, not the
MIME message format

mul ti part deprecated

This major media type this is used to encapsulate
e-mail messages in delivery reports and e-mail
nessage deprecated gateways, not needed for HL7. HL7 is itself a

messaging standard that defines its own meang of
delivery and HL7 is not used fermail.

Constraints may be applied on the media types whenever a Free Text data type is used, whether
at the time of HL7 message specification, or for a given application conformance statement, and
even in the RIM. For instance, suppose the Image Management SIG will eventually define a class
"I mage". This class Image would conceivably contain an attributeage dat a", declared as

Free Text. The IMSIG certainly would not want to see written text or audio here, but only images
(and maybe a video clip of a coronary angiography.)

2.3.2 Binary Data

Binary Data

Binary data is a sequence of uninterpreted raw bytes (8 bit sequenoeteto)

PRIMITIVE TYPE

DRAFT version 1.0 22 Mar 1999 55

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

Thedatacomponent of the Free Text data typaasa character string but a block of raw bits.
ASN.1 calls this an "octet-string,” which is the same as a "byte-string."” The important point is
that the byte string wouldot be subject to interpretation as characters, but must be passed
through from one application’s memory into the other application’s memory unchanged.

The ITS layer has therefore an additional tasks: to facilitate transport of raw byte strings.
Transporting bytes is different from transporting characters, this can not be overemphasized.
Traditionally, HL7 v2.x roughly supported binary data on top of character string data, either
through hexadecimal digits in escape sequence, or through base64 encoding used in the old HD
data type. However, this makes only sense for character-based encoding rules such as the
traditional HL7 encoding rules or XML. An efficient CORBA ITS, would not need this, as
CORBA allows you to transfer raw bytes without trouble.

Just as character encoding is an ITS layer issue, the encoding of bytes is an ITS layer issue
too. On the HL7 application layer we do care only for the unchanged communication of a
byte string.

However, when the multimedia type is used to convey plain text, the binary data will be
ultimately interpreted as plain text. Through this, character encoding should not be sneaked into
the applicatiorayer.

The ITS layer software should discover the special casexdf/ pl ai n media and perform the
character set translation according to the character encoding used for o@tiaeagteString
data. The ITS layer software can reuse the same machinery that handles character string
encoding.

If for any reason the plain text data is in an encoding different from the character encoding used
by character strings, this can be indicated througlkhthesetcomponent. The IANA maintains a

[code of characteget$(http://www.isi.edu/in-notes/iana/assignments/character-getsnust be

used for this purpose. This IANA code mentions many synonyms for each encoding. If one of
them are identified as the "preferred MIME name" it must be used instead of the other synonyms.
If none of them is defined as preferred by IANA, the first name mentioned should be used.

With t ext / pl ai n we have the issue of how lines are terminated. The termination of lines must
be standardized. The proper interpretation of the ASCIl and Unicode standard suggest that line
terminators consist of the two control charactensiagereturn U+000D andine feedU+000A.

This is also the Internet standard of terminating lines and it is native line termination of on
MS-DOS descendents. It is easy to comply to those canonical line terminators on Unix systems,
who natively use a singlene feedas an end of line. Apple Macintosh systems use those control
characters in reverse order, and those muswapped.

56 22 Mar 1999 DRAFT version 1.0

http://www.isi.edu/in-notes/iana/assignments/character-sets

2.3.3 Outstanding Issues

It is often useful to compress binary data, e.g. using the "deflate” byte stream compression
algorithm. This is used by gzip, and pkzip. Almost all data can be subject to byte stream
compression (except GIF, JPEG and MPEG, which are already maximally compressed.) Using a
media type oappl i cati on/ gzi p for compressed data is obviously not useful, since it would
override the description of the uncompressed data. The compmmeptessions to be used

instead. Either an IANA code is to be used or a subsequent revision of this specification will
mention a table of allowed codes.

2.3.3 Outstanding Issues
We will define a code for compression algorithms.

We recognized that there will be a reference data type defined to be used alternatively for huge
data blocks. Should the free text type be allowed to be replaced by a reference, or should it
contain a reference?

Video streams do not fit into a single message, an external stream protocol (such as RealVideo)
would be used. This could be accommodated through a reference data type.

DRAFT version 1.0 22 Mar 1999 57

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

3 Things, Concepts, and Qualities

3.1 Overview of the Problem Space

3.1.1 Concept vs. Instance

Most medical information comes as qualitative information: complaints, symptoms, signs,
diagnoses, goals, interventions, surgeries or medications, all of these are informations on a
nominal scale. But not only medical information, administrative data often is on nominal scales
too, e.g., patient class (inpatient, outpatient, etc.), insurance, health plan, and many other data
elements. These nominal scaled values are variables that can take on one value of a list of
possible values.

The semantic field on which we are now focusing contains more than just values on nominal
scales. Values on nominal scales are abstract concepts. For instance, thesenlsrsuch an

abstract concept. There is not some tangibbenanywhere in the world, only bodies whose

color is green, or green light being reflected from bodies (which is the same physical
phenomenon.) Likewise, there is ppeumonigo which we can point and say: "here comes
Pneumonia!" And although we would say that a Streptococcus pneumoniae bacterium is a real
physical body, we usually are not interested in the one bacterium lying in the lower left corner of
our microscope view area. What we are interested in is the concept of Streptococcus pneumoniae,
not the individual bacterium.

On the other hand, we often need to refer to individual thingsthigéable, orthis computer on

which | type. Individual things can be classified into conceptable ora computer. But when

we want to refer to individual things, we just do not want to classify. Referring to individual
things is thus the opposite from referring to concepts. In our data type model we have to serve
both needs, referring to concepts and referring to individual things. We can call individual things
“instances".

However, the distinction between "concept” and "instance” is not very crisp. Philosophically we
can easily argue that Gunther Schadow is a mere concept, (you might have seen me, but that is
not essential for your concept of Gunther Schadow). Through my writing | am currently a
concept in your mind that might have more or less shape but still it is likely to exist only in your
mind. Although Julius Caesar or Napoleon may have been real existing creatures, they now
persist as mere concepts.

An instance is something you can (merely) point to or touch or destroy. A concept can not be
pointed at, touched or destroyed. A concept can only be explained. Both, instances and concepts
have names, although these names have different characteristics. 1, as a living human being, am
an instance and | have a name: "Gunther Schadow." By contrast, "headache" is something one
can explain. When you feel you own headache, your present headache might even become an
instance for you, but your particular headache is rarely an instance for others.

58 22 Mar 1999 DRAFT version 1.0

3.1.2 Real World vs. Artificial Technical World

Thus "headache" is a concept. The Hypertext Transfer Protocol (HTTP) is a concept as well. You
can not point at HTTP, you can not touch HTTP, you can not destroy HTTP. But you can explain
HTTP. You can explain HTTP to your wife, but you can not explain Gunther Schadow to her.
You can tell her about your experience with meeting me on phone or e-mail, but you can not
"define” or explain Gunther Schadow. Instances can be assigned to categories. You can say that
Gunther Schadow is a human, male, and living in Indianapolis. That categorizes me in certain
manners, but it does not explain me.

Generalization and specialization are relationships between concepts, not instances. Gunther
Schadow does have neither a generalization nor specializations. We too frequently blur that
distinction between concepts and instances, when we talk about a "parent-class" or "children of a
class." Parent/child are relationships between instances, not classes. But the metaphor of the
genealogy for looking at concept-relationships is very very old (Porphyrius, an early
commentator, perhaps a student, of Aristoteles.)

Gunther Schadow has parents and | do have a child. Headache has no parents and "tension
headache" may be a specialization of headache, but it is never a child of headache. As such the
very term "inheritance" is distracting, since inheritance exists only among instances, not
concepts. We have to be very careful about our metaphors.

3.1.2 Real World vs. Artificial Technical World

The term "instance" is also in opposition to "class". In the object-oriented paradigm (actually
originating with Aristoteles 400 b.C.) there are classes that are concepts of real things and
instances (or individuals) which are the real things themselves. In object-oriented language we
would probably want to say "class" vs. "object”, however, this distinction is ambiguous, since
people often point onto a box in the RIM labeled "Patient” and say "this is the Patient object". It
is the class, not the object. But of course, when dealing with classes in computer systems, they
too become objects (sometimes called meta-objects).

Within computer systems everything tends to blur up. Every object oriented language has
pointers (or references) to objects (= instances). Some treat classes as meta-objects (e.g., Java
does). In any case, an instance in your computer memory or on a file can be pointed to (using an
index, pointer, database key, or whatever). It can be "touched" (modified, directly examined), it
can well be destroyed. But it can not be explained. It can be copied, though, and as such it
becomes like a concept. But "real" object-oriented systems (like CORBA) do not allow you to
just copy an instance.

Computer systems shed a whole new light on the problem space. There are class instances on
healthcare information systems, that refer to some real world instances. Thus, a record in a
patient registry refers to a real existing patient. Both the patient record and the human patient are
related, but not the same. Thus there is a new pair of antonyms: real things and reflexions of
things within information systems.

DRAFT version 1.0 22 Mar 1999 59

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

Although, HL7 deals primarily with reflexions of things within computer systems, there is this
important linkage between the information about things and the real things themselves that HL7
must care about.

It is very difficult to unambiguously link to real things. This is because instances can only be
pointed at. | can say "this table", but "this" does not mean anything for you if you are not here in
my office. | can describe my desk to you, but you will not be able to recognize the individual
desk from among others of the same kind. The only thing one can do about this is to search for
individual properties that only my desk has, e.g., a particular scratch. Thus, we can collect
information about instances and use this information to refer to the instance, in the hope that
there will be no second instance that matches the same description. But you never know.

An alternative to describing the scratches at my table is to put a tag on it with an inventory
number. My computer screen, for example, has such a tag on it with the inventory number
"2464" assigned by the Regenstrief Institute. Inventory numbers are a common way to refer to
individual things, we can easily put a tag on them.

But we can not put a tag on people. There is a custom to brand animals, but luckily in our culture
we do not brand human beings. We give names to human beings, names they remember from
about their second year after being born and until several days before dying, at average.
However, names do change, names are misspelled. Everyone who deals with healthcare
informatics knows something about the problem to identify people.

On the one hand, with computers and technical devices, some things become easier. For example,
real world concepts such as diseases or even colors are hard to describe. Modern science tries to
operationalize concepts, i.e. to provide a protocol by which you can reproduce an instance of that
concept or by which you can decide whether something is an instance of a given concept or not.
But operationalizations are a matter of consensus, and that consensus does often not exist, not in
everyday life and not in the sciences. Conversely, with computers and technical devices concepts
have crystal clear definitions and instances have exact locations and extent. For example, HTTP
has a specification that tells you exactly what to do to become HTTP compliant, and that allows
you to exactly decide whether or not you deal with an HTTP interface. If | dial a telephone

number, there will be precisely one phone ringing somewhere in the world.

3.1.3 Segmentation of the Semantic Field

In the introductory approach to our semantic field we found two pairs of terms that seem to cover
a lot of the phenomena that we have discovered: concept vs. instance and real-world vs. technical
artifacts. We try to sort out the phenomena we have to deal with in HL7 with the following 2x2
matrix.

60 22 Mar 1999 DRAFT version 1.0

3.1.3 Segmentation of the Semantic Field

CONCEPT INSTANCE
Coded using mostly Examples:
externally person names (oféN),
REAL defined codesystems: organization names (0XION),
WORLD ICD9, ICD10,SNOMED, locations descriptors (old AD, and

DSM-IIl, DSM-1V, ICPC, PL),
LOINC, ICPM, CPT4etc. legal id numbers (SSN, DLI{c.)

Examples: Examples;
messagégype, mess.ageis, .

TECHNICAL order statusode, SerV|.ce catalogems,
S RIM instances (ordarumbers),
participation typeode, :
. phone numbers, e-mail addresses,

MIME mediatype. URLS

REAL-WORLD CONCEPTS are concepts that scientists and ordinary people deal with in their
minds and formulate in words. Communication must rely on commonly agreed terminology or
standard code systems. Those are mostly defined by external (i.e. non-HL7) organizations, such
as those organizations representing domain experts in a particular medical specialty.

There is currently a lot of overlapping, competition and complementation of code systems. It

does not seem as if this apparent disorganization could ever change because medicine and human
life in the real world is always changing. Thus, the communication of real world concepts will
always have to deal with issues of translating codes selecting the best matching "synonymous"
code from different code systems.

TECHNICAL CONCEPTS are labels for well-defined concepts, such as protocols. For
example: if we say "HTTP" we refer to the hypertext transfer protocol, that is an Internet
standard defined quite rigorously. If we ultimately want to know what HTTP is, we can read the
specification. However, most often we are not so much interested in what "ksIaHh what

its meanings, but we just want to use it. So we select an appropriate machinery (i.e. a web
browser) and use HTTP.

With TechnicalConceptghere is no use for different vocabulary, no use for using both "HTTP"
and "HypTexTranProt" to refer to the same technical concept. This is not to say that people could
not use different names or abbreviations for HTTP, but it means that there is no point in letting
everyone choose his own terminology for the exact same technical concepts.

DRAFT version 1.0 22 Mar 1999 61

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

REAL WORLD INSTANCES are individual people, organizations or things that we can meet,

point at, think of, go to, etc. The strongest "definition” we can ever make is to point at those

people or things, touch them or take them into hands and show them. But in documents and
human communication we commonly use Names, some officially assigned Identifiers (i.e. social
security number, or driver license number). Places are named using residential addresses, or other
kinds of locators (e.g., building->tract,->floor->room->bed).

Things are most often pointed to (e.g. "givetinie screwdriver"), or described (e.g., "give me

the long screw driver ... no, the stronger one"). In larger context where we can neither point to
things, nor could unambiguously describe things, we just assign arbitrary inventory numbers to
the things.

In general, identifiers fdReal Worldinstancesare quite rich of intricacies and we will address
those later. The common approach for data types is already laid out by HL7 v2.x: i.e. PN, XON,
DLN, AD, PL, and the like.

TECHNICAL INSTANCES are instances that are useful in some technical sense. Just like with
TechnicalConceptsve are less interestedknowwhat exactly those instances are. Rather, the
reason why we name technical instances is because we weaetihhem. In case of HL7 most of
those technical instances will be particular data instances, such as messages, order numbers,
service catalog items, or any other instance of a RIM class that we can refer to.

But Technicallnstancesare also things like telephone numbers and e-mail addresdagam
Resourcd.ocators(URL) to Web pages, images, or chat rooms. The general idea is that what
you do with a phone number is to pick up your phone and call your party. You would not search
the phone book in order to find the address of where a given telephone is located and to meat
your party there. Searching the phone book for an address would be to find out what a given
telephone numbeneansIn most cases, we choose to direatgthose telephone numbers by
simply picking up the next phone and dial that number.

The same is true for database records or data instances on computer systems, we do not go and
analyze memory dumps of computer systems in order to find out what alg@enicalinstance

really is, we just use them in some machinery that, for instance, lets us query for a given record
entry, lets us change that record entry.

3.2 Technical Instances

There are two different modes of referring to technical instances. You adeiffijy an instance

among other instances present in a set (e.g. identifying a record in a data base). For instances that
are not immediately present, one canl¢Zatethat instance bgereferencing pointer.

However, there are many similarities between instances and pointers. It appears that those
identifiers can have three levels of quality. They can be

62 22 Mar 1999 DRAFT version 1.0

3.2 Technical Instances

1. unique (globally)
2. un-ravel-able
3. de-reference-able

Unique Identifiers

Suppose you are given two identifiers. What you can always do is to compare them literally (i.e.
character by character.) Now, if it turns out that these identifiers are literally equal, what do you
know? You know that they both refer to the same identical instance if and only if you can be sure
that the literal match of both identifiers is not accidential because of some naming conflicts.

Through narrowing down namespaces we can achieve uniqueness of identifiers quite easily. This
is for example why in computer programming local variables in procedures are safer than using
global variables. The real important quality of uniqueness is that identifiegtoaedly unique.

Global unigueness is generally achieved by a structure defined in the following piece of BNF:

<identifier> := <name> <namespace>

<namespace> := <identifier>

Obviously this is a recursive structure, i.e. every namespace is itself identified by a name in its
parent namespace. This recursion up the namespace hierarchy must somehow be terminated. This
is done by assigning one globally unique namespace, where names are valid without the

reference to another namespace.

The uniqueness of an identifier does not imply, however, that a given instance could not have
several names. Thus, if you compare unique identifiers literally and you find that they do not
match, you know nothing. Both identifiers can still refer to the same instance.

Un-ravelable Identifiers

An identifier is "unravelable" if we can analyze its pieces, and for each piece, we can find
someone to talk to.

Internet domain names (DNS) are unravelable expressions. For example we can unravel the
string"f al con. i upui . edu” from the right, wheréedu" is maintained by Internic (the
organization that assigns top level Internet domains). Whendirena University Purdue
Universitylndianapolis(IUPUI) registered its domain narfieupui " with the Internic, they had
to name an official person who is responsible'farpui ". That person knows whét al con™

is.

ISO Object Identifiers (OID) are unravelable too. ISO OIDs are unraveled from the left. For
example,

DRAFT version 1.0 22 Mar 1999 63

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

1.2.840.10008. 421292. 87828. 333433. 001
stands for
ISO (1) ISO member body (2) USA (840) DICOM Standard (10008) AGFA (421292)

The left most numbers are registered with gigantic organizations. Eventually, a company like
AGFA gets a number allocated, say, 421292. It then creates machines where one of the machines
has the number 87828. That machine allocates numbers to an imaging study (333433), that
contains a series of images (001).

In unraveling an ISO OID we walk the path down basically the same way as with DNS names.
DICOM has registered people with in the US member body of ISO (ANSI). AGFA has registered
people to DICOM. They, or someone in the radiology department, could probably tell you that
87828 is the CT machine in the trauma center. Finally, the machine itself allocates identifiers at
"computer speeds” to things like studies and images.

You can try out how it feels to unravel an OID using the information compilgtabsid T]
[Alvestrandi(http://www.alvestrand.no/objectid)

HL7 filler orders are somewhat unravelable. For example, you are given the filler order
"1234"OUTPATI ENT. LAB". If you could figure out what department the symbol
"OUTPATI ENT. LAB" referred to, then you could call them up, and ask them about item
"1234".

As we can see, the quality that an identifier is unravelable is a result of the way the namespaces
are managed. Both ISO OIDs and Internet domain names are organized through hierarchical
namespaces.

De-referenceable Identifiers

An identifier is "dereferenceable” if there is a machinery that resolves those identifiers for you
rather than requiring you to go the rather painful way of unraveling. For Internet domain names
there is such a machinery dedicated to resolve names. l.e. the domain name service (DNS). The
Internet name server next to you will resolve the address for you quite seamlessly. There is a
whole infrastructure of domain name services, which is why it takes so long to get an answer
from a DNS server if you typed in a wrong domain name: your DNS server asks another server
that asks another server and so on.

For ISO OIDs there is no such easy way of dereferencing. In some cases there may be catalog
services (e.g., X.500) that can resolve a subspace of the whole gigantic OID namespace.

64 22 Mar 1999 DRAFT version 1.0

http://www.alvestrand.no/objectid
http://www.alvestrand.no/objectid

3.2.1 Technical Instance ldentifier

A telephone number, however, is a perfectly unique and dereferenceable identifier if we start at
the root of the namespace provided by the global telephone system. Fax numbers are usually
written in a standardized way, where for instahe$9308153355" used to be my old fax and
phone number in Germany, whitle13176307960" is my office phone number in U.S. All you
need to do to dereference such a phone number is to pick up your phone, dial the prefix for
international codeg'+"), dial the other digits and my telephone will ring.

Unified Resource Locators (URL) are another example of dereferenceable identifiers. For
instance,

http://aurora.rg.iupui.edu/v3dt

is the version 3 data type project’'s homepage. Your browser and the Internet does everything for
you after you typed in this URL. URLs start with naming the protocol to use, the rest of the URL
is a literal that the protocol is supposed to understand. For example, | can watch the same
homepage as a local file using the URL

file:/home/schadow public_htm /v3dt/index. htm

In general, for an identifier to be dereferenceable it need not be practically un-ravelable. For
instance, a telephone number is for all everyday purpose not unravelable (only law enforcement
is given this privilege). You may be able to figure out a country code (1 for U.S.) and an area
code (317 for Indianapolis), but you will have a pretty hard time to find the number 6307960 in
the phone book of Indianapolis.

The important point about dereferencing identifiers is that you do not get down to their
"meaning" in the real 3D world through the process of dereferencing. l.e. unless you come into
my office, you will never see my machifi@ur or a", featuring the above homepage. And the
machinery that dereferences URLs seamlessly does not bring you into my office. All you can do
is to look at what the Internet/HTTP/Browser machinery brings to your screen as a result of
dereferencing the URL identifier. Likewise with the telephone you can call me, but you cannot
creep through the wire to see my telephone.

We therefore create two different data types for referring to technical instances, one for technical
instance identifiers and another for technical instance locators.

3.2.1 Technical Instance Identifier

DRAFT version 1.0 22 Mar 1999 65

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

Technical Instanceldentifier

This data type is used to uniquely identify some entity that exists within some computer gystem.
Examples are object identifier for RIM class instances, things like medical record numbey,
placer and filler order number, service catalog item nunaber,

component . . . -
name type/domain |optionality description
This is the required field that guarantees the
uniqueness of the identifier and that permits the
. g Ot he | AL P
root identifiel [required | origin of the identifier to be determined (un-ravelgd).
66] P This can be the only field in institutions that use
OIDs for their internal objecatentifiers.
The extension can be used in case an institution pses
non-OID identifiers locally and does not want to map
. . every internal identifier to OIDs. Especially useful if
extension [Strind [p. 4Q] optional | \ocal identifiers are not purely numeiidis
field may never ever be send alone without the
connecting rootOID.

HL7 identifiers for technical instances are to be unique. For identifiers to be unique we have to
manage the global namespace. Most importantly every identifier must be explicitly linked to the
root of the namespace hierarchy. Since HL7 has acquired a branch in the tree of ISO OIDs we are
free to use OIDs in a similar way as DICOM uses OIDs heavily and directly.

In order to foster interoperability the technical instance identifier requires ISO Object Identifiers
to be used. No other alternative unique identifier scheme is permitted. ISO Object Identifiers are
very common, and sufficiently easy to acquire.

Many existing HL7 systems do not assign purely numerical identifiers for the technical instances
in their realm. For instance they may use alphanumeric unique keys into any data file. We do not
force people to adopt a pure OID scheme for identifiers.

HL7 can, however, assign OIDs to everyone who writes applications for HL7 and to everyone
who maintains HL7 communications. On that basis, people are free to attach their own naming
scheme to their standard OID. If they want, they may use OIDs in their realm, but they may also
use free-form identifiers in the extension component.

Organizations can use OID that they already have acquired from elsewhere (e.g. through
DICOM). HL7 assigned OIDs are not required. HL7 assigns OIDs as a service to its members
and users, but does not require OIDs to root in the HL7 branch.

66 22 Mar 1999 DRAFT version 1.0

3.2.2 ISO Object Identifiers

3.2.2 ISO Object Identifiers

ISO Object Identifier (OID)
The ISO Object Identifier is defined by ISO/IEC 8824:1990(E) cl28se
PRIMITIVE TYPE

The ISO definition of Object Identifier reads as follows:

28.9 The semantics of an object identifier value are defined by referencelij@en

identifier tree. An object identifier tree is a tree whose root corresponds to [the ISO/IEC
8824 standard] and whose vertices [i.e. nodes] correspond to administrative authorities
responsible for allocating arcs [i.e. branches] from that vertex. Each arc from that tree is
labeled by an object identifier component, which is [an integer number]. Each information
object to be identified is allocated precisely one vertex (normally a leaf) and no other
information object (of the same or a different type) is allocated to that same vertex. Thus
an information object is uniquely and unambiguously identified by the sequence of
[integer numbers] (object identifier components) labeling the arcs in a path from the root
to the vertex allocated to the information object.

28.10 An object identifier value is semantically an ordered list of object identifier
component values. Starting with the root of the object identifier tree, each object identifier
component value identifies an arc in the object identifier tree. The last object identifier
component value identifies an arc leading to a vertex to which an information object has
been assigned. It is this information object which is identified by the object identifier
value. [...]

From ISO/IEC 8824:1990(E) claug8

The following diagram shows part of the huge ISO Object Identifier tree referred to in the
definition.

DRAFT version 1.0 22 Mar 1999 67

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

ICU 9
O
F
g 3 o
Q S\ X S
0%es™ 66(\\6\0\60, (\6\0\(\
@) O
s\‘)’\\
0«\6 users (jvendors
(UHL7 identified org.
11388 L7
421292(JAGFA
10008@DICOM 1@Iinternet 1@US org. 101@US Gouvt.
840@USA (ANSI) 6@US DoD 840@0USA
2@(SO member body ~ 3@ISO identified org. 16@country assignments
0 T 1@(so joint ISO/ITU-T

Figure 3: The the hierarchy of ISO Object Identifiers and how it could be used biL7.

Rather than as a composite data type, we treat ISO Object Identifiers as primitives. However,
through their semantic structure, there are a number of operations that can be performed with the
object identifier, including test for equalness and subsumption (i.e. partial match from the left).
Just like in DICOM, ISO Object Identifiers may be treated as character strings by the ITS layer.

How difficult will it be to acquire OIDs?

ISO Object Identifiers come with the blessing of being world-wide unique and endorsed by the
International Organization foStandardizatior{ISO). At the downside, one might be afraid how
difficult it will be for small vendors and users to make all the bureaucrats happy just in order to

get one of such a unique Object Identifier.

The good news is that no HL7 vendor or user has to contact ISO in order to get an OID. OIDs are
assigned hierarchically so that every OID can itself be reused as the basis for a large tree of other
OIDs. As soon as you have one OID you are an assigning authority by yourself. No need for you

68 22 Mar 1999 DRAFT version 1.0

3.2.2 ISO Object Identifiers

to contact anyone else in order to issue other OIDs.

HL7 itself has acquired an OID recently. This makes HL7 an assigning authority. On the one
hand, we may use OIDs for HL7 internal things. On the other hand we could have one branch for
HL7 identified organizations. This branch could be subdivided into users and vendors.

A vendor who has acquired an OID could name all his HL7 related products machines, software,
single installations of their software and so on as OIDs in their subtree.

For example, the Letter Day Saints (LDS) Hospital in Salt Lake City would have an OID at the
user’s side. They can, for example, subdivide their tree in pediatrics/medical/surgical departments
where each of them may have an ICU subdepartment with its systems and subsystems and so on.
The Idea is that everyone can do with its part of the subtree whatever they want. Regenstrief and
Kaiser would have their OIDs to organize their namespace as they see fit.

The point is that you need to get only one OID from somewhere else. Once you have your first
OID, you do with it whatever you want. It is just like you can design your directory hierarchy on
your hard disk just as you want. You can stick to a convention, or you can do chaos, as you see
fit.

How difficult will it be to use OIDs?

One may hesitate to use ISO Object Identifiers within a system because of the amount of memory
they use up, in other words, the OIDs can become quite lengthy. Many legacy systems have their
pain threshold as low as 8 characters for identifiers. An OID would not fit into 8 characters. For
example, some instance in the LDS pediatric ICU might have the following OID:

2.16.840.1.113883. 4. 1.123456. 32. 101. 12345. 54321

That is 44 characters. DICOM has set the maximal length to 80 characters. We will not specify
any particular maximal length since length is a problematic concept for Object Identifiers and
OIDs are meant to be unbounded.

But there is even a way to get around with only 8 characters. Here is how:

No one should have troubdending oreceivingthose long OIDs. The problem with length is

only aboutstoring OIDs in data bases. Now, you can use an OID data base at your system that
can handle long OIDs and that maps those to 8 byte base 64 strings. Those 8 byte strings allow
you to enumerate a total 648 = 281,474,976,710,656 different identifiers. This is 2.818%,

a thousand-trillion numbers. Suppose you would waste those identifiers at a rate of 1000 per
second, your namespace would still not overflow in 8900 years!

DRAFT version 1.0 22 Mar 1999 69

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

What ISO Object Identifiers can and can not do

One might wonder whether it is possible to interpret OIDs in a globally agreed way. The
Andover Working Group tried to design the OID namespace structure in a way that OIDs would
not onlyidentify instances but would alstassifythem.

So the question is: can we parse an OID and get any information from it? Can we learn anything
about an instance just by looking at its OID? Things that we might what to find in an OID are:
What Application? What Facility? What Department? What Country? What Location? Which
Type? etc.

We have to review our goal: we wanted to design an unique identifier for technical instances.
Uniqueness that comes through hierarchical structure of the namespace brings with it the quality
of un-ravelability of identifiers. But the original meaning of "un-ravelable," was that unraveling

an identifier is a painful and slow process. You use the phone, calling up ISO, ANSI, HL7, LDS,
and so on until you have someone on the phone who is responsible for that number. Unraveling is
nothing that a computer could do for you automatically. (Automatic unraveling would be
dereferencing or resolving an identifier.)

Thus, in general, there is no way to impose any meaning on the parts of an OID.

However, owners of OIDs may "design" their namespace subtree in some meaningful way. For
instance, Intermountain Healthcare could assign an OID to each of its institutions, the next level
would contain departments. In each departments the number 1 would be the administrative
section, number 2 would be the ICU, number 3 would be the lab, number 100 to 999 would be
the normal inpatient wards, and so on.

Everyone is free to design and use his own OID structure to make decisions. However, no one
outside would be forced to do the same structuring. Thus, Intermountain Healthcare could base
it's message routing heavily on the structures of their OIDs, but as soon as they receive
something from the Utah State Dept. of Health or from the CDC, they would not necessarily be
able to infer any meaning from the OIDs assigned by those other organizations.

Can the root part of the OID be implied by some context?

This really asks whether we can reduce the size of messages by setting any specific context,
probably in the message header, which would be attached at the front of each incomplete OID
that appears in the message.

Apart from reducing message length, this does not seem to be a particularly useful feature. ISO
Object Identifiers do not support any left-side incompleteness. We probably need not bother.

70 22 Mar 1999 DRAFT version 1.0

3.2.3 Technical Instance Locator

The main benefits of the Technical Instance Identifier using ISO Object Identifiers are

e Simplicity (only two components!)

e Flexibility (OIDs are already quite flexible, the "extension” component gives you all the
rest.)

® |Interoperability (No worries for name clashes. No headache with local stuff. Actually,
everything is local, but those localities are well organized in the overalsgdtem.)

3.2.3 Technical Instance Locator

Another data type of technical instance identifiers is dereferencable identifiers, or "locators”. The
Technical Instance Locator (TIL) is shaped similaUtoversal Resourckocator (URL). That is

TIL has the two componengsotocolandaddressvhere the format adiddresswould be

determined only by the protocol. Telephone number, e-mail address, and the locator for the
reference pointer type would be of this dyize.

Technical InstancelLocator

This is a dereferencable locator for some instance. For example, a bunch of radiology images
that can be retrieved on demand. A given instance of this data type may not lhereaéd

component

name type/domain | optionality description

This mentions the protocol that can interpret the

- access string and can do something useful for the
CodeValug user to render the particular technical instance

protocol Er %e-}inical required |referred to. This may be spawning a WWW browser
with a particular URL, fetching a DICOM image apd
concepts : . :
show it, or opening a telephone connection to angther
party.
address This is an arbitrary address string that must be

[p. 40] required meaningful to therotocol.

This data type is basically the URL. However. URLs are not maintained by HL7 and HL7 may
need to have more freedom about defining its own protocols without adjustment to IETF needs.
For example, we telephone numbers are semantically clearly Technical Instance Locators. A
URL for telephone numbers does not exist, but it is conceivable how it would work. It would use
an auto dialer to dial the telephone number put the called party on hold and signal to the human
user that the line is opened. The human user would then pick up the phone and start talking.
Likewise a URL for FAX data would initiate calls to send or retrieve telefax messages
automatically.

DRAFT version 1.0 22 Mar 1999 71

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

Examples for values of the TIL type are:

(TIL
: protocol (CodeVal ue
:val ue "http"
: codeSystem " URL")
:address "//aurora.rg.iupui.edu/v3dt")

(TIL
: protocol (CodeVal ue
:val ue "ftp"
: codeSystem " URL")
:address "//radiol ogy.rg.iupui.edu/outbox/1ad832nd84nf. | pg")

(TIL
: protocol (CodeVal ue
:val ue "mailto"
: codeSystem " URL")
: address "your-boss@our - conpany. cont')

(TIL
: protocol (CodeVal ue
:val ue " PHONE"
: codeSyst em "HL7PROT")
:address "+13176307960")

(TIL
: protocol (CodeVal ue
:val ue " FAX"
: codeSystem "HL7PROT")
»address "+13176306962")

3.2.4 Outstanding Issues

We will still define as successor of the reference pointer (RP) to include the technical instance
locator but also more information about the thing that is referred. This would also include an
expiry date after which the locator can not be expected to be usable.

72 22 Mar 1999 DRAFT version 1.0

3.3 Real World Instances

3.3 Real World Instances

We refer to things in the "real world" generally by giving them names. Assigning names to

people, things and places are a public acts: the more people know some name, the more will later
understand what is meant by some name. In archaic cultures, knowing the name of something
meant having some power over it. Indeed, knowledge is power and without a name, we can not
talk about things, we can barely think of things, and we can not collect knowledge about them.
The record linking problem is a moderen example pointing out the importance of names. Names
are the communicative handles over things.

Alternatively, instead of naming things, we can describe them. The problem with descriptions is
that they refer to classes of everything that meets the description; but descriptions do not refer to
individuals. Of course, descriptions can be so detailled that there happens to be no second
alternative object in a given universe of discourse. Thus a description may identify an object.

As opposed to descriptions, a name is essentially an arbitrary token assigned to the object it refers
to. Since assignment of names is an action, it is performed by some actor. In the real world many
actors are entitled to assign names to entities. It thus happens that two or more things can be
given the same name. Moreover, the association between a thing and its name is not substantial,
thus, this association can be lost. Birth certificates, passports, or tags are artifacts aiming in
substantiating the name-thing-association.

This specification covers the following kinds of names:

[Real World Instanctdentifief[p. 74] (e.g., SSN, DLN, Inventory #, etc.)
[Postal and Residentiaddres§p. 83

[PersorNamé([p. 94
[OrganizatioName[p. 114

Real World Instance Identifiers (RWII) are tokens designed to generate regular names, names
that are handy and that have little ambiguity. Mostly those identifiers are designed to be easily
computer-processable. The difference ficieahnical Instancientifief [p. 65] (TII) is that the

Tl naming scheme is tightly regulated, and that TlIs are supposed to never go through the hands
of humans. Conversely, RWII does not regulate the naming scheme, and RWIIs are often tagged
on things, issued on id cards, and are typed into information systems.

The Person Name specification must deal with all the richness, variability, and ambiguity, that
the cultural elaborations of person names entail. Organization Names are very similar to person
names, however, we simplify organization names drastically, since it was felt that organization
names play a much less crucial role in health care than person names.

DRAFT version 1.0 22 Mar 1999 73

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

Addresses are also names for real world entities. The fact that locations tend to be extremely
stable over a long period of time determines the structure of the address kind of names.
Addresses determine locations by stepwise refinement of a scope (country - city - street - house -
floor). Most scope-name has all the characteristics of names, i.e. arbitrarily assigned,
non-descriptive, not unique. Apart from scope refinement all kinds of spacial descriptors can be
part of an addres (e.g. right hand side, opposite side.)

3.3.1 Real World Instance Identifier

Note: This section is a proposal of the Data Type working group and still needs to be
negociated withPAFM.

External identifiers for real world people and things occur frequently. Examples for people
identifiers are Social Security Number, Driver License Number, Passport Number, Individual
Taxpayer Identification Number. Identifiers for organizations are, e.g., the federal identification
number or the Employer Identification Number. The current approach in the RIM is to use the
Stakeholder _identifier class for those numbers.

Here are some of those identifiers used in the U.S.

® SSN used as a legal individual person identifier

e |TIN (Individual Taxpayer Identification Number), like an SSN but issued by IRS for aliens
not eligible for an SSN.

e EIN (employer identification number) used by IRS for organizations

FIN (Federal Identification Number?) for corporations

® DLN (Driver License Number). U.S. driver licenses are issued by the states. Driver licenses
in the U.S. are used as identity cards.

® The "Universal" (meaning "U.S.American") Health Identifier - if it will ever come.

® Health Care Provider Identification Number (?)

® PassporNumber

Other countries may or may not have similar identifiers. The interesting point is that such
identifiers are often used for other than the original purposes. For example, very few U.S. people
care about whether you have a license to drive, but they do want your driver license number
anyway in order to get hold of your identity (e.g., to trust your bank check.) The U.S. SSN may
officially not be used by everyone, but that does not keep everyone from using it as a pretty
reliable person identifier. Banks and employers must collect the SSN of their customers and
employees (resp.) for tax purposes.

However, there are other such identification numbers, not issued for persons. Those numbers
have basically the same semantics and the same requirements, except that those numbers might
be assigned for real world instances other than people or organizations. Examples are things, such
as devices and durable material (inventory numbers), lot numbers, etc.

74 22 Mar 1999 DRAFT version 1.0

3.3.1 Real World Instance Identifier

The public health / animal proposal, for example, has a concrete need for the following
identification numbers:

® |[ip tattoo - horses

® |eg tattoo - dogs

® ear tags - food animals

® microchips - all species

® breed registry number - dogs

® jockey club - thoroughbred horses
® (uarterhorse association

® US trotting association

® Holstein association regsitrycows

Such real world instance identifiers are assigned not only by big organizations but also by smaller
organizations. For example, virtually every organization puts tags with numbers on their
inventory.

Medical Record Numbers (MRN) as used in the world of Paper Medical Records are another
example for such real world instance identifiers. Note that in the computer world, we would not
need MRNSs, since we could uSechnical Instancientifiers(TII) to refer to computerized

medical records. However, Wes Rishel and | think that as a rule of thumb, Tlls should not be
communicated through human middlemen in order to keep reliability in their correctness high.
Thus, as long as MRNs are typed in by clerks and other people, one should separate them from
Tlls.

The basic structure of such a real world instance identifier is:

|[CharacterStrindp.
40]

value the identifier valuetself

validity Interval[p. 149 OF | covers effective date and expiration, begin and end
period PointinTime¢[p. 144 | date/timegtc.

. - A rough classification telling you what kind of identifig
kind CodeValug[p. 116 this is (e.g. SSN, DLN, Passport, inventaig.)

=

assigning An organization that has authority over and issued ar
authority identifier.

An organization may maintain different name spaces
without necessarily creating organizational subdivisiops.
Thus one assigning authority may maintain multiple
namespaces.

namespace| ?

DRAFT version 1.0 22 Mar 1999 75

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

The main methodological question is how we represent the identifier assigning authority. This
would usually be an organization, and hence would an issuing authority be represented by an
association to the Organization class. This is basically what the Stakeholder_identifier class does
in RIM 0.88.

However, this is also a problem. We are able to carry quite a lot of information about the
identifier assigning authority, which is good. But the structure is rather complex, which is bad.
Particularly, while we all know that SSN, DLN, etc are issued by organizations, we do not care
so much about that organization. The only thing we want to know is that a given number is an
SSN.

However, things become tricky if we try to shortcut. The problem is that SSN and DLN are valid
in realms defined by the issuing authorities. For example, for a DLN we need to know the state.
For an SSN in an international context, we need to know the country.

With a mandatory link to an assigning authority, an Indiana drivers license would be represented
as having the "Indiana Bureau of Motor Vehicles (BMV)" as an issuing authority. This is
troublesome because someone in California might not know that there is a BMV in Indiana. The
BMV, of course, is an affiliate of the state of Indiana, but communicating this as a
super-organization may be too much. In international contexts do, we would have to go once
more through the stakeholder-affiliate loop so that the receiver can find out that Indiana is
actually a part of the U.S. While this may be the correct solution, it seems to be rather
impractical.

The following principle options exist:

1. Association with stakeholder (or organization) as the assiging authority. A clean, but
somewhat verbous heavy weight way, as described.

Real World Instance Identifier (RWII)

value CharacterString

authority | reference t@®rganization

In this alternative we pointing out to an Organization class instance from inside the data
type? This is a weird construct that we have never seen before in the world of the RIM vs.
Data Typeglichotomy.

2. The Organization as an assigning authority would itself have one or more RWIlIs. Thus, one
represent the assigning authority recursively as a RWII.

76 22 Mar 1999 DRAFT version 1.0

3.3.1 Real World Instance Identifier

Real World Instance Identifier (RWII)

value CharacterString

authority RWII

This is a specific way to make the reference to an assigning authority Organization, i.e. by
looking up the organization through RWII.

3. An OID for assigning authority, which structurally renders the RWII similar to the TII but
with averydifferent semantics.

Real World Instance Identifier (RWII)

value CharacterString

authority | 1ISO Objectidentifier

This alternative, while structurally similar to thé# is in fact very different. The Tl is
supposed to be globally and dependably unique. This dependable uniqueness, can not be
required from real world identifiers, that are ofthen reported orally or on paper. Morover,
such numbers are often reused either accidentially (roll-over of counters) or voluntarily (old
number consideredutdated).

4. The traditional way to represent assiging authority would be through a single "code" from
some "mastetable”

Real World Instance Identifier (RWII)

value CharacterString

authority CharacterString

Options 3 and 4 are seemingly simple but they do lead to practicability problems: They don’t
scale. The OID is pseudo-unique and not meaningful (e.g. what is the OID of the state of
Indiana?) In both options 3 and 4 you have to interpret the authority part from some unknown
table or directory. This would not be a real problem if RWIIs would only be such official things
as SSN, ITIN, EID, FID, DLN, etc. But the traditional medical record numbers are assigned
locally. Also Inventory numbers for devices are assigned locally.

Options 2 through 4 use various schemes of forreign keys to refer to organizations, which
violates the MDF rules that forreign keys must be turned into explicit associations. Alternative 1
is principally open to whether or not forreign keys are used, but if Datatypes are considered
different from RIM classes the question is how such an association from a data type to a RIM

DRAFT version 1.0 22 Mar 1999 77

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

class could be made?

Regardless whether the MDF deprecate forreign keys, this identifier data type "wants to be a
forreign key" (as Mark Tucker puts it.) Indeed, this data type embodies the fact that we use
"keys" in order to refer to things accross (foreign) models.

Mark Tucker further offered the following "trick" to make alternative 4 useable and - to a certain
extent - interoperable: People could use use local codes for assiging authorities within their usual
communication horizon, assuming that master tables would be synchronized. For outside
communication, a "row" of such a master table could just be included in the message. This master
table row would be used to map "strings" to "things".

This allows for very short forms of identifiers, which is good. Conversely, representing assiging
authority as an Organization instance (alternative 1) would lead to ugly lengthy messages.

However, two problems arise:
It is not guarranteed that the strings for assigning authorities wouls be unioque within a message.
How would we represent this "master file" construct?

The Stakeholder hierarchy basically is such a master file structure. Thus the question is why we
would represent associations to "master" stuff differently for this data type than for all other RIM
classes?

There is no easy way out of this dilemma, which suggests to put this Real World Instance
Identifier "data type" as a class directly into the RIM. This allows the "data type" to associate

with other classes, such as organization. From this "data type" we can define CMETs and we can
implement those on ITSs however we like, i.e. we do not have to rely on a stereotypic
automatism to derive lengthy ITS representations when a short form would be more exonomical
and more pleasing to the "look and feel" of the message.

There is a number of RIM changes pending that need a discussion and vote jointly with PAFM
and CQ in the upcoming HL7 meeting (Toronféigure4 [p. 78] shows the structure around
Stakeholder _identifier as of RIM 0.88.

78 22 Mar 1999 DRAFT version 1.0

3.3.1 Real World Instance Identifier

Lots of changes, see teat Stakehalder_identilier
etiective_di
Ide gitlier_issuing_aul id
el i o idemnilier_iype_cd
mrmgn o i ~issved_di Lots of changes, see text.
= is_is5ued_byraualiying_imormation_ i
1(;1__1 termination_dh
i5_a ot 1
I:J *
v 0. 5_assigned o
Sigueholder_afliliation
atliligtion_iype oo
1| is_aasigned desc
Siguwehalder |]] Jetlective_d
g Faniekaes as primary_in - O-liermination_ci
credil_rating_cd '| has_as_primary_parficipan
email_address_
phan 0.'| has_as_secondany panigean
type_cd Rercaite
par icipales_a5_seson in
Stake holder_atfliliaie
1 is_a_role_of [family_reltionship_cd 4 Move
| takes_on_rok_ol Q.1 .
rd kT L 43‘636&‘:
4\ Class
]
Person
birh_diim
birthplaze_addr
ilize nship_coumy_cd .‘ 5 ng
@1 mrﬂdame-ﬁ]r_mrmrslm_od Move) Bel hwmrchy
1abues_on_roke_ol |1 deceased_diim
Y deceased_ind
Organization dizability_cd
organialion_nametype od ed il ion_lewe| oo
arganizalion_nm elhnic_group oo
. . standard_indusiny_claas_cd gender_od
is_a_subdirision_ol language cd
Q. marital_staius_od
0.7 Tes & & sdivisien mililary_branch_ol_service od

mililary_rark_nm
miliary_siaius_cd

| natio nality_cd ‘ Delete Attribute
primans_name_nep iesemal ion_sd

primany_name_iye_cd
primary_nm

raoe_cd
religious_allilistion_cd
siudeni_ocd
lwery_jmponam perzoncd |

Dlete association

Figure 4: Stakeholder_identifier as of RIM0.88t.

The changes in detail are as follows:

DRAFT version 1.0 22 Mar 1999 79

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

N o gk

10.

80

PAFM

. PAFM (Richard Ohlmann) suggested to pass Stewardship of the Stakeholder_identifier class

over to Control/Query.

Rationale: this class will undergo a broadening of scope. PAFM therefore no longer has to
take the burden of maintaining this class for everyone else. That’'s what Control/Query is
for.

CQ

. Rename class "Stakeholder_identifier" to "Real_world_instance_identifier".

Rationale: to signify the broadening of this classetpe.

Rename attribute "id" to "value" in order to disambiguate this attribute from a technical
instance identifier.

Assign Data Type Character String (ST) to the attribute "value”.

Rename Attribute: "effective_dt" to "validity _period".

Assign Data Type: "Interval of Point in Time" to attribute validity period.

Delete Attribute: termination_dt

Rationale: the two attributes effective_dt and termination_dt were used to signify the
validity period of the identifier. A period of time can more properly (and more compact) be
represented by the new data type Interval of Point in Time. This allows for infinite as well as
unknown begin and terminatialates.

. Delete Attribute: issued_dt

Rationale: it is unclear why date of issuing differs from effective date. There seems to be no
usecase to me (PAFM folks: please confirndeiend!)

. Delete Attribute: qualifying_information_txt.

Rationale: the use of this attribute is in part taken over by "namespace". Where it is not
handled through namespace different assiging authorities should be used. This prevents the
same information to be representable in diffevesys.

Rename class: "Identifier_assigning_authority"lteentifier_namespace”

Definition: A list of identifiers owned and managed by an organization stakeholder. An
organization that manages a name space is an identifier assagtinogity.

22 Mar 1999 DRAFT version 1.0

3.3.1 Real World Instance ldentifier

11. Remove alhttributes.

Rationale: This is no longer a role-class. Nobody could define the use case of the old
role-class and the begin/end time attributes. It seems to have been created as modeling
stereotype that was not uesfulpractice.

12. Add attribute "name" of type Character Str{&Y).

Definition: The name of a namespace is a symbol that might be used as a short form for the
namespace in messages. This accomodates the practice that assigning authorities are just
kept in a table of symbols, without attaching any real information abootghaaization.

13. Change role-names and multiplicities as showigure5] [p. 82]

PAFM
14. Move Attribute: citizenship_country_cd from Person to Stakeholder.

Rationale: in an international use context of HL7 it is necessary to keep track of the
“citizenship" of organizations as well as of individpalsons.

15. Rename Attribute: "citizenship_country cd" to "citizenship_cd".
Rationale: A shorter name is easier to read, write, speafanbrize.
16. Delete Attribute: "nationality cd"

Rationale: The difference between citizenship and nationality is unclear, did not exist in
HL7 v2.x, and thus, can lueleted.

PAFM

The following are suggestions for simplification of the stakeholder affiliation loop. These
changes are not essential to the Control Query related requirements. Nevertheless, since the
stakeholder affiliation loop would be used by all of Control Queries "customers” we have an
interest in this to be as cumberlespassible.

17. Move Attribue: "family_relationship_cd" from Stakeholder_affiliate to
Stakeholder_affiliation.

18. Reroute Association: from Stakeholder_affiliation "secondary_participant” to attach directly
at Stakeholder.

19. Delete Class: Stakeholder_affiliate.

DRAFT version 1.0 22 Mar 1999 81

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

20.

21.

Rationale: This additional relationship class on the "secondary"” leg of stakeholder affiliate
was primarily a modeling stereotype of little known practical use. The familiary relationship
can as well be carried by the stakeholder affiliate class where applicable. This leads to a
model that is simpler to use and simpler to understand while maintaining the same level of
expressiveness amaplicity.

Delete Association loop "subdivision" at Organization.

Rationale: this subdividing of organizations is a kind of "affiliation” relationship, which

would also be expresed by the "Stakeholder_affiliation" class. There should be only one way
of expressing affiliations (including subdivision).
Stakeholder_affiliation.family_relationship_cd should have a value reserved for subdivision
of organizations. Note that affiliation_type code is to express the "purpose” of a particular
affiliation (e.g. emergency contact), while family_relationship is the durable relationship
between stakeholders throughout all purposafillations.

Others

21.New Association: classes that would have a real world instance identifier, such as,
"Durable_medical_equipment" should be associated to the Real _world_instance_identifier
class. To exemplify that the new class can be used not only to identify stakeholders but also
things andanimals.

We can also reuse this data type in order to put the identifiers for stakeholders in their
proper place in the model, instead of pushing them all up into the highest level of the
hierarchy, i.e. the Stakeholdgass.

The following diagram shows the effect of the proposed changes.

82

22 Mar 1999 DRAFT version 1.0

Durable_medical_equipment

3.3.1 Real World Instance Identifier

Stakeholder_affiliation

affiliation_type cd
desc

effective_dt
termination_dt
family_relationship_cd

organization_nm

standard_industry_class_cd

birthplace_addr

deceased_dttm

deceased _ind
disability _cd
education_level cd
ethnic_group_cd
gender_cd
language_cd
marital_status_cd

military_rank_nm
military_status_cd
race_cd

student_cd

confidentiality _constraint_cd

military_branch_of_service cd

religious_affiliation_cd

very_important_person_cd

is_assigned | 0..1
Real world_instance_identifier
value : ST 1
type_cd : CV assigned_to {one-of}
validity period : INV<PT> 0 * =
from_namespace| Q. *
is_assigned |0..1
; Stakeholder
0..1 | contains —— is_primary_in 0.*
Identifier_namespace credit_rating_cd 1 has_as_primary
name : ST email_address_txt
phon
type_cd
managed_by|0..* c%tpi)zgnship cd 1 has_as_secondary
= is_secondary_in 0..%
manages|0..1
Organization Person
organization_name_type cd birth_dttm

known_by 0..¥

Person_name

name : PN
purpose_cd : CV

validity_tmr : IVL<PT>
primary_ind : BL

Figure 5: The Stakeholder_ldentifier has become the "Real World Instance Identifier" and is thus
useful for other things, such as the inventory number of medicalevices.

This is basically a stepwise RIM change as would be required for Harmonization. We will
discuss this with PAFM and other affected technical committees at the next HL7 meeting

(Toronto).

DRAFT version 1.0

22 Mar 1999

83

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

3.3.2 Postal and Residential Address

The old HL7 address data types (AD, XAD) regarded an address as a data structure where each
component had a special role. For instance, AD distinguished ZIP, city, state, country, street, and
other parts of the address.

Over time people discovered more information elements that could be known about an address
and added those elements as components to the address data type. Those additional components
where county, census tract, etc. Those information items would normally not appear on mailing
labels and one would not necessarily ask for them if oue would go visit someone under a given
address.

On the other hand it turned out that there are a number of information elements that do appear on
mailing labels which are nevertheless rare and therefore remained unclassified. For instance, U.S.
military addresses may have a unit designation "UNIT 2050" instead of a street and instead or in
addition to a city. The name of a ship (e.g. "U.S.S. Enterprise") can appear instead of a city.

Internationally there are other address parts that may exist in one country but may be unknown in
another country. For example, in U.S. addresses one finds directional codes like "N, "S", "W",
and "E", which are essential to find a given address in one city. Those direction codes are
unknown, for instance, in Germany.

Robin Zimmerman and Joann Larson have compilemhaiysis of U.S. and some international
addressebased on information of theiversal postalinior] (http://www.upu.int/)(UPU). This

work reinforces the observation that there are so many different kinds of address parts that
creating a fixed data structure where every part has its slot is impractical. Secaahs
world wideaddressegéhttp://www.upu.int/addressing/AN/AN.pdfs published by the UPU.
There is also an australian standard that defines the pieces an address is made up of.

Another problem with the old address data types was that they ordered the parts of an address by
the meaning of that part. The most important use case for address information, however, is
printing a mailing label. In order to generate a mailing label it doesn’t matter what the emaning of
the different parts of an address is, as long as those parts appear at the appropriate place on the
label.

The placement of address parts, however, depends on the country. For example, while in U.S.
and most European addresses the ZIP code appears somewhere at the end, Japanese ZIP codes
are written at the very top. In fact, Japanese addreesses are writen in the reverse direction: from
the most general locator tho the specific locations, with the name of the recipient appearing at the
end.

84 22 Mar 1999 DRAFT version 1.0

http://www.upu.int/addressing/AN/AN.pdf
http://www.upu.int/addressing/AN/AN.pdf
http://www.upu.int/

3.3.2 Postal and Residential Address

Even in addresses of the north western part of the world there are such differences as to how ZIP
code and city are placed. In Germany and most European countries, for instance, the ZIP code is
placed in front of the city, while in England, the ZIP code appears after the city name on a
separate line. In the U.S. the zip code follows the city and usually the state code. In most
European countries, special country codes (different from ISO 3166 country codes) are written
before the ZIP code (separated from the ZIP code by a dash). In U.S. and England country codes
appear at the end. In Great Britain, however, the ZIP appears even after the country designator,
whereas in the U.S.A. the country code appears at the very end.

In short, layout and meaning of address parts are independent (orthogonal) issues, but the address
data type must take care of both. The focus, however, is not on the meaning of the parts, but on
the layout. Although we could define a semantically very fine-grained address part classification,
those would be impractiacl to use with a large majority of existing information systems that do

not make those fine grained semantic distinctions. There are simply too many different address
parts and too many different country-specific variations, that may or may not really correspond.

Thus, focusing primarily on the layout of address labels is a way to establish a greatest common
denominator for interoperability. System A might store addresses in 5 lines. System B might
distinguish ZIP code, country, state and a street line. System C might distinguish a house-number
on the street line (common in Germany or Holland). System B can use system C’s addresses and
A can use addresses from both B and C.

It is still a problem how system C can find a house number in the street-line or how system B can
identify a street-line in a list of lines received from system A. Rather than forcing everyone to
make the most fine-grained distinction we require those systems who make the distinctions to
deal with the less distinctive addresses.

DRAFT version 1.0 22 Mar 1999 85

HL7 v3.0 Data Types Specification - Version 0.9

Gunther Schadow

Postal and ResidentialAddress

This Address data type is used to communicate postal addresses and residential addregses. The
main use of such data is to allow printing mail labels (postal address), or to allow a pers¢n to
physically visit that address (residential address). The difference between postal and regidential
address is whether or not there is just a post box. The residential address is not supposed to
contain other information that might be useful for finding geographic locations or doing
epidemiological studies. These addresses are thus not very well suited for describing thg
locations of mobile visits or the "residency” of homelessple.

A1

sed

cific
e

p Of

een

component . . : -
name type/domain | optionality description
A purpose code indicates what a given address ig to
be used for. Examples are: prefered residency (u
primarily for visiting), temporary (visit or mailing,
but sedHistony [p. 154), preferred mailing address
. (used specifically for mailing), and some more
purpose [Coii\é]alu optional | specific ones, such as "birth address" (to track
P addresses of small children). An address without
specific purpose code might be a default address
useful for any purpose, but an address with a spg
purpose code would be prefered for that respecti
purpose.
Indicates that an address is not working. Absencs
a status means "unknown" status, i.e., that is’'t
ﬁgd addresy [p- optional presumably a good address. If the flag is set
9 explicitly to falsg it means that this address has b
proven to work at leasince.
LIST OF This contains the actual address data as a list of
value mandatory | address parts that may or may not have semantig
[p. 86] tags.

86

22 Mar 1999 DRAFT version 1.0

3.3.2 Postal and Residential Address

AddressPart

This type is not used outside of fAddresHp. 85] data type. Addresses are regarded as a tpken
list. Tokens usually are character strings but may have a tag that signifies the role of the|token.
Typical parts that exist in about every address are ZIP code, city, country but other rolesfmay be
defined regionally, nationally, or on an enterprize level (e.g. in military addresses). Addrgsses
are usually broken up into lines which is indicated by special line bo&eaks.

~

cor:;)r?]réent type/domain optionality description
[CharactelString manda_tor)./ . The value of an address part is what
value exception: for line |. .
[p. 40] breaktokens is printed on dabel.
The role of an address patrt (if any)
CodeValug[p. . indicate whether an address part i
role optional :
114 the ZIP code, city, country, post bo
etc.
Purpose Codes for Address
Short| Long Meaning

R RES |residency used primarily to visit address.

PO |postal address used to sendil.

P
T TMP |temporary address visit or mailing, but stony [p. 154
B BRTH|birth address CDC uses those for clifonunization.

Role Codes for Address Parts

DRAFT version 1.0

22 Mar 1999

87

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

Short|Long Meaning
L LI T |literal this is the default rolecode
delimiter stuff, printed without framing whitespace. Line break if no value
K DEL)
componenprovided.
C CNT |country
T CTY |city (town)
state("E" as in Frenclétat, which should reconcile the French who have td'E%¢
E STA - "
for their"departements”)
Z ZI P |ZIP code
H HNR house number (aka. "primary street number", however, it is not the number qf the

street, but the number of the house or lot alongsidsttiet.)

11°)

additional locator can be a unit designator, such as appartment number, suit
number, but also floor. There may be several unit designators in an address|to

A ADL |cover things like: "3rd floor, Appt. 342". This can also be a designator that pqints
away from the location, rather than specifying a smaller location within some
larger one. Example is Dutch "t.0." to mean "opposite to" for hboats.

S STR |street name onumber

ST |STT |street type (e.g. street, avenue, road, lane, ...) (probably not eisefigh)
D DI R |direction (e.g., N, S, WE)

P POB |P.O.Box

Examples

Please note that the person name is not part of our address type even though it is mentioned by
UPU and Joann/Robin’s list.

A U.S. address

1028 Pinewoodourt
Indianapolis, IN46240
U.S.A.

88 22 Mar 1999 DRAFT version 1.0

Examples

(Address (LIST

(AddressPart :value "1028 Pi newood Court") ; LITis the default role
(AddressPart :role "DEL") ; DEL's value is newline by default
(AddressPart :value "Indianapolis" :role "CTY")

(AddressPart :value ", " :role "DEL") ; DEL cones w o extra space

(AddressPart :value "IN' :role "STA")

(AddressPart :value "46240" :role "ZIP")

(AddressPart :role "DEL") ; DEL's value is newline by default
(AddressPart :value "U.S.A " :role "CNT")))

A German address

Windsteiner We§4A
D-14165Berlin

(Address (LIST
(AddressPart :value "Wndsteiner Weg 54A") ; LIT is the default role

(AddressPart :role "DEL") ; DEL’s value is newine by default
(AddressPart :value "D' :role "CNT")
(AddressPart :value "-" :role "DEL") ; no whitespace before and after

(AddressPart :value "14165" :role "ZIP")
(AddressPart :value "Berlin" :role "CTY")))

White Space Rules

Address labels contain white space. The white space rules used in typestetting are not trivial. In
general two words are separated by white space. An interpuction mark, like a komma or period
follows directly to the preceding non-whitespace stuff, but those marks are always followed by
whitespace. Dashes are not surrounded by whitespace at all. Note the whitespace rules do not
really exist for languages such as Thai or Japanese where white space is basically not used.
However, you can always simply ignore whitespace, which is why Thai and Japanese are easier
to print. In any case, neither Thai nor Japanese would have whitespace where it was not allowed
in Latin script.

The difficult whitespace rules can, for the purpose of the Address data type be broken down into
only six precise rules:

1. White space never accumulates, i.e. two subsequent spaces are the same as one. Subsequent
line breaks can be reduced to one. White space around a line breakignificaint.

2. Literals may contain explicit white space, subject to the same white space reduction rules.
There is no notion of a literal line break within the text of a single addegts

DRAFT version 1.0 22 Mar 1999 89

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

3. Leading and trailing explicit whitespace is insignificant in all address parts, except for
delimiter (DEL) addresgarts.

4. By default an address part is surrounded by implicit wdptece.
5. Delimiter (DEL) address parts are not surrounded by any implicit vepiee.
6. Leading and trailing explicit whitespace is significant in in delin{iRiL) addresparts.

This means that all address parts are generally surrounded by white space, but white space does
never accumulate. Delimiters are never surrounded by implicit white space and every whitespace
contributed by preceeding or succeeding address parts is discarded, whether it was implicit or
explicit. For example, all of the following variants

(lit "1028") (lit "Pi newood Court")

(lit "1028 ™) (lit "Pi newood Court")

(lit "1028") (lit " Pi newood Court")

(lit "1028 ") (lit " Pi newood Court")

(lit "1028 " (lit " Pi newood Court")

are printed the same way:

"1028 Pi newood Court"

with only one white space between "1028" and "Pinewood Court".

A DEL address part is a delimiter, and would never be framed by implicit white space. As noted
above, a comma is always followed by white space, but this whitespace would have to be part of
the value part of the delimiter. HL7 systems do not have to enforce all those typographical rules.
For example, all of the following variants

(lit "I ndi anapol i s") (del”, ™) (lit "I N")
(lit "I ndi anapol i s ") (del”, ") (lit "I N)
(lit "I ndi anapol i s") (del”, ™) (lit" 1 N
(lit "I ndi anapolis ") (del™, ") (lit" I N

are printed the same way:

90 22 Mar 1999 DRAFT version 1.0

Examples

"I ndi anapolis, IN

with no white space before the comma and only one white space after the comma, i.e. the white
space that has been providiedrally in the delimiter value string. THiseral space could have
been missing, as in the following cases

(lit "I ndi anapol i s") (del”, ") (lit "I N")

(lit "I ndi anapol i s ") (del"”, ™) (lit "I NY)

(lit "I ndi anapol i s") (del™, ") (lit " 1 N")

(lit "I ndi anapolis ") (del",™) (lit" 1 N

(lit "I ndi anapol i s") (del”, ") (lit " I N)

which are printed all the same way:

"I ndi anapol i s, I N'

without the space after the comma. This is not good typographic style, but it is not enforced by
HL7 rules. No space is wanted around dashes, such as in European addresses:

(cnt"D") (del"-") (zip"12200") (cty"Ber | i n")
(cnt"D ") (del"-") (zip"12200") (cty"Ber | i n")
(cnt"D ") (del"- ") (zip"12200") (cty" Berlin")

which are printed all the same way:

"D-12200 Berlin"

The DEL address part does not need any value for a DEL’s value is a line break by default. Note
that our whitespace rules apply nicely to line breaks, since a line break makes trailing white space
of the previous line redundant and leading white space of the subsequent line is correctly
removed too.

DRAFT version 1.0 22 Mar 1999 91

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

Further Examples
The following is another U.S. address with maximal tagging of the address parts:

1001 W 10th Stre®G5
Indianapolis, IN46202
U.S.A.

(Address (LIST
(AddressPart :value "1001" :role "HNR')
(AddressPart :value "W :role "D R")
(AddressPart :value "10th" :role "STR")
(AddressPart :value "Street" :role "STT")
(AddressPart :value "RG" :role "LIT")
(AddressPart :role "DEL")
(AddressPart :value "Indianapolis" :role "CTY")
(AddressPart :value ", " :role "DEL")
(AddressPart :value "IN' :role "STA")
(AddressPart :value "46202" :role "ZIP")
(AddressPart :role "DEL")
(AddressPart :value "U S.A " :role "CNT")))

The instance notation shows how different the new address type is compared with the old HL7
AD/XAD types.

This address type is an interesting construct: It is kind of the inverse of a record data structure. In
a record, we have a bunch of slots that may or may not contain data. In this data type we have a
bunch of data that may or may not be assigned slots.

XML ITS

It is especially interesting to see how this data type maps into XML. An automatic mapping (as
the one used for the HIMSS demo) would create a very long unreadable XML. But the reason for
the popularity of XML is that markup can be added gently to a basically "human readable" text.
XML wise a much nicer represenation would be:

<St akehol der. addr TY="AD'>
1001 W10th Street RGS
I ndi anapolis, IN 46240
U S A

</ St akehol der. addr >

92 22 Mar 1999 DRAFT version 1.0

Examples

the contents of this address could now be refined:

<St akehol der. addr TY="AD'>
1001 W10th Street RGb
I ndi anapol i s</ A>, I N</ A> 46240</ A>
U. S. A. </ A>

</ St akehol der . addr >

note that in the above represenation we at least allowed address part roles to occur as XML
attributes. If DTDs were not used, one could even create a nicer representation if we turn the role
codes into XML tags.

<St akehol der. addr TY="AD'>
1001 W10th Street RGS
<CTY>I ndi anapol i s</ CTY>, <STA>I N</ STA> <ZI P>46240</ ZI P>
<CNT>U. S. A </ CNT>

</ St akehol der. addr >

Actually the address data type is an example for the paradigmatic use case of XML: a bunch of
data that may or may not be further marked up. It would be very odd if we would not use XML in
this classic way for this classic use case.

Outstanding Issues

Should we allow for address part values other than mere Character Strings? Especially, should
we allow for code values? Using code values seems to make sense for things like country code
and state. Using a code table for state or countries is of course safer and allows to process
addresses into groups.

While this is possible in general, we have three problems:

1. The data type definition and all of the instances would become more complex, since we
have to define the AddressPart.value as a type choice beGheeacterStringp. 40] and
CodeValugp. 116 (or everlConceptDescriptpip. 122 !)

2. While there are codes for U.S. states and countries|l®®.3166 CountnCode
(http://www.unece.org/trade/rec/recO3en.htthpse codes are not used uniformly. There
are two forms to abbreviate U.S. states, e.g., the Commonwealth of Massachusetts can be
"MA" or "Mass. ". While the ISO country code is suggested for international use, there is a

DRAFT version 1.0 22 Mar 1999 93

http://www.unece.org/trade/rec/rec03en.htm

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

long tradition in Europe to abbreviate countries in a different code (same that is used for
country stickers on cars.) Thus, the 1ISO code for GermdiiEsbut "D is used all over
Europe.

Since there are different code tables in use one might even requertbeptDescriptor
data type to account for the translations. This is a considerable overhead, fos@hat

3. The use case of codes in addresses is very limited. If a receiver really wants to rely on those
codes, we set up a number of requirements that did not exist before. (1) the address part
must be tagged with an explicit role, (2) the right code must be used by the sender. The use
case to code addresses is very localized, which means, the coding of address parts may be
needed in one application but it is not needed in many others. In order to print labels and
visit people, coded address parts areassential.

We probably do not whant to make the address data type any more complex than it already is.
HL7 should certainly natnposemore requirements to code certain address parts. It just seems
not to be a widely demanded use case pmory argument for coded address parts, which could
offset the lack of use cases, seems to not exist.

However, there is one powerful way in which the simpler address data type defined here can
meet the needs of those who would like to have coded address fields: type casting.

Through type casting a message would be valid even though the send@opeMalue or
ConceptDescriptoin place of a CharacterString. This means, a sender, who does code address
parts, is able to send his coded address parts to a peer, who also prefers to receive coded address
parts where possible. Thus, an implementation may behave as if the address data type would be
defined in a more complex way.

The point is, we don’t have to make the HL7 specification more difficult to understand and
implement for those who do not want this extra feature of coded address parts and still allow
those who want to deal with the extra work to go ahead and do it. This is another example where
implicit type casting in a well defined type system proves extremely useful: the canonical
specification can remain simple, and still extra requirements can be supported in a compatible
way!

3.3.3 Person Name

The HL7 v2 person name data types (PN, XPN) have basically the same problems as the data
type forfaddresséfp. ?7 . I.e., they try to make slots for data so that whatever name parts exist
must be fitted in one of the available slots. This has the same disadvantages: that name part types
do not classify in a simple and interchangeable way throughout all cultures, but still everyone
must use the same classification. Second problem is that the meaning of a name part and the
positioning of a name part are orthogonal (independent) aspects of a name. As an additional
problem, person names may occur in different ordering and some name parts are or are not used

94 22 Mar 1999 DRAFT version 1.0

3.3.3 Person Name

depending on the use case (e.g., formal vs. familiar style).
The decisions made here were informed by the following references:

1. Bidgood DW Jr, Tracy WRIn search of th@ame.Proc Annu Symp Comput Appl Med
Care, 1993, p54-58.

2. Bidgood DW Jr, Tracy WRANSI HISPP MSDS: COMMON DATA TYPES for
harmonization of communication standards in medit@rmatics.Final Draft. 10/30/1993.
Available aPostscrigt
(http://www.mcis.duke.edu/standards/HISPP/MSDS/CommonDataType1108\syd
(http://www.mcis.duke.edu/standards/HISPP/MSDS/CommonDataTypel1Q02.doc)

Hopkins R.Strategic short study: names and numberslastifiers. CEN TC251. Available
agPDHR (http://www.centc251.0rg/SSS/NandN/SSSNandN18.pd¥y/ord
(http://www.centc251.0rg/SSS/NandN/SSSNandN18 Nébte especially Appendix B:
National Namd-ormsby Arthur WaughAustralia.

4. Anonymus.A Study on names in the US and inietherlandsAvailablelheré
(http://www.mcis.duke.edu/standards/HL7/localization/HL7NetherlandsNames97-198.htm)

5. This conference call was based onaksheethat summmarizes some earlifscussions.

We first present the proposed data structure for person name and then we will show examples,
discuss ramifications, and justify why this particular design has been chosen.

Data Type Specification for Person Name

Earlier discussions included class person name and person name variant, but we found the
requirement to model person name as a RIM class. What we did not realize is that, similar to the
stakeholder id, our RIM class already exists, it only needs to be polished.

The RIM class Person_name will be developed from the class Person_alternate_name of RIM
0.88 jointly with PAFM. A person may have multiple instance of the person name class,
reflecting the multiple names the person is or was known by.

Within this RIM class, there is a code that indicates what purpose a given name is to be used for.
Most people in the world will have one name that is currently used.

DRAFT version 1.0 22 Mar 1999 95

http://www.mcis.duke.edu/standards/HL7/localization/HL7NetherlandsNames97-198.htm
http://www.centc251.org/SSS/NandN/SSSNandN18.rtf
http://www.centc251.org/SSS/NandN/SSSNandN18.pdf
http://www.mcis.duke.edu/standards/HISPP/MSDS/CommonDataType1102.doc
http://www.mcis.duke.edu/standards/HISPP/MSDS/CommonDataType1102.ps

HL7 v3.0 Data Types Specification - Version 0.9

Gunther Schadow

Name Purpos€odes

pther
hally
0

5 and

SYMBOL | SHORT DESCRIPTION
The name normally used. May be restricted through validity time
normal N .
intervals.
Name not normally used, but registered on some record, license or
license L certificate of professional or academic credential, but that is not norr
used (includes birth certificates, school records, degrees & titles, an
licenses.)
artist A An artist’s pseudonym includes "stage name”, writeame.
- Indigenous or tribal names, such as existing abong native American
indigenous |)
Australians.
Name adopted through practice of religion. For example, "Father
- Irenaeus,"” "Brother John," or "Sister Clementine" are religious name
religious |R

persons adopted through entering an order or assuming a religious

s that
pffice

or both.

Note that name purpose codes apply to an entire name that usually consists of several of the name
parts described below.

There is also a way to specify the validity time of a name.

This class also contains a representation of a single name variant as a list of person name parts
that may or may not have semantic tags.

Those RIM changes will have to be discussed jointly with CQ and PAFM at the Toronto meeting
in April 1999. We will seek definite closure on the issue in Toronto after which Harmonization
will be but a formal issue, since all relevant parties will have agreed to one proposal.

Person NamegPN)

This type used in the RIM class Person_name that will be developed from the class

Person_alternate_name of RIM 0.88 jointly with PAFM. Person names consist of[Regge
[NamePart$[p. 96] . Typical name parts that exist in about every name are given names, and
familiy names, other part types may be defined culturally.

LIST OF [PersonNamePai{p. 96]

96

22 Mar 1999 DRAFT version 1.0

3.3.3 Person Name

Person NamePart

This type used in the Person Name data type only. Each person name part may have a
signifies the role of the name part. Typical name parts that exist in about every person n
given names, and familiy names, other part types may be defined culturally.

ag that
ame are

component : , . -
name type/domain | optionality description
value Ch_aracter mandatory | The value of a namgart.
String
Classifications of a name part. One name part
e SET OFCode . fall into multiple categories, such as given nan
classifiers optional .)
Value vs. familiy name and name of public records v
nickname.

can
e

U7

Name ParClassifiers

SYMBOL |SHORT

DESCRIPTION

Axis1 This is the main classifier. Only one valuallswed.

Given name (don't call it "first name" since this given names do no

given G always comdirst)
Family name, this is the name that links to the genealogy. In some
family F cultures (e.g. Eritrea) the family name of a son is the first name of his
father.
A prefix has a strong association to the immediately following name
prefix P part. A prefix has no implicit trailing white space (it has implicit leading
white space though). Note that prefixes caimberted.
A suffix has a strong association to the immediately preceeding name
suffix S part. A prefix has no implicit leading white space (it has implicit trai|ing
white space though). Suffices can noirbeerted.
A delimiter has no meaning other than being literally printed in this
delimiter |D name representation. A delimiter has no implicit leading and trailing
white space.
Axis 2 Name change classifiers decribe how a name part came about. More than one [value
allowed.
A name that a person had shortly after being born. Usually for familiy
birth B names but may be used to mark given names at birth that may haye

changedater.

DRAFT version 1.0

22 Mar 1999 97

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

unmarried

A name that a person (either sex) had immediately before her/his f|rst
marriage. Usually called "maiden name", this concept of maiden ngme is
only for compatibility with cultures that keep up this traditional congept.
In most cases maiden name is equal to birth name. If there are adgption
or deed polls before first marriage the maiden name should specify the
last family name a person acquired before giving it up again through

marriage.

chosen

A name that a person assumed because of free choice. Most syst§
may not track this, but some might. Subsumed in the concept of
"chosen" are pseudonyme (alias), @eedpoll. The difference in civil
dignity of the name part is given through ®Relassifier below. l.e. a
deed poll creates a chosen name of record, whereas a pseudonyn
a name not noted in civil records.

ms

creates

adoption

A name that a person took on because of being adopted. Adoption

5 may

happen for adults too and may happen after marriage. The effect gn the

"maiden” name is not fully defined and may, as always, simple dep
on the discretion of the person or a data ecl&k.

end

spouse

M

The name assumed from the partner in a marital relationship (heng
"M). Usually the spouse’s familiy name. Note that no inference abd
gender can be made from the existence of spoases.

e the
ut

Axis3 Ad

ditional ¢

lassifiers. More than one vahllwed.

nick

Indicates that the name part is a nickname. Not explicitly used for
prefixes and suffixes, since those inherit this flag from their associg
significant name parts. Note that most nicknames are given names
although it is notequired.

ited

callme

A callme name is (usually a given name) that is preferred when a g
is directlyaddressed.

erson

record

This flag indicates that the name part is known in some official recg
Usually the antonyme of nickname. Note that the name purpose ca

rd.
de

"license" applies to all name parts or a name, whereas this code applies

only to name nampart.

initial

Indicates that a name part is just an initial. Initials do not imply a tré
period since this would not work with non-Latin scripts. Initials may
consist of more than one letter, e.g., "Ph." could stand for "Philippe
“Th." for "Thomas".

iling

or

invisible

0 (zero)

Indicates that a name part is not normally shown. For instance,
traditional maiden names are not normally shown. Middle names n

ay be

invisible too.

98

22 Mar 1999 DRAFT version 1.0

3.3.3 Person Name

Used only for prefixes and suffixes (affixes). A weak affix has a wepker
association to its main name part than a genuine (strong) affix. Wepk
weak w prefixes are not normally inverted. When a weak affix and a strong|affix
occur together, the strong affix is closer to the its associated main pame
part than the weaffix.

Axis 4 Additional lassifiers for affixes. Usually only one value allowed per affix.
Classification does not try to lmemplete.

A dutch "voorvoegsel” is something like "van" or "de" that might haye

voorvoegse W indicated noblety in the past but no longer so. Similar prefixes exist in
other languages such es Spanish, Frenélodugese.
: Indicate that a prefix like "Dr." or a suffix like "MD" or "PhD" is an
academic |AT -
academiditle.
Primarily in the British Imperial culture people tend to have an
professiona PT abbreviation of their professional organization as part of their credgntial

suffices.

In Europe there are still people with noblety titles. German "von" is
generally a noblety title, not a mere voorveugsel. Others are "Earl ¢f* or
"His Majesty King of ..." etc. Rarely used nowadays, but some systems
do keep track athis.

noblety NT

White Space Rules

Names contain white space. The white space rules used in typestetting are not trivial. In general
two name parts are separated by white space. An interpuction mark, like a komma or period
follows directly to the preceding non-whitespace stuff, but those marks are always followed by
whitespace. Dashes are not surrounded by whitespace at all. Note the whitespace rules do not
really exist for languages such as Thai or Japanese where white space is basically not used.
However, you can always simply ignore whitespace, which is why Thai and Japanese are easier
to print. In any case, neither Thai nor Japanese would have whitespace where it was not allowed
in Latin script.

The difficult whitespace rules can, for the purpose of the person name data type, be broken down
into the following precise rules:

1. White space never accumulates, i.e. two subsequent spaces are the@amne as

2. Literals may contain explicit white space subject to the same white space reduleson

DRAFT version 1.0 22 Mar 1999 99

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

3. Except forprefix, suffixanddelimitername parts, every name part is surrounded by implicit
white space. Leading and trailing explicit whitespace is insignificant in all thosepaatse

4. Delimiter name parts are not surrounded by any implicit white space. Leading and trailing
explicit whitespace is significant in in delimiter napeats.

5. Prefix name parts only have implicit leading white space but no implicit trailing white
space. Trailing explicit whitespace is significant in prefix ngaes.

6. Suffix name parts only have implicit trailing white space but no implicit leading white
space. Leading explicit whitespace is significant in suffix nparés.

This means that all address parts are generally surrounded by white space, but white space does
never accumulate. Delimiters are never surrounded by implicit white space, prefixes are not
followed by implicit white space and suffixes are not preceeded by implicit white space. Every
whitespace contributed by preceeding or succeeding hame parts around those special name parts
is discarded, whether it was implicit or explicit.

Examples

Irma Jongeneel, of HL7 the Netherlands, has many nice ramifications in her name, so we will
dwell a little bit on her name. Irma has two given names "Irma" and "Corine". In her childhood
her family name was "de Haas". Then Irma married Gerard Jongeneel. In Holland both spouses
can choose to use either or both of their familiy names in arbitrary order. For the public records
Irma chose the combination "Irma Corine Jongeneel-de Haas". But we know her by the name
"Irma Jongeneel", i.e. for casual cases she assumed the family name of her spouse. But if Irma
would have to show up in a court of law and her name was cited, she would be called "Irma
Corine de Haas e.g. Jongeneel" where "e.g." stands for "echtgenote van" meaning "spouse of".

Let's write down the variants that we know now in the famihatancenotation
First the name by which we know her
Irma Jongeneel

(PN
(PersonNanePart :value "Irma™"
:classifiers (SET givenrecord)
(PersonNanePart :val ue "Jongeneel "
:classifiers (SET family record spouse)

Just as with the address we have to take care about spacing. When the name is to be printed we
usually have the name parts separated by white space. But there are notable exceptions which we
will encounter in the followingxample.

100 22 Mar 1999 DRAFT version 1.0

3.3.3 Person Name

The following is the name of her marriage record (?)
Irma Corine Jongeneel-deHaas

(PN

(PersonNanePart :value "Irma™"
:classifiers (SET givenrecord)

(PersonNanePart :val ue "Corine "
:classifiers (SET givenrecord)

(PersonNanePart :val ue "Jongeneel "
:classifiers (SET family record spouge

(PersonNanePart :value "-"
:classifiers (SET delimiter))

(PersonNanePart :val ue "de Haas "
:classifiers (SET family record birth)))

Note that the dash" is printed without leading and trainling white space. This is signified by the
flag delimiterin the name classifier set. We know this flag already fronfréme the Address
datatype Since names never have line breaks, this line break feature does not exist with
delimiters in person names.

Voorvoegsel

There is a problem with the "de" that is classified @savoegsein dutch. Another very
commonvoorvoegseis "van" as in "van Soest". This Dutch "van" is not actually a noblety

prefix, although it sounds like it used to be one. Such prefixes exist in many languages, including,
French, German, and Portugese.

The problem with such prefixes is that they belong to exactly one other name part, e.g., "Haas".
In Dutch the part "Haas" of "de Haas" is calledglgmificantpart of that family name, since it is
significant for alphabetic sorting. Since "de" can not occur without "Haas" and "Haas" will not
occur without "de" both are linked stronger than "de Haas" and "Jongeneel".

One way to handle this associativity is through nesting. With parentheses we could write "(Irma
(de Haas) Jongeneel)" to show that "de" and "Haas" are associated stronger than the other parts.
However, nesting is costly as it leads to significant additional complexity in the data type
definition. Not that nesting is a bad ide@r se However, since the nesting depth appears to be
limited to three levels, the generality of nesting seems to not outweigh the wimplicity of a simple
linear list.

There are other ramifications though, such as prefixes that consist of more than one part such as
in French "Eduard de I'Aigle". Here "de I"" is one prefix that consists of two parts and that
connects to the significant part without spacing. To make things more complex we have to realize
that "de I'Aigle” is in fact a contraction of "de-la-Aigle". But we decide not to deal with this kind

DRAFT version 1.0 22 Mar 1999 101

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

of lexical variations. It is probably safe to consider "de I'basprefix that binds strongly to the
following significant name part.

Thus we could go without nesting by using special name part"fagBx’. Prefix means that
this name part binds strongly to the following name part and we consider it to bind without space.
Let’s try how that feels:

deHaas

(PN
(PersonNanePart :val ue "de
:classifiers (SET prefix))
(PersonNanePart :val ue "Haas"
:classifiers (SET family)))

Note that "de " contains a literal space. Alternatively we could define flags for prefix-with-space
and prefix-no-space, but this would just make things more complex. As a rule we say that name
part prefixes associate without space to the following name. If a space is required, it must be
included in the name part. See [thieite space ruleabové[p. 99] .

Eduard de I'Aigle has a prefix that includes no space
Eduard de l'Aigle

(PN
(PersonNanePart :val ue "Eduard"
:classifiers (SET given)
(PersonNanePart :value "del
:classifiers (SET prefix))
(PersonNanePart :val ue "Aigle "
:classifiers (SET family record))

Inversion

This method is challenged when we want to capture a inverted name form such as "Haas, de,
Irma" used in a phone book or in bibliographies. Here we lose the strong association between to
the prefix."de" and the its significant name "Haas". The prefix is postponed after the significant
name "Haas", there is even an intermittent comma, and, to make things even worse, the spacing
of "de" is different ("de" vs. "de "). It's a matter of finding the most elegant solution. You can
always argue about elegance of course.

Haas, derma

102 22 Mar 1999 DRAFT version 1.0

3.3.3 Person Name

(PN

(PersonNanePart :val ue "Haas"
:classifiers (SET family))

(PersonNanePart :value ", "
:classifiers (SET delimiter))

(PersonNanePart :value "de "
:classifiers (SET prefixinverted)

(PersonNanePart :value ", "
:classifiers (SET delimiter))

(PersonNanePart :value "Irma™

:classifiers (SET given))

Here we say that the prefix "de " (with trailing spacelipigerted The computer knows now that
the prefix is associated with some preceeding stuff. The rudmisiverted prefix associates to
the nearest preceeding name part that is not delimiter. Furthermore, the rule for printing the
name isTrailing literal white space is to be removed from invertedorefixes.

For Eduard de I'Aigle this works likewise:
Aigle, de I', Eduard

(PN

(PersonNanePart :val ue "Aigle "
:classifiers (SET family))

(PersonNanePart :value ", "
:classifiers (SET delimiter))

(PersonNanePart :value "del
:classifiers (SET prefixinverted)

(PersonNanePart :value ", "
:classifiers (SET delimiter))

(PersonNanePart :val ue "Eduard "

:classifiers (SET given))

To completely cover all ramifications we can further undo the contraction "de I'A..." to "de la™:
Aigle, de la,Eduard

(PN
(PersonNanePart :val ue "Aigle "
:classifiers (SET family))
(PersonNanePart :value ", "
:classifiers (SET delimiter))
(PersonNanePart :val ue "dela

:classifiers (SET prefixinverted)

DRAFT version 1.0 22 Mar 1999 103

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

(PersonNanePart :value ", "
:classifiers (SET delimiter))
(PersonNanePart :val ue "Eduard "

:classifiers (SET given))

However, this decomposition and contraction of "de la <vowel>" to "de I'<vowel>" and vice
versa is outside the scope of HL7. This is rarely taken proper care of even in phone books or
bibliographic databases so that hardly any HL7 application will need to care.

Echtgenote van, née, geb.
As we said earlier, when Irma shows up in a court of law, she might be called
Irma Corine de Haas e.gJongeneel

(PN

(PersonNanePart :value "Irma"
:classifiers (SET givenrecord)

(PersonNanePart :val ue "Corine "
:classifiers (SET givenrecord)

(PersonNanePart :value "de "
:classifiers (SET prefix)))

(PersonNanePart :val ue "Haas"
:classifiers (SET family record birth)))

(PersonNanePart :value "e.g. "
:classifiers (SET prefix weak)

(PersonNanePart :val ue "Jongeneel "
:classifiers (SET family record spouge

The "e.g." behaves pretty much like a prefix. It is not "significant” it associates with the
following name part. The difference is that the associatioreak A weak association of a

prefix or suffix means that the prefix might be dropped. It is still a prefix, which means that it
moves wherever the following name part moves, but a weak prefix could be omitted.

Note that a weak prefix may be followed by a (strong) prefix, such as in "Gerard Jongeneel e.g.
de Haas". Note also that if a weak prefix is followed by a name part which in turn is followed by
an inverted (strong) prefix, the inversion would be undone by insertion of the (strong) prefix
between the weak prefix and the significant name part. Contemplate "Jongeneel, Gerard e.g.
Haas, de" as an example.

In "Claudine de I'Aigle née Dubois" and "Dorothea Schadow geb. Riemer" "née" and "geb."
formally behave just like the "echtgenote van", i.e. they are weak prefices. However, note that the
semantics is reversefichntgenotezan means "spouse of" whilgéeandgeborenemeans "born"

in French and German respectively.

104 22 Mar 1999 DRAFT version 1.0

3.3.3 Person Name

Claudine de I'Aigle néeDubois

(PN

(PersonNanePart :val ue "Claudine
:classifiers (SET givenrecord)

(PersonNanePart :value "del "
:classifiers (SET prefix)))

(PersonNanePart :val ue "Aigle "
:classifiers (SET family record spouse)

(PersonNanePart :val ue "née"
:classifiers (SET prefix weak)

(PersonNanePart :val ue "Dubois "
:classifiers (SET family record birtl))

The semantic difference betwee@eande.g.is not important since the classification of name
parts intobirth vs.spouseare non-ambiguous.

Nicknames

Let’s play a little bit with nicknames. | know Bob Dolin as "Bob", but at HL7 he is enrolled as
"Robert Dolin" and on papers he calls himself "Robert H. Dolin". This is no big deal, since we
have three distinct name forms that we decided to threat as separate Person names without trying
to relate those name parts accross the variants.

The following is the first example of a complete Person Name structure.
Bob Dolin, Robert Dolin, or Robert H. Dolin

(SET
(Per son_nane
:value (PN
(PersonNanePart :val ue "Bob"
:classifiers (SET given nick)
(PersonNanePart :val ue "Dolin "
:classifiers (SET family))))
(Per son_nane
:val ue (PN
(PersonNanePart :val ue "Robert "
:classifiers (SET given)
(PersonNanePart :val ue "Dolin
:classifiers (SET family))))
(Person_nane
:val ue (PN
(PersonNanePart :val ue "Robert "

DRAFT version 1.0 22 Mar 1999 105

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

:classifiers (SET given)
(PersonNanePart :value "H."

:classifiers (SET given initial))
(PersonNanePart :val ue "Dolin "

:classifiers (SET family)))))

we did not classify the person name variants here, since this would open up another can of
worms. It almost seems like there is a gradual scale of formality which tells which of the various
person names to use.

Degrees of formality may be relevant, but are not yet handled in the HL7 data type. Other
examples are: sloppy (Kiki), familiar (Kathy), nick (Kathrin), of record (Katharina) highly
official (Ekatharina). We need input from Japan on that. Note also the "Bob Dolin" example
above.

Let's take Woody Beeler. Woody is known as "George (Woody) W. Beeler" in the HL7
membership data base. This parenthesis is an interesting construct that we might want to cover a
bit more semantic and a bit less literal. The way Woody would pronounce this example is
probably: "My name is George W. Beeler, but call me Woody." The parentheses are just a style
to print the name badge. Actually the HL7 name badge looks like:

Woody
George WBeeler

We do not allow line breaks in person names, instead of literal parenthesis or line breaks, we
suggest a semantic markup usingeh#mename part classifier.

George (Woody) W.Beeler

(PN

(PersonNanePart :val ue "George"
:classifiers (SET given)

(PersonNanePart :val ue "Woody"'
:classifiers (SET callme)

(PersonNanePart :value "W."
:classifiers (SET giveninitial))

(PersonNanePart :val ue "Beeler "
.classifiers (SET family)))

106 22 Mar 1999 DRAFT version 1.0

3.3.3 Person Name

Two different applications could now use the same name variant to produce a name badge for an
HL7 meeting and to print the HL7 membership directory. The rule for the badge application is: if
there aré' callmé' name parts, print those in big and fat, and print all the other names below,
except those names that are classified onlcakémé'. For the electronic membership directory

the rule would be: print all names in order and useallineonly name parts in parentheses.

Incomplete Classification

Let's take some example where we just can't classify the names. Consider "lIketani Sahoko". Of
course, if you know some Japanese you will know that Sahoko is a Japanese female and "lketani"
is her familiy name. But let's assume you don’t know thalt. All you have is an unconscious

girl wo has the name "lketani Sahoko" printed (in latin letters) somewhere on her purse.

Iketani Sahoko

(PN
(PersonNanePart :val ue "lketani ")
(PersonNanePart :val ue "Sahoko"))

You now send this name without any classifier. The point is that you can not tell which one is the
given name and which one is the familiy name. If you guess from the order (given name = first
name) you are wrong. So, if in doubt, why being forced to guess? Of course, most data bases will
force you to guess. But this wild guess can be done by the receiving HL7 interface just as well as
by a unknowledgeable human. Later, when you learn more about your ptient, you can enter the
correct classification:

Iketani Sahoko

(PN
(PersonNanePart :val ue "lketani "
:classifiers (SET family))
(PersonNanePart :val ue "Sahoko"
:classifiers (SET given))

HL7 v2.3 Compatibility

The XPN data type of HL7 version 2.3.x may serve as a validation to see what other name types
or name part types may be needed. Of course, there is also the issue of compatibility between
version 2 and version 3 of HL7.

One problem with mapping those name type codes between v2.3 and v3.0 is that our new person
name type is structurally different from the old one. It is not possible, therefore, to simply reuse
those codes without further thoughts.

DRAFT version 1.0 22 Mar 1999 107

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

The following table shows v2.3.x person hame type codes. The right most column determines

whether a code stand for an inherent meaning of a name (part) or for its purpose.

HL7 v2.3 XPN nameypes.

code meaning

comments

purpose, a person uses different aliases or pseudonymes in diffgrent

A |alias contexts (i.e. when refering to himself as an author of a book, an
actor, your friend, a customer in a bank, or a patienhiosaital.
purpose, this is the name of public record (if any) Such records do not

L legal exist in all countries. In Germany legal names definitely exist, | am
not so sure about thé.S.

D |display purpose: for the purpose of "displaying"; however, this is quite vague.

Seebelow.

M maidenname

inherent meaning, but there are also quite pragmatic implications.
below.

adopted

inherentmeaning

B name at birth

inherentmeaning

name of spouse

P (name takerfirom)

inherentmeaning

U |unsepcified

??(obsolete)

The first issue is that the old person name had a bunch of fixed slots and a name type code
affecting the interpretation of data found in all slots. Our new type has name parts wich are

individually classified and it has a purpose code for name variants which affect all name parts of

the name variant. The semantics of the name parts, i.e. what thosa@astslescribed entirely
in the name part classifiers. Each name variant has a certain use case, purpose or context.

We have not retained the term "alias," for three reasons. First, one main assumption of our new
approach to person names is to support different name variants, where every variant is baiscally
an alias for a person. Thus there is no need to further qualify that. Second, the term "alias" has a
negative connotation (e.g., only thieves and other bad guys need aliases.) Third and finally there
are different kinds of pseudonymes that we may want to indicate positively, i.e. artist's names

(writer and stage names), indigeous (tribal) names, and religious names.

In opposition to aliases,

in some countries there are legal acts of name changes. In Australia, for

instance, this is called "deed poll".

108

22 Mar 1999 DRAFT version 1.0

3.3.3 Person Name

In Germany such name changes happen under exceptional conditions only and are always subject
to official recording. The naming system in Germany is quite tightly regulated and you are not
supposed to use any other name, except in certain situations where one would expect
pseudonymes (e.g., book authors, actors, etc.)

In the U.S., however, name changes seem to be more frequent than in Germany and the naming
system is less regulated as in Germany. One issue that one would need to clarify is the meaning
of "legal" name. Legal name, obviously, has different meanings in different countries, depending
on how the naming system is regulated.

The concept of display name was vague all along. The question is what display? The whole idea
of names is that they are "displayed” on paper, computer screens, and in spoken language. The
use case of display names thus is not clear. Basically there is no longer a need to have a name
type "display name" in our new person name type. This is so, because we no longer distort the
natural (or purposeful) ordering of the name parts by requiring name parts to be put in different
slots. Name parts occur in some order that is defined or selected by someone, either the holder of
that name or the computer system, or the citation style guide, etc.

Some names are used in Licenses or other accreditations and it is quite important to record the
name as such. Examples are: school records, graduation certificates, license to practice a
profession, etc. Notably, women who had a Doctoral degree were the first ones who assumed
double names in Germany many decades ago. The reason was that their dissertations and
certifications were issued for their maiden names. Later on, when those women married they
would have lost their certifications by switching their family names entirely.

In many cases, keeping a name history is enough. However, the license name type allows one to
indicate the reason why a certain name is still kept in the history, i.e., in this case, because it is
mentioned in a license or record.

Maiden name, name at birth, name of spouse, adopted name, and the like.

This was a very difficult discussion, where a lot of arguments were exchanged but where people
also said they could not even see the issue being so lively discussed.

Let’s put this into historical perspective.

In versions 2.1 and 2.2 of HL7 there was no name type code at all, and the only place a "maiden”
name was even mentioned w&D-mother's maidemamé. There was obviously no place to

specify the patient’s maiden name. This seemed to be somehow less of a problem in the U.S., but
it was definitely a problem in Germany, which is why HL7 Germany redefined mother’'s maiden
name tgoatient'smaiden name.

DRAFT version 1.0 22 Mar 1999 109

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

Then came the name type code, and with it came the maiden name type code. The meaning of
which was clear at that time, since there was just the maiden name and adopted name. It probably
was not quite clear what would happen with a female that was adopted at 5 years, had a family
name before and switched the family name through adoption and later married and switched the
name again. We had a way to express the name she had after adoption, we were able to specify
the name befor marriage, which in this case are the same! Two ways to specify the same name,
but on the other hand, there was no way to specify neither theb®dareadoption, nor the

nameafter marriage. Which is pretty odd, but, again, didn’t seem to matter very much.

The famous Dutch name change initiative that started with a Sermon by John Baptist in summer
1997’s meeting in San Francisco (or was it Tampa?), was the major driving force for bringing in
"birth" name and "spouse” name types. As far as | know, the rationaleottasaddress the

oddities mentioned in the last paragraph. Rather, the issue was that "maiden" seemed to imply
"female before marriage” or even stronger cultural connotations. Since the people of the
Netherlands have long had a very reasonable and free culture, the Dutch did away with those
sexist traditions long before the rest of the world even realized the issue.

So the driving force behind "birth" name was to open up the narrow sense of "maiden”. In that
sense, "birth" was clearly meantdobsumémaiden”.

The "spouse" name type on the other hand was meant as kind of the antonyme of "birth". The
above examples around Irma Jongeneel are an extensive description of the dutch naming system
which essentially explain why "birth" and "spouse" name types are so important in the
Netherlands. It is all because a married (or otherwise officially associated) couple of persons (not
necessarily of opposite gender), will sort of combine their family names while both names remain
as independently useful family names. That’'s why birth name would get the "birth" classifier and
the name of the spouse would get the "spouse” classifier.

From that perspective it seemed like "maiden” was subsumed by "birth", as a way to express the
same concept with less sexist connotations.

But this was everything else than agreed to by everyone.

It turned out that the dutch reform has created more different notions than was originally
expected. For example, again, what happens if someone changes his/her name before marriage?
We finally decided that "maiden™ and "birth" should not be merged, in parts, because "maiden
name" is a cultural entity that may not exist in the Netherlads but still exist in many computer
systems.

We made the observation that the above mentioned name types have different "directions” of
meaning in time. They do not so much express what any name part is semantically, since family
names are family names, but they try to capture how names come about. Dawid added, that those
name types not only capture how names came about, but also, how names ceased to be used.

110 22 Mar 1999 DRAFT version 1.0

3.3.3 Person Name

In the "ancient” U.S. name system of the 1950s and the German name system that losened up
only recently the issues were simple. For instance, my wife’s name is "Dorothea Schadow" but
her maiden name is "Riemer".

Ri emer <---MAI DEN
----------------------- L e I -1
| CURRENT- - - > Schadow

If we mention the maiden name of my wife, we indicate that this maiden name, "Riemer", was
used for her before she assumed my family name, "Schadow", through marriage. So her current
name is "Schadow" and will remain "Schadow" for the unforseeable future. Her familyvzeame
"Riemer" but no longer so. Now, it is just her maiden name. Thus, "maiden” name seems not to
explain how the name "Riemer" came about, but it tells how the name part "Riemer" ceased to be
used.

From the perspective of this very traditional naming scheme "maiden™ and "current" is all you
need to distinguish. And indeed most existing information systems are build based on this
traditional misconception. No matter how strongly we may insist in this through our data base
design, this is not how the world really works.

Since "maiden” is a term routed in the traditional patriarchal system, we can define "maiden”
name as:

A "maiden name" is the surname of a woman beforersireies.

at lest, this is what Webster’s has to say about "maiden name". Clearly, this notion appears
archaic today. But still ADT system’s data bases, data entry forms and even application logic
sometimes is built on this misconception.

Again, the Dutch people are the avant-garde of a more reasonable approach to looking at things.
In the dutch naming system the "directions" are different, as Irma’s example showed that
"maiden” is not an issue here:

| Bl RTH - -> de Haas
----------------------- Fo-mm e e e - - - - > i fetine
| SPOUSE- - - > Jongeneel

In the Dutch system, all name parts point forward. The name types explain how name parts came
about, not how they ceased to be used.

From that perspective, "maiden™ and "birth" do have different meanings. In the Dutch system the
entire concept of "maiden name" simply does no longer exist. In Germany and the U.S. it still
exists.

DRAFT version 1.0 22 Mar 1999 111

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

One could assume that maiden marks a name that ceased to be used, but this position seems to be
no consensus. At the most | would open up the concept of "maiden name" to be less sexist so that
I would like to see the definition to read as follows:

A maiden name is a name part that a person had immediately before this person’s first
marriage and that was given up due to thatriage.

By "marriage” | understand any kind of "culturally accepted personal association between human
beings.” This is open enough to include the wildest things as long as they are accepted in that
culture (not necessarily accepted in other cultures). This includes homosexual marriages, religous
(non-civil) marriages civil (non-religious) mariages; simply anything that causes someone to give
up some of his/her name parts.

This is not just semantic talk. Practical connotations to a name part classified as "maiden” would
be "don’t use it", except in special circumstances or with special prefixes.

What happens if someone get’s married and does not change her/his name?
From my perspective this is simple: "maiden name" simply does not apply.

However one can argue the other way: since "maiden” means young unmarried girl, you do have
a maiden name even though you might have never gave up your name. Notably every maiden
would have just a maiden name. Every unmarried person would have only a maiden name. Here
it all depends on whether we think of names as slotted parts or as tagged parts. If name parts are
slotted in data fields, the maiden name of a maiden is duplicated:

Pippi Langstrumpf

(Sl ot t edNane
: gi ven- nane " Pippi "
:current-nanme "Langstrumpf
:mai den-nanme " Langstrumpf ")

In our new system, however, we tag hames without duplications:
Pippi Langstrumpf

(PN
(PersonNanePart :val ue "Pippi
:classifiers (SET given)
(PersonNanePart :val ue "Langstrumpf "
:classifiers (SET family maiden (currenj)))

112 22 Mar 1999 DRAFT version 1.0

3.3.3 Person Name

What it all boils down to is the following problems:

e How do we map to and from slotted name structures?

® Do we have to adjust our model 100% to those flawed name categories that do not even hold
in those cultures where they are most used? H®o?

We gradually assumed the following rationale: birth name is the name you have at birth. Maiden
name is the name you have just before your first marriage. An "Adoption name" is a name you
have since you have been adopted (Beware of the ambivalencadafied name”).

The immediate question becomes: what happens when you marry a second time? What if you are
adopted after you first married (this can be done in some countries)? For me the question is, how
many reasons of name changes do we have to capture? When is it enough to just keep a history of
names?

e How many different events in a life do we want to recognize as having speciatodes®

The answer is proably: "it depends". In Some cultures becoming a widow is a reason for a name
change. In others you might change names as you give birth to children. You might also change
names as you enter a religious community (e.g., as you become a monk, or a pope :-) Do we want
to keep track of all this? Probably, it all depends.

For HL7 we have to stick to practical use cases. However, if we design the name data type
according to a majority of existing information systems, we would still get stuck with the
"first-m.i.-last" name pattern. A lot of the argument about maiden name was due to existing
systems that either require a certain input or give a certain output. What should we do?

In general, we can recommend to consider only using the Dutch system, where we have a

name part abirth.

name part assumed througthoption(name of adopting parent)
name part assumed throudgedpoll (free change of name)
name part assumed through marriage (nanspadfise

HowdpE

Except from birth name, all other name change events may happen in arbitrary order and may
repeat. All the rest is covered in a history. When you have a new name and you want to map to an
old-stlye slotted name do the following to determine the maiden name:

1. If there has been no change of family name since birth, use that one and only family name at
birth as the last name.

2. If a name part in question is taken frorapusedonot use this as a maiderame.

DRAFT version 1.0 22 Mar 1999 113

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

In other words, the maiden name is the family name in the history that was not assumed from
spouse. Dealing with adoptions and deed polls is difficult, however, those things are not taken
care of by the usual slotted name types anyway, so why bother?

The only strong rationale to keep maiden name is because mapping from a traditional slotted
name structure to the new name style is difficult. With a "maiden name" you don’t actually know
whether this name was used already at birth "birth” or came only through "adoption” or "deed
poll". There is considerable overlap with tnremarriedname classifier and the other classifiers

of Axis 2. Consequently we had to relax the notion that axis 2 classifiers need to be mutual
exclusive.

Initials

We recognized the the term "initials" may have slightly different meanings in an international
context. In the Netherlands "initials" are all the first letters of your given names and family
names as you choose.

In Holland there is also the conceptvobrletterswhich are the first letters of the given names.
In Holland adults are normally recorded only using their voorletters and family names. This is
similar to the vancouver citation style that never spells out first names.

However, we confirmed that the term "inital" means first letter (of whatever), regardless of given
or family name. The beautiful initials that start a chapter of medieval books are called "initals"
too (e.g., the Schwabacher initals). When "initals" is used in the plural form in context of names
and signatures, it usually refers to all the initials of given and family names. It is then used as a
short form of a signature.

A typical dutch name using onyoorletterswould be recorded as a person name variant. We
would not need to associate initals with spelled-out name parts.

Academic titles

Academic titles and professional credentials are like voorveugsels and noblety titles on axis 4.
You can classify academic degrees and professional titles as suffixes or prefixes. This keeps track
of the problem that "PhD" and "MD" are suffixes but "Dr." and "Prof. Dr. med. Dr. phil. h.c." are
prefixes.

3.3.4 Organization Name

We need much less flexibility and power with organization names. We considered what might be
to organization names:

114 22 Mar 1999 DRAFT version 1.0

3.3.4 Organization Name

e Different name parts, such as "Hewlett-Packard" vs. "HP" vs. "Inc.", "Co.", "Ltd.", "B.V.",
"AG", "GmbH", etc.

® "Marriage" of companies and trading of divisions, thus, UNIX was a trade mark of AT&T,
then USL, then Novell, and who knows. "Daimler" and "Crysler" are now
"Daimler-Crysler" and "Behring", a manufacturer of vaccines, is known or subsumed by
some other name in théS.

Anyway, we concluded that noone really keeps track of those things, so all we need is an
organization name string and, perhaps, a name type code. HL7 v2.3 had a name type code table
for organization names (XON) including:

Organization Name
Type Codes
(adopted from HL7

v2.3)

—

legal
alias

D |display
ST|stockexchang

1%

Display name has no defined use, since names are always displayed and it begs the question
"whose display?". | wonder whether anyone in healthcare would want to include the Wall Street
ticker symbol or the Indianapolis Star newspaper’s abbreviation of a manufacturer of vaccines.
But there is no reason why we should restrict this existing “feature™ of version 2.3.

All'in all this is not a very controversial or important issue. So, unless there is any significant
objection we can just stick to a v2.3-like solution.

Organization Name(ON)

A collection of organization namariants.
SET OF[Organization NameVariant|[p. 115

DRAFT version 1.0 22 Mar 1999 115

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

Organization NameVariant

This type is not used outside of {BeganizatiorName[p. 114 data type. Organization Namgs
are regarded as a collection of organization name variants each used in different contexis or for
a differentpurpose.

component

name type/domain | optionality description

A type code indicates what an organization name
type CodeValue optional is to be used for. Examples are: alias, legal,
stock-exchange.

Character This contains the actual name data as a simgle

value String mandatory charactestring.

3.4 Technical Concepts and the Code Value

The Code Value data type is the basic building block for referring to concepts, both technical
and real world concepts. A Code Value is essentially a symbol with all contextual information
necessary to interpret that symbol, i.e. the literal and the code system that defines a given literal.

116 22 Mar 1999 DRAFT version 1.0

3.4 Technical Concepts and the Code Value

CodeValue
A code value is exactly one symbol in a code system. The meaning of the symbol is defined
exclusively and completely by the code system that the symfsohis
component : , . -
name type/domain | optionality description
value [String [p. 4] required this is the plain symbol, likeér84. 0
required,
a code by canbe denotes the code system that defined the plain
codesystem |. .
itself fixed by symbol
context
code system|Characte . a version descriptatefined specifically for the
i . optional :
version String [p. 40| given codesystem.
a sensible name for the code as a curtesy to anf
Characie interpreter of the messagedE PRINTNAME
print name . 40] optional HAS NO MEANING, it can never be sent alone
P and it can never modify the meaning of the code
value
a name for the concept to be used in case that|the
" concept is not codeable in the specified coding
conditional, . :
replacement Chgracte it valueis system. If the/a_lueattrlbute is set, the
Strind [p. 40| replacemenattribute MUST NOT be seln no
notset :)
way can a replacement string modify the
meaning of the coderalue
For example
(CodeVal ue
:val ue "text/htm"

: codeSystem "M Me- TP")

would refer to the technical concept "HTML media type", while

(CodeVal ue
:val ue "784. 0"
: codeSystem "1 CD9 CM')

DRAFT version 1.0 22 Mar 1999 117

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

would refer to the real world concept "headache" as defined by ICD9 CM (i.e., in ICD9 CM, this
concept of headache does not include the concept of "tension headache”, 307.81).

Technical concepts will be referred to simply by using the Code Value. The Code Value will also
be used as the building block for more complex real-world concepts.

The code system is a mandatory component of the Code Value data type. However, in a given
message it need not be sent, if it is fixed by the context. For example, in an HL7 message header
field designating the event code, only one coding system is allowed, i.e. the HL7 event code. It
would only be redundant to send a code system identifier for a code value in that place.

It is recommended that HL7 interface software that knows about the default code system fill in

the default code system component before handing the Code Value to the application layer
software. The strong binding to the field in the message header may get lost while the message is
processed, and thus the default code system may no longer be inferable later.

In fact, an implicit type conversion rule exists between Character String and Code Value. If in a
given field is declared as a Code Value with a mandatory code system, but the message contains
a Character String in that field, the character string found is taken as the value part of a Code
Value and the mandatory code system is taken as the code system identifier. An exception is
raised when the supplied character string is not a defined symbol of the mandatory code system.

The above conversion rule allows to build concise messages with code values, just like the HL7
v2.x ID data type allowed one to do.

3.4.1 Outstanding Issues

Thecode syst emobviously is by itself aechnicalconceptdentifier. If we are going to use
the data typ€odeValuefor concept identifiers, we have a recursive type definition. Recursion is
not a bad idea in general, but the question is: what terminates the recursion?

If HL7 maintains a list of coding schemes and defines symbols for any one of those schemes, we
can circumvent this problem of recursion by defining the component naotkr syst emas a
simpleCharacterString We can continue to use the code system register that was used with

HL7 v2.x.

What happens if HL7 outsources its code of coding systems? What happens if there are multiple
codes of coding systems (e.g. suppose the CEN coding system registry standard becomes an ISO
norm?)

HL7 could for all times maintain its registry of coding systems. And if HL7 will outsource the
maintenance of the registry of coding systems in the future, it would always require only one
backward compatible registry to be used. If we believe that HL7 will for all times maintain its
own registry of coding systems, we could shortcut any recursion and instead use a Character

118 22 Mar 1999 DRAFT version 1.0

3.4.1 Outstanding Issues

String.
[An alternative would be to use ISO Object Identifiers as coding system identifiers.]

Thecode system versi on is used as a refinement of thede syst emdescriptor.
Logically, any version information is useful only together with the code system identifier.

The hard difference between a code system name and a version is problematic. For instance, the
guestion is, whethéil CD" is the code system name ar@&d or "10" is the version? If so, what

about the derivatives of ICD-9 (e.g., ICD-9-CM) and ICD-10 (e.g., ICD-9-PCS)? What about the
minor versions where a few codes are taken out or brought in every now and then? If we define
all coding systems in a special HL7-maintained table, we would not need to use a separate
version identifier, because the HL7 code system registry could simply define a new code system
symbol for every new major and minor version of every code system.

A possible policy to some of this is: whenever a code system changes in an incompatible way,
such as between ICD-9 and ICD-10, there will be a new entry in the HL7 registry and thus a new
code system identifier will be created. Different versions would only be used for changes that are
compatible.

It would not matter how the other organization calls an update of their coding system. For
example, WHO speaks abdimternational Classification of Diseases, 9#vision” but HL7

still considers this another coding system, not just another revision or version of basically the
same code system. By contrast, when LOINC updates from revision "1.0j" to "1.0k", HL7 would
consider this to be just another version of LOINC, since LOINC revisions are backwards
compatible.

How can we assure that the stuff people will put into the version component is standardized and
interoperablyuseful?

HL7 would still have to make sure that the true version identifier of LOINC 1.0j is either of
"1.0J,""1.0j,""1.0-J3,""1. 0 j," but not just any of those. While the organization who
maintains a code system will have their own version numbering scheme, they will not define
unambiguous exact string representations for their revision ids. And HL7 can not expect them to
define precise character string representations for their version identifiers. Thus, HL7 has to
maintain a list of the version identifiers for each code system, or at least a set of clearly defined
rules about how the version identifying string can be inferred from the version id used by the
otherorganization.

Unregistered local coding schemes have been the cause of a lot of trouble in the past.
Laboratories, whose main concern is not HL7 update their code system ids quite frequently and
without caring for backwards compatibility. This places a lot of burden on the shoulders of HL7
communication system managers. This burden would not be easier, but heavier, if every
ideolectic coding scheme that changes ever so often would have be registered with HL7.

DRAFT version 1.0 22 Mar 1999 119

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

The answer could be to say that locally defined coding systems do not have any meaning outside
the defining organization. Thus, there is no point in registering anyway. As long as the coding
system identifiers do not collide with the HL7 defined code system identifiers, it wouldn’t matter

if there are code system name conflicts between different sites for their local code systems.

Traditionally, HL7 defined the lettéL" to stand for any local system, or, if more than one local
code system exists at a given site, to name tH8ezZ wherez would be a digit. We can loosen
this constraint a little bit by saying that every code system name startintP@ithe local.

3.5 Real World Concepts

The old CE data type and its interim proposed successors (with various names LCE/CWE and
CE/CNE) were basically one pair[@bdeValug[p. 116 plus a free text string that could be used
to convey the original text in an uncoded fashion.

The new data type for real world concepts is essentially a generalization the CE. The Concept
Descriptor is defined as a collection@bdeValues[p. 116 with one, two, or more codes.

There is an important difference for the semantics of a collecti@odéValues[p. 116 . Two
those semantic flavors exist:

1. A collection of quasi-synonyms, i.e. codes that have been selectedifferantcoding
systems in order to convélye sameneaning

2. A collection of codes, possibly from the same coding system, that modify the overall
meaning.

Both flavors of collections of code values will have to be supported by the new data type for real
world concepts. An example from HL7 v2.x is the "specimen source code" in the OBR-Segment,
which was such a conglomerate of quasi-synorgmaimodifiers.

The Concept Descriptor supports the two kinds of collections of Code Values without mixing
them all together. The Concept Descriptor data type therefore is a rich nested structure, whose
complex structure reflects the complexity of the task it has to perform.

There may be a requirement to the new data type for real world concepts to keep track of the
systemsvhich perform translations on those codes. Thus, every code value could be annotated by
whom, when and how a particular quasi-synonymous code value was added to the collection of
guasi-synonyms.

When codes are translated to other codes of other code systems, the original meaning is
necessarily distorted. Thus, it does matter which translation occurred based on which prior Code
Value. The new data type Concept Descriptor keeps track ofdeein which translations

where performed and on theality of those translations.

120 22 Mar 1999 DRAFT version 1.0

3.5 Real World Concepts

ThelConceptDescriptor[p. 127 is basically a partially ordered set of Code Translations. Every
code value is considered one translation. The first code value is the translation from the original
text to a code value. Other translations to other code systems may be added to the concept
descriptor either based on code values already in the set of translations or from the original text.
Every translation refers to the the translation that it is based on.

Codes and their modifiers are collected [@adePhrasHp. 124 . The code phrase is an

intermediate level between Code Value and Code Translation. That means that every Code
Translation contains an entire Code Phrase. Examples are given after the formal definitions of the
involved data types.

DRAFT version 1.0 22 Mar 1999 121

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

3.5.1 The Concept Descriptor

The data type for Real World Concepts shall be defined in as the "Concept Descriptor".

ConceptDescriptor

A concept descriptor communicates a real world concept (such as a finding or a diagnogis). A
given concept may be expressed in multiple terms where each term is a translation of sqme
other term, or is a (re-)encoding of the original human readakie

component

name type/domain |optionality description
These are the translations or quasi-synonyms of|one
SETOF real world concept. Every translation in the set is
A

translations . required |supposed to "say the same thing in different worgls."
[Translatiofip. The translations in the set form one directed graph

123 s that is fully connected.

This is the original text or phrase entered by a
clinician that was the basis for the initial coding.
[FreeTexi [p. : This can also be the text that was displayed to the
optional L : 1.
48] clinician in a selection menu and thus was the bgsis
for the selection of the particular initial code term|in
the set of translations.

original text

122 22 Mar 1999 DRAFT version 1.0

3.5.2 Code Translation

3.5.2 Code Translation

CodeTranslation

hality of

This data type holds one code phrase as one translation in a set of translations describing a
concept. The additional information in this data type points to the source code used in the
translation process and describes who or what performed the translation and what the q
this translations.
component : . . -
name type/domain |optionality description
CodePhrasgp. : All the meaning of the translation is found here,[the
term required : -
124 rest is descriptivstuft.
This is the code in the list of translations on which
this translation was based. This is a required
referenceo ,
- - . component which means, whoever adds an
origin [CodeTranslatigr required o .
0. 123 additional translation must reference the source
P- code. No reference here means that the given
translation is the originalode.
This identifier tells what system performed the
translation. This information can be useful to aydit
[Technicdl the translation process or to estimate the quality of
producer |[Instance optional |the term based on prior experience with the
Identifiel [p. 65] translation of a given producer. This identifier
refers to some system, not a particular human
codingclerk.
An estimation of the translation quality. This is &
value between 0 and 1, where 1 stands for an
absolutely accurate translation and 0 stands for
. random fuzz. We do not require a special methpd
Floating . . .
Point to be used here to estimate the quality. This can
quality optional |just be a subjective estimation of the form we uge
Number SR o .
[0..1] in eliciting probabilities for a belief network. But

we can recommend some example methods of jhow
those values can be computed. We can also map all

other quality estimations mentioned in the
literature onto the interval [0..1] of re@limbers.

DRAFT version 1.0

22 Mar 1999 123

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

3.5.3 Code Phrase

CodePhrase

A code phrase is a list of code values which all together make up a meaning. This can bg used
for example in SNOMED, where you can combine multiple codes into a new composite
meaning. HL7 used to combine codes and modifiers for the §pBBmersource And HCFA
procedure codes also come witiodifiers.

ORDERED LIST OF [CodeValud [p. 116

3.5.4 Examples

The following example is completely made up. None of the mentioned code systems exist, and
the scenario is admittedly rather strange. A code value for the hair color "ash-blond" in some
local hair color code:

(CodeVal ue :val ue " AB"
: codeSystem "99hcc"
cprintName "ash bl ond")

the translation into the official WHO approvidernational Code for HaiColors (ICHC).
ICHC does not have a code for "ash-blond"” but it has "pale-blond."” So we take that one.

(CodeVal ue :val ue "10. 2"
: codeSystem " | CHC"
cprintNanme "pale blond")

Now, what we have are two codes that both try to describe the same concept (i.e. what the
physician has seen as the hair color). We have to build a concept descriptor that contains both
code values, the original "ash-blond" and its translation "pale-blond" into ICHC.

(Concept Descri pt or

;original Text "... the patient’s hair had an ashy-bl ondi sh color ..."
:transl ations
(SET
(CodeTransl ation :label "xlat-1-1abel"
iterm
(Code- Val ue
:val ue " AB"

124 22 Mar 1999 DRAFT version 1.0

3.5.4 Examples

: codeSyst em "99hcc"
:printName "ash bl ond"
)
;origin #nul
)
(CodeTransl ati on
cterm
(CodeVal ue
s val ue "10. 2"
: codeSystem " | CHC'
:printNane "pale blond"
)

;origin (ref "xlat-1-1abel™)

In this example the type definition is deliberatedly "violated" in that the code phrase was not used
as theermcomponent of the Code Translation. This demonstratéggbeonversiof{p. 22]
feature of our type system. We can allow to send one related type for another.

Suppose, the CDC is conducting a study to correlate ear infection with hair col@ildlbgical
Society oAmerica(PILS-A) just has agreed on Aalvanced Hair ColoCode(AVACC), which

CDC is using for its study. This code is post-coordinated. It has the axes (1) base color (black,
brown, blond) (2) gray-tone (none, slight, medium, strong) and (3) homogeneity (homogene,
spotty, ... [here | could be more creative in my native language]). The translator guesses that
"blond, slight, homogene" would fit best (although the original text didn’t say anything about
homogeneity). So we add that other translation:

(Concept Descri pt or

coriginal Text "... the patient’s hair had an ashy-bl ondi sh color ..."
:transl ations
(SET
(Code-Transl ation :|abel "xlat-1-1abel”
sterm
(CodeVal ue
:val ue " AB"

: codeSyst em "99hcc”
:printNanme "ash bl ond"
)
;origin #nul
)
(CodeTransl ation : | abel "xlat-2-1abel"
cterm
(CodeVal ue
:val ue "10. 2"

DRAFT version 1.0 22 Mar 1999 125

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

: codeSystem " | CHC'
cprintNanme "pale bl ond"

)

;origin (ref "xlat-1-1abel")

)

(CodeTransl ati on

cterm
(CodePhr ase
(LI ST :of "Code-Val ue"
(Code- Val ue
:val ue " B00O1"

: codeSyst em " Pl LS- AVACC"
:printNane bl ond"

)
(CodeVal ue

:val ue " 002"
: codeSystem " Pl LS- AVACC"
:printName "slight gray”

)
(CodeVal ue

:val ue "HOO01"
: codeSyst em " Pl LS- AVACC'
:printName "honbgene"

)
)

corigin (ref "xlat-2-1abel")

Because the translation programterXhair™ does not know about the local code "99hcc”, it can
only translate from the ICHC term.

The featuresgjuality andproducerof a translation are not shown in the above example here.

The Concept Descriptor can also deal with coding exceptions. The distinction between "code
without exceptions” and "code with exceptions” was proposed before and we should make sure
that we capture the requirements that this proposal tries to address. An exception in this system of
coding and translating occurs if some particular quality that was observed can not be coded in a
particular coding system.

For example, 46 year old Jane Jammer comes into Dr Doolittle’s office with the complaint of an
itchy sensation in her gut, but it is not quite painful. On the question where that sensation is
located exactly, Mrs. Jammer points to her upper left abdomen but then draws a circle that covers
about everything.

126 22 Mar 1999 DRAFT version 1.0

3.5.4 Examples

So Dr. Doolittle tries to code this chief complaint usingwtiaxial Code for Primary Care
Medicine(PRIMAX). PRIMAX might have an axis for sensation (S) and location (L). The doctor
is lucky to find 123 "ABDOMEN" as a fairly general descriptor for the location. But the doctor
finds only "pain,” "numbness," "tension,"” "heat,"” and "cold" as sensations. So where does the
“itchy but not quite painful" sensation go into? Unfortunately this code does not come with the
categorynot otherwiseclassified(NOC) not otherwisespecified(NOS) or jusitherthat many
classification systems (like ICD) have. So, the physician can not code that chief complaint of his
patient.

The physician writes down the following:

(Concept Descri pt or
coriginal Text "... an 'itchy' feeling in her 'guts’ that is not
qui t e pai nf ul "
:transl ations

(SET
(CodeTransl ati on
cterm
(CodePhr ase
(LI ST :of "CodeVal ue"

(CodeVal ue
:val ue #ot her
: codeSystem " PRI MAX"
:replacenent "itchy feeling, not painful”

)

(CodeVal ue
:val ue "L-123"
. codeSyst em " PRI MAX'
:printNanme "abdonen"

)

)
)
corigin #null
)
)

DRAFT version 1.0 22 Mar 1999 127

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

3.5.5 Outstanding Issues

The special valugnul | means a valueNol nf or mat i on) of theNo Information[p. 31]
data type without a null flavor. The special vattgg her stands for

(Nol nformation :flavor "other")

In order to fully support this, we need canonical taxonomy of flavors of null.

In the above example, PRIMAX is a multiaxial code, it has sensation (S), location (L), and may
be other axes, like timing (T), and the situation in which the problem occurs (W). PRIMAX (like
SNOMED) does not require you to pick a value from every axis. So, no one knows what this
#other in PRIMAX refers to, sensation? timing? work-relatedness?

It seems to be redundant to have a code phrase such as the following

(Code- Phr ase

(LI ST
(CodeVval ue
:val ue "S- 001"
: codeSyst em " PRI MAX"
:printName "pain®
)
(CodeVval ue
:val ue "L-123"
: codeSyst em " PRI MAX"
:printName "abdonen”
)
(CodeVval ue
:val ue " T-032"
: codeSyst em " PRI MAX"
cprintName "post prandial”
)
(CodeVval ue

:val ue "W 120"
: codeSyst em " PRI MAX"
cprintName "pulling a carriage"

128 22 Mar 1999 DRAFT version 1.0

3.5.5 Outstanding Issues

Because every code here is taken from the same code system PRIMAX, one would not need to
specify PRIMAX as the code system for all those related Code Values.

It also seems as if a code phrase does only make sense in certain code systems. For example, in
LOINC a code phrase is pretty useless if not contradictory to the (original) style of LOINC (that
has been loosened up lately). In LOINC you would say

(CodeVval ue
: val ue "2703-7"
: codeSystem "LA NC'
»version "1. 0K"

cprint-name " OXYGEN: PPRES: PT: BLDA: QN'

for the partial pressure of oxygépO,)in an arterial blood sample. It is certainly wrong in
LOINC to say the same in a phrase that first menfp@sin NOS blood BLD) and then adds to
it the modifier that the specimen was really arterial blood.

(Code- Phr ase
(LI'ST :of "Code-Val ue"

(Code- Val ue
:val ue "11556- 8"
: code-system "LO NC'
»version "1.0K"

cprint-name " OXYGEN: PPRES: PT: BLD: QN
)

(Code- Val ue
:val ue " BLDA"
: code-system "LO NC- SYSTEM
;version "1.0K"

cprint-name "arterial blood"

If the ability to form code phrases depends on the code system, the code system might define a
syntax for literal expressions of those phrases, such as "M12345 F03847 D94578" which
SNOMED apparently suggests.

DRAFT version 1.0 22 Mar 1999 129

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

On the other hand, some coding systems that do have modifiers (like HCFA procedure codes) do
not necessarily specify a syntax to build code phrase literals.

Even codes that are not originally meant to be used in code phrases (like ICD9 used to be long
time ago) did evolve to allowing formulation of code phrases. Today we see that certain ICD9
codes beg for a second code to specify the meaning more exactly.

We currently see such a drift towards multiaxiality within LOINC. LOINC originally
distinguished between a glucose lab test and a glucose test-strip, and while LOINC defines

(Code- Val ue
:val ue "8736-1"
:code-system "LO NC'
:version 1. 0K"

cprint-name " CARDI AC OQUTPUT: VRAT: . .: CARDI AC VENTRI CLE. LEFT: FI CK"

for the cardiac output measured using Fick’s principle (oxygen intake equals oxygen transport
rate in blood). Recently, LOINC seems to allow the same thing to be said in another way:

(Code- Phr ase
(LI ST : of "Code-Val ue"

(Code- Val ue
:val ue "8741-1"
: code-system "LO NC'
:version "1.0K"

sprint-nane " CARDI AC QUTPUT: VRAT: .. : CARDI AC VENTRI CLE. LEFT"
)

(Code- Val ue
:val ue " 8825- 2"
: code-system "LO NC'
. version "1.0K"
:print-namne
" HEMODYNAM C MEASUREMENT METHCD: TYPE: . . . : CARDI AC VENTRI CLE. LEFT"
)
= (Code- Val ue
:val ue " FI CK"
: code- system "noLO NC
:version "1.0K"

cprint-nane "Fick’s principle"

130 22 Mar 1999 DRAFT version 1.0

3.5.5 Outstanding Issues

This is not quite right, because LOINC is still not multiaxial. You would have to guess that the
third Code Value in the phrase is here to assign a value to the second Code Valmethkel
:=F| CK".

Sometimes we need to label specific parts in a code phrase. A code phrase is just a container of a
flat sequence of code values. Language has deep structure (look at Chomsky’s famous noun
phrase (NP) and verbal phrase (VP))

Our data type is already quite complex. If we do a recursion of the EBNF form:

CodePhrase ::= { CodeTerm};

CodeTerm

CodePhrase | CodeVal ue;

then we would be very powerful, but would also add a significant amount of complexity. We do
not fear recursion here, but we do not want to create a super-powerful data type that will provide
thousands of ways for people to abuse its power and hardly any idea about how to use the power

properly.

DRAFT version 1.0 22 Mar 1999 131

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

4 Quantities

4.1 Overview

All our quantitative concepts can be constructed by the means that mathmatics has developed
during the past 3000 years. The most fundamental and abstract quantitative concept is the
number. There are different kinds of numbers. Primarily there are natural numbers (1, 2, ...),
cardinal numbers (0, 1, 2, ...) and integer numbers (..., -2, -1, 0, 1, 2, ...). Such numbers are the
results of enumerating, counting or simple calculations (+, -, -, =, mod) with integer numbers.
The set of integer numbers is countably infinite and discrete.

Next there are rational numbers that are constructed through division (1/2, 1/3, 2/3, 1/4, ...). The
set of rational numbers is continuous and infinite but still countable (G. Cantor). Geometry has
introduced irrational numbers (e.g., square root of 2, pi, ...). The superset of rationals and
irrational numbers is called real numbers. The set of real numbers is continuous, infinite, and not
countable.

The ancient Arabs have introduced the custom to represent numbers as decimal digits where each
position has a certain value. This Arabic numbering system was a great advance over the ancient
Hebrew and Greek custom to use letters as numbers, or the arcane Roman number system. With
Arabic numbers one could calculate much easier.

However, numbers with decimal point can only approaximate most rational and irrational
numbers, hence, numbers with a decimal point can not be considered exact.

Most computer programming languages distingush between the two data types integer and
floating point number. Some know rationals and complex numbers. Whereas HL7 v2.x had only
one data type for numbers, HL7 v3 will distinguish between interger and floating point. This
distinction is suggested not just by technological considerations (both are implemented quite
differently).

The main reason for distinguishing integer and floating point numbers is about semantics. Integer
numbers are exact results of counting and enumerating. In natural science and real life, integer
numbers are rather rare. Measurements, estimations, and many scientific computations have
floating point numbers as their results, imprecise real numbers. Measurements are but
approximations to the quantitative phenomena of nature.

There are other distingished quantitative phenomena that can be partially described by numbers
but which have a meaning beyond numbers. Among such quantitative phenomena are physical
measurements with units of measure, money, and real time as measured by clendars.

132 22 Mar 1999 DRAFT version 1.0

4.2 Integer Number

This specification defines data types for integer and floating point numbers, for physical
measurements, money, and calendars. There are many more quantitative phenomena that we may
or may not define data types for in the future. Examples for those we will define are vectors,
waveforms, and possibly matrices. We will probably not consider complex numbers, except if a
concrete use case appears.

4.2 Integer Number

Integer Number (Integer, IN)

Integer numbers apgrecisenumbers that are results of counting and enumerating. Integer
numbers are discrete, the set of integers is infinite but countable. No arbitrary limit is imgosed
on the range of integer numbers. Two special ineger values are defined for the positive and

negativenfinity.

PRIMITIVE TYPE

No fixed arbitrary limits on value range

No arbitrary limit is imposed on the range of integer numbers. Thus, theoretically, the capacity of
any binary representation is exceeded, whether 16 bit, 32 bit, 64 bit, or 128 bit size. Domain
committees should not limit the ranges of integers only to make sure the numbers fit into current
data base technology. In finance and accounting those limits are frequently exceeded (e.g.,
consider the U.S. national budget expressed in Italian Lira or Japanese Yen.) Designers of
Implementable Technology Specifications (ITS) should be aware of the possible capacity limits
of their target technology.

The infinity of integer numbers is represented as a special value. The representation of integer
numbers is up to the ITS. In our instance notation we use the special g§miodl for positive
infinity (Alephy), #ni i nf for negative infinity (Alephy.) Note that#ni i nf =-#ii nf.

Constraints on value ranges

In cases where limits on the value range are suggested semantically by the application domain,
the committees should specify those limits. For example, the number of prior patient visits is a
non-negative integer including O.

Although we do not yet have a formalism to express constraints, we should not hesitate to
document those constraints informally. We will eventually define (or deploy) a constraint
expression language.

DRAFT version 1.0 22 Mar 1999 133

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

ITS Presentation and Literals

We allow integer numbers to be represented by character string literals containing signs, decimal
digits, and symbols for infinitie$mplementable Technolo@pecificationgITS) such as for

XML will most likely use the string literal to represent integers. Other ITSs, such as for CORBA,
might choose to represent integers by variable length bit strings or by choices of either a native
integer format or a special long integer format.

We may even want to define non-decimal representations in bases 2, 8, 16, and 64.

4.3 Floating Point Number

Floating Point Number (Float, FPN)

Floating point numbers are approximations for real numbers. Floating point numbers ocgqur
whenever quantities of the real world are measured or estimated or as the result of calcylations
that include other floating poimumbers.

component

name type/domain | optionality description

The value without the notion of precision or with
value RealNumber |required |an arbitrary precision. We do not specify a data
type for true real numbers of infiniprecision.

[IntegerNumbef
[p. 133

The precision of the floating point number in
terms of the number of significant decinaiagits.

precision required

Semantic components vs. representational components

A floating point number has the semantic componealise andprecision however, this does

not necessarily mean that any representation of a floating point number will be a structure of two
distinct components. Especially, since we do not specify a data type for true real numbers of
infinite precision, thevaluecomponent is not of an existing data type.

Precision

The precision of a floating point number is defined here as the number of decimal digits.
According to Robert S. Ledlgyse of computers in biology antedicing New-York, 1965,

p. 519ff]: "A number composed afsignificant figures is said to m®rrect ton significant
figuresif its value is correct to within 1/2 unit in the least significant position. For example, if
9072 is correct to four significant figures, then it is understood that the number lies between
9072.5 and 9071.5 (that is 90¥2.5) [...]"

134 22 Mar 1999 DRAFT version 1.0

4.3 Floating Point Number

Obviously this method of stating the uncertainty of a number is dependent on the number’s
decimal representation. For binary representations we could, in principle, specify the precision
more granularly. However, the statement that a value lies within a certain range is problematic
anyway, because it begs the question about which level of confidence we assume. We will define
a generic data type for probability distributions that allows exact statements of uncertainty.

Sometimes the terprecisionis put in opposition taccuracy Where precision means the

exactness of the numeric representation of a value, accuracy refers to the smallness of error in the
measurement or estimation process. While those concepts can be distinguished, they are related
inasmuch as we do not want to specify a higher precision of a number than we can justify by the
accuracy of the measuring process generating the number. Conversely, we do not want to specify
a number with less precision than justifiable by the accuracy.

In fact, there is considerable confusion around the meaning of such terms as precision, accuracy,
error, etc. There is hardly a commonly accepted definition of those terms. A review of some of
the available literature on that topic may help: the NI§Jtsdelines for the expressior of

[uncertainty irmeasurementhttp://physics.nist.gov/cuu/Uncertainty/index.htmhich in turn is

based on the ISOlsiternational Vocabulary of Basic and General TermMetrology (VIM).

In addition, the European standard ENV 12#88%lical informatics - expression of the results of
measurements in healsigiencesin its normative Annex D, summarizes the NIST’s position.

To summarize: NIST'Suidelines and ISO’s VIM regard the teraccuracyas a "qualitative

concept". Other related terms aepeatability reproducibility, error (randomandsystematiy,

etc. All those slightly different but related and overlapping concepts have been subsumed under
the broader concept ahcertaintyin a 1981 publication by the International Committee for

Weights and Measures (CIPM) in accordance with ISO and IEC. The uncertainty of measurement
is given as a probability distribution around the true measurement value (measurand). Given such
a probability distribution, a value range can be specified within which the true value is found

with somelevel ofconfidence

These concepts of specifying accuracy based on statistical methods are well known in the
medical profession. However, these statistical methods are quite complex, and exact probability
distributions are often unknown. Therefore, we want to keep those separate from a basic data
type of floating point numbers. However, floating point numbers are approximations to real
numbers and we want to account for this approximative nature by keeping a basic notion of
precision in terms of significant digits right in the floating point data type.

In many situations, significant digits are a sufficient estimate of the uncertainty, but even more
important, we must account for significant digits at interfaces, especially when converting
between different representations. For instance, we do not want a value 4.0 to become
3.999999999999999999 in such a conversion, as it happens sometimes when converting decimal
representations to IEEE binary representations.

DRAFT version 1.0 22 Mar 1999 135

http://physics.nist.gov/cuu/Uncertainty/index.html
http://physics.nist.gov/cuu/Uncertainty/index.html

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

No fixed arbitrary limits on value range

No arbitrary limit is imposed on the range or precision of floating point numbers. Thus,
theoretically, the capacity of any binary representation is exceeded, whether 32 bit, 64 bit, or 128
bit size. Domain committees should not limit the ranges and precision of floating point numbers
only to make sure the numbers fit into current data base technology. Designers of Implementable
Technology Specifications (ITS) should be aware of the possible capacity limits of their target
technology.

The infinity of floating point numbers is represented as a special value. The representation of
floating point numbers is up to the ITS. In our instance notation we use the special symbol
#f i nf for positive infinity (Alephy), #nf i nf for negative infinity (-Aleph,.) Note that

#nfinf =-#finf.
Constraints on value ranges

In cases where limits on the value range are suggested semantically by the application domain,
the committees should specify those limits. For example, probabilities should be expressed in
floating point numbers between 0 and 1.

Although we do not yet have a formalism to express constraints, we should not hesitate to
document those constraints informally. We will eventually define (or deploy) a constraint
expression language.

ITS Presentation and Literals

We allow floating point numbers to be represented by character string literals containing signs,
decimal digits, a decimal point and exponents. An ITS for XML will most likely use the string
literal to represent floating point numbers. Other ITSs, such as for CORBA, might choose to
represent floating point numbers by variable length bit strings or by choices of either a native
(IEEE) floating point format or a special long floating point format.

Decimal floating point numbers can be represented in a standard way, so that only significant
digits appear. This standard representation always starts with an optional minus sign and the
decimal point, followed by all significant digits of the mantissa followed by the exponent. Thus
123000 is represented'asl23e6" to mean .123 20°; 0.000123 is represented’ad 23e- 3"

to mean .123 10°3; and -12.3 is represented'as 123e2". to mean -.123 102,

The reason why we define decimal literals for data types is to make the data human readable. To
render the value 12.3 4s123e2" is not considered intuitive. The European standard

ENV 12435 recommends that the exponent should be adjusted such as to yield a mantissa
between 0.1 and 1000. Those representations tend to be easier to memorize. The external
representation is of the form:

136 22 Mar 1999 DRAFT version 1.0

4 .4 Ratio

sign =+

digit z= 0]1]21314|5|61]718]9
digits = digit digits | digit

decimal = digits. digits|. digits
mantissa := signdecimal|decimal
exponent = signdigits | digits

float = mantissae exponent{ mantissa

Number of significant digits
The number of significant digits is determined according to Ledley (ibid.) and ENV 12435:

1. All non-zero digits are significant.
2. Leading zeroes are not significant, regardless of the decimal point’s position.
3. All trailing zeroes are significant, regardless of the decimal pqiaition.

Note that rule number 3 diverts from Ledley and ENV 12435. Judgment about the significance of
trailing zeroes is often deferred to common sense. However, in a computer communication
standard common sense is not a viable criterion (common sense is not available on computers.)
Therefore we consider all trailing zeroes significant. For example 2000.0 would have five
significant digits and 1.20 would have three. If the zeroes are only used to fix the decimal point
(such as in 2000) but are not significant we require to use exponents in the represéaegion:

to mean "2 X10%".

4.4 Ratio

HL7 v2.3 defined the data type "structured numeric" (SN) for various purposes. Among those
purposes was to cater the need to express rational numbers that often occur as titers in laboratory
medicine. A titer is the maximal dissolution at which an analyte can still be detected. Typical
values of titers are: "1:32", "1:64", "1:128", etc. Powers of 1/2 or 1/10 are common. Sometimes
titer results are falsely represented by writing donw only the denominator (e.g. 2 meaning 1.2 and
128 meaning 1:128). Great confusion exists in practice when comparing titers to reference
values. Such, one almost always sees or hears statements like "1:256 > 1:128" when the opposite
is true.

Regardless of how negligent those titers are commonly treated in medical praxis, titers are
rational numbers. In the inroduction, however, we noted that rational numbers are exact. Titer
values sure are measurements, and all measurements are inexact.

DRAFT version 1.0 22 Mar 1999 137

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

Thus, in theory, a titer of 1:128 could be reported as 0.0078125. However, no human user would
understand such a result. One could recover the original ratio using the inverse of
10000000/78125 which is 128, but to do that, the receiver would have to know that the given
number is to be presented to the user as a rafimof

Since rational numbers are exact mathematical constructs, and since this exactness is not
available in medicine, this specification defines a generalization of rational numbers, the Ratio. A
ratio is any quotient of two quantities. Those can be two integers, in which case we have an exact
rational number. But the quotient can be built as well from floating point values, or physical
measurements or any combination thereof.

Note that the ratio has the semantics of a quotient. The ratio data type must not be used only
because it is a handy representation of two related values. Notably, blood pressure values,
commonly reported as 120/80 mm Hg aot ratios!

Ratio

A ratio quantity is a quantity that comes about through division of a numerator quantity with a
denominator quantity. Ratios occur in laboratory medicine as "titers", i.e., the maximal
dissolutions at which an analyte can stilldetected.

componentname type/domain optionality description
. required .
numerator Quantity default is1 The numeratoquantity.
required
denominator Quantity must not beero The denominatoquantity.
default isl1

A Quantity is a generalization of the following data types:

[IntegerNumbef[p. 133
[Floating PoinfNumbel[p. 134
[PhysicalQantityp. 13§
[MonetaryAmour{p. 140

[p. 137] (recursively)

... other quantitative datgpes

4.5 Measurements

138 22 Mar 1999 DRAFT version 1.0

4.5.1 Physical Quantities

4.5.1 Physical Quantities

All versions of HL7 v2.x had the data type "Composite Quantity with Unit" (CQ) defined. This

data type, however, was not normally used in measurement observations (OBX). Instead, in an
OBX you would send a numerical result (value type NM) and send the units in a separate OBX
field. Moreover, units used to have different code tables depending on whether the CQ type or the
OBX mechanism was used. We want to clean this up. It seems to be so natural to define a data
type for measurements (or "dimensioned quantities") that many other standardization groups
adopted (reinvented) this two component data type over and over again.

CEN TC251, WG 1, PT 26's first working documéigalth Informatics; Electronic Healthcare
Record Communication; Part 1: Extend&cthitecturein table 25 [p. 52f] defines a type

"quantity” as "A measurement expressed as a numeric value and unit of measurement" with the
two component structure (value, unit).

The current draft 5 of CORBAmedGlinical Observation AccesService(COAS) specifies an
"MeasurementElement” that basically contains value and unit, however, the structure is slightly
different.

We define the data type Physical Quantity as follows:

Physical Quantity
A physical measurement is a dimensioned quantity expressing the result of a measurement act.
It consists of a value anduait.
component : : . -
name type/domain optionality description

[Floating PointNumbef . The magnitude of the quantity measuted
value required |. .

[p. 134 in terms of theunit.
unit Ignzr]lceplDescnptolr[p. required | The unit, which is a real worlcbncept.
Units

Units are mathematical structures, quite different from other vocabularies. Armed with a little bit
of mathematics, dealing with units is much simpler than dealing with the usual medical concepts.
Units are hard to attack with semantic networks, but easy to deal with in simple algebraical
structures. [More will follow, see also Schadow G, McDonald CJ, &lratis of Measures in

Clinical InformationSystemsJAMIA. Apr/May 1999.]

DRAFT version 1.0 22 Mar 1999 139

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

Existing codes for units of measure are:

ISO 2955 (1983)

ANSI X3.50 (1986)

HL7 ISO+/ANSI+, equals ASTM 1238, equals HISPP MSDS CDT (based on ISO+).
There is a neWnified Code for Units dfeasureghttp://aurora.rg.iupui.edu/UCUM)
(UCUM) that we will submit to either ANSI X3.50, ISO TC12, or as an HL7 defined code
(probably maintained by Regenstrief, similar to LOINC). The UCUM is much more
complete, does not suffer from ambiguities and imprecise semantics as the otheocodes

PN

Regardless of what coding system HL7 ends up recommending (or mandating) we will be able to
accommodate this in the above defined structure.

Constraints on the Dimension of a Measurement

Not all physicakinds ofquantities(or dimensiongare applicable in every use of the
measurement data type. Subsets of units of measures are defined through the semantics of units
and could be specified in either of three ways:

1. with a special code for kinds of quantities,
2. with a special expression language (similar to the units code itself),
3. with a paradigmatic unit to which a given unit must be convertible.

Ad. 1. Examples for a special code for kinds of quantities is the "property" code of LOINC. l.e.
"TIME" for time durations (e.g., seconds)

Ad. 2: Examples for a special expression language is the way dimensions are commonly
specified,"T" for time,"L" for length,"LT"1" for velocity, "LT 2" for acceleration antLT-2M"
for force.

Ad 3: If an attribute "encounter duration” is defined as a measurement then one could give the
paradigmatic unit "s" (second) in the definition of that attribute, meaning that every value of this
attribute must be convertible to seconds. This would be true for all measurements with units such
as minute, hour, day, and many more.

4.5.2 Monetary Quantities: Currencies

Expressions of monetary amounts are of the same abstract form as physical quantities, i.e. a
composite of a value and a unit (the currency unit). As with physical quantities, this composite
can be regarded as a product (multiplication) of the value and the unit. As with physical units we
have submultiples of currency units (e.g., dollar and cent, pound and penny, mark and pfennig,
rupee and paisa, etc.) Currencies appear to be just another dimension of measured quantities.

140 22 Mar 1999 DRAFT version 1.0

http://aurora.rg.iupui.edu/UCUM

4.5.2 Monetary Quantities: Currencies

However, there is also a big semantic difference between monetary units and physical units.
While "exchange rates" of physical units are pretty stable over many decades, the value of
monetary units is negotiated differently each day in different places of the world. While an
international inch is 2.54 centimeters exactly (since 1959), a U.S. dollar (USD) may be 1.795
Deutsch mark (DEM) today and 1.659 DEM tomorrow. The same USD may be worth 1.795
DEM in New York and 1.801 DEM in Frankfurt (Germany) at the same time.

This suggests handling currencies differently from physical quantities. The methodology of this
data type redesign work defines data types as semantic entities. The fact that some data types
with different semantics may share a similar structures does not by itself warrant to lump both
types together.

Monetary Amount

A monetary amount is a quantity expressing the amount of of money incsoraecy.

component . . . i
name type/domain optionality description
value [Floating Point required The magnitude of the monetary amount in
[Numbe}{p. 134 g terms of the currenaynit..

The currency unit (e.g., US$, Deutsch Mafk,
required |Pound sterling), which is a real world
concept.

[ConceptDescriptoy
[p. 122

currencyunit

ISO 4217 is an international code for currency units. Although the standard text itself is
copyrighted, the values themselves are freely usable and ardhkséed
(http://www.triacom.com/archive/iso4217.en.htnhis code does only cover the "major"

currency units of each country, e.g. U.S. dollar but not cents, British pound but not penny,
German mark, but not pfennig, Indian rupee but not paisa, etc. This shouldn’t be a major
problem, since most currency submultiples are 1/100 worth the major unit (yes the British turned
towards a decimal system as well, no "shilling" any more; was 1/16 pound sterling.)

Price Expressions

Expressions of monetary units and physical units may be mixed as in price expressions, such as 5
U.S. dollar (USD) per milliliter (price), or 20 USD per hour (salary). Two ways exist to construct
price expressions.

1. using thgRatid [p. 137] data type with a monetary amount as numerator
[quantity[p. 13§ as a denominator.

2. combining a code for physical units with a code for curramais.

DRAFT version 1.0 22 Mar 1999 141

http://www.triacom.com/archive/iso4217.en.html

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

(1.) The example price expressions above could be built with ratios as follows

(Ratio
: numner at or (Monet ar yAnmount
:val ue 5.00
ccurrencyUnit "USD")
: denom nator (Physical Quantity

:value 1
runit "m"))
(Ratio
: numer at or (Monet ar yAnmount
:val ue 20.00

ccurrencyUnit "USD")
: denom nator (Physical Quantity

svalue 1

cunit "hr"))

This is a clean and the most simplest solution, since separate codes for physical units and
currency units are available today. This allows to flexibly combine quantities that have different
semantic properties.

The alternative (2.) is to merge a code for physical units with another code for currency units.
This endeavor raises problematic questions about the differences in semantics.

The way this could work in UCUM is that one would define an eighth base unit in addition to the
seven existing base units. This would probably be the U.S. Dollar, or one troy ounce of gold -
traditionally used as the standard currency by the World Monetray Fund.

Lexically, the currency units would be treated just like any other unit. Semantically, however,
their value would be taken from a dynamic table, which could be an on-line connecting directly
to New York’s Wall Street or any bank institution regarded as authoritative in any given realm.

However, this raises question what happens if a message crosses a given realm? While
conversions between physical units should be enabled because physical units of the same
dimension are equivalent, currency units are not equivalent. Currency units do change their
exchange rates on an hourly basis. While it does not matter at all whether you have 1 yard or
0.9144 meter, it does matter a lot whether you have 100 US Dollars or 3000 Indian Rupees.

142 22 Mar 1999 DRAFT version 1.0

4.5.3 Things as Pseudo Units

This matter must be considered an open issue for the time being.

4.5.3 Things as Pseudo Units

Sometimes all kinds of things are used in expressions of the same form as physical quantities,
such as

numberx unit

Those expressions are often used when numbers are reported that are the results of counting
things. For instance, if we count tablets and the number of tablets is 50, people naturally say, "50
tablets", which almost lets "tablet" appear as if it wehere a physical unit. However that is not true.

Not any object is a phyiscal unit. Moreover, the connection between things and physical units is
mainly suggeted by European natural languages, where we say "50 tablets”, "20 cars", "1000
chicken" and the like. Other languages, like Japanese, use category suffixes behind count
numbers, such "5 pencils" would be "empitsu go-hong" in Japanese, where "hong" is used for all
kinds of long and thin things. Should we therefore suggest to regard "hong" as a physical unit?

Those thing-units do have certain properties in common with physical units, for example, you can
not add meters and seconds or apples and oranges. But there are also important differences. All
international standards on measurements state that when object counts are reported, the
measurememameshould contain the things counted. One should not make up ad-hoc units. In
lab data bases one frequently finds units such as "red blood cells" vs. "white blood cells", which
is redundant, given that the measurement name is reported properly.

Those thing-unit are most common in the pharmacy, where they appear as medication units of
application (e.g. tablet, capsule, vial, spray, etc.) that are often used as if those were units of
measure. Those symbols, however,rareunits of measure, because they are not inherently
guantities. While a metre is inherently a quantity (worth approx. 3.4 foot), a tablet or vial has no
magnitude by itself. A given tablet, vial or spray may have properties, such as strength or
volume, but those are different for any different kind of tablet, vial or spray under consideration.
Conversely, a metre does tatvedifferent quantitative properties, a mesa quantity in

essence. Tablet, vial, or spray acg essentially quantitative items.

Of course, you can count tablets (like you can count all kinds of things), of course, a tablet, as a
physical body does have volume, length, width, and depth. But the essence of a talitetis its

and not any specific kind of quantity. Conversely the essence of a meter is a certain amount of
length, the essence of a second is a certain amount of time, and the essence of a dollar is a certain
amount of money. Not every kind of an object is a candidate unit.

One may argue that not even all units or measure are real units, so why should one bother? For
example, international Units (i.U.) are units that do not have a fixed magnitude associated with
them.

DRAFT version 1.0 22 Mar 1999 143

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

International Units are arbitrary units defined for every analyte by some international
organization IUPAC (?). Examples are i.U. for penicillin, insulin, streptokinase, urokinase, and
other medications, but i.U. are defined for many enzymes, hormones and antibodies. The
rationale for those units is twofold:

1. these are functional units that measure a certain biochemical function rather than a specific
molecule, because many slightly different molecules can carry out to the same biochemical
function;

2. the measurement process has so many parameters which all need to be standardized that it is
not possible to come up with comparable units, standardized acrarsalgiks.

The units U (= 1 umol/min) and katal (= 1 mol/s) of catalytic activity try to be standardized for

all enzymes. However, the measurement conditions still need to be standardized because 1 katal
of Phosphofructokinase measured at pH 7.4, 37 degree Celsius, in a Ringer solution, with this
much ADP and no 1,2-Bisphosphoglycerate present, is quite different from 1 katal of the same
analyte measured at pH 7.5, 28 degree Celsius, in plain water with only that much ADP present.

The various international Units (i.U.) are still essentially quantitative concepts, because
international Units are defined for no other purpose than to measure quantities. This is quite
different with tablets, vials, and sprays.

The order/results committee will have to work out the specifics on the relationship between units
of application and units of measures in its information model. It is quite important for a clean
information analysis to distinguish the semantics of physical units from those thing-units. An
important purpose of this data type redesign is to facilitate information analysis, not to obscure it.

4.6 Time
4.6.1 Pointin Time

Point in Time

A point in time is a scalar defining a point on axis of natural time. This naive concept of gn
absolute time scale is not concerned with relativity of time as is important in astrophysics and
cosmology.

PRIMITIVE TYPE [see text]

The natural time scale is, almost like the temperature scales (Celsius or Fahrenimégyain
scale(aka.differencescalg. While the Celsius temperature scale defines a zero point at the
freezing point of water and a standard degree as 1/100 of the boiling point of water, the Christian
calendar defines the zero point at the birth of Christ, and the basic unit of time as the second.
There are obvious problems with the determination of the zero point of the Christian calendar,
but the principle is the same.

144 22 Mar 1999 DRAFT version 1.0

4.6.1 Point in Time

Zero points on the natural time axis are chosen arbitrarily, and called the "epoch".

Many data type specifications for point in time are based on an epoch. Examples for epochs are:
1/1/1970 00:00:00 UCT on Unix, 1/1/1980 00:00:00 UCT on MS DOS, 12/31/1959 00:00:00
EST in the Regenstrief MRS, 10/15/1582 00:00:00 UCT in CORBA’s COAS. Basic durations are
seconds, milliseconds, microseconds, or nanoseconds measured from that epoch. This way of
representing time is very simple. Although it is not easily human readable, it is very easy to
compute with those standardized time values.

Traditionally the even flow of time is "convoluted” in many cycles defined by calendars. Such
cycles are years, months, days, hours, minutes, seconds. Those cycles are not synchronized.
Traditionally calendars have been define based on astronomical phenomena, however, calendar
years, months and days are not attached directly to astronomical phenomena. The closest fit is the
calendar day to the solar day, but the calendar month is definitely not the same as a lunar
(synodal) month.

Humans communicate points in time as calendar expressions. Calendars are quite complex
constructs which are dependent on culture. Bali, for example, is said to uses 6 different calendars.

To account for the calendar problem, the basic Java library defines two classes:

java. util . Date andj ava. util . Cal endar . Dat e is defined as a point in universal
coordinated time of the form epoch/duration (Java’s epoch is 1.1.1900 00:00:00 UTC).

Cal endar is a generalization of@ egor i anCal endar an potentially other calendars.

It is quite difficult to convert a calendar expression into an epoch/duration form. There are not
just leap days (Feb. 29) added to leap years, but also leap seconds (added to leap days). The
algorithms to determine leaps is difficult (leap year) or non-existent (leap second). The latter are
taken from tables published in Astronomical Almanacs. But fortunately, conversion is done by
most operating systems or the basic Java library.

Calendar expressions are for humans to understand and are therefore represented as character
string literals. The semantic components of a calendar expression may be different from the
components identifiable in a particular surface form.

Quite solid standards for expressions in the Gregorian calendar are HL7 v2.3's TS data type, and
ISO 8601 (adopted in Europe as EN 28601). ASN.1's (ISO 8824¢r al i zedTi ne is a

restricted form of ISO 8601. HL7’s TS format is used by ASTM 1238 as well and lives on in

ANSI HISPP MSDS CDT'$at eTi nme format. Although HL7’s TS format and ISO 8601 are
similar, they also have considerable differences.

For HL7 v3 it seems worthwhile to consider adopting 1ISO §tdre about IS@601
(http://www.cl.cam.ac.uk/~mgk25/iso-time.htilHowever, ISO 8601 has some "features” that

may be considered a disadvantage. First of all, ISO 8601 has too many unnecessary alternatives.
A somewhat canonical date/time form is

DRAFT version 1.0 22 Mar 1999 145

http://www.cl.cam.ac.uk/~mgk25/iso-time.html

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

YYYYMM-DDThh:mmss

the dashes between the date components, the colons between the time componenit$'and the
between date and time components may, according to ISO 8601, as well be omitted. The
omission of those characters brings about a form very similar to ASN.1 or HL7’s TS. The way of
handling precisions in TS of HL7 v2.3 (after v2.2) is to leave out the less significant digits as
required. However, without tHd " between date and time, this would be ambiguous with certain
other valid ISO 8601 forms. ISO 8601 allows omission of' fHeby mutual agreement and only

if no ambiguities are introduced - a clause that is usually hard to enforce (and therefore harmful)
in standards.

The W3C is considerirlg subset of IS@601 (http://www.w3.0rg/TR/NOTE-datetimepr
adoption. W3C'’s subset requires tie' between date and time.

Useful features of ISO 8601 that are not part of HL7’s TS type are so called "ordinal dates" of the
form

YYYY¥DDD
YYYYWww
YYYY¥YWww-D

These allow to specify a date as (1) the day of a year, (2) the week of a year, or (3) the week of
the year plus the day of the week.

Moreover, ISO 8601 allows omission of more significant components (the delimiter dash, colon,
or "T" must occur in those cases). This changes the semantics of the expression from a point in
time to a calendar modulo expression. For example "---2" means every Tuesday, but subtle
variations may have big impact on the meaning: "-W-2" means Tuesday "of the current week"
(whatever this means).

Both, HL7’s TS and ISO 8601 handle time zones through offsets of the form "+hh:mm" or
"-hh:mm" relative to UTC. TS adds a "Z" in front of the time zone suffix, while ISO 8601 uses
the "Z" to mean UTC specifically (thus in ISO 8601 an offset expression following the Z would
be contradictory).

Other worth-having features are missing in ISO 8601, however. Those missing features include
the concept of significant digits available in TS, where you can say "198" to mean any year from
1975 to 1985.

It seems justified for HL7 to sticks with its own tradition of the TS data type. However, some
slight changes could be applied to render most TS expressions compatible with ISO 8601
expression. Notably the "Z" should be used in the ISO 8601 style (i.e. only for UTC).

146 22 Mar 1999 DRAFT version 1.0

http://www.w3.org/TR/NOTE-datetime

4.6.2 Time Durations

4.6.2 Time Durations

Some recently developed type systems define a special data type for durations (e.g. for instance
the one developed by M. Stonebreaker for the POSTGRES object-relational data base project)
The Arden syntax also knows such a concept. In this v3 data type model, however, time durations
are but a special case of a physical quantity. Durations of time are nothing else than
measurements in the dimension of time. Thus those durations have the units 1's, 1 min, 1 hr, 1 d,
1wk, 1 mo, 1 a, etc.

4.6.3 Other issues and curiosities about Time

"l got sick at my birthday, about 20 years ago," is an expression that we might want to capture.
One possible representation for this time would be "yyyy0219" if my birthday is February 19th
and if yyyy is constrained tihis year - yyyy is approximately 20 years. If from another source

we gather that | got sick in "1976", but don’t know the exact month and day, then we can
conclude that | got sick in "19760219", because 1998 - 1976 = 22. This seems a somewhat rare
use case, but definitely worth considering.

"l got that cough in spring,” might lead us to adjust probabilities for pollen allergy. The season of
the year is of interest in epidemiology. Bob Dolin, in his JAMIA ArticleMwodeling the

temporal complexities aymptomssuggests accounting for "season” in time expressions. The
difficulty here is that seasons depend on the geographical latitude and we can not infer the season
from the month of the year. January is Summer in Australia, South Africa, Chile, and Argentinia
while northern folks assume that January is the worst part of the Winter. Moreover, at the equator
there are not the usual four seasons, however, in tropical regions, there is the Monsun season,
which may be considered one of two seasons, or a fifth season. | propose to defer season as part
of a point in time expression until the use and the implications become more clear.

Noteworthy references on time expressions are CEN TC251's ENV &88th care

informatics; time standards for health care spegifioblemsand the ARDEN Syntax. Those two
standards not only define relations and operators on time values but also on events and episodes
which are related in time.

Relative times of the semantics NOW + duration offset stick out as the most prominent feature
defined by those and other time related standards. We might thus consider the ability to specify
relative time. Some conventions use expressions like "t-1" to mean "yesterday". Relative time
expressions are of the data type point in type, but the exact value depends on a parameter (the
actual time) specified elsewhere.

DRAFT version 1.0 22 Mar 1999 147

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

4.6.4 Calendar Modulus Expressions

A modulus is the remainder of an integer division. For example, 12 modulo 7 is 5. If we have the
time defined as epoch + duration in days, we can tell the day of the week of any date if we know
the day of the week of the epoch. For instance, let our epoch be January 1 of 1582 (when the
Gregorian calendar was introduced) was a Monday. We can easily tell the weekday of January 31
1582: the offset from the epoch is 30 days. A week has seven days, 30 modulo 7 is 2. Monday
plus two days is Wednesday. The same way we can tell that the date epoch + 151840 days (some
time in 1998) is a Thursday.

Other such modulus expressions exist in calendars, all of which have the form:

unity of the unit,
day of the week
month of the year
day of the month
week of the year
day of the year
hour of the day
minute of the hour
second of the minute

Obviously,unit; must be less thamit,. All those units are defined by the calendar and may be

slightly different from related units defined for time durations. For instance, the average Julian
month is 30.4375 days, but a calendar month varies between 28 and 31 days. Thus the modulo
expression "month of the year" must be made available by the calendar and can not easily be
calculated using the average month.

How do we express complex modulo expressions that are not provided by the calendar? Things
like "every other Tuesday" come to mind. We could tell whether or not a céat&is an every
other Tuesdays by testing the the equation:

datemodulo (2 x 7) = 1; given that 0=Monday, 1=Tuesday,
while every Tuesday would be:
datemodulo 7 = 1; given that 0=Monday, 1=Tuesday,

We decided to ponder on the calendar modulo expressions for some time before coming back to
it.

148 22 Mar 1999 DRAFT version 1.0

5 Orthogonal Issues

5 Orthogonal Issues

There are variations of meaning that can apply to many different data types. Such variations are

forming ranges, adding comments, specifying a validity period or a history of some data element,
and, of course, specifying uncertainty about some information. Rather than define specific ways

for every data type to express such semantic variations, this type systfgeneagypes[p.

12] combined withimplicit type conversiof[p. 22] to yield a similar effect as was used in HL7

2.x to modify existing data types.

HL7 2.x used to append new optional components at the end that served as modifiers of the
meaning of the prior components. Thus the same message element instance could conform to
more than one type, the base type and the extended type.

In a strong type system we can yield the same effect thjgemgrictypes$[p. 12] combined with
[implicit type conversiofip. 22] . This method virtually "overlays" extended types on top of the
base types.

5.1 Interval

DRAFT version 1.0 22 Mar 1999 149

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

Interval

Generic data type that can express a ranges or intervals of values. An interval is a set of
consecutive values of any totally ordered data type. An interval is thus a continuous subset of its
base datéype.

GENERIC TYPE

parameter allowed L
description
name types
Any ordered type can be the basis of an interval. It does not matter
T OrderedType whether the base type is discrete or continuous or whether arny
algebraic operators are defined for ttygte.
component , . , -
name type/domain | optionality description
low T optional | The lowerboundary.
: Indicates whether the interval is closed or open af the
required]
lower boundary. For a boundary to be closed, a fifite
low closed |Boolean default : . o
false _bo_ur_wdary must _be provided, i.e. unspecified or
infinite boundaries are alwaygpen.
high T optional | The uppeboundary.
: Indicates whether the interval is closed or open af the
required . .
. high boundary. For a boundary to be closed, a finjte
highclosed |Boolean default : . o
false _bo_ur_wdary must _be provided, i.e. unspecified or
infinite boundaries are alwaygpen.

Ranges or intervals of values are most abundant as ranges of absolute time, used for ordering and
scheduling. Note that an intervalnet to be used to specify confidence intervals for uncertain
values.

We use the terms "range" and "interval” interchangably as synonyms. Webster’s dictionary
defines:

range
1 a (1) : aseries of things in a liie,]
interval

1 a : a space of time between events or sfates
3 : a set of real numbers between two numbers either including or excluding one or both of
them

150 22 Mar 1999 DRAFT version 1.0

5.1 Interval

Thus, in common language interval and range are not quite synonyms. A range is the ordered
“line of things" while the common notion of an interval is the gap between two things. However,
“interval” is used in mathematics for things being aligned in a set.

People normally use ranges for three different purposes that can be intuitively described as

1. a set of values, where each value may apply under some circumstances (e.g. an order
scheduled to begin at 3:15 and end at 4 o’clock);

2. one single unknown value supposed lie within the range of values given (e.g. a measurement
which turns out to be off the lower absolute limit and therefore can be reported only as a
range with an upper boundary);

3. one single value whose set of possible values is partitioned into equivalence classes because
the exact differences are not interesting or not measurable (e.g in microbiologic
susceptibility testing, we may have a parameter "OXACILLIN SUSC" where only the
following equivalence classes are of interest: > 8.0 pg/ml (not susceptilbled;ug/mi
(limited susceptibility); and < 2.0 pg/rdusceptible)).

The interval data type shall be primarily used when the entire set of values is meant, not just one
value from that set. Notably if the motivation for considering an interval is that there is
uncertainty, then the interval is the wrong choice. For uncertainty or inaccuracy one of the data
types fofuncertaint}{p. 155 must be used instead. Thus in the above list, only item 1 is

definitely a use case for intervals.

Intervals can be open or closed at either side:

[n, m] is aclosedinterval. A valuex is an element of the interval if and onlyifs greateor
equal thann and lessor equal thanm. That is, the boundaries are included in the interval.

In,m[is anopeninterval. A valuex is an element of the interval if and onlyifs greater than
n and less thamm. That is,the boundariesn and m are not included in theinterval.

Obviously an interval can be closed on one side while open on the other side.

Intervals can have finite or infinite boundaries on either side, if the base type contains the notion
of inifinity. Note that an interval with two infinite boundaries is equivalent to the entire range of
an infinit base type.

One boundary of an interval may be unknown. For example, the expression "< 3" is an interval
with an unknown lower boundary and an open finite upper boundary. An interval must not have
both boundaries unknown.

An interval can only be closed at a finite boundary. That is, if a boundarynraty or
unknown, the interval can not be closed at that boundary.

DRAFT version 1.0 22 Mar 1999 151

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

Although, we do distinguish between surface form and semantic components with intervals as
with any other data type, we specify a character string literal form for interval expressions that is
tuned toward intuitiveness and is recommended for use in character based encoding rules. Here is
a mapping between surface forms (string literals) and the uniform interval form:

literal interval form instancenotation

<=n |]unk; n] (low open) (Interval :high n
: hi ghCl osed #true)

- n: unk((high open (I'nterval :lown
[[(high open) ;1 owCl osed #true)

<n Junk; n[(low open and higlopen) (| nterval : high n)

>n |]n;unk[(low open and higlopen) (| nterval :1ow n)

(I'nterval :lown
-n [n;] Ih:)\é\ﬁl 2sed #true
: hi ghCl osed #true)

(I'nterval :low n

[n, m] |[n; m] .l owCl osed #true
high m

: hi ghCl osed #true)

As always, various constraints can be made on data types. l.e., the components of the interval
data structure can be constrained to certain allowable values or combinations of values only. As a
notable special case, one could constrain intervals such that any allowable value would have to
have an unknown (or infinite) boundary at one side.

5.2 General Annotations

HL7 v2.x made abundant use of the NTE segment for notes and comments. Up until now, there is
no such construct for HL7 version 3. The NTE segment was a very useful construct to
communicate information that can not be communicated otherwise. NTE segments usually
contain free text, meant to be shown to human users. Th v2 NTE segments had the disadvantage
that they would occur only at certain places in the message. A comment in an NTE segement was
scoped to parts of the message structure, however, the scope could not be narrowed down to the
level of a single data element or component.

152 22 Mar 1999 DRAFT version 1.0

5.2 General Annotations

The following generic type for annotations can be overlayed over a value of any other data type.
An implicit conversion rule exists that will convert any annotdtéad aT at the receiver side.

Annotated Information

Generic data to give allow arbitrary free text annotations for any message alestearde.

GENERIC TYPE

parameter

name allowedtypes description
T ANY Any message element type candomotated.
component . . , i
name type/domain |optionality description
value T required |The informationtself.
[p. : The annotation as free text to be eventually
note required . "
48 displayed to a user @administrator.

Note that this annotated information data type, as a Message Element Type (MET) could be used
to annotate any Message Element Instance (MEI), regardless whether that MEI was derived from
a RIM class, a RIM attribute, or from any component of a data type. Thus this annotated
information generic type is enough to carry the NTE feature of version 2 over to version 3.

Annotations are primarily used to eventually display the annotation to human users. For instance,
a lab value might be sent annotated, in which case the medical record user interface program
might shows a little marker in the respective cell of the flowsheet. When the user clicks on that
mark, a text box pops up that displays the free text annotation.

However, annotations in version 2 NTEs were sometimes used like a codes. This happens for
three different reasons

1. instead of fixed canned notes and comments, only a single symbol is sent, as an abbreviation

for the whole commen;
2. people want to save bandwidth by "compressing” longer comments into abbreviations; or
3. the notes and comments are meant to be interpreted by computers insi@ads.

To use free abbreviations or codes in NTE segments is a problematic habit, though. First of all, it
is hardly interoperable, becasue one will hadly find any standard for notes and comments codes.
Indeed if there were any such standard, then the use case of those codes would be so well
established that it would warrant better means than just annotations. Such codes usually translate
into No Information flavors, or attributess of specific classes.

DRAFT version 1.0

22 Mar 1999

153

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

There are clearly some "use cases" we deliberately will not support. There is no need for ad-hoc
"compression” of data using such abbreviations. The problems and overhead that such
abbreviations put on the message processing side outweighs by far the minor saving of
bandwidth. Also, we do not want to support the use case of lazy message creation. Indeed many
coded annotations fall in the category of lazy message creation, where data could be sent in
appropriate message fields.

If there are use cases for coded annotations that are not supported by the RIM or the data type
model, those should be fed back into the HL7 development process. Codes that people used to
send in NTEs should be systematized and used to improve the HL7 version 3 data models and
messages.

It might have been reasonable in v2.x to use those coded NTE segments for this purpose, in v3
we definitely want to use the available stanardized information structure. If any significant amout
of real existing annotation could not be accomodated in RIM data elements, we should drive a
use case analysis from there suggesting improvements to the RIM.

Disclaimer: we will get back to this as an open issue.

5.3 The Historical Dimension

In the recent years HL7 has experienced a need for data elements to be communicated with a
history. l.e. the National Immunization Program (CDC, State Departments of Health) needed to
communicate historic address information. Other examples for history are "effective date" and
"end date" of identifiers or other data. The traditional approach to this problem was to extend a
preexisiting data typ€& or to create a new data tyKeT. Using generic types as described above,
we no longer need to take care of history information for every existing type. Instead we can
define the following set of generic types:

5.3.1 Generic Data Type for Information History

154 22 Mar 1999 DRAFT version 1.0

5.3.2 Generic Data Type "History Item"

History

Generic data type to give the history of some information. This is an ordered list of data pf the
same type along with the time interval giving the time the information was (or is) valid. The
order of history items in the lists should be backwards in time. The history information is [not
limited to the past history, expected future values canagipear.

GENERIC TYPE

parameter name allowedtypes description

Any data type
T ANY can be used
here.

ORDERED LIST OF [History Item] [p. 155 <T>

5.3.2 Generic Data Type "History Item"

History Item

Generic data to give the time range in which some information was, is, or is expected to [be
valid.

GENERIC TYPE

parameter allowedtypes description
name
T ANY Any data type can be usédre.
component : , . i
name type/domain optionality description
value T required |The informationtself.

The time interval the given information was,
validity 9][required is, or is expected to be valid. The interval cpn
period 144 > 3P 9 be open or closed infinite or undefined on

eitherside.

When no validity period is known, it does not make sense to send a history item for the
information, therefore, both components are required. However, an interval can be defined open
and undefined or infinite on both sides. This should not be done unless in a case where infinite or
undefined validity periods are semantically justified.

DRAFT version 1.0 22 Mar 1999 155

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

5.4 Uncertainty of Information

Uncertainty may exist for all kinds of informations. Information is selection of a signal (value)
from a set of possible signals (values). Uncertain information is selection of several values from a
set of possible values where we assign to every value a probability (i.e. belief that the given
information applies). We may distinguish four cases:

1. There are only two possible values where one is the negation of the other (boolean). In that
case we need to specify a probabiptior only one value (preferably the value meaning
“true™). The probability of the other value is thenf -

2. The set of possible values may have no total order. In that case we have to send pairs of
<value probability>.

3. The set of possible values may have a total order but is discrete. In that case, we can send
<value probability> pairs too. In addition, however, there is a mapping of the set to the set
of natural numbers, and we can specify a discrete probability distribution (e.g., binominal,
geometric, poisson) and the necessary parameters of those distributions.

4. The set of possible values may have a total order but is continuous. In that ceasenote
send<valug probability> pairs. But we can select a continuous probability distribution (e.qg.,
normal, uniform, gamma, chi-square) and its necessary parameters.

The following are examples of where uncertainty appears in the language of medical practice
® A pathologist says: "There is a 30% probability that this lesiomaiggnant.”

® A pathologist says: "This lesion is malignant." A medical record system may find out from
case-based reasoning (experience) that if pathologist A discovered malignancy, he was right
in 80% of the cases, whereas if pathologist B makes the same statement, he was right in only
70% of thecases.

® A pathologist says: "This lesion is probably malignant.” Again from experience, a system
can say that if the word "probably” was used the chance of malignancy is 40% (whereas if
this pathologist had said "could be" the chance would have beet@bly

One might concluded that one needs to distinguish whether a probability was issued by the "user"
or a such a system that keeps track of experiences with the pathologist’s judgment.

One might further concluded that an expression of an uncertain discrete value (e.g., malignancy)
should include both, a coded qualifier of confidence and a numeric probability, where each may
be assessed by different entities.

The seemingly important distinction between "user assessed" probability and "system assessed"
probability suggests that every uncertain information item may be associated with many
uncertainty qualifiers, each in the eye of another entity. Indeed soem piece of information may be
believed at a different level of confidence by different people. Bayesian probabilities are

156 22 Mar 1999 DRAFT version 1.0

5.4 Uncertainty of Information

subjective, and thus, any probability is valid only in the context of the one who issued the
probability.

Uncertainty assessments (probabilities) are subjective. Thus they depehd siates them. For
example, if | am 70% sure that what | see in the microscope are malignant cells, | express my
views as such. If some experienced pathologist says that probability for malignancy is 70%, she
expresses her view as such. Any receiver of that information must draw his own conclusions
based on his trust in my or the pathologist’s judgment.

Practically, a receiver might apply a penalty of 0.5 to what | say, whereas the pathologist’s views
would be trusted at a level of 0.95. Thus from my statement, the receiver may infer a probability
of 35% for malignancy while the pathologists statement may be transformed to 67%. If the
receiver has both of our statements, he may want to apply a noisy-or and infer his probability as
1-(1-35%)(1-67%) = 79%.

The bottom line is: the newly created value-probability-pair would be part of a new observation
assessed by the receiver of both mine and the pathologists statements, penalized and combined by
the receiver. The receiver drafted his judgment about the case from information received by

others, but he has drawn his own conclusions and is responsible for them. This shows that there is
not one correct proability that would "objectively" qualify any given statement.

When this newly drafted value-probability-pair is communicates further along to someone else,

the sender may or may not quote both of his input-statements plus his own conclusion. In any
case, the receiver of that information would again penalize and combine what he has got based on
his trust in the judgment of the originators of the incoming statements.

It generally doesn’t matter whether a probability was issued by a human "user" or by any kind of
decision support "system”. The same rules apply: the probability is subjective and the receiver
has a responsibility to value the uncertain information he received. Knowing the originator of the
uncertain statement is essential (as it is always essential tovkmogaid what), but knowing

just the category "user" vs. "system" does not help.

A data type for uncertain information should, however, not include implied associations between
RIM classes to suit the need for attributions of probabilities. Thus, one uncertain value should not
be attributed to some Healthcare_provider instance of the RIM. For example, we should not build
a data type composed of the triglealue, probability originator>, whereoriginator would be a

foreign key to some Stakeholder or Healthcare_provider. Rather, the uncertain value would be
included in a RIM class instance, where the attribution or responsibility of the statement is clear
from that context of the RIM class.

It is true that any instance of uncertain information must be attributed to an originating entity
(Doctor or decision support system) just like a "supposedly certain" information must be
attributed. But attribution of information is outside the scope of this data type model, since
attribution is modeled properly in the RIM.

DRAFT version 1.0 22 Mar 1999 157

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

5.4.1 Uncertain Discrete Values

Discrete values can be assigned a single probability number to express the level of confidence
that the given information applies

Uncertain Discrete Value using ProbabilitieqUDV-P).
Generic data type to specify one uncertain value as a pamabfe probability>.
GENERIC TYPE
parameter allowedtypes description
name
T DiscreteType Any data type that is discrete canused.
component , . . e
name type/domain optionality description
value T required The_ value to which a probability is
assigned.
[Floating PoinfNumbef[p. .)
probability 134 required Igligrobablllty assigned to the
0.0t01.0. :

Many people are reluctant to use probabilities to express their subjective belief, because they
think that such a probability is not "exact” enough, or that a probability would have to be derived
somehow experimentally. While this is true in the "frequentist” sense, frequentist probabilities
never hold for individual cases, only at average in a population.

Bayesian probabilities, on the other hand, do not have to be "exact", especially one does not need
to carry out a series of experiments (samples) in order to specify a probability. Probabilities are
always estimated (frequentist probabilities are estimated as well). Bayesian probability theory
equals the notion of "probability” with "belief". The probability is thus an assessment of the
subjective belief of the originator of a statement. Some subjective numeric probability is often
better than a mere indicator that a value is "estimated”.

Probabilities are always subjective. Just like any other information, uncertain information needs
to be seen in the context of who gave that information (attribution). A recipient updates his
knowledge about a case from the received uncertain information based on how much confidence
he has in the judgment of the originator of the information.

Both elements in the value-probability-pair are part of the statement made by one specific
originator. Along a chain of communication, one value may be reported by different entities and
assigned a different probability by each of them.

158 22 Mar 1999 DRAFT version 1.0

5.4.2 Non-Parametric Probability Distribution

This data type does not allow to make specific attributions to originators of the information. The
rules of attribution are the same whether information is given as uncertain or certain/precise. In
particular, in case information is given in an instance of a RIM Service_event class, the
attribution is provided by the Stakeholder designated as the active participation of type
"originator of the information". For "slotted" data elements (PAFM), implicit attribution defaults
to the sending system.

5.4.2 Non-Parametric Probability Distribution

If the domain of a discrete value contains more than two elements, one might want to specify
probabilities for more than one element. This can be done using a non parametric probability
distribution. A non parametric probability distribution is a collections of alternative
value-proability-pairs.

Non-Parametric Probability Distribution

Generic data type to specify an uncertain discrete value as a<selud probability> pairs
(uncertain discretealues$[p. 157]). The values are considered alternatives and are rated v
probabilities for each of the values to apply. Those values that are in the set of possible
alternative values but not mentioned in the non-parametric probability distribution data sfructure
will have the rest probability distributed equally over all unmentioned values. That way the base
data type can even be infinite (with the unmentioned values beingegisicted).

GENERIC TYPE

parameter name allowedtypes description

ith

Any data type that is discrete cgn
be used. Usually we would use
non-parametric probability
distributions for unordered types$
T Discrete only and only if we assign
probabilities to a "small" set of
possible values. For other case
one may prefer parametric
probability distributions.

SET OF|Uncertain Discrete Value usingProbabilities|[p. 157] <T>

-4

vJ

Type cast rules allow conversion between and uncertain discrete value using probabilities and
non-parametric probability distribution and vice versa.

The values in a discrete probability distribution are generally considered alternatives. It is
understood that only one of the possible alternative values may truly apply. Because we may not
know which value it is, we may state probabilities for multiple values. This does not mean that

DRAFT version 1.0 22 Mar 1999 159

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

the values would in some way be "mixed." However, when Rough Sets theory or Fuzzy Logic is
used as the underlying theory of uncertainty, the difference between "alternative” and "mixed"
values becomes blur. Friedman and Halpern (1995) have shown that all of those theories for
uncertainty (probability, rough sets, fuzzy logic, Dempster-Shafer) can be subsumed under a
theory of "plausibility”. This theory of plausibility would of course be open as to whether or not a
distribution is considered over alternative values as opposed to a mixture of the values.

However, probability is the most widely understood and deployed theory (although fuzzy logic
decision support systems are used in clinical medicine). If some value should be represented as a
"mixture” of a set of categorial values, other means should be investigated before resorting to
"plausibility” theory. For instance, suppose we have to decide about a color in the code system
"red, orange, yellow, green, blue, purple”. Probabilistically all those values would be alternatives
and thus a given color may be stated "orange with a probability of 60%", but the alternatives red
and yellow are also considered with probabilities 20% and 15% resp. More naturally we would
like to "mix" the colors saying that the color we see is 60% orange, 20% red, 15% yellow and 5%
green. We could use fuzzy logic to do that, but a more easy to understand approach would be to
use a more appropriate color model than the list of discrete codes. A more appropriate color
model would, for instance, be the RGB system, where every color is represented as a mixture of
the three base colors red, green and blue (or magenta, yellow, and cyan in subtractive
color-mixing).

An example for a discrete probabilities would be a differential diagnosis as a result of a decision
support system. For instance, for a patient with chest discomfort, it might find the following
probability distribution:

(NonPar anetri cProbabilityDi stribution
(SET :of UDV-P

(UDV- P
:val ue "myocardi al infarction”
sprobability O0.4)

(UDV- P
:value "intercostal pain, unsp.”
cprobability 0.3)

(UDV- P
:value "ulcus ventriculi sive duodeni”
sprobability 0.1)

(UDV- P
:value "pleuritis sicca"
sprobability 0.1)))

160 22 Mar 1999 DRAFT version 1.0

5.4.3 Parametric Probability Distribution

This is a very compact representation of information that could (and should in general) be
communicated separately using Clinical_observation or Health_issue class instances (or
OBX-segments in v2.3). However, there are advantages of using the data type for non-parametric
probability distribution:

® itis much more compact;

® tis immediately clear that the stated values are alternatives assessed by one originator of
the observation;

® it is clearly specified from the definition of the data type that there is a rest-probability of
0.1% that is not assigned to any of the othagnoses.

Those facts would be hard to discover from a bunch of Health_issue class instances.

The Health_issue class instances could in some way be linked together to express the same
distribution. This would be the method of of choice if one wishes to track down more precisely
how the alternative differential diagnoses have been confirmed or otherwise clinically addressed.
For the purpose of patient care the expanded set of Health_issue instances would be clearly more
useful. However, as an excerpt summary of a decision support process, the short form is useful
too.

5.4.3 Parametric Probability Distribution

For continuous values it is not possible to assign a probability to every single value. One can
assign a probability to an interval of consecutive values (confidence inteval), however, the
confidence interval can be calculated from a continuous probability distribution.

The data type for continuous probability distributions allows to choose from a large menu of
distribution types commonly used in statistics. Every distribution type has specific paramters.
However, for compatibility with systems that do not understand a particular distribution type, the
mean and standard deviation must always be given.

DRAFT version 1.0 22 Mar 1999 161

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

Parametric Probability Distribution

Generic data type to specify an uncertain value of an ordered data type using a parametric

method. That is, a distribution function and its parameters are specified. Aside from the $pecific
parameters of the distribution a mean and standard deviation is always specified to help
maintain interoperability is receiving applications can not deal with a certain the probabil|ty
distribution.

The base data type may be discrete or continuous. Discrete ordered types are mapped fo natural
numbers by setting their "smallest” possible value to 1, the second to 2, and so on. The prder of
non-numeric types must lmambiguously defined.

GENERIC TYPE

parameter allowed

description
name types
Any ordered type (anything that is unambiguously mapped to
T OrderedTvpe numbers) can be the basis of an uncertain quantity. Example$ are
yp [[IntegerNumbef[p. 133 ,|Floating PoinNumbel[p. 134 , and
[PhysicalQuantityp. 13§ .
component . , . e
name type/domain | optionality description

The mear{expectedralueor first momen of the
probability distribution. The mean is used to
standardize the data for computing the distributior.
mean T required |The mean is also what a receiver is most interested in.
Applications that can not deal with distributions cgn
still get the idea about the described quantity by
looking at itsmean.

The standard deviatiqisquare-root olvarianceor
square-root of secongshomeny of the probability
distribution. The standard deviation is used to

3?\223(;?1 dif(T) required |standardize the data for computing the distribution.
Applications that can not deal with distributions cgn
still get the idea about the confidence level by looking
at the standardeviation.

tvoe CodeValue required The type of probability distribution. Possible values

yp [p. 116 9 are as shown in the attachathle.

parameters..

162 22 Mar 1999 DRAFT version 1.0

5.4.3 Parametric Probability Distribution

The number of parameters, their names and types depend on the selected distribution and
described in the attached table. This table will define component names to be used in the above
data type definition.

Distribution types, their mean andparameters.

type description and parameters

symbol name ormeaning type constraint or comment

Used to indicate that the mean is just a guess without any closer specifi¢ation
of its probability. This pseudo distribution does not have any parameter aside

guess from the expected value and standaediation.

E mean

V variance

DISTRIBUTIONS OF DISCRETE RANDOM VARIABLES

Used forn identical trials with each outcomes being one of two possible
values (called success or failure) with constant probalpilitiysuccess. The
described random variable is the number of successes observedduaisy

: . n number oftrials Integer [n>1

binominal
p probability ofsuccess | Float p between 0 and
E mean E=np
\% variance V=np(l-p)
Used for identical trials with each outcomes being one of two possible values
(called success or failure) with constant probabgityf success. The
described random variable is the number of trials until the first success i$
observed.

geometric —
p probability ofsuccess | Float p between 0 and
E mean E=1/p
\Y; variance V=(1-p)/p?

DRAFT version 1.0 22 Mar 1999 163

HL7 v3.0 Data Types Specification - Version 0.9

Gunther Schadow

negative
binominal

Used for identical trials with each outcomes being one of two possible va
(called success or failure) with constant probabitf success. The
described random variable is the number of trials needed untihtseiccess

lues

occurs.
p probability ofsuccess | Float p between 0 and
r number ofsuccesses Integer |r>2
E mean E=r/p

— _ _ 3 _
\% variance V=nr(N-1) (N-n)/(N

N2)

hypergeometri(

Used for a set dNl items, where items share a certain property P. The
described random variable is the number of items with property P in a raqndom
sample ohitems.

N the total number atems | Integer |[N>1
number of items with

r Integer |r>1
propertyP

n samplesize Integer |n>1

E mean E=(nr)/N

\Y; variance V=r(l-p)/p?

Poisson

Describes the number of events observed in one unit that occur at an average
of lambdaper unit. For example, the number of incidents of a certain disg
observed in a period of time given the average incidenEe e Poisson
distribution only has one parameter, which is the mean. The standard
distribution is the square-root of theean.

pase

E

mean

Vv

variance

V=E

DISTRIBUTIONS OF CONTINUOUS RANDOM VARIABLES

164

22 Mar 1999

DRAFT version 1.0

5.4.3 Parametric Probability Distribution

uniform

The uniform distribution assigns a constant probability density over a rar|
possible outcomes. No parameters besides e standard deviatian
are required. Width of the interval is sqrt(dp= 2 sqrt(3)s. Thus, the
uniform distribution assigns probability densitiég > O for value< - sqrt(3)
s >= x <=E + sqrt(3)s andf(x) = O otherwise.

ge of

E mean E = (low + high) / 2

\Y} variance V = (high - low) 2 / 12

normal
Gaussian

The well-known bell-shaped normal distribution. Because of the central ljmit

theorem the normal distribution is the distribution of choice for an unbou
random variable that is an outcome of a combination of many stochastic
processes. Even for values bounded on a single side (i.e. greater than Q
normal distribution may be accurate enough if the mean is "far away" fro
bound of the scale measured in terms of standievdtions.

hded

the
m the

E mean often symbolizequ

V variance

often symbolizegigma?

gamma

Used for data that is skewed and bounded to the right, i.e. where the ma
of the distribution curve is located near the origin. Many biological
measurements, such as enzymes in blood, have a gdistnitzution.

Ximum

alpha Float alpha>0

beta Float beta>0

E mean E = alphabeta

\Y; variance V = alphabet&?

chi-square

Used to describe the sum of squares of random variables which occurs
variance (second moment) is estimated (rather than presumed) from the
sample. The chi-square distribution is a special type of gamma distributi
with parametebeta= 2 andalpha=E / beta The only parameter of the
chi-square distribution is thus the mean and must be a natural number, s
called thenumber of degrees &leedom(which is the number of independe
parts in thesum).

vhen a

number of degrees of

freedom n>0

n Integer

mean E=n

\/ variance V=2n

DRAFT version 1.0

22 Mar 1999 165

HL7 v3.0 Data Types Specification - Version 0.9

Gunther Schadow

Used to describe the quotient of a standard normal random variable and
square-root of a chi-square random variable. tTdistribution has one
parameten which is the number of degreesfridedom.

number of degrees of

the

N

Studentt n freedom Integer 'n>0
E = 0 (the mean of a standajd
E mean normal random variable is
alwaysO0)
\% variance V=n/(n-2)
Used to describe the quotient of two chi-square random variables. The
F-distribution has two parameterg andn, which are the numbers of
degrees of freedom of the numerator and denominator vareggectively.
numerator’'s number of
n Integer ' m>0
degrees ofreedom
F denominator’s number ¢
m Integer ' m>0
degrees ofreedom
E mean E=m/(m-2)
. V=2m2 (m+n-2)/(n(m-
\% rian
variance 2)2(m- 4))
The logarithmic normal (log-normal) distribution is often used to transfor
skewed random variabkinto a normal formJ = In X. The log-normal
distribution has the same parameters as the nalistabution.
mean of the resulting Float
o H normaldistribution
logarithmic
normal sigma | standardleviation Float
mean of the original .
o ER — @ K+ 0.5sigma?
E skeweddistribution E=e
variance of the original \V = g 2+ sigma (esigma2 -1
Vv e
skeweddistribution)
166 22 Mar 1999 DRAFT version 1.0

5.4.3 Parametric Probability Distribution

The beta distribution is used for data that is bounded on both sides and may or
may not be skewed. Two parameters are available to adjusirte

alpha Float alpha>0
beta beta Float beta>0
E mean T E = alpha/ (alpha+ beta)
. V = alphabeta/ ((alpha+
v variance T betg 2 (alpha + beta+ 1))

The distribution type "guess" can be used in two different ways

1. a value is known to be uncertain but no information exists about the dispersion of the
probability distribution. In this case, no standard deviation is provided.

2. avalue is known to be uncertain and a dispersion is approximately known, but no
information exists about the distribution type. For example, the common expression "Age:
75+10 years" would be mapped to a distribution type of guess with standard deviation set to
5 years. This seems to pretend a normal distribution, but it does not. Using 10/2 as the
standard deviation is justc@nvention.

Themeancomponent is mentioned explicitly. This component will be used in type casting a
probability distribution over type T to a simple value of type T in a case where a receiving
application can not deal with or is not interested in probability distributions.

The literature on statistics commonly lists the mean as dependent on the parameters of the
probability distributions (e.g. the mean of a binominal distribution with paranreterdp is np.

Because we choose to mention the mean (to help in roughly grasping the "value") the parameters
of the distributions may be defined in terms of the mean.

In the above table, the dependencies between the explicit components mean and standard
deviation and the parameters of the distribution are not always resolved. If we want to give mean
and standard deviation explicitly there will often be redundancy in the parameters. However, it
seems to be useful to let people specify parameters in the natural way rather than dependent on
mean and standard deviation. [needs revision]

For example, in the table above, the uniform distribution was specified based on the mean and
standard deviation component without further parameters. Thismdbesean that the standard
deviation component contains the half-width of the uniform distribution.

If there is redundancy in the parameters, it is an error if the specified mean and standard deviation
contradict what can also be derived from the distribution and its parameters.

DRAFT version 1.0 22 Mar 1999 167

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

The type dif(T) is the data type of the difference of two values of type T. Often, T is the same as
dif(T). For the data type T Point intime, dif(T) is notPoint intime but aPhysicalQuantityin

the dimension of time (i.e. units seconds, hour, minutes, etc.). This concept is generalizable since
it describes the relationship between corresponding measurements on ratio-scales vs.
interval-scales (e.g., absolute (Kelvin) temperatures vs. Celsius temperatures).

Most distributions are given in a form where only natural numbers or real numbers are
acceptable. If distributions of measurements (with units) are to be specified, we need a way to
remove the units for the purpose of generating the distribution and then reapply the units. For
instance, ifQ = u is a measured quantity with numeric magnitua@d unitu, then we can

bind the quotien® / u to the random variable and calculate the distribution. For each calculated
numberx;, we regain a quantity with unit §5 = Xx; u.

Most distributions are given in a "standard” form, that is with mean or left boundary equals 0 and
standard deviation equals 1 etc. Therefore one has to standardize the quantity to be described
first. This is similar to the problem of removing and reapplying units. The method is also similar
and can be unified: a transformation transforms the numeric value to a standard form and later
re-transforms the standard form to the numeric value. Two issues must be considered:

® translation, i.e. moving the mean (or left boundary) into the origin (zero-point)
® scaling the value to adjust the standard deviatian&

This means, that any transformation of a valte a normalized valug can be described as:
y=(x-0)/s

We can combine the way we deal with the units and the standardization of the value into one
formula:

y=(Qj-pu)/(su)

Herep u is the expected value (medakxpressed in the base type T (i.PhysicalQuantity[p.

13§). This is further justification that we should indeed carry the meaand the standard
deviations u as an explicit components, so that scaling can be done accordingly. The prtoduct
is the standard deviation (square root of the variance) of the described value. The standard
deviation is a component that an application might be interested in even if it can not deal with a
"chi-square" distribution function.

It would be awesome if we could define and implement an algebra for uncertain quantities.
However, the little statistical understanding that | have tells me that it is a non-trivial task to tell
the distribution type and parameter from a sum, or product of two distributions or from the
inverse of a distribution.

168 22 Mar 1999 DRAFT version 1.0

5.4.4 Uncertain Value using Narrative Expressions of Confidence

5.4.4 Uncertain Value using Narrative Expressions of Confidence

Uncertain Value using narrative expressions ofonfidence

Generic data type to specify one uncertain value as a pamabfe qualifier>. Thequalifier is
a coded representation of the confidence as used in narrative utterances, such as "probably",
"likely", "may be", "would be supported”, "consistent with", "approximatedyc,

GENERIC TYPE

parameter name allowedtypes description
T Any data type that is allowed here, discrete or
continuous.
componentname type/domain optionality description
. The value to which an uncertainty
value T required e .
qualifier isassigned.
confidence [ConceptDescriptof|p. required The confidence assigned to the
127 value.

Like it or not, we do have the use case that data is known to be just estimated and we may want
to signal that the data should be relied in with caution, without having any numeric probability.
This occurs most frequently when textual reports are coded.

We also have to deal with narrative expressions of uncertainty that are heard everywhere; and we
may want to capture those ambiguous and largely undefined qualifiers of confidence. This is
almost like an annotation to a value considered to be understood mainly by humans.

We do not specify a closed list of codes to be used. Jim Case has an action item to submit a dozen
or so of qualifiers he commonly has seen, others are invited to contribute as well.

No special effort is made to assign numeric probabilities to the codes nor even to specify an order
in the set of codes. Translation to numeric probabilities is not trivial, as there may be linear or
logarithmic scales useful in different circumstances.

We generally discourage to use narrative expressions of uncertainty rather than numeric ones.
People should be reminded over and over again that probabilities are subjective measures of
belief and that an "inexact" numeric probability is much more useful than a statementithat "X
likely to be true". Coded probabilities have no reliable meaning. Not even the order of narrative
confidence qualifiers is clear in all cases (e.g., is "Ais likely" more or less likely that "probably
A"?) However, such coded confidence qualifiers do at least uncover the ambiguity that exists
(whether we want it or not.)

DRAFT version 1.0 22 Mar 1999 169

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

Only in cases where no numeric probabilities are available (e.g. coding of narratives) is should
the narrative expressions of confidence be used.

170 22 Mar 1999 DRAFT version 1.0

Appendix A: All Data Types At a Glance

Appendix A: All Data Types At a Glance

The following is an overview of the data type that we have defined so far.

[Booleai(p. 2¢]

A boolean value is the domain of two valued logic: either true or tatsem nondatur and
all the stuff everyone should know about logics. The boolean type is amaizingly useful
throughout all layers of abstraction, from the bit in a machine up to object oriented data
analysis.

[No Information[p. 31]
A No Information value can occur in place of any other value to express that specific
information is missing and how or why it is missing. This is like a NULL in SQL but with
the ability to specify a certain flavor of missing information.

[CharacteString [p. 40]
A character string is a primitive data type that contains Unicode characters. A single
character is not considered an HL7 data type. Note that the string type is not limited to
ASCII characters and none of the "escape" sequences of v2.3 are defined. Transmitting
Unicode characters is considered an ITS layer issue and the application layer is not supposed
to deal with the peculiarities of different character encodings.

[Multimedia Enabled Fregexi[p. 48]
Free text may be anything from a few formatted characters to complex documents or
images. This data type is defined similar to the ED data type that in turn is based on the
MIME standard.

[Technical Instanckentifiel [p. 65]
Technical instance identifiers are unique and unravelable through the consistent and
required use of tHiSO OBJECT IDENTIFIEROID)|[p. 66] .

[Technical Instanckocatof[p. 71]
A technical instance locator is a reference to some technical thing (e.g., image, document,
telephone, e-mail box, etc.) It is a generalization of the well-known URL concept.

[Postal and Residential Addrdgs 85
This Address data type is used to communicate postal addresses and residential addresses.
The main use of such data is to allow printing mail labels (postal address), or to allow a
person to physically visit that address (residential address). An address consists of tagged

AddressPart§[p. 86] .
[PersorNamé{p. 96]

This type used in the RIM class Person_name that will be developed from the class
Person_alternate_name of RIM 0.88 jointly with PAFM. Person names consist of tagged
[Person Name®art$[p. ?7 . Typical name parts that exist in about every name are given
names, and familiy names, other part types may be defined culturally.

[OrganizatiorName[p. 115
A collection oflorganization nameariantg[p. 115 . Every Organization Name Variant
represents an organization name used in different contexts or for a different purpose or at a

DRAFT version 1.0 22 Mar 1999 171

HL7 v3.0 Data Types Specification - Version 0.9 Gunther Schadow

different time.

[CodeValud|[p. 116
A code value is used to refer to technical concepts and is also the basic building block for
construcing more complex concept descriptors for real world concepts.

[ConcepDescriptor[p. 122
Concept descriptors are the way to refer to real world concepts (e.g. diagnoses, procedures,
etc.). Just as with the old CE data type one can specify a code from one coding system with
its translation into another coding system. This data type is more general than the CE so that
multiple|CodeTranslationgp. 123 can be given, and their dependencies can be exactly
specified. WitfCodePhrasd$p. 124 one single axial code can be mapped to multiple
codes for a multi axial codeing system and vice versa.

[IntegerNumbef[p. 133
Embody the usual concept of integer numbers. Integers are used almost only for counts or
values derived from counts by addition and subtraction.

[Floating PointNumbef[p. 134
Embody the abstract concept of real numbers. Floating point numbers have a built-in notion
of precision in terms of the number of significant decimal digits.

[Ratio of Quantitiefp. 137
A quotient of any two quantities. Quantities currently defined are

[[ntegerNumbef[p. 133

[Floating PointNumbef[p. 134

[PhysicalQuantity[p. 13§

[MonetaryAmount [p. 140

[Point in Timgp. 144 (although those quantities are on difference scales, not ratio

scales).

[PhysicalQuantity[p. 13§
A physical measurement with units.

[MonetaryAmount[p. 140
An amount of money in a certain currency unit.

[p. 144
A difference scale quantity in the physical dimension of time. Usual expressions of points in
time are made based on calendars, which are quite complex "coordinate systems" for time.
This is basically the old "TS" data type.

[Calendar Modulu&xpressiongp. 147
Expression of the form day-of-the-month, or day-of-the-week, month-of-the-year,
hour-of-the-day, all have a common struct{xef they). This data type is not yet defined.
We may end up with one or many data types to cover what was called TM (time) or "week
day" in HL7.

[p. 149
Also called "range". A continuous subset of an ordered type. Intervals are expressed by
boundaries of the base type. Boundaries may be undefined.

172 22 Mar 1999 DRAFT version 1.0

Appendix A: All Data Types At a Glance

[Annotatedinformation[p. 157
Whenever a sender feels that "there is more to say" about a data element, the annotation
structure can be sent that contains the data element together with some free form annotation.
The annotation is meant to be interpreted by humans.

[p. 154
Generic data type that allows the history of some data element to be sent. A History is a list
of History ltemg[p. 155 .

[p. 159

A History Item can be used wherever a validity time (effective date/time, expiry data/time)
is essential part of some data. Used primarily as the elemejptistosy] [p. 154 .
[Uncertain Discrete Value usirigyobabilitiefp. 157]
A discrete value and an associated probability for that value to apply in a given context.
[Non-Parametric Probabilitistributior [p. 159
A collection ofUncertain Discrete Value usirRrobabilitiefp. 157] to specify a probability
distribution.
[Parametric Probability Distributidip. 161]
Contains mean, standard deviation and also a distribution type plus its parameters. This is
useful, for example, to specify "precisely” the accuracy of a measurement or to specify
results of clinical trials.
[Uncertain Value using Narrative Expression€ohfidencep. 16§
A discrete value and a narrative expression of confidence for that value to apply in a given
context. Those "narrative expressions" are keywords, such as "approximately”, "probably",
"likely", "slight chance of", etc.

DRAFT version 1.0 22 Mar 1999 173

	Abstract
	1 Introduction
	1.1 Goals
	
	Semantics first
	Usefulness and reuseability
	Coherence
	Minimality
	Stability
	Completeness
	Simplicity

	1.2 Methods
	1.2.1 Analysis of Semantic Fields
	1.2.2 Form of Data Type Definitions
	1.2.3 Generalized Types
	1.2.4 Generic Types
	1.2.5 Collections
	1.2.6 The Meta Model
	Data Type
	Primitive Data Type
	Composite Data Type
	Data Type Component
	DTM Generalization
	Collection Data Type
	Generic Type Parameter

	1.2.7 Implicit Type Conversion
	1.2.8 Literals
	1.2.9 Instance Notation
	1.2.10 Typus typorum: Boolean
	Why would we not want to use boolean data types?

	1.2.11 Incomplete Information
	1.2.12 Update Semantics

	2 Text
	2.1 Introduction
	2.1.1 From Characters to Strings
	2.1.2 Display Properties
	2.1.3 Encoding of appearance
	2.1.4 From appearance of text to multimedial information
	2.1.5 Pulling the pieces together

	2.2 Character String
	2.2.1 The Unicode
	2.2.2 No Escape Sequences
	2.2.3 ITS Responsibilities
	2.2.4 HL7 Applications are "Black Boxes"
	2.2.5 No Penalty for Legacy Systems
	2.2.6 Unicode and XML

	2.3 Free Text
	2.3.1 Multimedia Enabled Free Text
	2.3.2 Binary Data
	2.3.3 Outstanding Issues

	3 Things, Concepts, and Qualities
	3.1 Overview of the Problem Space
	3.1.1 Concept vs. Instance
	3.1.2 Real World vs. Artificial Technical World
	3.1.3 Segmentation of the Semantic Field

	3.2 Technical Instances
	
	Unique Identifiers
	Un-ravelable Identifiers
	De-referenceable Identifiers

	3.2.1 Technical Instance Identifier
	3.2.2 ISO Object Identifiers
	How difficult will it be to acquire OIDs?
	How difficult will it be to use OIDs?
	What ISO Object Identifiers can and can not do
	Can the root part of the OID be implied by some context?

	3.2.3 Technical Instance Locator
	3.2.4 Outstanding Issues

	3.3 Real World Instances
	3.3.1 Real World Instance Identifier
	PAFM
	CQ
	PAFM
	PAFM
	Others

	3.3.2 Postal and Residential Address
	Purpose Codes for Address
	Role Codes for Address Parts

	Examples
	White Space Rules
	Further Examples
	XML ITS
	Outstanding Issues

	3.3.3 Person Name
	Data Type Specification for Person Name
	White Space Rules
	Examples
	Voorvoegsel
	Inversion
	Echtgenote van, née, geb.
	Nicknames
	Incomplete Classification
	HL7 v2.3 Compatibility
	Maiden name, name at birth, name of spouse, adopted name, and the like.
	Initials
	Academic titles

	3.3.4 Organization Name

	3.4 Technical Concepts and the Code Value
	3.4.1 Outstanding Issues

	3.5 Real World Concepts
	3.5.1 The Concept Descriptor
	3.5.2 Code Translation
	3.5.3 Code Phrase
	3.5.4 Examples
	3.5.5 Outstanding Issues

	4 Quantities
	4.1 Overview
	4.2 Integer Number
	
	No fixed arbitrary limits on value range
	Constraints on value ranges
	ITS Presentation and Literals

	4.3 Floating Point Number
	
	Semantic components vs. representational components
	Precision
	No fixed arbitrary limits on value range
	Constraints on value ranges
	ITS Presentation and Literals
	Number of significant digits

	4.4 Ratio
	4.5 Measurements
	4.5.1 Physical Quantities
	Units
	Constraints on the Dimension of a Measurement

	4.5.2 Monetary Quantities: Currencies
	Price Expressions

	4.5.3 Things as Pseudo Units

	4.6 Time
	4.6.1 Point in Time
	4.6.2 Time Durations
	4.6.3 Other issues and curiosities about Time
	4.6.4 Calendar Modulus Expressions

	5 Orthogonal Issues
	5.1 Interval
	5.2 General Annotations
	5.3 The Historical Dimension
	5.3.1 Generic Data Type for Information History
	5.3.2 Generic Data Type "History Item"

	5.4 Uncertainty of Information
	5.4.1 Uncertain Discrete Values
	5.4.2 Non-Parametric Probability Distribution
	5.4.3 Parametric Probability Distribution
	5.4.4 Uncertain Value using Narrative Expressions of Confidence

	Appendix A: All Data Types At a Glance

