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Preface 
This document is one of two parts specifying the HL7 Version 3 Data Types on an abstract layer, 
independent of representation. 

• Part I explains Version 3 Data Types in a style that can be readily understood by interface analysts 
and programmers. 

• Part II provides a rigorous definition of Version 3 Data Types in a style that is suited for those 
readers with a strong academic background in Computer Science and Mathematics.  

Each part can stand on its own and is addressed to different kinds of audience and slightly different 
purpose. Both parts are normative; therefore both parts must remain consistent in their description of 
Version 3 Data Types. Due to its more thorough nature, Part II takes precedence over Part I in cases of 
conflict or unclear interpretation. Casual readers who need a quick orientation into the matter should 
read Part I. However, for any serious implementation work understanding the additional detail 
provided in Part II is usually required. 

This standard is further accompanied by one or more Implementable Technology Specifications (ITS) 
to specify the concrete representation of the Version 3 Data Types. 
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1 Introduction 

1.1.1 What is a Data Type? 

Every data element has a data type.  Data types define the meaning (semantics) of data values that can 
be assigned to a data element.  Meaningful exchange of data requires that we know the definition of 
values so exchanged.  This is true for complex “values” such as business messages as well as for 
simpler values such as character strings or integer numbers. 

According to ISO 11404, a data type is “a set of distinct values, characterized by properties of those 
values and by operations on those values.”  A data type has intension and extension.  Intensionally, the 
data type defines the properties exposed by every data value of that type.  Extensionally, data types 
have a set of data values that are of that type (the type’s “value set”). 

Semantic properties of data types are what ISO 11404 calls “properties of those values and […] 
operations on those values.”  A semantic property of a data type is referred to by a name and has a 
value for each data value.  The value of a data value’s property must itself be a value defined by a data 
type – no data value exists that would not be defined by a data type. 

Data types are thus the basic building blocks used to construct any higher order meaning: messages, 
computerized patient record documents, or business objects and their transactions.  What, then, is the 
difference between a data type and a message, document, or business object?  Data type values stand 
for themselves, the value is all that counts, neither identity nor state or changing of state is 
defined for a data value.  Conversely in business objects, we track state and identity; the properties of 
an identical object might change between now and later.  Not so with data values: a data value and its 
properties are constant. For example, number 5 is always number 5, there is no difference between this 
number 5 and that number 5 (no identity distinguished from value), number 5 never changes to number 
6 (no change of state).  One can think of data values as immutable objects where identity does not 
matter (identity and equality are the same.)1 

1.1.2 Representation of Data Values 

Data values can be represented through various symbols but the data value’s meaning is not bound to 
any particular representation. 

For example, cardinal numbers (non-negative integers) are defined – intensionally – as a data type 
where each value has a successor value, where zero is the successor of no other cardinal value.  Based 
on this definition we can define addition, multiplication, and other mathematical operations.  Whatever 
representation reflects the rules we stated in the intensional definition of the cardinal data type is a 
valid representation of cardinal numbers.  Examples for valid cardinal number representations are 
decimal digit strings, bags of glass marbles, or scratches on a wall.  The number two is represented by 
the word “five” by the Arabic number “5” or the Roman number “V”. The representation does not 
matter as long as it conforms to the semantic definition of the data type. 

Another example, the Boolean data type is defined by its extension, the two distinct values true and 
false and the rules of negation and combining these values in conjunction and disjunction.  The 
representation of Boolean values can be the words “true” and “false,” “yes” and “no,” the numbers 0 
and 1, any two signs that are distinct from each other.  The representation of data types does not matter 
as long as it conforms to the semantic definition of the data type. 

This specification defines the semantics, the meaning of the HL7 data types. This specification is 
about semantics only, independent from representational and operational concerns or specific 
implementation technologies.  Additional standards for representing the data values defined here are 

                                                                 
1 The HL7 Message Development Framework defines “update modes” for fields in a message. Note that because data 
values have neither identity nor state nor changing of state, these update modes do not apply for the properties of data 
values. Data values and their properties are never updated.  A field of an object (e.g., a message) can be updated in 
which case the field’s value is replaced by another value. But the value itself is never updated. 
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being defined for various technological approaches. These standards are called “Implementable 
Technology Specification” (ITS.) Those ITS define how values are represented so that they conform to 
the semantic definitions of this specifications, this may include syntaxes for character or binary 
representations, and computer procedures to act on the representation of data values.  The meaning of 
these ITS representations communicated, generated, and processed in computer programs, is defined 
based on this standard, the semantic data type specification.   

1.1.3 Properties of Data Values 

Data values have properties defined by their data type.  The “fields” of “composite data types” are the 
most common example of such properties. However, more generally one should think of a data value’s 
property as logical predicates or as mathematical functions; in simpler but still correct terms, properties 
are questions one can ask about a data value to receive another data value as an answer. 

A property is referred to by its name. For example, the data type integer may have a property named 
“sign.”  A property has a domain, which is the set of possible “answer” values. The set of possible 
“answer” values is defined by the property’s data type, but the domain of a property may be a subset of 
the data type’s value set.   

A property may also have arguments, additional information one must supply with a question to get an 
answer.  For example, an important property of an integer number is that one integer plus another 
integer results in another integer, so the plus property of one integer needs an argument: the other 
integer.  

Whether semantic properties have arguments is not a fundamentally relevant distinction.  A data type’s 
semantic property without arguments is not necessarily a “field” of a  “composite” data type. For 
example, for integer values, we can define the property is-zero that has the Boolean value true when 
the number is zero and false when the number is not zero.  This does not mean that is-zero must be an 
explicit component of any integer representation. 

A data type’s semantic property with arguments has no specific operational notions such as “procedure 
call,” “passing arguments,” “return values,” “throwing exceptions,” etc.  These are all concepts of 
computer systems implementation of data types – but these operational notions are irrelevant for the 
semantics of data types. 

This specification is about semantics of data types only.  Neither is it about value representation 
syntax (not even an abstract syntax), nor is it about an operational interface to the data values. 

1.1.4 Need for the Abstraction 

Why does this specification make such a big issue about its being abstract from representation 
syntax as well as operational implementation? 

HL7 needs this kind of abstract semantic data type specification for a very practical purpose.  One 
important design feature of HL7 version 3 is its openness towards representation and implementation 
technologies.  All HL7 version 3 specifications are supposed to be done in a form independent from 
specific representation and implementation technologies.  HL7 acknowledges that, while at times some 
representation and implementation technologies may be more popular than others, technology is  going 
to change – and with changing technology, representations of data values will change.  HL7 standards 
are primarily targeted to healthcare domain information, independent from the technology supporting 
this information.  HL7 expects that specifications defined independent from today’s technology will 
continue to be useful, even after the next technological “paradigm shift”. 

The issue of data types is closer to implementation technology than most other HL7 information 
standards – and therein lays a certain danger that we define data types too dependent on current 
implementation technologies. 

The majority of HL7 standards is about complex business objects.  Complex business objects with 
many informational attributes can be specified as abstract syntax, where components are eventually 
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defined in terms of data types.  Conversely, defining data types in terms of abstract syntax is of little 
use because the components of such abstract syntax constructs would still have to have data types.2   

Why doesn’t this specification define a set of primitive data types based on which composite data 
types could be defined simply as abstract syntax? 

Any concrete implementation of the HL7 standards must ultimately use the built-in data types of their 
implementation technology.  Therefore, we need a very flexible mapping between HL7 abstract data 
types and those data types built into any specific implementation technology.  With a semantic 
specification, an Implementable Technology Specification (ITS) can conform simply by stating a 
mapping between the constructs of its technology and the HL7 version 3 data type semantics.  Whether 
a data type is primitive of composite is irrelevant from a semantic perspective, and the answer may be 
different for different implementation technologies.   

For example, this standard specifies a character string as a data type with many properties (e.g., 
charset, language, etc.)  However, in many Implementation Technologies, character strings are 
primitive first class data types.  We encourage that these native data types be used rather than a 
structure that slavishly represents all the semantic properties as “components.”  This specification only 
requires that the properties defined for data values can somehow be inferred from whatever 
representation is chosen, it does not matter how these values are represented. Whether “primitive” or 
“composite”, with few or many “components”, as “fields” or “methods” – this is all irrelevant. 

For another example, a decimal representation, a floating-point register and a scaled integer are all 
possible native representations of real numbers for different implementation technologies.  Some of 
these representations have properties that others do not have.  Scaled integers, for instance, have a 
fixed precision and a relatively small range.  Floating-point values have variable precision and a large 
range, but floating-point values lose any information about precision.  Decimal representations are of 
variable precision and maintain the precision information (yet are slow to processing.)  The data type 
semantics must be independent from all these accidental properties of the various representations, and 
must define the essential properties that any technology should be able to represent. 

1.1.5 Need for an HL7 Data Type Standard 

Why does HL7 need its own data type standard? Why can’t HL7 simply adopt a standard 
defined by some other body?  

As noted in the previous section, all HL7 implementation technologies have some data type system, 
but there are differences among the data type systems between implementation technologies.  In 
addition, many implementation technologies’ data type systems are not powerful enough to express the 
concepts that matter for the HL7 application layer.   

For example, few implementation technologies provide the concepts of physical quantities, precision, 
ranges, missing information, and uncertainty that are so relevant in scientific and health care 
computing.  

On the other hand, implementation technologies do make distinctions that are not relevant from the 
abstract semantics viewpoint, e.g., fixed point vs. floating-point real numbers; 8, 16, 32, or 64-bit 
integers; date vs. timestamp. 

A number of data type systems have been used as input to this specification.  These include the type 
systems of many major programming languages, including BASIC, Pascal, MODULA-2, C, C++, JAVA, 
ADA, LISP and SCHEME.  This also includes type systems of language-independent implementation 
technologies, such as Abstract Syntax Notation One (ASN.1), Object Management Group’s (OMG) 
Interface Definition Language (IDL) and Object Constraint Language (OCL), SQL 92 and SQL 3, the 
ISO 11404 language independent data types, and XML Schema Part 2 data types.  Health care 
standards related data types have been considered as well, among these HL7 version 2.x, types used by 
CEN TC 251 messages and Electronic Health Record Architecture (EHCRA) and DICOM. 

                                                                 
2 This is the reason why the ISO Abstract Syntax Notation 1 (ASN.1) is not an appropriate formalism for semantic data 
type specifications. 
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1.1.6 Forms of Data Type Definitions 

This specification defines data types in several forms, using textual description, UML diagrams, tables, 
and a formal definition.  

1.1.6.1 Formal Data Type Definition Language 

A formal definition of data types is used in order to clarify the semantics of the proposed types as 
unambiguously as possible.  This data type definition language is described in detail in Section 1.3. 
Formal languages make crisp essential statement and are therefore accessible to some formal argument 
of proof or rebuttal.  However, the terseness of such formal statements may also be difficult to 
understand by humans.  Therefore, all the important inferences from the formal statements are also 
included as plain English statements. 

1.1.6.2 Tables of Properties 

For a quick overview at the beginning of many data types this specification contains tables listing what 
is called “primary” properties. “Primary” properties are a somewhat fuzzy notion of those properties 
that are more likely to be thought of as “fields” when the data type where implemented as a record 
(“composite data type”). These tables only exist to facilitate an overview of the content and purpose of 
data types. While their content is part of the normative specification, the fact that a property is or is not 
listed in these tables has no significance. There is no requirement that the properties listed in these 
tables be represented as fields, and these tables are not abstract syntax definitions. 

Property tables are not shown for all data types. Again, this does not mean that those data types have 
no properties. It also does not mean that those data types are “primitive” data types as per this 
specification. The property tables are used as a helpful summary only, and are not used when they 
would confuse more than they would help. 

Each row of the property tables describes one property with the following columns: 

Name – the name of the property as of the formal definition. For some data types, the name field of the 
first property may be empty. This may happen in those data types that are defined as extension of 
other data types and when it is not useful for the summary of the child to show any properties of 
the parent.  

Type – the data type of that property. 

Status – indicates the “importance” of the property. Status values include: 

Default – a default value is a typical value of this property (when the status of .the property is “fixed,” 
the default specifies that predetermined value.) In an interface, a property takes on that default 
value if a value for that property is not otherwise determined in the representation received by that 
interface. Default values are what is implicitly understood. A default may be determined at various 
levels.  

Table 1: Levels of Determination for Defaults 

Status Definition 
immediate The default is known and mentioned in this specification. The default 

column then contains that a literal for that default value (not the word 
“immediate”). 

NULL No default is defined. 
ITS The default is determined by the Implementable Technology Specification 

(ITS) either immediately or through some ITS-specified rule. 
CONTEXT The default is determined depending on the context of a data value. For 

example, it may be determined by some other data in the same message. 

Constraint – for coded properties, this column contains the named domain (as per the HL7 domain 
specifications.)  For other properties, this column contains other constraints – these constraints are 
fully specified in the formal data type definition. 
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Definition – a short text describing the meaning of the property. 

1.1.6.3 Unified Modeling Language (UML) Diagrams 

The Unified Modeling Language (UML) is used for a graphical presentation of how data types relate. 
Data types are shown as UML classes. The name compartment contains the long name of the data type 
followed by a colon and the standard abbreviation. Properties of types without arguments are shown in 
the UML attribute compartment. Properties with arguments are shown in the UML operations 
compartment. Generalization links indicate extension and restriction relationships. Aggregations are an 
additional representation of properties, when the relation between data types through that property is 
important. Generic types are shown as UML parameterized classes, with UML realization links 
relating their instantiations.
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BinaryData : BIN

EncapsulatedData : 
ED type : CS

charset : CS
language : 
CS compression : CS
reference : TEL
integrityCheck : BIN
integrityCheckAlgorithm : 
CS thumbnail : ED

equals(ED) : 
BL 

LIST<BL
> 

Boolean : 
BL not : BL

and(BL) : BL 
or(BL) : BL 
eor(BL) : BL 
implies(BL) : 
BL 

1..*1..*

T : 
ANY 

Sequence : LIST 

head : T
tail : LIST<T> 
isEmpty : BL
nonEmpty : BL
length : INT

CharacterString : ST

head : ST
tail : ST
length : INT

CodedSimpleValue : 
CS code : ST

displayName : 
ST 

LIST<INT> 

TelecommunicationAddress : 
TEL use : SET<CS> 

validTime : 
GTS 
equals(TEL) : BL 

UniversalResourceLocator : 
URL scheme : CS

address : ST

DataTyp
e name : 

CE 

DataValue : 
ANY dataType : DataType

nullFlavor : 
CS nonNull : 
BL isNull : 
BL notApplicable : 
BL unknown : 
BL other : BL

equals(ANY) : 
BL 

11

T : 
ANY 

Set : 
SET isEmpty : BL

nonEmpty : BL
cardinality : 
INT 
contains(T) : BL
contains(SET<T>) : 
BL union(SET<T>) : 
SET<T> except(T) : SET<T> 
except(SET<T>) : SET<T> 
intersection(SET<T>) : SET<T> 

T : QTY

Interval : IVL

low : 
T lowClosed : 
BL high : T
highClosed : 
BL width : T.diff
center : T

hull(IVL<T>) : IVL<T> 

Integer : INT

<<type>> diff : INT
isOne : BL
successor : INT
predecessor : INT
negated : INT
isNegative : 
BL nonNegative : 
BL 
plus(diff) : INT
minus(INT) : diff
times(INT) : INT

Real : 
REAL <<type>> diff : REAL

negated : 
REAL inverted : 
REAL precision : INT

plus(diff) : REAL
minus(REAL) : diff
times(REAL) : REAL
power(REAL) : 
REAL 

PhysicalQuantity : PQ

<<type>> diff : PQ
value : 
REAL unit : CS
canonical : PQ
negated : PQ
inverted : PQ

equals(PQ) : BL 
compares(PQ) : BL
plus(PQ) : PQ 
minus(PQ) : PQ
times(PQ) : PQ
times(REAL) : PQ
power(INT) : PQ 

PostalAddress : 
AD use : SET<CS>

formatted : ST
validTime : 
GTS 
equals(AD) : 
BL 

EntityName : 
EN formattted : ST

LIST<ADXP
> 

AddressPart : ADXP 

type : CS 

1..*1..*

LIST<ENXP
> 

EntityNamePart : 
ENXP type : CS 

qualifier : 
SET<CS> 

1..*1..*

OrganizationName : ON 

MonetaryAmount : MO

<<type>> diff : MO
value : 
REAL currency : CV
negated : MO 

plus(diff) : MO
minus(MO) : diff
times(REAL) : MO

T : 
ANY 

Bag : BAG

isEmpty : BL

contains(T) : INT
plus(BAG<T>) : BAG<T> 
minus(BAG<T>) : BAG<T> 

T : TS

PeriodicIntervalOfTime : PIVL
period : T.diff
phase : IVL<T> 
alignment : CS

contains(TS) : BL

T : TS 

EventRelatedPIVL : 
EIVL event : CV

offset : IVL<T.diff>

occurrenceAt(TS) : IVL<TS> 
contains(IVL<TS>) : BL 

GeneralTimingSpecification : 
GTS hull : 

IVL<TS> 
nextAfter(TS) : IVL<TS>
nextTo(TS) : IVL<TS> 
interleaves(GTS>) : BL
periodicHull(GTS>) : 
BL 

Rati
o numerator : QTY

denominator : QTY

Quantity : QTY
<<type>> diff : QTY
isZero : BL

lessOrEqual(QTY) : BL
lessThan(QTY) : BL
greaterOrEqual(QTY) : BL 
greaterThan(QTY) : BL 
compares(QTY) : BL
minus(QTY) : diff
plus(diff) : QTY

1111

T 

T : 
ANY 

NonParametricProbabilityDistribution : 
NPPD 

mostLikely(INT) : SET<UDP<T>>

TT : QTY

ParametricProbabilityDistribution : 
PPD standardDeviation : T.diff

type : CV

confidenceInterval(REAL) : IVL<T>
probability(IVL<T>) : REAL 
times(REAL) : PPD<T>

T : QTY

T 

T : 
ANY 

History : HIST
earliest : HXIT<T> 
later : HIST<T> 
latest : HXIT<T> 
earlier : HIST<T> 

SET<TS
> totallyOrdered : BL = true

hull : 
IVL<TS> 

T : 
ANY 

SET<UVP<T>
> 

T : 
ANY 

UncertainValueProbabilistic : 
UVP probability : 

REAL 

0..*0..*

T : 
ANY 

SET<HXIT<T>
> 

InstanceIdentifier : II

extension : 
ST root : OID
assigningAuthorityName : 
ST type : CV
validTime : 
IVL<TS> 
equals(II) : BL

ObjectIdentifier : OID

leaf : INT
butleaf : OID

value(OID namespace) : OID

1
root 

1

ConceptDescriptor : 
CD code : ST

displayName : 
ST codeSystem : OID
codeSystemName : ST
codeSystemVersion : ST
originalText : 
ED modifier : LIST<CR>
translation : 
SET<CD> 
implies(CD) : 
BL equals(CD) : 
BL 

0..* translatio
n 

0..*

ConceptRole : 
CR name : CV

inverted : BL 
value : 
CD 

1

valu
e 

1

0..*modifer 0..*

CodedWithEquivalents : 
CE code : ST

displayName : 
ST codeSystem : OID
codeSystemPrintName : ST
codeSystemVersion : ST
originalText : 
ED translation : 
SET<CV> 

<<restriction>> 

CodedValue : 
CV code : ST

displayName : 
ST codeSystem : OID
codeSystemPrintName : ST
code SystemVersion : ST 
originalText : ST 

<<restriction>> 1 name1

0..*

translatio
n 

0..*

<<restriction>> 

type = text/plain
<<restriction>> 

PersonName : 
PN 

TrivialName : 
TN 

<<restriction>> 

<<restriction>> 
<<restriction>> 

T : QTY

SET<QTY
> totallyOrdered : BL

hull : IVL<T> 

PointInTime : TS 

<<type>> diff : PQ ~ 1s
offset : diff
calendar : 
CS precision : 
INT timezone : diff 

equals(TS) : BL 
plus(diff) : TS
minus(TS) : diff 

0..* 0..* 

T : 
ANY 

HistoryItem : HXIT
validTime : 
IVL<TS> 

1..*1..*
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1.2 Overview of Data Types 

Table 2: Overview of HL7 Version 3 Data Types 

Name Symbol Description 
Boolean  BL The Boolean type stands for the values of two-valued logic.  A Boolean value can be 

either true or false.  
Encapsulated Data ED Data that is primarily intended for human interpretation or for further machine 

processing outside the scope of this specification. This includes unformatted or 
formatted written language, multi-media data, or structured information in as defined 
by a different standard (e.g., XML-signatures.)  Instead of the data itself, an ED may 
contain only a reference (see TEL.) Note that the ST data type is a specialization of 
the ED data type when the ED media type is text/plain. 

Character String  ST Text data, primarily intended for machine processing (e.g., sorting, querying, indexing, 
etc.) Used for names, symbols, and formal expressions.)  Note that the ST data type 
is a specialization of the ED data type when the ED media type is text/plain. 

Coded Simple 
Value 

CS Coded data, consists of a code and display name.  The code system and code system 
version is fixed by the context in which the CS value occurs.  CS is used for coded 
attributes that have a single HL7-defined value set. 

Coded Value CV Coded data, consists of a code, display name, code system, and original text.  Used 
when a single code value must be sent. 

Coded With 
Equivalents 

CE Coded data, consists of a coded value (CV) and, optionally, coded value(s) from other 
coding systems that identify the same concept.  Used when alternative codes may 
exist. 

Concept Descriptor CD Coded data, is like a CE with the extension of modifiers. Modifiers for codes have an 
optional role name and a value. Modifiers allow one to express, e.g., “FOOT, LEFT” 
as a postcoordinated term built from the primary code “FOOT” and the modifier 
“LEFT”. 

Coded With 
Category 

CC A specific restriction of the CD used to communicate a possibly local code with 
another code that specifies the category of the communicated concept in an HL7-
defined standard code. 

Instance Identifier II An identifier to uniquely identify an individual instance.  Examples are medical record 
number, order number, service catalog item number, etc.  Based on the ISO Object 
Identifier (OID) 

Telecommunication 
Address 

TEL A telephone number or e-mail address specified as a URL.  In addition, this type 
contains a time specification when that address is to be used, plus a code describing 
the kind of situations and requirements that would suggest that address to be used 
(e.g., work, home, pager, answering machine, etc.) 

Postal Address  AD For example, a mailing address. Typically includes street or post office Box, city, 
postal code, country, etc. 

Entity Name EN A name of a person, organization, place, or thing. Can be a simple character string or 
may consist of several name parts that can be classified as given name, family name, 
nickname, suffix, etc.  

Person Name PN A name of a person. Person names usually consist of several name parts that can be 
classified as given, family, nickname etc. PN is a restriction of EN. 

Organization Name ON A name of an organization. ON name parts are typically not distinguished, but may 
distinguish the suffix for the legal standing of an organization (e.g. “Inc.”, “Co.”, “B.V.”, 
“GmbH”, etc.) from the name itself. ON is a restriction of EN. 

Trivial Name TN A restriction of EN that is equivalent with a plain character string (ST). Typically used 
for the names of things, where name parts are not distinguished. 

Integer Number INT Positive and negative whole numbers typically the results of counting and 
enumerating. The standard imposes no bounds on the size of integer numbers. 

Real Number REAL Fractional numbers. Typically used whenever quantities are measured, estimated, or 
computed from other real numbers.  The typical representation is decimal, where the 
number of significant decimal digits is known as the precision. 

Physical Quantity PQ A dimensioned quantity expressing the result of measurement.  It consists of a real 
number value and a physical unit.  Physical quantities are often constrained to a 
certain dimension by specifying a unit representing the dimension (e.g. m, kg, s, 
kcal/d, etc.) However, physical quantities should not be constrained to any particular 
unit (e.g., should not be constrained to centimeter instead of meter or inch.) 

Monetary Amount MO The amount of money in some currency. Consists of a value and a currency 
denomination (e.g., U.S.$, Pound sterling, Euro, Indian Rupee.) 
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Ratio RTO A quantity explicitly including both a numerator and a denominator (e.g. 1:128.)  Only 
in the rare cases when the numerator and denominator must stand separate should 
the Ratio data type should be used. Normally, the REAL, PQ, or MO data types are 
more appropriate. 

Point in Time  TS A time stamp. 
Set Collection SET<T> An unordered collection of unique values of any type T. 
List Collection LIST<T> A sequence of values of any type T. 
Bag Collection BAG<T> An unordered set of values of any type T where each value can occur more than once 

(rare.) 
Interval IVL<T> Ranges (intervals) of values of type T. An interval is a set of consecutive values of any 

quantity data type, such as, integer, real number, point in time, physical quantity, 
monetary amount, and ratio.) Intervals should be preferred instead of two attributes 
expressing a start and an end separately. 

History HIST<T> A collection of data where each element is tagged with a valid-time interval. 
Uncertain value 
using probabilities 

UVP<T> A nominal value with a probability number indicating the level of certainty for the value 
to apply in the given context. 

Non-parametric 
probability 
distribution 

NPPD<T> A collection of alternative uncertain values.  Used to represent frequency distributions 
(histograms) but also other weighed alternatives (e.g., utility distributions in 
preferences. 

Parametric 
probability 
distribution 

PPD<T> A probability distribution used to indicate certainty (accuracy) of a quantitative value.  
Allows specifying a distribution type and applicable parameters.  All distribution types 
have the parameters mean and standard distribution.  The mean is the value that 
would be reported if no probability distribution were available. 

General Timing 
Specification  

GTS One or more time intervals used to specify the timing of events. Every event spans 
one time interval (occurrence interval).  A repeating event is timed through a 
sequence of such occurrence intervals.  Such timings are often specified not directly 
as a sequence of intervals but as a rule, e.g., “every other day (Mon – Fri) between 
08:00 and 17:00 for 10 minutes.” 

1.3 Introduction to the Formal Data Type Definition Language 
Important Disclaimer: This is not an API specification.  While this formal language might 
resemble some programming language or interface definition language, it is not intended to define the 
details of programs and other means of implementation.  The formal definitions are normative part of 
this specification, but this particular language needs not be implemented or used in conformant 
systems; nor need all the semantic properties be implemented or used by conformant systems.  The 
internal working of systems, their way to implement data types, their functionality and services is 
entirely out of scope of this specification.  The formal definition only specifies the meaning of 
the data values through making statements how one would theoretically expect these values to relate 
and behave. 

This formal data type definition language3 specifies: 

• type name and short name; 

• named values of a fully enumerated extension; 

• semantic properties, unary, binary, and higher order properties; 

• invariants, i.e. constraints over the properties. 

                                                                 
3 The data type definition language employed here is a conclusion of experiments and experience with various 
alternatives .  These alternatives include data type definition tables and the use of the Object Management Group’s 
(OMG) Interface Definition Language (IDL).  The disadvantage of the data type definition tables was that they gave 
the wrong impression of this specification being a specification of abstract syntax rather than semantics.  Conversely, 
the disadvantage with IDL was that IDL gave the wrong impression of this specification being an application 
programming interface (API) definition. 
The resulting data type definition language borrows significantly from IDL, the Object Constraint Language (OCL), 
JAVA, C++, and the parser generation tools LEX and YACC.  It is inspired by features and style of these languages but 
amalgamating and augmenting these languages into p recisely what is needed for this data type specification.  The goal 
was a language that is minimal, and self-consistent.  Also, as the main purpose of this language is to define data types it 
tries to get by without any built -in data types. 
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• allowable type conversions; 

• syntax of character string value literals (if any); 

Definition of a data type occurs in two steps.  First, the data type is declared.  The declaration claims a 
name for a new data type with a list of names, types, and signatures of the new type’s semantic 
properties.  This declares, not defines the type.  The definition occurs in both logic statements about 
what is always true about this type’s values and their properties (invariant statements.) 

1.3.1 Declaration 

Every data type is declared in a form that begins with the keyword type.  For example, the following 
is the header of a declaration for the data type Boolean that has the short name alias BL and extends 
(specializes) the data type ANY.4 

type Boolean alias BL extends ANY 

    values(true, false)  

{ 

   BL not; 

  BL and(BL x); 

}; 

The Boolean data type declaration also contains a values-clause that declares the Boolean’s 
complete set of values (its extension) as named entities.  These named values are also valid character 
string literals.  None of the other data types defined in this specification has a finite value set, which is 
why the values-clause is unique to the Boolean.  In the marked-up formal language, value names use 
Italics font. 

The block in curly braces following the header contains declarations of the semantic properties that 
hold for every value of the data type.  A semicolon terminates each property declaration; and another 
semicolon after the closing curly brace terminates the data type declaration. 

A property declaration mentions from left to right: (1) the data type of the property’s value domain, the 
property name, and (3) an optional argument list.  The argument list of a property is enclosed in 
parentheses containing a sequence of argument declarations.  Each argument is declared by the data 
type name and argument name.  Semantic properties without arguments do not use an empty argument 
list.5 

The extends-clause has the usual meaning of a specialization relationship known from the object-
oriented method.6  Specialization means (a) inheritance of properties from the genus to the species, and 
(b) substitutability of values of the species type for variables of the genus type.  In addition, however, 
this data type definition language specifies two variants of specialization: extension (extends) and 
restriction (restricts).  Extension indicates that additional properties are being defined for the 
specialized type.  Restriction indicates that the inherited properties are being constrained. 

                                                                 
4 As can be seen, the type keyword is in place of IDL’s and Java’s interface and C++ amd Java’s class 
keyword.  The alias clause is unique to this specification as we do have the need for extremely short data type 
mnemonics in addition to more descriptive names.  The extends clause is the same as JAVA’s, which is preferred 
over C++ or IDL’s colon clause as its meaning is more obvious. 
5 Note that the IDL’s notion of input and output arguments and IDL’s, JAVA’s and C++’s notion of return values and 
exceptions are all irrelevant concepts for this specification.  The semantics of data types is not about procedure calls 
and parameter passing or normal and abnormal returns of control from a procedure body.  Instead, each semantic 
property is conceptualized as a function that ma ps a value and optional arguments to another value.  This mapping is 
not “computed” or “generated” it logically exists and we do not need to “call” such a function to actualize the mapping. 
6 “Extends” means “refines” or “specializes and adds properties.” This kind of “extension” (specialization) has nothing 
to do with the “extensional” (vs. “intensional”) definitions of data types. 
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An example for inheritance is: when ANY has the property isNull and BL extends ANY then BL also 
has this property isNull even though isNull is not listed explicitly in the property declaration of BL.  
An example for substitutability is: when a property is declared as of a data type ANY and BL extends 
ANY then a value of such property may be of type BL.  In other words, substitutability is the same as 
subsumption of all values of type BL being also values of type ANY.7 

The type-declaration may be qualified by the keyword abstract and protected.  An abstract 
type is a type where no value can be just of this type without belonging to a concrete specialization of 
the abstract. A protected type is a type that is used inside this specification but no property outside this 
specification should be declared of a protected type.8  (We also use the qualifier private at one 
point.  Private types are only specified for the sake of formal definition of other types and are not used 
in any form outside this specification.) 

1.3.2 Invariant Statements 

The declaration of semantic properties, their names, data types, and arguments provide only clues as to 
what the new data type might be about.  The true definition lies in the invariant statements.  Invariant 
statements are logical statements that are true at all times. 

Throughout this specification, invariant statements are provided in a formal syntax but are also written 
in plain English.  The advantage of the formal syntax is that it can be interpreted unambiguously, and 
that it is strongly typed.  The advantage of plain English statements is that they are more 
understandable, especially to those untrained in reading formal languages.   

The formal syntax does help to sharpen the decisiveness of this specification.  In some cases, however, 
the full semantics of a type are beyond what can be fully expressed in such invariant statements.  The 
combination of both plain and formal language helps to make this specification more clear. 

Invariant statements are formed using the invariant keyword that declares one or more variables in 
the same form as an argument list of a property.  The invariant statement can contain a where clause 
that constrains the arguments for the entire invariant body.  The invariant body is enclosed in curly 
braces.  It contains a list of assertions that must all be true. 

invariant(BL x) where x.nonNull { 

  x.and(true).equals(x); 

}; 

The semantics of the invariant statement is a logic predicate with a universal quantifier (“for all”). 

The above invariant statement can be read in English as “For all Boolean values x, where x is non-
NULL it holds that x AND true equals x.”  All properties should be named such that one can read the 
assertions like English sentences.9 

                                                                 
7 The restriction variant of specialization deserves explanation.  It is generally touted that inheritance should not retract 
properties that have been defined for the genus.  This is still true for the restriction as properties are not actually 
retracted but constrained to a smaller value set.  This may mean constraining properties to NULL, if NULL was an 
allowed value for that property in the parent type.  In any case, logically, restriction is a specialization, with inheritance 
and substitutability.  Furthermore extends and restricts are not hard opposites as a specialized type may both extend and 
constrain; the two keywords are mainly used to be comprehensible to a human reader. 
8 Note the meaning of protected is a little different from the accessibility qualifiers (public, package, protected, private) 
as known from JAVA and C++.  The protection used here is not about hiding the type information or baring properties 
defined by a protected type from access outside of this specification “package.”  It mainly is a strong recommendation 
not to declare attributes or other features of such protected types.  Protected types should be used as “wrapped” in other 
types.  The protected type is still directly accessible within the “wrap,” no notion of “delegated properties” exists. 
9 The invariant statement syntax and semantics is similar to the OCL “inv” clause.  We did not use OCL in this 
specification, however, for several reasons.  (1) OCL syntax has a Smalltalk style that does not fit the C++/Java style of 
the data type definition language.  (2) OCL has many primitive constructs and data types, while this specification 
avoids many primit ives.  (3) In part because of the richness in primitive constructs, OCL is fairly complex, more than is 
needed in this specification. 



HL7 Version 3 Data Types BALLOT DRAFT 2 Revision 1.3 

14  Copyright © Health Level Seven, Inc.  All rights reserved. 

The argument list of an invariant statement need not be specified if no such argument is needed. 

invariant { 

  true.not.equals(false); 

  false.not.equals(true); 

}; 

1.3.2.1 Assertion Expressions 

Assertions in invariant statements are expressions built with the semantic properties of defined data 
types.  Assertion expressions must have a Boolean value (true or false.)10  No primitive data types, or 
operations, pre-exist the definition of any data type.  The only preexisting features of the assertion 
expression language are:11 

• character strings representing utterances in the data type definition language; 

• the notion of an assertion being successful (true) or failing (false); 

• the invariant statement: invariant(...) where ... {...}; 

• the universal quantifier expression form forall(...) where ... {...}; synonymous to 
the invariant statemen; 

• the existence quantifier expression form exists(...) where ... {...}; 

• the implicit conjunction (logical AND) between the semicolon-separated assertions: assertion1; 
assertion2; ... ; assertionn; 

• variables and declarations in the invariant argument list; 

• the property reference using the period: x.property; 

• implicit and explicit type conversion: (T)x; 

• parentheses to override the priorities of the conversion and property resolution operators: 
(T)x.property versus((T)x).property. 

1.3.2.2 Nested Quantifier Expressions 

Within assertion expressions, nested quantifier statements can be formed similar to invariant 
statements.  In fact, the universal quantifier built using the forall keyword is the same as the 
invariant statement.  The universal quantifier can be used in a nested expression when the complexity 
of the problem requires it, such as in the following example: 

                                                                 
10 This construct is somewhat cyclical, there is a preexisting notion of Boolean values even though the Boolean is a 
type d efined just like any other type.  In addition, since this data type definition language is written in character strings, 
the notion of character strings pre -exists the definition of the character string type.  These two types, character string 
and Boolean are therefore exceptional, but on the surface, they are defined just like any other data type.  Since this data 
type specification language is not meant to be implemented, the cyclicality is not a real issue.  Even if this language 
was implemented, one can use a “bootstrapping” technique as is common, e.g., for compilers that compile themselves. 
11 Most of these syntactic features are in the spirit of the JAVA language, use of argument lists, curly braces to enclose 
blocks, semicolon to finish a statement, a nd the period to reference value properties.  The double colon :: as used by 
C++ or IDL to distinguish between member-references and value-references are not used (as in Java).  Unlike Java but 
like C++ and IDL, every statement is ended by a semicolon, including type declarations.  Implicit type conversion is 
also retained from C++. 
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invariant(SET<T> x, y) where x.nonNull { 

  x.subset(y).equals( 

      forall(T element) where x.contains(element) { 

        y.contains(element); 

      }); 

}; 

The existence quantifier has the meaning as in common propositional logic.  For example, the 
following invariant means: “SET values x and y intersect if and only if there exists an element e that is 
contained in both sets x and y.” 

invariant(SET x, y) where x.nonNull { 

  x.intersects(y).equals( 
      exists(T e) { 

        x.contains(e); 

        y.contains(e); 

      }); 

}; 

The existence quantifier may have a where-clause, however, there is no difference whether an assertion 
is made as a where-clause or in the body of the existence quantifier.  Conversely, for universal 
quantifiers, the where-clause weakens the assertion since the body now only applies for values that 
meet the criterion in the where-clause. 

1.3.3 Type Conversion 

This specification defines certain allowable conversions between data types.  For example, there is a 
pair of conversions between the Character String (ST) and Encode Data (ED).  This means that if a one 
expects an ED value but actually has an ST value instead, one can turn the ST value into an ED.12  

Three kinds of type conversions are defined: promotion, demotion, and character string literals.  Type 
conversions can be implicit or explicit.  Implicit type conversion occurs when a certain type is 
expected (e.g. as an argument to a statement) but a different type is actually provided.  If the type 
provided has a conversion to the type expected the conversion should be done implicitly. 

ITS Note: an Implementation Technology Specification will have to specify how implicit type 
conversions are supported.  Some technologies support it directly others do not; in any case, 
processing rules can be set that specify how these conversions are realized. 

An explicit conversion can be specified in an assertion expression using the converted-to type name in 
parenthesis before the converted value.  For example the following is an explicit type conversion in the 
where clause of an invariant statement. 

invariant(ED x) where ((ST)x).nonNull { ... }; 

The type conversion has lower priority than the property resolution period.  Thus “(T)a.b ” converts 
the value of the property b of variable a to data type T while “((T)a).b ” converts the value of 
variable a to T and then references property b of that converted value. 

                                                                 
12 These type conversions add necessary flexibility to support inter-version compatibility and localization. Note: HL7 
v2.x used to have implicit type conversions as a side effect of its delimiter-based syntax.  It was thus possible for the 
specification to define additional components to a field, or change the data type of a field (e.g., ID to CE) and still 
maintain backward compatibility. 



HL7 Version 3 Data Types BALLOT DRAFT 2 Revision 1.3 

16  Copyright © Health Level Seven, Inc.  All rights reserved. 

Implicit type conversions in the assertion expressions are performed where possible.  If a property’s 
formal argument is declared of data type T; but the expression used as an actual argument is of type U; 
and if U does not extend T; and if U defines a conversion to T, that conversion from T to U takes 
effect. 

1.3.3.1 Demotion 

A demotion is a conversion with a net loss of information.  Generally, this means that a more complex 
type is converted into a simple type. 

An example for a demotion is the conversion from Interval (IVL) to a simple Quantity (QTY), e.g. the 
center of the interval. In the data type definition language, a demotion is declared using the keyword 
demotion and the data type name to which to demote: 

type Interval alias IVL { 

  ... 
  demotion  QTY; 

  ... 

}; 

The specification of demotions shall indicate what information is lost and what the major 
consequences of losing this information are. 

1.3.3.2 Promotion 

A promotion is a conversion where new information is generated.  Generally, this means that a simpler 
type is converted into a more complex type.  

For example, we allow any Quantity (QTY) to be converted to an Interval (IVL).  However, IVL has 
more semantic properties than QTY, low and high boundary.  Thus, the conversion of QTY to IVL is a 
promotion.  The additional properties of QTY not present in IVL must assume new values, default 
values, or computed values.  The specification of the promotion must indicate what these values are or 
how they can be generated. 

A promoting conversion from type QTY to type IVL is defined as a semantic property of data type 
QTY using the keyword promotion and the data type name to which to promote: 

type Quantity alias QTY { 

  ... 
  promotion  IVL; 

  ... 

}; 

Typically, a promotion is defined from a simple type to a more complex type.  Also typically, the 
simple type is declared earlier in this document than a more complex type.  Declaring all promotions to 
complex types in the simple type would thus involve forward references and would be confusing to the 
reader.  Therefore, an alternative syntax allows promotions to be defined in the more complex type.  
This is indicated by naming the type from which to promote in an argument list behind the type to 
which to promote. 
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type Interval alias IVL { 

  ... 

  promotion  IVL (QTY x); 

  ... 

}; 

1.3.4 Literal Form 

A literal is a character string representation of a data value.  Literals are defined for many types, simple 
types and types that are more complex.  A literal is a type conversion from and to a specially formatted 
Character String (ST). 

Not every conversion from and to an ST is a literal conversion (e.g., the ED/ST conversion is not a 
literal.)  A literal for a data type should be able to represent the entire value set of a data type (the 
ED/ST conversion can not represent the entire value set of ED.) 

The purpose of having literals is so that one can write down values in a short human readable form.  
For example, literals for the types Integer (INT) and Real (REAL) are strings of sign, digits, possibly a 
decimal point, etc.  The more important Interval types (IVL<REAL>, IVL<PQ>, IVL<TS>) have 
literal representations that allow one to use, e.g.,  “<5" to mean less than 5, which is much more 
readable than a fully structured form of the Interval.  For some of the more advanced data types such as 
intervals, general timing specification, and parametric probability distribution we expect that the literal 
form may be the only form seen for representing these values until users have become used to the 
underlying conceptualizations. 

Each literal conversion has its own syntax (grammar,) often aligned with what people find intuitive.  
This syntax may therefore not be completely straightforward from a computer's perspective.13 

ITS Note: Character string based Implementable Technology Specifications (ITS) of these abstract 
data types may or may not choose the literals defined here as a their representations for these data 
types.  For the XML ITS we expect that some of the literals defined here be used. 

1.3.4.1 Declaration 

In the data type definition language we declare a literal form as a property of a data type using the 
keyword literal followed by the data type name ST, since the literal is a conversion to and from the ST 
data type. 

type IntegerNumber alias INT { 

  ... 

  literal  ST; 

  ... 

}; 

1.3.4.2 Definition 

The actual definition of the literal form occurs outside the data type declaration body using an attribute 
grammar.  An attribute grammar is a grammar that specifies both syntax and semantics of language 
structures.  The syntax is defined in essentially the Backus-Naur-Form (BNF).14 

                                                                 
13 The different grammars of literals are  not meant to be combined into one overall HL7 value expression grammar.  
Although attempt have been made to resolve potential ambiguities between the literals of different types where they 
would be harmful, some of these ambiguities still remain.  For exa mple “1.2" can be a valid literal for both Object 
Identifier (OID) and a Real Number. 
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For example, consider the following simple definition of a data type for cardinal numbers (positive 
integers.)  This type definition depends only the Boolean data type (BL) and has a character string 
literal declared:  

type CardinalNumber alias CARD { 

   BL  isZero; 

  BL  equals(CARD x); 

  CARD  successor; 

  CARD plus(CARD x); 

  CARD  timesTen; 
  literal  ST; 

}; 

1.3.4.2.1 Syntax Definition 

The literal syntax and semantics is first exposed completely and then described in all detail. 

CARD.literal ST { 

  CARD 

  : CARD digit { $.equals($1.timesTen.plus($2); } 

  | digit  { $.equals($1); }; 

  CARD digit 

  : “0”  { $.isZero; }  

  | “1”   { $.equals(0.successor); } 

  | “2”   { $.equals(1.successor); } 

  ... 

  | “8”  { $.equals(7.successor); } 

  | “9”   { $.equals(8.successor); } 

}; 

Every syntactic rule consists of the name of a symbol, a colon and the definition (so called production) 
of the symbol.  A production is a sequence of symbols.  These other symbols are also defined in the 
grammar, or they are terminal symbols.  Terminal symbols are character strings written in double 
quotes or string patterns (called regular expressions.)  Thus the form: 

  CARD : CARD digit | digit; 

means, that any cardinal number symbol is a cardinal number symbol followed by a digit or just a 
digit. The vertical bar stands for a disjunction (logical OR.)  A syntactic rule ends with a semicolon. 

Every symbol has exactly one value of a defined data type.  The data type of the symbol’s value is 
declared where the symbol is defined: 

                                                                                                                                                                                                 
14 The BNF variant used here is similar to the YACC parser and LEX lexical analyzer generator languages but is 
simplified and made consistent to the syntax and declarative style of this data type definition language.  The differences 
are that all symbols have exactly one attribute, their value strongly typed as one of the defined data types.  Each 
symbol’s type is declared in front of the symbol’s definition (e.g.: INT digit : “0” | “1” | … | “9”;).  
The start symbol has no name but just a type (e.g., INT : digit | INT digit;).  A data type name can occur 
as a symbol name meaning a literal of that data type. 
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  CARD digit : “0” | “1” | “2” | ... | “8” | “9”; 

means that the symbol digits has a value of type CARD.  The start-symbol is the data type itself and 
does not need a separate name. 

1.3.4.2.2 Semantics Definition 

The semantics of the literal expression is specified in semantic rules enclosed in curly braces for each 
of the defined productions of a symbol:  

symbol : production1 { rule1 } | production2 { rule2 } | … | productionn { rulen }; 

A semantic rule is simply a semicolon-separated list of Boolean assertion expressions of the same kind 
as those used in invariant statements.  However, there are special variables defined in the semantic rule 
that all begin with a dollar character  (e.g., $, $1, $2, $3, …)  The simple $ stands for the value of the 
currently defined symbol; while $1, $2, $3, etc. stand for the values of the parts of the semantic rule’s 
associated production.  For example, in  

  CARD 

  : CARD digit { $.equals($1.timesTen.plus($2); } 

  | digit  { $.equals($1); }; 

the first production “CARD digit” has a semantic rule that says: the value $ of the defined symbol 
equals the value $1 of the first symbol CARD times ten plus the value $2 of the second symbol 
digit.15 

1.3.4.2.3 Terminal Symbols 

A terminal symbol can be specified as a string pattern, so-called regular expression.  The regular 
expression syntax used here is the classic syntax invented by Aho and used in AWK, LEX, GREP, and 
PERL.  Regular expressions appear between two slashes /…/.  In a regular expression pattern every 
character except [  ] ^ $ . / : ( ) \ | ? * + { } matches itself.  The other characters 
that are actually used in this specification are defined in Table 3. 

Table 3: Special Characters for Regular Expressions 

Pattern Definition 
[ … ] Specifies a character class.  For example, /[A-Za-z]/ matches the characters of the upper and 

lower case English alphabet. 
[^ …] Specifies a character class negatively.  For example, /[^BCD]/ matches any character except B, 

C, and D. 
…? The preceding pattern is optional. For example, /ab?c/ matches  “ac” and “abc”. 
…* The preceding pattern may occur zero or many times. For example, /ab*c/ matches  “ac”, “abc”, 

“abbc”, “abbbc”, etc. 
…+ The preceding pattern may occur one or more times. For example, /ab+c/ matches “abc”, “abbc”, 

“abbbc”, but not “ac”. 
… {n,m} The preceding pattern may occur n to m times where n and m are cardinal numbers 0 ≤ n ≤ m.  For 

example, /ab{2,4}c/ matches “abbc”, “abbbc”, and “abbbbc”. 
… | … The pattern on either side of the bar may match.  For example, /ab|cd/ matches “abd” and “acd” 

but not “abcd”. 
( … ) The pattern in parentheses is used as one pattern for the above operators.  For example, 

/a(bc)*/ matches “a”, “abc”, “abcbc”, “abcbcbc”, etc. 
… : … The left pattern matches if followed by the right pattern, but the right pattern is not consumed by a 

match.  For example, /ab:c/ matches “abc” but not “ab”, however, the value of a symbol thus 
                                                                 
15 Note that the equals property (defined for all data types, see Section 1.4.2.3) is a relation, a test for equality, not an 
assignment statement.  One can not assign a value to another value.  Unlike YACC and LEX analyzers, this data type 
definition language is purely declarative it has no concept of assignment.  For this reason, the grammar rules define 
both parsing and building literal expressions. 
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match.  For example, /ab:c/ matches “abc” but not “ab”, however, the value of a symbol thus 
matched is “ab” and the “c” is left over for the next symbol.  The colon is a slight deviation from the 
conventional slash / but the slash is also conventionally used to enclose the entire pattern and may 
occur as a character to match – three meanings is one too many. 

... \ ... Matches the following character literally, i.e. escapes from any special meaning of that character.  
For example, /a\+b/ matches “a+b”. 

... \/ ... Matches the slash as a character.  For example, /a\/bc/ macthes “a/bc”. 

1.3.5 Generic Data Types 

Generic data types are incomplete type definitions.  This incompleteness is signified by one or more 
parameters to the type definition.  Usually parameters stand for other types.  Using parameters, a 
generic type might declare semantic properties of other not fully specified data types.  For example, the 
generic data type Interval is declared with a parameter T that can stand for any Quantity data type 
(QTY).  The components low and high are declared as being of type T. 

template<QTY T> 

type Interval<T> alias IVL<T> { 

   T low; 

  T  high; 

}; 

Instantiating a generic type means completing its definition.  For example, to instantiate an Interval, 
one must specify of what base data type the interval should be.  This is done by binding the parameter 
T.  To instantiate an Interval of Integer numbers, one would bind the parameter T to the type Integer.  
Thus, the incomplete data type Interval is completed to the data type Interval of Integer. 

For example the following type definition for MyType declares a property named “multiplicity” that is 
an interval of the cardinal number data type used in the above examples. 

type MyType alias MT { 

   IVL<CARD> multiplicity; 

}; 

1.3.5.1 Generic Collections 

Generic data types for collections are being used throughout this specification.  The most important of 
them are 

Set (SET<T>.)  A set contains elements in no particular order and without duplicate elements.  The 
SET<T> data type requires all elements of a set to be of the same data type. 

Sequence (LIST<T>.)  A sequence is a collection of values in an arbitrary but particular order.  A 
sequence has a head and a tail, where the head is an element and the tail is the sequence without its 
head.  

Interval (IVL<T>.)  An interval is a continuous subset of an ordered type. 

These and other generic types are fully defined in Section 1. These generic data types and their 
properties are being used in this specification early on.  For the best understanding of this specification 
knowledge about the set, sequence and interval is important and the reader is advised to refer to 
Section 1 when coming across a generic type being used to define another type. 

1.3.5.2 Generic Type Extensions 

Generic data type extensions are generic types with one parameter type that the generic type extends. 
In the formal data type definition language, generic type extensions follow the pattern:  
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template<ANY T> type GenericTypeExtensionName extends T { ... };  

These generic type extensions inherit properties of their base type and add some specific feature to it.  
The generic type extension is a specialization of the base type, thus a value of the extension data type 
can be used instead of its base data type.16   

ITS Note: values of extended types can be substituted for their base type.  However, an ITS may 
make some constraints as to what extensions to accommodate.  Particularly, extensions need not be 
defined for those components carrying the values of data value properties.  Thus, while any data 
value can be annotated outside the data type specification, an ITS may not provide for a way to 
annotate the value of a data value property.  

1.4 Data Type and Data Value 

1.4.1 Data Type (type) 

This section defines the fundamental properties of all data 
types and all data values. The type DataType is a meta-type 
declared in order to allow the formal definitions to speak 
about the data type of a value.  Any data type defined in this 
specification is a value of the type DataType. 

protected type DataType extends DataValue { 

   CE  name; 

}; 

1.4.1.1 Name : CE 

A data type name is a code with equivalents (CE, see Section 
2.4.4.3).  The short alias name, if defined, is the main code 
value, in which case the long name is an equivalent translation in the CE value. 

1.4.2 Data Value (ANY) 

The type DataValue defines the basic properties of every data value.  This is an abstract type, meaning 
that no value can be just a data value without belonging to any concrete type.  Every concrete type is a 
specialization of this general abstract DataValue type. 

abstract type DataValue alias ANY { 

   DataType  dataType; 

   BL  nonNull; 

 CS  nullFlavor; 

   BL  isNull; 

 BL  notApplicable; 

 BL  unknown; 

  BL  other; 

 BL  equals(ANY x); 

}; 

Figure 1: Fundamental data types 

DataType 
name : CE 

DataValue : ANY 
dataType : DataType 
nullFlavor : CS 
nonNull : BL 
isNull : BL 
notApplicable : BL 
unknown : BL 
other : BL 

equals(ANY) : BL 

1 

Boolean : BL 
not : BL 

and(BL) : BL 
or(BL) : BL 
eor(BL) : BL 
implies(BL) : BL 
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1.4.2.1 dataType : Data Type 

Every data value is of a data type.  The data value implicitly carries the information about its own type.  
Thus, given a data value in an HL7 message, one can inquire about its data type.  

invariant(ANY x) { 

  x.dataType.nonNull;  

}; 

1.4.2.2 Exceptional Values (NULL-Values) 

Exceptional values express missing information and possibly the reason why the information is 
missing.  Exceptional values are also called NULL-values, and the exception is called the “flavor” of 
NULL. 

Thus, every data value is either a proper value or it is NULL.  If the value is NULL, the nullFlavor 
property is non-NULL.  If the value is not NULL, its nullFlavor property is NULL (not applicable.) 

invariant(ANY x) { 

  x.nonNull.equals(x.nullFlavor.isNull); 

  x.isNull.equals(x.nonNull.not); 

}; 

Table 4: Flavors of NULL 

Concept Symbol Implies Definition 
no information NI  No information whatsoever can be inferred from this exceptional 

value.  This is the most general exceptional value.  It is also the 
default exceptional value. 

not applicable NA NI No proper value is applicable in this context (e.g., last menstrual 
period for a male.) 

unknown UNK NI A proper value is applicable, but not known. 
not asked NASK UNK This information has not been sought (e.g., patient was not asked) 
asked but 
unknown 

ASKU UNK Information was sought but not found (e.g., patient was asked but 
didn't know) 

temporarily 
unavailable 

NAV ASKU Information is not available at this time but it is expected that it will 
be available later. 

other OTH  The actual value is not an element in the value domain of a 
variable.  (e.g., concept not provided by required code system.)17 

positive infinity PINF OTH Positive infinity of numbers. 
negative infinity NINF OTH Negative infinity of numbers. 
not present NP  Value is not present in a message.  NP is a presentation layer 

concept only, not and application layer concept! All values not 
present in a message must be replaced by the applicable default 

                                                                                                                                                                                                 
16 Generic type extensions are sometimes called “mixins”, since their effect is to mix certain properties into the 
preexisting data type. 
17 There is a fine difference in coded data types between NULL/other and “coded with extensibility” (CWE.)  The CWE 
concept is defined elsewhere (HL7 Development Framework ).  CWE vocabulary domains include any pertinent local 
coding system.  Since CWE domains inclu de every locally defined concept, there is hardly any case where a concept is 
not within that value domain.  Thus, NULL/other hardly ever occurs for CWE fields outside of applications.  However, 
an interface that cannot interpret the local code used for a not otherwise coded concept will still map such local-coded 
value to NULL/other, because it might not be able or willing to expand its interpretable value domain. 
For example, if the standard domain for administrative gender contains only the concepts male and female, and the 
concept intersex needs coding, intersex might be coded using a local code that extends the gender code.  However, a 
receiving system that does not know about that non-standard code for intersex will map the unknown code to 
NULL/other.  Alternatively, the sending system could have used NULL/other instead of its local code in the first place.  
For CWE fields, the local code is allowed, for CNE (coded, non-extensible) fields NULL/other is the only legal way. 
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present in a message must be replaced by the applicable default 
value, or no-information (NI) if no other default value is defined. 

Note the distinction between value domain and vocabulary domain.  A vocabulary domain is a value 
domain for coded values, but not all value domains are vocabulary domains.  The null flavor other is 
used whenever the actual value is not in the required value domain, this may be, for example, when 
the value exceeds some constraints that are defined too restrictive (e.g., age less than 100 years.) 

Some of these null flavors are defined as named properties that can be used as simple predicates for all 
data values.  This is done to simplify the formulation of invariants in the remainder of this 
specification.  Note the difference between semantic properties and representational “components” of 
data values.  An ITS must only represent those components that it needs to infer the semantic 
properties.  The null-flavor predicates nonNull, isNull, notApplicable, unknown, and other can all be 
inferred from the nullFlavor property. 

invariant(ANY x) { 

  x.notApplicable.equals(x.nullFlavor.implies(NA)); 

  x.unknown.equals(x.nullFlavor.implies(UNK)); 

  x.other.equals(x.nullFlavor.implies(OTH)); 

}; 

When a property, RIM attribute, or message field is called mandatory this means that any non-NULL 
value of the type to which the property belongs must have a non-NULL value for that property, in other 
words, a field may not be NULL, providing that its container (object, segment, etc.) is present. 

In other HL7 specifications the label “mandatory” is used, while this specification formulates the 
mandatory constraint explicitly.  For example, the following invariant says that the dataType property 
is mandatory for any data value that is non-NULL. 

invariant(ANY x) where x.nonNull { 

  x.dataType.nonNull; 

} 

ITS Note: NULL-flavors are applicable to any property of a data value or a higher-level object attribute. 
Where the difference of null flavors is not significant, ITS are not required to represent them. If 
nothing else is noted in this specification, ITS need not represent general NULL-flavors for data-value 
properties. 

1.4.2.3 Equality 

Any two data values can be tested for equality.  Equality is a reflexive, symmetric, and transitive 
relation.  Only values of the same data type can be equal. 

invariant(ANY x, y, z) 

  where x.nonNull.and(y.nonNull).and(z.nonNull) 

{ 
  x.equals(x);       /* reflexivity */ 

  x.equals(y).equals(y.equals(x));    /* symmetry */ 

  x.equals(y).and(y.equals(z)).implies(x.equals(z)) /* transitivity */ 

  x.equals(y).implies(x.dataType.equals(y.dataType); 

} 
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How equality is determined must be defined for each data type.  If nothing else is specified, two data 
values are equal if they are indistinguishable, that is, if they differ in none of their semantic properties.  
A data type can “override” this general definition of equality, by specifying its own equals 
relationship.  This overriding of the equality relation can be used to exclude semantic properties from 
the equality test.  If a data type excludes semantic properties from its definition of equality, this implies 
that certain properties (or aspects of properties) that are not part of the equality test are not essential to 
the meaning of the value. 

For example the physical quantity has the two semantic properties (1) a real number and (2) a coded 
unit of measure.  The equality test, however, must account for the fact that, e.g., 1 meter equals 100 
centimeter; independent equality of the two semantic properties is too strong a criterion for the equality 
test.  Therefore, physical quantity must override the equality definition. 

Note: with data values, no distinction exists between equality and identity.  Equality is a static property 
between two values, and values never change. 
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2 Basic Types 

2.1 Boolean (BL) 

The Boolean type stands for the values of two-valued logic.  A Boolean value can be either “true” or 
“false”.  With any data value potentially being NULL, the two-valued logic is effectively extended to a 
three-valued logic as shown in the following truth tables: 

Table 5: Truth tables for Boolean logic with NULL values 

NOT   AND true false NULL  OR true false NULL 
true false  true true false NULL  true true true true 
false true  false false false false  false true false NULL 
NULL NULL  NULL NULL false NULL  NULL true NULL NULL 

 

type Boolean alias BL extends ANY 

    values(true, false) 

{ 

   BL  and(BL x); 

   BL  not; 

  literal   ST; 

 BL  or(BL x); 

   BL  eor(BL x); 

   BL  implies(BL x); 

}; 

The literal form of the Boolean is determined by the named values specified in the values clause. 

2.1.1.1 Negation 

Negation of a Boolean turns true into false and false into true and is NULL for NULL values. 

invariant(BL x) { 

  true.not.equals(false); 

  false.not.equals(true); 

  x.isNull.equals(x.not.isNull); 

}; 

2.1.1.2 Conjunction 

Conjunction (AND) is associative and commutative, with true as a neutral element.  False AND any 
Boolean value is false.  These rules hold even if one or both of the operands are NULL.   

invariant(BL x) { 

  x.and(true).equals(x); 

  x.and(false).equals(false); 

}; 
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If both operands for AND are NULL, the result is NULL. 

invariant(BL x, y) where x.isNull.and(y.isNull) { 

  x.and(y).isNull; 

}; 

2.1.1.3 Disjunction 

The disjunctions OR and exclusive OR can be specified in terms of negation and conjunction.  The 
disjuntion x OR y is false if and only if x is false and y is false.  The exclusive-OR constrains OR such 
that x and y may not both be true. 

invariant(BL x, y) { 

  x.or(y).equals(x.not.and(y.not).not); 

  x.eor(y).equals(x.or(y).and(x.and(y).not)); 

}; 

2.1.1.4 Implication 

The logical implication is important to make invariant statements.  An implication is a rule of the form 
IF condition THEN conclusion.  Logically the implication is defined as the disjunction of the negated 
condition and the conclusion, meaning that when the condition is true the conclusion must be true to 
make the overall statement true. 

invariant(BL condition, conclusion) { 

  condition.implies(conclusion).equals(condition.not.or(conclusion)); 

}; 

The implication is not reversible and does not specify what is true when the condition is false (ex falso 
quodlibet). 

Figure 2: Overview of Text and Multimedia Data Types 
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2.2 Encapsulated Data (ED) 

The encapsulated data (ED) type can convey any data. ED is a wrapper around a block of binary data. 
Therefore, binary data must be defined first. 

Table 6: Summary of Primary Properties of Encapsulated Data (ED) 

Name Type Status Default Constraint Definition 
 BIN mandatory NULL  The binary data. 
type CS mandatory text/plain IANA: MIME 

media types 
Identifies the encoding of the data 
and a method to interpret the 
data. 

charset CS implied ITS IANA: 
charset  

Where applicable, specifies the 
character set and character 
encoding used. 

language CS implied CONTEXT  Where applicable, specifies the 
language of text data. 

compression CS optional NULL  Indicates whether the raw byte 
data is compressed, and what 
compression algorithm was used. 

reference TEL optional NULL  A telecommunication address that 
resolves to the binary data. 

integrityCheck BIN optional NULL  A short binary value representing 
a cryptographically strong 
checksum over the binary data.   

integrityCheckAlgorithm CS fixed SHA-1  Specifies the algorithm used to 
compute the integrityCheck value. 

thumbnail ED optional NULL  An abbreviated rendition of the full 
data. 

2.2.1 Binary Data (BIN) 

Binary data is a sequence of uninterpreted bits.  A bit is identical with a Boolean value.  Thus, all 
binary data is – semantically – a sequence of Boolean values.  The binary data type is protected; it 
should not be used directly but only inside the encapsulated data (ED). 

protected type BinaryData alias BIN extends LIST<BL>; 

ITS Note: the representation of arbitrary binary data is the responsibility of an ITS.  How the ITS 
accomplishes this depends on the underlying Implementation Technology (whether it is character-
based or binary) and on the so represented data.  Semantically character data is represented as 
binary data, however, a character-based ITS should not convert character data into arbitrary binary 
data and then represent binary data in a character encoding.  Ultimately even character-based 
implementation technology will communicate binary data. 

An empty sequence is not considered binary data but counts as a NULL-value.  In other words, non-
NULL binary data contains at least one bit. 

invariant(BIN x) where x.nonNull { 

  x.nonEmpty; 
  x.length.greaterThan(0); 

}; 

2.2.2 Properties of Encapsulated Data (ED) 

The encapsulated data (ED) type can convey any data. ED is based on binary data (BIN), however, in 
order for that binary data to convey meaning, it must be decoded and further interpreted.  ED adds to 
BIN a mechanism to specify the method of interpretation of the binary data. Encapsulated data may be 
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a plain character string, formatted text, or any of several kinds of multimedia data.  The kind of 
encoding is conveyed in three properties: 

type – specifies the protocol, or application used to decode and interpret the data (also called the 
“media type” when referring to multi-media data.) 

charset – identifies the character set and character encoding for character-based “media.” 

compression – data may be given in a compressed form in which case compression identifies the 
compression algorithm used. 

Encapsulated data can be present in two forms, inline or by reference. Inline data is communicated or 
moved as part of the encapsulated data value, whereas by-reference data may reside at a different 
(remote) location.  The data is the same whether it is located inline or remote. 

type EncapsulatedData alias ED extends BIN { 

   CS  type; 

 CS  charset; 

 CS  language; 

 CS  compression; 

 TEL  reference 

 BIN  integrityCheck; 

 CS  integrityCheckAlgorithm; 

 ED  thumbnail; 

 BL equals(ED x); 

}; 

2.2.2.1 type  : CS 

Identifies the encoding of the data and identifies the method to interpret or render the data.  The 
domain of the encapsulated data’s type property are the MIME media types, defined by the Internet 
Assigned Numbers Authority (IANA). 

The encapsulated data’s type is a mandatory property, i.e., every non-NULL instance of encapsulated 
data must have a defined type property. 

invariant(ED x) where x.nonNull { 

  x.type.nonNull; 

}; 

The IANA defined domain of media types is established by the Internet standard RFC 2046 
[ftp://ftp.isi.edu/in-notes/rfc2046.txt ].  RFC 2046 defines the media type to consist of two parts: 

top level media type, and 

media subtype. 

However, this specification treats the entire media type as one atomic code symbol in the form defined 
by IANA, i.e., top level type followed by a slash “/” followed by media subtype.  Currently defined 
media types are registered in a database [http://www.isi.edu/in-notes/iana/assignments/media-types] 
maintained by IANA.  Currently more than 160 different MIME media types are defined, with the list 
growing rapidly.  In general, all those types defined by the IANA may be used.  
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To prevent the interoperability-problems associated with this diversity, this specification prefers 
certain media types to others.  This is to define a greatest common denominator on which 
interoperability is not only possible, but that is  powerful enough to support even advanced multimedia 
communication needs. 

Table 7 below assigns a status to certain MIME media types, where the status means one of the 
following: 

required 

Every HL7 application must support at least the required media types if it supports a given kind of 
media.  One required media-type for each kind of media exists.  Some media types are required for a 
specific purpose, which is then indicated as “required for …”18 

recommended 

Other media types are recommended for a particular purpose.  For any given purpose there should be 
only very few additionally recommended media types and the rationale, conditions and assumptions of 
such recommendations must be made very clear. 

indifferent 

This status means, HL7 does neither forbid nor endorse the use of this media type. All media types not 
mentioned here by default belong into the indifferent category. Since there is one required and several 
recommended media types for most practically relevant use cases, media types of this status should be 
used very conservatively. 

deprecated 

Deprecated media types should not be used, because these media types are flawed, because there are 
better alternatives, or because of certain risks.  Such risks could be security risks, for example, the risk 
that such a media type could spread computer viruses.  Not every flawed media type is marked as 
deprecated, though.  A media type that is not mentioned, and thus considered other by default, may 
well be flawed. 

Table 7: Use of MIME media types 

Media Type Status Use Case 
text/plain required 

default 
For any plain text.  This is the default and is equivalent to a character 
string (ST) data type.  

application/x-cda-
level-1 

required 
for HL7 CDA 
documents 

For XML documents according to the HL7 CDA Level 1 standard. 

text/x-hl7-ft recommended 
for compatibility 

For compatibility, this represents the HL7 v2.x FT data type.  Its use is 
recommended only for backward compatibility with HL7 v2.x systems. 

text/html recommended  For marked-up text according to the Hypertext Mark-up Language.  
HTML markup is sufficient for typographically marking-up most written-
text documents.  HTML is platform independent and widely deployed. 

application/pdf recommended The Portable Document Format is recommended for written text that is 
completely laid out and read-only.  PDF is a platform independent, 
widely deployed, and open specification with freely available rendering 
tools. 

text/sgml 
text/xml 

other For structured character based data.  There is a risk that general 
SGML/XML is too powerful to allow a sharing of general SGML/XML 
documents between different applications. 

text/rtf  other The Rich Text Format is widely used to share word-processor 
documents.  However, RTF does have compatibility problems, as it is 
quite dependent on the word processor.  May be useful if word 
processor edit-able text should be shared. 

                                                                 
18 The set of required media types, however, is very small so that no undue requirements are forced on HL7 
applications, especially legacy systems.  In general, no HL7 application would be forced to support any given kind of 
media other than written text. For example, many systems just do not want to receive audio data, because those systems 
can only show written text to their users.  It is a matter of application conformance statements to say: “I will not handle 
audio”.  Only if a system claims to handle audio media, it must support the required media type for audio. 
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processor edit-able text should be shared. 
application/msword deprecated This format is very prone to compatibility problems.  If sharing of edit-

able text is required, text/plain, text/html or text/rtf should be used 
instead. 

audio/basic required 
for audio 

This is a format for single channel audio, encoded using 8bit ISDN mu-
law [PCM] at a sample rate of 8000 Hz.  This format is standardized 
by: CCITT, Fascicle III.4 –Recommendation G.711.  Pulse Code 
Modulation (PCM) of Voice Frequencies .  Geneva, 1972. 

audio/mpeg recommended 
for CD quality 
audio 

MPEG-1 Audio layer-3 is an audio compression algorithm and file 
format                       defined in ISO 11172-3 and ISO 13818-3. MP3 
has an adjustable sampling frequency for highly compressed 
telephone to CD quality audio. 

audio/k32adpcm recommended  
for audio 
compression 

ADPCM allows compressing audio data.  It is defined in the Internet 
specification RFC 2421 [ftp://ftp.isi.edu/in-notes/rfc2421.txt].  Its 
implementation base is unclear. 

image/png required 
for images  

Portable Network Graphics (PNG) [http://www.cdrom.com/pub/png] is 
a widely supported lossless image compression standard with open 
source code available. 

image/gif other GIF is a popular format that is universally well supported. However GIF 
is patent encumbered and should therefore be used with caution. 

image/jpeg required 
for high color 
images  

This format is required for high compression of high color photographs.  
It is a “lossy" compression, but the difference to lossless compression 
is almost unnoticeable to the human vision. 

image/g3fax recommended 
for FAX 

This is recommended only for fax applications. 

video/mpeg required 
for video 

MPEG is an international standard, widely deployed, highly efficient for 
high color video; open source code exists; highly interoperable. 

video/x-avi deprecated The AVI file format is just a wrapper for many different codecs; it is a 
source of many interoperability problems. 

model/vrml recommended 
for 3D models 

This is an openly standardized format for 3D models that can be useful 
for virtual reality applications such as anatomy or biochemical research 
(visualization of the steric structure of macromolecules) 

application/x-dicom other For HIS/PACS interface applications that need to encapsulate DICOM 
data in HL7 data. 

2.2.2.2 charset : CS 

For character-based encoding types, this property specifies the character set and character encoding 
used.  The charset is defined according to Internet RFC 2278, IANA Charset Registration Procedures, 
[http://www.isi.edu/in-notes/rfc2278.txt ].   

The charset domain is maintained by the Internet Assigned Numbers Authority (IANA) 
[http://www.isi.edu/in-notes/iana/assignments/character-sets ].  The IANA source specifies names and 
multiple aliases for most character sets.  For the HL7’s purposes, use of multiple alias names is not 
allowed.  The standard name for HL7 is the one marked by IANA as “preferred for MIME.”  If IANA 
has not marked one of the aliases as “preferred for MIME” the main name shall be the one used for 
HL7.  

Table 8 lists a few of the IANA defined character sets that are of interest to current HL7 members. The 
definitions of the “status” column is as given for Table 7. 

Table 8: Select Character Set Codes as defined by IANA 

Code Status Description 
US-ASCII required ANSI X3.4-1968 
UTF-8 required 

for Unicode 
8 bit Unicode Transfer Format [RFC 2279].  This is the default character set 
(ISO 10646/Unicode) and encoding for XML and natively supported by 
Java.  It is backward compatible to 7-bit US-ASCII.  

ISO-10646-UCS-2 deprecated Unicode ISO 10646, the 16 bit per character Basic Multilingual Plane.  
Unicode has a special protocol to specify the byte order, which must be 
followed.  To avoid byte ordering problems (and – for the western part of 
the world – to conserve bandwidth) the UTF-8 encoding should be used. 

ISO-10646-UCS-4 deprecated Unicode ISO 10646, the full code-set (32-bit per character.)  Unicode has a 
special protocol to specify the byte order, which must be followed. To avoid 
byte ordering problems (and – for the western part of the world – to 
conserve bandwidth) the UTF-8 encoding should be used. 
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conserve bandwidth) the UTF-8 encoding should be used. 
UTF-7 indifferent 7 bit Unicode Transfer Format [RFC 2152].  This is a Unicode encoding that 

is sure to be safe for older communication links or file formats that remove 
the 7th bit of each transferred byte. 

ISO-8859-1 indifferent ISO 8859 Latin-1 character set is native on western European (and U.S.) 
Microsoft Windows installations and on many Unix/X-Windows systems. 

ISO-8859-2 indifferent ISO 8859 Latin-2 character set for the Slavic languages of Central Europe 
(Polish, Czech). 

ISO-8859-5 indifferent ISO 8859 Cyrillic character set for the languages Russian, Bulgarian, 
Byelorussian, Macedonian, Serbian and Ukrainian. 

JIS-2022-JP indifferent ISO 2022 is a character-encoding framework in which multilingual code-
pages can be switched in and out. JIS-2022-JP, is ISO 2022 as released as 
a Japanese Information Standard and as the Internet specification 
Japanese Character Encoding for Internet Messages  [RFC 1468]. 

EBCDIC indifferent Extended binary-coded decimal interchange code. A coded character set of 
256 8-bit characters commonly used by IBM mainframes. 

2.2.2.3 language : CS 

For character based information the language property specifies the language of the text.19  The 
principles of the code domain of this attribute is specified by RFC 1766, Tags for the Identification of 
Languages [http://www.isi.edu/in-notes/rfc1766.txt ].  It is a set of pre-coordinated pairs of one 2-letter 
ISO 639 language code and one 2-letter ISO 3166 country code.20 

Language tags do not modify the meaning of the characters found in the text; they are only an advice 
on if and how to present or communicate the text.21 

ITS Note: representation of language tags to text is highly dependent on the ITS.  An ITS should use 
the native way of language tagging provided by its target implementation technology.   Some may 
have language information in a separate component, e.g., XML has the xml:lang tag for strings.  
Others may rely on language tags as part of the binary character string representation, e.g., ISO 
10646 (Unicode) and its “plane-14” language tags. 

The language tag should not be mandatory if it is not mandatory in the implementation technology.  
Semantically, language tagging of strings follows a default-logic.  If nothing else is specified the local 
language is assumed.  If a language is set for an entire message or document, that language is the 
default.  If any information element or value that is superior in the syntax hierarchy specifies a 
language, that language is the default for all subordinate text values.  

If language tags are present in the beginning of the encoded binary text (e.g., through Unicode’s 
plane-14 tags) this is the source of the language property of the encapsulated data value. 

2.2.2.4 compression : CS 

Indicates whether the raw byte data is compressed, and what compression algorithm was used.   

Table 9: Compression Algorithms 

Name Code Status Description and Comment 
deflate DF required The “deflate” compressed data format as specified in RFC 1951 

[ftp://ftp.isi.edu/in-notes/rfc1951.txt]. 
gzip GZ other A compressed data format that is compatible with the widely used 

GZIP utility as specified in RFC 1952 [ftp://ftp.isi.edu/in-
notes/rfc1952.txt] (uses the deflate algorithm.) 

zlib ZL other A compressed data format that also uses the deflate algorithm.  
Specified as RFC 1950 [ftp://ftp.isi.edu/in-notes/rfc1950.txt]  

                                                                 
19 The need for a language code for text data values is documented in RFC 2277, IETF Policy on Character Sets and 
Languages [http://www.isi.edu/in -notes/rfc2277.txt ].  Further background information can be found in Using 
International Characters in Internet Mail [http://www.imc.org/mail-i18n.html], a memo by the Internet Mail 
Consortium. 
20 RFC 1766 is the HL7-approved coding system for all reference to human languages, in data types and elsewhere. 
21 For this reason, a system or site that does not deal with multilingual text or names in the real world can safely ignore 
the language property. 
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compress Z deprecated Original UNIX compress algorithm and file format using the LZC 
algorithm (a variant of LZW).  Patent encumbered and less 
efficient than deflate. 

Compression may not be allowed for encapsulated data depending on the attribute or component that is 
declared encapsulated data.  Character strings (see Section 2.3) may never be compressed. 

2.2.2.5 reference : TEL 

A telecommunication address (TEL), such as a URL for HTTP or FTP, which will resolve to precisely 
the same binary data that could as well have been provided as inline data. 

The semantic value of an encapsulated data value is the same, regardless whether the data is present 
inline data or just by-reference.  However, an encapsulated data value without inline data behaves 
differently, since any attempt to examine the data requires the data to be downloaded from the 
reference. 

An encapsulated data value may have both inline data and a reference. The reference must point to the 
same data as provided inline. 

By-reference encapsulated data may not be allowed depending on the attribute or component that is 
declared encapsulated data.  Character strings (see Section 2.3) must always be inline. 

2.2.2.6 integrityCheck : BIN 

The integrity check is a short binary value representing a cryptographically strong checksum that is 
calculated over the binary data.  The purpose of this property, when communicated with a reference is 
for anyone to validate later whether the reference still resolved to the same data that the reference 
resolved to when the encapsulated data value with reference was created. 

The integrity check is calculated according to the integrity check algorithm.  By default, the Secure 
Hash Algorithm-1 (SHA-1) shall be used.  The integrity check is binary encoded according to the rules 
of the integrity check algorithm. 

The integrity check is calculated over the raw binary data that is contained in the data component, or 
that is accessible through the reference.  No transformations are made before the integrity check is 
calculated.  If the data is compressed, the Integrity Check is calculated over the compressed data. 

2.2.2.7 integrityCheckAlgorithm : CS 

Specifies the algorithm used to compute the integrityCheck value.22  

Table 10: Integrity Check Algorithm 

Name Code Description 
Secure Hash Algorithm – 1 SHA-1 This algorithm is defined in FIPS PUB 180-1: Secure Hash Standard.  As 

of April 17, 1995. 

2.2.2.8 thumbnail : ED 

A thumbnail is an abbreviated rendition of the full data.23  A thumbnail requires significantly fewer 
resources than the full data, while still maintaining some distinctive similarity with the full data.  A 

                                                                 
22 The cryptographically strong checksum algorithm Secure Hash Algorithm-1  (SHA-1) is currently the industry 
standard.  It has superseded the MD5 algorithm only a couple of years ago, when certain flaws in the security of MD5 
were discovered.  Currently the SHA -1 hash algorithm is the default and required only choice for the integrity check 
algorithm.  However, there is no assurance that SHA -1 will not be superseded at anytime when its flaws will be 
discovered. 
23 Originally, the term thumbnail refers to an image in a lower resolution (or smaller size) than another image.  
However, the thumbnail concept can be metaphorically used for media types other than images.  For example, a movie 
may be represented by a shorter clip; an audio -clip may be represented by another audio-clip that is shorter, has a lower 
sampling rate, or a lossy compression. 
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thumbnail is typically used with by-reference encapsulated data.  It allows a user to select data more 
efficiently before actually downloading through the reference. 

Thumbnails may not be allowed depending on the attribute or component that is declared encapsulated 
data.  Character strings (see Section 2.3) never have thumbnails, and a thumbnail may not itself contain 
a thumbnail. 

invariant(ED x) where x.thumbnail.nonNull { 

  x.thumbnail.thumbnail.isNull; 

}; 

ITS Note: the ITS should consider the case where the thumbnail and the original both have the same 
properties of type, charset and compression.  In this case, these properties need not be represented 
explicitly for the thumbnail but might be “inherited” from the main encapsulated data value to its 
thumbnail. 

2.2.2.9 Equality 

Two values of type Encapsulated Data are equal if and only if their type and referenced data are equal.  
For those ED values with compressed data or remote data, only the de-referenced and uncompressed 
data counts for the equality test.  The compression and reference property themselves are excluded 
from the equality test, as is the thumbnail and the language property.  If the ED.type is character based 
and the charset property is not equal, the charset property must be resolved through mapping of the 
data between the different character sets.   

The integrity check algorithm and integrity check is excluded from the equality test.  However, since 
equality of integrity check value is strong indication for equality of the data, the equality test can be 
practically based on the integrity check, given equal integrity check algorithm properties. 

2.3 Character String (ST) 

The character string is a restricted encapsulated data type (ED), whose type property is fixed to 
text/plain, and whose data must be inlined and not compressed.  Thus, the properties compression, 
reference, integrity check, algorithm, and thumbnail are not applicable.  The character string data type 
is used when the appearance of text does not bear meaning, which is true for formalized text and all 
kinds of names. 

Table 11: Summary of Primary Properties of Character String (ST) 

Name Type Status Default Constraint Definition 
 BIN mandatory NULL  The binary data of the character 

string. 
type CS fixed text/plain IANA: MIME 

media types 
 

charset CS implied ITS IANA: charset  Specifies the character set and 
character encoding used. 

language CS implied CONTEXT  Specifies the language of text data. 

The character string (ST) data type interprets the encapsulated data as character data (as opposed to 
bits), depending on the charset property of the encapsulated data type.   

type CharacterString alias ST restricts ED { 

   INT   length; 

   ST    head; 

   ST    tail; 

}; 
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invariant(ST x) where x.nonNull { 

  x.type.equals(“text/plain”); 

  x.compression.notApplicable; 

  x.reference.notApplicable; 

  x.integrityCheck.notApplicable; 

  x.integrityCheckAlgorithm.notApplicable; 

  x.thumbnail.notApplicable; 

} 

ITS Note: because many of the properties of the encapsulated data are bound to a default value, an 
ITS need not represent these properties at all.  In fact, if the character encoding is also fixed, the ITS 
only represents the encoded character data. 

The character string inherits the properties head, tail, and length from BIN (via ED). These properties 
head, tail, and length, are redefined so that the character string appears as a sequence of entities each of 
which uniquely identifies one character from the joint set of all characters known by any language of 
the world.24 The properties head, tail, and length therefore refer to character, string, and character 
counts respectively, rather than bits and bit counts.   

The head of a string is a string of only one character.  A character string must at least have one 
character or else it is NULL.  The length of a character string is the number of characters in the string.  
A zero-length string is an exceptional value (NULL), not a proper character string value. 

invariant(ST x) where x.nonNull { 

  x.head.nonEmpty; 

  x.head.tail.isEmpty; 

  x.tail.isEmpty.implies(x.length.equals(1)); 

  x.tail.nonEmpty.implies(x.length.equals(x.tail.length.successor)); 

}; 

The length of a string is the number of characters, not the number of encoded bytes.  Byte encoding 
is an ITS issue and is not relevant on the application layer.  

2.3.1.1 Literal Form 

Two variations of character string literals are defined, a token form and a quoted string.25  The token 
form consists only of the lower case and upper case English alphabet, the ten decimal digits and the 

                                                                 
24 ISO/IEC 10646-1: 1993 defines a character as “A member of a set of elements used for the organisation, control, or 
representation of data.”  ISO/IEC TR 15285 – An operational model for characters and glyphs.  Discusses the 
problems involved in defining characters.  Notably, characters are abstract entities of information, independent of type 
font or language.  The ISO 10646 (UNICODE  [http://www.unicode.org ]) –  or in  Japan, JIS X0221 –  is a globally 
applicable character set that uniquely identifies all characters of any language in the world. 
In this specification, ISO 10646 serves as a semantic model for character strings.  The important point is that for 
semantic purposes, there is no notion of separate character sets and switching between character sets.  Character set and 
character encoding are ITS layer considerations.  The formal definition gives indication to this effect because each 
character is by itself an ST value that has a charset property.  Thus, the binary encoding of each character is always 
understood in the context of a certain character set.  This does not mean that the ITS should represent a character string 
as a sequence of full blown ED values.  W hat it means is that on the application layer the notion of character encoding 
is irrelevant when we deal with character strings. 
25 A character string literal is a conversion from a character string to another data type.  Obviously, character string 
literals for character strings is a cyclical if not redundant feature.  This literal form, therefore, mainly specifies how 
character strings are parsed in the data type specification language. 
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underscore.  The quoted string can contain any character between double-quotes.  The double quotes 
prevent a character string from being interpreted as some other literal.  The token form allows 
keywords and names to be parsed from the data type specification language. 

ST.literal ST { 

  ST : /"[^]*"/ { $.equals($1); }  /* quoted string */ 

     | /[a-zA-Z0-9_]+/ { $.equals($1); };  /* token form */ 

}; 

ITS Note: since character string literals are so fundamental to implementation technology, most ITS 
will specify some modified character string literal form.  However, ITS designers must be aware of the 
interaction between the character string literal form and the literal forms defined for other data types.  
This is particularly critical if the other data type’s literal form is structured with major components 
separated by break-characters (e.g., real number, physical quantity, set, and list literals, etc.) 

2.4 Concept Descriptor (CD) 

A concept descriptor represents any kind of concept.  The CD refers to a concept usually by citing a 
code defined in a coding system.  A given concept may be expressed in multiple terms where each 
term is a translation or re-encoding of the meaning in another code system.  In addition compositional 
code systems are supported.  In exceptional cases, the concept descriptor may not contain a code but 
only free text describing that concept.  The CD is typically used through one of its restrictions 
described in Section 2.4.3. 

Table 12: Summary of Primary Properties of Concept Descriptor (CD) 

Name Type Status Default Constraint Definition 
code ST mandatory NULL  The plain code symbol 
displayName ST auxilary NULL  A name or title for the code, under 

which the sending system shows the 
code value to its users 

codeSystem OID mandatory CONTEXT  Specifies the code system that defines 
the code 

codeSystemName ST auxilary NULL  A common name of the coding system 
codeSystemVersion ST optional NULL  If applicable, a version descriptor 

defined specifically for the given code 
system 

originalText ED auxilary NULL  The text or phrase used as the basis for 
the coding 

modifier LIST<CR> optional NULL  Specifies additional codes that modify 
the meaning of this concept descriptor 

translation SET<CD> optional NULL  A set of other concept descriptors that 
translate this concept descriptor into 
other code systems.   
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type ConceptDescriptor alias CD extends ANY { 

  ST   code; 

  ST   displayName; 

  OID  codeSystem; 

   ST   codeSystemName; 

   ST   codeSystemVersion; 

   ED   originalText; 

   LIST<CR>  modifier; 

   SET<CD>  translation; 

 BL equals(CD x); 

  BL implies(CD x); 

  demotion  ED; 

}; 

2.4.1.1 code : ST 

This is the plain code symbol defined by the code system. For example, “784.0” is the code symbol of 
the ICD-9 code “784.0” for headache. 

 

Figure 3: The Concept Descriptor information model.  The concept descriptor is mostly used in 
one of its restricted or “profiled” forms, CS, CE, CV, and CC. 
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A non-exceptional CD value has a non-NULL code citing a valid code from an identified coding 
system.  Conversely, a CD value without the code or with a code not from the cited coding system is 
an exceptional value (NULL of flavor other).   

invariant(CD x) where x.nonNull { 

  x.code.nonNull; 

}; 

2.4.1.2 codeSystem : OID 

Specifies the code system that defines the code.  Code systems shall be referred to by ISO Object 
Identifiers (OID).  The OID allows unambiguous reference to standard HL7 codes, other standard code 
systems, and local codes.  HL7 shall assign an OID to each of its code tables as well as to external 
standard coding systems that are being used with HL7.  Local sites can use their OID to construct a 
globally unique local coding system identifier. 

Under HL7’s branch, 2.16.840.1.113883, the sub-branches 5 and 6 contain HL7 standard and external 
code system identifiers respectively.  The HL7 Vocabulary Technical Committee maintains these two 
branches. 

A non-exceptional CD value (i.e. a CD value that has a non-null code property) has a non-NULL code 
system specifying the system of concepts that defines the code.  In other words whenever there is a 
code there is also a code system. 

ITS Note: although every non-NULL CD value has a defined code system, in some circumstances, the 
external representation of the CD value needs not explicitly mention the code system.  For example, 
when the context mandates one and only one code system to be used specifying the code system 
explicitly would be redundant.  However, in that case the code system property assumes that context-
specific default value and is not NULL. 

invariant(CD x) where x.code.nonNull { 

  x.codeSystem.nonNull; 

}; 

An exceptional CD of NULL-flavor “other” indicates that a concept could not be coded in the coding 
system specified.  Thus, for these coding exceptions, the code system that did not contain the 
appropriate concept must be provided in the code system property.   

Some code domains are qualified such that they include the portion of any pertinent local coding 
system that does not simply paraphrase the standard coding system (coded with extensibility, CWE.)  
If a CWE qualified field actually contains such a local code, the coding system must specify the local 
coding system from which the local code was taken.  However, for CWE domains the local code is a 
valid member of the domain, so that local codes in CWE domains constitute neither an error nor an 
exceptional (NULL/other) value in the sense of this specification. 

invariant(CD x) where x.other { 

  x.code.isNull; 

  x.codeSystem.nonNull; 

}; 

2.4.1.3 codeSystemName : ST 

This is a common name of the coding system referred to by the codeSystem OID.  The code system 
name is optional and has no function in communication.  The purpose of a code system name is to 
assist an unaided human interpreter of a code value to interpret the code system OID.  It is suggested – 
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though not absolutely required – that ITS provide for code system name fields in order to annotate the 
OID for human comprehension. 

HL7 systems must not functionally rely on the code system name.  The code system name can never 
modify the meaning of the code system OID value and can not exist without the OID value. 

invariant(CD x) { 

  x.codeSystemName.nonNull.implies(x.codeSystem.nonNull); 

}; 

2.4.1.4 codeSystemVersion : ST 

Specifies a version of the code system as a plain character string.  HL7 shall specify how these version 
strings are formed for each external code system.  If HL7 has not specified how version strings are 
formed for a particular coding system, version designations have no defined meaning for such coding 
system. 

Different versions of one code system must be compatible.  Whenever a code system changes in an 
incompatible way, it will constitute a new code system, not simply a different version, regardless of 
how the vocabulary publisher calls it. 

For example, the publisher of ICD-9 and ICD-10 calls these code systems, “revision 9” and “revision 
10” respectively.  However, ICD-10 is a complete redesign of the ICD code, not a backward 
compatible version.  Therefore, for the purpose of this data type specification, ICD-9 and ICD-10 are 
different code systems, not just different versions.  By contrast, when LOINC updates from revision 
"1.0j" to "1.0k", HL7 would consider this to be just another version of LOINC, since LOINC revisions 
are backwards compatible. 

invariant(CD x) { 

  x.codeSystemVersion.nonNull.implies(x.codeSystem.nonNull); 

}; 

2.4.1.5 displayName : ST 

The display name is a name or title for the code, under which the sending system typically or actually 
shows the code value to its users.  It is included both as a courtesy to an unaided human interpreter of a 
code value and as a documentation of the name used to display the concept to the user.  The display 
name has no functional meaning; it can never exist without a code; and it can never modify the 
meaning of the code. 

Note: display names may not alter the meaning of the code value.  Therefore, display names should 
not be presented to the user on a receiving application system without ascertaining that the display 
name adequately represents the concept referred to by the code value.  Communication must not 
simply rely on the display name. The display name’s main purpose is to support debugging of HL7 
protocol data units (e.g., messages.) 

invariant(CD x) { 

  x.displayName.nonNull.implies(x.code.nonNull); 

}; 

2.4.1.6 translation : SET<CD> 

The translation property of a concept descriptor y holds a set X of other concept descriptors xi ∈ X that 
translate the concept descriptor y into different code systems.  Each element xi ∈ X was translated from 
the concept descriptor y.  Each translation xi may also contain translations.  Thus, when a code is 
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translated multiple times the information about which code served as the input to which translation will 
be preserved. 

Note: the translations are quasi-synonyms of one real-world concept.  Every translation in the set is 
supposed to express the same meaning “in other words.”  However, exact synonymy rarely exists 
between two structurally different coding systems.  For this reason, not all of the translations will be 
equally exact. 

2.4.1.7 originalText : ED 

This is the text or phrase used as the basis for the coding.  The original text exists in a scenario where 
an originator of the information does not assign a code, but where the code is assigned later by a coder 
(post-coding.)  In the production of a concept descriptor, original text may thus exist without a code. 

Although the concept descriptor’s value property is NULL, original text may still exis t for the CD value.  
Any CD value with the code property of NULL signifies a coding exception.  In this case, the text 
property is a name or description of the concept that was not coded.  Such exceptional CD may contain 
translations.  Such translations directly encode the concept described in the original text property. 

Neither display name nor original text is part of the information a receiving system must 
automatically recognize.  An information producer is responsible for the proper coding of all 
information in the value attribute, for any information consumer may safely ignore the display 
name and original text attributes. 

A concept descriptor can be demoted into an ED value representing only the original text of the CD 
value. 

invariant(CD x) where x.text.nonNull { 

  ((ED)x).equals(x.text); 

}; 

2.4.1.8 modifier : LIST <CR> 

Specifies additional codes that modify the meaning of this concept descriptor. The primary code and 
all the modifiers together make up one concept. A concept descriptor with modifiers is also called a 
code phrase. 

Modifiers can only be used according to well-defined rules of post-coordination. A concept descriptor 
may only have modifiers if the code system defines the use of such modifiers or if there is a third code 
system that specifies how other code systems may be combined.  

For example, SNOMED allows constructing concepts as a combination of multiple codes. SNOMED 
RT defines a concept “cellulitis (morphologic abnormality)” (M-41650) a role “associated topography” 
(G-C505) and another concept “left foot (body structure)” (T-D9720). SNOMED-RT allows one to 
combine these codes in a code phrase: 

<finding code=“M-41650”  
         codeSystem=“&SNOMED-RT;” 
         displayName=“cellulites (morphologic abnormality)”> 
  <modifier code=“T-D9720”  
            displayName=“left foot”> 
    <name  code=“G-C505”  displayName=“associated topography” /> 
  </modifier> 
</finding> 

In this example, there is one code system, SNOMED-RT that defines all the primary code and the 
modifiers and how these are used, which is why in our example representation the codeSystem does 
not need to be mentioned for the modifier name and value (the codeSystem is inherited from the 
primary code.)  
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Another common example is the U.S. Health Care Financing Administration (HCFA) procedure codes. 
HCFA procedure codes (HCPCS) are based on CPT-4 and add additional modifiers to it. For example, 
the patient with above finding (plus peripheral artherial disease, diabetes mellitus, and a chronic skin 
lesion at the left great toe) may have an amputation of that toe. The CPT-4 concept is “Amputation, toe 
matatarsophalangeal joint” (28820) and a HCPCS modifier needs to be added to indicate “left foot, 
great toe” (TA). Thus we code: 

<procedure code=“28820”  
         codeSystem=“&CPT-4;” 
         displayName=“Amputation, toe matatarsophalangeal joint”> 
  <modifier code=“TA” 
            codeSystem=“&HCPCS;” 
            displayName=“left foot, great toe” /> 
</procedure> 

In this example, the code system of the modifier (HCPCS) is different than the code system of the 
primary code (CPT-4.) It is only because there are well-defined rules that define how these codes can 
be combined, that the modifier may be used. Note also, that the role name is optional, and for HCPCS 
codes there are no distinguished role names. 

The order of modifiers is preserved, particularly for the case where the coding system allows post-
coordination but defines no role names. (e.g., some ICD-9CM codes, or the old SNOMED “multiaxial” 
coding.) 

2.4.2 Concept Role (CR) 

The concept role is used to hold code modifiers with optionally named roles.  Both modifier roles and 
values must be defined by the coding system.  For example, if SNOMED RT defines a concept “leg”, a 
role relation “has-laterality”, and another concept “left”, the concept role relation allows to add the 
modifier “has-laterality: left” to a primary code “leg” to construct the meaning “left leg”. 

Table 13: Summary of Primary Properties of Concept Role (CR) 

Name Type Status Default Constraint Definition 
value CD mandatory NULL  Specifies the code system that defines the code 
name CV optional NULL  Specifies the manner in which the value modifies the 

meaning. 
inverted BL mandatory false  Indicates that the sense of the role name is reversed 

The use of modifiers is strictly governed by the code system used.  The CD does not permit using code 
modifiers with code systems that do not provide for modifiers (e.g. pre-coordinated systems, such as 
LOINC, ICD-10 PCS.)  The rules of the modifier use must be governed by the code system (e.g., 
recent SNOMED RT revision, GALEN.) 

protected type ConceptRole alias CR extends ANY { 

 CV name; 

 BL inverted; 

 CD value; 

}; 

2.4.2.1 name : CV 

Specifies the manner in which the value contributes to the meaning of a code phrase.  For example, if 
SNOMED RT defines a concept “leg”, a role relation “has-laterality”, and another concept “left”, the 
concept role relation allows to add the modifier “has-laterality: left” to a primary code “leg” to 
construct the meaning “left leg”.  In this example “has-laterality” is the CR.name. 
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If a coding system allows postcoordination but no role names the name attribute can be NULL.  The 
name attribute must not itself have modifiers. 

invariant(CR x) where x.nonNull { 

  x.name.modifier.isNull; 

}; 

2.4.2.2 value : CD 

This is the concept that modifies the primary code of a code phrase through the role relation.  For 
example, if SNOMED RT defines a concept “leg”, a role relation “has-laterality”, and another concept 
“left”, the concept role relation allows to add the modifier “has-laterality: left” to a primary code “leg” 
to construct the meaning “left leg”.  In this example “left” is the CR.value. 

This component is of type concept descriptor and thus can be in turn have modifiers.  This allows 
modifiers to nest.  Modifiers can only be used as far as the underlying code system defines them.  It is 
not allowed to use any kind of modifiers for code systems that do not explicitly allow and regulate 
such use of modifiers. 

invariant(CR x) where x.nonNull { 

  x.value.nonNull; 

}; 

2.4.2.3 inverted : BL 

Indicates if the sense of the role name is inverted.  This can be used in cases where the underlying code 
system defines inversion but does not provide reciprocal pairs of role names. By default, inverted is 
false. 

For example, a code system may define the role relation “causes” besides the concepts “Streptococcus 
pneumoniae” and “Pneumonia”.  If that code system allows its roles to be inverted, one can construct 
the post-coordinated concept “Pneumococcus pneumonia” through “Pneumonia – causes, inverted – 
Streptococcus pneumoniae.” 

Roles may only be inverted if the underlying coding systems allows such inversion.  Notably, if a 
coding system defines roles in inverse pairs or intentionally does not define certain inversions, the 
appropriate role code (e.g. “caused-by") must be used rather than inversion. It must be known whether 
the inverted property is true or false, if it is NULL, the role cannot be interpreted. 

invariant(CR x) where x.nonNull { 

  x.inverted.nonNull; 

}; 

ITS Note: the property “inverted” should be conveyed in an indicator attribute, whose default value is 
false.  That way the inverted indicator does not have to be sent when the role is not inverted. 

2.4.3 Comparing Concept Descriptors 

The main use of concept descriptors is for the purpose of indexing, querying and decision-making 
based on a coded value. A semantically unambiguous specification of coded values therefore requires a 
clear definition of what equality of concept descriptor values means and how CD values should be 
compared. 
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2.4.3.1 Equality 

The equality of two concept descriptor values is determined solely based upon the code and coding 
system.  The code system version is excluded from the equality test.26 If modifiers are present, the 
modifiers are included in the equality test.  Translations are not included in the equality test.27  
Exceptional concept descriptor values are not equal even if they have the same NULL-flavor or the 
same original text.28 

invariant(CD x, y) x.nonNull.and(y.nonNull) { 

  x.equals(y).equals(x.code.equals(y.code) 

                .and(x.codeSystem.equals(y.codingSystem)) 

                .and(x.modifier.equals(y.modifier))); 

}; 

Some code systems define certain style options to their code values. For example, the U.S. National 
Drug Code (NDC) has a dash and a non-dash form.  An example for the dash form may be 1234-5678-
90 when the non-dash form is 01234567890. Another example for this problem is when certain ISO or 
ANSI code tables define optional alphanumeric and numeric forms of two or three character lengths all 
in one standard.  

In the case where code systems provide for multiple representations, HL7 shall make a ruling about 
which is the preferred form. HL7 shall document that ruling where that respective external coding 
system is recognized. HL7 shall decide upon the preferred form based on criteria of practicality and 
common use. In absence of clear criteria of practicality and common use, the safest, most extensible, 
and least stylized (the least decorated) form shall be given preference.29 

2.4.3.2 Implication 

Naturally, concepts can be narrowed and widened to include or exclude other concepts.  Many coding 
systems have an explicit notion of concept specialization and generalization.  The HL7 vocabulary 
principles also provide for concept specialization for HL7 defined value sets.  The implies-property is a 
predicate that compares whether one concept is a specialization of another concept, and therefore 
implies that other concept. 

When writing predicates (e.g., conditional statements) that compare two codes, one should usually 
test for implication not equality of codes. 

For example, in Table 22 the “telecommunication use” concepts: work (W), home (H), primary home 
(HP), and vacation home (HV) are defined, where both HP and HV imply H.  When selecting any 
home phone number, one should test whether the given use-code c implies H.  Testing for c equals H 
would only find unspecified home phone numbers, but not the primary home phone number.  

                                                                 
26 The code system versions do not count in the equality test since by definition a code symbol must have the same 
meaning throughout all versions of a code system.  Between versions, codes may be retired but not withdrawn or 
reused. 
27 Translations are not included in the equality test of concept descriptors for safety reasons.  An alternative would have 
been to consider two CD values equal if any of their translations are equal.  However, some translations may be equal 
because the coding system of that translation is very coarse-grained.  More sophisticated comparisons between concept 
descriptors are application considerations that are not covered by this specification. 
28 NULL-values are exceptional values, not proper concepts. It would be unsafe to equate two values merely on the basis 
that both are exceptional (e.g., not codable or unknown.)  Likewise there is no guarantee that original text represents a 
meaningful or unique description of the concept so that equality of that original text does not constitute concept 
equality.  The reverse is also true: since there is more t han one possible original text for a concept, the fact that original 
text differs does not constitute a difference of the concepts. 
29 This ruling at design-time is necessary to prevent HL7 interfaces from being burdened by code literal style 
conversions at runtime. This is notwithstanding the fact that some applications may require mapping from one form 
into another if that application has settled with the representation option that was not chosen by HL7. 



PART II – Unabridged Specification  2 Basic Types 

Copyright © 2000, Health Level Seven, Inc.  All rights reserved. 43 

Operationally, implication can be evaluated in one of two ways. The code system literals may be 
designed such that one single hierarchy is reflected in the code literal itself (e.g., ICD-9.) Apart from 
such special cases, however, a terminological knowledge base and an appropriate subsumption 
algorithm will be required to evaluate implication statements. For post-coordinated coding systems, 
designing such a subsumption algorithm is a non-trivial task.30  

2.4.4 Restrictions for the Concept Descriptors 

Use of the full concept descriptor data type is exceptional.  It requires a conscious decision and 
documented rationale. In all other cases, one of the CD restrictions shall be used. 31 

All CD restrictions constrain certain properties of the CD.  Properties may be constraint to the extent 
that only one value may be allowed for that property, in which case mentioning the property becomes 
redundant.  Constraining a property to one value is referred to as suppressing that property.  Although, 
conceptually a suppressed property is still semantically applicable, it is safe for an HL7 interface to 
assume the implicit default value without testing. 

2.4.4.1 Coded Simple Value (CS)  restricts CD 

The Coded Simple Value (CS) is a restriction of the concept descriptor (CD).  The CS suppresses all 
properties of the CD, except for code and display name.  The code system and code system version is 
fixed by the context in which the CS value occurs.  Original text is not applicable to CS values. 

Table 14: Summary of Primary Properties of Coded Simple Value (CS) 

Name Type Status Default Constraint Definition 
code ST mandatory NULL  The plain code symbol 
displayName ST auxiliary NULL  A name or title for the code, under which the 

sending system shows the code value to its 
users 

codeSystem OID fixed CONTEXT  Specifies the code system that defines the 
code 

codeSystemName ST fixed CONTEXT  A common name of the coding system 

 

type CodedSimpleValue alias CS restricts CD { 

  ST   code; 

  ST   displayName; 

}; 

invariant(CS x) { 

  x.codeSystem.equals(CONTEXT.codeSystem); 

  x.codeSystemVersion.equals(CONTEXT.codeSystemVersion); 

  x.codeSystemName.equals(CONTEXT.codeSystemName); 

                                                                 
30 This is one reason why the CD.modifiers for post-coordination are to be used sparingly and with caution. An 
additional problem of post-coordinated coding is that a general rule for equality may not exist at all. 
31 The advantage of the concept descriptor data type is its expressiveness, however, if all of its features, such as coding 
exceptions, text, translations and modifiers are used at all times, implementation and use become very difficult and 
unsafe.  Therefore, the CD type is most often used in a restricted form with reduced features. 
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  x.originalText.isNull; 

  x.translation.isNull; 

  x.modifier.notApplicable; 

}; 

CS can only be used in either of the following cases: 

1) for a coded attribute which has a single HL7-defined code system, and where code additions to that 
value set require formal HL7 action (such as harmonization.) Such coded attributes that are designated 
“structural” codes must be assigned the CS restriction. 

2) for a technical property in this specification that is assigned to a single code system defined either in 
this specification or defined outside HL7 by a body that has authority over the concept and the 
maintenance of that code system. 

For example, since the ED type subscribes to the MIME design, it trusts IETF to manage the media 
type.  This includes that this specification subscribes to the extension mechanism built into the MIME 
media type code (e.g., “application/x-myapp”).  

For CS values, the designation of the domain qualifier will always be CNE (coded, non-extensible) and 
the context determines unambiguously which HL7 value set applies.32 

2.4.4.2 Coded Value (CV) restricts CD 

The Coded Value (CV) is a restriction of the concept descriptor (CD).  The CV suppresses the CD 
properties translation and modifier, which are both not applicable.  The CV also constrains the original 
text to a character string (ST) instead of the more general encapsulated data (ED) type. 

Table 15: Summary of Primary Properties of Coded Value (CV) 

Name Type Status Default Constraint Definition 
code ST mandatory NULL  The plain code symbol 
displayName ST auxilary NULL  A name or title for the code, under which the 

sending system shows the code value to its 
users 

codeSystem OID mandatory CONTEXT  Specifies the code system that defines the 
code 

codeSystemName ST auxilary NULL  A common name of the coding system 
codeSystemVersion ST optional NULL  If applicable, a version descriptor defined 

specifically for the given code system 
originalText ST auxilary NULL  The text or phrase used as the basis for the 

coding 

 

                                                                 
32 This is not withstanding the fact that an external referenced domain, such as the IETF MIME media type may include 
an extension mechanism.  These extended MIME type codes would not be considered “extensions” in the sense of 
violating the CNE provision.  The CNE provision is only violated if an attempt is made in using a different code system 
(by means of the CD.codeSystem property), which is not possible with the CS data type. 
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type CodedValue alias CV restricts CD { 

  ST   code; 

  OID  codeSystem; 

   ST   codeSystemName; 

   ST   codeSystemVersion; 

 ST   displayName; 

 ST   originalText; 

}; 

invariant(CV x) { 

  x.translation.isNull; 

  x.modifier.notApplicable; 

}; 

This type is used when any reasonable use case will require only a single code value to be sent.  Thus, 
it should not be used in circumstances where multiple alternative codes for a given value are desired.  
This type may be used with both the CNE (coded, non-extensible) and the CWE (coded, with 
extensibility) domain qualifiers. 

2.4.4.3 Coded With Equivalents (CE) 

The data type “Coded with Equivalents” (CE) is a restriction of the concept descriptor (CD).  The CE 
suppresses the CD modifier property, which is not applicable.  The CE also restricts the translation 
property such that the translation is a set of CV values.  CV values may not themselves contain 
translations. 

Table 16: Summary of Primary Properties of Coded with Equivalents (CE) 

Name Type Status Default Constraint Definition 
code ST mandatory NULL  The plain code symbol 
displayName ST auxilary NULL  A name or title for the code, under which 

the sending system shows the code 
value to its users 

codeSystem OID mandatory CONTEXT  Specifies the code system that defines 
the code 

codeSystemName ST auxilary NULL  A common name of the coding system 
codeSystemVersion ST optional NULL  If applicable, a version descriptor 

defined specifically for the given code 
system 

originalText ED auxilary NULL  The text or phrase used as the basis for 
the coding 

translation SET<CV> optional NULL  A set of other concept descriptors that 
translate this concept descriptor into 
other code systems.   
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type CodedWithEquivalents alias CE restricts CD { 

  ST   code; 

  ST   displayName; 

  OID  codeSystem; 

   ST   codeSystemName; 

   ST   codeSystemVersion; 

   ED  originalText; 

   SET<CV>  translation; 

}; 

invariant(CE x) { 

  x.modifier.notApplicable; 

}; 

The CE type is used when the use case indicates that alternative codes may exist and where it is useful 
to communicate these.  The CE type provides for a primary code value, plus a set of alternative or 
equivalent representations. 

2.4.4.4 Coded With Category (CC) 

The data type “Coded with Category” (CC) is a specific profile of using the concept descriptor (CD) 
used for certain coded attributes that have such large domains that multiple coding systems including 
local codes are used.33 In these cases HL7 has established a mechanism where HL7 defined a set of 
coarse-grained categories (e.g. “material”, “animal”, “chemical”, “place”) under which external 
concept repertoires are assigned (e.g., an IUPAC code under “chemical”.)  Since there will be local 
codes communicated for such fields, the concept and it’s HL7 defined category may not be known to a 
receiver of such local code. The CC data type is defined to communicate a fine-grained code together 
with one HL7 defined coarse-grained category code. 

Table 17: Summary of Primary Properties of Coded with Category (CC) 

Name Type Status Default Constraint Definition 
code ST mandatory NULL  The plain code symbol 
displayName ST auxilary NULL  A name or title for the code, under 

which the sending system shows the 
code value to its users 

codeSystem OID mandatory CONTEXT  Specifies the code system that 
defines the code 

codeSystemName ST auxilary NULL  A common name of the coding 
system 

codeSystemVersion ST optional NULL  If applicable, a version descriptor 
defined specifically for the given 
code system 

originalText ED auxilary NULL  The text or phrase used as the basis 
for the coding 

modifier LIST<CRC> conditional CONTEXT Only if the 
codeSystem 
is not 
registered 
with HL7 

For one modifier that tells the HL7-
defined category of the coded 
concept. 

translation SET<CV> optional NULL  A set of other concept descriptors 
that translate this concept descriptor 
into other code systems.   

                                                                 
33 There are two attributes in the RIM 1.0, Entity.type_cd and Act.type_cd. 
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type CodedWithCategory alias CC restricts CD { 

  ST   code; 

  ST   displayName; 

  OID  codeSystem; 

   ST   codeSystemName; 

   ST   codeSystemVersion; 

   ED  originalText; 

   LIST<CRC>  modifier; 

   SET<CV>  translation; 

}; 

invariant(CC x) 

    where x.nonNull { 

     .and(x.codeSystem.value(2.16.840.1.113883.3).nonEmpty) { 

  x.modifier.head.nonNull; 

  x.modifier.tail.isEmpty; 

}; 

The data type code-role for category (CRC) is a restriction of the CR data type constraining both the 
name and the value to CS and binding the name to a fixed code “has-generalization” (GEN). 

Table 18: Summary of Primary Properties of Concept Role For Category (CRC) 

Name Type Status Default Constraint Definition 
value CS mandatory CONTEXT CONTEXT An HL7 defined code for the category of the 

concept. 
name CS fixed NULL “GEN” Fixed to “has-generalization” (GEN). 

protected type CodeRoleForCategory alias CRC restricts CR { 

 CS name; 

 CS value; 

};  

invariant(CRC x) where x.nonNull { 

  x.name.codeSystem.equals(2.16.840.1.113883.5.〈 to be assigned〉); 

  x.name.code.equals(“GEN”); 

  x.value.nonNull; 

  x.value.codeSystem.equals(2.16.840.1.113883.5.〈 to be assigned〉); 

  x.inverted.equals(false); 

}; 
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2.5 Instance Identifier (II) 

The Instance 
Identifier (II) data 
type is used to 
uniquely identify an 
instance, thing or 
object.  Examples 
are object identifier 
for HL7 RIM 
objects, medical 
record number, 
order id, service catalog item id, etc.  Instance identifiers are defined based on ISO object identifiers. 

Table 19: Summary of Primary Properties of Instance Identifier (II) 

Name Type Status Default Constraint Definition 
root OID mandatory NULL  A unique identifier that guarantees 

the global uniqueness of the instance 
identifier.  The root alone may be the 
entire instance identifier, an 
extension value is not needed. 

extension ST optional NULL  An identifier that is unique in the 
namespace designated by the root 

assigningAuthorityName  auxiliary   A name or mnemonic for the 
assigning authority of this identifier if 
applicable 

validTime IVL<TS> optional   If applicable, specifies during what 
time the identifier is valid 

2.5.1 ISO Object Identifier (OID) 

The ISO Object Identifier is defined by ISO/IEC 8824:1990(E) clause 28. 

28.9  The semantics of an object identifier value are defined by reference to an object 
identifier tree. An object identifier tree is a tree whose root corresponds to [the ISO/IEC 
8824 standard] and whose vertices [i.e. nodes] correspond to administrative authorities 
responsible for allocating arcs [i.e. branches] from that vertex.  Each arc from that tree is 
labeled by an object identifier component, which is [an integer number].  Each information 
object to be identified is allocated precisely one vertex (normally a leaf) and no other 
information object (of the same or a different type) is allocated to that same vertex. Thus 
an information object is uniquely and unambiguously identified by the sequence of 
[integer numbers] (object identifier components) labeling the arcs in a path from the root 
to the vertex allocated to the information object.  

28.10 An object identifier value is semantically an ordered list of object identifier 
component values.  Starting with the root of the object identifier tree, each object identifier 
component value identifies an arc in the object identifier tree.  The last object identifier 
component value identifies an arc leading to a vertex to which an information object has 
been assigned.  It is this information object, which is identified by the object identifier 
value. [...] 

From ISO/IEC 8824:1990(E) clause 28 

 

Figure 4: Instance Identifier data types. 

LIST<INT> 

ObjectIdentifier : OID 

leaf : INT 
butleaf : OID 

value(OID namespace) : OID 

InstanceIdentifier : II 
extension : ST
root : OID 
assigningAuthorityName : ST
type : CV
validTime : IVL<TS> 

equals(II) : BL 

root

11
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type ObjectIdentifier alias OID extends LIST<INT> { 

 INT  leaf; 

 OID  butleaf; 

 OID value(namespace OID); 
  literal ST; 

}; 

HL7 shall establish an OID registry and assign OIDs in its branch for HL7 users and vendors upon 
their request.  HL7 shall also assign OIDs to public identifier-assigning authorities both U.S. nationally 
(e.g., the U.S. State driver license bureaus, U.S. Social Security Administration, HIPAA Provider ID 
registry, etc.) and internationally  (e.g., other countries Social Security Administrations, Citizen ID 
registries, etc.)   

When assigning OIDs to third parties or entities, HL7 shall investigate whether an OID is already 
assigned for such entities through other sources. It this is the case, HL7 shall record such OID in a 
catalog, but HL7 shall not assign a duplicate OID in the HL7 branch. If possible, HL7 shall notify a 
third party when an OID is being assigned for that party in the HL7 branch. 

Though HL7 shall exercise diligence before assigning an OID in the HL7 branch to third parties, given 
the lack of a global OID registry mechanism, one cannot make absolutely certain that there is no 
preexisting OID assignment for such third-party entity. Also, a duplicate assignment can happen in the 
future through another source. If such cases of supplicate assignment become known to HL7, HL7 
shall make efforts to resolve this situation. For continued interoperability in the meantime, the HL7 
assigned OID shall be the preferred OID used.  

While most owners of an OID will “design” their namespace sub-tree in some meaningful way, there is 
no way to generally infer any meaning on the parts of an OID.  HL7 does not standardize or require 
any namespace sub-structure.  An OID owner, or anyone having knowledge about the logical structure 
of part of an OID, may still use that knowledge to infer information about the associated object; 
however, the techniques cannot be generalized. 

An HL7 interface must not rely on any knowledge about the substructure of an OID for which it 
cannot control the assignment policies. 

Figure 5: Example for 
a tree of ISO object 
identifiers.  HL7’s OID 
is 2.16.840.1.113883. 
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2.5.1.1 Literal Form 

OID.literal ST { 

    OID : INT “.” OID { $.head.equals($1); 

    $.tail.equals($3); } 

        | INT  { $.head.equals($1); 

     $.tail.isEmpty; } 

} 

For Implementation Technologies that do not have native support for ISO OIDs, the ITS 
representations for OIDs may be a character string literal rather than a recursive data structure.  The 
character string literal is more concise and most of the time OIDs will only be compared for equality 
but not analyzed further. 

For compatibility with the DICOM standard, the literal form of the OID should not exceed 64 
characters. (see DICOM part 5, section 9). 

2.5.1.2 Structured Form: Sequence of Integers versus Value and Namespace 

According to ISO/IEC 8824 an object identifier is a sequence of object identifier component values, 
which are integer numbers.  These component values are ordered such that the root of the object 
identifier tree is the head of the list followed by all the arcs down to the leaf representing the 
information object identified by the OID.  The fact that OID extends LIST<INT> represents this path 
of object identifier component values from the root to the leaf. 

The leaf and “butleaf”properties take the opposite view.  The leaf is the last object identifier 
component value in the list, and the “butleaf” property is all of the OID but the leaf.  In a sense, the 
leaf is the identifier value and all of the OID but the leaf refers to the namespace in which the leaf is 
unique and meaningful. 

However, what part of the OID is considered value and what is namespace may be viewed differently. 
In general, any OID component sequence to the left can be considered the namespace in which the rest 
of the sequence to the right is defined as a meaningful and unique identifier value.  The value-property 
with a namespace OID as its argument represents this point of view.34 

invariant(OID x) x.nonNull { 

  x.nonEmpty; 

  x.tail.isEmpty.implies(x.leaf.equals(x.tail)); 

  x.tail.nonEmpty.implies(x.leaf.equals(x.tail.leaf); 

  x.tail.isEmpty.implies(x.butleaf.isNull); 

  x.tail.nonEmpty.implies(x.butleaf.head.equals(x.head) 

                     .and(x.butleaf.tail.equals(x.butleaf(x.tail)))); 

  forall(OID v; OID n) where v.equals(x.value(n)) { 

    n.isEmpty.implies(v.equals(x)); 

    n.nonEmpty.implies(v.equals(x.value(n.tail))); 

  }; 

}; 

                                                                 
34 The value/namespace view on ISO object identifiers has important semantic relevance.  It represents the notion of 
identifier value versus identifier assigning authority (= namespace), which is common in healthcare information 
systems in general, and HL7 v2.x in particular. 
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2.5.2 Properties of the Instance Identifier 

type InstanceIdentifier alias II extends ANY { 

 ST  extension; 

 OID  root; 

 ST  assigningAuthorityName; 

 CV  type; 

 IVL<TS> validTime; 

  BL equals(II x); 

}; 

2.5.2.1 root : OID 

The root of an instance identifier guarantees the global uniqueness of the identifier.  The root alone 
may be the entire unique identifier; an extension value is not needed.35 

In the presence of a non-null extension, the root is commonly interpreted as the “assigning authority”, 
that is, it is supposed that the root OID somehow refers to an organization that assigns identifiers sent 
in the extension.  However, the root does not have to be an organizational OID, it can also be an OID 
specifically registered for an identifier scheme. 

invariant(II x) where x.nonNull { 

  root.nonNull; 

}; 

2.5.2.2 extension : ST 

The extension is a character string that is unique in the namespace designated by the root. If a non-
NULL extension is exists, the root specifies a namespace (sometimes called “assigning authority” or 
“identifier type”.)  The extension property may be NULL in which case the root OID is the complete 
unique identifier. 

It is recommended that systems use the OID scheme for external identifiers of their communicated 
objects.  The extension property is mainly provided to accommodate legacy alphanumeric identifier 
schemes. 

Some identifier schemes define certain style options to their code values. For example, the U.S. Social 
Security Number (SSN) is normally written with dashes that group the digits into a pattern “123-12-
1234”.  However, the dashes are not meaningful and a SSN can just as well be represented as 
“123121234” without the dashes. 

In the case where identifier schemes provide for multiple representations, HL7 shall make a ruling 
about which is the preferred form. HL7 shall document that ruling where that respective external 
identifier scheme is recognized. HL7 shall decide upon the preferred form based on criteria of 
practicality and common use. In absence of clear criteria of practicality and common use, the safest, 
most extensible, and least stylized (the least decorated) form shall be given preference.36 

                                                                 
35 DICOM objects are identified by OID only.  For the purpose of DICOM/HL7 integration, it would be awkward if 
HL7 required the extension to be mandatory and to consider the OID only as an assigning authority.  Since OID values 
are simpler and do not contain the risks of containing meaningless decoration, we do encourage systems to use simple 
OID identifiers as external references to their objects. 
36 This ruling at design-time is necessary to prevent HL7 interfaces from being burdened by identifier literal style 
conversions at runtime. This is notwithstanding the fact that some applications may require mapping from one form 
into another if that application has settled with the representation option that was not chosen by HL7. 
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HL7 may also decide to map common external identifiers to the value portion of the II.root OID. For 
example, the U.S. SSN could be represented as 2.16.840.1.113883.4.1.123121234. The criteria of 
practicality and common use will guide HL7’s decision on each individual case. 

2.5.2.3 assigningAuthorityName : ST 

This is a name or mnemonic for the assigning authority of this identifier if applicable.  This name is 
provided solely for the convenience of unaided humans interpreting an II value.  The assigning 
authority name need not be unique or globally meaningful. 

Note: no automated processing must depend on the assigning authority name to be present in any 
form. 

The assigning authority name is not the name for the individually identified object, but for the 
namespace, that immediately contains that object identifier.  Two cases exist.  1) If the extension 
property is non-NULL, the root OID identifies the assigning authority; hence the assigning authority 
name is a name or mnemonic for the entire root OID.  2) If the extension is NULL, the assigning 
authority name is the name or mnemonic of the namespace property of the OID value. 

2.5.2.4 validTime : IVL<TS> 

The identifier is valid in this optional time-range.  By default, the identifier is valid indefinitely.  Any 
specific interval may be undefined on either side indicating unknown effective or expiry time. 

Note: identifiers for information objects in computer systems should not have restricted valid times, 
but should be globally unique at all times.  The identifier valid time is provided mainly for real-world 
identifiers, whose maintenance policy may include expiry (e.g., credit card numbers.) 

The II type conforms to the history item data type extension (Section 0).  This means that the data 
types HXIT<II> and II are the same. 

2.5.2.5 Equality 

Two instance identifiers are equal if and only if their root and extension properties are equal. 

invariant(II x, y) where x.nonNull.and(y.nonNull) { 

  x.equals(y).equals(x.root.equals(y.root) 

                .and(x.extension.equals(y.extension))); 

} 

2.6 Telecommunication Address (TEL) 

A telecommunication address is a locator for some resource 
(information or services) mediated by telecommunication 
equipment.  The semantics of a telecommunication address is 
that a communication entity responds to that address (the 
responder.) and therefore can be contacted by a 
communication initiator.   

The responder of a telecommunication address may be an 
automatic service that can respond with information (e.g., 
FTP or HTTP services.)  In such case a telecommunication 
address is a reference to that information accessible through 
that address.  A telecommunication address value can thus be 
resolved to some information (in the form of encapsulated 
data, ED.)   

Figure 6: Telecommunication 
Address and URL data types. 

TelecommunicationAddress : TEL
use : SET<CS>
validTime : GTS

equals(TEL) : BL

UniversalResourceLocator : URL

scheme : CS
address : ST
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Table 20: Summary of Primary Properties of Telecommunication Address (TEL) 

Name Type Status Default Constraint Definition 
 URL mandatory NULL   
use SET<CS> optional NULL TelecommunicationAddressUse A code advising a system or 

user which telecommunication 
address in a set of like 
addresses to select for a given 
telecommunication need 

validTime GTS optional NULL  Identifies the periods of time 
during which the 
telecommunication address 
can be used.   

The telecommunication address is an extension of the Universal Resource Locator (URL) that specifies 
as an Internet standard RFC 1738 [http://www.isi.edu/in-notes/rfc1738.txt ].  The URL specifies the 
protocol and the contact point defined by that protocol for the resource.  Notable use cases for the 
telecommunication address data type are for telephone and fax numbers, e-mail addresses, Hypertext 
references, FTP references, etc. 

2.6.1 Universal Resource Locator (URL) 

This data type is defined as an Internet standard RFC 1738 [ftp://ftp.isi.edu/in-notes/rfc1738.txt ]. 

Just as there are many different methods of access to resources, there are several schemes 
for describing the location of such resources. 

The generic syntax for URLs provides a framework for new schemes to be established 
using protocols other than those defined in this document. 

URLs are used to “locate” resources, by providing an abstract identification of the 
resource location.  Having located a resource, a system may perform a variety of 
operations on the resource, as might be characterized by such words as “access”, “update”, 
“replace”, “find attributes”.  In general, only the “access” method needs to be specified for 
any URL scheme. 

From RFC 1738 

protected type UniversalResourceLocator alias URL extends ANY { 

 CS  scheme; 

 ST  address; 
  literal ST; 

}; 

2.6.1.1 Literal Form 

URL.literal ST { 

    URL : /[a-z0-9+.-]+/ “:” ST { $.scheme.equals($1); 

           $.address.equals($3); } 

}; 

2.6.1.2 scheme : CS 

The URL scheme identifies the protocol used to access the resource.  URL schemes are registered by 
the Internet Assigned Numbers Authority (IANA) [http://www.iana.org], however IANA only registers 
URL schemes that are defined in Internet RFC documents.  In fact there are a number of URL schemes 
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defined outside RFC documents, part of which is registered at the World Wide Web Consortium 
(W3C).37   

Similar to the MIME media types, HL7 makes suggestions about URL schemes classifying them as 
required, recommended, other, and deprecated.  Any scheme not mentioned has status other. 

Table 21: URL Schemes 

Code  Status Definition 
tel required A voice telephone number [draft-antti-telephony-url-11.txt]. 
fax required A telephone number served by a fax device [draft-antti-telephony-url-11.txt]. 
mailto required Electronic mail address [RFC 2368]. 
http required Hypertext Transfer Protocol [RFC 2068]. 
ftp required The File Transfer Protocol (FTP) [RFC 1738]. 
file other Host-specific local file names [RCF 1738].  Note that the file scheme is not 

interoperable. It only works with site-agreements for specific local files or shared file 
systems (NFS or AFS global file system.) 

telnet other Reference to interactive sessions [RFC 1738].  Some sites, (e.g., laboratories) have 
TTY based remote query sessions that can be accessed through telnet. 

modem other A telephone number served by a modem device [draft-antti-telephony-url-11.txt]. 

Note that this specification explicitly limits itself to URLs.  Universal Resource Names (URN) are not 
covered by this specification.  URNs are a kind of identifier scheme for other than accessible 
resources.  This specification is only concerned with accessible resources, which belong into the URL 
category. 

2.6.1.3 address : ST 

The address is a character string whose format is entirely defined by the URL scheme. 

2.6.1.4 Telephone and FAX Numbers 

Note that there is no special data type for telephone numbers, telephone numbers are 
telecommunication addresses and are specified as a URL. 

The telephone number URL is defined in the Internet RFC 2806 [http://www.isi.edu/in-
notes/rfc2806.txt ] URLs for Telephone Calls.  Its definition is summarized in this subsection.  This 
summary does not override or change any of the Internet specification’s rulings. 

The voice telephone URLs begin with “tel:” and fax URLs begin with “fax:” 

The address part of the URL contains the telephone number in accordance with the ITU-T 
Recommendation E.123 Telephone Network and ISDN Operation, Numbering, Routing and Mobile 
Service: Notation for National and International Telephone Numbers (1993.)  While HL7 does not add 
or withdraw from the URL specification, the preferred subset of the URL address syntax is given as 
follows: 

proctected type TelephoneURL restricts URL { 

  literal ST { 

    URL : /(tel)|(fax)/ “:” address  { $.scheme.equals($1); 

            $.address.equals($3); }; 

                                                                 
37 The data type of the scheme property is still CS and for HL7 purposes, the scheme property is a CNE domain. This 
seems odd, because we just said that the URL scheme domain is not strictly defined anywhere. However we cannot 
allow extension of the URL scheme using the HL7 mechanism of local alternative code systems, which is why 
technically the URL scheme is a CS data type. 
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    ST address : “+” phoneDigits 

    ST phoneDigits : digitOrSeparator phoneDigits | digitOrSeparator 

    ST digitOrSeparator : digit | separator; 

    ST digit : /[0..9]/; 

    ST separator : /[().-]/; 

  }; 

}; 

The global absolute telephone numbers starting with the “+” and country code are preferred.  Separator 
characters serve as decoration but have no bearing on the meaning of the telephone number.  For 
example: “tel:+13176307960” and “tel:+1(317)630-7960” are both the same telephone 
number; “fax:+49308101724” and “fax:+49(30)8101-724” are both the same fax number. 

2.6.2 Properties of Telecommunication Address 

A given telecommunication address value may have limited validity through time and may be tagged 
by a use code to indicate under what circumstances a specific telecommunication address may be 
preferred among a set of alternatives. 

type TelecommunicationAddress alias TEL extends URL { 

 GTS  validTime; 

 SET<CS>  use; 

 BL equals(TEL x); 

}; 

2.6.2.1 validTime : GTS 

Identifies the periods of time during which the telecommunication address can be used.  For a 
telephone number, this can indicate the time of day in which the party can be reached on that 
telephone.  For a web address, it may specify a time range in which the web content is promised to be 
available under the given address. 

The TEL data type where validTime is constrained to a simple interval of time (IVL<TS>) conforms to 
the history item data type extension (HXIT, see Section 4.1.1).  Thus, HXIT<TEL> is a simple 
restriction of TEL. 

2.6.2.2 use : SET<CS> 

A code advising a system or user which telecommunication address in a set of like addresses to select 
for a given telecommunication need. 

Table 22: Telecommunication Address Use Code 

Concept Code  Implies Definition 
home H  A communication address at a home, attempted contacts for 

business purposes might intrude privacy and chances are one will 
contact family or other household members instead of the person 
one wishes to call.  Typically used with urgent cases, or if no other 
contacts are available. 

primary home HP H The primary home, to reach a person after business hours. 
vacation home HV H A vacation home, to reach a person while on vacation. 
work place WP  An office address.  First choice for business related contacts during 

business hours. 
answering service AS  An automated answering machine used for less urgent cases and if 

the main purpose of contact is to leave a message or access an 
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the main purpose of contact is to leave a message or access an 
automated announcement. 

emergency contact EC  A contact specifically designated to be used for emergencies.  This 
is the first choice in emergencies, independent of any other use 
codes. 

pager PG  A paging device suitable to solicit a callback or to leave a very short 
message. 

mobile contact MC  A telecommunication device that moves and stays with its owner.  
May have characteristics of all other use codes, suitable for urgent 
matters, not the first choice for routine business. 

The telecommunication use code is not a complete classification for equipment types or locations.  Its  
main purpose is to suggest or discourage the use of a particular telecommunication address.  There are 
no easily defined rules that govern the selection of a telecommunication address. 

2.6.2.3 Equality 

Two telecommunication address values are considered equal if both their URLs are equal.  Use code 
and valid time are excluded from the equality test. 

invariant(TEL x, y) x.nonNull.and(y.nonNull) { 

  x.equals(y).equals(((URL)x).equals((URL)y)); 

} 

2.7 Postal Address (AD) 

The postal address data type is used to communicate mailing and home or office addresses.  The main 
use of such data is to allow printing mail labels, or to allow a person to physically visit that address. 

The postal address data type is not supposed to be a container for additional information that might be 
useful for finding geographic locations (e.g., GPS coordinates) or for performing epidemiological 
studies.  Only those parts of addresses that are conventional for designating mailboxes or home or 
office addresses are part of the address data type. HL7 has other and better ways to handle global 
positioning or census units. 

Table 23: Summary of Primary Properties of Postal Address (AD) 

Name Type Status Default Constraint Definition 
 LIST<ADXP> mandatory NULL  The address data 
use SET<CS> optional NULL AddressUse A code advising a system or user which 

address in a set of like addresses to select 
for a given purpose 

validTime GTS optional NULL  Identifies the periods of time during which the 
address can be used.   

The postal address data type is essentially a sequence of address part values. Addresses are 
conceptualized as text with added mark-up.  The mark-up may break the address into lines and may 
describe in detail the role of each address part if it is known.  Address parts occur in the address in the 
order in which they would be printed on a mailing label.  The model is similar to HTML or XML 
markup of text. 

2.7.1 Address Part (ADXP) 

An address part is essentially a character string that may have a type-tag signifying its role in the 
address.  Typical parts that exist in about every address are street, house number, or post box, ZIP 
code, city, country but other roles may be defined regionally, nationally, or on an enterprise level (e.g. 
in military addresses).  Addresses are usually broken up into lines, indicated by special line-break 
tokens. 
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Table 24: Summary of Primary Properties of Address Part (ADXP) 

Name Type Status Default Constraint Definition 
 ST mandatory NULL  The address part data 
type CS optional NULL AddressPartType Indicates whether an address part is the street, 

city, country, postal code, post box, etc. 

 

protected type AddressPart alias ADXP extends ST { 

 CS  type; 

}; 

2.7.1.1 type  : CS 

Indicates whether an address part is the street, city, country, postal code, post box, etc.  If the type is 
NULL the address part is unclassified and simply appears on the label as is. 

Table 25: Address Part Type Code 

Concept Code Definition 
delimiter DEL Delimiters are printed without framing white space.  If no value component is provided, 

the delimiter appears as a line break. 
country CNT Country 
state or province STA A sub-unit of a country with limited sovereignty in a federally organized country. 
city CTY City 
postal code ZIP A postal code designating a region defined by the postal service. 
street name STR Street name or number. 
house number HNR The number of a house or lot alongside the street.  Also known as "primary street 

number", but does not number the street but the house. 
direction DIR direction (e.g., N, S, W, E)  
additional locator ADL This can be a unit designator, such as apartment number, suite number, or floor. 

There may be several unit designators in an address (e.g., “3rd floor, Appt. 342”.)  This 
can also be a designator pointing away from the location, rather than specifying a 

Figure 7: Data types for Postal Address and Entity Names (Person, Organization, and Trivial 
Names) are all based on extensions of a character string. 

T : ANY

Sequence : LIST 
head : T
tail : LIST<T> 
isEmpty : BL 
nonEmpty : BL 
length : INT 

CharacterString : ST
head : ST 
tail : ST 
length : INT 

PostalAddress : AD

use : SET<CS> 
formatted : ST
validTime : GTS 

equals(AD) : BL

EntityName : EN 
formattted : ST

LIST<ADXP> 

AddressPart : ADXP 
type : CS

LIST<ENXP> 

EntityNamePart : ENXP 

type : CS
qualifier : SET<CS> 

OrganizationName : ON 

PersonName : PN 

TrivialName : TN 

1..*1..*
1..*1..*

<<restriction>
> 

<<restriction>
> 

<<restriction>
> 
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can also be a designator pointing away from the location, rather than specifying a 
smaller location within some larger one (e.g., Dutch "t.o." means "opposite to" for 
house boats located across the street facing houses.) 

post box POB A numbered box located in a post station. 

2.7.2 Properties of Postal Addresses 

Addresses are essentially sequences of address parts, but add a “use” code and a valid time range for 
information about if and when the address can be used for a given purpose. The property “formatted” 
has a character string value with the address formatted in lines and with proper spacing.38 

type PostalAddress alias AD extends LIST<ADXP> { 

  GTS validTime; 

 SET<CS>  use; 

 BL equals(AD x); 

 ST formatted; 

}; 

2.7.2.1 validTime : GTS 

This General Time Specification (GTS) identifies the periods of time during which the address can be 
used.  Typically, this is used to refer to different addresses for different times of the year or to refer to 
historical addresses. 

The AD data type where validTime is constrained to a simple interval of time (IVL<TS>) conforms to 
the history item data type extension (HXIT, see Section 4.1.1).  Thus, HXIT<AD> is a simple 
restriction of AD. 

2.7.2.2 use : SET<CS> 

This is a code advising a system or user which address in a set of like addresses to select for a given 
purpose. 

Table 26: Address Use Code 

Concept Code Implies Definition 
visit address RES  Used primarily to visit an address. 
mail address PST  Used to send mail. 
invoice address INV PST An address at which to send invoices 
temporary address TMP  A temporary address, may be good for visit or mailing.  Note that an address 

history can provide more detailed information. 
bad address BAD  A flag indicating that the address is bad, in fact, useless. 
home H  A private (home) address.  
primary home HP H The primary home. 
vacation home HV H A vacation home, to reach a person while on vacation. 
work place WP  An office address. 

An address without specific use code might be a default address useful for any purpose, but an address 
with a specific use code would be preferred for that respective purpose. 

                                                                 
38 Remember that semantic properties are bare of all control flow semantics.  The property formatted could be 
implemented as a “procedure” that would “return” the formatted address, but it would not usually be a variable to 
which one could assign a formatted address.  However, HL7 does not define applications but only the semantics of 
exchanged data values.  Hence, the semantic model abstracts from concepts like “procedure”,  “return”, and 
“assignment” but speaks only of property and value. 
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2.7.2.3 Equality 

Two address values are considered equal if both their address part lists are equal.  Use code and valid 
time are excluded from the equality test. 

invariant(AD x, y) x.nonNull.and(y.nonNull) { 

  x.equals(y).equals(((LIST<ADXP>)x).equals((LIST<ADXP>)y)); 

} 

2.7.2.4 Formatting Addresses 

This address data type’s main purpose is to capture postal addresses so that one can visit that address 
or send mail to it.  Humans will look at addresses in printed form, such as on a mailing label.  The 
address data type defines precise rules of how its data is formatted.39 

Addresses are ordered lists of address parts.  Each address part is printed in the order of the list from 
left to right and top to bottom (or in any other language-specific reading direction.)  Every address part 
value is printed.  Most address parts are framed by white space.  The following six rules govern the 
setting of white space. 

1) White space never accumulates, i.e. two subsequent spaces are the same as one. Subsequent line 
breaks can be reduced to one.  White space around a line break is not significant. 

2) Literals may contain explicit white space, subject to the same white space reduction rules. 
There is no notion of a literal line break within the text of a single address part. 

3) Leading and trailing explicit white space is insignificant in all address parts, except for 
delimiter (DEL) address parts. 

4) By default, an address part is surrounded by implicit white space. 

5) Delimiter (DEL) address parts are not surrounded by any implicit white space. 

6) Leading and trailing explicit white space is significant in delimiter (DEL) address parts. 

This means that all address parts are generally surrounded by white space, but white space does never 
accumulate.  Delimiters are never surrounded by implicit white space and every white space 
contributed by preceding or succeeding address parts is discarded, whether it was implicit or explicit. 

Examples.  The following shows examples of addresses in an XML encoded form, where the XML tag 
is the address part role and the data content is the address part value.  The use of XML in these 
examples does not preempt any XML implementation technology specification, it is solely for the 
purpose of this example. 

1050 Wishard Blvd. RG 5th floor, 
Indianapoli, IN 46240. 

has the following three valid encodings 

<AD purpose="RES"> 
  1050 Wishard Blvd, RG 5th floor<DEL/> 
  Indianapolis, IN 46240 
</AD> 

<AD purpose="RES"> 
  <STR>1050 Wishard Blvd</STR><ADL>RG 5th floor</ADL><DEL/> 

                                                                 
39 These rules for formatting addresses are part of the semantics of addresses because addresses are primarily defined as 
text displayed or printed and consumed by humans. Other uses (e.g., epidemiology) are secondary – although not 
forbidden, the AD data type may not serve these other use cases very well, and HL7 will define better ways to handle 
these use cases. Note that these formatting rules are not ITS issues, since this formatting applies to presentations for 
humans whereas ITS specifications are presentations for computer interchange. 
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  <CTY>Indianapolis</CTY><STA>IN</STA><ZIP>46240</ZIP> 
</AD> 

<AD purpose="RES"> 
  <HNR>1050</HNR><STR>Wishard Blvd</STR><ADL>RG 5th 
floor</ADL><DEL/> 
  <CTY>Indianapolis</CTY><STA>IN</STA><ZIP>46240</ZIP> 
</AD> 

the second encoding in this example is more specific about the role of the address parts than the first 
one.  The first form would result from a system that only stores addresses as line 1, line 2, etc.  The 
second form is the typical form seen in the U.S., where street address is sometimes separated, and city, 
state and ZIP code are always separated.  However, in the U.S. the house number is not usually 
separated from the street address, where in Germany many systems keep house number as separate 
fields (third example.) 

This example shows the strength of the mark-up approach to addresses.  A typical German system that 
stores house number and street name in separate fields would print the address with street name first 
followed by the house number.  For U.S. addresses, this would be wrong as the house number in the 
U.S. is written before the street name.  The marked-up address allows keeping the natural order of 
address parts and still understanding their role. 

2.8 Entity Name (EN) 

An entity name data value specifies a name of a person, organization, place or thing.  Examples for 
entity name values are “Jim Bob Walton, Jr.”, “Health Level Seven, Inc.”, “Lake Tahoe”, etc.  An 
entity name may be as simple as a character string or may consist of several entity name parts (ENXP), 
such as, “Jim”, “Bob”, “Walton”, and “Jr.”, “Health Level Seven” and “Inc.”, “Lake” and “Tahoe”.  

Table 27: Summary of Primary Properties of Entity Name (EN) 

Name Type Status Default Constraint Definition 
 LIST<ENXP> mandatory NULL  The name data 

2.8.1 Entity Name Part (ENXP) 

An entity name part is a character string token that may have a type code signifying the role of the part 
in the whole entity name.  Typical name parts that exist in about every name are given names, and 
family names, titles, etc. 

Table 28: Summary of Primary Properties of Entity Name Part (ENXP) 

Name Type Status Default Constraint Definition 
 ST mandatory NULL  The entity name part data 
type CS optional NULL EntityNamePartType Indicates whether the name part is a given 

name, family name, prefix, suffix, etc.   
qualifier SET<CS> optional NULL EntityNameQualifier A set of codes each of which specifies a 

certain subcategory of the name part in 
addition to the main name part type 

 

protected type EntityNamePart alias ENXP extends ST { 

 CS  type; 

 SET<CS>  qualifier; 

}; 
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2.8.1.1 type : CS 

Indicates whether the name part is a given name, family name, prefix, suffix, etc.  Not every name part 
must have a type code, if the type code is unknown, not applicable, or simply undefined this is 
expressed by a null value (type.isNull). For example, a name may be  “Rogan Sulma” and it may not 
be clear which one is a first name or which is a last name, or whether Rogan may be a title. 

Table 29: Name Part Type 

Name Code Definition 
family FAM Family name, this is the name that links to the genealogy. In some cultures (e.g. Eritrea) the 

family name of a son is the first name of his father. 
given GIV Given name (don't call it "first name" since this given names do not always come first) 
prefix PFX A prefix has a strong association to the immediately following name part. A prefix has no 

implicit trailing white space (it has implicit leading white space though). Note that prefixes 
can be inverted.  

suffix  SFX A suffix has a strong association to the immediately preceding name part. A prefix has no 
implicit leading white space (it has implicit trailing white space though). Suffixes cannot be 
inverted.  

delimiter DEL A delimiter has no meaning other than being literally printed in this name representation.  A 
delimiter has no implicit leading and trailing white space. 

2.8.1.2 qualifier : SET<CS> 

The qualifier is a set of codes each of which specifies a certain subcategory of the name part in 
addition to the main name part type.  For example, a given name may be flagged as a nickname, a 
family name may be a pseudonym or a name of public records 

Table 30: Name Part Qualifier 

Name Code Definition 
Name change classifiers describe how a name part came about.  More than one value allowed. 
birth BR A name that a person had shortly after being born. Usually for family names but may be used 

to mark given names at birth that may have changed later.  
unmarried MD A name that a person (either sex) had immediately before her/his first marriage. Usually 

called "maiden name", this concept of maiden name is only for compatibility with cultures that 
keep up this traditional concept. In most cases maiden name is equal to birth name. If there 
are adoption or deed polls before first marriage the maiden name should specify the last 
family name a person acquired before giving it up again through marriage. 

chosen CH A name that a person assumed because of free choice.  Most systems may not track this, but 
some might.  Subsumed in the concept of "chosen" are pseudonym (alias), and deed poll.  
The difference in civil dignity of the name part is given through the R classifier below.  I.e. a 
deed poll creates a chosen name of record, whereas a pseudonym creates a name not noted 
in civil records.  

adoption AD A name that a person took on because of being adopted.  Adoptions may happen for adults 
too and may happen after marriage.  Whether adoption name or the birth name is considered 
the "maiden" name is not fully defined and may, as always, simple depend on the discretion 
of the person or a data entry clerk.  

spouse SP The name assumed from the partner in a marital relationship (hence the "M"). Usually the 
spouse's family name. Note that no inference about gender can be made from the existence 
of spouse names. 

Affix types.  Usually only one value per affix. 
voorvoegsel VV A Dutch "voorvoegsel" is something like "van" or "de" that might have indicated nobility in the 

past but no longer so. Similar prefixes exist in other languages such as Spanish, French or 
Portugese. 

academic AC Indicates that a prefix like “Dr.” or a suffix like “M.D.” or “Ph.D.” is an academic title. 
professional PR Primarily in the British Imperial culture people tend to have an abbreviation of their 

professional organization as part of their credential suffices. 
nobility NB In Europe and Asia, there are still people with nobility titles (aristocrats.)  German "von" is 

generally a nobility title, not a mere voorvoegsel.  Others are "Earl of" or "His Majesty King 
of..." etc.  Rarely used nowadays, but some systems do keep track of this. 

legal status LS For organizations a suffix indicating the legal status, e.g., “Inc.”, “Co.”, “AG”, “GmbH”, “B.V.” 
“S.A.”,  “Ltd.” etc. 
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Additional qualifiers.  More than one value allowed. 
nick NK Indicates that the name part is a nickname.  Not explicitly used for prefixes and suffixes, 

since those inherit this flag from their associated significant name parts. Note that most 
nicknames are given names although it is not required. 

callme CL A callme name is (usually a given name) that is preferred w hen a person is directly 
addressed. 

record RE This flag indicates that the name part is known in some official record. Usually the antonym 
of nickname. Note that the name purpose code "license" applies to all name parts or a name, 
whereas this code applies only to name name part. 

initial IN Indicates that a name part is just an initial.  Initials do not imply a trailing period since this 
would not work with non-Latin scripts.  Initials may consist of more than one letter, e.g., "Ph." 
could stand for "Philippe" or "Th." for "Thomas". 

weak WK Used only for prefixes and suffixes (affixes).  A weak affix has a weaker association to its 
main name part than a genuine (strong) affix.  Weak prefixes are not normally inverted.  
When a weak affix and a strong affix  occur together, the strong affix is closer to its 
associated main name part than the weak affix. 

invisible HD Indicates that a name part is not normally shown.  For instance, traditional maiden names are 
not normally shown.  "Middle names" may be invisible too. 

Note: an entity may have multiple names as defined through the RIM class Entity_name, which is 
outside the scope of this specification. 

2.8.2 Properties of Entity Name 

Entity names have no additional properties adding information to the sequence of entity name parts.  
The property “formatted” has a character string value with the formatted person name.40 

type EntityName alias EN extends LIST<PNXP> { 

 ST formatted; 

}; 

2.8.2.1 Formatting Entity Names 

The entity name data type’s main purpose is to capture names so that one can understand the parts and 
render them correctly on labels, addresses, badges, etc.  Humans will look at names in printed form, 
such as on a mailing label.  This entity name data type therefore defines precise rules of how its data is 
formatted.41 

Entity names are ordered lists of entity name parts.  Each entity name part is printed in the order of the 
list from left to right (or in any other language-specific reading direction.)  Every entity name part 
(except for those marked “invisible”) is printed.  Most entity name parts are framed by whitespace.  
The following six rules govern the setting of whitespace. 

1) White space never accumulates, i.e. two subsequent spaces are the same as one. 

2) Literals may contain explicit white space subject to the same white space reduction rules. 

3) Except for prefix, suffix and delimiter name parts, every name part is surrounded by implicit 
white space. Leading and trailing explicit whitespace is insignificant in all those name parts. 

4) Delimiter name parts are not surrounded by any implicit white space. Leading and trailing 
explicit whitespace is significant in in delimiter name parts. 

                                                                 
40 Remember that semantic properties are bare of all control flow semantics.  The property formatted could be 
implemented as a “procedure” that would “return” the formatted name.  It would not usually be implemented as a 
variable to which one could assign a formatted person name.  However, HL7 does not define applications but only the 
semantics of exchanged data values.  Hence, the semantic model abstracts from concepts like “procedure”,  “return”, 
and “assignment” but speaks only of property and value. 
41 These rules for formatting names are part of the semantics of names because the name parts have been designed with 
the important use case of displaying and rendering on labels.  Note that these formatting rules are not ITS issues, since 
this formatting applies to presentations for humans whereas ITS specifications are presentations for computer 
interchange. 
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5) Prefix name parts only have implicit leading white space but no implicit trailing white space. 
Trailing explicit whitespace is significant in prefix name parts. 

6) Suffix name parts only have implicit trailing white space but no implicit leading white space. 
Leading explicit whitespace is significant in suffix name parts. 

This means that all entity name parts are generally surrounded by whitespace, but whitespace does 
never accumulate.  Delimiters are never surrounded by implicit white space, prefixes are not followed 
by implicit white space and suffixes are not preceded by implicit white space.  Every whitespace 
contributed by preceding or succeeding name parts around those special name parts is discarded, 
whether it was implicit or explicit. 

Examples.  The following shows examples of entity names in an XML encoded form, where the XML 
tag is the entity name part type and the data content is the entity name part value.  The use of XML in 
these examples does not preempt any XML implementation technology specification; it is solely for 
the purpose of this example. 

A very simple encoding of  “John W. Doe” would be: 

<EN> 
  <GIV>John</GIV> 
  <GIV>W.</GIV> 
 <FAM>Doe</FAM> 
</EN> 

none of the special qualifiers need to be mentioned if they are unknown or irrelevant. The next 
example shows extensive use of multiple given names, prefixes, suffixes, for academic degrees, 
nobility titles, vorvoegsels (“van”), and professional designations. 

<EN> 
  <PFX Q="AC">Dr. phil.  </PFX> 
  <GIV>Regina</GIV><GIV>Johanna</GIV><GIV>Maria</GIV> 
  <PFX Q="NB">Gräfin </PFX><PFX Q="VV">von </PFX> 
  <FAM Q="MD">Hochheim</FAM><DEL>-</DEL><FAM 
Q="SP">Weilenfels</FAM> 
  <SFX Q="PR WK">NCFSA</SFX> 
</EN> 

The next example is an organization name, “Health Level Seven, Inc.” in simple string form: 

<EN>Health Level Seven, Inc.</EN> 

and as a fully parsed name 

<EN>Health Level Seven<DEL>, </DEL><SFX Q="LS">Inc.</SFX></EN> 

2.8.3 Restrictions of Entity Name 

Three restrictions to Entity Name are defined in order to allow making specific constraints for certain 
kinds of entities, trivial name (TN), person name (PN), and organization name (ON). 

2.8.3.1 Trivial Name (TN) 

The trivial name (TN) is an entity name that consists of only one name part without any name part type 
or qualifier.  The TN, and its single name part are therefore equivalent to a simple character string. 
This equivalence is expressed by a defined demotion to ST and promotion from ST. 
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type TrivialName alias TN extends LIST<ST> { 

 ST formatted; 

 demotion ST; 

 promotion TN (ST x);  

}; 

invariant(TN x) where x.nonNull { 

  x.head.nonNull; 

  x.tail.isEmpty; 

  x.formatted.equals(x.head); 

}; 

invariant(ST x) { 

  ((TN)x).head.equals(x); 

};  

2.8.3.2 Person Name (PN) 

Since most of the functionality of entity name is in support of person names, the person name (PN) is 
only a very minor restriction on the entity name part qualifier. 

type PersonName alias PN extends LIST<PNXP> { 

 ST formatted; 

}; 

protected type PersonNamePart alias PNXP extends ST { 

 CS  type; 

 SET<CS>  qualifier; 

}; 

invariant(PNXP x) where x.nonNull { 

  x.qualifier.contains(“LS”).not; 

}; 

2.8.3.3 Organization Name (ON) 

A name for an organization, such as “Health Level Seven, Inc."  An organization name consists only of 
untyped name parts, prefixes, suffixes, and delimiters. 

type OrganizationName alias ON extends LIST<ONXP> { 

 ST formatted; 

}; 
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protected type OrganizationNamePart alias ONXP extends ST { 

 CS  type; 

 SET<CS>  qualifier; 

}; 

invariant(ONXP x) where x.nonNull { 

  x.type.implies(“FAM”).not; 

  x.type.implies(“GIV”).not; 

}; 

Figure 8: Quantity Data Types 

Integer : INT 

<<type>> diff : INT
isOne : BL
successor : INT
predecessor : INT
negated : INT 
isNegative : BL
nonNegative : BL

plus(diff) : INT
minus(INT) : diff
times(INT) : INT 

Real : REAL 

<<type>> diff : REAL
negated : REAL 
inverted : REAL
precision : INT 

plus(diff) : REAL
minus(REAL) : diff
times(REAL) : REAL 
power(REAL) : REAL

PhysicalQuantity : PQ 

<<type>> diff : PQ
value : REAL 
unit : CS 
canonical : PQ 
negated : PQ 
inverted : PQ 

equals(PQ) : BL 
compares(PQ) : BL
plus(PQ) : PQ 
minus(PQ) : PQ 
times(PQ) : PQ 
times(REAL) : PQ 
power(INT) : PQ

MonetaryAmount : MO 

<<type>> diff : MO
value : REAL
currency : CV
negated : MO 

plus(diff) : MO
minus(MO) : diff
times(REAL) : MO 

Ratio 

numerator : QTY
denominator : QTY

Quantity : QTY
<<type>> diff : QTY
isZero : BL

lessOrEqual(QTY) : BL
lessThan(QTY) : BL
greaterOrEqual(QTY) : BL
greaterThan(QTY) : BL
compares(QTY) : BL
minus(QTY) : diff
plus(diff) : QTY

PointInTime : TS 

<<type>> diff : PQ ~ 1s
offset : diff
calendar : CS
precision : INT
timezone : diff

equals(TS) : BL
plus(diff) : TS
minus(TS) : diff

11

11
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2.9 Abstract Type Quantity (QTY) 

The quantity data type is an abstract generalization for all data types (1) whose value set has an order 
relation (less-or-equal, ≤) and (2) where difference is defined in all of the data type’s totally ordered 
value subsets.  The quantity type abstraction is needed in defining certain other types, such as the 
interval and the probability distribution. 

abstract type Quantity alias QTY extends ANY { 

 BL  lessOrEqual(QTY x); 

  BL  compares(QTY x); 

  type QTY diff; 

 diff  minus(QTY x); 

 QTY  plus(diff x); 

  BL  isZero; 

 BL  lessThan(QTY x); 

 BL  greaterOrEqual(QTY x); 

 BL  greaterThan(QTY x); 

}; 

2.9.1.1 Ordering 

An ordered set is a set with an order relation (e.g., less-or-equal, ≤).  An order relation is asymmetric 
and transitive. 

A totally ordered set is an ordered set where all pairs of elements have a defined order (e.g., the integer 
and real numbers are totally ordered.) 

A partially ordered set is an ordered set where not all pairs of elements are comparable through the 
order relation (e.g., a tree structure or the set of physical quantities is a partially ordered set.)  Two data 
values x and y of an ordered type are comparable (x.compares(y)) if the less-or-equal relation holds in 
either way (x ≤ y or y ≤ x). 

A partial order relation generates totally ordered subsets whose union is the entire set (e.g., the set of 
all length is a totally ordered subset of the set of all physical quantities.)   

For example, a tree structure is partially ordered, where the root is considered less or equal to a leaf, 
but there may not be an order among the leafs.  Also, physical quantities are partially ordered, since an 
order exists only among quantities of the same dimension (e.g., between two lengths, but not between a 
length and a time.)  A totally ordered subset of a tree is a path that transitively connects a leaf to the 
root.  The physical dimension of time is a totally ordered subset of physical quantities. 

invariant (QTY x, y, z) 

    where x.nonNull.and(y.nonNull).and(z.nonNull) { 

  x.lessOrEqual(x);      /* reflexive */ 

  x.lessOrEqual(y)      /* asymmetric */ 

     .implies(y.lessOrEqual(x)).not(); 
  x.lessOrEqual(y).and(y.lessOrEqual(z))  /* transitive */ 

     .implies(x.lessOrEqual(z)) 



PART II – Unabridged Specification  2 Basic Types 

Copyright © 2000, Health Level Seven, Inc.  All rights reserved. 67 

  x.lessThan(y).equals(x.lessOrEqual(y).and(x.equals(y).not)); 

  x.greaterOrEqual(y).equals(y.lessOrEqual(x)); 

  x.greaterThan(y).equals(y.lessThan(x)); 

  x.compares(y).equals(x.lessOrEqual(y).or(y.lessOrEqual(x))); 

}; 

2.9.1.2 Difference 

A difference is defined in an ordered set if it is semantically meaningful to state that ∆ is the difference 
between the values x and y.  This difference ∆ must be meaningful independently from the values x and 
y.  This independence exists if for all values u one can meaningfully derive a value v such that ∆ would 
also be the difference between u and v.  The judgment for what is meaningful can not be defined 
formally.42 

The diff-property is a data type that can express the difference between two values for which the 
ordering relation is defined (i.e., two elements of a common totally ordered subset.)  For example, the 
difference data type of integer number is integer number, but the difference type of point in time is a 
physical quantity in the dimension of time.  A difference data type is a totally ordered data type. 

The difference between two values x minus y must be defined for all x and y in a common totally 
ordered subset of the data type’s value set.  Zero is the difference between a value and itself. 

invariant(QTY x, y) where x.compares(y) { 

  x.minus(y).nonNull; 

  x.minus(x).isZero; 

  x.plus(y.minus(x)).equals(y); 

}; 

2.10 Integer Number (INT) 

Integer numbers are precise numbers that are results of counting and enumerating.  Integer numbers are 
discrete, the set of integers is infinite but countable.  No arbitrary limit is imposed on the range of 
integer numbers.  Two exceptional values are defined for the positive and negative infinity. 

type IntegerNumber alias INT extends QTY { 

  BL isOne; 

 INT  successor; 

 INT  plus(diff x); 

 INT  times(INT x); 

                                                                 
42 The quantity data type abstraction corresponds to the notion of difference scales in contrast to ordinal scales and ratio 
scales (Guttman and Stevens).  A data type with only the order requirement but not the difference requirement would 
be an ordinal.  Ordinals are not currently defined with a special data type.  Instead, ordinals are usually coded values, 
where the underlying code system specifies ordinal semantics.  This ordinal semantics, however, is not reflected in the 
HL7 data type semantics at this time. 
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  type INT  diff; 

 diff  minus(INT x); 

 INT  predecessor; 

 INT  negated; 

 BL isNegative; 

  BL  nonNegative; 

  literal  ST; 

}; 

2.10.1.1 Algebraic Operations 

Since the integer number data type includes all of the semantics of the mathematical integer number 
concept, the basic operations plus (addition) and times (multiplication) are defined. These operations 
are defined here as characterizing operations in the sense of ISO 11404, and because these operations 
are needed in other parts of this specifications, namely the semantics of the literal form. 

The traditional recursive definitions of addition and multiplication are due to Grassmann:43 

invariant(INT x, o, i) where x.nonNull.and(o.isZero()) { 

  x.lessThan(x.successor); 

  x.plus(o).equals(x); 

  x.plus(y.successor).equals(x.plus(y).successor); 

  x.times(o).equals(o);  

  x.times(y.successor).equals(x.times(y)).plus(x); 

}; 

The inverse element, negation, and predecessor are defined as follows 

invariant(INT x) where x.nonNull { 

  x.plus(x.negated).isZero; 

  x.successor.predecessor.equals(x); 
  x.nonNegative.equals(0.lessOrEqual(x)); 

  x.isNegative.equals(x.nonNegative.not); 

}; 

2.10.1.2 Literal Form 

The literal form of an integer is a simple decimal number, i.e. a string of decimal digits. 

                                                                 
43 H. Grassman. Lehrbuch der Arithmetik . 1861. We prefer Grassman’s original axioms to the Peano axioms, because 
Grassman’s axioms work for all integers, not just for natural numbers. Also, “it is rather well-known, through Peano's 
own acknowledgment, that Peano borrowed his axioms from Dedekind and made extensive use of Grassmann's work in 
his development of the axioms." (Hao Wang. The Axiomatization of Arithmetic. J. Symb. Logic; 1957:22(2); p. 145.) 
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INT.literal ST { 

  INT digit : "0"    { $.isZero; } 

            | "1"      { $.equals(0.successor); } 

            | "2"      { $.equals(1.successor); } 

            | "3"      { $.equals(2.successor); } 

            | "4"      { $.equals(3.successor); } 

            | "5"      { $.equals(4.successor); } 

            | "6"      { $.equals(5.successor); } 

            | "7"      { $.equals(6.successor); } 

            | "8"   { $.equals(7.successor); } 

            | "9"   { $.equals(8.successor); }; 

  INT uint : digit          { $.equals($1); } 

           | uint digit   { $.equals($1.times(9.successor).plus($2)); }; 

  INT : uint         { $.equals($1); } 

      | “+” uint    { $.equals($2); } 

      | “-” uint   { $.equals($2.negated); }; 

}; 

2.11 Real Number (REAL) 

Mathematically, real numbers are the superset of integer numbers, rational numbers, and irrational 
numbers.  Real numbers are needed beyond integers whenever quantities of the real world are 
measured, estimated, or computed from other real numbers. 

Note: This specification defines the real number data type in the broadest sense possible.  However, 
it does not imply that any conforming ITS or implementation must be able to represent the full range 
of Real numbers, which would not be possible in any finite implementation.  HL7’s current use cases 
for the Real number data type are measured and estimated quantities and monetary amounts.  These 
use cases can be handled with a restricted Real value space, rational numbers, and even just very 
limited decimals (scaled integers.)  However, we declare the representations of the real value space 
as floating points, rationals, scaled integers, or digit strings) and their limitations to be out of the 
scope of this specification. 

This specification offers two choices for a number data type.  The choice is made as follows: Any 
number attribute is a real if it is not known for sure that it is an integer.  A number is an integer if it is 
always counted, typically representing an ordinal number.  If there are conceivable use cases where 
such a number would be estimated or averaged, it is not always an integer and thus should be using the 
Real data type.  

type RealNumber alias REAL extends QTY { 

  type REAL  diff; 

 diff  minus(REAL x); 

 REAL   plus(diff x); 

 REAL  negated; 
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 REAL   times(REAL x); 

 REAL   inverted; 

 REAL  power(REAL x); 

  literal  ST; 

  INT  precision; 

  demotion  INT; 

  promotion REAL (INT x); 

  promotion  PQ; 

  promotion RTO; 

}; 

2.11.1.1 Algebraic Operations 

The algebraic operations are specified here as characterizing operations in the sense of ISO 11404, and 
because these operations are needed in other parts of this specifications.  Here, the specification of the 
real numbers is based on the homomorphism (the type conversion that preserves integer arithmetic) 
between integer and real numbers: 

invariant(INT n, m) where n.nonNull.and(m.nonNull) { 

  ((REAL)n.plus(m)).equals(((REAL)n).plus((REAL)m)); 

  ((REAL)n.times(m)).equals(((REAL)n).times((REAL)m)); 

}; 

Unlike the integer numbers, the real numbers semantics are not inductively defined but only their 
algebraic properties described. 

invariant(REAL x, y, z)  

    where x.nonNull.and(y.nonNumm).andz.nonNull) { 

  /* ADDITION */ 
  x.plus(0).equals(x)       /* neutral element */ 

  x.plus(x.negated).equals(0)    /* inverse element */ 

  x.plus(y).plus(z).equals(x.plus(y.plus(z)));  /* associative */ 

  x.plus(y).equals(y.plus(x))    /* commutative */ 

  /* MULTIPLICATION */ 
  x.times(0).equals(0); 

  x.times(1).equals(x);     /* neutral element */ 

  x.times(x.inverted).equals(1)    /* inverse element */ 

  0.inverted.isNull;      /* … except for zero */ 

  x.times(y).times(z).equals(x.times(y.times(z)));/* associative */ 

  x.times(y).equals(y.times(x));    /* commutative */ 

  x.times(y.plus(z))       /* distributive */ 

    .equals(x.times(y).plus(x.times(z)); 
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  /* EXPONENTIATION */ 
  x.power(0).equals(1); 

  x.power(1).equals(x); 

  x.power(y).power(z).equals(x.power(y.times(z))); 

  x.power(y).times(x.power(z)).equals(x.power(y.plus(z))); 

  x.power(y).inverted.equals(x.power(y.negated)); 

  x.power(y).power(y.inverted).equals(x); 

}; 

2.11.1.2 Literal Form 

The syntax and semantics of real number literals is defined below.  In summary, a real number is 
represented in decimal form with optional + or − sign, and optional decimal point, and optional 
exponential notation using a case insensitive “e” between the mantissa and the exponent.  The number 
of significant digits must conform to the precision property.  

REAL.literal ST { 

  REAL : mantissa       { $.equals($1); } 

       | mantissa /[eE]/ INT   { $.equals($1 
           .times(10.power($3)); }; 

  REAL mantissa 

       : /0*/ 0    { $.isZero; $.precision.equals(1); } 

       | /0*/ “.” /0*/    { $.isZero; $.precision.equals( 

                    $3.length.successor); } 

       | /0*/ “.” /0*/ fractional  { $.equals($4); 

        $.precision.equals($4.precision); } 

       | integer     { $.equals($1); } 

       | integer “.” fractional  { $.equals($1.plus($2));  

        $.precision.equals($1.precision 

          .plus($3.precision)); }; 

  REAL integer  

       : uintval    { $.equals($2); } 

       | “+” uintval     { $.equals($1.times($2)); } 

       | “-” uintval     { $.equals($1.times($2).negated); }; 

  REAL uintval : /0*/ uint   { $.equals($2); }; 

  REAL uint : digit    { $.equals($1); 

          $.precision.equals(1); } 

            | uint digit   { $.equals($1.times(10).plus($2));  

           $.precision.equals( 

             $1.precision.successor; }; 
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  REAL fractional 
       : digit     { $.equals($1.times(10.inverted)); 

        $.precision.equals(1); } 

       | digit fractional   { $.equals( 

         $1.plus($2.times(10.inverted)); 

        $.precision.equals( 

          $1.precision.successor); }; 

  INT digit : /[0-9]/     { $.equals($1); } 

}; 

Examples of real literals are for two-thousand are 2000, 2000., 2e3, 2.0e+3, +2.0e+3. 

Note that the literal form does not carry type information.  For example, “2000” is a valid 
representation of both a real number and an integer number.  No trailing decimal point is used to 
disambiguate from integer numbers.  An ITS that uses this literal form must recover the type 
information from other sources. 

2.11.1.3 precision : INT 

The precision property indicates the quality of the approximation of a decimal real number 
representation.  Precision is the number of significant decimal digits in that decimal representation.  
The precision attribute is the precision of a decimal digit representation, not the precision or accuracy 
of the real number value.  Precision does not play a role in deciding whether two real number values 
are equal. 

The purpose of the precision property for the real number data type is to faithfully capture the whole 
information presented to humans in a number.  The amount of decimal digits shown conveys 
information about the uncertainty (i.e., precision and accuracy) of a measured value. 

Note: the precision of the representation is independent from uncertainty (precision accuracy) of a 
measurement result.  If the uncertainty of a measurement result is important, one should send 
uncertain values as defined in Section 4.4. 

The rules for what digits are significant are as follows: 

All non-zero digits are significant. 

All zeroes to the right of a significant digit are significant. 

When all digits in the number are zero the zero-digit immediately left to the decimal point is 
significant (and because of rule 2, all following zeroes are thus significant too.) 

Note, these rules of significance differ slightly from the more casual rules taught in school.  
Notably trailing zeroes before the decimal point are consistently regarded significant here.  
Elsewhere, e.g., 2000 is ambiguous as to whether the zeroes are significant.  This deviation 
from the common custom is warranted for the purpose of unambiguous communication. 

Examples: 

 2000  has 4 significant digits. 

 2e3    has 1 significant digit, used if one would naturally say "2000" but precision is only 1. 

 0.001  has 1 significant digits. 

 1e-3   has 1 significant digit, use this if one would naturally say “0.001” but precision is only 1. 

 0 has 1 significant digit. 
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 0.0 has 2 significant digits. 

 000.0 has 2 significant digits. 

 0.00 has 3 significant digits. 

 4.10  has 3 significant digits. 

 4.09   has 3 significant digits. 

 4.1  has 2 significant digits. 

The precision of the representation should match the uncertainty of the value.  However, precision of 
the representation and uncertainty of the value are separate independent concepts.  Refer to Section 
4.4.2 for details about uncertain real numbers. 

For example “0.123” has 3 significant digits in the representation, but the uncertainty of the value may 
be in any digit shown or not shown, i.e., the uncertainty may be 0.123±0.0005, 0.123±0.005 or 
0.123±0.00005, etc.  Note that external representations should adjust their representational precision 
with the uncertainty of the value.  However, since the precision in the digit string is granular to ±0.5 
the least significant digit, while uncertainty may be anywhere between this raster, 0.123±0.005 would 
also be an adequate representation for the value between 0.118 and 0.128. 

ITS Note: on a character based Implementation Technology the ITS need not represent the precision 
as an explicit attribute if numbers are represented as decimal digit strings.  In that case, the ITS must 
abide by the rules of an unambiguous determination of significant digits.  A number representation 
must not produce more or less significant digits than were originally in that number.  Conformance 
can be tested through round-trip encoding – decoding – encoding. 

2.12 Ratio (RTO) 

A ratio quantity is a quantity constructed through division of a numerator quantity with a denominator 
quantity.  Ratios are different from rational numbers, i.e., in ratios common factors in the numerator 
and denominator never cancel out.  A ratio of two real or integer numbers is not automatically reduced 
to a real number. 

Table 31: Summary of Primary Properties of Ratio (RTO) 

Name Type Status Default Constraint Definition 
numerator QTY mandatory (INT) 1  The numerator of the ratio. 
denominator QTY mandatory (INT) 1 ≠ 0 The denominator of the ratio 

The purpose of the ratio data type is to support certain quantities produced by laboratories, such as 
titers (e.g., “1:128”).  Ratios are not simply “structured numerics”, blood pressure measurements (e.g. 
“120/60”) are not ratios. 

Note: This data type is not defined to generally represent rational numbers.  In this Ratio data type, it 
is not correct to cancel out common factors in numerator and denominator.  For example, if a ratio is 
recorded as 2:8, it should not be reduced to 1:4. 

type Ratio alias RTO extends QTY { 

 QTY  numerator; 

 QTY  denominator; 

  demotion REAL; 

  demotion PQ; 

}; 
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2.12.1.1 numerator (QTY) 

This is the numerator quantity.  The default is the integer number 1 (one.) 

2.12.1.2 denominator (QTY) 

This is the denominator quantity.  The default is the integer number 1 (one.)  The denominator must 
not be zero. 

invariant(RTO x) where x.nonNull { 

  x.denominator.isZero().not(); 

}; 

2.12.1.3 Literal Form 

The syntax and semantics of ratio literals is defined below.  In summary, a ratio literal form exists for 
all ratios where both numerator and denominators have literal forms.  A ratio is simply the numerator 
literal a colon as separator followed by the denominator literal.  When the colon and denominator are 
missing, the integer number 1 is assumed as the denominator. 

RTO.literal ST { 

  RTO : QTY       { $.numerator.equals($1); 
        $.denominator.equals((INT)1); }; 

      | QTY “:” QTY     { $.numerator.equals($1); 

        $.denominator.equals($3); }; 

}; 

2.13 Physical Quantity (PQ) 

A physical quantity is a dimensioned quantity expressing the result of a measurement act. 

Table 32: Summary of Primary Properties of Physical Quantity (PQ) 

Name Type Status Default Constraint Definition 
value REAL mandatory NULL  The magnitude of the quantity measured in terms of the 

unit 
unit CS mandatory 1 UCUM The unit of measure 

 

type PhysicalQuantity alias PQ extends QTY { 

 REAL  value; 

 CS  unit; 

  BL  equals(PQ x) 

 BL  lessOrEqual(PQ x); 

 BL  compares(PQ x); 

  PQ  canonical; 
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  type  PQ  diff 

 diff  minus(PQ x); 

 PQ  plus(diff x); 

 PQ  negated; 

 PQ  times(REAL x); 

 PQ  times(PQ x); 

 PQ  inverted; 

  PQ  power(INT x); 

  literal  ST; 

  demotion  REAL; 

}; 

2.13.1.1 value : REAL 

This is the magnitude of the quantity measured in terms of the unit. 

2.13.1.2 unit : CS 

This is the unit of measure.  The unit of measure must be specified in the Unified Code for Units of 
Measure (UCUM) [http://aurora.rg.iupui.edu/UCUM]. 

Note that equality of physical quantity does not require the values and units to be equal 
independently.  Value and unit is only how we represent physical quantities.  For example, 1 m equals 
100 cm.  Although the units are different and the values are different, the physical quantities are 
equal!  Therefore one should never expect a particular unit for a physical quantity but instead provide 
automated conversion between different comparable units. 

2.13.1.3 Equality, Ordering and the Canonical Form 

Physical quantities semantically are the results of measurement acts.  Although physical quantities are 
represented as pairs of value and unit, semantically, a physical quantity is more than that.  To find out 
whether two physical quantities are equal, it is not enough to compare equality of their two values and 
units independently.  For example, semantically 100 cm equals 1 m although neither values nor units 
are equal.  To define equality we introduce the notion of a canonical form. 

Every physical quantity has a canonical form.  The canonical form is a physical quantity expressed as a 
pair of value and unit such that each dimension in a given unit system has one and only one canonical 
value-unit pair.  Defining the canonical form is not subject of this specification, only asserting that 
such a canonical form exists for every physical quantity.  A physical quantity is equal to its canonical 
form. 

For example, for a unit system based on the Système International (SI) one can define the canonical 
form as (a) the product of only the base units; (b) without prefixes; where (c) only multiplication and 
exponents are used (no division operation); and (d) where the seven base units appear in a defined 
ordering (e.g., m, s, g…) Thus, 1 mm Hg would be expressed as 133322 m−1 s−2 g.  As can be seen, the 
rules how to build the canonical form of units may be quite complex.  However, for the semantic 
specification it doesn’t matter how the canonical form is built, or what specific canonical form is 
chosen, only that some canonical form could be defined. 

Two physical quantities are equal if each their values and their units of their canonical forms are equal. 

Two physical quantities compare each other (and have an ordering and difference) if the units of their 
canonical forms are equal. 
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invariant(PQ x, y) where x.nonNull.and(y.nonNull) { 

  x.canonical.equals(x); 

  x.equals(y).implies(x.compares(y)); 

  x.equals(y).equals(x.canonical.value.equals(y.canonical.value) 

                .and(x.canonical.unit.equals(y.canonical.unit))); 

  x.compares(y).equals(x.canonical.unit.equals(y.canonical.unit)); 

}; 

2.13.1.4 Algebraic Operations 

Algebraic operations are defined for physical quantities because they are characterizing operations in 
the sense of ISO 11404 and because this specification makes use of them when defining the literal 
form. 

Any two physical quantities can be multiplied.  The quotient of two comparable quantities is 
comparable to the unity (the unit 1). 

invariant(PQ x, y, z)  

    where x.nonNull.and(y.nonNull).and(z.nonNull) { 

  x.compares(y).implies(x.times(y.inverted).compares(1)); 

  x.times(1).equals(x);     /* neutral element */ 
  x.times(x.inverted).equals(1);   /* inverse element */ 

  x.times(y).times(z).equals(x.times(y.times(z))); /* associative */ 

  x.times(y).equals(y.times(x));   /* commutative */ 

}; 

A physical quantity can be multiplied with a real number to form a scaled quantity.  A scaled quantity 
is comparable to its original quantity.  If two quantities Q1 and Q2 compare each other, there exists a 
real number r such that r 1 = Q1 / Q2. 

invariant(PQ x, y; REAL r)  

    where x.nonNull.and(y.nonNull).and(r.nonNull) { 

  x.times(r).value.equals(x.value.times(r)); 

  x.times(r).compares(x); 

}; 

A physical quantity Q that compares the unity – i.e. the unit 1 (one) – can be converted to a real 
number r such that r 1 = Q. 

invariant(PQ x) where x.nonNull.and(x.compares(unity) { 

  unity.times((REAL)x).equals(x)); 

}; 

A physical quantity can be raised to an integer power. 
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invariant (PQ x; INT n) where x.nonNull { 

  x.power(0).equals(1); 

  n.greaterThan(0).implies( 

      x.power(n).equals(x.times(x.power(n.predecessor)))); 

  n.lessThan(0).implies( 

      x.power(n).equals(x.power(n.negated).inverted); 

} 

Two physical quantities that compare each other can be added. 

invariant (PQ x, y, z) 

    where x.compares(y).and(y.compares(z)) { 

  x.plus(y).plus(z).equals(x.plus(y.plus(z)));  /* associative */ 

  x.plus(x.times(0)).equals(x)    /* neutral elem. */ 

  x.plus(x.negated).equals(x.times(0))   /* inverse elem. */ 

  x.plus(y).equals(y.plus(x))    /* commutative */ 

  forall(PQ w) with w.nonNull { 

    w.times(x.plus(y))      /* distributive */ 

       .equals(w.times(x).plus(w.times(y)));  

  }; 

  forall(REAL r) where r.nonNull { 

    x.plus(y).times(r)      /* distributive */ 

       .equals(x.times(r).plus(y.times®)); 

  };  

}; 

2.13.1.5 Literal Form 

The literal form for a physical quantity is a real number literal followed by optional white space and a 
character string representing a valid code in the Unified Code for Units of Measure. 

PQ.literal ST { 

  PQ : REAL unit   { $.value.equals($1); 

       $.unit.equals($2); } 

  CS unit : ST   { $.value.equals($1); 
      $.codeSystem.equals(2.16.840.1.113883.6.8); }; 

}; 

For example 20 minutes is “20 min”. 

2.14 Monetary Amount (MO) 

A monetary amount is a quantity expressing the amount of money in some currency.  Currencies are 
the units in which monetary amounts are denominated in different economic regions.  While the 
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monetary amount is a single kind of quantity (money) the exchange rates between the different units 
are variable.  This is the principle difference between physical quantity and monetary amounts, and the 
reason why currency units are not physical units.  

 Table 33: Summary of Primary Properties of Monetary Amount (MO) 

Name Type Status Default Constraint Definition 
value REAL mandatory NULL  The magnitude of the monetary amount in terms of 

the currency unit. 
currency CS mandatory NULL ISO 4217 The currency unit 

 

type MonetaryAmount alias MO extends QTY { 

 REAL  value; 

 CS  currency; 

  type  MO  diff 

 MO  plus(diff x); 

  diff  minus(MO x); 

 MO  negated; 

 MO  times(REAL x); 

  literal  ST; 

  type  MO diff; 

}; 

2.14.1.1 value : REAL 

This is the magnitude of the monetary amount in terms of the currency unit. 

Note: monetary amounts are usually precise to 0.01 (one cent, penny, paisa, etc.)  For large amounts, 
it is important not to store monetary amounts in floating point registers, since this may lose precision.  
However, this specification does not define the internal storage of real numbers as fixed or floating 
point numbers.  

The precision attribute of the real number type is the precision of the decimal representation, not the 
precision of the value.  The real number type has no notion of uncertainty or accuracy.  For example, 
“1.99 USD” (precision 3) times 7 is “13.93 USD” (precision 4) and should not be rounded to “13.9” to 
keep the precision constant. 

2.14.1.2 currency : CS 

The currency unit as defined in ISO 4217. 

Table 34: Select ISO 4217 currency codes 

Country Currency Code 

Argentina Argentine Peso ARS 
Australia Australian Dollar AUD 
Austria Austrian Schilling ATS 

Belgium Belgian Franc BEF 
Brazil Brazilian Real BRL 

Canada Candian Dollar CAD 
Chile Unidades de Formento CLF 
China Yuan Renminbi CNY 
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Cuba Cuban Peso CUP 
European Union Euro EUR 

European Union ECU (until 1998-12-31) XEU 
Finland Markka FIM 

France French Franc FRF 
Germany Deutsche Mark DEM 

India Indian Rupee INR 
Israel Shekel ILS 

Japan Yen JPY 
Korea (south) Won KRW 

Luxembourg Luxembourg Franc LUF 
Mexico Mexican Nuevo Peso MXN 

Netherlands Netherlands Guilder NLG 
New Zealand New Zealand Dollar NZD 

Norway Norwegian Krone NOK 
Philippines Philippine Peso PHP 
Russian Federation Russian Ruble RUR 

Singapore Singapore Dollar SGD 
South Africa Rand ZAR 

Spain Spanish Peseta ESP 
Sweden Swedish Krona SEK 

Switzerland Swiss Franc CHF 
Thailand Baht THB 

Taiwan New Taiwan Dollar TWD 
United Kingdom Pound Sterling GBP 

United States US Dollar USD 

2.14.1.3 Algebraic Operations 

Equality of two monetary amounts – unlike physical quantities – is determined as the joint equality of 
their value and currency properties independently.  (This is according to the general definition of 
equality as defined in Section 1.4.2.3.)  If the currencies are not equal, the amounts can not be 
compared.  Conversion between the currencies is outside the scope of this specification.  In practice, 
foreign exchange rates are highly variable not only over long and short amounts of time, but also 
depending on location and access to currency trade markets. 

invariant(MO x, y) where x.nonNull.and(y.nonNull) { 

  x.equals(y).equals(x.currency.equals(y.currency) 

                .and(x.value.equals(y.value))); 

  x.currency.equals(y.currency).not.implies(x.lessOrEqual(y).isNull); 

}; 

Two monetary amounts can be added if they are denominated in the same currency. 

invariant(MO x, y) where x.nonNull.and(y.nonNull) 

     .and(x.currency.equals(y.currency)) { 

  x.plus(y).value.equals(x.value.plus(y.value)); 

  x.plus(y).currency.equals(x.currency); 

}; 



HL7 Version 3 Data Types BALLOT DRAFT 2 Revision 1.3 

80  Copyright © Health Level Seven, Inc.  All rights reserved. 

Any monetary amount can be multiplied with a real number. 

invariant(MO x; REAL r) where x.nonNull.and(r.nonNull) { 

  x.times(r).value.equals(x.value.times(r)); 

  x.times(r).currency.equals(x.currency); 

}; 

2.14.1.4 Literal Form 

The literal form for a monetary amount is a real number literal followed by optional white space and a 
character string representing a valid code. 

MO.literal ST { 

  MO : value currency    { $.value.equals($1); 

        $.currency.equals($2); } 

  REAL value : REAL    { $.value.equals($1); } 

  CS currency : ST    { $.currency.value.equals($1); 

        $.currency.codeSystem 
          .equals(2.16.840.1.113883.6.9); } 

}; 

For example U.S. $176,000 is “176000 USD”. 

2.15 Point In Time (TS) 

A point in time is a scalar defining a point on the axis of natural time.  A point in time is most often 
represented as a calendar expression.  Semantically, however, time is independent from calendars.  The 
semantic properties of point in time are best described by their relationship to elapsed time (measured 
as a physical quantity in the dimension of time.)  A point in time plus an elapsed time yields another 
point in time.  Inversely, a point in time minus another point in time yields an elapsed time.  As a kind 
of quantity, points in time are a difference-scale quantity, where no absolute zero-point exists, where 
only differences are defined but no ratios.  (For example, no point in time is – absolutely speaking – 
“twice as late” as another point in time.) 

Given some arbitrary zero-point, one can express any point in time as an elapsed time measured from 
that offset.  Such an arbitrary zero-point is called an epoch.  This epoch-offset form is used as a 
semantic representation here, without implying that any system would have to implement the TS data 
type in that way.  Systems that do not need to compute distances between points in time will not need 
any other representation than a calendar expression literal. 

type PointInTime alias TS extends QTY { 

 PQ  offset; 

 CS  calendar; 

  INT precision; 

  PQ  timezone; 

  BL  equals(TS x); 

 TS  plus(PQ x); 

 PQ  minus(TS x); 
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  literal  ST; 

  type  PQ  diff; 

}; 

2.15.1.1 offset : PQ 

The time elapsed since any constant epoch, measured as a physical quantity in the dimension of time 
(i.e., comparable to one second.)  It is not necessary for this specification to define a canonical epoch; 
the semantics is the same for any epoch, as long as it is constant.  Two point-in-time values are equal if 
and only if their offsets (relative to the same epoch) are equal. 

invariant(TS x, y) where x.nonNull.and(y.nonNull) { 

  x.offset.compares(1 s); 

  x.equals(y).equals(x.offset.equals(y.offset)); 

}; 

ITS Note: the offset property may be treated as a purely semantic property that is not represented in 
any way other than the calendar literal expression.  However, an ITS may just as well choose to 
define a constant epoch and represent point-in-time values as elapsed time offsets relative to that 
epoch.  However, an ITS using an epoch-offset representation would still need to communicate the 
calendar code and the precision of a calendar representation once other calendars are supported. 

2.15.1.2 calendar : CS 

A code specifying the calendar used in the literal representation of this point in time.44 

Table 35: Calendar Codes 

Name Code Definition 

Gregorian GREG The Gregorian calendar is in effect in the most countries of 
Christian influence since approximately 1582.  This 
calendar superceded the Julian calendar. 

The purpose of this attribute is mainly to faithfully convey what has been entered or seen by a user in a 
system originating such a point-in-time value.  The calendar property also advises any system 
rendering a point-in-time value into a literal form of which calendar to use.  However, this is only 
advice; any system that renders point-in-time values to users may choose to use the calendar and literal 
form demanded by its users rather than the calendar mentioned in the calendar property.  Hence, the 
calendar property is not constant in communication between systems, the calendar is not part of the 
equality test. 

A calendar is a concept of measuring time in various cycles.  Such cycles are years, months, days, 
hours, minutes, seconds, and weeks.  Some of these cycles are synchronized and some are not (e.g., 
weeks and months are not synchronized.)  After “rolling the time axis” into these cycles (see Figure 9,) 
a calendar expresses a point in time as a sequence of integer counts of cycles, e.g., for year, month, 
day, hour, etc. The calendar is rooted in some conventional start point, called the “epoch.” 

For the purpose of defining the literal form based on the calendar two private data types, Calendar 
(CAL) and CalendarCycle (CLCY,) are defined.  These calendar data types exist only for defining this 
specification.  These private data types may not be used at all outside this specification. 

                                                                 
44 At this time, no other calendars than the Gregorian calendar are defined.  However, the notion of a calendar as an 
arbitrary convention to specify absolute time is important to properly define the semantics of time and time-related data 
types.  Furthermore, other calendars might be supported when needed to facilitate HL7’s use in other cultures. 
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Calendar is defined as a set of calendar cycles, and has a name and a code.  The head of the Calendar is 
the largest CalendarCycle appearing right most in the calendar expression.  The epoch is the beginning 
of that calendar, i.e., the point in time where all calendar cycles are zero. 

private type Calendar alias CAL extends SET〈CLCY〉  { 

  CV  name; 

  CLCY  head; 

  TS  epoch; 

}; 

invariant(CAL c) where c.nonNull { 

  c.name.nonNull; 

  c.contains(c.head); 

}; 

A calendar cycle defines one group of decimal digits in the calendar expression.  A calendar cycle has 
a name and two codes, a one-letter code and a two-letter code.  The property ndigits is the number of 

                                                                 
45 Imagine a special clock that measures those cycles, where the pointers are not all stacked on a common axis but each 
pointer is attached to the end of the pointer measuring the next larger cycle.  

Figure 9: A calendar "rolls" the time axis into a complex convolute according to the calendar 
periods year (blue), month (yellow), day (green), hour (red), etc.  The cycles need not be aligned, 
for example, the week (not shown) is not aligned to the month.45 
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decimal digits occupied in the calendar expression.  The property start specifies where counting starts 
(i.e., at 0 or 1.)  The next property is the next lower cycle in the order of the calendar expression.  The 
max(t) property is the maximum number of cycles at time t (max depends on the time t to account for 
leap years and leap seconds.) The property value(t) is the integer number of cycles shown in the 
calendar expression of time t. The property sum( t, n) is the sum of n calendar cycles added to the time 
t. 

private type CalendarCycle alias CALCY extends ANY { 

 CE  name; 

 INT  ndigits; 

  INT  start; 

  CALCY  next; 

 INT  max(TS); 

 TS  sum(TS t, REAL r); 

  INT  value(TS t); 

}; 

invariant(CALCY c) where c.nonNull { 

  c.name.nonNull; 
  c.start.equals(0).or(c.start.equals(1)); 

  c.digits.greaterThan(0); 

}; 

The calendar definition can be shown as in Table 36 for the modern Gregorian calendar.  The calendar 
definition table lists a calendar cycle in each row.  The calendar units are dependent on each other and 
defined in the value column.  The sequence column shows the relationship through the next property. 
The other columns are as in the formal calendar cycle definition.46 

Table 36: Calendar Periods for the Modern Gregorian Calendar 

Name Code Counter Period Duration 
 one two seq. digits start  condition  value 

year Y CY 1 4 0   MY12 
month of the year M MY 2 2 1 MY01,03,05,07,08,10,12  →  DM31 

MY04,06,09,11  →  DM30 
MY02 Y/4 Y/100  →  DM28 
MY02 Y/4  →  DM29 
MY02  →  DM28 

month (continuous)  CM   0 continuous   MY 
week (continuous) W CW   0   CD7 
week of the year  WY  2 1 continuous   DW7 
day of the month D DM 3 2 1   HD24 
day (continuous)  CD   0   CH24 
day of the year  DY  3 1   HD24 
day of the week (begins with Monday) J DW  1 1   HD24 
hour of the day H HD 4 2 0   MH60 

                                                                 
46 At present, the CalendarCycle properties sum and value are not formally defined.  The computation of calendar digits 
involves some complex computation which to specify here would be hard to understand and evaluate for correctness.  
Unfortunately, no standard exists that would formally define the relationship between calendar expressions and elapsed 
time since an epoch.  ASN.1, the XML Schema Data Type specification and SQL92 all refer to ISO 8601, however, 
ISO 8601 does only specify the syntax of Gregorian calendar expressions, but not their semantics.  In this standard, we 
define the syntax and semantics formally, however, we presume the semantics of the sum-, and value-properties to be 
defined elsewhere. 
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hour (continuous)  CH   0   CN60 
minute of the hour N NH 5 2 0 UTC leap second → SN61 

 → SN60 
minute (continuous)  CN   0   CS60 
second of the minute S SN 6 2 0   CS1 
second (continuous)  CS   0 basis 

2.15.1.3 precision : INT 

The purpose of the precision property for the point in time data type is to faithfully capture the whole 
information presented to humans in a calendar expression.  The number of digits shown conveys 
information about the uncertainty (i.e., precision and accuracy) of a measured point in time.  Although, 
the precision of a calendar expression is not a good measure for the uncertainty of the value, the 
precision of the calendar expression should match the accuracy of the measurement.  

Note: the precision of the representation is independent from uncertainty (precision accuracy) of a 
measurement result.  If the uncertainty of a measurement result is important, one should send 
uncertain values as defined in Section 4.4. 

The precision property is dependent on the calendar.  A given precision value relative to one calendar 
does not mean the same in another calendar with different periods. 

For example “20000403” has 8 significant digits in the representation, but the uncertainty of the value 
may be in any digit shown or not shown, i.e., the uncertainty may be to the day, to the week, or to the 
hour.  Note that external representations should adjust their representational precision with the 
uncertainty of the value.  However, since the precision in the digit string depends on the calendar and 
is granular to the calendar periods, uncertainty may not fall into that grid (e.g., 2000040317 is an 
adequate representation for the value between 2000040305 and 2000040405.) 

ITS Note: on a character based Implementation Technology the ITS need not represent the precision 
as an explicit attribute if point in time values are represented as literal calendar expressions.  A point 
in time representation must not produce more or less significant digits than were originally in that 
value.  Conformance can be tested through round-trip encoding – decoding – encoding. 

2.15.1.4 time zone : PQ 

The time zone is specified as the difference between the local time in that time zone and Universal 
Coordinated Time (UTC, formerly called Greenwich Mean Time, GMT).  The time zone is a physical 
quantity in the dimension of time (i.e., comparable to one second.)  A zero time zone value specifies 
UTC.  The time zone value does not permit conclusions about the geographical longitude or a 
conventional time zone name. 

For example, 200005121800-0500 may be eastern standard time (EST) in Indianapolis, IN, or central 
daylight savings time (CDT) in Decatur, IL.  Furthermore in other countries having other latitude the 
time zones may be named differently. 

invariant(TS x, y) where x.nonNull.and(y.nonNull) { 

  x.timezone.compares(1 s); 

}; 

When the time zone is NULL (unknown), “local time” is assumed.  However, “local time” is always 
local to some place, and without knowledge of that place, the time zone is unknown.  Hence, a local 
time can not be converted into UTC.  The time zone should be specified for all point in time values in 
order to avoid a significant loss of precision when points in time are compared.  The difference of two 
local times where the locality is unknown has an error of ±12 hours. 

In administrative data context, some time values do not carry a time zone.  For a date of birth in 
administrative data, for example, it would be incorrect to specify a time zone, since this may 
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effectively change the date of birth when converted into other time zones.  For such administrative data 
the time zone is NULL (not applicable.) 

2.15.1.5 Addition and Subtraction 

A point in time plus an elapsed time (i.e., physical quantity in the dimension of time) is a point in time.  
Inversely, the difference between two points in time is an elapsed time. 

invariant(TS x, PQ t) 

    where x.nonNull.and(t.compares(1 s)) { 

  x.plus(t).offset.equals(x.offset.plus(t)); 

  x.minus(y).offset.equals(x.offset.plus(y.offset.negated)); 

}; 

2.15.1.6 Literal Form 

Point-in-time literals are simple calendar expressions, as defined by the calendar definition table.  By 
default, the western (Gregorian) calendar shall be used (Table 36).   

For the default Gregorian calendar the calendar expression literals of this specification conform to the 
constrained ISO 8601 that is defined in ISO 8824 (ASN.1) under clause 32 (generalized time) and to 
the HL7 version 2 TS data format. 

Calendar expression literals are sequences of integer numbers ordered according to the “Counter/ord.” 
column of Table 36.  Periods with lower order numbers stand to the left of periods with higher order 
numbers.  Periods with no assigned order number cannot occur in the calendar expression for points in 
time. 

The “Counter/digits” column of Table 36 specifies the exact number of digits for the counter number 
for any period.   

Thus, Table 36 specifies that western calendar expressions begin with the 4-digit year (beginning 
counting at zero); followed by the 2-digit month of the year (beginning counting at one); followed by 
the 2-digit day of the month (beginning with one); followed by the 2-digit hour of the day (beginning 
with zero); and so forth.  For example, “200004010315” is a valid expression for April 1, 2000, 
3:15 am. 

A calendar expression can be of variable precision, omitting parts from the right.   

For example, “20000401” is precise only to the day of the month. 

The last calendar unit may be written as a real number, with the number of integer digits specified, 
followed by the decimal point and any number of fractional digits.   

For example, “20000401031520.34” means April 1, 2000, 3:15 and 20.34 seconds. 

When other calendars will be used in the future, a prefix “GREG:” can be placed before the western 
(Gregorian) calendar expression to disambiguate from other calendars.  Each calendar shall have its 
own prefix.  However, the western calendar is the default if no prefix is present. 

In the modern Gregorian calendars (and all calendars where time of day is based on UTC,) the calendar 
expression may contain a time zone suffix.  The time zone suffix begins with a plus (+) or minus (−) 
followed by digits for the hour and minute cycles.  UTC is designated as offset “+00” or “-00”; the 
ISO 8601 and ISO 8824 suffix “Z” for UTC is not permitted. 
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TS.literal ST { 

  TS : cal timestamp($1)   { $.equals($2); } 

     | timestamp(GREG)    { $.equals($1); }; 

 

  TS timestamp(Calendar C) 

  : cycles(C.head, C.epoch) zone(C) { $.equals($1.minus($2)); } 

       $.timezone.equals($2); } 

  | cycles(C.head, C.epoch)   { $.equals($1); 

       $.timezone.unknown; }; 

  Calendar cal 

  : /[a-zA-Z_][a-zA-Z0-9_]*:/  { $.equals($1); }; 

  TS cycles(CalendarCycle c, TS t) 

  : cycle(c, t) cycles(c.next, $1)  { $.equals($2); } 

  | cycle(c, t) "." REAL.fractional  { $.equals(c.sum($1, $3)); 

        $.precision.equals( 

          t.precision.plus($3.precision)); } 

  | cycle(c, t)      { $.equals($1); }; 

  TS cycle(CalendarCycle c, TS t) 

  : /[0-9]{c.ndigits}/    { $.equals(c.sum(t, $1)); 

                                $.precision.equals( 

                                     t.precision.plus(c.ndigits)); }; 

  PQ zone(Calendar C) 

  : “+” cycles(C.zonehead, C.epoch)  { $.equals($2.minus(C.epoch)); } 

  | “-” cycles(C.zonehead, C.epoch)  { $.equals(C.epoch.minus($2)); }; 

} 
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3 Generic Collections 

This section defines data types that can “collect” other data values, Set, Sequence, Bag and Interval.47  
These collection types are defined as generic (parameterized) types.  The concept of generic types is 
described in Section 1.3.5.  

3.1 Set (SET) 

A set is a value that contains other values of a certain data type as its elements.  The elements are 
contained in no particular ordering.  All elements in the set are distinct, the same element value can not 
be contained more than once in the set. 

template<ANY T> 

type Set<T> alias SET<T> extends ANY { 

 BL contains(T element); 

 BL  isEmpty; 

  BL  nonEmpty; 

 BL contains(SET<T> subset); 

  INT  cardinality; 

  SET<T>  union(SET<T> otherset); 

 SET<T>  except(T element); 

 SET<T>  except(SET〈T〉 otherset); 

  SET<T>  intersection(SET<T> otherset); 

                                                                 
47 In some programming languages, “collection types” are understood as containers of individually enumerated data 
items, and thus, an interval (low – high) would not be considered a collection.  Such narrow interpretation of 
“collection” however is heavily representation/implementation dependent.  From a data type semantics viewpoint, it 
doesn’t matter whether an element of a collection “is actually contained in the collection” or not.  There is no need for 
all elements in a collection to be individually enumerated. 

Figure 10: Generic Collection Data Types 

T : ANY

Set : SET 

isEmpty : BL 
nonEmpty : BL 
cardinality : INT 

contains(T) : BL
contains(SET<T>) : BL
union(SET<T>) : SET<T> 
except(T) : SET<T>
except(SET<T>) : SET<T> 
intersection(SET<T>) : SET<T> 

T : QTY 

Interval : IVL 

low : T
lowClosed : BL
high : T 
highClosed : BL 
width : T.diff
center : T 

hull(IVL<T>) : IVL<T> 

T : QTY 

SET<QTY
> totallyOrdered : BL

hull : IVL<T> 

T : ANY

Sequence : LIST 

head : T
tail : LIST<T> 
isEmpty : BL 
nonEmpty : BL 
length : INT 

T : ANY

Bag : BAG
isEmpty : BL 

contains(T) : INT 
plus(BAG<T>) : BAG<T>
minus(BAG<T>) : BAG<T> 
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  literal ST; 

  promotion SET<T> (T x); 

}; 

3.1.1.1 Element 

The primitive semantic property of a set is the contains-relation of elements in the set.  On this 
semantic primitive, all other properties are defined.  A set may only contain distinct non-NULL 
elements.  Exceptional values (NULL-values) can not be elements of a set. 

invariant(SET<T> x) where x.nonNull { 

  forall(T e) where x.contains(e) { x.nonNull; }; 

}; 

3.1.1.2 Cardinality and Empty Set 

The empty set is a set without any elements.  The empty set is a proper set value, not an exceptional 
(NULL) value.  The cardinality of a set is the number of distinct elements in the set. 

invariant(SET<T> x) where x.nonNull { 

  x.nonEmpty.equals(exists(T e) { x.contains(e); }); 

  x.isEmpty.equals(nonEmpty.not); 

  exists(T e) where x.contains(e) { 

    x.cardinality.equals(x.except(e).cardinality.successor); 

  }; 

}; 

The cardinality definition is not sufficient since it doesn’t converge for uncountably infinite sets 
(REAL, PQ, etc.) and it doesn’t terminate for infinite sets.  In addition, the definition of integer number 
type in this specification is incomplete for these cases, as it doesn’t account for infinities.  Finally the 
cardinality value is an example where it would be necessary to distinguish the cardinality ℵ0  (aleph0) 
of countably infinite sets (e.g., INT) from ℵ1 (aleph1), the cardinality of uncoutable sets (e.g., REAL, 
PQ). 

3.1.1.3 Subset 

A subset of a superset is a set where each element in the subset is also an element in the superset. 

invariant(SET<T> superset, subset; T element) 

    where superset.nonNull.and(subset.nonNull).and(element.nonNull) { 

  superset.contains(subset) 

    .equals(subset.contains(element).implies(superset.contains(element))); 

}; 

3.1.1.4 Union 

A union of two sets X and Y is the set Z where e is an element of Z if and only if e is also an element of 
X or an element of Y. 
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invariant(SET<T> x, y, z) 

    where x.nonNull.and(y.nonNull).and(z.nonNull) { 

  x.union(y).equals(z) 
    .equals(forall(T e) { 

              z.contains(e).equals(x.contains(e).or(y.contains(e))); 

            }); 

}; 

3.1.1.5 Difference 

The difference (X except Y) of two sets is the set Z, where e is an element of Z if and only if e is an 
element of X and not an element of Y. 

invariant(SET<T> x, y, z) 

    where x.nonNull.and(y.nonNull).and(z.nonNull) { 

  x.except(y).equals(z) 
    .equals(forall(T e) { 

              z.contains(e).equals(x.contains(e).and(y.contains(e).not)); 

            }); 

}; 

The difference between a set X and an element d (X except d) is the set Z, where e is an element of Z if 
and only if e is an element of X and e is not equal to d. 

invariant(SET<T> x, z; T d) 

    where z.nonNull.and(z.nonNull).and(d.nonNull) { 

  x.except(d).equals(z) 
    .equals(forall(T e) { 

              z.contains(e).equals(x.contains(e).and(d.equals(e).not)); 

            }); 

}; 

3.1.1.6 Intersection 

The intersection between two sets X and Y is the set Z where e is an element of Z if and only if it is 
contained in both of the sets X and Y. 

invariant(SET<T> x, y, z) 

    where x.nonNull.and(y.nonNull).and(z.nonNull) { 

  x.intersection(y).equals(z) 
    .equals(forall(T e) { 

              z.contains(e).equals(x.contains(e).and(y.contains(e))); 

            }); 

}; 
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3.1.1.7 Literal Form 

When the element type T has a literal form, the set SET<T> has a literal form, wherein the elements of 
the set are enumerated within curly braces and separated by semicola. 

SET<T>.literal ST { 

  SET<T> : “{” elements “}”  { $.equals($2); }; 

  SET<T> elements 

        : elements “;” T   { $.except($2).equals($1); } 

        | T      { $.contains($1); 

        $.except($1).isEmpty; }; 

}; 

Note: this literal form for sets is only practical for relatively small enumerable sets; this does not 
mean, however, that all sets are relatively small enumerations of elements. 

For example, 

 {1; 3; 5; 7; 19}  is a set of integer numbers or real numbers; 

 {1.2 m; 2.67 m; 17.8 m}  is a set of discrete physical quantities; 

 {apple; orange; banana}  is a set of character strings. 

ITS Note: a character-based ITS should choose a different literal form for sets if the Implementation 
Technology has a more native literal form for such collections.  

3.1.1.8 Promotions of any Values to Sets 

A data value of type T can be promoted into a trivial SET<T> with that data value as its only element. 

invariant(T x) { 

  ((SET<T>)x).contains(x); 

  ((SET<T>)x).except(x).isEmpty; 

}; 

3.1.2 Sets of Quantities, Total Ordering, and Convex Hull 

Sets of quantities may be totally ordered sets when there is an order relationship defined between any 
two elements in the set. Note that “ordered set” does not mean the same as Sequence (LIST). For 
example, the set {3; 2; 4; 88; 1} is an ordered set. The ordering of the elements in the set notation is 
still irrelevant, but elements can be compared to establish an order (1; 2; 4; 88). 

Totally ordered sets have convex hull.  A convex hull of a totally ordered set S is the smallest interval 
that is a superset of S.  This concept is going to be important later on. 

type Set<QTY> alias SET<QTY> { 

   BL totallyOrdered; 

   IVL<T> hull; 

}; 
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invariant(SET<QTY> s) where s.nonNull { 

  s.totallyOrdered.equals(forall(QTY x, y) where s.contains(x) 

                                            .and(s.contains(y)) { 

                            x.compares(y); }); 

}; 

invariant(SET<QTY> s) where s.totallyOrdered { 

  s.hull.contains(s); 

  forall(T e) where s.contains(e) { 

    s.hull.low.lessOrEqual(e); 

    e.lessOrEqual(s.hull.high); 

  }; 

}; 

Note that hull is defined if and only if the actual set is a totally ordered set. The data type of the 
elements itself need not be totally ordered. For example, the data type PQ is only partially ordered 
(since only quantities of the same kind can be compared), but a SET<PQ> may still be totally ordered 
(if it contains only comparable quantities.) For example, the convex hull of {4 s, 20 s, 55 s} is [4 s;55 
s]; the convex hull of {“apples”; “oranges”; “bananas”} is undefined because the elements have no 
order relationship among them; and the convex hull of {2 m; 4 m; 8 s} is likewise undefined, because 
it is not totally ordered (seconds are not comparable with meters.) 

3.2 Sequence (LIST) 

A sequence is an ordered collection of discrete values.   

template<ANY T> 

type Sequence<T> alias LIST<T> extends ANY { 

  T  head; 

  LIST<T>  tail; 

  BL isEmpty; 

 BL nonEmpty; 

  INT  length; 

  literal ST; 

  promotion LIST<T> (T x); 

}; 

A non-empty sequence has a head and a tail.  An empty sequence has length zero.  Notice the 
difference between empty-sequence and NULL.  The empty sequence is a proper sequence, not a NULL-
value. 

Figure 11: Convex Hull of a Totally Ordered Set 
ordering convex hull

set 
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invariant(LIST<T> x) where x.isEmpty { 

  x.head.isNull; 

  x.tail.isNull; 

  x.length.isZero; 

}; 

invariant(LIST<T> x) { 

  x.nonEmpty.equals(x.isEmpty.not); 

} 

The length of a sequence is the number of elements in the sequence.  NULL elements are counted as 
regular sequence elements.  

invariant(LIST<T> x) where x.nonEmpty { 

  x.length.equals(x.tail.length.successor); 

}; 

Two lists are equal if and only if they are both empty, or if both their head and their tail are equal. 

invariant(LIST<T> x, y) where x.isEmpty.and(y.isEmpty) { 

  x.equals(y);  

} 

invariant(LIST<T> x, y) where x.nonEmpty.and(y.nonEmpty) { 

  x.equals(y).equals(x.head.equals(y.head) 

                .and(x.tail.equals(y.tail))); 

}; 

3.2.1.1 Literal Form 

When the element type T has a literal form, the sequence LIST<T> has a literal form.  List elements 
are enumerated, separated by semicolon, and enclosed in parentheses. 

LIST<T>.literal ST { 

  LIST<T>  

  : “(” elements “)”    { $.equals($2); } 

  | “(” “)”     { $.isEmpty; }; 

  LIST<T> elements 

         : T “;” elements   { $.head.equals($1); 

        $.tail.equals($3); } 

         | T     { $.head.equals($1); 

        $.tail.isEmpty; }; 

}; 

For example, 
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 (1; 3; 5; 7; 19)  is a sequence of integer numbers or real numbers; 

 (1.2 m; 2.67 m; 17.8 m)  is a sequence of discrete physical quantities; 

 (apple; orange; banana)  is a sequence of character strings. 

ITS Note: a character-based ITS should choose a different literal form for sequences if the 
Implementation Technology has a more native literal form for such collections.  

3.2.1.2 Promotions of any Values to Sequences 

A data value of type T can be promoted into a trivial sequence LIST<T> with that data value as its 
only element. 

invariant(T x) { 

  ((LIST<T>)x).head.equals(x); 

  ((LIST<T>)x).tail.isEmpty; 

}; 

3.3 Bag (BAG) 

A bag is an unordered collection of elements where each element can be contained more than once in 
the bag.  The bag is defined only briefly here for completeness, since bags are a commonly recognized 
collection type. 

template<ANY T> 

type Bag<T> alias BAG<T> extends ANY { 

  INT contains(T kind); 

  BL  isEmpty; 

 BAG<T>  plus(BAG<T>); 

  BAG<T>  minus(BAG<T>); 

  promotion BAG<T> (T x); 

}; 

ITS Note: a bag can be represented in two ways.  Either as a simple enumeration of elements, 
including repeated elements, or as a “compressed bag” whereby the content of the bag is listed in 
pairs of element value and number.  A histogram showing absolute frequencies is a bag represented 
in compressed form.  The bag is therefore useful to communicate raw statistical data samples. 

3.3.1.1 Elements 

The semantic primitive for bags is the contains-function that maps element values to non-negative 
integer numbers, where zero means that the element value is not contained in the bag.  An empty bag is 
distinguished from an exceptional bag value (the NULL bag.) 

invariant(BAG<T> x; T e) where x.nonNull.and(e.nonNull) { 

  x.contains(e).nonNegative; 

  x.isEmpty.equals(x.contains(e).isZero); 

}; 
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3.3.1.2 Addition and Subtraction 

Bags can be added, meaning that the contains-values for each element are added.  Bags can and 
subtracted, meaning that the contains-values are subtracted.  Note that bags can not carry deficites, i.e., 
the minimal contains-value is  zero. 

invariant(BAG<T> x, y, z) where x.nonNull.and(y.nonNull) { 

  x.plus(y).equals(z) 
    .equals(forall(T e) where e.nonNull { 

              z.contains(e).equals(x.contains(e).plus(y.contains(e))); 

            }); 

  x.minus(y).equals(z) 

    .equals(forall(T e) where e.nonNull { 

              exists(INT n) 

                  where n.equals(x.contains(e).minus(y.contains(e)) { 

                n.nonNegative.equals(z.contains(e)); 

                n.isNegative.equals(z.contains(e).isZero); 

              }; 

            }); 

} 

3.3.1.3 Promotions of any Values to Bags 

A data value of type T can be promoted into a trivial bag BAG<T> with that data value as its only 
element. 

invariant(T x) { 

  ((BAG<T>)x).contains(x).equals(1); 

  forall(T y) { ((BAG<T>)x).contains(y).implies(x.equals(y)) }; 

}; 

3.4 Interval (IVL) 

An interval is a set of consecutive values of any ordered data type.  An interval is thus a contiguous 
subset of its base data type.  Any ordered type can be the basis of an interval.  It does not matter 
whether the base type is discrete or continuous.  If the base data type is only partially ordered, all 
elements of the interval must be elements of a totally ordered subset of the ordered data type. 

For example, physical quantities are considered ordered.  However the ordering of physical quantities 
is only partial; a total order is only defined among comparable quantities (quantities of the same 
physical dimension.)  While intervals between 2 and 4 meter exists, there is no interval between 2 
meters and 4 seconds. 

Intervals are sets and have all the properties of sets.  However, union and differences of intervals may 
not be intervals any more, since the elements of these union and difference sets might not be 
contiguous.  Intersections of intervals are always intervals. 



PART II – Unabridged Specification  3 Generic Collections 

Copyright © 2000, Health Level Seven, Inc.  All rights reserved. 95 

template<QTY T> 

type Interval<T> alias IVL<T> extends SET<T> { 

   T  low; 

 BL  lowClosed; 

  T  high; 

 BL  highClosed; 

  T.diff  width; 

 T  center; 

 IVL<T> hull(IVL<T> x); 

  literal ST; 

  promotion IVL<T> (T x); 

  demotion T; 

}; 

3.4.1.1 low : T 

This is the low boundary of the interval. 

invariant(IVL<T> x; T e) where x.nonNull.and(x.contains(e)) { 

  x.low.lessOrEqual(e); 

}; 

3.4.1.2 high : T 

This is the upper boundary of the interval. 

invariant(IVL<T> x; T e) where x.nonNull.and(x.contains(e)) { 

  e.lessOrEqual(x.high); 

}; 

3.4.1.3 width : T.diff 

The width is the difference between high and low boundary.  The purpose of distinguishing a width 
property is to handle all cases of incomplete information symmetrically.  In any interval representation 
only two of the three properties high, low, and width need to be stated and the third can be derived. 

When both boundaries are known, width can be derived as high minus low.  When one boundary and 
the width is known, the other boundary is also known.  When no boundary is known, the width may 
still be known.  For example, one knows that an activity takes about 30 minutes, but one may not yet 
know when that activity is started. 

invariant(IVL<T> x) { 

  x.low.lessOrEqual(x.high); 

  x.width.equals(x.high.minus(x.low)); 

}; 
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3.4.1.4 center : T 

The center is defined of finite intervals and is then the arithmetic mean of the interval (low plus high 
divided by 2).  The purpose of distinguishing the center as a semantic property is for conversions of 
intervals to point values.  This is most relevant when intervals are used to express uncertainty.  

invariant(IVL<T> x) where x.low.nonNull.and(x.high.nonNull) { 

  x.center.equals(x.low.plus(x.width.times(0.5)))); 

}; 

invariant(IVL<T> x) where x.low.isNull.or(x.high.isNull) { 

  x.center.notApplicable; 

}; 

3.4.1.5 lowClosed : BL 

Indicates whether the interval is closed or open at the low boundary.  For a boundary to be closed, a 
finite boundary must be provided, i.e. unspecified or infinite boundaries are always open. 

invariant(IVL<T> x) where x.nonNull { 

  x.low.nonNull.implies(x.lowClosed.equals(x.contains(x.low))); 

  x.low.isNull.implies(x.lowClosed.not); 

}; 

3.4.1.6 highClosed : BL 

Indicates whether the interval is closed or open at the high boundary.  For a boundary to be closed, a 
finite boundary must be provided, i.e. unspecified or infinite boundaries are always open. 

invariant(IVL<T> x) where x.nonNull { 

  x.high.nonNull.implies(x.highClosed.equals(x.contains(x.high))); 

  x.high.isNull.implies(x.highClosed.not); 

}; 

3.4.1.7 Literal Form 

The literal form for the interval data type is defined such that it is as intuitive to humans a possible.  
Five different forms are defined:48 

1) the interval form using square brackets, e.g., “[3.5; 5.5[”; 

2) the dash-form, e.g., “3.5–5.5”; 

                                                                 
48 The presence of so many options deserves explanation.  In principle, the interval form together with the width-only 
form would be sufficient.  However, the interval form is felt alien to many in the field of medical informatics.  One 
important purpose of the literal forms is to eradicate non-compliance through making compliance easy, without 
compromising on the soundness of the concepts.   
Furthermore, the different literal forms all have strength and weaknesses.  The interval and center-width forms’ 
strength is that they are most exact, showing closed and open boundaries.  The interval form’s weakness, however, is 
that infinite boundaries require special symbols for infinities, not necessary in the “comparator” form.  The center-
width form cannot specify intervals with an infinite boundary at all.  The “comparator” form, however, can only 
represent s ingle-bounded intervals (i.e., where the other boundary is infinite or unknown.)  The dash form, while being 
the weakest of all, is the most intuitive form for double bounded intervals. 
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3) the “comparator” form, using relational operator symbols, e.g., “<5.5”; 

4) the center-width form, e.g., “4.5[2.0[”. 

5) the width-only form using square brackets, e.g., “[2.0[”. 

IVL<T>.literal ST { 

  IVL<T> range  

  : interval    { $.equals($1); } 

  | dash     { $.equals($1); } 

  | comparator    { $.equals($1); } 

  | center_width   { $.equals($1); } 

  | width     { $.equals($1); }; 

 

  IVL<T> interval 

  : open T “;” T close;  { $.low.equals($2); 

        $.high.equals($4); 

       $.lowClosed.equals($1); 

       $.highClosed.equals($5); }; 

  BL open : “[”   { $.equals(true); } 

          | “]”   { $.equals(false); }; 

  BL close : “]”   { $.equals(true); } 

           | “[”   { $.equals(false); }; 

  IVL<T> width 

  : open T.diff close    { $.width.equals($2); 

                                $.lowClosed.equals($1); 

                                $.highClosed.equals($3); }; 

  IVL<T> center_width 

  : T width    { $.center.equals($1); 

                                $.width.equals($2.width); 

                                $.lowClosed.equals($2.lowClosed); 

                                $.highClosed.equals($2.highClosed); }; 

  IVL<T> dash : T “-” T; { $.low.equals($2); 

        $.high.equals($4); 
       $.lowClosed.equals(true); 

       $.highClosed.equals(true); }; 
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  IVL<TS> comparator 

  : “<”  T    { $.high.equals(T); 

       $.high.closed(false); 

       $.low.negativelyInfinite; } 

  | “>”  T    { $.low.equals(T); 
       $.low.closed(false); 

       $.high.positivelyInfinite; } 

  | “<=” T    { $.high.equals(T); 
       $.high.closed(true); 

       $.low.negativelyInfinite; } 

  | “>=” T    { $.low.equals(T); 
       $.low.closed(true); 

       $.high.positivelyInfinite; }; 

}; 

Table 37: Examples of interval literals 

literal low high alternate 
 closed low high closed center width 

3.5-5.5 true 3.5 5.5 true 4.5 2.0 
[3.5;5.5] true 3.5 5.5 true 4.5 2.0 
[3.5;5.5[ true 3.5 5.5 false 4.5 2.0 
4.5[2.0] true 3.5 5.5 true 4.5 2.0 
4.5[2.0[ true 3.5 5.5 false 4.5 2.0 
<5.5 false −∞ 5.5 false N/A ∞ 
>3.5 false 3.5 ∞ false N/A ∞ 
>=3.5 true 3.5 ∞ false N/A ∞ 
<=5.5 false −∞  5.5 true N/A ∞ 
]-inf;5.5] false −∞ 5.5 true N/A ∞ 
[3.5;+inf[ true 3.5 ∞ false N/A ∞ 
];5.5] false UNK 5.5 true UNK UNK 
[3.5;[ true 3.5 UNK false UNK UNK 
-3.5-3.5 true −3.5 3.5 true 0.0 7.0 
-5.5--3.5 true −5.5 −3.5 true −4.5 2.0 
[-5.5;-3.5] true −5.5 −3.5 true −4.5 2.0 
-4.5[2.0] true −5.5 −3.5 true −4.5 2.0 
<-3.5 false −∞  −3.5 false N/A ∞ 
>-5.5 false −5.5 ∞ false N/A ∞ 
[3.5;3.5] true 3.5 3.5 true 3.5 0 
[2.5] true UNK UNK true UNK 2.5 
[2.5[ true UNK UNK false UNK 2.5 

3.4.1.8 Conversion Between Point Values and Intervals 

A quantity type T can be promoted into a trivial interval IVL<T> where low and high boundaries are 
equal and boundaries closed. 
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invariant(T x) { 

  ((IVL<T>)x).low.equals(x); 

  ((IVL<T>)x).high.equals(x); 

  ((IVL<T>)x).highClosed; 

  ((IVL<T>)x).lowClosed; 

}; 

An interval IVL<T> can be demoted to a simple quantity type T. If both boundaries are finite, the 
conversion yields the center of the interval.  If one boundary is infinite, conversion yields the other 
boundary.  If both boundaries are infinite, the conversion to a point value is not applicable. 

invariant(IVL<T> x) where x.nonNull { 

  x.low.nonNull.and(x.high.nonNull).implies(((T)x).equals(x.center)); 

  x.high.nonNull.and(x.low.isNull).implies(((T)x).equals(x.high)); 

  x.low.nonNull.and(x.high.isNull).implies(((T)x).equals(x.low)); 

  x.low.isNull.and(x.high.isNull).implies(((T)x).notApplicable); 

}; 

3.4.1.9 Convex Hull 

A convex hull or “interval hull” of 
two intervals is the least interval that 
is a superset of its operands. This 
concept will play an important role 
later on.  

invariant(IVL<T> h, IVL<T> i, j) where h.equals(i.hull(j)) { 

  i.low.lessOrEqual(j.low).implies(h.low.equals(i.low)); 

  j.low.lessOrEqual(i.low).implies(h.low.equals(j.low)); 

  i.high.lessOrEqual(j.high).implies(h.high.equals(j.high)); 

  j.high.lessOrEqual(i.high).implies(h.high.equals(i.high)); 

}; 

3.4.2 Interval of Physical Quantities (IVL<PQ>) 

An interval of physical quantities is constructed from the generic interval type.  However, recognizing 
that the unit can be factored from the boundaries, we add additional semantics and a separate literal 
form.  The additional view of an interval of physical quantities is an interval of real numbers with one 
unit. 

type Inteval<PQ> alias IVL<PQ> { 

 IVL<REAL> value; 

 CS unit; 

}; 

The unit applies to both low and high boundary. 

invariant(IVL<PQ> x) where x.nonNull { 

  x.value.nonNull; 

Figure 12: Convex Hull of two Intervals 

 convex hull

operands 
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  x.low.value.equals(x.value.low); 

  x.low.unit.equals(x.unit); 

  x.lowClosed.equals(x.value.lowClosed); 

  x.high.value.equals(x.value.high); 

  x.high.unit.equals(x.unit); 

  x.highClosed.equals(x.value.highClosed); 

}; 

The special literal form is simply an interval of real numbers a space and the unit. 

IVL<PQ>.literal ST { 

  IVL<PQ>  

  : IVL<REAL> “ ” unit        { $.value($1); $.unit.equals($3); } 

  | IVL<REAL>    { $.equals($1); }; 

  CS unit : ST    { $.value.equals($1); 

        $.codeSystem(2.16.840.1.113883.3.2); }; 

}; 

For example: “[0;5] mmol/L” or “<20 mg/dL” are valid literal forms of intervals of physical 
quantities.  The generic interval form, e.g., “[50 nm; 2 m]” is also allowed. 

3.4.3 Interval of Point in Time (IVL<TS>) 

The generic interval data type defines the interval of points in time too.  However, there are some 
special considerations about literal representations and conversions of intervals of point in time, which 
are specified in this section. 

type Inteval<TS> alias IVL<TS> { 

  literal  ST 

  promotion IVL<TS> (TS x); 

}; 

3.4.3.1 Promotion of TS to IVL<TS> 

A TS can be promoted to an IVL<TS> whereby the low boundary is the TS value itself, and the width 
is inferred from the precision of the TS and the duration of the least significant calendar period 
specified. The high boundary is open. For example, the TS literal “200009” is converted to an 
IVL<TS> with low boundary 200009 and width 30 days, which is the interval 
“[200009;200010[”. 

3.4.3.2 Literal Form 

The literal form for interval of point in time is exceptional.  

• The “dash form” is not allowed for intervals of point in time 

• A “hull form” is defined instead 

In order to avoid syntactic conflicts with the timezone and slightly different usage profiles of the ISO 
8601 that occur on some ITS platforms, the dash form of the interval is not permitted for 
IVL<TS>. The interval-form using square brackets is preferred. 
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Example: May 12, 1987 from 8 to 9:30 PM is  “[198705122000;198705122130]”.   

Note: The precision of a stated interval boundary is irrelevant for the interval. One might wrongly 
assume that the interval “[19870901;19870930]” stands for the entire September 1987 until 
end of the day of September 30.  However, this is not so! The proper way to denote an entire 
calendar cycle (e.g., hour, day, month, year, etc.) in the interval notation with is to use an open high 
boundary. For example, all of September 1987 is denoted as  “[198709;198710[”.49   

The “hull-form” of the literal is defined as the convex hull (cf. Section 3.4.1.9) of interval-promotions 
from two time stamps. 

  IVL<TS> hull : TS “..” TS; { $.equals(((IVL<TS>)$1).hull((IVL<TS>)$3)); }; 

For example, “19870901..19870930” is a valid literal using the hull form. The value is equivalent 
to the interval form “[19870901;19871001[”.50 

The hull-form further allows an abbreviation, where the higher timestamp literal does not need to 
repeat digits on the left that are the same as for the lower timestamp literal.  The two timestamps are 
right-aligned and the digits to the left copied from the lower to the higher timestamp literal. This is a 
simple string operation and is not formally defined here. 

Example: May 12, 1987 to May, 23, 1987 is  “19870512..23”.  However, note that May 12, 1987 to June 2, 
1987 is “19870512..0602”, and not “20000512..02”. 

 

                                                                 
49 This statement seems to directly contradict the ruling about the pro motion of TS to IVL<TS>. However, there is no 
contradiction. The precision of a boundary does not have any relevance, but the precision of a simple timestamp (not as 
an interval boundary) is relevant, when that timestamp is promoted to an interval. 
50 The h ull form appears superfluous for the simple interval all by itself. However, the hull form will become important 
for the periodic interval notation as it shortens the notation and (perhaps arguably) makes the notation of more complex 
timing structures more  intuitive. 
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4 Generic Type Extensions 
Generic type extensions are generic types with one parameter type, and that extend (specialize) their 
parameter type.  In the formal data type definition language, generic type extensions follow the pattern: 
template<ANY T> type GenericTypeExtensionName extends T { ... }; These generic 
type extensions inherit most properties of their base type and add some specific feature to it.  The 
generic type extension is a specialization of the base type, thus a value of the extension data type can 
be used instead of its base data type. 

ITS Note: values of extended types can be substituted for their base type.  However, an ITS may 
make some constraints as to what extensions to accommodate.  Particularly, extensions need not be 
defined for those components carrying the values of data value properties.  Thus, while any data 
value can be annotated outside the data type specification, and ITS may not provide for a way to 
annotate the value of a data value property.  

At this time HL7 does not permit use of generic type extensions, except where explicitly 
enabled (in this or another HL7 specification) for such use cases where this advanced 
functionality is important.51 

4.1 History (HIST) and History Item (HXIT) 

This generic data type is used to collect an entire history of any other data value.  A history is a non-
empty set of data values that conform to the history item (HXIT) type, i.e., data values that have a 
valid-time property.  The history information is not limited to the past; expected future values can also 
appear. 

template<ANY T> 

type History<T> alias HIST<T> extends SET<HXIT<T>> { 

   HXIT<T>  earliest; 

  HIST  exceptEarliest; 

  HXIT<T>  latest; 

 HIST  exceptLatest; 
  demotion HXIT<T>; 

}; 

The earliest history item is the item in the set whose valid time’s low boundary (validity start time) is 
less or equal (i.e. before) that of any other history item in the set.  Likewise, the latest history item is 
the item in the set whose valid time’s high boundary (validity end time) is greater or equal (i.e. after) 
that of any other history item in the set. 

The semantics does not principally forbid the time intervals to overlap.  However, if two history items 
have the same low (high) boundary in the valid time interval, it is undefined which one is considered 
the earliest (latest). 

Except-earliest is the derived history that has the earliest item excluded.  Except-latest is the derived 
history that has the latest item excluded. 

invariant(HIST x) where x.nonNull { 

  x.nonEmpty; 

                                                                 
51 This specification imposes a self-restraint upon itself to allow existing systems a graceful transition. However, the 
formal specification keeps the generic type extensions as substitutable for their base types. This self-restraint may be 
omitted in the future. New implementations are advised to accommodate some generalizable support for these generic 
data type extensions. 
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  forall(HXIT<T> e) where x.contains(e) { 

    x.earliest.validTime.low.lessOrEqual(e.validTime.low); 

    x.latest.validTime.high.greaterOrEqual(e.validTime.high); 

  }; 

  x.exceptEarliest.equals(x.except(x.earliest)); 

  x.exceptLatest.equals(x.except(x.latest)); 

  ((T)x).equals(x.latest); 

}; 

A type conversion exists between an entire history HIST<T> and a single history item HXIT<T>.  This 
conversion takes the latest data from the history.  The purpose of this conversion is to allow an 
information producer to produce a history of any value instead of sending just one value.  An 
information-consumer, who does not expect a history but a simple value, will convert the history to the 
latest value. 

Note from the definition of history item (HXIT) below, that HXIT<T> semantically extends T.  This 
means, that the information-consumer expecting a T but given an HXIT<T> will not recognize any 
difference (substitutability of specializations.) 

ITS Note: the order of history items in the lists should be backwards in time. 

4.1.1 History Item (HXIT) 

This generic data type extension tags a time range to its base data value.  The time range is the time in 
which that data was, is, or is expected to be valid.  If the base type T does not possess a valid time 
property, the HXIT<T> adds that property to the base type.  If, however, the base type T does have a 
valid time property, that property can be mapped to the valid time property of the HXIT<T>.52 

template<ANY T> 

type HistoryItem<T> alias HXIT<T> extends T { 

   IVL<TS> validTime; 

}; 

4.1.1.1 validTime : IVL <TS> 

The time interval during which the given information was, is, or is expected to be valid.  The interval 
can be open or closed infinite or undefined on either side. 

4.2 Uncertain Value – Probabilistic (UVP) 

This is a generic data type extension to specify one uncertain value tagged with a probability.  The 
probability expresses the information producer’s belief that the given value holds.  How the probability 
number was arrived at is outside the scope of this specification. 

                                                                 
52 Note that data types are specifications of abstract properties of values.  This specification does not mandate how 
these values are represented in an ITS or implemented in an application.  Specifically, it does not mandate how the 
represented components are named or positioned.  In addition, the semantic generalization hierarchy may be different 
from a class hierarchy chosen for implementation (if the implementation technology has inheritance.)  Keep the 
distinction between a type (interface) and an implementation (concrete data structure, class) in mind.  The ITS must 
contain a mapping of ITS defined features of any data type to the semantic properties defined here. 
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Probabilities are subjective and (as any pieces of data) apply in a context.  The context of any data item 
is the data structure in which that item appears.  While the context dependence is important for any 
information, it is critical to understand the context dependency of probabilities: when new information 
is found the probability might change.  Thus, for any message (document, or other information 
representation) the information – and particularly the probabilities – reflect what the information 
producer believed was appropriate at the given time and for the given purpose for which the message 
(document) was created. 

Since probabilities are subjective measures of belief, they can be stated without being “correct” or 
“incorrect” per se, let alone “precise” or “imprecise”.  Notably, one does not have to entertain 
experiments to measure a frequency of some outcome in order to specify a probability.  In fact, 
whenever statements about individual people or events are made, it is not possible to confirm such 
probabilities with “frequentists” experiments. 

template<ANY T> 

type UncertainValueProbabilistic<T> alias UVP<T> extends T { 

   REAL  probability; 

}; 

The type T is not formally constrained.  In theory, discrete probabilities can only be stated for discrete 
data values.  Thus, generally UVP<REAL> and UVP<PQ> values should not be stated.  However, by 
definition a discrete value set is one that is finite or countably infinite, and abiding by this definition 
any measured value or real number recorded with digits is discrete. Thus, the distinction between 
discrete and continuous values is not practical for our purpose.  Indeed, even though integer numbers 
are discrete (countably infinite) estimating a single integer number and tagging it with a probability is 
not reasonable.  Most textbook on statistics treat estimations of integers or ordinals as real numbers 
when defining the estimated value of a random sample X as the sum of xi ⋅ p(xi) over all xi ∈ X. 

4.2.1.1 probability : REAL 

This is the probability assigned to the value.  The probability is a real number between 0 and 1.  If the 
probability is unstated (NULL), an UVP<T> is indistinguishable from a simple data value T.  

invariant(UVP<T> x) where x.nonNull.and(x.probability.nonNull) { 

  ((IVL<REAL>)[0;1]).contains(x.probability); 

}; 

There is no “default probability” that one can assume when the probability is unstated.  Therefore, it is 
impossible to make any semantic difference between an UVP<T> without probability and a simple T.  
UVP<T> does not mean “uncertain”, and a simple T does not mean “certain”.  In fact, the probability 
of the UVP<T> could be 0.999 or 1, which is quite certain, where a simple T value could be a very 
vague guess. 

4.3 Non-Parametric Probability Distribution (NPPD) 

This is a generic data type to specify a value as a non-empty set of uncertain values forming a 
probability distribution (histogram.)  All the elements in the set are considered alternatives and are 
rated each with its probability expressing the belief (or frequency) that each given value holds. 

The purpose of the non-parametric probability distribution is chiefly to support statistical data 
reporting as it occurs in measurements taken from many subjects and consolidated in a histogram.  
This occurs in epidemiology, verterinary medicine, laboratory medicine, but also in cost controlling 
and business process engineering. 
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Semantically, the information of a stated value exists in contrast to the complement set of unstated 
possible values.  Thus, semantically, a non-parametric probability distribution contains all possible 
values and assigns probabilities to each of them. 

ITS Note: even though semantically the NPPD assigns probabilities to all possible values, not all 
values need to be represented explicitly.  Those possible values that are not mentioned in a NPPD 
data structure will have the rest-probability distributed equally over all unmentioned values.  For 
example, if the value set is {A; B; C; D} but the NPPD value states just {(B; 0.5); (C; 0.25)} then the 
rest-probability is 1 − 0.75 = 0.25 which is distributed evenly over the complement set: {(A; 0.125); (D; 
0.125)}.  Semantically, the NPPD is the union of the stated probability distribution and the unstated 
complement with rest-probability distributed evenly.  

template<ANY T> 

type NonParametricProbabilityDistribution〈T〉  

    alias NPPD<T> extends SET<UDP<T>> { 

   SET<UDP<T>> mostLikely(INT n); 

}; 

Just as with UVP, the type T is not formally constrained, even though there are reasonable and 
unreasonable use cases. Typically one would use the non-parametric probability distributions for 
unordered types, if only a “small" set of possible values is assigned explicit probabilities, or if the 
probability distribution cannot (or should not) be approximated with parametric methods.  For other 
cases, one may prefer parametric probability distributions. 

invariant(NPPD<T> x) where x.nonNull { 

  x.nonEmpty; 

  x.contains(x.mostLikely(n)); 

  x.mostLikely(n). 
  forall(UVP<T> d, e; SET<UVP<T>> m; INT n) 

      where x.contains(d) 

       .and(m.equals(x.mostLikely(n))) 

       .and(m.contains(e)) { 

    e.greaterOrEqual(d).or(m.contains(d)); 

  }; 

}; 

4.4 Parametric Probability Distribution (PPD) 

A parametric probability distribution is a generic data type extension specifying an uncertain value of a 
quantity data type using a distribution function and its parameters.  Aside from the specific parameters 
of the distribution, a mean (expected value) and standard deviation is always given to help maintain 
interoperability if receiving applications can not deal with a certain probability distribution.  

template<QTY T> 

type ParametricProbabilityDistribution<T> alias PPD<T> extends T { 

  T.diff  standardDeviation; 

  CS  type; 
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   IVL<T>  confidenceInterval(REAL p); 

    REAL  probability(IVL<T> x); 

 PPD<T>  times(REAL x); 

}; 

Since a PPD<T> extends the base type T, a simple T value is the mean (expected value or first 
moment) of the probability distribution. Applications that can not deal with distributions will take the 
simple T value neglecting the uncertainty.  That simple value of type T is also used to standardize the 
data for computing the distribution. 

Probability distributions are defined over integer or real numbers and normalized to a certain reference 
point (typically zero) and reference unit (e.g., standard deviation = 1).  When other quantities defined 
in this specification are used as base types, the mean and the standard deviation are used to scale the 
probability distribution.  For example, if a PPD<PQ> for a length is given with mean 20 ft and a 
standard deviation of 2 in, the normalized distribution function f(x) that maps a real number x to a 
probability density would be translated to f’(x’) that maps a length x’ to a probability density as f’(x’) = 
f((x’− µ ) / σ). 

Where applicable, the PPD specification conforms to the ISO Guide to the Expression of Uncertainty 
in Measurement (GUM) as reflected by NIST Technical Note 1297, Guidelines for Evaluating and 
Expressing the Uncertainty of NIST Measurement Results.  The PPD specification does not describe 
how uncertainty is to be evaluated but only how it is expressed.  The concept of “standard uncertainty” 
as set forth by the ISO GUM corresponds to the “standard deviation” property of the PPD. 

4.4.1.1 standardDeviation : T.diff 

The standard deviation of the probability distribution.  The standard deviation is used to normalize the 
data for computing the distribution function.  Applications that can not deal with probability 
distributions can still get an idea about the confidence level by looking at the standard deviation. 

The standard deviation of a probability distribution over a type T is of a related type T.diff that can 
express differences between values of type T.  If T is REAL or INT, T.diff is  also REAL or INT 
respectively.  However if T is a point in time (TS), T.diff is a physical quantity (PQ) in the dimension 
of time. 

The standard deviation is what ISO GUM calls “standard uncertainty.”  

4.4.1.2 type : CS 

This code specifies the type of probability distribution.  Possible values are as shown in the attached 
table.  The NULL value (unknown) for the type code indicates that the probability distribution type is 
unknown.  In that case, the standard deviation has the meaning of an informal guess. 

Table 38 lists the defined probability distributions.  Many distribution types are defined in terms of 
special parameters (e.g., the parameters  α and β for the γ-distribution, number of degrees of freedom 
for the t-distribution, etc.)  For all distribution types, however, the mean and standard deviation are 
defined.  The PPD data type is specified with the parameters mean and standard distribution only.  The 
definition column in Table 38 contains the relationship between the special parameters and the mean µ 
and standard deviation σ.   

ITS Note: an ITS does not need to represent any of the specialized parameters for the distribution 
types.  As it turns out, all of these specialized parameters can be calculated from the mean and 
standard deviation. 
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Table 38: Probability Distribution Types 

 
The three distribution-types unknown (NULL), uniform and normal must be supported by every system 
that claims to support PPD.  All other distribution types are optional.  When a system interpreting a 
PPD representation encounters an unknown distribution type, it maps this type to the unknown (NULL) 
distribution-type. 

4.4.1.3 Literal Form 

The parametric probability distribution has a literal form.  The general syntax is as follows: 

Name Code Definition 

unknown (NULL) Used to indicate that the mean is estimated without any closer consideration of its 
probability distribution.  In this case, the meaning of the standard deviation is not crisply 
defined.  However, interpretation should be along the lines of the normal distribution, e.g., 
the interval covered by the mean ±1 standard deviation should be at the level of about 
two thirds confidence. 

uniform U The uniform distribution assigns a constant probability over the entire interval of possible 
outcomes, while all outcomes outside this interval are assumed to have zero probability.  
The width of this interval is 2 σ √3.  Thus, the uniform distribution assigns the probability 
densities f(x) = (2 σ √3)−1  to values µ  − σ √3  ≥ x ≤ µ  + σ √3 and f(x) = 0 otherwise.  

normal 
(Gaussian) 

N This is the well-known bell-shaped normal distribution.  Because of the central limit 
theorem, the normal distribution is the distribution of choice for an unbounded random 
variable that is an outcome of a combination of many stochastic processes.  Even for 
values bounded on a single side (i.e. greater than 0) the normal distribution may be 
accurate enough if the mean is "far away" from the bound of the scale measured in terms 
of standard deviations. 

log-normal LN The logarithmic normal distribution is used to transform skewed random variable X into a 
normally distributed random variable U = log X. The log-normal distribution can be 
specified with the properties mean µ and standard deviation σ.  Note however that mean 
µ and standard deviation σ are the parameters of the raw value distribution, not the 
transformed parameters of the lognormal distribution that are conventionally referred to 
by the same letters.  Those log-normal parameters µµ log and σσ log relate to the mean µ and 
standard deviation σ of the data value through σσ log

2 = log (σ2/µ2 + 1) and µµ log = log µ − 
σσlog

2/2. 
γ (gamma) G The gamma-distribution used for data that is skewed and bounded to the right, i.e. where 

the maximum of the distribution curve is located near the origin.  The γ-distribution has a 
two parameters α and β.  The relationship to mean µ and variance σ2 is µ = α β and σ2 = 
α β2. 

exponential E Used for data that describes extinction.  The exponential distribution is a special form of 
γ-distribution where α = 1, hence, the relationship to mean µ and variance σ2 are µ = β 
and σ2 = β2. 

χ2 (chi square) X2 Used to describe the sum of squares of random variables which occurs when a variance 
is estimated (rather than presumed) from the sample.  The only parameter of the χ2-
distribution is ν, so called the number of degrees of freedom (which is the number of 
independent parts in the sum).  The χ2-distribution is a special type of γ-distribution with 
parameter α = ν /2 and β  = 2.  Hence, µ = ν and σ2 = 2 ν. 

t (Student) T Used to describe the quotient of a normal random variable and the square root of a χ2 
random variable.  The t-distribution has one parameter ν, the degrees of freedom. The 
relationship to mean µ  and variance σ2 are: µ = 0 and σ2 = ν / (ν − 2) 

F F Used to describe the quotient of two χ2 random variables.  The F-distribution has two 
parameters ν1 and ν2, which are the numbers of degrees of freedom of the numerator 
and denominator variable respectively. The relationship to mean µ  and variance σ2 are: 
µ = ν2 / (ν2 − 2) and σ2 = (2 ν2 (ν2 + ν1 − 2)) / (ν1 (ν2 − 2)2 (ν2 − 4)). 

β (beta) B The beta-distribution is used for data that is bounded on both sides and may or may not 
be skewed (e.g., occurs when probabilities are estimated.)  Two parameters α and β  are 
available to adjust the curve.  The mean µ and variance σ2 relate as follows: µ = α / (α + 
β) and σ2 = αβ/((α + β)2 (α + β + 1)). 
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PPD<T>.literal ST { 

  PPD<T> : T “(” type T.diff “)” { ((T)$).equals($1); 

        $.type.equals($3); 

        $.standardDeviation.equals($4); }; 

  CV type : ST     { $.value.equals($1); 

        $.system.equals(); }; 

}; 

Examples: an example for a PPD<REAL> is “1.23(N0.005)” for a normal distribution of a real 
number around 1.23 with a standard deviation of 0.005.  An example for a PPD<PQ> is “1.23 m (5 
mm)” for a distribution of unknown type around the length 1.23 meter with a standard deviation of 
5 millimeter.  An example for a PPD<TS> is “2000041113(U4 h)” for a uniform distribution 
around April 11, 2000 at 1pm with standard deviation of 4 hours. 

4.4.2 Probability Distribution over Real Numbers (PPD<REAL>) 

The parametric probability distribution of real numbers is fully defined by the generic data type.   

type ParametricProbabilityDistribution〈REAL〉 alias PPD<REAL>; 

However, there are some special considerations about literal representations and conversions of 
probability distributions over real numbers, which are specified in this section. 

4.4.2.1 Converting a real number (REAL) to an uncertain real number (PPD<REAL>) 

When converting a REAL into a PPD<REAL>, the standard deviation is calculated from the REAL 
value’s order of magnitude and precision (number of significant digits).  Let x be a real number with 
precision n.  We can determine the order of magnitude e of x as e = log10 |x| where e is rounded to the 
next integer that is closer to zero (special case: if x is zero, e is zero.)  The value of least significant 
digit l is then l = 10e−n and the standard deviation σ isσ = l / 2. 

Table 39: Examples of standard deviations computed from precision p and order of magnitude e 

Representation x e p e −−  p + 1 l  σσ 
0 0 (0) 1 0 1 0.5 
1 1 0 1 0 1 0.5 
2 2 0 1 0 1 0.5 
9 9 0 1 0 1 0.5 

10 10 1 2 0 1 0.5 
100 100 2 3 0 1 0.5 

1e+1 10 1 1 1 10 5 
1e+2 100 2 1 2 100 50 

10e+1 100 2 2 1 10 5 
1.1 1.1 0 2 -1 0.1 0.05 

10.1 10.1 1 3 -1 0.1 0.05 
1.1e+2 110 2 2 1 10 5 
1.1e-2 0.011 -2 2 -3 0.001 0.0005 
1.1e-4 0.00011 -4 2 -5 0.00001 0.000005 

10.1e-4 0.00101 -3 3 -5 0.00001 0.000005 
0.1e-1 0.01 -2 1 -2 0.01 0.005 
0.01e-1 0.001 -3 1 -3 0.001 0.0005 
0.01e-2 0.0001 -4 1 -4 0.0001 0.00005 
0.00 0 (0) 3 -2 0.01 0.005 
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4.4.2.2 Concise Literal Form for PPD<REAL> 

Besides the generic literal form of the PPD defined in Section 4.4.1.3, a concise literal form is defined 
for PPD over real numbers.  This concise literal form is defined such that the standard deviation can be 
expressed in terms of the least significant digit in the mantissa.  This literal is defined as an extension 
of the REAL literal: 

PPD<REAL>.literal ST { 

  PPD<REAL> mantissa 

  : REAL.mantissa “(” type T.diff “)” { ((T)$).equals($1); 

                                        $.type.equals($3); 

                                        $.standardDeviation.equals($4); } 

  | REAL.mantissa                     { $.equals($1); 

                                        $.type.equals($3); 

       $.standardDeviation.equals($1.leastSignificantDigit.times(0.5)); }; 

  CS type : ST                        { $.value.equals($1); 
       $.system.equals(2.16.840.1.113883.5.1019); }; 

}; 

Examples: “1.23e-3 (U5e-6)” is a the unifom distribution around 1.23 × 10−3 with 5 × 10−6  
standard deviation in generic literal form.  “1.230(U5)e-3” is the same value in concise literal 
form. 

4.4.3 Parametric Probability Distributions over Physical Quantities (PPD<PQ>) 

A parametric probability distribution over physical quantities is constructed from the generic PPD 
type.  However, recognizing that the unit can be factored from the boundaries, we add additional 
semantics and a separate literal form.  The additional view of a probability distribution over physical 
quantities is a probability distribution over real numbers with one unit. 

type ParametricProbabilityDistribution<PQ> alias PPD<PQ> { 

 PPD<REAL> value; 

 CS unit; 

}; 

The unit applies to both mean and standard deviation. 

invariant(PPD<PQ> x) where x.nonNull { 

  x.value.nonNull; 

  ((REAL)x.value).equals(((PQ)x).value); 

  x.unit.equals(((PQ)x).unit); 

  x.value.standardDeviation.equals(x.standardDeviation.value); 

  x.standardDeviation.unit.equals(x.unit); 

}; 
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4.4.3.1 Concise Literal Form for PPD<PQ> 

A concise literal form for probability distributions of physical quantities is defined based on the 
concise literal form of PPD<REAL> (cf. Section 4.4.2.2) where REAL is the value.  This literal is 
defined as an extension of the PQ literal. 

PPD<PQ>.literal ST { 

  PPD<PQ> : PPD<REAL> “ ” unit  { $.value.equals($1); 

        $.unit.equals($3); } 

}; 

Examples: “1.23e-3 m (N5e-6 m)” is the normal-distributed length of 1.23 × 10−3 m with 5 × 
10−6  m standard deviation in generic literal form.  “1.230(N5)e-3 m” is the same value in concise 
literal form.  “1.23e-3(N0.005e-3) m ” is also valid; it is the concise literal form for PPD<PQ> 
combined with the generic literal form for PPD〈REAL〉. 

4.4.4 Probability Distribution over Time Points (PPD<TS>) 

The parametric probability distribution over time points is fully defined by the generic data type.   

type ParametricProbabilityDistribution<TS> alias PPD<TS>; 

The standard deviation is of type TS.diff, which is a duration (a physical quantity in the dimension of 
time.) 

4.4.4.1 Converting a point in time (TS) to an uncertain point in time (PPD<TS>) 

When converting a TS into a PPD<TS>, the standard deviation is calculated from the TS value’s order 
of magnitude and precision (number of significant digits) such that two standard deviations span the 
maximal time range of the digits not specified.  For example, in 20000609 the unspecified digits are 
hour of the day and lower.  All these digits together span a duration of 24 hours, and thus, the standard 
deviation σ isσ = 12 h from 20000609000000.0000… up to 20000609999999.9999… (= 20000610) 

This rule is different from real numbers in that the range of uncertainty lies above the time value 
specified.  This is to go with the common sense judgment that June 9th spans all day of June 9th with 
noon as the center, not midnight.
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5 Timing Specification 

The timing specification suite of generic data types is used to specify the complex timing of events and 
actions such as they occur in order management and scheduling systems.  It also supports the cyclical 
validity patterns that may exist for certain kinds of information, such as phone numbers (evening, 
daytime), addresses (so called “snowbirds,” residing in the south during winter and north during 
summer) and office hours. 

The timing specification data types include point in time (TS) and the interval of time (IVL<TS>), and 
add to it other kinds of collection types that are specifically suited to specify repeated schedules.  
These additional collections include periodic interval, event-related periodic interval, and finally the 
generic timing specification types itself.  All these timing types are semantically sets of time points 
SET<TS>, describing the time distribution of repeating states or events.  

5.1 Periodic Interval of Time (PIVL) 

The periodic interval of time specifies an interval of time that recurs periodically.  Periodic intervals 
have two properties, phase and period.  The phase specifies the interval prototype that is repeated every 
period.  

Table 40: Summary of Primary Properties of Periodic Interval of Time (PIVL<TS>) 

Name Type Status Default Constraint Definition 
phase IVL<TS> mandatory   A prototype of the repeating interval, 

may anchor the periodic interval 
sequence at a certain point in time. 

period PQ 
(~1 s) 

mandatory   A time duration specifying the 
frequency at which the periodic 

Figure 13: Overview of Timing Specification Data Types 

GeneralTimingSpecification : GTS 

hull : IVL<TS> 

nextAfter(TS) : IVL<TS>
nextTo(TS) : IVL<TS> 
interleaves(GTS>) : BL
periodicHull(GTS>) : BL 

T : TS 

PeriodicIntervalOfTime : PIVL 
period : T.diff
phase : IVL<T>
alignment : CS 

contains(TS) : BL

T : TS 

EventRelatedPIVL : EIVL 
event : CV
offset : IVL<T.diff> 

occurrenceAt(TS) : IVL<TS>
contains(IVL<TS>) : BL

T : ANY

Set : SET 

isEmpty : BL 
nonEmpty : BL 
cardinality : INT 

contains(T) : BL
contains(SET<T>) : BL
union(SET<T>) : 
SET<T> except(T) : SET<T>
except(SET<T>) : 
SET<T> intersection(SET<T>) : SET<T> 

T : QTY 

Interval : IVL
low : 
T lowClosed : BL 
high : T 
highClosed : BL 
w idth : T.diff
center : T

hull(IVL<T>) : 
IVL<T> 

IVL<TS
> 

SET<TS> 
totallyOrdered : BL = true
hull : IVL<TS> 

PointInTime : TS 
<<type>> diff : PQ ~ 1s 
offset : diff
calendar : CS
precision : INT 
timezone : diff

equals(TS) : BL
plus(diff) : TS
minus(TS) : diff

0..*0..*
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(~1 s) frequency at which the periodic 
interval repeats. 

alignment CS optional   Specifies an alignment of the 
repetition to a calendar (e.g., to 
distinguish every 30 days from “the 
5th of every month”.) 

institutionSpecifiedTime BL optional false  Indicates whether the exact timing is 
up to the party executing the 
schedule (e.g., to distinguish “every 8 
hours” from “3 times a day”.) 

For example, “every eight hours for two minutes” is a periodic interval where the interval’s width 
equals two minutes and the period at which the interval recurs equals eight hours. 

The phase also marks the anchor point in time for the entire series of periodically recurring intervals.  
The recurrence of a periodic interval has no beginning or ending, but is infinite in both future and past. 

template<TS T> 

protected type PeriodicInterval<T> alias PIVL<T> extends SET<T> { 

   T.diff  period; 

  IVL<T>  phase; 

  CS alignment; 

 BL institutionSpecifiedTime; 

 BL  contains(TS); 
  literal  ST; 

}; 

A periodic interval is fully specified when both the period and the phase are fully specified.  The 
interval may be only partially specified where either only the width or only one boundary is specified. 

For example: “every eight hours for two minutes” specifies only the period and the phase’s width but 
no boundary of the phase.  Conversely, “every eight hours starting at 4 o’clock” specifies only the 
period and the phase’s low boundary but not the phase’s high boundary.  “Every eight hours for two 
minutes starting at 4 o’clock” is fully specified since the period, and both the phase’s low boundary 
and width are specified (low boundary and width implies the high boundary.) 

The periodic interval of time is a generic data type PIVL<T> where the type parameter T is restricted 
to the point in time (TS) data type and it’s extensions.  The parametric probability distribution of point 
in time (PPD<TS>) is an extension of point in time and therefore can be used to form periodic intervals 
of probability distributions of point in time (PIVL<PPD<TS>>) values (uncertain periodic interval.) 

Oftentimes repeating schedules are only approximately specified.  For instance “three times a day for 
ten minutes each” does not usually mean a period of precisely 8 hours and does often not mean exactly 
10 minutes intervals.  Rather the distance between each occurrence may vary as much as between 3 
and 12 hours and the width of the interval may be less than 5 minutes or more than 15 minutes.  An 
uncertain periodic interval can be used to indicate how much leeway is allowed or how “timing-
critical” the specification is. 

5.1.1.1 Period : T.diff 

The period specifies how frequently the periodic interval recurs.  The period is a physical quantity in 
the dimension of time (TS.diff.)  For an uncertain periodic interval (PIVL<PPD<TS>>) the period is a 
probability distribution over elapsed time (PPD<PQ>).  A non-NULL period exists for every non-NULL 
periodic interval. 
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invariant(PIVL<T> x) where x.nonNull { 

  x.period.nonNull; 

}; 

5.1.1.2 Phase : IVL<TS> 

The phase specifies the interval prototype that is repeated every period.  The phase also marks the 
anchor point in time for the entire series of periodically recurring intervals.  The recurrence of a 
periodic interval has no begin or end but is infinite in both future and past.  A phase must be specified 
for every non-NULL periodic interval.  The width of the phase must be less or equal the period. 

invariant (PIVL<T> x) where x.nonNull { 

  x.phase.nonNull; 

  x.phase.width.lessOrEqual(x.period); 

}; 

5.1.1.3 Alignment : CS 

A periodic interval may be specified aligned to the calendar underlying the phase.  A non-aligned 
periodic interval recurs independently from the calendar.  An aligned periodic interval is synchronized 
with the calendar. 

The domain of this code is the calendar cycle code. 

For example, “every 5th of the month” is a calendar aligned periodic interval.  The period spans 28 to 
31 days depending on the calendar month.  Conversely, “every 30 days” is an independent period that 
will fall on a different date each month. 

The calendar alignment specifies a calendar cycle to which the periodic interval is aligned.  The even 
flow of time will then be partitioned by the calendar cycle.  The partitioning is called the calendar 
“grid” generated by the aligned-to calendar cycle.  The boundaries of each occurrence interval will 
then have equal distance from the earliest point in each partition.  In other words, the distance from the 
next lower grid-line to the beginning of the interval is constant. 

For example, with “every 5th of the month” the alignment calendar cycle would be month of the year 
(MY.)  The even flow of time is partitioned in months of the year.  The distance between the beginning 
of each month and the beginning of its occurrence interval is 4 days (4 days because day of month 
(DM) starts counting with 1.)  Thus, as months differ in their number of days, the distances between 
the recurring intervals will vary slightly, so that the interval occurs always on the 5th. 

5.1.1.4 Institution Specified Time 

A Boolean property indicating whether the exact timing is up to the person or organization executing 
the time plan. For example, with a schedule “three times a day” the average time between repetitions is 
8 hours, however, with institution specified time indicator true, the timing could follow some rule 
made by the executing person or organization (“institution”), that. e.g., three times a day schedules are 
executed at 7 am, noon, and 7 pm. 

5.1.1.5 Periodic Intervals as Sets 

The essential property of a set is that it contains elements.  For non-aligned periodic intervals, the 
contains-property is defined as follows.  A point in time t is contained in the periodic interval of time if 
and only if there is an integer i for which t plus the period times i is an element of the phase interval. 
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invariant (PIVL<TS> x, TS t) where x.nonNull.and(x.alignment.isNull) { 

  x.contains(t).equals(exists(INT i) { 

       x.phase.contains(t.plus(x.period.times(i))); 

     }); 

}; 

For calendar-aligned periodic intervals the contains property is defined using the calendar-cycle’s 
sum(t, n)  property that adds n such calendar cycles to the time t. 

invariant (PIVL<TS> x, TS t, CalendarCycle c) 

    where x.nonNull.and(c.equals(x.alignment)) { 

  x.contains(t).equals(exists(INT i) { 

        x.phase.contains(c.sum(t, i)); 

     }); 

}; 

5.1.1.6 Literal Form 

Generic Literal Form. The generic literal form for periodic intervals of time is as follows: 

〈phase : IVL<T>〉 / 〈period : T.diff〉 [ @ 〈alignment〉 ] [ IST ]. 

PIVL<T>.literal ST { 

  PIVL<T>  

  : S2         { $.equals($1); } 

  | S2 “IST”                  { $.phase.equals($1.phase); 

            $.period.equals($1.period);             
           $.institutionSpecified.equals(true); }; 

  PIVL<T> S2 

  : S1         { $.equals($1); }  

  | S1 “@” “(” PQ “)”         { $.phase.equals($1.phase); 

            $.period.equals($1.period); 

            $.alignment.equals($4); }; 

  PIVL<T> S1  

  : IVL<T> “/” T.diff        { $.phase.equals($1); 

            $.period.equals($3); } 

  |        “/” T.diff        { $.period.equals($2); }; 

}; 

For example, “[200004181100;200004181110]/(7 d)@DW” specifies every Tuesday from 
11:00 to 11:10 AM.  Conversely, “[200004181100;200004181110]/(1 mo)@DM” specifies 
every 18th of the month 11:00 to 11:10 AM. 

See Table 36 for calendar-period codes defined for the Gregorian calendar. There are 1-character and 
2-character symbols. The 2-character symbols are preferred for the alignment period identifier. 
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Calendar Pattern Form. This form is used to specify calendar-aligned timing more intuitively using 
“calendar patterns.”  The calendar pattern syntax is (semi-formally) defined as follows: 

〈anchor〉  [ 〈calendar digits〉 [ .. 〈calendar digits〉  ]] / 〈number : INT〉 [ IST ] 

A calendar pattern is a calendar date where the higher significant digits (e.g., year and month) are 
omitted.  In order to interpret the digits, a period identifier is prefixed that identifies the calendar 
period of the left-most digits.  This calendar period identifier anchors the calendar digits following to 
the right.   

See Table 36 for calendar-period codes defined for the Gregorian calendar. There are 1-character and 
2-character symbols. The 1-character symbols are preferred for the calendar pattern anchor. 

For example: “M0219” is February 19 the entire day every year.  This periodic interval has the 
February 19 of any year as its phase (e.g., “[19690219;19690220[” ), a period of one year, and 
alignment month of the year  (M). The alignment calendar-cycle is the same as the anchor (e.g., in this 
example, month of the year.)  

The calendar digits may also omit digits on the right. When digits are omitted on the right, this means 
the interval from lowest to highest for these digits. For example, “M0219” is February 19 the entire 
day; “M021918” is February 19, the entire hour between 6 and 7 PM. 

In absence of a formal definition for this, the rules for parsing a calendar pattern are as follows 
(example is “M021918..21”) 

1. Read the anchoring period identifier (e.g. “M”) 

a. the PIVL’s alignment is equal to this calendar period (e.g. month of the year) 

b. use the current point in time and format a literal exact to the next higher significant 
calendar period from the anchoring calendar period (e.g. year, “2000”, constructing 
“2000021918”), this is the “stem literal” 

2. Read this constructed literal (e.g., “2000021918”) into a TS value and convert that value to 
an IVL<TS> according to Section 3.4.3.1 (e.g., “[2000021918;2000021919[”) this is 
the “low interval.” 

3. If the hull-operator token “..” follows, read the following calendar digits (e.g., “21”) 

a. Right-align the stem literal and the calendar digits just read 

“2000021918” 
“        21” 

b. and copy all digits from the stem literal that are missing to the left of the calendar 
digits just read (e.g., yields “2000021921”.) 

c. Read this constructed literal (e.g., “2000021918”) into a TS value and convert that 
value to an IVL<TS> according to Section 3.4.3.1 (e.g., 
“[2000021921;2000021922[”) this is the “high interval.” 

d. The phase interval is the convex hull of the low interval and the high interval (e.g., 
“[2000021918;2000021922[”). 

4. If the hull-operator was not present, the phase is simply the low interval. 

Interleave. A calendar pattern followed by a slash and an integer number n indicates that the given 
calendar pattern is to apply every nth time. 

For example: “D19/2” is the 19th of every second month. 

A calendar pattern expression is evaluated at the time the pattern is first enacted.  At this time, the 
calendar digits missing from the left are completed using the earliest date matching the pattern (and 
following a preceding pattern in a combination of time sets). 
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For example: “D19/2” is the 19th of every second month.  If this expression is evaluated on March 14, 
2000 the phase is completed to: “[20000319;20000320[/(2 mo)@DM” and thus the two-months 
cycle begins with March 19, followed by May 19, etc.  If the expression were evaluated by March 20, 
the cycle would begin at April 19, followed by June 19, etc. 

If no calendar digits follow after the calendar period identifier, the pattern matches any date.  The 
integer number following the slash indicates the length of the cycle. The phase interval in these cases 
has only the width specified to be the duration of the anchoring calendar-cycle (e.g., in this example 1 
day.) 

For example: “CD/2” is every other day, “H/8” is every 8th hour, for the duration of one hour. 

Institution Specified Time.  Both, a generic periodic interval literal and a calendar pattern may be 
followed by the three letters “IST” to indicate that within the larger calendar cycle (e.g., for “hour of 
the day” the larger calendar cycle is “day”) the repeating events are to be appointed at institution 
specified times.  This is used to specify such schedules as “three times a day” where the periods 
between two subsequent events may vary well between 4 hours (between breakfast and lunch) and 10 
hours (over night.)
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Table 41: Examples for literal expressions for periodic intervals of time 

Generic Form Calendar Pattern Form Description 
[198709;198710[/(1 a)@MY M09 September, the entire month, every year (note that in the year 1987 in the generic form is irrelevant 

since the periodic interval recurs every year past and future.) 
[19870915;19870916[/(1 a)@DM M0915 September 15, the entire day, every year 
[1987091516;1987091517[/(1 a)@DM M091516 September 15 at 4 PM, the entire hour, every year 
[198709151630;198709151710]/(1 a)@DM M09151630..1710 September 15 at 4:30 5:10 PM, every year 
[1987091516;[/(1 a)@DM  September 15 at 4 PM, end time explicitly unknown, every year 
[198709151630;198709151631[/(1 a)@DM M09151630 September 15 at 4:30 PM, the entire minute, every year 
[1987091516;1987091517[/(1 mo)@DM D1516..17 every 15th day of the month at 4 to 5 PM 
[1987091516;1987091517[/(1 mo)  September 15, 1987 from 4 to 5 PM and then every 730.5 hours continuously (this example has little 

practical value beyond comparing the unaligned with the aligned form in the preceding row.) 
[1987091516;1987091517[/(1 mo)@HD  September 15, 1987 from 4 to 5 PM and then every 30.4375 days, but aligned to the hour of the day. 
[1 mo]/(2 mo)@MY M/2 every other month of the year; (Jan, Mar, …) vs. (Feb, Apr, …) is undefined 
[198701;197502[/(2 mo)@MY M01..12/2 every other month of the year, Jan, Mar, … 
[198702;197503[/(2 mo)@MY M02..12/2 every other month of the year, Feb, Apr, … 
[19870401;19870930[/(1 a)@DM M04..09 April 1until (and including) September 30 
19870401-0930/(1 a)@DM M0401..0930 April 1 to September 30 (the generic form uses the dash-form for the phase interval) 
[20001202;20001203[/(1 wk)@DW J6 every Saturday 
[20001202;20001203[/(2 wk)@DW J6/2 every other Saturday 
[20001202;20001203[/(3 wk)@DW J6/3 every third Saturday 
[1 d]/(2 d)@DW J/2 every other day of the week; (Mon, Wed, Fri, …) vs. (Tue, Thu, Sat, …)  is undefined 
[20001204;20001205[/(2 d)@DW J2..6/2 every other day of the week (Tue, Thu, Sat, Tue, Thu, Sat, …) 
[20001204;20001205[/(2 d) D/2 every other day (Tue, Thu, Sat, Mon, Wed, Fri, Sun, Tue, …) 
[19870601;19870606[/(1 wk)@DW J1..5 Monday to Friday every week 
[19870601;19870608[/(2 wk) W/2 every other week (continuous) 
[19870101;19870105[/(2 wk)@WY WY/2 every other week of the year (a blunt example on the impact of the calendar alignment: the phase 

interval spans only 4 days and yet it represents an entire week in the calendar alignment “week of 
the year”.) 

[19870406;19870413[/(1 a)@WY WY15 the 15th calendar week of every year 
[19870105;19870112[/(1 mo)@WM WM2 the second week of the month, every month 
[19870508;19870509[/(1 a)@DY DY128 the 128th day of the year, every year 
[10 min]/(2 d)  every other day for 10 minutes (only width of repeating interval is known) 
[1 h]/(8 h) H/8 every eighth hour (each time a 60 minutes interval) 
[1 h]/(8 h) IST H/8 IST three times a day at institution specified times (each time a 60 minutes interval) 
/(8 h) IST  three times a day at institution specified times. Nothing about the repeating interval is known i.e., this 

includes only a period (frequency), while the phase is left undefined 
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5.2 Event-Related Periodic Interval of Time (EIVL) 

The event-related periodic interval of time allows specifying a periodic interval of time based on 
activities of daily living, important events that are time-related but not fully determined by time.  

For example, “one hour after breakfast” specifies the beginning of the interval at one hour after 
breakfast is finished.  Breakfast is assumed to occur before lunch but is not determined to occur at any 
specific time. 

template<TS T> 

protected type EventRelatedPeriodicInterval<T> alias EIVL<T> extends SET<T>{ 

 CV          event; 

 IVL<T.diff> offset; 

  IVL<T>      occurrenceAt(TS eventTime); 

  BL          contains(TS); 
  literal  ST; 

}; 

5.2.1.1 Event : CV 

A code for a common (periodical) activity of daily living based on which the event related periodic 
interval is specified.  Such events qualify for being adopted in the domain of this attribute for which all 
of the following is true: 

• the event commonly occurs on a regular basis, 

• the event is being used for timing activities, and 

• the event is not entirely determined by time. 

Table 42: Event Codes for Event-Related Periods 

Code Definition 
HS the hour of sleep (e.g., H18-22) 
AC before meal (from lat. ante cibus ) 
PC after meal (from lat. post cibus ) 
IC between meals (from lat. inter cibus ) 

ACM before breakfast (f rom lat. ante cibus matutinus) 
ACD before lunch (from lat. ante cibus diurnus ) 
ACV before dinner (from lat. ante cibus vespertinus) 
PCM after breakfast (from lat. post cibus matutinus ) 
PCD after lunch (from lat. post cibus diurnus ) 
PCV after dinner (from lat. post cibus vespertinus ) 
ICM between breakfast and lunch 
ICD between lunch and dinner 
ICV between dinner and the hour of sleep 

5.2.1.2 Offset : IVL<T.diff> 

An interval that marks the offsets for the beginning, width and end of the event-related periodic 
interval measured from the time each such event actually occurred. 

For example: if the specification is “one hour before breakfast for 10 minutes” the offset’s low 
boundary is −1 h and the offset’s width is 10 min (consequently the offset’s high boundary is −50 min.) 
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5.2.1.3 Resolving the Event-Relatedness 

An event-related periodic interval of time is a set of time, that is one can test whether a particular time 
or time interval is an element of the set.  Whether an event-related periodic interval of time contains a 
given interval of time is decided using a relation event × time referred to as EVENT(event, time).  The 
property occurrenceAt(t) is the occurrence interval that would exist if the event occurred at time t. 

invariant(EIVL<T> x, T eventTime, IVL<T> v) 

    where v.equals(x.occurrenceAt(eventTime)) { 

  v.low.equals(eventTime.plus(x.offset.low)); 

  v.high.equals(eventTime.plus(x.offset.high)); 

  v.lowClosed.equals(x.offset.lowClosed); 

  v.highClosed.equals(x.offset.highClosed); 

}; 

Thus, an event related interval of time contains a point in time t if there is an event time e with an 
occurrence interval v such that v contains t. 

invariant(EIVL<T> x, T y) { 

  x.contains(y).equals(exists(T e, IVL<T> v)  

                           where EVENT(x.event, y) 

                            .and(v.resolvedAt(y)) { 

                         v.contains(y); 

                       }); 

}; 

5.2.1.4 Literal Form 

The literal form for an event related interval begins with the event code followed by an optional 
interval of the time-difference. 

EIVL<TS>.literal ST { 

  EIVL<TS> : event   { $.event.equals($1); } 

  | event offset  { $.event.equals($1); $.offset.equals($2); }; 

  CV event : ST   { $.code.equals($1); 
      $.codeSystem.equals(2.16.840.1.113883.5.1019); } 

  IVL<TS.diff> offset 

  : “+” IVL<TS.diff>  { $.equals($2); } 

  | “-” IVL<TS.diff>  { $.low.equals($2.high.negate); 

     $.high.equals($2.low.negate); 

    $.width.equals($2.width); 

     $.lowClosed($2.highClosed); 

     $.highClosed($2.lowClosed); }; 

}; 
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For example, one hour after meal would be “PC+[1h;1h]”.  One hour before bedtime for 10 
minutes: “HS-[50min;1h]”. 

5.3 General Timing Specification (GTS) 

The general timing specification (GTS) semantically is a general set of points in time.  The purpose of 
the GTS is to specify the complex timing of events and actions (mainly in orders and scheduling 
systems.)  The GTS also supports the cyclical validity patterns that may exist for certain kinds of 
information, such as phone numbers (evening, daytime), addresses (so called “snowbirds,” residing in 
the south during winter and north during summer) and office hours. 

The GTS data type has the following aspects: 

• GTS as a general set of points in time (SET<TS>).  From this aspect GTS answers whether 
any given point in time falls in the schedule described by the GTS value. 

• GTS as the combination of multiple periodic intervals of time.  This aspect describes how 
both simple and complex repeat-patterns are specified with the GTS. 

• GTS as a generator of a sequence of intervals of point in time (LIST<IVL<TS>>).  From this 
aspect, GTS can generate all occurrence intervals of an event or action, or all validity periods 
for a fact. 

• GTS as an expression-syntax defined for a calendar.  This aspect is the GTS literal form. 

In all cases the GTS is defined as a set of point in time (SET<TS>).  Using the set operations, union, 
intersection and difference, more complex sets of time can be constructed from simpler ones.  
Ultimately the building blocks from which all GTS values are constructed are interval, periodic 
interval, and event-related periodic interval.  The construction of the GTS can be specified in the literal 
form.  No special data type structure is defined that would generate a combination of simpler time-sets 
from a given GTS value.  While any implementation would have to contain such a structured 
representation, it is not needed in order to exchange GTS values given the literal form.53 

type GeneralTimingSpecification alias GTS extends SET<TS> { 

   IVL<TS>  hull; 

  IVL<TS>  nextTo(TS x) 

  IVL<TS>  nextAfter(TS x) 

   GTS  periodicHull(GTS x); 

 BL interleaves(GTS x); 

  demotion  LIST<IVL<TS>>; 

  literal  ST; 

}; 

The GTS data type is defined as using intervals, periodic intervals, and event-related periodic intervals.  
Intervals of time have been defined above 

                                                                 
53 The GTS is an example of a data type that is only defined algebraically without giving any definition of a data 
structure that might implement the behavior of such a data type. The algebraic definition looks extremely simple, so 
that one might assume it is incomplete. Since at this point we are relying entirely on the literal form to represent GTS 
values, all the definition of data structure is really contained in the grammar for the literal definition. 
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5.3.1.1 Convex Hull 

A convex hull is the least interval that is a superset of all occurrence intervals.  As noted in Section 
3.1.2, all totally ordered sets have a convex hull. Because a GTS is a SET<TS> and because a 
SET<TS> is a totally ordered set, all GTS values have a convex hull.  

The convex hull of a GTS can less formally be called “outer bound interval”.  Thus, the convex hull of 
a GTS describes the absolute beginning and end of the repeating schedule. For infinite repetitions (e.g., 
a simple periodic interval) the convex hull has infinite bounds. 

5.3.1.2 GTS as a Sequence of Occurrence Intervals 

A GTS value is a generator of a sequence of time intervals during which an event or activity occurs, or 
during which a state is effective.   

The nextTo-property maps to every point in time t the greatest continuous subset (an “occurrence 
interval”) v of the GTS value S; where v is the interval closest to t that begins later than t or that 
contains t. 

invariant(GTS S, TS t, IVL<TS> v) { 

  v.equals(S.nextTo(t)).equals( 

         S.contains(o) 

    .and(forall(IVL<TS> u) where x.contains(u) { 

           u.contains(v).implies(u.equals(v)); }) 

    .and(    v.contains(t) 
         .or(forall(TS i) where t.lessOrEqual(i) 

                           .and(i.lessThan(v.low)) { 

               S.conatins(i).not; }))); 

}; 

The nextAfter-property maps to every point in time t the greatest continuous subset (an “occurrence 
interval”) v of the GTS value S; where v is the interval closest to t that begins later than t. 

invariant(GTS S, TS t) where { 

  S.contains(t).not 

     .implies(S.nextAfter(t).equals(S.nextTo(t))); 

  S.contains(t) 

     .implies(S.nextAfter(t).equals(S.except(nextTo(t)).nextTo(t))); 

}; 

A GTS value can be converted into a generic Sequence of time intervals (LIST<IVL<TS>>) of 
occurrence intervals. 

invariant(GTS x) where x.isEmpty { ((LIST<IVL<TS>>)x).isEmpty; }; 

Figure 14: Convex Hull of a Schedule 
time convex hull

schedule 
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invariant(GTS x, IVL<TS> first) 

    where x.nonEmpty 

     .and(x.hull.low.nonNull) 

     .and(first.equals(x.nextTo(x.hull.low)) 

{ 

  ((LIST<IVL<TS>>)x).head.equals(first); 

  ((LIST<IVL<TS>>)x).tail.equals((LIST<IVL<TS>>)x.except(first)); 

}; 

5.3.1.3 Interleaving Schedules and Periodic Hull 

For two GTS values A and B we say that A interleaves B if their occurrence intervals interleave on the 
time line. This concept is visualized in Figure 15. 

For the GTS values A and B to interleave the occurrence intervals of both groups can be arranged in 
pairs of corresponding occurrence intervals. It must further hold that for all corresponding occurrence 
intervals a ∈ A and b ∈ B, a starts before b starts (or at the same time) and b ends after a ends (or at the 
same time).  

The interleaves-relation holds when two schedules have the same average frequency, and when the 
second schedule never “outpaces” the first schedule. That is, no occurrence interval in the second 
schedule may start before its corresponding occurrence interval in the first schedule. 

With two interleaving GTS values one can derive a periodic hull such that the occurrence intervals of 
the periodic hull is the convex hull of the corresponding occurrence intervals. 

The periodic hull is important to construct two schedules by combining GTS expressions. For example, 
to construct the periodic interval from Memorial Day to Labor Day every year, one first needs to set up 
the schedules M for Memorial Day (the last Monday in May) and L for Labor Day (the first Monday in 
September) and then combine these two schedules using the periodic hull of M and L. 

invariant(GTS A, B) where x.nonNull.and(y.nonNull) { 

  A.interleaves(B).equals( 

    forall(IVL<TS> a, b, c; TS t) 

        where a.equals(A.nextTo(t)) 

         .and(b.equals(B.nextTo(a.low))) 

         .and(c.equals(A.nextTo(b.high))) { 

      b.equals(B.nextTo(a.high)); 

      a.low.lessOrEqual(b.low); 

      c.equals(A.nextTo(b.high)); 

      c.equals(a).or(c.equals(A.nextAfter(a.high)));  

    }); 

}; 

Figure 15: Interleaving Schedules and Periodic Hull 
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For two GTS values A and B where A interleaves B, a periodic hull is defined as the pair wise convex 
hull of the corresponding occurrence intervals of A and B. 

invariant(GTS A, B, C) where A.interleaves(B) { 

  A.periodicHull(B).equals(C).equals( 
    forall(IVL<TS> a, b; TS t) 

        where a.equals(A.nextTo(t)) 

         .and(b.equals(B.nextTo(a.low))) { 

      C.contains(c).equals(c.equals(a.hull(b))); 

    }); 

}; 

The interleaves-relation is reflexive, asymmetric, and intransitive. The periodic hull operation is non-
commutative and non-associative.54 

5.3.2 GTS Literal Form 

The GTS literal allows specifying combinations of intervals, periodic intervals, and event related 
periodic intervals of time using the set operations, unions and intersection. This literal form is specified 
based on the simpler time set data types interval, periodic interval, and event related periodic interval.55   

Unions are speechified by a semicolon-separated list.  Intersections are specified by a white space 
separated list.  Intersection has higher priority than union.  Exclusions (set differences) can be 
specified using a backslash; exclusions have an intermediate priority, i.e. weaker than intersection but 
stronger than union. 

Table 43: GTS Set-Operators 

Operation Operator Priority 
Intersection “ “ (white space) high 
Union “;” (semicolon) low  

Exclusion “\” (back slash) low  

Periodic Hull “..” (two periods) high 

Also parentheses can be used to overcome operator precedence when necessary. 

GTS.literal ST { 

  GTS : symbol    { $.equals($1); } 

  | union    { $.equals($1); }; 

  | exclusion   { $.equals($1); }; 

  SET<TS> union 

  : intersection “;” union  { $.equals($1.union($3)); } 

  | intersection   { $.equals($1); }; 

                                                                 
54 The interleaves property may appear overly constrained. However, these constraints are reasonable for the use case 
for which the interleaves and periodic hull properties are defined.  To safely and predictably combine two schedules 
one would want to know which of the operands sets the start points and which sets the endpoints of the periodic hull’s 
occurrence intervals. 
55 This literal specification again looks surprisingly simple, so one might assume it is incomplete. However, the GTS 
literal is based on the TS, IVL, PIVL, and EIVL literals and does also imply the literals for the extensions of TS, 
notably the PPD<TS>. The GTS literal specification itself only needs to tie the other literal forms together, which is 
indeed a fairly simple task by itself. 
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  SET<TS> exclusion 

  : exclusion “\” intersection { $.equals($1.except($3)); }; 

  SET<TS> intersection 

  : factor intersection  { $.equals($1.intersection($2)); } 

  | factor;     { $.equals($1); } 

  SET<TS> hull 

  : factor “..” hull    { $.equals($1.periodicHull($3)); } 

  | factor;     { $.equals($1); } 

SET<TS> factor  

  : IVL<TS>     { $.equals($1); } 

  | PIVL<TS>    { $.equals($1); } 

  | EIVL<TS>    { $.equals($1); } 

  | “(” GTS “)”   { $.equals($1); }; 

}; 

The following table contains paradigmatic examples for complex GTS literals.  For simp ler examples 
confer to the literal forms for interval, periodic interval, and event related interval. 

Table 44: Examples for Literal Expressions for Generic Timing Specifications 

Literal Expression Meaning 
M09 D15 H16 N30 S34.12 September 15 at 4:30:34.12 PM as the intersection of multiple periodic intervals 

of times (calendar patterns) 
M0915163034.12 September 15 at 4:30:34.12 PM as one simple periodic interval of time 

(calendar pattern) 
M01; M03; M07 January, March, and July (a union of three periodic intervals of time) 
M04..09 M/2 Every second month from April to September (April, June, August) 
J1; J2; J4 Monday, Tuesday, Thursday 
W/2 J2 every other Tuesday (intersection of every other week and every Tuesday) 
1999 WY15 the 15th calendar week in 1999 (period code is optional for the highest calendar 

unit) 
WM2 J6 Saturday of the 2nd week of the month 
M05 WM2 J6 Saturday of the 2nd week of May 
M05 DM08..14 J7 Mother’s day (second Sunday in May.) 
J1..5 H0800..1600 Monday to Friday from 8 AM to 4 PM 
J1..4 H0800..1600; 
J5    H0800..1200 

Monday to Thursday 8 AM to 4 PM and Friday 8 AM to 12 noon. 

[10 d] H/8 Three times a day over 10 days (each time a 60 minutes interval). 
H0800..1600 \J3 Every day from 8 AM to 4 PM, except Wednesday. 
(M0825..31 J1)..M0831 The last calendar week of August. 
JHNUSMEM..JHNUSLBR The season from the U.S. holidays Memorial Day to Labor Day 

5.3.2.1 Symbolic Abbreviations for GTS expressions.  

The following Table 45 defines symbolic abbreviations for GTS values that can be used in GTS literals 
instead of their equivalent GTS term.  Abbreviations are defined for common periods of the day (AM, 
PM), for periods of the week (business day, weekend), and for holidays.  The computation for the dates 
of some holidays, namely the Easter holiday, involve some sophistication that goes beyond what one 
would represent in a GTS literal term.  It is assumed that the dates of these holidays are drawn from 
some table or some generator module that is outside the scope of this specification. 
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These abbreviations are named GTS values and they can in turn be a factor of a GTS term. For 
example, one can say “JHCHRXME H08..12” to indicate that the office hours on Christmas Eve is 
from 8 AM to 1PM only. And one can say “JHNUSMEM..JHNUSLBR” for the typical mid-western 
swimming pool season from Memorial Day to Labor Day. 

Table 45: Abbreviations for General Timing Specifications 

Code Definition Equivalent 
AM Every morning at institution specified times. H00..11 IST 
PM Every afternoon at institution specified times. H12..23 IST 
BID two times a day at institution specified time H/12 IST 
TID three times a day at institution specified time H/8 IST 
QID four times a day at institution specified time H/6 IST 
JB Regular business days (Monday to Friday excluding holidays) J1..5 \JH 
JE Regular weekends (Saturday and Sunday excluding holidays) J6..7 \JH 
JH Holidays  

 Christian Holidays (Roman/Gregorian “Western” Tradition.)  
JHCHRXME Christmas Eve (December 24) M1224 
JHCHRXMS Christmas Day (December 25) M1225 
JHCHRNEW New Year’s Day (January 1) M0101 
JHCHREAS Easter Sunday.  The Easter date is a rather complex calculation 

based on Astronomical tables describing full moon dates.  
Details can be found at [http://www.assa.org.au/edm.html, and 
http://aa.usno.navy.mil/AA/faq/docs/easter.html].  Note that some 
Eastern Orthodox Holidays are based on the Julian calendar. 

 

JHCHRGFR Good Friday, is the Friday right before Easter Sunday.  
JHCHRPEN Pentecost Sunday, is seven weeks after Easter (the 50th day of 

Easter.) 
 

JHNUS United States National Holidays  (public holidays for federal 
employees established by U.S. Federal law 5 U.S.C. 6103.) 

 

JHNUSMLK Dr. Martin Luther King, Jr. Day, the third Monday in January. M0115..21 J1 
JHNUSPRE Washington’s Birthday (Presidential Day) the third Monday in 

February. 
M0215..21 J1 

JHNUSMEM Memorial Day, the last Monday in May. M0525..31 J1 
JHNUSMEM5 Friday before Memorial Day Weekend M0522..28 J5 
JHNUSMEM6 Saturday of Memorial Day Weekend M0523..29 J6 
JHNUSMEM7 Sunday of Memorial Day Weekend M0524..30 J7 
JHNUSIND Independence Day (4th of July) M0704 
JHNUSIND5 Alternative Friday before 4th of July Weekend [5 U.S.C. 6103(b)]. M0703 J5 
JHNUSIND1 Alternative Monday after 4th of July Weekend [5 U.S.C. 6103(b)]. M0705 J1 
JHNUSLBR Labor Day, the first Monday in September. M0901..07 J1 
JHNUSCLM Columbus Day, the second Monday in October. M1008..14 J1 
JHNUSVET Veteran’s Day, November 11. M1111 
JHNUSTKS Thanksgiving Day, the fourth Thursday in November. M1122..28 J4 
JHNUSTKS5 Friday after Thanksgiving. M1123..29 J5 

Note: this table is not complete.  Neither does it include religious holidays other than Christian (of the 
Gregorian (western) tradition), nor does it contain national holidays on other countries.  This is a 
limitation to be remedied by subsequent additions. 

Note: holidays are locale-specific.  Exactly which religious holidays are subsumed under JH depends 
on the locale and other tradition.  For global interoperability, using constructed GTS expressions is 
safer than named holidays.  However, some holidays that depend on moon phases (e.g., Easter) or 
ad-hoc decree can not be easily expressed in a GTS form. 

 


