/*- * See the file LICENSE for redistribution information. * * Copyright (c) 1996, 1997, 1998 * Sleepycat Software. All rights reserved. */ /* * Copyright (c) 1990, 1993, 1994, 1995, 1996 * Keith Bostic. All rights reserved. */ /* * Copyright (c) 1990, 1993, 1994, 1995 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * Mike Olson. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include "config.h" #ifndef lint static const char sccsid[] = "@(#)bt_put.c 10.45 (Sleepycat) 5/25/98"; #endif /* not lint */ #ifndef NO_SYSTEM_INCLUDES #include #include #include #endif #include "db_int.h" #include "db_page.h" #include "btree.h" static int __bam_fixed __P((BTREE *, DBT *)); static int __bam_isdeleted __P((DB *, PAGE *, u_int32_t, int *)); static int __bam_lookup __P((DB *, DBT *, int *)); static int __bam_ndup __P((DB *, PAGE *, u_int32_t)); static int __bam_ovput __P((DB *, PAGE *, u_int32_t, DBT *)); static int __bam_partial __P((DB *, DBT *, PAGE *, u_int32_t, u_int32_t)); static u_int32_t __bam_partsize __P((DBT *, PAGE *, u_int32_t)); /* * __bam_put -- * Add a new key/data pair or replace an existing pair (btree). * * PUBLIC: int __bam_put __P((DB *, DB_TXN *, DBT *, DBT *, u_int32_t)); */ int __bam_put(argdbp, txn, key, data, flags) DB *argdbp; DB_TXN *txn; DBT *key, *data; u_int32_t flags; { BTREE *t; CURSOR c; DB *dbp; PAGE *h; db_indx_t indx; u_int32_t iitem_flags, insert_flags; int exact, isdeleted, newkey, ret, stack; DEBUG_LWRITE(argdbp, txn, "bam_put", key, data, flags); /* Check flags. */ if ((ret = __db_putchk(argdbp, key, data, flags, F_ISSET(argdbp, DB_AM_RDONLY), F_ISSET(argdbp, DB_AM_DUP))) != 0) return (ret); GETHANDLE(argdbp, txn, &dbp, ret); t = dbp->internal; retry: /* * Find the location at which to insert. The call to __bam_lookup * leaves the returned page pinned. */ if ((ret = __bam_lookup(dbp, key, &exact)) != 0) { PUTHANDLE(dbp); return (ret); } h = t->bt_csp->page; indx = t->bt_csp->indx; stack = 1; /* * If DB_NOOVERWRITE is set and there's an identical key in the tree, * return an error unless the data item has already been marked for * deletion, or, all the remaining data items have already been marked * for deletion in the case of duplicates. If all the data items have * been marked for deletion, we do a replace, otherwise, it has to be * a set of duplicates, and we simply append a new one to the set. */ isdeleted = 0; if (exact) { if ((ret = __bam_isdeleted(dbp, h, indx, &isdeleted)) != 0) goto err; if (isdeleted) __bam_ca_replace(dbp, h->pgno, indx, REPLACE_SETUP); else if (flags == DB_NOOVERWRITE) { ret = DB_KEYEXIST; goto err; } } /* * If we're inserting into the first or last page of the tree, * remember where we did it so we can do fast lookup next time. * * XXX * Does reverse order still work (did it ever!?!?) */ t->bt_lpgno = h->next_pgno == PGNO_INVALID || h->prev_pgno == PGNO_INVALID ? h->pgno : PGNO_INVALID; /* * Select the arguments for __bam_iitem() and do the insert. If the * key is an exact match, we're either adding a new duplicate at the * end of the duplicate set, or we're replacing the data item with a * new data item. If the key isn't an exact match, we're inserting * a new key/data pair, before the search location. */ newkey = dbp->type == DB_BTREE && !exact; if (exact) { if (!isdeleted && F_ISSET(dbp, DB_AM_DUP)) { /* * Make sure that we're not looking at a page of * duplicates -- if so, move to the last entry on * that page. */ c.page = h; c.pgno = h->pgno; c.indx = indx; c.dpgno = PGNO_INVALID; c.dindx = 0; if ((ret = __bam_ovfl_chk(dbp, &c, indx + O_INDX, 1)) != 0) goto err; if (c.dpgno != PGNO_INVALID) { /* * XXX * The __bam_ovfl_chk() routine memp_fput() the * current page and acquired a new one, but did * not do anything about the lock we're holding. */ t->bt_csp->page = h = c.page; indx = c.dindx; } insert_flags = DB_AFTER; } else insert_flags = DB_CURRENT; } else insert_flags = DB_BEFORE; /* * The pages we're using may be modified by __bam_iitem(), so make * sure we reset the stack. */ iitem_flags = 0; if (newkey) iitem_flags |= BI_NEWKEY; if (isdeleted) iitem_flags |= BI_DOINCR; ret = __bam_iitem(dbp, &h, &indx, key, data, insert_flags, iitem_flags); t->bt_csp->page = h; t->bt_csp->indx = indx; switch (ret) { case 0: /* Done. Clean up the cursor. */ if (isdeleted) __bam_ca_replace(dbp, h->pgno, indx, REPLACE_SUCCESS); break; case DB_NEEDSPLIT: /* * We have to split the page. Back out the cursor setup, * discard the stack of pages, and do the split. */ if (isdeleted) __bam_ca_replace(dbp, h->pgno, indx, REPLACE_FAILED); (void)__bam_stkrel(dbp); stack = 0; if ((ret = __bam_split(dbp, key)) != 0) break; goto retry; /* NOTREACHED */ default: if (isdeleted) __bam_ca_replace(dbp, h->pgno, indx, REPLACE_FAILED); break; } err: if (stack) (void)__bam_stkrel(dbp); PUTHANDLE(dbp); return (ret); } /* * __bam_isdeleted -- * Return if the only remaining data item for the element has been * deleted. */ static int __bam_isdeleted(dbp, h, indx, isdeletedp) DB *dbp; PAGE *h; u_int32_t indx; int *isdeletedp; { BKEYDATA *bk; db_pgno_t pgno; int ret; *isdeletedp = 1; for (;;) { bk = GET_BKEYDATA(h, indx + O_INDX); switch (B_TYPE(bk->type)) { case B_KEYDATA: case B_OVERFLOW: if (!B_DISSET(bk->type)) { *isdeletedp = 0; return (0); } break; case B_DUPLICATE: /* * If the data item referencing the off-page duplicates * is flagged as deleted, we're done. Else, we have to * walk the chain of duplicate pages. */ if (B_DISSET(bk->type)) return (0); goto dupchk; default: return (__db_pgfmt(dbp, h->pgno)); } /* * If there are no more on-page duplicate items, then every * data item for this key must have been deleted. */ if (indx + P_INDX >= (u_int32_t)NUM_ENT(h)) return (0); if (h->inp[indx] != h->inp[indx + P_INDX]) return (0); /* Check the next item. */ indx += P_INDX; } /* NOTREACHED */ dupchk: /* Check a chain of duplicate pages. */ pgno = ((BOVERFLOW *)bk)->pgno; for (;;) { /* Acquire the next page in the duplicate chain. */ if ((ret = memp_fget(dbp->mpf, &pgno, 0, &h)) != 0) return (ret); /* Check each item for a delete flag. */ for (indx = 0; indx < NUM_ENT(h); ++indx) if (!B_DISSET(GET_BKEYDATA(h, indx)->type)) { *isdeletedp = 0; goto done; } /* * If we reach the end of the duplicate pages, then every * item we reviewed must have been deleted. */ if ((pgno = NEXT_PGNO(h)) == PGNO_INVALID) goto done; (void)memp_fput(dbp->mpf, h, 0); } /* NOTREACHED */ done: (void)memp_fput(dbp->mpf, h, 0); return (0); } /* * __bam_lookup -- * Find the right location in the tree for the key. */ static int __bam_lookup(dbp, key, exactp) DB *dbp; DBT *key; int *exactp; { BTREE *t; DB_LOCK lock; EPG e; PAGE *h; db_indx_t indx; int cmp, ret; t = dbp->internal; h = NULL; /* * Record numbers can't be fast-tracked, we have to lock the entire * tree. */ if (F_ISSET(dbp, DB_BT_RECNUM)) goto slow; /* Check to see if we've been seeing sorted input. */ if (t->bt_lpgno == PGNO_INVALID) goto slow; /* * Retrieve the page on which we did the last insert. It's okay if * it doesn't exist, or if it's not the page type we expect, it just * means that the world changed. */ if (__bam_lget(dbp, 0, t->bt_lpgno, DB_LOCK_WRITE, &lock)) goto miss; if (__bam_pget(dbp, &h, &t->bt_lpgno, 0)) { (void)__BT_LPUT(dbp, lock); goto miss; } if (TYPE(h) != P_LBTREE) goto miss; if (NUM_ENT(h) == 0) goto miss; /* * We have to be at the end or beginning of the tree to know that * we're inserting in a sort order. If that's the case and we're * in the right order in comparison to the first/last key/data pair, * we have the right position. */ if (h->next_pgno == PGNO_INVALID) { e.page = h; e.indx = NUM_ENT(h) - P_INDX; if ((cmp = __bam_cmp(dbp, key, &e)) >= 0) { if (cmp > 0) e.indx += P_INDX; goto fast; } } if (h->prev_pgno == PGNO_INVALID) { e.page = h; e.indx = 0; if ((cmp = __bam_cmp(dbp, key, &e)) <= 0) { /* * We're doing a put, so we want to insert as the last * of any set of duplicates. */ if (cmp == 0) { for (indx = 0; indx < (db_indx_t)(NUM_ENT(h) - P_INDX) && h->inp[indx] == h->inp[indx + P_INDX]; indx += P_INDX) ; e.indx = indx; } goto fast; } } goto miss; /* Set the exact match flag in case we've already inserted this key. */ fast: *exactp = cmp == 0; /* Enter the entry in the stack. */ BT_STK_CLR(t); BT_STK_ENTER(t, e.page, e.indx, lock, ret); if (ret != 0) return (ret); ++t->lstat.bt_cache_hit; return (0); miss: ++t->lstat.bt_cache_miss; if (h != NULL) { (void)memp_fput(dbp->mpf, h, 0); (void)__BT_LPUT(dbp, lock); } slow: return (__bam_search(dbp, key, S_INSERT, 1, NULL, exactp)); } /* * __bam_iitem -- * Insert an item into the tree. * * PUBLIC: int __bam_iitem __P((DB *, * PUBLIC: PAGE **, db_indx_t *, DBT *, DBT *, u_int32_t, u_int32_t)); */ int __bam_iitem(dbp, hp, indxp, key, data, op, flags) DB *dbp; PAGE **hp; db_indx_t *indxp; DBT *key, *data; u_int32_t op, flags; { BTREE *t; BKEYDATA *bk; DBT tdbt; PAGE *h; db_indx_t indx, nbytes; u_int32_t data_size, have_bytes, need_bytes, needed; int bigkey, bigdata, dupadjust, replace, ret; COMPQUIET(bk, NULL); t = dbp->internal; h = *hp; indx = *indxp; dupadjust = replace = 0; /* * If it's a page of duplicates, call the common code to do the work. * * !!! * Here's where the hp and indxp are important. The duplicate code * may decide to rework/rearrange the pages and indices we're using, * so the caller must understand that the page stack may change. */ if (TYPE(h) == P_DUPLICATE) { /* Adjust the index for the new item if it's a DB_AFTER op. */ if (op == DB_AFTER) ++*indxp; /* Remove the current item if it's a DB_CURRENT op. */ if (op == DB_CURRENT) { bk = GET_BKEYDATA(*hp, *indxp); switch (B_TYPE(bk->type)) { case B_KEYDATA: nbytes = BKEYDATA_SIZE(bk->len); break; case B_OVERFLOW: nbytes = BOVERFLOW_SIZE; break; default: return (__db_pgfmt(dbp, h->pgno)); } if ((ret = __db_ditem(dbp, *hp, *indxp, nbytes)) != 0) return (ret); } /* Put the new/replacement item onto the page. */ if ((ret = __db_dput(dbp, data, hp, indxp, __bam_new)) != 0) return (ret); goto done; } /* Handle fixed-length records: build the real record. */ if (F_ISSET(dbp, DB_RE_FIXEDLEN) && data->size != t->bt_recno->re_len) { tdbt = *data; if ((ret = __bam_fixed(t, &tdbt)) != 0) return (ret); data = &tdbt; } /* * Figure out how much space the data will take, including if it's a * partial record. If either of the key or data items won't fit on * a page, we'll have to store them on overflow pages. */ bigkey = LF_ISSET(BI_NEWKEY) && key->size > t->bt_ovflsize; data_size = F_ISSET(data, DB_DBT_PARTIAL) ? __bam_partsize(data, h, indx) : data->size; bigdata = data_size > t->bt_ovflsize; needed = 0; if (LF_ISSET(BI_NEWKEY)) { /* If BI_NEWKEY is set we're adding a new key and data pair. */ if (bigkey) needed += BOVERFLOW_PSIZE; else needed += BKEYDATA_PSIZE(key->size); if (bigdata) needed += BOVERFLOW_PSIZE; else needed += BKEYDATA_PSIZE(data_size); } else { /* * We're either overwriting the data item of a key/data pair * or we're adding the data item only, i.e. a new duplicate. */ if (op == DB_CURRENT) { bk = GET_BKEYDATA(h, indx + (TYPE(h) == P_LBTREE ? O_INDX : 0)); if (B_TYPE(bk->type) == B_KEYDATA) have_bytes = BKEYDATA_PSIZE(bk->len); else have_bytes = BOVERFLOW_PSIZE; need_bytes = 0; } else { have_bytes = 0; need_bytes = sizeof(db_indx_t); } if (bigdata) need_bytes += BOVERFLOW_PSIZE; else need_bytes += BKEYDATA_PSIZE(data_size); if (have_bytes < need_bytes) needed += need_bytes - have_bytes; } /* * If there's not enough room, or the user has put a ceiling on the * number of keys permitted in the page, split the page. * * XXX * The t->bt_maxkey test here may be insufficient -- do we have to * check in the btree split code, so we don't undo it there!?!? */ if (P_FREESPACE(h) < needed || (t->bt_maxkey != 0 && NUM_ENT(h) > t->bt_maxkey)) return (DB_NEEDSPLIT); /* Handle partial puts: build the real record. */ if (F_ISSET(data, DB_DBT_PARTIAL)) { tdbt = *data; if ((ret = __bam_partial(dbp, &tdbt, h, indx, data_size)) != 0) return (ret); data = &tdbt; } /* * The code breaks it up into six cases: * * 1. Append a new key/data pair. * 2. Insert a new key/data pair. * 3. Append a new data item (a new duplicate). * 4. Insert a new data item (a new duplicate). * 5. Overflow item: delete and re-add the data item. * 6. Replace the data item. */ if (LF_ISSET(BI_NEWKEY)) { switch (op) { case DB_AFTER: /* 1. Append a new key/data pair. */ indx += 2; *indxp += 2; break; case DB_BEFORE: /* 2. Insert a new key/data pair. */ break; default: return (EINVAL); } /* Add the key. */ if (bigkey) { if ((ret = __bam_ovput(dbp, h, indx, key)) != 0) return (ret); } else if ((ret = __db_pitem(dbp, h, indx, BKEYDATA_SIZE(key->size), NULL, key)) != 0) return (ret); ++indx; } else { switch (op) { case DB_AFTER: /* 3. Append a new data item. */ if (TYPE(h) == P_LBTREE) { /* * Adjust the cursor and copy in the key for * the duplicate. */ if ((ret = __bam_adjindx(dbp, h, indx + P_INDX, indx, 1)) != 0) return (ret); indx += 3; dupadjust = 1; *indxp += 2; } else { ++indx; __bam_ca_di(dbp, h->pgno, indx, 1); *indxp += 1; } break; case DB_BEFORE: /* 4. Insert a new data item. */ if (TYPE(h) == P_LBTREE) { /* * Adjust the cursor and copy in the key for * the duplicate. */ if ((ret = __bam_adjindx(dbp, h, indx, indx, 1)) != 0) return (ret); ++indx; dupadjust = 1; } else __bam_ca_di(dbp, h->pgno, indx, 1); break; case DB_CURRENT: if (TYPE(h) == P_LBTREE) ++indx; /* * 5. Delete/re-add the data item. * * If we're dealing with offpage items, we have to * delete and then re-add the item. */ if (bigdata || B_TYPE(bk->type) != B_KEYDATA) { if ((ret = __bam_ditem(dbp, h, indx)) != 0) return (ret); break; } /* 6. Replace the data item. */ replace = 1; break; default: return (EINVAL); } } /* Add the data. */ if (bigdata) { if ((ret = __bam_ovput(dbp, h, indx, data)) != 0) return (ret); } else { BKEYDATA __bk; DBT __hdr; if (LF_ISSET(BI_DELETED)) { B_TSET(__bk.type, B_KEYDATA, 1); __bk.len = data->size; __hdr.data = &__bk; __hdr.size = SSZA(BKEYDATA, data); ret = __db_pitem(dbp, h, indx, BKEYDATA_SIZE(data->size), &__hdr, data); } else if (replace) ret = __bam_ritem(dbp, h, indx, data); else ret = __db_pitem(dbp, h, indx, BKEYDATA_SIZE(data->size), NULL, data); if (ret != 0) return (ret); } if ((ret = memp_fset(dbp->mpf, h, DB_MPOOL_DIRTY)) != 0) return (ret); /* * If the page is at least 50% full, and we added a duplicate, see if * that set of duplicates takes up at least 25% of the space. If it * does, move it off onto its own page. */ if (dupadjust && P_FREESPACE(h) <= dbp->pgsize / 2) { --indx; if ((ret = __bam_ndup(dbp, h, indx)) != 0) return (ret); } /* * If we've changed the record count, update the tree. Record counts * need to be updated in recno databases and in btree databases where * we are supporting records. In both cases, adjust the count if the * operation wasn't performed on the current record or when the caller * overrides and wants the adjustment made regardless. */ done: if (LF_ISSET(BI_DOINCR) || (op != DB_CURRENT && (F_ISSET(dbp, DB_BT_RECNUM) || dbp->type == DB_RECNO))) if ((ret = __bam_adjust(dbp, t, 1)) != 0) return (ret); /* If we've modified a recno file, set the flag */ if (t->bt_recno != NULL) F_SET(t->bt_recno, RECNO_MODIFIED); ++t->lstat.bt_added; return (ret); } /* * __bam_partsize -- * Figure out how much space a partial data item is in total. */ static u_int32_t __bam_partsize(data, h, indx) DBT *data; PAGE *h; u_int32_t indx; { BKEYDATA *bk; u_int32_t nbytes; /* * Figure out how much total space we'll need. If the record doesn't * already exist, it's simply the data we're provided. */ if (indx >= NUM_ENT(h)) return (data->doff + data->size); /* * Otherwise, it's the data provided plus any already existing data * that we're not replacing. */ bk = GET_BKEYDATA(h, indx + (TYPE(h) == P_LBTREE ? O_INDX : 0)); nbytes = B_TYPE(bk->type) == B_OVERFLOW ? ((BOVERFLOW *)bk)->tlen : bk->len; /* * There are really two cases here: * * Case 1: We are replacing some bytes that do not exist (i.e., they * are past the end of the record). In this case the number of bytes * we are replacing is irrelevant and all we care about is how many * bytes we are going to add from offset. So, the new record length * is going to be the size of the new bytes (size) plus wherever those * new bytes begin (doff). * * Case 2: All the bytes we are replacing exist. Therefore, the new * size is the oldsize (nbytes) minus the bytes we are replacing (dlen) * plus the bytes we are adding (size). */ if (nbytes < data->doff + data->dlen) /* Case 1 */ return (data->doff + data->size); return (nbytes + data->size - data->dlen); /* Case 2 */ } /* * OVPUT -- * Copy an overflow item onto a page. */ #undef OVPUT #define OVPUT(h, indx, bo) do { \ DBT __hdr; \ memset(&__hdr, 0, sizeof(__hdr)); \ __hdr.data = &bo; \ __hdr.size = BOVERFLOW_SIZE; \ if ((ret = __db_pitem(dbp, \ h, indx, BOVERFLOW_SIZE, &__hdr, NULL)) != 0) \ return (ret); \ } while (0) /* * __bam_ovput -- * Build an overflow item and put it on the page. */ static int __bam_ovput(dbp, h, indx, item) DB *dbp; PAGE *h; u_int32_t indx; DBT *item; { BOVERFLOW bo; int ret; B_TSET(bo.type, B_OVERFLOW, 0); bo.tlen = item->size; if ((ret = __db_poff(dbp, item, &bo.pgno, __bam_new)) != 0) return (ret); OVPUT(h, indx, bo); return (0); } /* * __bam_ritem -- * Replace an item on a page. * * PUBLIC: int __bam_ritem __P((DB *, PAGE *, u_int32_t, DBT *)); */ int __bam_ritem(dbp, h, indx, data) DB *dbp; PAGE *h; u_int32_t indx; DBT *data; { BKEYDATA *bk; DBT orig, repl; db_indx_t cnt, lo, ln, min, off, prefix, suffix; int32_t nbytes; int ret; u_int8_t *p, *t; /* * Replace a single item onto a page. The logic figuring out where * to insert and whether it fits is handled in the caller. All we do * here is manage the page shuffling. */ bk = GET_BKEYDATA(h, indx); /* Log the change. */ if (DB_LOGGING(dbp)) { /* * We might as well check to see if the two data items share * a common prefix and suffix -- it can save us a lot of log * message if they're large. */ min = data->size < bk->len ? data->size : bk->len; for (prefix = 0, p = bk->data, t = data->data; prefix < min && *p == *t; ++prefix, ++p, ++t) ; min -= prefix; for (suffix = 0, p = (u_int8_t *)bk->data + bk->len - 1, t = (u_int8_t *)data->data + data->size - 1; suffix < min && *p == *t; ++suffix, --p, --t) ; /* We only log the parts of the keys that have changed. */ orig.data = (u_int8_t *)bk->data + prefix; orig.size = bk->len - (prefix + suffix); repl.data = (u_int8_t *)data->data + prefix; repl.size = data->size - (prefix + suffix); if ((ret = __bam_repl_log(dbp->dbenv->lg_info, dbp->txn, &LSN(h), 0, dbp->log_fileid, PGNO(h), &LSN(h), (u_int32_t)indx, (u_int32_t)B_DISSET(bk->type), &orig, &repl, (u_int32_t)prefix, (u_int32_t)suffix)) != 0) return (ret); } /* * Set references to the first in-use byte on the page and the * first byte of the item being replaced. */ p = (u_int8_t *)h + HOFFSET(h); t = (u_int8_t *)bk; /* * If the entry is growing in size, shift the beginning of the data * part of the page down. If the entry is shrinking in size, shift * the beginning of the data part of the page up. Use memmove(3), * the regions overlap. */ lo = BKEYDATA_SIZE(bk->len); ln = BKEYDATA_SIZE(data->size); if (lo != ln) { nbytes = lo - ln; /* Signed difference. */ if (p == t) /* First index is fast. */ h->inp[indx] += nbytes; else { /* Else, shift the page. */ memmove(p + nbytes, p, t - p); /* Adjust the indices' offsets. */ off = h->inp[indx]; for (cnt = 0; cnt < NUM_ENT(h); ++cnt) if (h->inp[cnt] <= off) h->inp[cnt] += nbytes; } /* Clean up the page and adjust the item's reference. */ HOFFSET(h) += nbytes; t += nbytes; } /* Copy the new item onto the page. */ bk = (BKEYDATA *)t; B_TSET(bk->type, B_KEYDATA, 0); bk->len = data->size; memcpy(bk->data, data->data, data->size); return (0); } /* * __bam_ndup -- * Check to see if the duplicate set at indx should have its own page. * If it should, create it. */ static int __bam_ndup(dbp, h, indx) DB *dbp; PAGE *h; u_int32_t indx; { BKEYDATA *bk; BOVERFLOW bo; DBT hdr; PAGE *cp; db_indx_t cnt, cpindx, first, sz; int ret; while (indx > 0 && h->inp[indx] == h->inp[indx - P_INDX]) indx -= P_INDX; for (cnt = 0, sz = 0, first = indx;; ++cnt, indx += P_INDX) { if (indx >= NUM_ENT(h) || h->inp[first] != h->inp[indx]) break; bk = GET_BKEYDATA(h, indx); sz += B_TYPE(bk->type) == B_KEYDATA ? BKEYDATA_PSIZE(bk->len) : BOVERFLOW_PSIZE; bk = GET_BKEYDATA(h, indx + O_INDX); sz += B_TYPE(bk->type) == B_KEYDATA ? BKEYDATA_PSIZE(bk->len) : BOVERFLOW_PSIZE; } /* * If this set of duplicates is using more than 25% of the page, move * them off. The choice of 25% is a WAG, but it has to be small enough * that we can always split regardless of the presence of duplicates. */ if (sz < dbp->pgsize / 4) return (0); /* Get a new page. */ if ((ret = __bam_new(dbp, P_DUPLICATE, &cp)) != 0) return (ret); /* * Move this set of duplicates off the page. First points to the first * key of the first duplicate key/data pair, cnt is the number of pairs * we're dealing with. */ memset(&hdr, 0, sizeof(hdr)); for (indx = first + O_INDX, cpindx = 0;; ++cpindx) { /* Copy the entry to the new page. */ bk = GET_BKEYDATA(h, indx); hdr.data = bk; hdr.size = B_TYPE(bk->type) == B_KEYDATA ? BKEYDATA_SIZE(bk->len) : BOVERFLOW_SIZE; if ((ret = __db_pitem(dbp, cp, cpindx, hdr.size, &hdr, NULL)) != 0) goto err; /* * Move cursors referencing the old entry to the new entry. * Done after the page put because __db_pitem() adjusts * cursors on the new page, and before the delete because * __db_ditem adjusts cursors on the old page. */ __bam_ca_dup(dbp, PGNO(h), first, indx - O_INDX, PGNO(cp), cpindx); /* Delete the data item. */ if ((ret = __db_ditem(dbp, h, indx, hdr.size)) != 0) goto err; /* Delete all but the first reference to the key. */ if (--cnt == 0) break; if ((ret = __bam_adjindx(dbp, h, indx, first, 0)) != 0) goto err; } /* Put in a new data item that points to the duplicates page. */ B_TSET(bo.type, B_DUPLICATE, 0); bo.pgno = cp->pgno; bo.tlen = 0; OVPUT(h, indx, bo); return (memp_fput(dbp->mpf, cp, DB_MPOOL_DIRTY)); err: (void)__bam_free(dbp, cp); return (ret); } /* * __bam_fixed -- * Build the real record for a fixed length put. */ static int __bam_fixed(t, dbt) BTREE *t; DBT *dbt; { RECNO *rp; rp = t->bt_recno; /* * If database contains fixed-length records, and the record is long, * return EINVAL. */ if (dbt->size > rp->re_len) return (EINVAL); /* * The caller checked to see if it was just right, so we know it's * short. Pad it out. We use the record data return memory, it's * only a short-term use. */ if (t->bt_rdata.ulen < rp->re_len) { t->bt_rdata.data = t->bt_rdata.data == NULL ? (void *)__db_malloc(rp->re_len) : (void *)__db_realloc(t->bt_rdata.data, rp->re_len); if (t->bt_rdata.data == NULL) { t->bt_rdata.ulen = 0; return (ENOMEM); } t->bt_rdata.ulen = rp->re_len; } memcpy(t->bt_rdata.data, dbt->data, dbt->size); memset((u_int8_t *)t->bt_rdata.data + dbt->size, rp->re_pad, rp->re_len - dbt->size); /* * Clean up our flags and other information just in case, and * change the caller's DBT to reference our created record. */ t->bt_rdata.size = rp->re_len; t->bt_rdata.dlen = 0; t->bt_rdata.doff = 0; t->bt_rdata.flags = 0; *dbt = t->bt_rdata; return (0); } /* * __bam_partial -- * Build the real record for a partial put. */ static int __bam_partial(dbp, dbt, h, indx, nbytes) DB *dbp; DBT *dbt; PAGE *h; u_int32_t indx, nbytes; { BTREE *t; BKEYDATA *bk, tbk; BOVERFLOW *bo; DBT copy; u_int32_t len, tlen; u_int8_t *p; int ret; COMPQUIET(bo, NULL); t = dbp->internal; /* We use the record data return memory, it's only a short-term use. */ if (t->bt_rdata.ulen < nbytes) { t->bt_rdata.data = t->bt_rdata.data == NULL ? (void *)__db_malloc(nbytes) : (void *)__db_realloc(t->bt_rdata.data, nbytes); if (t->bt_rdata.data == NULL) { t->bt_rdata.ulen = 0; return (ENOMEM); } t->bt_rdata.ulen = nbytes; } /* Find the current record. */ if (indx < NUM_ENT(h)) { bk = GET_BKEYDATA(h, indx + (TYPE(h) == P_LBTREE ? O_INDX : 0)); bo = (BOVERFLOW *)bk; } else { bk = &tbk; B_TSET(bk->type, B_KEYDATA, 0); bk->len = 0; } /* * We use nul bytes for any part of the record that isn't specified, * get it over with. */ memset(t->bt_rdata.data, 0, nbytes); if (B_TYPE(bk->type) == B_OVERFLOW) { /* * In the case of an overflow record, we shift things around * in the current record rather than allocate a separate copy. */ memset(©, 0, sizeof(copy)); if ((ret = __db_goff(dbp, ©, bo->tlen, bo->pgno, &t->bt_rdata.data, &t->bt_rdata.ulen)) != 0) return (ret); /* Skip any leading data from the original record. */ tlen = dbt->doff; p = (u_int8_t *)t->bt_rdata.data + dbt->doff; /* * Copy in any trailing data from the original record. * * If the original record was larger than the original offset * plus the bytes being deleted, there is trailing data in the * original record we need to preserve. If we aren't deleting * the same number of bytes as we're inserting, copy it up or * down, into place. * * Use memmove(), the regions may overlap. */ if (bo->tlen > dbt->doff + dbt->dlen) { len = bo->tlen - (dbt->doff + dbt->dlen); if (dbt->dlen != dbt->size) memmove(p + dbt->size, p + dbt->dlen, len); tlen += len; } /* Copy in the application provided data. */ memcpy(p, dbt->data, dbt->size); tlen += dbt->size; } else { /* Copy in any leading data from the original record. */ memcpy(t->bt_rdata.data, bk->data, dbt->doff > bk->len ? bk->len : dbt->doff); tlen = dbt->doff; p = (u_int8_t *)t->bt_rdata.data + dbt->doff; /* Copy in the application provided data. */ memcpy(p, dbt->data, dbt->size); tlen += dbt->size; /* Copy in any trailing data from the original record. */ len = dbt->doff + dbt->dlen; if (bk->len > len) { memcpy(p + dbt->size, bk->data + len, bk->len - len); tlen += bk->len - len; } } /* Set the DBT to reference our new record. */ t->bt_rdata.size = tlen; t->bt_rdata.dlen = 0; t->bt_rdata.doff = 0; t->bt_rdata.flags = 0; *dbt = t->bt_rdata; return (0); }