
A State Transition Model for the HL7 Technical
Committee on Orders and Results

Gunther Schadow
Regenstrief Institute for Health Care, Indianapolis

Id: order-states.tex,v 1.8 1998/09/29 21:01:31 schadow Exp

Abstract

In this document I propose a state-transition model for the HL7 technical
committee on orders and results. Since the San Francisco Meeting in 1997
I took part in this exciting discussion about this model. However, we
did never have enough time in the meetings to dive deep into the model
and to finish a draft that would be near complete. Our discussions where
rather on a very high level. We therefore agreed to put out a “strawdog”
proposal that would be more complete to speed up the process and focus
the discussion on important details.

I divided this document into three main parts: First I summarize the
scope of the state transition model, because a detailed state-transition
model can only be worked out for a specific class of the information model.
Second I give a summary on state-transition modeling and explain the
features and “language” that I use. Third, and finally, I present the model
for the class service intent or order and its adjactent “relationship” class.

Copyright c© 1998, Regenstrief Institute for Health Care. All rights reserved.

2 CONTENTS

Contents

1 What we are talking about 4

2 State-Transition-Modeling 8

3 Service Intent or Order 11
3.1 Peeling the Onion . 13

3.1.1 Alive vs. Non-Existent . 13
3.1.2 Done vs. Not-Done . 14
3.1.3 Pending vs. Non-Pending 14
3.1.4 Doing the Work: In Process 14

3.2 Exceptional Termination . 15
3.2.1 Terminate New Services: Cancel vs. Reject 15
3.2.2 Terminate Services in Progress: Abort vs. Interrupt 16

3.3 Normal Termination . 17
3.4 Verification, Authorization and Endoding 20

3.4.1 Verification . 20
3.4.2 Authorization . 21

3.5 Arbitrary Change . 22

4 Service Intent or Order Relationships 23

LIST OF FIGURES 3

List of Figures

1 Class diagram showing the order/results classes in their RIM 0.84
form. 5

2 Class diagram showing the order/results classes in the recently
updated RIM. 6

3 Class diagram showing the subjects of our state-transition-modeling 8
4 State-transition-model as discussed in the Baltimore meeting. . . 9
5 State-transition-model with nested states and preemption. 10
6 State-transition-model with parallel states 11
7 Proposed state-transition-model of the class service intent or order 12
8 State-transition-model of the class service intent or order relation-

ship . 23
9 The four fundamental dynamic relationships between processes:

(a) sequential, (b) parallel without join, (c) parallel with awaited
join, and (d) parallel with enforced join. 25

4 1 WHAT WE ARE TALKING ABOUT

1 What we are talking about

State transition modeling in the UML pertains to a specific class. Every class
should have its own state-transition model. In the previous meetings of the
order/result working group we did not decide to which class our model pertains.
This was due to the confusion we had about the meaning of the class patient
service order in contrast to the class patient service event. So we made our
model, knowing that it pertained to an order, but also to the ordered service, to
the service in process up to its fulfillment.

There has always been this tension in the term “order” as used in clinical
information systems in general and HL7 in particular. We had “order entry
systems” that were far more than just a program accepting user-entry, filling
out an (electronic) order form, and be done with it. Order entry systems are
rather sophisticated pieces of software that help doctors investigate the patient
chart and make decisions of all kinds, some of them ordered to nurses or other
departments (e.g., lab, pharmacy), some of them reflecting their plans for the
patient, executed by themselves or their collegues. The term “order” was always
used in a much broader sense then just ordering a service to someone else. The
“order” thus became a well understood metaphor for our committee, covering all
kinds of clinical information and processes.

Indeed, in the beginning, the order/results committee was the only one in
HL7 to contribute clinical contents. This was true up to HL7 version 2.2. In
this first period of HL7, this committee did a good job. It invented innovative
concepts for the HL7 standard that proved to be very up to date, even 10 years
later! These concepts include:

1. The ORC segment was an abstract concept for the order, independent from
its special content, in turn known as the order detail. There are order detail
segments (and groups) for test orders (OBR), dietary orders (ODS, ODT),
supply orders (RQD), and medication/treatment (RXO). This structure
was a piece of object oriented design long before this became a buzzword:
The ORC by itself represents the abstract order class. The combinations
of ORC with one order detail OBR, ODS-ODT, RQD or RXO represents
concrete classes as specializations of the abstract order class. This is a
perfect gen/spec relationship, inheritance hierarchy, or what other words
we now have for this key concept of object-oriented design.

5

sub id

Patient
Service
Order

Patient
Service
Event

Clinical
Observation

is fulfilled by 0..*

0..1 fulfills

may result in

0..*

has as
parent result

0..*

is parent of

is child of

0..1

0..*

0..1

is parent of

relationship
established
by observation

Figure 1: Class diagram showing the order/results classes in their RIM 0.84 form.

2. The order was designed to be the subject of a whole conversation rather
than just a single message exchange. The order status code along with the
order control code have implemented a state-transition model, where order
status codes were the states and order control codes where the transitions.
This is nothing else than a life-cycle, another key concept of the object
oriented method.

3. The order, of course, needed an identity. Anything that has a life cycle
needs an identity. The identity remains stable whatever attributes of the
object might change over time. But just how this identity was expressed
was the innovative step: with a pair of identifiers, one for each of the
two communicating parties. The order/results authors knew better than
suggesting just another “universal” identifier like everyone else is quick
to suggest today—a suggestion that is very hard to be implemented in
practice!

4. The parties communicating about the order could take on one of a pair
of complementary roles: placer and filler. Thus independent from their
absolute identity, they would know each other as the placer or the filler of
a particular order.

6 1 WHAT WE ARE TALKING ABOUT

1Service
Intent
or Order

S.I.o.O.
Relation-
ship

Observation
Order

Treatment
Service
Order

Service
Event

Service
Event
Relationship

Assessment Care
Event

Clinical
Observation

Service
Reason

source

target has

evidence for

has evidence

is fulfilled by
fulfills

target

source

0..*

0..*

1

1

0..*

0..1

0..1
0..*

has

for

for

0..*

0..1

0..*

0..*

1

Figure 2: Class diagram showing the order/results classes in the recently updated
RIM.

5. The hierarchical organization of order instances through the parent/child
relationship.

6. The OBX segment as a general name-value-pair of any observation was
with HL7 from its version 1 (under a different name, though) long before
this way of expressing information became a market hype.

These innovative features of the order/results chapters made it into the RIM
and recently have attracted interest from other technical committees. The Uni-
versal Service Action Model Proposal (USAMP) that was issued jointly by Or-
der/Results and Patient Care had a big impact on the RIM. Basically all clinical
areas of the RIM do now use the overall strcuture created by Order/Results.
This was a very important development, because the whole RIM is now much
better structured.

The impact that Order/Results had on the RIM puts a responsibility on us
to care for other technical committees as well. The class patient service order
was renamed to class service intent or order to make clear that by an “order”
we really mean much more: any clinical service from its initial intention or plan,

7

up to its fulfillment involving one to many provider parties. Since this was
always true for our committee, there is really no fundamental change here. The
name had to be changed though, to make the scope of this class clear to other
committees as well.

However, there are other changes, too many to account for all of them in this
overview. Figures 1 and 2 show a comparison of the RIM 0.84 with the RIM as
it came out of the Boston harmonization meeting.1

Most important for our state-transition modeling is that the difference be-
tween the class service intent or order and the class service event is now much
clearer. The class service intent or order covers the service along its way from
planning and ordering, over all steps of execution (including scheduling), to its
fulfillment. The involved parties may discuss and change the instances of the
class service intent or order up to the last minute. Conversely, the class service
event is static, and holds only fulfilled (or otherwise terminated) services and
their results. There is nothing to discuss or change about objects of the class
service event because those do only relflect what has been done, after it is done.
Thus it is clear that our state transition model is about the life-cycle of instances
of the class service intent or order.

A second noteworthy change is that the class service intent or order rela-
tionship takes on all the structuring of services into subservices including the
parent/child-relationship and reflex orders.

The different types of relationships are accounted for in the attribute named
“relationship type code.” But the relationship class can do much more: it can
specify the timing and repeating of each subservice depending on the service it is
included in. The role names “source” and “target” seem to be a bit ambiguous.
The confusion can be resolved by thinking of the relationship class as an arrow,
originating in the subservice (source) and aiming in its target, the super-service,
i.e. the service that includes the subservice.

For the parent/child type of relationship the arrow point “up” the hierarchy
of inclusion. Thus an arrow pointing from A to B can be read as “A is used in
B”. The direction of the arrow needs to be defined for each relationship type. It
should always point upwards in hierarchies and towards the purpose of a service.

The metaphor of the arrow also helps to understand the multiplicities: every
arrow has exactly two ends, thus it links exactly two service intents, one source,

1Unfortunately the people in Boston achieved a little bit less than expected, we will have
to follow up on this at the upcoming San Diego meeting. The basic ideas, however, are set.

8 2 STATE-TRANSITION-MODELING

1

quantity
interval duration
interval type
repetition frequency
repetition duration
repetition pattern
repetition allowed variance
constraint text

Service Intent or Order S.I.o.O.Relationship

is target

1 has target

has source

0..*

0..*
filler service id
placer service id

service status code
order control code
...

is source

type code

Figure 3: Class diagram showing the subjects of our state-transition-modeling

one target. But there may be zero to many such arrows linking services together.
The same relationship construct now occurs three times: in the master file

area, the service intent or order, and at the service event. When a complex
master service is ordered a whole bunch of instances of the class service intent
or order and their relationships is created. Those have the same structure as the
ordered master service. This has the advantage that the ordering (or “intending”)
healthcare practitioner can take a master service as a default and modify it as
necessary to fit the given situation. Of course, if no changes are required and
the compound master service is understood by placer and filler, a single service
intent is sufficient.

The class service event relationship maintains the composition struture of
the services for the record. Repeated services are unrolled, because what is
interesting is mainly what services actually occured at what time. Knowing the
number of times a service should have been performed is of secondary relevance.

2 State-Transition-Modeling

The proposed state-transition-model is shown in figure 7 (p. 12). It is admittedly
much more complex than the 5-states or 3-states diagrams we were discussing
about in the last three meetings. This is because I tried to no longer delay the

9

2
New In Progress Done1

3

5 6 7

4

Figure 4: State-transition-model as discussed in the Baltimore meeting.

questions of what happens inside those high level states.

Before I discuss the details of this model I want to make sure we all have
a common understanding about state transition modeling. Our models and the
examples from the MDF were only using a very limited set of the features defined
by the UML’s state-transition-model notation,2 although we all understand that
there is something going on “inside” the states New, In Progress, and Done as
described in the minutes of the Baltimore meeting and reproduced in figure 4.

Figure 4 shows the basic features of state transition modeling. States are
rounded boxes and transitions are arrows. Transitions (normally) link two states.
Their semantics is that if an object is in state New it may at some point in time
go into state In Progress. But it is undefined in the given model at what time the
state is changed. In UML there are “events” associated to transitions. When an
event occurs, the associated transition is triggered, it “fires.”

The figure also shows one fundamental arrangement of states and transitions:
a sequence. Although there are branches that allow a transition not only from
New over In Progress to Done but also directly from New to Done, and although
there is a step back from Done to In Progress any object for which this state-
transition-model holds will be in only one state at a time. Therefore, looking
back on the life-cycle history, there will be one enumerable sequence of states
the object went through, so that we can call this arrangement sequential.

Figure 5, in contrast, allows the object to be in more than one state at the
same time. The two states New and In Progress are now enclosed by a state Not
Done. This means that whenever the object is in one of those two substates it
is also in the enclosing super-state. When a transition fires that heads directly
to a substate (e.g., 3), the substate and the super-state are both entered at the

2See the UML Notation Guide available under http://www.rational.com/uml/docu-
mentation.html.

10 2 STATE-TRANSITION-MODELING

Not Done

New In Progress Done1

3

5 6 7
2

4

abort

Figure 5: State-transition-model with nested states and preemption.

same time. Likewise does a transition that links from an inner state to an outer
state (2 and 4) cause both the inner state and its super-state to be left at the
same time.

But this example is not that different from figure 4 above: we can still write
down the course of an object through its life-cycle as a sequence of states. And
the “normal” course of the object would be the same as in figure 4. So far
discussed, the only difference is that we subsume the states New and In Progress
as Not Done.

The abort transition in the example shows the ability to leave all substates in
Not Done and head to the final pseudo-state preemptively. Regardless of which
of those two substate the object is in it will be left as the abort transition fires.

The life-cycle of objects complying to figure 6 is no longer a sequence of states:
the state Held can be entered and exited independently from the other two states
within their common super-state Not Done. It is a concurrent state. In UML,
concurrent states are depicted by “tiling” of a common enclosing state, i.e., by di-
viding the super state using dashed lines into concurrent regions. The transitions
of the concurrent regions within the “tiled” super-state can occur independently.
Transitions that cross the dashed line may synchronize the otherwise concurrent
processes. Without synchronization, there is no notion of “same time”, “before”
or “after” between the concurrent regions.

However independent transitions within different concurrent regions may fire,
the regions are not completely independent. All concurrent regions within the
same super-state are co-dependent on that super-state. When the object in figure
6 leaves the state Not Done either through its normal transition (2) or through
the preemptive transition abort all internal states are left at the same time. Thus,

11

hold

New In Progress Done

Held

1

3

5 6 7
2

4

abort

Not Done

release

Figure 6: State-transition-model with parallel states

if the object happened to be in state Held when the abort transition fires, the
state Held is left as well as all the other inner states of Not Done.

Such concurrent inner state machines can have initial and final pseudo-states
(shown through black bullets) as well. This means that whenever the enclosing
state is entered the initial transition of all concurrent state-machines fires. How-
ever, from that point on the concurrent state machines run in parallel without
any implicit synchronization.

Note also the special configuration of the state Held and its adjactent tran-
sitions hold and release with respect to the state Not Done. The transitions link
the super-state with one of its sub-states. The semantics of this configuration
is implicitely defined by the general rules of our state-transition modeling: (1)
The state Held can be entered only if the object is in state Not Done before and
transition hold fires. But (2) the super-state Not Done is not left because the
new state Hold is one of its substates.

3 Service Intent or Order

Figure 7 shows the state-transition diagram of the general class service intent
or order. In this model, all of the features of state-transition modeling dis-
cussed above are applied. This diagram seems different from the example state-

12 3 SERVICE INTENT OR ORDER

I:cancel

filler done

new

held

done

cancelled
by placer

rejected
by filler

change
request

unlink

link

assign ID

verified

not
verified

authorized

not
authorized

encoded

not
encoded

possible
interrupt

aborted
by filler

interrupted
by place

not done

alive

I:create

P:NAK

P:hold P:release

F:done F:resumed

F:abort

F:start working
P:cancel

F:reject

R:decline

authorizeverify encode

I:request chg.

P:IRQ

pending

in progress

P
:a

ck
no

w
le

dg
ed

interrupt
requested

F:allow

P:cancel

P:confirm

discontinued

R:accept

Figure 7: Proposed state-transition-model of the class service intent or order

3.1 Peeling the Onion 13

transition diagrams given in the UML Notation Guide or the MDF. But these
differences are due to the very nature of our subject, which is not just an ex-
ample, not just a piece of program design, but an abstract and very dynamic
subject of real life, the service intent or order.

Obviously there are many nested states, almost like the layers of an onion.
In the following discussion we will slowly peel the onion.

3.1 Peeling the Onion

3.1.1 Alive vs. Non-Existent

Compared with the usual UML examples, this outer layer seems quite unusual:
there is only one outer state alive aside from the initial and final pseudo-states.
Thus a very rough sketch of the model would just list the initial pseudo-state,
the state alive and the final pseudo-state arranged in a sequence. That an object
is either “alive” or “non-existent” seems trivial and not worth to be shown in
the model, would it not be for two reasons:

1. There are transactions to objects of this class that cause them to change
in ways not shown in the model.

2. There are concurrent regions of the main state-transition model of this
class, which, in the UML, requires a common enclosing super-state.

Notably the assignment of identifiers (placer/filler order number) by the tran-
sition assign ID and the linking of this service to other services by the transitions
link and unlink cause the object to change significantly. These transactions are
worth noting in the model, although their effect is out of the focus of this state
model.

What is in the focus of this model has been developed in the figures 4 through
6 in the previous section. When ignoring all the detail, the basic structure
developed in the previous examples can be recognized. You can see (through
the layers of onion skin) the three states, new, in progress, and done with new
and in progress having a common super-state not done. Of course, the main
path of transitions between those states is the same as in the examples before.
The concurrent state held somewhere in the state not done has already been
introduced too.

14 3 SERVICE INTENT OR ORDER

3.1.2 Done vs. Not-Done

After peeling off the state alive we find the state not done. This state is in
opposition only to the state done. A service can be completed or not completed.
A service will reach its state done only if it was not discontinued or otherwise
stopped before. If an unfinished service is discontinued, it doesn’t reach its state
done but remains in state not done. I will discuss the modes of stopping a service
in state not done further below. Let’s peel off this layer and look at the next one.

3.1.3 Pending vs. Non-Pending

A service is “pending” if, negatively spoken, it is neither completed nor canceled
nor discontinued in any way. Positively, it is pending if it is new and waiting to
be worked on, or if it is currently being worked on. While a service is pending
it can be temporarily put into state held, i.e., interrupted for a while, with the
option to release it and let the work on it continue. Thus, the ability to hold a
service is in addition to any other states that the pending service has and does
not affect these other states.

To put a service on hold that is done, cancelled or discontinued, obviously
makes no sense. Hence the state pending is due to the state held to be applicable
both to new services and such that are already in progress.

3.1.4 Doing the Work: In Process

If we peel off this last skin, we come to the core of our model. Interestingly, the
distinction between two states like new and in progress is suggested already by
HL7 version 2. There, we had the two quadruples of order control codes “cancel
order” (CA), “order canceled as requested” (CR), “unable to cancel” (UC) and
“order canceled” (unsolicited, OC) versus “discontinue” (DC), “discontinued as
requested” (DR), “unable to discontinue” (DU), and “order discontinued” (un-
solicited, OD). The existence of two different ways of ending an ordered service
prematurely suggests two different major states the order can be in.

It seems like the order can be only discontinued if it is already “continuing”,
i.e. in progress. On the other hand, an order in progress cannot just be cancelled.
There may have been considerable resources spent on the service already (e.g.,
work or costly reagents like antibodies, etc.) thus you cannot just cancel such a
service and forget about it, especially you cannot expect that you won’t get billed

3.2 Exceptional Termination 15

for the filler’s expenses on behalf of your cancelled service request. However, in
the discussion of the working group we found that it is neither clear what causes
an order to enter the un-cancel-able state, nor is it clear what consequences the
discontinuation has (e.g., whether you get billed or not). Cases can be made
that an order may be considered cancel-able but still may generate a bill (e.g.,
an expert already worked on it and made recommendations).

We should simplify these issues as much as possible. I believe that the cri-
terion of work and expenses that have been spent on a service is quite solid to
justify two different states. Also I do not remember any other competitive crite-
rion having been suggested in the working group discussions. With this premise,
it is obvious that only the filler can decide at what point in time it will transit
into the state in progress. This transition should be notified to an (interested)
placer though a message.

If the placer is informed about the time-out for his ability to cancel the order
by a message from the filler, the question arises, what happens if the placer just
sent off a cancel request the second before the transition notification arrives? In
some circumstances it is useful to have some time in which the placer is granted
the right to cancel an order. For instance, customer protection laws in many
countries grant those rights. It highly depends on the kind of service whether
such a right is applicable or not. In laboratory services such a right certainly
makes not much sense because we are happy if our orders are processed ASAP
and not delayed until some cancelation period has expired. Trading partner
agreements or conformance claims must be in place to specify how long such a
period to cancel may be for each orderable service. During this period, the order
is nominally in state new.

Of course, an order can in many situations be rejected by the filler. For ex-
ample, if the filler does not provide some service ordered by the placer. Other
reasons for rejection might be that the order failed some verification or autho-
rization. See the section 3.4 below on these issues.

3.2 Exceptional Termination

3.2.1 Terminate New Services: Cancel vs. Reject

Cancelling and rejection out of the state new are simple. The filler transits
to the state rejected and notifies the placer about this transition. Conversely,
the placer can transit to state cancelled and notify the filler about this. No

16 3 SERVICE INTENT OR ORDER

discussion is possible. The choice of either side to do the transition is definitive.
After cancelling or rejecting, the order or service intent is no longer in state
pending. This means, no further transition is defined other than being purged
by transition to the final pseudo-state. The model also shows that a cancelled of
rejected order is left in state not done.

3.2.2 Terminate Services in Progress: Abort vs. Interrupt

Terminating an order (or service intent) in progress is not so simple. The ratio-
nale here is the same as for distinguishing cancel versus discontinue: resources
have been spent. But it’s not just the bill that defines the difference. A service
might be in a critical condition, where interruption would be fatal. For exam-
ple, an ongoing abdominal surgery will have to be continued as the performing
surgeon (in the role of the filler) decides. A discontinuation would leave the
patient with the usual risks post abdominal surgery without the benefit of an
improvement. Of course, the operation may be ended prematurely (e.g., if an
inoperable tumor has been found), but not without result (e.g., anus praeternat-
uralis), and not because of some request by the placer. The important point is
that terminating an ongoing service can involve a complex decision or discussion
between placer and filler. The details are so versatile, they cannot be regulated
in a general state-transition model for all services.

The model outlines two general mechanisms to handle these situations. Both
end in a state discontinued. I have shown this state with a dash-dotted line to
indicate that this is the discontinuation of HL7 version 2, where both placer and
filler could initiate a discontinuation. However, for the new model I gave different
names to each of the two modes of terminating a pending service prematurely:
(filler) abort and (placer) interrupt.3

The filler can abort the service in progress upon notice to the placer. This
right is granted to the filler because it is the filler, who is ultimately responsible
for his actions. There may be rules to prevent the filler-abort transition for
certain services and conditions, but generally the filler can deny further work on
the service, which is reflected by the abort mode of termination.

3I borrowed this terminology from the ANSI X3.28 protocol, which I had to implement a
couple of years ago. ANSI X3.28 has an abort initiated by the current sender, and an interrupt,
initiated by the current receiver. Although ANSI X3.28 is about lower level communication,
the design pattern is applicable to high level services as well.

3.3 Normal Termination 17

The placer, on the other hand, can only request an interruption of the service.
Upon notification of an interrupt request (IRQ) by the placer, both placer and
filler enter the state interrupt requested. This state is still within the state in
progress, which means that the service continues. The filler decides at what
point the procedure allows interruption. Note that the same is true for the hold
request: the nature of the service, and ultimately the filler, determines at what
point the ongoing procedure can be interrupted.

Once an interrupt request is issued, and once the process reached a point
where it can be stopped, the filler transits into state interrupt possible and notifies
the placer about this so that he can follow into the same state. At this point
the placer can decide whether he wants to confirm the termination of the service
or if he wants to cancel the interrupt and let the service continue. If the placer
reconfirms the interrupt, the service or order will the be left undone in non-
pending state interrupted until purged.

This interrupt protocol implements a kind of a two-phase commit. It is
designed to provide the important functionality, yet be minimalistic with regards
to states and transitions. Note that the “discussion” between placer and filler can
be refined ad infinitum by inventing new substates and cancel transitions from
partial interrupts. However, it is not desireable to blow up the state-transition
diagram with states and transitions. In a similar sense it is not desireable to
have an inverse for every transition. There must be definitive decisions, points
of no return: a discontinued service is discontinued forever, a cancelled service is
cancelled forever, and a rejected service is rejected forever.

The two-phase commit protocol for interruption and completion assures that
a definitive decision is not made “light heartedly” but agreed upon by both placer
and filler.

3.3 Normal Termination

The transition to the state done involves a similar interaction between filler and
placer. The filler can indicate that he considers his service completed and transit
to the state filler done. However, the placer need not agree that this is truly so.
Usually, the filler will hand a piece of evidence to the placer, to show that the
service is really completed (e.g., results of a lab test, the goods of a purchase)
and usually the placer will accept this evidence. When the placer acknowledges
the assertion that the service is done, both placer and filler will transit to the

18 3 SERVICE INTENT OR ORDER

state done.

If the placer does not agree, it will respond with a negative acknowledgement
(NAK). The placer cannot force the filler to continue working on the service, but
the filler might find the disagreement of the placer justified. The filler might also
realize before the placer that the service is in fact not yet completed. In both
cases the filler will exit the state filler done and notify the placer.

This is another kind of commit protocol. We cannot just reuse the interrupt
design pattern, because the roles are different. It is the filler, who did the work,
and who now claims his work to be completed. The placer, however, should ex-
plicitly commit the transition to done by his acknowledgement. When the placer
sends his acknowledgement he also accepts the obligations that the completed
service presents to himself: the bill. I think that HL7 communication should be
designed to be legally binding and definitive. Such commit protocols, along with
digital signatures, can be made court-proof, i.e. can have the same legal dignity
as signed contracts have in the paper world.

The question arises, what happens if the placer responds with a negative
acknowledgement to the declaration of completion by the filler. In theory, the
service can be in the state filler done for an indefinite time, until other instances
(e.g., humans using telehones) have clarified the issue. As a last resort, the filler
can choose to abort the service. However, this leaves the service in the state not
done which may have different consequences for billing, quality control etc.

In the model discussed at the meetings and shown in figure 4, there was a
transition leading from the state done back to the state in progress and even to
new (which was called “renew”). I did not admit these transitions into the model
for the reasons discussed above: The model should be concise, i.e., complete
but minimal. The model should also show a definitive flow of the life-cycle
towards completion or other termination of the service. I am in favor of definitive
decisions for service objects, “points of no return.” One important argument for
irreversible transitions is the ease of implementation: programs must be able to
terminate somehow, and the more loops are in a program, the more there is a
risk for non-termination.

To specify a model for things of the real world certainly is a challenge because
reality is always slightly more difficult than anticipated. Of course we can resign
upfront and construct use cases for missing transitions between any two arbitrary
states. However, a model that links any two states by a pair of transitions, head-
ing into either direction, is of little power. It does not sort out anything, it does

3.3 Normal Termination 19

not tell how things should work. It does not understand reality, but resignates
before the real world’s complexity. A good model does not only describe the real
world, it also defines it. It does not only show what does happens, it also tells
what should happen. It should tell the normal from the exceptional.

For a similar reason, I did not admit the transition 4 of figure 4 that led
directly from the state new to the state done. A service that never goes through
a state in progress, i.e. that is never really worked on, is not a real service. It
may be that the real service (e.g., Appendectomy) has already been performed
before. This, however, does not shortcut the new service towards the state done
but should lead to a rejection of this additional service request (e.g., hopefully
before the laparotomy).

This shows that there is some healthy “loose coupling” between what is or-
dered and intended in terms of HL7, and what goes on in reality. If an HL7
service is completed but we want it to continue, why not issue an additional
service request? This additional request would be just a copy of the first one,
with updated placer order number, time stamps, etc. Why do we need a “renew”
transition for this? Even if we define the “renew” transition from the state done
to new, we have to answer the following question: At what point is the filler al-
lowed to purge the service intent or order object? When is it really dead? When
can the resources (i.e., storage) be cleared? When can we finally forget about an
old service?

We also discussed about if there is anything in the description of the service
that would determine in general when the service is completed. What needs to
happen for the service to proceed to the state done? It seemed like a consider-
able group of working group attendees held that a “stop date/time” attribute of
a service would be the ultimate determinant for completion of a service. Con-
sequently this group of people would argue that changing the stop date time
(even after the original stop date time) would restore the order into the state in
progress.

I do not agree to this position. While it is true that the end of some services
may be defined in terms of time, this is (1) not possible for all services and (2)
there are other alternatives in most cases. E.g. in surgery or in supply orders
(purchase order) we do not care so much about when a service is completed but
we do care that it should be completed in full. Hence the criteria for completion
of those servces are not defined in terms of time. In radiotherapy we want to
achieve a cummulative dose of radiation on the tumor, this is our goal, whether

20 3 SERVICE INTENT OR ORDER

we apply single doses or, as usual, repeated fractionated doses. Again, a “stop
date/time” is not the primary goal that defines completion of the service.

In pharmacy it is similar, although examples for the “stop date/time” argu-
ment are often taken from pharmacy orders. When we prescribe “Amoxicillin
250 mg three times a day for 10 days,” the goal is to achieve a sufficiently
high concentration of the antibiotics in the infectious focus until the infection is
cleared. Time does play a role here, but it is secondary. The goal in treatment is
the clearance of the infection not the consumption of 30 tablets nor the passage
of 10 days. As a conclusion, quantity timing (or service intent or order relation-
ship) may specify a goal where time may be one factor. But still, completion
of a service needs to be declared by the filler, and should be acknowledged by
the placer, to make sure that a possible disagreement is detected early in the
process.

3.4 Verification, Authorization and Endoding

The order/results working group has previously discussed the various verifica-
tions, encodings and countersignatures that an order may undergo. It seemed
that these states are with no direct connection to the other life-cycle states as
shown in figure 7 at the three concurrent regions in the lower right corner of the
state alive. This may not be an obvious insight, it may even be disputable, so
the rationale is given here in some more detail.

First of all, we can distinguish two differnent uses of these special states: (1)
verification and (2) authorization.

3.4.1 Verification

Verification (or validation) of the plausibility or applicability of the contents of
the ordered service. Such a validation would include testing whether the ordered
service is at all to be found in the service catalog of the filler, whether sufficient
data was provided by the placer, and whether both administrative and medical
constraints on the given service are met. Such constraints may include required
admission status, required pre-test results, or a diagnosis in the list of required
indications. Failure of the order to meet these requirement may lead to rejection
or further discussions. The mechanisms that govern these exceptional conditions
are not shown in the model.

3.4 Verification, Authorization and Endoding 21

3.4.2 Authorization

While verification can be performed completely automatic, authorization is al-
ways a conscious act of responsible human beings. By authorization, a human
takes on some responsibility for the service. For instance, the attending doctor
may have to countersign orders issued by residents, interns, or students. A rep-
resentative of the filler organization may have to countersign the request to take
over responsibilities for its fulfilment or for the complications it may cause to the
patient.

Some comparable states in existing business-processes may combine both
aspects, verification and authorization. Indeed, authorization would not make
sense without the authorizing individual to also verify the service. Such is the
“encoding” of medication orders an act of verification and authorization. I ex-
plicitly showed the state encoded in the model because of its outstanding role in
HL7’s current pharmacy/treatment process model.

There are many possible kinds of such authorizations and verifications which
are generally hard to standardize. At most some general patterns can be pre-
formulated by HL7, but much of the detail is up to the communicating institu-
tions and their policies, or laws and regulations that apply for them. The class
service intent or order, as an interdisciplinary and international class, cannot
specify much more than to indicate the existence of authorization states and a
general support to mainpulate these states. It is therefore important not to link
these states too tightly into the process model of the service, notably the general
possibility of fulfillment of a service should not depend on any of these states.

We can always find examples where an unverified, non-authorized, and un-
encoded service intent or order must be brought to completion without the in-
formation system’s rules preventing or delaying this. Life threatening situations
will always require such exceptions to otherwise justified rules. An intern on
emergency room night duty will order a range of tests and will apply a range
of medications without further explicit authorization required in routine cases
during the daytime.

The conclusion of this discussion is that (1) there are too many different
possible states of verification and authorization than can be reasonably modeled
explicitely for a class that shall be applicable by many disciplines and under
different legal circumstances. (2) There may always be important exceptions
to whatever states of verification or authorization are considered required for
routine cases. For these reasons the respective states were decoupled from the

22 3 SERVICE INTENT OR ORDER

main part of the model.

3.5 Arbitrary Change

A service intent or order can not only be changed in ways that are relevant to its
life-cycle. We need a mechanism by which almost any attribute and association
of an order or service intent can be modified by both placer and filler.

The change that either side can make to an order can be trivial or essential.
Again we cannot determine in general which attribute changes are trivial and
which are essential for all kinds of orders and service intents. We can make
a distinction, though, between life-cycle relevant changes (e.g., change to the
traditional “order status code”) and those that do not influence the main state
machine. But these other changes may or may not be regarded essential for a
given service in a given state.

We agreed on that life-cycle relevant changes are to be made using the proper
message that communicates the exact transition that the change implies. I would
even argue that we make the “order status code” an untouchable attribute: it
can only be read, but noone may ever change it directly. If in a given message the
“order status code” is different from the state as expected by the receiver (after
updating the receiver’s state machine according to the message), the receiver
must reject such a message as an application level error. In no case may an order
status code as received overwrite the actual order status code.

Also I propose that we make all state transitions explicit. A change in any
other attribute may not implicitly update the state. If the state must be updated
on behalf of some arbitrary information change, this will only be possible by one
allowable transition to fire. Finally I argue that all transitions should be reported
to the other party. Only on explicit request by the other party may a transition
fire without notification.

The question whether changes are not allowed, essential or trivial is a matter
of conformance statements or trading partner agreements. Of course we want
HL7 to be interoperable and not depend on arms-length negotiations anymore.
Therefore, we need a protocol where changes can be negotiated dynamically and
automatically.

An initiator of a change, which may be either the placer or the filler, will
send a request to the other party (the responder). The responder can accept
the change as proposed or it can decline it. Also the initiator of the change can

23

unlink
link

link

Figure 8: State-transition-model of the class service intent or order relationship

cancel the change at any time before the responder has made its decision.
If a change is declined the responder should indicate why this is so and

probably suggest a change by himself that would come as close as possible to the
original change request. This change protocol may need to be further elaborated.

Note that the filler should not generally have more right to change a service
request than the placer. Thus, a simple message “order changed unsolicited”
from filler to placer should not generally be allowed, at least the placer must
have a chance to cancel or interrupt the service if he cannot agree to the change
that the filler suggested. An important question also is, who will cover the filler’s
expenses in case the service was discontinued because of a change by the filler
that was not acceptable for the placer.

It is also important to note that a change will almost certainly affect the
validation and authorization status of the order: a prior validated or authorized
service may fall back into non-validated or non-authorized state. This is sub-
ject to the details of the service and the policies of the institutions using these
messages.

4 Service Intent or Order Relationships

The class service intent or order relationship allows to construct higher-level
(target) services from lower level (source) services. The state-transition model
of the general service intent or order relationship is as simple as shown in figure
8: a connection between two classes can be made and released, i.e. two services
can be linked and unlinked.

The state-transition diagram of the relationship is not very interesting. Con-
versely it is interesting to discuss the consequences that source-services have on
the life-cycle of target-services and what the effects of life-cycle changes in tar-
get services are on source services. An ongoing service may be thought of as a
process, quite in the same sense as an operating system process. There are four
fundamental ways of how processes can relate to each other (see also figure 9):

24 4 SERVICE INTENT OR ORDER RELATIONSHIPS

1. sequential

2. parallel, without join

3. parallel, with awaited join

4. parallel, with enforced join

The spawning off one process (child) from another process (parent) is also called
a fork. If the parent process hibernates until the child process finishes we have
a sequential execution of the processes (1). If the parent process continues to
execute, or spawns off other child processes, we have processes that execute in
parallel (2–4). These processes can continue to run in parallel regardless if either
of them terminates (2) or they can be ultimately re-synchronized, or “joined”
(3, 4). If the processes are joined we have two options: either the process who
finished earlier waits for the one who is still working (3) or the early process
terminates the late process prematurely (4).

An attribute of the relationship class will tell whether a source service is
executed in one of these 4 modes. Note that the “workflow management” school
uses a slightly different terminology. They speak of an “AND-split” where they
mean a parallel execution of tasks and an “OR-split” where they mean simple
branching, i.e. a selection of one task among other alternatives. On the other side
they speak of an “OR-join” and an “AND-join.” Decisions on the terminology
should not be guided by adherence to any school of process modeling, but to the
most general and concise alternative. I am neither a workflow expert nor am I
looking with awe to the workflow idea. I certainly want the relationship class
to be at least as expressive as workflow management, yet with a second goal
towards minimality and simplicity.

In the working group discussions since the San Francisco meeting we have
frequently mentioned the open issue of parent-child service relationship and its
influence on the life cycle of the parent service. When is a parent service com-
pleted? One reasonable answer is: at the time all of its child-services are com-
pleted. However, a sub-service might not have an independent end-condition,
but should last as long as another service (e.g., its parent) which it supports. In
any case, the prefered rule depends on the details of the service.

Having defined the basic building blocks of inter-process relationships as in
the enumeration above, we can model every kind of situation. Thus, a sequential

25

working

fo
rk

fo
rk

fo
rk

jo
in

hibernatingfo
rk

jo
in

d

c

b

a

waiting

jo
in

en
d

en
d

en
d

en
d

en
d

re
tu

rn

en
d

sto
p

parent

child

parent

child

parent

child

parent

child

working

working

working

working

working

working

Figure 9: The four fundamental dynamic relationships between processes: (a) se-
quential, (b) parallel without join, (c) parallel with awaited join, and (d) parallel
with enforced join.

service plan arranges the child-services sequentially and will terminate on termi-
nation of the last child-service in the sequence. Child-services of lab orders will
almost certainly be executed in parallel, e.g., in an electrolytes-status it does not
matter whether Sodium is measured before Potassium, vice versa, or both at the
same time. We will have an awaited join if the parent service will be complete
only when all of its children are completed. A supporting service will have an
enforced join because it exists only for the sake of its parent service. When the
parent is finished, the child will be terminated as well.

