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1 INTRODUCTION

1.1 What is a Data Type?

Every piece of data has adatatype. Data types define the meaning (semantics) of data values that can
be assigned to a data field. Meaningful exchange of data requires that we know the definition of values
so exchanged. Thisistrue for complex “values’ such as business messages as well as for simpler
values such as character strings or integer numbers.

According to 1SO 11404, adatatype is“aset of distinct values, characterized by properties of those
values and by operations on those values.” A datatype has intension and extension. Intensionally, the
data type defines the properties exposed by every data value of that type. Extensionally, data types
have a set of data values that are of that type (the type's “value set”).

Semantic properties of datatypes are what 1SO 11404 calls “properties of those valuesand [ ...]
operations on those values.” A semantic property of a datatype isreferred to by a name and has a
value for each datavalue. The value of a data value's property must itself be a value defined by a data
type — no data value exists that would not be defined by a data type.

Data types are thus the basic building blocks used to construct any higher order meaning: messages,
computerized patient record documents, or business objects and their transactions. What, then, isthe
difference between a data type and a message, document, or business object? Data type values stand
for themselves, the valueis al that counts, neither identity nor state nor changing of state is defined for
adatavaue. Conversely in business objects, we track state and identity, the properties of an identical
object might change between now and later. Not so with data values: a data value and its properties are
constant. One can think of data values as immutable objects where identity does not matter (identity
and equality are the same.)
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ITS Note: The notion of update modes defined in the HL7 message development framework does not exist for
data values because data values have no concept of being updated.

1.2 Representation of Data Values

Data values can be represented through various symbols, or objects but the data value's meaning is not
bound to any particular representation.

For example, cardinal numbers (non-negative integers) are defined — intensionally — as a data type
where each value has a successor value, where zero is the successor of no other cardinal value. Based
on this definition we can define addition, multiplication, and other mathematical operations. Whatever
representation reflects the rules we stated in the intensional definition of the cardinal datatypeisa
valid representation of cardinal numbers. Examplesfor valid cardinal number representations are
decimal digit strings, strings of true-false values (binary), groups of wooden sticks, bags of glass
marbles, small rocks, or scratches on awall. The representation does not matter as long as it behaves
according to the semantic rules.

Another example, the Boolean data type is defined by its extension, the two distinct values true and
false and the rules of negation and combining these valuesin conjunction and disjunction. The
representation of Boolean values can be the words true and false, yes and no, the numbers 0 and 1, the
signs- and +, any two signs that are distinct from each other. The representation of data types does
not matter as long as the representations conform to the definition of the data type.

Standards for representing data types using various technological approaches are needed to
communicate meaning. Implementations of data types will define computer procedures for the
properties of a datatype to act on the representation of data values generating new data val ues.
However, the meaning these representations communicated, generated, and processed in computer
programs, are defined based on the semantics of the data types. This specification defines the
semantics, the meaning of the HL7 data types. This specification is about semantics only, independent
from representational and operational concerns of specific implementation technologies.

1.3 Properties of Data Values

Data values have properties defined by their datatype. One can think of a data value' s property as
logical predicates or as mathematical functions; or one can simply state that properties are questions
one can ask about a data value to receive another data value as an answer.

A property isreferred to by itsname. A property has adomain, which isthe set of possible “answer”
values. Every property is assigned a data type, and every possible value of the property is a value of
that type. A property may also have arguments, additional information one must supply with a
question to get an answer. For example, an important property of an integer number is that one integer
plus another integer resultsin another integer.

Whether semantic properties have argumentsis not a fundamentally relevant distinction.

A datatype' s semantic property without argumentsis not necessarily a“datafield” or component of a
valid representation of that datatype. For example, for integer values, we can defined the property is-
zero that has the Boolean value true when the number is zero and fal se when the number is not zero.
This does not mean that is-zero must be an explicit component of any integer representation.

A datatype’s semantic property with arguments has no specific operational notions such as procedure
call, passing arguments, and return values, throwing exceptions, etc. These are all valid concepts of
computer systems implementation of data types but are not relevant for defining the semantics of data
types.

This specification is about semantics of data typesonly. Neither isit about value representation syntax
(not even an abstract syntax), nor isit about an operational interface to the data values.
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1.4 Need for the Abstraction

This specification makes an issue about its being abstract from representation syntax as well as
operational implementation. HL7 needs this kind of abstract semantic data type specification for a
very practical purpose. Oneimportant design feature of HL7 version 3 is its openness towards
representation and implementation technologies. All HL7 version 3 specifications are supposed to be
donein aform independent from specific representation and implementation technologies. HL7
acknowledges that, while at times some representation and implementation technol ogies may be more
popular, technology is going to change, and with it representation and implementation technologies.
HL 7 standards are primarily targeted to health care domain information, independent from the
technology supporting thisinformation. The expectation is that the HL 7 specifications that are
independent from today’ s technology will be of use after the next technological “ paradigm shift”.

Theissue of datatypesis closer to implementation technology than most other HL 7 information
standards and therein lies a certain danger for data types to be specified too implementation technology
dependent.

The majority of HL7 standards are about complex business objects. Complex business objects with

many informational attributes can be specified as abstract syntax, where components are eventually

defined in terms of datatypes. Conversely, defining datatypesin terms of abstract syntax is of little
use because the components of such abstract syntax constructs would still have to have data types.

In addition, any concrete implementation of the HL 7 standards must ultimately use the built-in data
types of their implementation technology. Therefore, the mapping between HL7 abstract data types
and implementation technology provided data types must be very flexible. Thisflexibility can be
gained through a semantic specification to which an Implementable Technology Specification (ITS)
can conform simply by stating a mapping between the constructs of its technology and the HL7 version
3 data type semantics.

These I TS-mappings need not abide by any abstract syntax that would be foreign to the
Implementation Technology, because this standard does not put forth an abstract syntax. For example,
this standard specifies a character string as a data type with many properties (e.g., charset, language,
etc.) However, in many Implementation Technologies, character strings are primitive first class data
types. We encourage that these native data types be used rather than a structure that slavishly
represents all the semantic properties as “components.” This specification and its properties is mostly
descriptive of what implementation technologies typically provide and of what isrelevant on the
application layer.

For another example, a decimal representation, a floating-point register and a scaled integer are all
possible native representations of real numbers on different Implementation Technologies. Some of
these representations have properties that others do not have. Scaled integers, for instance, have a
fixed precision and arelatively small range. Floating-point values have variable precision and alarge
range, but floating-point values lose any information about precision. Decimal representations, are of
variable precision and maintain the precision information (yet are slow to processing.) The HL7
semantics must be independent from all these accidental properties of the various representations, and
must define the essential properties that any technology should be able to represent.

1.5 Need for an HL7 Data Type Standard

As noted in the previous section, all HL7 implementation technol ogies have some data type system,

but there are differences among the data type systems between implementation technologies. In
addition, many implementation technologies' data type systems are not powerful enough to express the
concepts that matter for the HL7 application layer.

For example, few implementation technologies provide the concepts of physical quantities, precision,
ranges, and uncertainty that are so relevant in scientific and health care computing.

On the other hand, implementation technologies do make distinctions that are not relevant from the
abstract semantics viewpoint, e.g., fixed point vs. floating-point real numbers; 8, 16, 32, or 64-bit
integers; date vs. timestamp.
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A number of datatype systems have been used as input to this specification. These include the type
systems of many major programming languages, including BASIC, Pascal, MODULA-2, C, C++, JAVA,
ADA, LisPand SCHEME. This also includes type systems of language-independent implementation
technologies, such as Abstract Syntax Notation One (ASN.1), Object Management Group’s (OMG)
Interface Definition Language (IDL) and Object Constraint Language (OCL ), SQL 92 and SQL 3, the
I SO 11404 language independent data types, and XML Schema Part 2 data types. Health care
standards related data types have been considered as well, among these HL7 version 2.x, types used by
CEN TC 251 messages and Electronic Health Record Architecture (EHCRA) and DICOM.

All but the health-care standards related types are defined for a certain implementation technol ogy.
Nevertheless, among these technology dependent data types the SO 11404 language independent data
types and the Common Lisp and Scheme data type specification have been of particular interest for
their approach to specify the semantics of data types independent from abstract syntax.

1.6 Overview of Contents

This specification attempts to define all the data types needed for health care information interchange.
To cover the field exhaustively the survey of other data type systems was used as well as an a-priori
approach to find all data types needed and to avoid duplication. In statistics, datais commonly
classified according to Stevens' 4 scale types. nominal, ordinal, interval, and ratio; however, these
classic scale types do not seem to explain what we see in the area of datatypes. This specification
used a phenomenological approach to the field. It begins with the Boolean, the most general data type
that is capable of encoding all information. From this analysis, we found three major partitions:

1. Text —the areaof representation of ideas. All information can be expressed as text but text must
be interpreted to have meaning. Text is only used for information for which this specification does
not define semantics, information that is mainly interpreted by humans or encoded for
interpretation by means external to this specification. Written text, spoken text (audio) aswell as
graphics or images belong in this category.

2. Conceptsand Things— symbols and identifiers for concepts and things (corresponding to
Steven’s nominal scale.) Concepts are uniformly referred to with codes. Things can be identified
with instance identifiers, or pointers, that have no other meaning than the thing they point to.
Many things can be identified through natural identifiers, such as namesfor people, organizations
and places. This specification does not completely cover these natural identifiers (e.g.,
geographical coordinates may be a candidate data type to identify places.)

3. Quantities— comprising Steven’sinterval and ratio scales, quantities are a class of types whose
semantics are generally well understood. Particularly numbers (integer and real) but also physical
quantities are well-defined in mathematical and scientific systems of numbers and measurements.
Timeis another area of quantities that, though it can be easily defined in terms of real numbers,
due to the measurement of time in calendars and due to complex timing of repeating events,
required much attention.

These three areas overlap each other. Numbers are the textual representations of quantities and thus
fall between text and quantities. Textual symbols (words, codes) are text with a meaning given by
reference to code sets. Ordinal values, finally, are coded concepts with a semi-quantitative
interpretation. (However, ordinals, are not covered by a special datatype in this specification.)

In addition to these basic data types, a set of generic data types and data type extensions is defined.
This provides for type-safe collections of valuesin sets, sequences and intervals. It also providesfor
extensions of basic types expressing uncertainty or time-dependence that comes with many real-world
data.
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Figure 1: Overview of the three major
Text categories of data types.
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While the a-priori method to find data types and the strong focus on semantics should ensure a stable
set of data types, this specification’s coverage is not guaranteed to be complete. Areas known to be
incomplete or missing are other natural identifiers (e.g., geographical coordinates) and ordinal values.
The following table provides an overview of the data types defined in this specification, and shows
(roughly) how they relate to data types of HL7 version 2.

Table 1: Overview of HL7 version 3 data types and mapping to HL7 v2.3

Name Symbol Description v2.3
Boolean BL The Boolean type stands for the values of two-valued logic. A Boolean value ID
can be either true or false. (Y/N)
Text
Encoded Data ED Can convey any data that is primarily shown to human beings for TX,
interpretation. ED can be any kind of text, whether unformatted or formatted  FT,
written language or other multi-media data. The plain character string type ED,

ST is equivalent to ED of media type text/plain. Instead of the data itself, an RP
ED may contain only a reference (URL.)
Character String ST Used when the appearance of text does not bear meaning, this is true for ST
formalized text and all kinds of names. If used as a data type for free text an
ST instance is equivalent with an ED of media type text/plain.
Things, Concepts, and Qualities
Concept Descriptor CD A descriptor for a concept, usually through a code from a coding system. For ID
complex domains, such as findings, diagnoses, the concept descriptor may CE
contain translations into other coding systems or free text descriptions. This
data type also supports post-coordinated (compositional) coding. Use of this
data type is typically constrained, hiding some of the power and complexity of
the concept descriptor.
Coded Simple Cs A restriction of the concept descriptor (CD). CS suppresses all properties of 1D
Value the CD, except for code and display name. The code system and code
system version is fixed by the context in which the CS value occurs. CS is
used for coded attributes that has a single HL7-defined value set.
Coded Value Ccv A restriction of the concept descriptor (CD). CV suppresses the CD ID,CE
properties translation and modifier. CV is used when any reasonable use
case will require only a single code value to be sent.
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Coded With
Equivalents

Instance ldentifier

Telecommunication
Address

Postal and
Residential
Address
Person Name

Organization Name

CE

TEL

AD

PN

ON

A restriction of the concept descriptor (CD). CE suppresses the CD modifier
property. The CE also restricts the translation property such that the
translation is a set of CV values that may not themselves contain translations.
Used when the use alternative codes may exist.

Used to uniquely identify some individual entity, a piece of data or a real
world entity. Examples are medical record number, placer and filler order id,
service catalog item number, etc. In HL7 version 2.x no clear distinction
between instance identifier and concept code was made, often codes where
used to refer to instance entities. In HL7 version 3 identifiers, not codes, are
used for instance entities.

A telephone number or e-mail address specified as a URL. In addition this
type contains a time specification when that address is to be used, plus a
code describing the kind of situations and requirements that would suggest
that address to be used (e.g., work, home, pager, answering machine, etc.)
The main use of such declared data is to be printed on mailing labels (postal
address,) or to allow a person to physically reach the location (residential
address.)

Used for one full name of a natural person. Names usually consist of several
name parts that can be classified as given, family, nickname etc. The PN of
HL7 version 2 has been divided into a PN data type (capturing just one name)
and an information model class (capturing name purpose code, change
history, etc.) This data type is intended to be used only in the Person_name
class. Instead of directly using this data type for an attribute of another class,
one should consider drawing an association to the Person_name class.
Used to name an organization. Similar but simpler than the name of a natural
person.

CE

ID, IS,
CE,
HD,

TN,
XTN

AD,
XAD

PN,
XPN

XON

Quantities

Integer Number

Real Number

Physical Quantity

Monetary Amount

Ratio

Point in Time

General Timing
Specification

INT

REAL

PQ

MO

RTO

TS
GTS

Integer numbers are the positive and negative whole numbers, typically the
results of counting and enumerating. Integer numbers are discrete, the set of
integers is infinite but countable. We impose no bounds on the size of integer
numbers.

Fractional numbers. Real numbers are needed beyond integers whenever
quantities of the real world are measured, estimated, or computed from other
real numbers. The standard representation is decimal, where the number of
significant decimal digits is known as the precision.

A dimensioned quantity expressing the result of a measurement. Consists of
a real number value and a physical unit. Physical Quantities should be
preferred instead of two attributes expressing a number and a unit separately.
Physical quantities are often constrained to a certain dimension by specifying
some unit representing the dimension (e.g. m, kg, s, kcal/d, etc.)

The amount of money in some currency. Consists of a value and a currency
denomination (e.g., U.S.$, Pound sterling, Euro, Indian Rupee.)

A ratio quantity is the pair of a numerator quantity and a denominator quantity
both explicitly recorded (e.g. 1:128.) Ratios occur in laboratory medicine as
"titers", i.e., the maximal dissolution at which an analyte can still be detected.
The Ratio type is used whenever the reduction to a simple real number or
physical quantity is to be avoided. In other words when you want the
numerator and denominator to stand separate, use the ratio.

A scalar defining a point on axis of natural time.

A data type used to specify the timing of events. Every event spans one time
interval (occurrence interval), i.e., a continuous range of natural time between
a start-point and an end-point in time. A repeating event is timed through a
sequence of such occurrence intervals. Such timings are often specified not
directly as a sequence of intervals but as a rule, e.g., “every other day (Mo —
Fr) between 8:00 and 17:00 for 10 minutes.”

NM

cQ

MO

SN

TS
Q

Generic Collections

Set Collection
List Collection
Bag Collection

Interval

An unordered collection of unique values of any type T.
A sequence of values of any type T.

An unordered set of values of any type T where each value can occur more
than once (rare.)

Ranges (intervals) of values of type T. An interval is a set of consecutive
values of any quantity data type, such as, integer, real number, point in time,
physical quantity, monetary amount, and ratio.) Intervals should be preferred
instead of two attributes expressing a start and an end separately.

SN,
XNM

Generic Type Extensions

Annotated

ANT&R

A generic data type extension supporting arbitrary free-text annotations for any

data value.
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Uncertain value UVN&n A generic data type extension for annotating a value with a verbal statement of
narrative uncertainty, such as “estimated”, “probably”, or “unlikely”. Use UVP&fiinstead.
History HISTa A collection of data where each element is tagged with a valid-time interval.
Uncertain value UVP&i A nominal value with a probability number indicating the level of certainty for
using probabilities the value to apply in the given context.
Non-parametric NPPD&fi A collection of alternative uncertain values. Used to represent frequency
probability distributions (histograms) but also other weighed alternatives (e.g., utility
distribution distributions in preferences.
Parametric PPDé&fi A probability distribution used to indicate certainty (accuracy) of a quantitative
probability value. Allows specifying a distribution type and applicable parameters. All
distribution distribution types have the parameters mean and standard distribution. The
mean is the value that would be reported if no probability distribution were
available.

Note that some data types that existed in HL7 version 2 no longer exist in version 3. Many of the old composite types, such as
CN, contain multiple concepts, and are now represented more explicitly in the information model as either attributes or classes.
Other types, such as D, IS, and CE, received a more rigorous definition so that an automatic 1:1 mapping is often not possible.

1.7 Acknowledgements

This standard is the result of over one and a half years of intense work through e-mail, telephone
conferences and meeting discussions. Gunther Schadow (Regenstrief Institute for Health Care) chaired
thistask force, and he is the main author of this document. Major contributions are from Mark Tucker
(Regenstrief Institute), Paul V. Biron (Kaiser Permanente), George Beeler (Mayo), and Stan Huff
(Intermountain Health Care), as well as Mike Henderson (Kaiser Permanente), Anthony Julian (Mayo),
Joann Larson (Kaiser Permanente), Mark Shafarman (Oacis Healthcare Systems), Wes Rishel (Gartner
Group), and Robin Zimmerman (Kaiser Permanente). Acknowledgements for their critical review and
infusion of ideas go to Bob Dolin (Kaiser Permanente), Clem McDonald (Regenstrief Institute), Kai
Heitmann (HL7 Germany), Rob Seliger (Sentillion), and Harold Solbrig (Mayo). Vita support came
from the members of the task force, Laticia Fitzpatrick (Kaiser Permanente), Matt Huges, Randy
Marbach (Kaiser Permanente), Larry Reis (Wizdom Systems), Carlos Sanroman (Kaiser Permanente),
Greg Thomas (Kaiser Permanente), and David Webber. Thanks to James Case (University of
Cadlifornia, Davis), Norman Daoust (Health Partners), Irma Jongeneel (HL7 The Netherlands), Michio
Kimura (HL7 Japan), John Molina (SMS), Richard Ohlmann (HBO & Company), Dawid Rowed (HL7
Australia), and Klaus Veil (Macquarie Health Corp., HL7 Australia), for sharing their expertisein
critical questions. This work was made possible by the Regenstrief Institute for Health Care.

8 Copyright © Health Level Seven, Inc. All rights reserved.



HL7 Version 3 Data Types

Overview

earliest : HXIT<T>

earlier : HIST<T>

Historyltem : HXIT

[

/

validTime : IL<TS>

T:QTY
T:ANY
Interval : IVL
low: T . Set: SET
lowClosed : BL isEmpty : BL

nonEmpty : BL
cardinality : INT

contains(T) : BL
contains(SET<T>) : BL

high: T
highClosed : BL |

—lwidth: T.diff |
center: T

union(SET<T>) : SET<T>

" |except(T) : SET<T>
_— except(SET<T>): SET<T>
- intersection(SET<T>) : SET<T>

// 4{ J

NonParametricProbabilityDistribution : NPPD

mostLikely(INT) : SET<UDP<T>>

T:QTY

ParametricProbabilityDistribution : PPD

standardDeviation : T.diff

times(REAL) : PPD<T>

confidencelnterval(REAL) : IVL<T>
probability(IVL<T>) : REAL

GeneralTimingSpecification : GTS

outerBound : IVL<TS>

nextAfter(TS) : IVL<TS>

PeriodicIintervalOfTime : PIVL

contains(TS) : BL

EventRelatedPIVL : EIVL

offset : IVL<T.diff>

occurrenceA(TS) : IVL<TS>
contains (IVL<TS>) : BL

EncodedData : ED

type : CV

charset: CS
language : CS
compression : CS
reference : TEL
integrityCheck : BIN

integrityCheckAlgorithm : CS

thumbnail : ED

<<restriction>>

Sequence : LIST

T:ANY

+ — Inlai
I type =text/piain

head : T
tail : LIST<T>
isEmpty : BL

equals(ED) : BL

nonEmpty : BL

vV

BinaryData : BIN

length : INT

CharacterString : ST

head : ST
tail : ST
length : INT

‘ N

P\ersonl\}amePart : PNXP

| LgT<BL>

\
quahﬁer : SET<ES>

brganizationName : ON

LIST<INT>

/

Objectldentifier : OID

\

AddressPart : ADXP

N

DY

PersonNameType : PN

3

Instanceldentifier : Il

rootPrintName : ST

validTime : IVL<TS>

PostalAndResidentialAddress : AD

ConceptDescriptor : CD

Boolean : BL
/ . o
UncertainValueProbabilistic : UVP TS (L [t
probability : REAL andBL):BL [T
contains(T) : INT or(BL) : BL
y plus(BAG<T>) : BAG<T> eor(BL) : BL
/ T minus(BAG<T>) : BAG<T> implies(BL) : BL
T / v
// D .
Y, ataValue : ANY
/ dataType : DataType
/ nullFlavor : CV
/ denominator : QTY nonNull: BL
/ isNull : BL
notApplicable : BL
unknown : BL N —
1 1 other : BL \\\
/
/ equals(ANY) : BL
// <<type>> diff : QTY
/
/ <<type>> diff : PQ ~ 1s lessOrEqual(QTY) : BL UniversalResourcelLocator : Lh%L\
/ lessThan(QTY) : BL scheme : CS
/ greaterOrEqual(QTY) : BL T address : ST
- greaterThan(QTY) : BL
< compares(QTY) : BL
minus(QTY) : diff | Q
7+ TelecommunicationAddress : TEL
use : SET<CS>
validTime : GTS
[ I [ ‘
Integer : INT Real : REAL PhysicalQuantity : PQ equals(TEL) : BL

originalText: ED

codeSystemName : ST
code SystemVersion : ST

modifier : LIST<CR>

<<type>> diff : INT
successor : INT
predecessor : INT
negated : INT
isNegative : BL
nonNegative : BL
timesTen : INT

<<type>> diff : REAL

<<type>> diff : PQ

minus(INT) : diff
plus(diff) : INT
times(INT) : INT

minus(REAL) : diff
times(REAL) : REAL
power(REAL) : REAL

negated : REAL value : REAL
inverted : REAL unit : CV
precision : INT canonical : PQ
timesTen : REAL negated : PQ
tenths : REAL inverted : PQ
plus(diff) : REAL

equals(PQ) : BL
compares(PQ) : BL
minus(PQ) : PQ

MonetaryAmount : MO

<<type>> diff : MO

CodedSimpleValue : CS

code : ST
displayName : ST

translation : SET<CD>

CodedWithEquivalents : CE

<=

plus(PQ) : PQ
times(PQ) : PQ
times(REAL) : PQ
power(INT) : PQ

UncertainValueNarrative : UVN

codeSystemPrintName : ST
codeSystemVersion : ST
originalText : ED

translation : SET<CV>

codeSystemPrintName : ST
code SystemVersion : ST
originalText : ST

Copyright © 2000, Health Level Seven, Inc. All rights reserved.




HL7 Version 3 Data Types BALLOT DRAFT 1 Revision 1.2

2

FORMAL DATA TYPE DEFINITION LANGUAGE

"Why, you don't even know what they're about!" said Alice.
"Read them," said the King.

The White Rabbit put on his spectacles. "Where shall | begin,
please your Majesty?" he asked.

"Begin at the beginning," the King said, very gravely, "and go
on till you come to the end: then stop."

A given task isas complex asit is. Postponing formality
doesn't eliminate the necessity for it, it simply puts the onus on
the programmer rather than the designer —resulting in the
ambiguity being resolved many times instead of just once.

| Note: All formal definitions shown in this section are examples only and do not contain normative value. |

This specification defines data types in both textual description and in aformal definition. The data
type definition language used in this specification is tailored to the specific needs of this particular
specification and is explained in this section.

A formal definition of datatypesisused in order to clarify the semantics of the proposed types as
unambiguously as possible. Formal languages make crisp essential statement and are therefore
accessible to some formal argument of proof or rebuttal. However, the terseness of such formal
statements may also be difficult to understand by humans. Therefore, all the important inferences from
the formal statements are also included as plain English statements.

Important Disclaimer: This is not an API specification. While this formal language might resemble some
programming language or interface definition language, it is not intended to define the details of programs and
other means of implementation. The formal definitions are normative part of this specification, but this particular
language needs not be implemented or used in conformant systems; nor need all the semantic properties be
implemented or used by conformant systems. The internal working of systems, their way to implement data types,
the functionality and services is entirely out of scope of this specification. The formal definition only
specifies the meaning of the data values through making statements how one would theoretically expect these
values to relate and behave.

Thisformal data type definition language specifies:

type name and short name;

named values of a fully enumerated extension;

semantic properties, unary, binary, and higher order properties;

invariants, i.e. constraints over the properties.

allowable type conversions,

syntax of character string value literals (if any;)
The data type definition language employed here is a conclusion of experiments and experience with various aternatives. These
dternatives include data type definition tables and the use of the Object Management Group’s (OMG) Interface Definition
Language (IDL). The disadvantage of the data type definition tables was that they gave the wrong impression of this

specification being a specification of abstract syntax rather than semantics. Conversely, the disadvantage with IDL wasthat IDL
gave the wrong impression of this specification being an application programming interface (API) definition.

The resulting data type definition language borrows significantly from IDL, the Object Constraint Language (OCL), JavA, C++,
and the parser generation tools LEx and YACC. It isinspired by features and style of these languages but amalgamating and
augmenting these languages into precisely what is needed for this data type specification. The goal was a language that is
minimal, and self-consistent. Also, asthe main purpose of this language is to define data typesiit tries to get by without any
built-in data types.

Definition of adatatype occursin two steps. First, the datatype is declared. The declaration claimsa
name for a new data type with alist of names, types, and signatures of the new type's semantic
properties. This declares, not defines the type. The definition occurs in both logic statements about
what is always true about this type’ s values and their properties (invariant statements.)

10
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2.1 Declaration

Every datatype is declared in aform that begins with the keyword t ype. For example, the following
isthe header of a declaration for the data type Boolean that has the short name alias BL and extends
(specidlizes) the datatype ANY.

type Bool ean alias BL extends ANY

Ascan be seen, thet ype keyword isin place of IDL'sand Java si nt er f ace and C++ amd Java'scl ass keyword. The
alias clause is unique to this specification as we do have the need for extremely short data type mnemonics in addition to more
descriptive names. The ext ends clauseisthe same as JAVA's, which is preferred over C++ or IDL’s colon clause asits
meaning is more obvious.

The header of the Boolean data type declaration also containsaval ues clause that declaresthe
Boolean's complete set of values (its extension) as named entities. These named values are also valid
character string literals. None of the other data types defined in this specification has afinite value set,
which iswhy theval ues clauseis unique to the Boolean. In the marked-up formal language, value
names use Italics font.

type Bool ean alias BL extends ANY

val ues(true, false)

The header of the data type declaration is followed by a block declaring the semantic properties of
every value of the datatype. Thisblock isenclosed in curly braces. Each property declaration is
finished with a semicolon and each data type declaration is finished by a semicolon after the closing
curly brace.

type Bool ean alias BL extends ANY

val ues(true, false)

BL not ;
BL and(BL x);

}s

A property declaration mentions from left to right: (1) the data type of the property’s value domain, the
property name, and (3) an optional argument list. The argument list of a property isenclosed in
parentheses containing a sequence of argument declarations. Each argument is declared by the data
type name and argument name. Semantic properties without arguments do not use an empty argument
list.

Note that the IDL’s notion of input and output arguments and IDL's, JavA’s and C++' s notion of return values and exceptions are
dl irrelevant concepts for this specification. The semantics of data types is hot about procedure calls and parameter passing or
normal and abnormal returns of control from a procedure body. Instead, each semantic property is conceptualized as a function

that maps a value and optional arguments to another value. This mapping is not “computed” or “generated” it logically exists
and we do not need to “call” such afunction to actualize the mapping.

The ext ends-clause has the usual meaning of a specialization relationship known from the object
oriented method. Specialization means (a) inheritance of properties from the genus to the species, and
(b) substitutability of values of the species type for variables of the genus type. In addition, however,
this data type definition language specifies two variants of specialization: extension (ext ends) and
restriction (r est ri ct s). Extension indicates that additional properties are being defined for the
specialized type. Restriction indicates that the inherited properties are being constrained.

An example for inheritance is: when ANY has the property isNull and BL extends ANY then BL also has this property isNull
even though isNull is not listed explicitly in the property declaration of BL. An example for substitutability is: when a property

isdeclared as of adatatype ANY and BL extends ANY then avaue of such property may be of type BL. In other words,
substitutability is the same as subsumption of all values of type BL being also values of type ANY.
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The restriction variant of specialization deserves explanation. It isgenerally touted that inheritance should not retract properties
that have been defined for the genus. Thisis till true for the restriction as properties are not actually retracted but constrained to
asmaller value set. This may mean constraining properties to NULL, if NULL was an allowed value for that property in the parent
type. Inany case, logicaly, restriction is a specialization, with inheritance and substitutability. Furthermore extends and
restricts are not hard opposites as a specialized type may both extend and constrain; the two keywords are mainly used to be
comprehensible to a human reader.

Thet ype-declaration may be qualified by the keyword abst r act and pr ot ect ed. An abstract
typeis atype generalization where no value is of this type without also being of another type that
extends the abstract type. A protected typeisatype that is used inside this specification but no
property outside this specification should be declared of a protected type. (We aso use the qualifier
private at one point. Private types are only specified for the sake of formal definition of other types
and are not used in any form outside this specification.)

Note the meaning of protected is alittle different from the accessibility qualifiers (public, package, protected, private) as known
from Java and C++. The protection used hereis not about hiding the type information or baring properties defined by a
protected type from access outside of this specification “package.” It mainly is a strong recommendation not to declare

attributes or other features of such protected types. Protected types should be used as “wrapped” in other types. The protected
typeis till directly accessible within the “wrap,” no notion of “delegated properties’ exists.

2.2 Invariant Statements

The declaration of semantic properties, their names, data types, and arguments provide only clues asto
what the new data type might be about. The true definition liesin the invariant statements. Invariant
statements are logical statementsthat aretrue at al times.

Throughout this specification, invariant statements are provided in aformal syntax but are also written
in plain English. The advantage of the formal syntax isthat it can be interpreted unambiguously, and
that it is strongly typed. The advantage of plain English statements is that they are more
understandabl e, especially to those untrained in reading formal languages.

The formal syntax does help to sharpen the decisiveness of this specification. In some cases, however, the full semantics of a

type are beyond what can be fully expressed in such invariant statements. The combination of both plain and formal language
helps to make this specification more clear.

Invariant statements are formed using thei nvar i ant keyword that declares one or more variablesin
the same form as an argument list of a property. The invariant statement can contain awher e clause
that constrains the arguments for the entire invariant body. The invariant body is enclosed in curly
braces. It contains alist of assertions that must all be true.

invariant (BL x) where x.nonNull {
x. and(true).equal s(x);

B

The semantics of the invariant statement is alogic predicate with a universal quantifier (“for all”).

The above invariant statement can be read in English as “ For all Boolean values x, where x is non-NULL it holds that X AND true
equalsx.” All properties should be named such that one can read the assertions like English sentences.

The invariant statement syntax and semanticsis similar to the OCL “inv” clause. We did not use OCL in this specification,
however, for several reasons. (1) OCL syntax has a Smalltalk style that does not fit the C++/Java style of the data type definition
language. (2) OCL has many primitive constructs and data types, while this specification avoids many primitives. (3) In part
because of the richnessin primitive constructs, OCL isfairly complex, more than is needed in this specification.

The argument list of an invariant statement need not be specified if no such argument is needed.

invariant {
true. nonNul | ;
fal se. nonNul | ;
true. not. equal s(fal se);

fal se. not. equal s(true);

}s

12
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2.2.1 Assertion Expressions

Assertionsin invariant statements are expressions built with the semantic properties of defined data
types. Assertion expressions must have a Boolean value (true or false.) No primitive data types, or
operations, pre-exist the definition of any datatype. The only preexisting features of the assertion
expression language are:

character strings representing utterances in the data type definition language;
the notion of an assertion being successful (true) or failing (false);

theinvariant statement: i nvariant(...) where ... {...};

the universal quantifier expressionformforal I (...) where ... {...}; synonymousto
the invariant statemen;

the existence quantifier expressionformexi sts(...) where ... {...};

the implicit conjunction (logical AND) between the semicol on-separated assertions: assertiony;
assertiony; ...; assertion,;

variables and declarations in the invariant argument list;

the property reference using the period: x. property;

implicit and explicit type conversion: ( T) x;

parentheses to override the priorities of the conversion and property resolution operators:

(T) x. property versus( ( T) X) . property.
Most of these syntactic features are in the spirit of the JAvA language, use of argument lists, curly braces to enclose blocks,
semicolon to finish a statement, and the period to reference value properties. The double colon :: asused by C++ or IDL to

distinguish between member-references and val ue-references are not used (asin Java). Unlike Javabut like C++ and IDL, every
statement is ended by a semicolon, including type declarations. Implicit type conversion is aso retained from C++.

Since assertions are Boolean expressions, a Boolean data type is defined early on (see Section 3.3).

This construct is somewhat cyclical, thereis a preexisting notion of Boolean values even though the Boolean is a type defined
just like any other type. In addition, since this data type definition language is written in character strings, the notion of
character strings pre-exists the definition of the character string type. These two types, character string and Boolean are
therefore exceptional, but on the surface, they are defined just like any other datatype. Since this data type specification
language is not meant to be implemented, the cyclicality isnot areal issue. Even if thislanguage was implemented, one can use
a“bootstrapping” technique as is common, e.g., for compilers that compile themselves.

2.2.2 Nested Quantifier Expressions

Within assertion expressions, nested quantifier statements can be formed similar to invariant
statements. In fact, the universal quantifier built using the f or al | keyword is the same asthe
invariant statement. The universal quantifier can be used in a nested expression when the complexity
of the problem requires it, such asin the following example:

invariant (SET x, y) where x.nonNull {
X. subset (y) . equal s(
forall (T el ement) where x.contains(element) {
y. cont ai ns(el enent) ;
1)
i

The existence quantifier has the meaning as in common propositional logic. For example, the
following invariant means: “ SET values x and y intersect if and only if there exists an element ethat is
contained in both setsx and y.”
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i nvari ant (SET x) where x.nonNul | {
X.intersects(y).equal s(
exists(T e) {
X. contains(e);
y.cont ai ns(e);

1)

The existence quantifier may have a where-clause, however, there is no difference whether an assertion
is made as awhere-clause or in the body of the existence quantifier. Conversely, for universal
quantifiers, the where-clause weakens the assertion since the body now only applies for values that
meet the criterion in the where-clause.

2.3 Type Conversion

This specification defines certain allowable conversions between data types. For example, thereisa
pair of conversions between the Character String (ST) and Encode Data (ED). This meansthat if aone
expects an ED value but actually has an ST value instead, one can turn the ST value into an ED.

These type conversions add necessary flexibility to support inter-version compatibility and localization. Note: HL7 v2.x used to

have implicit type conversions as a side effect of its delimiter-based syntax. It was thus possible for the specification to define
additional componentsto afield, or change the data type of afield (e.g., ID to CE) and still maintain backward compatibility.

Three types of type conversions are defined: promotion, demotion, and character string literals. Type
conversions can be implicit or explicit. Implicit type conversion occurs when a certain typeis
expected (e.g. as an argument to a statement) but a different type is actually provided. If the type
provided has a conversion to the type expected the conversion should be done implicitly.

ITS Note: an Implementation Technology Specification will have to specify how implicit type conversions are
supported. Some technologies support it directly others don't; in any case, processing rules can be set that
specify how these conversions are realized.

An explicit conversion can be specified in an assertion expression using the converted-to type namein
parenthesis before the converted value. For example the following is an explicit type conversion in the
where clause of an invariant statement.

invariant (ED x) where ((ST)x).nonNull { ... };

The type conversion has lower priority than the property resolution period. Thus“(T) a. b ” converts
the value of the property b of variable a to datatype T while“( ( T) a) . b ” converts the value of
variable ato T and then references property b of that converted value.

Implicit type conversions in the assertion expressions are performed where possible. If aproperty’s
formal argument is declared of datatype T; but the expression used as an actual argument is of type U;
and if U does not extend T; and if U defines a conversion to T, that conversion from T to U takes
effect.

2.3.1 Demotion

A demotion is a conversion with anet loss of information. Generally, this means that a more complex
typeis converted into a simple type.

An example for ademotion isthe conversion from Interval (IVL) to asimple Quantity (QTY). This
conversion would only be possibleif the IVL's has at least one finite boundary.

In the data type definition language, a demotion is declared using the keyword denot i on and the
data type name to which to demote:

14
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type EncodedData alias ED {

denotion ST;

B

The specification of demotions shall indicate what information is lost and what the major
consequences of losing thisinformation are.

2.3.2 Promotion

A promotion is a conversion where new information is generated. Generally, this means that a simpler
typeis converted into a more complex type.

For example, we allow any Quantity (QTY) to be converted to an Interval (IVL). However, IVL has
more semantic properties than QTY, low and high boundary. Thus, the conversion of QTY toIVL isa
promotion. The additional properties of QTY not present in VL must assume new values, default
values, or computed values. The specification of the promotion must indicate what these values are or
how they can be generated.

A promoting conversion from type QTY to type IVL is defined as a semantic property of datatype
QTY using the keyword promotion and the data type name to which to promote:

type Quantity alias QTY {

promotion | VL;

Typicaly, apromotion is defined from a simple type to a more complex types. Also typically, the
simple type is declared earlier in this document than a more complex type. Declaring all promationsto
complex typesin the simple type would thus involve forward references and would be confusing to the
reader. Therefore, an alternative syntax allows promotions to be defined in the more complex type.
Thisisindicated by naming the type from which to promote in an argument list behind the type to
which to promote.

type Interval alias IVL {

pronotion |VL (QTY x);

2.4 Literal Form

A literal is acharacter string representation of adatavalue. Literals are defined for many types, simple
types and types that are more complex. A literal isatype conversion from and to a specially formatted
Character String (ST).

Not every conversion from and to an ST isaliteral conversion (e.g., the ED/ST conversion isnot a
literal.) A literal for a datatype should be able to represent the entire value set of a datatype (the
ED/ST conversion can not represent the entire value set of ED.)

The purpose of having literalsis so that one can write down values in a short human readable form.
For example, literals for the types Integer (INT) and Real (REAL) are strings of sign, digits, possibly a
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decimal point, etc. The literal for the Point in Time (TS) type is the well-known HL7 v2.x TS format
(eg., “200004190035" for April 19, 2000, 12:35 am.) The more important Interval types
(IVL&REALRA IVL&PQR IVLATSH) have literal representations that allow oneto use, e.g., “<5" to mean
less than 5, which is much more readable than a fully structured form of the Interval. For some of the
more advanced data types such asintervals, general timing specification, and parametric probability
distribution we expect that the literal form may be the only form seen for representing these values
until users have become used to the underlying conceptualizations.

Each literal conversion has its own syntax (grammar,) often aligned with what people find intuitive.
This syntax may therefore not be completely straightforward from a computer's perspective.

The different grammars of literals are not meant to be combined into one overall HL7 value expression
grammar. No attempt is made to resolve ambiguities between the literals of different types. For
example“1.2" can be avalid literal for both Object Identifier (OID) and a Real Number.

Character string based Implementable Technology Specifications (ITS) of these abstract data types
may or may not choose the literals defined here as a their representations for these data types. For the
XML ITS we expect that some of the literals defined here are used.

2.4.1 Declaration

In the data type definition language we declare aliteral form as a property of a data type using the
keyword literal followed by the data type name ST, since the literal is a conversion to and from the ST
data type.

type | ntegerNunber alias |INT {
literal ST;

B

2.4.2 Definition

The actual definition of the literal form occurs outside the data type declaration body using an attribute
grammar. An attribute grammar is a grammar that specifies both syntax and semantics of language
structures. The syntax is defined in essentially the Backus-Naur-Form (BNF).

The BNF variant used here is similar to the YAcC parser and LEX lexical analyzer generator languages but is simplified and
made consistent to the syntax and declarative style of this data type definition language. The differences are that all symbols
have exactly one attribute, their value strongly typed as one of the defined datatypes. Each symbol’stype is declared in front of
the symbol’sdefinition (eg.: INT digit : “0" | “1" | ...| “9”";). Thestart symbol hasno name but just atype
(eg,INT : digit | INT digit;). A datatype name can occur asasymbol name meaning aliteral of that data type.

For example, consider the following simple definition of a datatype for cardina numbers (positive
integers.) Thistype definition uses only the Boolean data type (BL) and has a character string literal
declared:

type Cardi nal Nunber alias CARD {

BL i sZer o;

BL equal s(CARD Xx) ;

CARD SuUccessor ;

CARD pl us( CARD Xx) ;

CARD ti mesTen;
literal ST;

16
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2.4.2.1 Syntax Definition
The literal syntax and semantics isfirst exposed completely and then described in all detail.

CARD. |iteral ST {
CARD
CARD digi t { $.equal s($1.tinesTen. plus(%$2); }
| digit { $.equal s(%$1); };
CARD di gi t
“0” { $.isZero; };
| “1” { $.equal s(0. successor); }
| “2” { $.equal s(1.successor); }
| “8” { $.equal s(7.successor); }
| “9” { $.equal s(8.successor); }
i

Every syntactic rule consists of the name of a symbol, a colon and the definition (so called production)
of the symbol. A production is a sequence of symbols. These other symbols are also defined in the
grammar, or they areterminal symbols. Terminal symbols are character strings written in double
quotes or string patterns (called regular expressions.) Thus the form:

CARD : CARD digit | digit;

means, that any cardinal number symbol is a cardina number symbol followed by adigit or just a
digit. The vertical bar stands for adisjunction (logical oR.) A syntactic rule ends with a semicolon.

Every symbol has avalue of a defined datatype. The data type of the symbol’s valueis declared
where the symbol is defined:

CARD digit : “0” | “1" | “2" | ... | “8" | “97;

means that the symbol digits has avalue of type CARD. The start-symbol is the data type itself and
does not need a separate name.

2.4.2.2 Semantics Definition

The semantics of the literal expression is specified in semantic rules enclosed in curly braces for each
of the defined productions of a symbol:

symbol : production; { rule;} | production,{ rule;} | ...| production,{ rule,};

A semantic ruleis simply a semicolon-separated list of Boolean assertion expressions of the same kind
asthose used in invariant statements. However, there are special variables defined in the semantic rule
that all begin with adollar character (e.g., $, $1, $2, $3, ...) Thesimple $ stands for the value of the
currently defined symbol; while $1, $2, $3, etc. stand for the values of the parts of the semantic rule’s
associated production. For example, in

CARD
CARD di gi t { $.equal s($1.tinmesTen. plus($2); }
| digit { $.equal s(%$1); };
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the first production “CARD di gi t " has a semantic rule that says: the value $ of the defined symbol
equalsthevalue $1 of the first symbol CARD times ten plus the value $2 of the second symbol
digit.

Note that the equals property defined below for any datavalue is arelation, atest for equality, not an assignment statement. One

can not assign a value to another value. Unlike YAcC and LEX analyzers, this data type definition language is purely declarative
it has no concept of assignment. For this reason, the grammar rules define both parsing and building literal expressions.

2.4.2.3 Terminal Symbols

A terminal symbol can be specified as a string pattern, so called regular expression. The regular
expression syntax used hereis the classic syntax invented by Aho and used in AWK, LEX, GREP, and
PERL. Regular expressions appear between two slashes/ .../ . Inaregular expression pattern every
characterexcept[ 1 $ . / : () \ | ? * + { } matchesitself. The other characters that
are actually used in this specification are defined in Table 2.

Table 2: Special Characters for Regular Expressions

Pattern Definition

[ ...] Specifies a character class. For example, / [ A- Za- z] / matches the characters of the upper and
lower case English alphabet.

[~..] Specifies a character class negatively. For example, / [ *BCD] / matches any character except B,
C, and D.

L2 The preceding pattern is optional. E.g., / ab?c/ matches “ac” and “abc”.

L The preceding pattern may occur zero or many times. E.g., / ab*c/ matches “ac”, “abc”, “abbc”,
“abbbc”, etc.

Lt The preceding pattern may occur one or more times. E.g., / ab+c/ matches “abc”, “abbc”,

“abbbc”, but not “ac”.

..{n,m} The preceding pattern may occur n to m times where n and m are cardinal numbers 0 £ n £ m.
E.g.,/ ab{ 2, 4} ¢/ matches “abbc”, “abbbc”, and “abbbbc”.

A The pattern on either side of the bar may match. E.g.,/ ab| cd/ matches “abd” and “acd” but not
“abcd”.

(...) The pattern in parentheses is used as one pattern for the above operators. E.g.,/ a(bc) */
matches “a”, “abc”, “abcbc”, “abcbcbc”, etc.
The left pattern matches if followed by the right pattern, but the right pattern is not consumed by a
match. E.g.,/ ab: ¢/ matches “abc” but not “ab”, however, the value of a symbol thus matched is
ab” and the “c” is left over for the next symbol. The colon is a slight deviation from the
conventional slash / but the slash is also conventionally used to enclose the entire pattern and may
occur as a character to match — three meanings is one too many.

L Matches the following character literally, i.e. escapes from any special meaning of that character.
E.g,/ a\ +b/ matches “a+b”.
L\ Matches the slash as a character. E.g.,/ a\/ bc/ macthes “a/ bc”.

2.5 Generic Data Types

Generic data types are incomplete type definitions. Thisincompletenessis signified by one or more
parameters to the type definition. Usually parameters stand for other types. Using parameters, a
generic type might declare semantic properties of other not fully specified data types. For example, the
generic data type Interval is declared with a parameter T that can stand for any Quantity data type
(QTY). The components low and high are declared as being of type T.

tenpl at e&QJTY Ti

type Interval ai al i as | VLaTH {
T | ow;
T hi gh;

i

Instantiating a generic type means completing its definition. For example, to instantiate an Interval,
one must specify of what base data type the interval should be. Thisisdone by binding the parameter

18
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T. Toinstantiate an Interval of Integer numbers, one would bind the parameter T to the type Integer.
Thus, the incompl ete data type Interval is completed to the data type Interval of Integer.

For exampl e the following type definition for MyType declares a property named “ multiplicity” that is
an interval of the cardinal number data type used in the above examples.

type MyType alias M {
| VLACARDA nmultiplicity;

2.5.1 Generic Collections

Generic data types for collections are being used throughout this specification. The most important of
them are

Set (SETATA) A set contains elementsin no particular order and without the notion of “duplicate
arfidata type requires al elements of a set to be of the same data type.

Sequence (LISTarf) A seguence, or list, of valuesis a collection of valuesin an arbitrary but
particular order. A list has ahead and atail, where the head is an element and the tail isthe list
without its head.

Interval (IVLarf) Aninterval isa continuous subset of an ordered type.

These and other generic types are fully defined in Section 7ff.

These generic data types and their properties are being used in this specification early on. For the best understanding of this
specification knowledge about the set, sequence and interval isimportant and the reader is advised to refer to the respective
sections when coming across a generic type being used to define another type.

2.5.2 Generic Type Extensions

Generic data type extensions are generic types with one parameter type that the generic type extends.
In the formal data type definition language, generic type extensions follow the pattern:

tenpl at e& ype Ti type Generi cTypeExt ensi onNane extends T { ... };

These generic type extensions inherit properties of their base type and add some specific feature to it.

The generic type extension is a specialization of the base type, thus a value of the extension data type
can be used instead of its base datatype. Generic type extensions are also called “mixins’, since their
effect isto mix certain properties into the preexisting data type.

ITS Note: values of extended types can be substituted for their base type. However, an ITS may make some
constraints as to what extensions to accommodate. Particularly, extensions need not be defined for those
components carrying the values of data value properties. Thus, while any data value can be annotated outside
the data type specification, and ITS may not provide for a way to annotate the value of a data value property.
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3 FUNDAMENTAL DATA TYPES

This section defines the fundamental properties of al data Boolean - BL
types and all datavalues. It also specifies the Boolean data ot BL
type, which is required to formally state facts about the data
types. and(BL) : BL
or(BL) : BL
eor(BL) : BL
3.1 Data Type implies(BL) : BL
The type DataType is a meta-type declared in order to allow Y\7
the formal definitions to speak about the data type of avalue.
Any data type defined in this specification is a value of the Datavalue : ANY
dataType : DataType
type DataType. nullFlavor : CV
protected type DataType extends DataVal ue { ;‘S‘:\TL:\I'I“_”E;E'-
CE nane; notApplicable : BL
~unknown : BL
}s other : BL

equals(ANY) : BL

The only property of the type DataType that is needed by this
specification is the name property. A datatype nameisa Figure 2: Fundamental data types.
code with equivalents (CE). The short alias name, if defined,

isthe main code value, in which case the long nameis an

equivalent trandation in the CE value.

3.2 Data Value (ANY)

The type DataValue defines the basic properties of every datavalue. Thisisan abstract type, meaning
that no value can be just a data value without belonging to any concrete type. Every concretetypeisa
specialization of this general abstract DataValue type.

abstract type DataVal ue alias ANY {
Dat aType dat aType;
BL nonNul | ;
CS nul | Fl avor ;
BL i sNul | ;
BL not Appl i cabl e;
BL unknown;
BL ot her;
BL equal s(ANY x);
i

3.2.1.1 dataType : Data Type

Every datavalueis of adatatype. The datavalueimplicitly carries the information about its own type.
Thus, given adata value in an HL7 message, one can inquire about its data type.

i nvari ant (ANY x) {
x. dat aType. nonNul | ;
i
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3.2.1.2 The predicates isNull and nonNull

A property can be of an exceptional value. Exceptional values express missing information and
possibly the reason why the information is missing. Exceptional values are also called NULL-values,
and the exception is called the “flavor” of NULL.

Thus, every datavalue is either a proper value or itisit NULL. If thevalueisNULL, the nullFlavor
property isnon-NULL. If thevalueisnot NULL, its null flavor attributeis NULL (not applicable.)

i nvari ant (ANY x) {
x. nonNul | . equal s(x. nul | Fl avor.isNull);

X. 1 sNull.equal s(x. nonNul | . not) ;

iE
Table 3: Flavors of NULL.
Concept Symbol Implies Definition
no information NI No information whatsoever can be inferred from this exceptional
value. This is the most general exceptional value. It is also the
default exceptional value.
not applicable NA NI No proper value is applicable in this context (e.g., last menstrual
period for a male.)
unknown UNK NI A proper value is applicable, but not known.
not asked NASK UNK This information has not been sought (e.g., patient was not asked)
asked but ASKU UNK Information was sought but not found (e.g., patient was asked but
unknown didn't know)
temporarily NAV ASKU Information is not available at this time but it is expected that it will
unavailable be available later.
other OTH The actual value is not an element in the value domain of a
variable. (e.g., concept not provided by required code system.)
positive infinity PINF OTH Positive infinity of numbers.
negative infinity NINF OTH Negative infinity of numbers.
not present NP Value is not present in a message. This is only defined in

messages, never in application data! All values not present in the
message must be replaced by the applicable default, or no-
information (NI) as the default of all defaults.

Note the distinction between value domain and vocabulary domain. A vocabulary domain is a value domain for
coded values, but not all value domains are vocabulary domains. The null flavor other is used whenever the
actual value is not in the required value domain, this may be, for example, when the value exceeds some
constraints that are defined too restrictive (e.g., age less than 100 years.)

Note also the fine difference in coded data types between NuLL/other on the one hand and coded with extensibility
(CWE) on the other hand. CWE vocabulary domains include any pertinent local coding system. Since CWE
domains include every locally defined concept, there is hardly any case where a concept is not within that value
domain. Thus, NuLL/other hardly ever occurs for CWE fields outside of applications. However, an interface that
cannot interpret the local code used for a not otherwise coded concept will still map such local-coded value to
NuLL/other, because it might not be able or willing to expand its interpretable value domain.

For example, if the standard domain for administrative gender contains only the concepts male and female, and
the concept intersex needs coding, intersex might be coded using a local code that extends the gender code.
However, a receiving system that does not know about that non-standard code for intersex will map the unknown
code to NuLL/other. Alternatively, the sending system could have used NuLL/other instead of its local code in the
first place. For CWE fields, the local code is allowed, for CNE (coded, non-extensible) fields NuLL/other is the only
legal way.

Some of these null flavors are defined as properties that can be used as simple predicates for all datavalues. Thisisdoneto
simplify the formulation of invariants in the remainder of this specification. Remember the difference between semantic
properties and representational “components’ of datavalues. An TS must only represent those components that it needs to infer
the semantic properties. The null-flavor predicates nonNull, isNull, notApplicable, unknown, and other can al be inferred from
the nullFlavor property.
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i nvari ant (ANY x) {
x. not Appl i cabl e. equal s(x. nul | Fl avor. i nplies(NA));
X. unknown. equal s(x. nul | Fl avor.inplies(UNK));
x. ot her. equal s(x. nul | Fl avor.inplies(QOTH));

};

When a property, RIM attribute, or message field is called mandatory this means that any non-NULL
value of the type to which the property belongs must have a non-NULL value for that property. In other
HL 7 specifications the term “mandatory” is used while this specification formul ates the mandatory
constraint explicitly.

Thus says the following invariant that the dataType property is mandatory for any data value that is non-NULL.

i nvariant (ANY x) where x.nonNull {
x. dat aType. nonNul | ;

ITS Note: while NuLL-flavors are applicable to any property of a data value or a higher-level object attribute, ITS
are explicitly allowed not to represent NuLL-flavors in cases where the difference of null flavors is not significant. If
nothing else is noted in this specification, ITS need not represent NuLL-flavors for property values.

3.2.1.3 Equality

Any two data values can be tested for equality. Equality is areflexive, symmetric, and transitive
relation. Only values of the same data type can be equal.

i nvariant (ANY x, vy, z)
where x.nonNull.and(y.nonNull).and(z.nonNull)

{
x. equal s(x); [* reflexivity */
x. equal s(y) . equal s(y. equal s(x)); [* symretry */
X. equal s(y).and(y. equal s(z)).inplies(x.equal s(z)) /* transitivity */
x. equal s(y).inmplies(x.dataType. equal s(y. dat aType);

}

How equality is determined must be defined for each datatype. If nothing else is specified, two data
values are equdl if they are indistinguishable, that is, if they differ in none of their semantic properties.
A datatype can “override” this general definition of equality, by specifying its own equals relationship.
This overriding of the equality relation can be used to exclude semantic properties from the equality
test. If adatatype excludes semantic properties from its definition of equality, thisimpliesthat certain
properties (or aspects of properties) that are not part of the equality test are not essential to the meaning
of the value.

For example the physical quantity has the two semantic properties (1) areal number and (2) a coded unit of measure. The
equality test, however, must account for the fact that, e.g., 1 meter equals 100 centimeter; independent equality of the two

semantic properties is too strong a criterion for the equality test. Therefore, physical quantity must override the equality
definition.

Note: with data values, no distinction exists between equality and identity. Equality is a static property between
two values, and values never change.

22 Copyright © Health Level Seven, Inc. All rights reserved.



3 Fundamental Data Types

3.3 Boolean (BL)

The Boolean type stands for the values of two-valued logic. A Boolean value can be either “true” or
“false”. With any data value potentially being NULL, the two-valued logic is effectively extended to a
three-valued logic.

type Bool ean alias BL extends ANY
val ues(true, false)
{
BL and(BL x);
BL not ;
literal ST;
BL or (BL x);
BL eor (BL x);
BL i mplies(BL X);
i

The literal form of the Boolean is determined by the named values specified in the values clause.

3.3.1.1 Negation
Negation of a Boolean turns true into false and false into true and is NULL for NULL values.

invariant (BL x) {
true. not. equal s(fal se);
fal se. not. equal s(true);

X.isNull.equal s(x.not.isNull);

3.3.1.2 Conjunction

Conjunction (AND) is associative and commutative, with true as a neutral element. False AND any
Boolean valueisfalse. These rules hold even if one or both of the operands are NULL.

invariant (BL x) {
x.and(true).equal s(x);

x. and(fal se). equal s(fal se);

If both operands for AND are NULL, the result iS NULL.

invariant(BL x, y) where x.isNull.and(y.isNull) {
x.and(y).isNull;
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3.3.1.3 Disjunction

The disunctions OrR and exclusive OR can be specified in terms of negation and conjunction. The
diguntion x or yisfalseif and only if xisfalseand y isfalse. The exclusive-OR constrains OR such
that x and y may not both be true.

invariant(BL x, y) {

x.or(y).equal s(x.not.and(y.not).not);

x. eor (y).equal s(x.or(y).and(x.and(y).not));
i

3.3.1.4 Implication

The logical implication isimportant to make invariant statements. An implication isarule of the form
IF condition THEN conclusion. Logically the implication is defined as the disjunction of the negated
condition and the conclusion, meaning that when the condition is true the conclusion must be true to
make the overall statement true.

i nvari ant (BL condition, conclusion) {

condi tion.inplies(conclusion).equals(condition.not.or(conclusion));

B

Theimplication is not reversible and does not specify what is true when the condition is false (ex falso quodlibet).
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4

TEXT

All information can be expressed as text but text must be interpreted to have meaning. Text isonly used for information for
which this specification does not define semantics, information that is mainly interpreted by humans or encoded for
interpretation by means external to this specification. Written text, spoken text (audio) aswell as graphics or images belong in
this category.

tyﬁe : Ctv cs <<restriction>> CharacterString : ST
charset : - ; head : ST
e = text/plain
language :_CS typ P tail - ST
integrityCheck : BIN -
integrityCheckAlgorithm : CS SERUENES £ ST
thumbnail : ED head : T
tail : LIST<T>
equals(ED) : BL isEmpty : BL
nonEmpty : BL
v length : INT
BinaryData : BIN /
//
Boolean : BL | usT<BL> Figure 3: Text data types are capable of expressing any kind of
ot -BL & information, however, their interpretation depends on additional
“ definitions of simply on human understanding. The character

and®L):BL L7 string is a simple form of encoded data. Encoded data can be any

°’(B'é?_: l-3||§|_ kind of multimedia data. Encoded data (just as all communicated

ie,;);(,ies)(é,_) BL data) is based on a binary representation, which in turn

conceptually rooted in Boolean logic.

4.1 Binary Data (BIN)

All communicated information must ultimately be physically encoded as binary data. Binary datais the most primitive yet the
omnipotent encoding of al information.

Binary datais a sequence of uninterpreted bits. A bit isidentical with aBoolean value. Thus, all
binary datais— semantically — a sequence of Boolean values. The binary datatypeis protected, it
should not be used directly but only inside the encoded data (ED) type described below.

protected type BinaryData alias Bl N extends LI ST&LfA

ITS Note: the representation of arbitrary binary data is the responsibility of an ITS. How the ITS accomplishes this
depends on the underlying Implementation Technology (whether it is character-based or binary) and on the so
represented data. Semantically character data is represented as binary data, however, a character-based ITS
should not convert character data into arbitrary binary data and then represent binary data in a character
encoding. Ultimately even character-based implementation technology will communicate binary data.

An empty sequence is not considered binary data but counts asaNuLL-value. In other words, non-
NULL binary data contains at least one bit.

i nvariant (BIN x) where x.nonNull {
X. nonEnpty;
x. | engt h. great er Than(0) ;

b

4.2 Encoded Data (ED)

The encoded data type can convey any data. However, in order for that datato convey meaning,
encoded data must be decoded and further interpreted. Encoded data may be a plain character string,
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formatted text, or any of several kinds of multimediadata. The kind of encoding is conveyed in three
properties:

1. type— specifiesthe protocol, or application used to decode and interpret the data (also known as
the “mediatype” asreferring to multi-media data.)
2. charset —identifies the character set and character encoding for character-based “ media.”

compr ession — data may be given in a compressed form in which case compression identifies the
compression agorithm used.

Encoded data can be present in two forms, inline or by reference. Inline data is communicated or
moved as part of the encoded data value, whereas by-reference data may reside at a different (remote)
location. The datais the same whether it islocated inline or remote.

type EncodedData alias ED extends BIN {

CS type;

CS char set;

CS | anguage;

CS conpr essi on;

TEL ref erence

Bl N i ntegrityCheck;

CS i ntegrityCheckAl gorithm
ED t hunbnai | ;

BL equal s(ED x) ;

B

4211 type :CS

The encoded data’ s type property identifies the encoding of the data and identifies an method to
interpret or render the data. The domain of the encoded data’ s type property are the MIME media
types, defined by the Internet Assigned Numbers Authority (IANA).

The encoded data’ stype is a mandatory property, i.e., every non-NULL instance of encoded data must
have a defined type property.

invariant (ED x) where x.nonNull {

X.type. nonNul | ;

The IANA defined domain of mediatypesis established by the Internet standard RFC 2046
[ftp://ftp.isi.edu/in-notes/rfc2046.txt]. RFC 2046 defines the media type to consist of two parts:

1. toplevel mediatype, and
2. mediasubtype.

However, this specification treats the entire media type as one atomic code symbol in the form defined
by IANA, i.e, top level type followed by aslash “/” followed by media subtype. Currently defined
media types are registered in a database [http://www.isi .edu/in-notes/iana/assignments/media-types]
maintained by IANA. Currently more than 160 different MIME media types are defined, with the list
growing rapidly. In general, al those types defined by the IANA may be used.
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To prevent the interoperability-problems associated with this diversity, this specification prefers certain
mediatypesto others. Thisisto define a greatest common denominator on which interoperability is
not only possible, but that is powerful enough to support even advanced multimedia communication
needs.

Table 4 below assigns a status to certain MIME media types, where the status means one of the
following:

required
Every HL7 application must support at least the required media typesif it supports a given kind of
media. One required media-type for each kind of media exists.

The set of required media types, however, is very small so that no undue requirements are forced on HL7 applications,
especially legacy systems. In general, no HL7 application would be forced to support any given kind of media other than
written text. For example, many systems just do not want to receive audio data, because those systems can only show
written text to their users. It isamatter of application conformance statements to say: “I will not handle audio”. Only if a
system claims to handle audio media, it must support the required media type for audio.

recommended

Other media types are recommended for a particular purpose.

For any given purpose there should be only very few additionally recommended media types and the rationale, conditions
and assumptions of such recommendations must be made very clear.

deprecated
Deprecated media types should not be used.

Some media types are inherently flawed, because there are better alternatives or because of certain risks. Such risks could
be security risks, for example, the risk that such a media type could spread computer viruses. Not every flawed mediatype
is marked as deprecated, though. A mediatype that is not mentioned, and thus considered other by default, may well be
flawed.

other

By default, any mediatype fallsinto the status other. This status means, HL 7 does neither forbid
nor endorse the use of this mediatype. Sincethereis one required and several recommended
media types for most practically relevant use cases, mediatypes of this status should be used very
conservatively.

Table 4: Use of MIME media types.

Media Type Status Use Case
text/plain required For any plain text. This is the default and is equivalent to a character string
default (ST) data type. Corresponds to HL7 v2's TX and ST data types.
text/x-hl7-ft recommended For compatibility, this represents the HL7 v2.x FT data type. Its use is
for recommended only for backward compatibility with HL7 v2.x systems.
compatibility
with HL7 v2
text/html recommended  For marked-up text according to the Hypertext Mark-up Language. HTML
markup is sufficient for typographically marking-up most written-text
documents. HTML is platform independent and widely deployed.
application/pdf recommended The Portable Document Format is recommended for written text that is
completely laid out and read-only. PDF is a platform independent, widely
deployed, and open specification with freely available rendering tools.
text/sgml other For structured character based data. There is a risk that general SGML/XML
text/xml is too powerful to allow a sharing of general SGML/XML documents between
different applications.
text/rtf other The Rich Text Format is widely used to share word-processor documents.
However, RTF does have compatibility problems, as it is quite dependent on
the word processor. May be useful if word processor edit-able text should be
shared.
application/msword deprecated This format is very prone to compatibility problems. If sharing of edit-able
text is required, text/plain, text/html or text/rtf should be used instead.
audio/basic required This is a format for single channel audio, encoded using 8bit ISDN mu-law
for audio [PCM] at a sample rate of 8000 Hz. This format is standardized by: CCITT,

Fascicle Ill.4 —Recommendation G.711. Pulse Code Modulation (PCM) of
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audio/k32adpcm

image/png

image/gif
image/jpeg
image/g3fax

imagel/tiff

video/mpeg
video/x-avi

model/vrml

recommended
for audio
compression
required

for images

recommended
required

for high color
images
recommended
for FAX

other

required
for video
deprecated

recommended
for 3D models

Voice Frequencies. Geneva, 1972.

ADPCM allows compressing audio data. It is defined in the Internet
specification RFC 2421 [ftp://ftp.isi.edu/in-notes/rfc2421.txt]. Its
implementation base is unclear.

Portable Network Graphics (PNG) [http://www.cdrom.com/pub/png] is a
widely supported lossless image compression standard with open source
code available.

GIF is a popular format that is universally well supported.

This format is required for high compression of high color photographs. It is
a “lossy" compression, but the difference to lossless compression is almost
unnoticeable to the human vision.

This is recommended only for fax applications.

Although TIFF (Tag Image File Format) is an international standard it has
many interoperability problems in practice. Too many different versions that
are not handled by all software alike.

MPEG is an international standard, widely deployed, highly efficient for high
color video; open source code exists; highly interoperable.

The AVI file format is just a wrapper for many different “codecs"; it is a
source of many interoperability problems.

This is an openly standardized format for 3D models that can be useful for
virtual reality applications such as anatomy or biochemical research
(visualization of the steric structure of macromolecules)

4.2.1.2 charset: CS

For character-based encoding types, this property specifies the character set and character encoding
used. The charset is defined according to Internet RFC 2278, | ANA Charset Registration Procedures,
[http://www.isi.edu/in-notes/rfc2278.txt] .

The charset domain is maintained by the Internet Assigned Numbers Authority (IANA)
[ http://www.isi.edu/in-notes/iana/assignments/character-sets]. The IANA source specifies names and

multiple aliases for most character sets. For the HL7's purposes, use of multiple alias namesis not
allowed. The standard name for HL7 is the one marked by IANA as “preferred for MIME.” 1f IANA
has not marked one of the aliases as “ preferred for MIME” the main hame shall be the one used for

HL7.

Table 5 lists afew of the IANA defined character sets that are of interest to current HL7 members.

Table 5: Selected Character Set Codes as defined by IANA.

Code Status Description
US-ASCII required ANSI X3.4-1968
UTF-8 required for 8 bit Unicode Transfer Format [RFC 2279]. This is the default character set
Unicode and encoding for XML and natively supported by Java. It is backward
compatible to 7-bit US-ASCII.

ISO-10646-UCS-2 deprecated Unicode ISO 10646, the 16 bit per character Basic Multilingual Plane.
Unicode has a special protocol to specify the byte order, which must be
followed. To avoid byte ordering problems (and — for the western part of

nserve bandwidth) the UTF-8 encoding should be used.

ISO-10646-UCS-4 deprecated  Unicode ISO 10646, the full code-set (32-bit per character.) Unicode has a
special protocol to specify the byte order, which must be followed.. To
avoid byte ordering problems (and — for the western part of the world — to
conserve bandwidth) the UTF-8 encoding should be used.

UTF-7 other 7 bit Unicode Transfer Format [RFC 2152]. This is a Unicode encoding that
is sure to be safe for older communication links or file formats that remove
the 7" bit of each transferred byte.

ISO-8859-1 other ISO 8859 Latin-1 character set is native on western European (and U.S.)
Microsoft Windows installations and on many Unix/X-Windows systems.

ISO-8859-2 other ISO 8859 Latin-2 character set for the Slavic languages of Central Europe.

ISO-8859-5 other ISO 8859 Cyrillic character set for the languages Bulgarian, Byelorussian,

Macedonian, Serbian and Ukrainian.

Open Issue: There are at least 10 different MIME designators for Japanese charsets some being singular
character sets (e.g., JIS X208, X212, etc.) or various versions thereof, some being suites of character sets and a
switching encoding (e.g., 1SO2022, EUC-JP, Shift-JIS, etc.) Allowing that many charsets and versions for
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Japanese HL7 would be a disservice to the goal for HL7 interoperability. It is unclear what charsets besides JIS
X221 (ISO 10646) is needed at all. HL7 Japan is asked to submit two or three (maximum) IETF/MIME registered
charsets along with their preferred IETF registered charset code and a description for inclusion into this standard.

4.2.1.3 language: CS

For character based information the language property specifies the language of the text. The
principles of the code domain of this attribute is specified by RFC 1766, Tags for the Identification of
Languages [http://www.isi.edu/in-notes/rfc1766.txt]. It isa set of pre-coordinated pairs of one 2-letter
SO 639 language code and one 2-letter |SO 3166 country code.

The need for alanguage code for text data values is documented in RFC 2277, IETF Policy on Character Sets and Languages

[http://www.isi.edu/in-notes/rfc2277.txt]. Further background information can be found in Using International Charactersin
Internet Mail [http://www.imc.org/mail-i18n.html], a memo by the Internet Mail Consortium.

Language tags do not modify the meaning of the characters found in the text; they are only an advice
onif and how to present or communicate the text.

For this reason, any system or site that does not deal with multilingual text or namesin the real world can safely ignore the
language property.

ITS Note: representation of language tags to text is highly dependent on the ITS. An ITS should use the native
way of language tagging provided by its target implementation technology. Some may have language information
in a separate component, e.g., XML has the xml:lang tag for strings. Others may rely on language tags as part of
the binary character string representation, e.g., ISO 10646 (Unicode) and its “plane-14" language tags.

The language tag should not be mandatory if it is not mandatory in the implementation technology. Semantically,
language tagging of strings follows a default-logic. If nothing else is specified the local language is assumed. If a
language is set for an entire message or document, that language is the default. If any information element or
value that is superior in the syntax hierarchy specifies a language, that language is the default for all subordinate
text values.

If language tags are present in the beginning of the encoded binary text (e.g., through Unicode’s plane-14 tags)
this is the source of the language property of the Encoded Data value.

4.2.1.4 compression: CS

The compression code indicates whether the raw byte data is compressed, and what compression
algorithm was used.

Table 6: Compression Algorithms

Name Code Status Description and Comment
deflate DF required The deflate compressed data format as specified in RFC 1951
[ftp://ftp.isi.edu/in-notes/rfc1951.txt].
gzip GZ other A compressed data format that is compatible with the widely used

GZIP utility as specified in RFC 1952 [ftp:/ftp.isi.edu/in-
notes/rfc1952.txt] (uses the deflate algorithm.)

zlib ZL other A compressed data format that also uses the deflate algorithm.
Specified as RFC 1950 [ftp://ftp.isi.edu/in-notes/rfc1950.txt]
compress 4 deprecated Original UNIX compress algorithm and file format using the LZC

algorithm (a variant of LZW). Patent encumbered and less
efficient than deflate.

Compression may not be allowed for encoded data depending on the attribute or component that is
declared encoded data. Character strings (see Section 4.2.1.9) may never be compressed.

4.2.1.5 reference: TEL

The reference is atelecommunication address (TEL ), such asa URL for HTTP or FTPR, that will
resolve to precisely the same binary datathat could as well have been provided as inline data.

The semantic value of an encoded data value is the same, regardless whether the data is present inline
data or just by-reference. However, an encoded data value without inline data behaves differently,
since any attempt to examine the data requires the data to be downloaded from the reference.
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An encoded data value may have both inline data and a reference. The reference must point to the
same data as provided inline.

By-reference encoded data may not be allowed depending on the attribute or component that is
declared encoded data. Character strings (see Section 4.2.1.9) must always be inline.
4.2.1.6 integrityCheck : BIN

The integrity check is ashort binary value representing a cryptographically strong checksum that is
calculated over the binary data. The purpose of this property, when communicated with areferenceis
for anyone to validate later whether the reference till resolved to the same data that the reference
resolved to when the encoded data value with reference was created.

Theintegrity check is calculated according to the integrity check algorithm. By default, the Secure
Hash Algorithm-1 (SHA-1) shall be used. Theintegrity check is binary encoded according to the rules
of the integrity check algorithm.

Theintegrity check is calculated over the raw binary data that is contained in the data component, or
that is accessible through the reference. No transformations are made before the integrity check is
calculated. If the datais compressed, the Integrity Check is calculated over the compressed data.
4.2.1.7 integrityCheckAlgorithm : CS
This property defines the algorithm used to compute the value in integrity check.
Table 7: Integrity Check Algorithm.

Name Code Description

Secure Hash Algorithm —1  SHA-1  This algorithm is defined in FIPS PUB 180-1: Secure Hash Standard. As
of April 17, 1995.

The cryptographically strong checksum algorithm Secure Hash Algorithm-1 (SHA-1) is currently the industry standard. It has
superseded the MD5 algorithm only a couple of years ago, when certain flaws in the security of MD5 were discovered.
Currently the SHA-1 hash algorithm is the default and required only choice for the integrity check algorithm. However, thereis
no assurance that SHA-1 will not be superseded at anytime when its flaws will be discovered.

4.2.1.8 thumbnail : ED

A thumbnail is an abbreviated rendition of the full data. A thumbnail requires significantly fewer
resources than the full data, while still maintaining some distinctive similarity with the full data. A
thumbnail is typically used with by-reference encoded data. It allows a user to select data more
efficiently before actually downloading through the reference.

Originaly, the term thumbnail refersto an image in alower resolution (or smaller size) than another image. However, the
thumbnail concept can be metaphorically used for media types other than images. For example, amovie may be represented by

ashorter clip; an audio-clip may be represented by another audio-clip that is shorter, has alower sampling rate, or alossy
compression.

Thumbnails may not be allowed depending on the attribute or component that is declared encoded
data. Character strings (see Section 4.2.1.9) never have thumbnails, and a thumbnail may not itself
contain athumbnail.

invariant (ED x) where x.thunbnail.nonNull {
x. thunmbnai | . t hunbnai | . i sNul | ;
i

ITS Note: the ITS should consider the case where the thumbnail and the original both have the same properties of
type, charset and compression. In this case, these properties need not be represented explicitly for the thumbnail
but might be “inherited” from the main encoded data value to its thumbnail.
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4.2.1.9 Equality

Two values of type Encoded Data are equal if and only if their type and referenced data are equal. For
those ED values with compressed data or remote data, only the de-referenced and uncompressed data
counts for the equality test. The compression and reference property themselves are excluded from the
equality test, asis the thumbnail and the language property. If the ED.type is character based and the
charset property is not equal, the charset property must be resolved through mapping of the data
between the different character sets.

Theintegrity check algorithm and integrity check is excluded from the equality test. However, since
equality of integrity check valueis strong indication for equality of the data, the equality test can be
practically based on the integrity check, given egqual integrity check algorithm properties.

4.3 Character String (ST)

The character string is arestricted encoded data type (ED), whose type property is fixed to text/plain,
and whose data must be inlined and not compressed. Thus, the properties compression, reference,
integrity check, algorithm, and thumbnail are not applicable. The character string data typeisused
when the appearance of text does not bear meaning, which is true for formalized text and al kinds of
names.

The character string (ST) data type interprets the encoded data as character data (as opposed to bits),
depending on the charset property of the encoded data type.

type CharacterString alias ST restricts ED {

I NT | engt h;
ST head;
ST tail;

i nvari ant (ST x) where x.nonNull {
x.type. equal s(“text/plain”);
. conpr essi on. not Appl i cabl e;
.ref erence. not Appl i cabl e;

X

X

X. i ntegrityCheck. not Appli cabl e;

X. i ntegrityCheckAl gorithm not Appl i cabl e;
X

.t hunbnai | . not Appl i cabl e;

ITS Note: because many of the properties of the encoded data are bound to a default value, an ITS need not
represent these properties at all. In fact, if the character encoding is also fixed, the ITS only represents the
encoded character data.

The character string inherits the properties head, tail, and length though encoded data from binary data.
These properties head, tail, and length, are redefined so that the character string appears as a sequence
of entities each of which uniquely identifies one character from the joint set of all characters known by
any language of the world.
ISO/IEC 10646-1: 1993 defines a character as“ A member of a set of elements used for the organisation, control, or

An operational model for characters and glyphs. Discusses the problems
involved in defining characters. Notably, characters are abstract entities of information, independent of type font or language.

The 1SO 10646 (UNICODE [http://www.unicode.org]) — or in Japan, JIS X0221 — isaglobally applicable character set that
uniquely identifies all characters of any language in the world.

In this specification, 1SO 10646 serves as a semantic model for character strings. The important point is that for semantic
purposes, there is no notion of separate character sets and switching between character sets. Character set and character
encoding are ITS layer considerations. The formal definition gives indication to this effect because each character is by itself an

Copyright © 2000, Health Level Seven, Inc. All rights reserved. 31



HL7 Version 3 Data Types BALLOT DRAFT 1 Revision 1.2

ST value that has a charset property. Thus, the binary encoding of each character is always understood in the context of a certain
character set. This does not mean that the I TS should represent a character string as a sequence of full blown ED values. What
it means isthat on the application layer the notion of character encoding is irrelevant when we deal with character strings.

The properties head, tail, and length now refer to character, string, and character counts respectively,
rather than bits and bit counts. The head of a string is a string of only one character. A character string
must at least have one character or elseit isNULL. The length of a character string is the number of
charactersin the string. A zero-length string is an exceptional value (NULL), not a proper character
string value.

invariant (ST x) where x.nonNull {
x. head. nonEnpt y;
x. head. tail.isEnpty;

x.tail.isEnpty.inplies(x.|ength.equals(1));
x.tail.nonEnpty.inplies(x.|ength.equal s(x.tail.length.successor));

}s

The length of a string is the number of characters, not the number of encoded bytes. Byte encoding is an ITS
issue and is not relevant on the application layer.

4.3.1.1 Literal Form

A character string literal is aconversion from a character string to another datatype. Obviously, character string literals for
character stringsisacyclical if not redundant feature. Thisliteral form, therefore, mainly specifies how character strings are
parsed in the data type specification language.

Two variations of character string literals are defined, atoken form and a quoted string. The token
form consists only of the lower case and upper case English alphabet, the ten decimal digits and the
underscore. The quoted string can contain any character between double-quotes.

The double quotes prevent a character string from being interpreted as some other literal. The token form allows keywords and
names to be parsed from the data type specification language.

ST.literal ST {
ST : ["[~]*"] { $.equal s($1); } /* quoted string */
| /[a-zA-20-9 ]+ { $.equals($1); }; /* token form */
b

ITS Note: since character string literals are so fundamental to implementation technology, most ITS will specify
some modified character string literal form. However, ITS designers must be aware of the interaction between the
character string literal form and the literal forms defined for other data types. This is particularly critical if the other
data type’s literal form is structured with major components separated by break-characters (e.g., real number,

physical quantity, set, and list literals, etc.)
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5

THINGS, CONCEPTS, AND QUALITIES

A major distinction exists between codes and identifiers. Codes refer to concepts, nominal values that stand for classes of things
or qualitative properties of things (universals.) Identifiers on the other hand refer to individual things, such as computer objects
or people (individuals.) Diagnosis codes, procedure codes, medication codes, gender, marital status and religion codes are
examples of concepts. Medical record numbers, Social Security Numbers, Provider 1Ds, and Manufacturer 1Ds are examples of

identifiers.

5.1 Concept Descriptor (CD)

<<restriction>>

CodedSimpleValue : CS

code : ST
displayName : ST

0..*

translation

code: ST
displayName : ST
codeSystem : OID

codeSystemName : ST

code SystemVersion
originalText : ED
modifier : LIST<CR>

translation : SET<CD>

1 ST

implies(CD) : BL
equals(CD) : BL

<<restriction>>

CodedWithEquivalents : CE

code : ST

displayName : ST
codeSystem : OID
codeSystemPrintName : ST
codeSystemVersion : ST
originalText : ED

translation : SET<CV>

value
<—<@®value : CD

modifer ;/ 0.*

ConceptRole : CR

name : CV
inverted : BL

<<restriction>>

1 name

CodedValue : CV

translation
<=
0.*

code : ST

displayName : ST
codeSystem : OID
codeSystemPrintName : ST
code SystemVersion : ST
originalText: ST

Figure 4: The Concept
Descriptor information
model. The concept
descriptor is the most
general means to describe
a concept using codes.
This includes code
modifiers (where defined
by the underlying code
system) and translations
into other code systems.

However, the full- featured
form of the concept
descriptor is rarely used.
Instead, it is
recommended to us one of
the restricted forms. The
restrictions imply that
those properties not listed
in the restricted type are
tightly constrained.
Semantically these
properties are still valid.

A concept descriptor represents any kind of concept. The CD refers to a concept usually by citing a
code defined in a coding system. A given concept may be expressed in multiple terms where each
termis atrandation or re-encoding of the meaning in another code system. In addition (and different
from tranglations) compositional code system are supported. In exceptional cases, the concept
descriptor may not contain a code but only free text describing that concept. The CD istypically used
through one of its restrictions described in Section 5.1.3.

type Concept Descriptor alias CD extends ANY {
ST code;
ST di spl ayNane;
a D codeSyst em
ST codeSyst enNane;
ST codeSyst enVer si on;
ED ori gi nal Text;
LI ST<KCR> nodifier;
SET<CD> transl ati on;
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BL equal s(CD x);
BL i mplies(CD x);

denotion ED;

5.1.1.1 code: ST

Thisisthe plain code symboal, e.g., “ 784.0" is the code symbol of the ICD-9 code “784.0” for
headache. The code must be defined in the coding system.

A non-exceptional CD value has anon-NULL code citing avalid code from an identified coding
system. Conversely, a CD value without the code or with a code not from the cited coding system is an
exceptional value (NULL of flavor other).

i nvari ant (CD x) where x.nonNull {
x. code. nonNul | ;

B

5.1.1.2 codeSystem : OID

This property specifies the code system that defines the code. Code systems shall be referred to by
SO Object Identifiers (OID). The OID alows unambiguous reference to standard HL7 codes, other
standard code systems, and local codes. HL7 shall assign an OID to each of its code tables as well as
to external standard coding systemsthat are being used with HL7. Local sites can use their OID to
construct a globally unique local coding system identifier.

Appendix A Object Identifiers (normative) lists a starter set of object identifiers. Under HL7' s branch,
2.16.840.1.113883, the sub-branches 5 and 6 contain HL7 standard and external code system
identifiers respectively. These two branches are maintained by the HL7 Vocabulary Technical
Committee.

A non-exceptional CD value (i.e. a CD value that has a non-null code property) has a non-NULL code
system specifying the system of concepts that defines the code. In other words whenever thereisa
code there is also a code system.

ITS Note: although every non-NULL CD value has a defined code system, in some circumstances, the external
representation of the CD value needs not explicitly mention the code system. For example, when the context
mandates one and only one code system to be used specifying the code system explicitly would be redundant.
However, in that case the code system property assumes that context-specific default value and is not NULL.

nvari ant (CD x) where x.code. nonNul | {

X. codeSyst em nonNul | ;

An exceptional CD of NuLL-flavor “other” indicates that a concept could not be coded in the coding
system specified. Thus, for these coding exceptions, the code system that did not contain the
appropriate concept must be provided in the code system property.

Some code domains are qualified such that they include the portion of any pertinent local coding system that does
not simply paraphrase the standard coding system (coded with extensibility, CWE.) If a CWE qualified field
actually contains such a local code, the coding system must specify the local coding system from which the local
code was taken. However, for CWE domains the local code is a valid member of the domain, so that local codes

in CWE domains constitute neither an error nor an exceptional (NuLL/other) value in the sense of this specification.
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i nvariant (CD x) where x.other {
x. code. i sNul | ;

X. codeSyst em nonNul | ;

5.1.1.3 codeSystemName : ST

This isacommon name of the coding system referred to by the codeSystem OID. The code system
name is optional and has no function in communication. The purpose of a code system name isto
assist an unaided human interpreter of a code value to interpret the code system OID. It is suggested —
though not absolutely required —that ITS provide for code system name fieldsin order to annotate the
OID for human comprehension.

HL7 systems must not functionally rely on the code system name. The code system name can never
modify the meaning of the code system OID value and can not exist without the OID value.

invariant (CD x) {

x. codeSyst emNane. nonNul | . i npl i es(x. codeSyst em nonNul | ) ;

B

5.1.1.4 codeSystemVersion : ST

Thisisaversion descriptor defined specifically for the given code system. The code system version is
cited as a plain character string. HL7 shall specify how these version strings are formed. If HL7 has
not specified how version strings are formed for a particular coding system, version designations have
no defined meaning for such coding system.

For the purpose of this specification, the term “version” means the following: Different versions of one
code system must be compatible in general. Whenever a code system changes in an incompatible way,
it will constitute a new code system, not simply a different version, regardless of how the vocabulary
publisher callsit.

For example, the publisher of ICD-9 and ICD-10 calls these code systems, “revision 9" and “revision 10" respectively.

However, ICD-10 is a complete redesign of the ICD code, not a backward compatible version. Therefore, for the purpose of this
data type specification, ICD-9 and 1CD-10 are different code systems, not just different versions. By contrast, when LOINC
updates from revision "1.0j" to "1.0k", HL7 would consider this to be just another version of LOINC, since LOINC revisions are
backwards compatible.

invariant (CD x) {

X. codeSyst emVer si on. nonNul | . i npl i es(x. codeSyst em nonNul | ') ;

5.1.1.5 equals(CDx): BL

The equality of two concept descriptor values is determined solely based upon the code and coding
system. If modifiers are present, the modifiers are included in the equality test. Trandations are not
included in the equality test. Exceptional concept descriptor values are not equal even if they have the
same null flavor or the same original text.

invariant (CD x, y) x.nonNull.and(y.nonNull) {
x. equal s(y) . equal s(x. code. equal s(y. code)
. and(x. codeSyst em equal s(y. codi ngSyst em))
.and(x. nodi fier.equal s(y.nodifier)));
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The code system versions do not count in the equality test since by definition a code symbol must have the same meaning
throughout all versions of a code system. Between versions, codes may be retired but not withdrawn and reused.

The same null value or the same original text does not count as equality since it would be unsafe to equate two concepts on the
basis that both were not codeable or unknown. Likewise thereis no guarantee that original text represents a meaningful or
unique description of the concept so that equality of that original text does not constitute concept equality. The reverseisaso
true: since there is more than one possible original text for a concept, the fact that original text differs does not constitute a
difference of the concepts.

Translations are not included in the equality test of concept descriptors. Thisis so for safety reasons. An alternative would have
been to consider two CD values equal if any of their trandations are equal. However, some translations may be equal because
the coding system of that translation is very coarse-grained. More sophisticated comparisons between concept descriptors are
application considerations that are not covered by this specification.

5.1.1.6 implies(CD x) : BL

Naturally, concepts can be narrowed and widened to include or exclude other concepts. Many coding
systems have an explicit notion of concept specialization and generalization. The HL7 vocabulary
principles also provide for concept specialization for HL7 defined value sets. The implies-property isa
predicate that compares whether one concept is a specialization of another concept, and therefore
implies that other concept.

When writing predicates (e.g., conditional statements) that compare two codes, one should usually test for
implication not equality of codes.

For example, in Table 9 the “telecommunication use” concepts: work (W), home (H), primary home (HP), and vacation home
(HV) are defined, where both HP and HV imply H. When selecting any home phone number, one should test whether the given
use-code cimplies H. Testing for ¢ equals H would only find unspecified home phone numbers, but not the primary home phone
number.

5.1.1.7 displayName : ST

The display name is aname or title for the code, under which the sending system typically or actually
shows the code value to its users. It isincluded both as a courtesy to an unaided human interpreter of a
code value and as a documentation of the name used to display the concept to the user. The display
name has no functional meaning; it can never exist without a code; and it can never modify the
meaning of the code.

Note: display names may not alter the meaning of the code value. Therefore, display names should not be
presented to the user on a receiving application system without ascertaining that the display name adequately
represents the concept referred to by the code value. Communication must not simply rely on the display name.
The display name’s main purpose is to support debugging of HL7 protocol data units (e.g., messages.)

invariant (CD x) {
x. di spl ayNane. nonNul | . i npl i es(x. code. nonNul | );

}s

5.1.1.8 translation : SET&Df

The translation property of a concept descriptor y holds a set X of other concept descriptors x; 1 X that
trangl ate the concept descriptor y into different code systems. Each element x, T X was translated from
the concept descriptor y. Each tranglation x; may also contain trandations. Thus, when acodeis
translated multiple times the information about which code served as the input to which translation will
be preserved.

Note: the translations are quasi-synonyms of one real-world concept. Every translation in the set is supposed to
express the same meaning “in other words.” However, exact synonymy does rarely exist between two structurally
different coding systems. For this reason, not all of the translations will be equally exact.
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5.1.1.9 originalText : ED

Thisisthetext or phrase used as the basis for the coding. The original text exists in a scenario where
an originator of the information does not assign a code, but where the code is assigned later by a coder
(post-coding.) In the production of a concept descriptor, original text may thus exist without a code.

Although the concept descriptor’s value property isNULL, original text may still exist for the CD value.
Any CD value with the code property of NULL signifies a coding exception. In this case, the text
property isaname or description of the concept that was not coded. Such exceptional CD may contain
trandations. Such trandations directly encode the concept described in the original text property.

Neither display name nor original text is part of the information a receiving system must recognize. An
information producer is responsible for the proper coding of all information in the value attribute, for any
information consumer may safely ignore the display name and original text attributes.

A concept descriptor can be converted into an ED value representing only the original text of the CD
value.

i nvariant (CD x) where x.text.nonNull {
((ED) x) . equal s(x.text);
i

5.1.1.10 producer : Il

5.1.1.12 modifier : LIST &RiA

A concept descriptor may have modifiersif the code system defines such modifiers. Modifiers can
only be used with code systems that define rules of postcoordination, where multiple codes together
make up one concept. A concept descriptor with modifiersis called a code phrase.

For example, SNOMED allows constructing concepts as a combination of multiple codes and HCFA procedure codes come with

modifiers. SNOMED RT defines a concept “cellulitis,” arole “ has-topology,” and another concept “left foot.” The concept role
alows you to add the modifier “has-topology: left foot” to the primary code “cellulitis’ to construct the meaning, “cellulitis of

The order of modifiersis preserved, particularly for the case where the coding system allows
postcoordination but defines no role names (e.g., some |CD-9 codes, SNOMED, HCFA procedure
codes.)

ITS Note: All the modifier names and subordinate codes of a code phrase should come from the same coding
system. Thus, the coding system mentioned for the primary CD value should be made the default for all
subordinated modifier names and values.

5.1.2 Concept Role (CR)

The concept roleis used to send code modifiers with optionally named roles. Both modifier roles and
values must be defined by the coding system.

For example, if SNOMED RT defines aconcept “leg”, arole relation “has-laterality”, and another concept “left”, the concept
role relation alows to add the modifier “has-laterality: left” to aprimary code “leg” to construct the meaning “left leg”.

The use of modifiersis strictly governed by the code system used. The CD does not permit using code
modifiers with code systems that do not provide for modifiers (e.g. pre-coordinated systems, such as
LOINC, ICD-10 PCS.) The rules of the modifier use must be governed by the code system (e.g.,
recent SNOMED RT revision, GALEN.)

protected type ConceptRol e alias CR extends ANY {

cv nare;
BL i nverted;
CD val ue;
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5.1.2.1 name:CV

Thisistherole name. The role name specifies the manner in which the value contributes to the
meaning of acode phrase.
For example, if SNOMED RT defines aconcept “leg”, arolerelation “has-laterality” , and another concept “left”, the concept

role relation allows to add the modifier “ has-laterality: left” to aprimary code “leg” to construct the meaning “left leg”. Inthis
example “has-lateradity” isthe CRR.name.

If acoding system allows postcoordination but no role names the name attribute can be NULL. The
name attribute must not itself have modifiers.

i nvari ant (CR x) where x.nonNull {

x. nane. nodi fier.isNull;

B

5.1.2.2 value: CD

The code related to the primary code of a code phrase through the role relation.

For example, if SNOMED RT defines aconcept “leg”, arole relation “has-laterality” , and another concept “left”, the concept
role relation allows to add the modifier “has-laterdlity: left” to aprimary code “leg” to construct the meaning “left leg”. Inthis
example “left” isthe CRR.value.

This component is of type concept descriptor and thus can be in turn have modifiers. Thisalows
modifiersto nest. Modifiers can only be used as far as the underlying code system defines them. Itis
not allowed to use any kind of modifiers for code systems that do not explicitly allow and regulate
such use of modifiers.

i nvari ant (CR x) where x.nonNull {

x. val ue. nonNul | ;

B

5.1.2.3 inverted : BL

This property indicates if the meaning of theroleisinverted. Thiscan be used in cases where the
underlying code system defines inversion but does not provide reciprocal pairs of role names.
For example, a code system may define the role relation “ causes’ besides the concepts “ Streptococcus pneumoniae” and

. If that code system allows its roles to be inverted, one can construct the post-coordinated concept “ Pneumococcus
pneumonia’ through “Pneumonia — causes, inverted — Streptococcus pneumoniae.”

Roles may only be inverted if the underlying coding systems allows such inversion. Notably, if a
coding system defines rolesin inverse pairs or intentionally does not define certain inversions, the
appropriate role code (e.g. “ caused-by") must be used rather than inversion.

ITS Note: the property “inverted” should be conveyed in an indicator attribute, whose default value is false. That
way the inverted indicator does not have to be sent when the role is not inverted.

5.1.3 Restrictions for the Concept Descriptors

The concept descriptor data type is very expressive, however, if al of its features, such as coding exceptions, text, trandations
and modifiers are used at all times, implementation and use becomes very difficult and unsafe. Therefore, the CD type is most
often used in arestricted form with reduced features.

Use of the full concept descriptor datatypeis exceptional. It requires a conscious decision and
documented rationale. In all other cases, one of the CD restrictionsis to be used.

All CD restrictions constrain certain properties of the CD. Properties may be constraint to the extent
that only one value may be allowed for that property, in which case mentioning the property becomes
redundant. Constraining a property to one value is referred to as suppressing that property. Although,
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conceptually a suppressed property is still semantically applicable, it is safe for an HL7 interface to
assume the implicit default value without testing.

The unrestricted concept descriptor is currently only assigned to the following RIM attributes: Service.service_cd,
Service.body_site_cd, Material.type_cd, and is allowed for use in Observation.value.

5.1.3.1 Coded Simple Value (CS) restricts CD

The Coded Simple Value (CS) is arestriction of the concept descriptor (CD). The CS suppresses all
properties of the CD, except for code and display name. The code system and code system version is
fixed by the context in which the CS value occurs. Original text is not applicable to CS values.

CS can only be used in either of the following cases:

1) for a coded attribute which has a single HL 7-defined code system, and where code additions to that
value set require formal HL7 action (such as harmonization.) Such coded attributes that are designated
“structural” codes must be assigned the CS restriction.

2) for atechnical property in this specification that is assigned to a single code system defined either in
this specification or defined outside HL7 by a body that has authority over the concept and the
maintenance of that code system.

For example, since the ED type subscribes to the MIME design, it trusts IETF to manage the mediatype. Thisincludes that this
specification subscribes to the extension mechanism built into the MIME media type code (e.g., “application/x-myapp”).

For CS values, the designation of the domain qualifier will always be CNE (coded, non-extensible) and
the context determines unambiguously which HL7 value set applies.

Thisis not withstanding the fact that an external referenced domain, such asthe IETF MIME media type may include an
extension mechanism. These extended MIME type codes would not be considered “extensions’ in the sense of violating the
CNE provision. The CNE provision isonly violated if an attempt is made in using a different code system (by means of the
CD.codeSystem property) which is not possible with the CS data type.

type CodedSi npl eVal ue alias CS restricts CD {
ST code;
ST di spl ayNane;

i

CS can only be used for a coded attribute which has a single HL 7-defined value set, and where code
additions to that value set require formal HL 7 action (such as harmonization.) For these examples, the
designation of the domain qualifier will always be CNE (coded, non-extensible) and the context
determines unambiguously which HL7 value set applies.

Such coded attributes that are designated “ structural” codes must be assigned the CS restriction.

invariant (CS x) {
X. codeSyst em equal s( CONTEXT. codeSyst en) ;
X. codeSyst emVer si on. equal s( CONTEXT. codeSyst enVer si on) ;
X. codeSyst emNane. equal s( CONTEXT. codeSyst enNane) ;

x.original Text.isNull;
.translation.isNull;

x

x. modi fi er. not Appl i cabl e;
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5.1.3.2 Coded Value (CV) restricts CD

The Coded Value (CV) is arestriction of the concept descriptor (CD). The CV suppresses the CD
properties tranglation and modifier, which are both not applicable. The CV also constrains the original
text to a character string (ST) instead of the more general encoded data (ED) type.

type CodedValue alias CV restricts CD {

ST code;

ab codeSyst em

ST codeSyst enNane;

ST codeSyst enVer si on;
ST di spl ayNane;

ST ori gi nal Text;

B

Thistype is used when any reasonable use case will require only a single code value to be sent. Thus,
it should not be used in circumstances where multiple alternative codes for a given value are desired.
This type may be used with both the CNE (coded, non-extensible) and the CWE (coded, with
extensibility) domain qualifiers.

invariant (CS x) {
x.transl ation.isNull;

x. modi fi er. not Appl i cabl e;

5.1.3.3 Coded With Equivalents (CE)

The data type “Coded with Equivalents’ (CE) is arestriction of the concept descriptor (CD). The CE
suppresses the CD modifier property, which is not applicable. The CE aso restricts the trandation
property such that the translation is a set of CV values. CV values may not themselves contain
trandations.

type CodedWt hEqui val ents alias CE restricts CD {

ST code;

ST di spl ayNane;

ab codeSyst em

ST codeSyst enNane;

ST codeSyst enVer si on;
ED ori gi nal Text;

SET<CV> transl ati on;
s

The CE typeis used when the use case indicates that alternative codes may exist and where it is useful
to communicate these. The CE type provides for a primary code value, plus a set of aternative or
equivalent representations.

invariant (CS x) {

x. modi fi er. not Appl i cabl e;

40
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5.2 Instance Identifier (I1)
The Instance Identifier (I1)

datatypeis used to uniquely O ——— Instahceldentmer il
identify an instance, thing or | ! s i 1 fg;f”glog el

. . value : .
.Obje(?t'. Examples are object <~ namespace : OID <@ rootPrintName : ST
identifier for HL7 RIM root  |type : CV
objects, medical record validTime : IML<TS>
number, order id, service ) -
catalog item id, etc. Instance Figure 5: Instance Identifier data types. equals(ll) : BL

identifiers are defined based
on |SO object identifiers.

5.2.1 ISO Object Identifier (OID)
The SO Object Identifier is defined by |SO/IEC 8824:1990(E) clause 28.

28.9 The semantics of an object identifier value are defined by reference to an object
identifier tree. An object identifier tree is atree whose root corresponds to [the ISO/IEC
8824 standard] and whose vertices [i.e. nodes] correspond to administrative authorities
responsible for allocating arcs [i.e. branches] from that vertex. Each arc from that treeis
labeled by an object identifier component, which is[an integer number]. Each information
object to be identified is allocated precisely one vertex (normally aleaf) and no other
information object (of the same or a different type) is alocated to that same vertex. Thus
an information object is uniquely and unambiguously identified by the sequence of
[integer numbers] (object identifier components) labeling the arcs in a path from the root
to the vertex allocated to the information object.

28.10 An object identifier value is semantically an ordered list of object identifier
component values. Starting with the root of the object identifier tree, each object identifier
component value identifies an arc in the object identifier tree. The last objdect identifier
component value identifies an arc leading to a vertex to which an information object has
been assigned. It isthisinformation object which isidentified by the object identifier
value. [...]

From ISO/IEC 8824:1990(E) clause 28

Figure 6: Example for a
tree of ISO object
identifiers. HL7’s OID is
2.16.840.1.113883.

421292, JAGFA

10008@DICOM _ S Govt.

84C@USA (ANSI)

S0 member body S0 identified org. ountry agsignments

joint ISCATU-T
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Figure 6 shows part of the identifier tree that includesthe HL7 OID. The OID of the HL7 organization isjoint ISO/ITU-T (2)
country assignments (16) .840.1.113883.

HL 7 shall establish an OID registry and assign OIDs in its branch for HL7 users and vendors upon
their request. HL7 shall also assign OlIDs to public identifier-assigning authorities both U.S. nationally
(e.g., the U.S. State driver license bureaus, U.S. Social Security Administration, HIPAA Provider ID
registry, etc.) and internationally (e.g., other countries Social Security Administrations, Citizen ID
registries, etc.) The HL7 assigned OIDs must be used for these organizations, regardless whether these
organizations have other Ol Ds assigned from other sources. If HL7 can confirm that such
organizations have an OID assigned from other sources, HL7 may include such OIDs in its registry.
HL7 will not assign another OID in its namespace for any entity for which it can confirm that an OID
aready exists. However, since OID assignment is highly distributed and no global OID registry exists,
HL7 may not be able to detect whether an entity has a previously assigned OID.

While most owners of an OID will “design” their namespace sub-tree in some meaningful way, there is no way to generally infer
any meaning on the parts of an OID. HL7 does not standardize or require any namespace sub-structure. An OID owner, or

anyone having knowledge about the logical structure of part of an OID, may still use that knowledge to infer information about
the associated object, however, the techniques can not be generalized.

type bjectldentifier alias O D extends ANY {

| NT val ue;

abD nanespace;
literal ST;
denotion LI STA NTii

B

5.2.1.1 Literal Form

literal ST {
AOD: AOD“.” INT { $. nanespace().equal s($1);
$. val ue() . equal s($3); }
| INT { $.value().equal s($1); }

ITS Note: for Implementation Technologies that do not have native support for ISO OIDs, the ITS representations
for OIDs may be a character string literal rather than a recursive data structure. The character string literal is more
concise and most of the time OIDs will only be compared for equality but not analyzed further.

5.2.1.2 Structured Form: Sequence of Integers versus Value and Namespace

According to ISO/IEC 8824 an object identifier is a sequence of object identifier component values,
which are integer numbers. These component values are ordered such that the root of the object
identifier tree is the head of the list followed by all the arcs down to the leaf representing the
information object identified by the OID. The demotion to LISTANTArepresents this path of object
identifier component values from the root to the |eaf.

The value and namespace properties take the opposite view. The leaf (the last object identifier
component value in the list) is considered the value property and the all the preceding object identifier
component values except for the leaf are considered the namespace property. The namespace property
isan OID by itself.

The value/namespace view on | SO object identifiers has important semantic relevance. It represents the concepts of identifier
value versus identifier assigning authority (namespace.)
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5.2.2 Properties of the Instance Identifier

type Instanceldentifier alias Il extends ANY {
ST ext ensi on;
ab root ;
ST assi gni ngAut hori t yNane;
cv type;

| VLarsn val i dTi ne;

BL equal s(I'l x);
}

5.2.2.1 extension: ST

A character string value of the identifier. The extension must be unambiguous (unique) within the
domain of theroot OID. The extension property may be NULL in which case the root OID isthe
complete unique identifier.

It is recommended that systems use the OID scheme for external identifiers of their communicated objects. The extension
property is mainly provided to accommodate legacy a phanumeric identifier schemes.

Open Issue: the 3-2-4 grouping in U.S. social security numbers is pure decoration and has no meaning. Some
systems save space not storing the dashes and may not fill in the dashes when sending social security numbers.
This means, that equivalence of two identifiers may be weaker than the equivalence of the extensions as
character strings. For example, a system may has to consider the SSNs “123456789” and “123-45-6789" to be
equivalent. It is therefore recommended to strip off all decorating meaningless characters when comparing
extensions. However, what constitutes a meaningless character is entirely dependent upon the identifier scheme
identified in the root property. Since social security numbers are numeric strings, they could also be assigned to
the end of an OID. This specification will be more restrictive in the future to reduce the number of different cases.

5.2.2.2 root: OID

Theroot of an instance identifier guarantees the uniqueness of the identifier. The root alone may be
the entire unique identifier, an extension value is not needed.

DICOM objects are identified by OID only. For the purpose of DICOM/HL7 integration, it would be awkward if HL7 required
the extension to be mandatory and to consider the OID only as an assigning authority. Since OID values are simpler and do not

contain the risks of containing meaningless decoration, we do encourage systems to use ssimple OID identifiers as external
references to their objects.

In the presence of anon-null extension, the root is commonly interpreted as the “ assigning authority”,
that is, it is supposed that the root OID somehow refers to an organization that assigns identifiers sent
in the extension. However, the root does not have to be an organizational OID, it can aso be and OID
specifically registered for an identifier scheme.

invariant(ll x) where x.nonNull {
root. nonNul | ;

B

5.2.2.3 assigningAuthorityName : ST

This is a human readable name or mnemonic for the assigning authority. This nameis provided solely
for the convenience of unaided humansinterpreting an Il value. The assigning authority name need
not be unique or globally meaningful.

| Note: no automated processing must depend on the assigning authority name to be present in any form. |
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The assigning authority name is not the name for the individually identified object, but for the
namespace, that immediately contains that object identifier. Two casesexist. 1) If the extension
property is non-NULL, the root OID identifies the assigning authority, hence the assigning authority
name is a name or mnemonic for the entire root OID. 2) If the extension is NULL, the assigning
authority name is the name or mnemonic of the namespace property of the OID value.

5.2.2.4 validTime : IVL&TSA

Theidentifier isvalid in this optional time-range. By default, the identifier is valid indefinitely. Any
specific interval may be undefined on either side indicating unknown effective or expiry time.

Note: identifiers for information objects in computer systems should not have restricted valid times, but should be
globally unique at all times. The identifier valid time is provided mainly for real-world identifiers, whose
maintenance policy may include expiry (e.g., credit card numbers.)

The Il type conforms to the history item data type extension (Section 9.2f). This means that the data
types HXITdIfiand Il are the same.

5.2.25 type:CV

A codeidentifying the type of identifier. For example, codes to represent the US National Provider ID,
US National Payor ID, US Health Care ID, medical record number, social security number.

The purpose of these identifier types is to provide some guidance for use to applications. However, no complete
terminology of identifier types exists, and it is unlikely that it will ever exist (identifier “types” depend on the
information model, and local practices.) Most processing logic should depend on the assigning authority. For
example, to find a U.S. Social Security Number, one should look for the OID defined by HL7 for the U.S. Social
Security Administration.

Open Issue: This property needs a vocabulary domain, which is probably very hard to define. If this
property does not have a satisfactory reasonable value domain by summer of 2001, it will be deleted.

5.2.2.6 Equality

Two instance identifiers are equal if and only if their root and extension properties are equal .

invariant(ll x, y) where x.nonNull.and(y.nonNull) {
x. equal s(y) . equal s(x. root. equal s(y. root)

.and( x. ext ensi on. equal s(y. extension)));

5.3 Telecommunication Address (TEL)

A telecommunication addressis alocator for some resource UniversalResourceLocator : URL
(information or services) mediated by telecommunication scheme : CS

equipment. The semantics of atelecommunication addressis ~|address : ST

that a communication entity responds to that address (the :
responder.) and therefore can be contacted by a w

communication initiator.

use : SET<CS>
The responder of atelecommunication address may be an validTime : GTS
automatic service that can respond with information (e.g.,
FTPor HTTP services.) In such case atelecommunication equals(TEL) : BL

addressis areference to that information accessible through ~ Figure 7: Telecommunication Address
that address. A telecommunication address value can thusbe and URL data types.

resolved to some information (in the form of encoded data,

ED.)

The telecommunication address is an extension of the Universal Resource Locator (URL) that specifies
as an Internet standard RFC 1738 [http://www.isi.edu/in-notes/rfc1738.txt]. The URL specifiesthe
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protocol and the contact point defined by that protocol for the resource. Notable uses of the
telecommunication address data type is for telephone and telefax numbers, e-mail addresses, Hypertext
references, FTP references, etc.

5.3.1 Universal Resource Locator (URL)
This datatype is defined as an Internet standard RFC 1738 [ftp:/ftp.isi.edu/in-notes/rfc1738.txt].

Just as there are many different methods of access to resources, there are several schemes
for describing the location of such resources.

The generic syntax for URLs provides a framework for new schemes to be established
using protocols other than those defined in this document.

URLs are used to “locate” resources, by providing an abstract identification of the
resource location. Having located a resource, a system may perform avariety of
operations on the resource, as might be characterized by such words as “access’, “update”,
“replace”, “find attributes’. In general, only the “access’ method needs to be specified for
any URL scheme.

From RFC 1738

protected type Uni versal ResourcelLocator alias URL extends ANY {

Cs schene;
ST addr ess;
literal ST;

5.3.1.1 Literal Form

URL.literal ST {
URL : /[a-z0-9+.-]+/ “:" ST { $.schene. equal s($1);
$. addr ess. equal s($3); }

5.3.1.2 scheme: CS

The URL scheme identifies the protocol used to access the resource. URL schemes are registered by
the Internet Assigned Numbers Authority (IANA) [http://www.iana.org], however IANA only registers
URL schemes that are defined in Internet RFC documents. In fact there are anumber of URL schemes
defined outside RFC documents, part of which is registered at the World Wide Web Consortium
(W30C).

Similar to the MIME mediatypes, HL7 makes suggestions about URL schemes classifying them as
required, recommended, other, and deprecated. Any scheme not mentioned has status other.

Table 8: URL Schemes

Code Status Definition
tel required A voice telephone number [draft-antti-telephony-url-11.txt].
fax required A telephone number served by a fax device [draft-antti-telephony-url-11.txt].
mailto required Electronic mail address [RFC 2368].
http required Hypertext Transfer Protocol [RFC 2068].
ftp required The File Transfer Protocol (FTP) [RFC 1738].
file deprecated Host-specific local file names [RCF 1738]. Note that the file scheme works only for

local files. There is little use for exchanging local file names between systems, since
the receiving system likely will not be able to access the file.

telnet other Reference to interactive sessions [RFC 1738]. Some sites, (e.g., laboratories) have
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5.3.

5.3.

TTY based remote query sessions that can be accessed through telnet.
modem  other A telephone number served by a modem device [draft-antti-telephony-url-11.txt].

Note that this specification explicitly limitsitself to URLs. Universal Resource Names (URN) are not covered by this
specification. URNs are akind of identifier scheme for other than accessible resources. This specification is only concerned
with accessible resources, which belong into the URL category.

1.3 address: ST
The address is a character string whose format is entirely defined by the URL scheme.

1.4 Telephone and FAX addresses.

Note that there is no special datatype for telephone numbers, telephone numbers are telecommunication addresses and are
specified asaURL.

The telephone number URL is defined in the Internet RFC 2806 [http://www.isi.edu/in-
notes/rfc2806.txt] URLs for Telephone Calls. Its definition is summarized in this subsection. This
summary does not override or change any of the Internet specification’s rulings.

The voice telephone URLs begin with “t el : " and fax URLs begin with “f ax: ”

The address part of the URL contains the telephone number in accordance with the ITU-T
Recommendation E.123 Telephone Network and | SDN Operation, Numbering, Routing and Maobile
Service: Notation for National and International Telephone Numbers (1993.) While HL7 does not add
or withdraw from the URL specification, the preferred subset of the URL address syntax is given as
follows:

proctected type Tel ephoneURL restricts URL {
literal ST {
URL : /(tel)]|(fax)/ “:” address { $.schene.equal s($1);
$. addr ess. equal s($3); };

ST address : “+” phoneDigits

ST phoneDigits : digitO Separator phoneDigits | digitO Separator
ST digitOrSeparator : digit | separator;

ST digit : /[0..9]/;

ST separator : /[().-1/;

The global absolute telephone numbers starting with the “+” and country code are preferred. Separator
characters serve as decoration but have no bearing on the meaning of the telephone number. For
example: “t el : +13176307960” and “t el : +1(317) 630- 7960" are both the same telephone
number; “f ax: +49308101724" and “f ax: +49(30) 8101- 724" are both the same fax number.

5.3.2 Properties of Telecommunication Address

A given telecommunication address value may have limited validity through time and may be tagged
by a use code to indicate under what circumstances a specific telecommunication address may be
preferred among a set of alternatives.

type Tel ecomruni cati onAddress alias TEL extends URL {
GIS val i dTi ne;

SET&CSH use;
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BL equal s(TEL x);
};

5.3.2.1 validTime : GTS

This General Time Specification (GTS) identifies the periods of time during which the
telecommunication address can be used. For atelephone number, this can indicate the time of day in
which the party can be reached on that telephone. For aweb address, it may specify atimerangein
which the web content is promised to be available under the given address.

The TEL data type where validTime is constrained to a simple interval of time (IVL&T Sf) conformsto
the history item data type extension (Section 9.2f). Thus, HXITarELfiis asimplerestriction of TEL.
5.3.2.2 use: SET&Sh

The purpose of the use code is to advise a system or user which telecommunication address in a set of
like addresses to select for a given telecommunication need.

Table 9: Telecommunication Address Use Code

Concept Code Implies Definition

home H A communication address at a home, attempted contacts for
business purposes might intrude privacy and chances are one will
contact family or other household members instead of the person
one wishes to call. Typically used with urgent cases, or if no other
contacts are available.

primary home HP H The primary home, to reach a person after business hours.

vacation home HV H A vacation home, to reach a person while on vacation.

work place WP An office address. First choice for business related contacts during
business hours.

answering service AS An automated answering machine used for less urgent cases and if

the main purpose of contact is to leave a message or access an
automated announcement.

emergency contact EC A contact specifically designated to be used for emergencies. This
is the first choice in emergencies, independent of any other use
codes.

pager PG A paging device suitable to solicit a callback or to leave a very short
message.

mobile contact MC A telecommunication device that moves and stays with its owner.

May have characteristics of all other use codes, suitable for urgent
matters, not the first choice for routine business.

Note: the telecommunication use code is not a complete classification for equipment types or locations. Its main purposeisto
suggest or discourage the use of a particular telecommunication address. There are no easily defined rules that govern the
selection of atelecommunication address.

5.3.2.3 Equality

Two telecommunication address values are considered equal if both their URLs are equal. Use code
and valid time are excluded from the equality test.

invariant (TEL x, y) x.nonNull.and(y.nonNull) {
x. equal s(y) . equal s(((URL) x).equal s((URL)Yy));

5.4 Postal and Residential Address (AD)

The postal and residential address data type is used to communicate mailing and home or office
addresses. The main use of such dataisto alow printing mail labels (postal address), or to allow a
person to physicaly visit that address (residential address).
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head ST Figure 8: Data types for Person and Organization Names,
tail : ST and Postal and Residential Addresses are all extensions of a
IS & INhr character string. These data types are primarily interpreted

by humans and humans depend on certain form of
representing them. For example, Addresses are broken into

- - lines, where the fine structure of each line is often too
ersonNamePart : PNXP \

type : CS \ 1
qualifier : SET<CS> OrganizationName : ON number along a street is often not separated from the name

complex to track in information systems (e.g., a house

ty\’e :Cs of the street.) The structure of these data types allows an

1 ‘ “incremental markup” of the elements to a variable degree of
\ precision and conforming to different culturally defined styles

AllEEEPER e AREE of representing names and addresses.
LIST<PNXP> | [type : CS

PersonNameType : PN
LIST<ADXP>
formattted : ST

\
PostalAndResidentialAddress : AD

For example, a post box addressis a postal address but not aresidential address. Most residential addresses are also postal
addresses. The residential addressis not supposed to be a container for additional information that might be useful for finding
geographic locations (e.g., GPS coordinates) or for performing epidemiological studies. Only those parts of addresses that are
conventional for designating mailboxes or home or office addresses are part of the address data type.

The postal and residential address data type is essentially a sequence of address part values.

5.4.1 Address Part (ADXP)

An address part is essentially a character string that may have atype-tag signifying it’srole in the
address. Typical partsthat exist in about every address are street, house number, or post box, ZIP code,
city, country but other roles may be defined regionally, nationally, or on an enterprise level (e.g. in
military addresses). Addresses are usually broken up into lines, which isindicated by special line-
break tokens.

protected type AddressPart alias ADXP extends ST {
cs type;
iE

Addresses are conceptualized as text with added mark-up. The mark-up may break the address into lines and may describein
detail the role of each address part if it is known. Address parts occur in the address in the order in which they would be printed
onamailing label. The model issimilar to HTML or XML markup of text.

54.1.1 type :CS

The type of an address part indicates whether an address part is the ZIP code, city, country, post box,
etc. If thetypeisNULL the address part is unclassified and simply appears on the labdl asis.

Table 10: Address Part Type Code

Concept Code Definition
delimiter DEL Delimiters are printed without framing white space. If no value component is provided,
the delimiter appears as a line break.
country CNT Country

state or province  STA A sub-unit of a country with limited sovereignty in a federally organized country.
city CTY City

postal code ZIP A postal code designating a region defined by the postal service.

street name STR Street name or number.
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house number HNR  The number of a house or lot alongside the street. Also known as "primary street
number”, but does not number the street but the house.
direction DIR direction (e.g., N, S, W, E)

additional locator ~ ADL This can be a unit designator, such as apartment number, suite number, or floor.
There may be several unit designators in an address (e.qg., “3rd floor, Appt. 342".) This
can also be a designator pointing away from the location, rather than specifying a
smaller location within some larger one (e.g., Dutch "t.0." means "opposite to" for
house boats located across the street facing houses.)

post box POB A numbered box located in a post station.

5.4.2 Properties of Postal and Residential Addresses

Addresses are essentially a sequence of address parts, but adds a“use” code for information about
when and if the address can be used for a given purpose. The property “formatted” has a character
string value with the address formatted in lines and with proper spacing.

type Post al AndResi denti al Address alias AD extends LI STAADXPi {
GIS val i dTi ne;
SET&CSA use;

BL equal s(AD x) ;

ST formatted;
}s

Remember that semantic properties are bare of all control flow semantics. The property formatted could be implemented asa
“procedure” that would “return” the formatted address, but it would not usually be a variable to which one could assign a
formatted address. However, HL7 does not define applications but only the semantics of exchanged data values. Hence, the
semantic model abstracts from concepts like “procedure”, “return”, and “assignment” but speaks only of property and value.

5.4.2.1 validTime: GTS

This General Time Specification (GTS) identifies the periods of time during which the address can be
used. Typicaly, thisisused to refer to different addresses for different times of the year or to refer to
historical addresses.

The AD data type where validTime is constrained to a ssmple interval of time (IVL&r Sf) conformsto
the history item data type extension (Section 9.2f). Thus, HXIT@ADfiis asimplerestriction of AD.

5.4.2.2 use:SET&Si
The address use code is a set of indicators what a given address isto be used for:
Table 11: Address Use Code

Concept Code Implies Definition
residential address RES Used primarily to visit an address.
postal address PST Used to send mail.
temporary address TMP A temporary address, may be good for visit or mailing. Note that an address
history can provide more detailed information.
bad address BAD A flag indicating that the address is bad, in fact, useless.
home H A private (home) address.
primary home HP H The primary home.
vacation home HV H A vacation home, to reach a person while on vacation.
work place WP An office address.

An address without specific use code might be a default address useful for any purpose, but an address
with a specific use code would be preferred for that respective purpose.
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5.4.2.3 Equality

Two address values are considered equal if both their address part lists are equal. Use code and valid
time are excluded from the equality test.

invariant (TEL x, y) x.nonNull.and(y.nonNull) {
x. equal s(y) . equal s(( (LI STAADXP) x) . equal s( (LI STAADXPH y) ) ;

5.4.2.4 Formatting Addresses

This address data type' s main purpose is to capture postal and residential addresses so that one can visit
that address or send mail to it. Humans will look at addresses in printed form, such ason amailing
label. The address data type defines precise rules of how its data is formatted.

Addresses are ordered lists of address parts. Each address part is printed in the order of the list from
left to right and top to bottom (or in any other language-specific reading direction.) Every address part
valueisprinted. Most address parts are framed by whitespace. The following six rules govern the
setting of whitespace.

1. Whitespace never accumulates, i.e. two subsequent spaces are the same as one. Subseguent line
breaks can be reduced to one. White space around a line break is not significant.

2. Literals may contain explicit white space, subject to the same white space reduction rules. Thereis
no notion of aliteral line break within the text of a single address part.

3. Leading and trailing explicit whitespace isinsignificant in all address parts, except for delimiter
(DEL) address parts.

4. By default, an address part is surrounded by implicit white space.
5. Delimiter (DEL) address parts are not surrounded by any implicit white space.
6. Leading and trailing explicit whitespaceis significant in delimiter (DEL) address parts.

This means that all address parts are generally surrounded by white space, but white space does never
accumulate. Delimiters are never surrounded by implicit white space and every whitespace
contributed by preceding or succeeding address partsis discarded, whether it was implicit or explicit.

Examples. The following shows examples of addressesin an XML encoded form, where the XML tag is the address part role
and the data content is the address part value. The use of XML in these examples does not preempt any XML implementation
technology specification, it is solely for the purpose of this example.

1050 Wishard Blvd. RG 5" floor,
Indianapoli, IN 46240.

has the following two valid encodings

8D pur pose="RES"fi
4| TAL050 Wshard Blvd, RG 5th fl oord LI TRDEL/ fi
4.1 TA ndi anapol i s, | N 4624041 TA

& ADA

8D pur pose="RES"fi
&STRALO50 W shard Bl vdd STRBADLARG 5t h f | oor & ADLFBDEL/ fi
&TYA ndi anapol i s& CTYFESTAA N& STAZI Piv62404 ZI Pii

& ADA

8D pur pose=" RES" i
&HNRFL0504 HNRFESTRAW shar d Bl vdd STRABADLARG 5t h | oor & ADLFEDEL/ fi
&TYA ndi anapol i s CTYFESTAA N& STABZI Pii62404 ZI Pi
d ADR
the second encoding in this example is more specific about the role of the address parts than the first one. The first form would

result from a system that only stores addresses asline 1, line 2, etc. The second form isthe typical form seeninthe U.S,, where
street address i s sometimes separated, and city, state and ZIP code are always separated. However, in the U.S. the house number
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isnot usually separated from the street address, where in Germany many systems keep house number as separate fields (third
example)

This example shows the strength of the mark-up approach to addresses. A typical German system that stores house number and
street name in separate fields would print the address with street name first followed by the house number. For U.S. addresses,
thiswould be wrong as the house number in the U.S. is written before the street name. The marked-up address allows keeping
the natural order of address parts and still understanding their role.

5.5 Person Name (PN)

A person name data val ue specifies one full name of a person. A name such as*“Jim Bob Walton, Jr.”
is one instance of the person name type (PN). The parts of thisname “Jim”, “Bob”, “Walton”, and
“Jr.” are person name parts (PNXP). A person nameissimply alist of person name parts.

5.5.1 Person Name Part (PNXP)

Person names are sequences of character string tokens that may have atag signifying the role of the
token. Typical name parts that exist in about every name are given names, and family names, other
part types may be defined culturally.

protected type PersonNanePart alias PNXP extends ST {
cs type;
SET&CShH qualifier;

i

5.5.1.1 type:CS

A person name name part has atype, such as given name vs. family name and name of public records
vs. nickname. The type code may not be available for unknown person names.

Example: would you know what is the given name and whét is the family name in “Rogan Sulma’?

Table 12: Name Part Type

Name Code Definition
family FAM Family name, this is the name that links to the genealogy. In some cultures (e.g. Eritrea) the
family name of a son is the first name of his father.
given GIV Given name (don't call it "first name" since this given names do not always come first)
MID
prefix PFX A prefix has a strong association to the immediately following name part. A prefix has no

implicit trailing white space (it has implicit leading white space though). Note that prefixes
can be inverted.

suffix SFX A suffix has a strong association to the immediately preceding name part. A prefix has no
implicit leading white space (it has implicit trailing white space though). Suffices can not be
inverted.

delimiter DEL A delimiter has no meaning other than being literally printed in this name representation. A

delimiter has no implicit leading and trailing white space.

5.5.1.2 qualifier : SET &Si

The qualifier is a set of codes each of which specifies a certain subcategory of the name part in
addition to the main name part type. For example, a given name may be flagged as a nickname, a
family name may be a pseudonym or a name of public records

Table 13: Name Part Qualifier

Name Code Definition
Name change classifiers describe how a name part came about. More than one value allowed.
birth BR A name that a person had shortly after being born. Usually for family names but may be used

to mark given names at birth that may have changed later.

unmarried MD A name that a person (either sex) had immediately before her/his first marriage. Usually
called "maiden name", this concept of maiden name is only for compatibility with cultures that
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5.5.

keep up this traditional concept. In most cases maiden name is equal to birth name. If there
are adoption or deed polls before first marriage the maiden name should specify the last
family name a person acquired before giving it up again through marriage.

chosen CH A name that a person assumed because of free choice. Most systems may not track this, but
some might. Subsumed in the concept of "chosen" are pseudonym (alias), and deed poll.
The difference in civil dignity of the name part is given through the R classifier below. l.e. a
deed poll creates a chosen name of record, whereas a pseudonym creates a name not noted
in civil records.

adoption AD A name that a person took on because of being adopted. Adoptions may happen for adults
too and may happen after marriage. Whether adoption name or the birth name is considered
the "maiden” name is not fully defined and may, as always, simple depend on the discretion
of the person or a data entry clerk.

spouse SP The name assumed from the partner in a marital relationship (hence the "M). Usually the

spouse's family name. Note that no inference about gender can be made from the existence
of spouse names.

Affix types. Usually only one value per affix.

voorvoegsel VV A Dutch "voorvoegsel" is something like "van" or "de" that might have indicated nobility in the
past but no longer so. Similar prefixes exist in other languages such es Spanish, French or
Portugese.

academic AC Indicates that a prefix like “Dr.” or a suffix like “M.D.” or “Ph.D.” is an academic title.

professional PR Primarily in the British Imperial culture people tend to have an abbreviation of their
professional organization as part of their credential suffices.

nobility NB In Europe and Asia, there are still people with nobility titles (aristocrats.) German "von" is
generally a nobility title, not a mere voorvoegsel. Others are "Earl of" or "His Majesty King
of..." etc. Rarely used nowadays, but some systems do keep track of this.

Additional qualifiers. More than one value allowed.

nick NK Indicates that the name part is a nickname. Not explicitly used for prefixes and suffixes,
since those inherit this flag from their associated significant name parts. Note that most
nicknames are given names although it is not required.

callme CL A callme name is (usually a given name) that is preferred when a person is directly
addressed.
record RE This flag indicates that the name part is known in some official record. Usually the antonym

of nickname. Note that the name purpose code "license" applies to all name parts or a name,
whereas this code applies only to name name part.

initial IN Indicates that a name part is just an initial. Initials do not imply a trailing period since this
would not work with non-Latin scripts. Initials may consist of more than one letter, e.g., "Ph."
could stand for "Philippe" or "Th." for "Thomas".

weak WK Used only for prefixes and suffixes (affixes). A weak affix has a weaker association to its
main name part than a genuine (strong) affix. Weak prefixes are not normally inverted.
When a weak affix and a strong affix occur together, the strong affix is closer to its
associated main name part than the weak affix.

invisible HD Indicates that a name part is not normally shown. For instance, traditional maiden names are
not normally shown. "Middle names" may be invisible too.

Note: a person may have multiple names as defined through the RIM class Person_name, which is outside the

scope of this specification.

2 Properties of Person Name

Person names have no additional properties that add information to the sequence of person name parts.
The property “formatted” has a character string value with the formatted person name.

Remember that semantic properties are bare of all control flow semantics. The property formatted could be implemented as a
“procedure” that would “return” the formatted name. It would not usually be implemented as a variable to which one could
assign aformatted person name. However, HL7 does not define applications but only the semantics of exchanged data values.
Hence, the semantic model abstracts from concepts like “procedure”, “return”, and “assignment” but speaks only of property
and value.

type PersonNaneType alias PN extends LI ST&PNXPi {
ST formatt ed;
i
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5.5.2.1 Formatting Person Names

The person name data type' s main purpose is to capture names so that one can understand the parts and
render them correctly on labels, and addresses. Humans will look at namesin printed form, such ason
amailing label. This person name data type therefore defines precise rules of how itsdatais
formatted.

Person names are ordered lists of person name parts. Each person name part is printed in the order of
the list from left to right (or in any other language-specific reading direction.) Every person name part
(except for those marked “invisible”) is printed. Most person name parts are framed by whitespace.
The following six rules govern the setting of whitespace.

1.  White space never accumulates, i.e. two subsequent spaces are the same as one.
2. Literals may contain explicit white space subject to the same white space reduction rules.

3. Except for prefix, suffix and delimiter name parts, every name part is surrounded by implicit white
space. Leading and trailing explicit whitespace isinsignificant in al those name parts.

4. Delimiter name parts are not surrounded by any implicit white space. Leading and trailing explicit
whitespace is significant in in delimiter name parts.

5. Prefix name parts only have implicit leading white space but no implicit trailing white space.
Trailing explicit whitespace is significant in prefix name parts.

6. Suffix name parts only have implicit trailing white space but no implicit leading white space.
Leading explicit whitespace is significant in suffix name parts.

This means that all person name parts are generally surrounded by whitespace, but whitespace does
never accumulate. Delimiters are never surrounded by implicit white space, prefixes are not followed
by implicit white space and suffixes are not preceded by implicit white space. Every whitespace
contributed by preceding or succeeding nhame parts around those special name parts is discarded,
whether it was implicit or explicit.

Examples. The following shows examples of person namesin an XML encoded form, where the XML tag is the person name

part type and the data content is the person name part value. The use of XML in these examples does not preempt any XML
implementation technology specification, it is solely for the purpose of this example.

A very simple encoding of “John W. Doe” would be:
&NA
& Vilohnd G Vi
& Viw 4 G VA
&AMDoed FAMI
4 PN
none of the special qualifiers need to be mentioned if they are not known. The next example shows extensive use of multiple
given names, prefixes, suffixes, for academic degrees, nobility titles, vorvoegsels (“van”), and professional designations.

PN
PFX E“AC' fDr. phil. & PFXf
&3 ViRegi nad A Vigd Vilohannad A Vigd Vivar i ad G Vi
FX O=“NB"fizr af i n_& PFXFEPFX Q=“ W' fvon_& PFXA
&AM Q=" MD’ iHochhei md FAMEDEL f+ & DELBFAM Q=" SP” i | enf el s& FAMR
&SFX E“PR WK’ iINCFSA4 SFXf
& PN

5.6 Organization Name (ON)

A name for an organization, such as“Health Level Seven, Inc." An organization nameis essentialy a
character string, extended with atag that indicates what kind of organization nameit is.

type Organi zati onNane alias ON extends ST {
OS] type;
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5.6.1.1 type:CS
Thisis acode identifying the style of the organization name.

Table 14: Organization Name Type

Concept Code Definition
Legal L The full legal name of the organization as used in public records.
Alias A An alias, typically a shorter name than the legal name. This is the default..
Stock exchange ST A stock market ticker symbol.
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6 QUANTITIES

Ratio

numerator : QTY
denominator : QTY

PointInTime : TS

<<type>> diff : PQ ~ 1s
offset : diff

calendar : CS

precision : INT

equals(TS) : BL

1.0 \/
VAR 1

Quantity : QTY
<<type>> diff : QTY
isZero : BL

lessOrEqual(QTY) : BL
lessThan(QTY) : BL
greaterOrEqual(QTY) : BL
greaterThan(QTY) : BL
compares(QTY) : BL
minus(QTY) : diff

plus(diff) : TS
minus(TS) : diff

plus(diff) : QTY

Integer : INT

<<type>> diff : INT
successor : INT
predecessor : INT
negated : INT
isNegative : BL
nonNegative : BL
timesTen : INT

Real : REAL

PhysicalQuantity : PQ

<<type>> diff : REAL

<<type>> diff : PQ

minus(INT) : diff
plus(diff) : INT
times(INT) : INT

negated : REAL value : REAL
inverted : REAL unit : CV
precision : INT canonical : PQ
timesTen : REAL negated : PQ
tenths : REAL inverted : PQ
plus(diff) : REAL

minus(REAL) : diff
times(REAL) : REAL
power(REAL) : REAL

6.1 Quantity (QTY)

The quantity data type is an abstract generalization for all data types (1) whose value set has an order
relation (less-or-equal, £) and (2) where difference is defined in al of the data type’ stotally ordered

value subsets.

equals(PQ) : BL
compares(PQ) : BL
minus(PQ) : PQ
plus(PQ) : PQ
times(PQ) : PQ
times(REAL) : PQ
power(INT) : PQ

_—

MonetaryAmount : MO

<<type>> diff : MO
value : REAL
currency : CV
negated : MO

minus(MO) : diff
plus(diff) : MO
times(REAL) : MO

Figure 9: Data types for quantities.

The quantity type abstraction is needed in defining certain other types, such as the interval and the probability distribution.

type

BL
BL

qQry
diff
qQry
BL

BL
BL
BL

abstract type Quantity alias QIY extends ANY {

| essOr Equal (QTY X);
conpar es(QTY x);

diff;

m nus(QTY Xx);
plus(diff x);
i sZero;

| essThan(QTY x);
greater O Equal (QTY Xx);
gr eat er Than( QTY x);
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6.1.1.1 Ordering

An ordered set is a set with an order relation (e.g., less-or-equal, £). An order relation is asymmetric
and transitive.

A totally ordered set is an ordered set where all pairs of elements have a defined order (e.g., the integer
and real numbers are totally ordered.)

A partially ordered set is an ordered set where not all pairs of elements are comparabl e through the
order relation (e.g., atree structure or the set of physical quantitiesis apartially ordered set.) Two data
values x and y of an ordered type are comparable (x.compares(y)) if the less-or-equal relation holdsin
either way (xEyory £ X).

A partia order relation generates totally ordered subsets whose union is the entire set (e.g., the set of
al length is atotally ordered subset of the set of all physical quantities.)

For example, atree structure is partially ordered, where the root is considered less or equal to aleaf, but there may not be an
order among the leafs. Also, physical quantities are partially ordered, since an order exists only among quantities of the same
dimension (e.g., between two lengths, but not between alength and atime.) A totally ordered subset of atreeis a path that
transitively connects aleaf to theroot. The physical dimension of timeisatotally ordered subset of physical quantities.

invariant (QTY x, y, 2)
where x.nonNull.and(y.nonNull).and(z.nonNull) {

x. | essO Equal (x); /* reflexive */

x. | essOr Equal (y) /* asymetric */
.inmplies(y.lessOEqual (x)).not();

X. |l essO Equal (y).and(y. | essO Equal (z)) /* transitive */
.implies(x.lessO Equal (2))

x. | essThan(y) . equal s(x. | essO Equal (y).and(x. equal s(y).not));

X. great er O Equal (y) . equal s(y. | essO Equal (x));

X. great er Than(y) . equal s(y. | essThan(x));

x. conpares(y) . equal s(x.lessO Equal (y).or(y.|essO Equal (x)));

6.1.1.2 Difference

A differenceis defined in an ordered set if it is semantically meaningful to state that D is the difference
between the values x and y. That difference D must be meaningful independently from the values x and
y. Thisindependence exists if one can meaningfully derive a value v given another value u such that D
would also be the difference between u and v. The judgement for what is meaningful can not be
defined formally.

The quantity data type abstraction corresponds to the notion of difference scalesin contrast to ordinal scales and ratio scales
(Guttman and Stevens). A datatype with only the order requirement but not the difference requirement would be an ordinal.

Ordinals are not currently defined with a special datatype. Instead, ordinals are usually coded values, where the underlying code
system specifies ordinal semantics. Thisordinal semantics, however, is not reflected in the HL7 data type semantics at thistime.

The diff-property is a data type that can express the difference between two values for which the
ordering relation is defined (i.e., two elements of a common totally ordered subset.)

For example, the difference data type of integer number is integer number, but the difference type of point in timeisaphysical
quantity in the dimension of time. A difference datatypeisatotally ordered datatype.

The difference between two values x minus y must be defined for all x and y in acommon totally
ordered subset of the datatype’ s value set. Zero isthe difference between avalue and itself.
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invariant (QIY x, y) where x.conpares(y) {
X. m nus(y).nonNul I ;
X. m nus(x).isZero;
X. plus(y. m nus(x)).equal s(y);

B

6.2 Integer Number (INT)

Integer numbers are precise numbers that are results of counting and enumerating. Integer numbers are
discrete, the set of integersisinfinite but countable. No arbitrary limit isimposed on the range of
integer numbers. Two exceptional values are defined for the positive and negative infinity.

type I ntegerNunmber alias INT extends QIY {
| NT successor;
| NT pr edecessor ;
type I NT di ff;
diff m nus( | NT x);
I NT plus(diff x);
| NT negat ed;
BL i sNegati ve;
BL nonNegat i ve;
I NT times(INT x);
I NT ti mesTen();
literal ST;
pronoti on REAL;
Ji

6.2.1.1 Algebraic Operations

Since the integer number data type includes all of the semantics of the mathematical integer number
concept, the basic operations plus (addition) and times (multiplication) are defined.

The semantics of integer numbers can be defined by complete induction using only the value zero and the primitive operations
successor (successor) and predecessor (predecessor). These operations are defined here as characterizing operationsin the sense
of 1SO 11404, and because these operations are needed in other parts of this specifications, namely the semantics of the literal
forms. The operation timesTen is a primitive needed for the definition of the literal form, since the concept of 10 must be
defined before the semantics of the literal form “10” can be defined.

invariant (INT x, y) where x.nonNull.and(y.nonNull) {
X. successor. great er Than(x) ;
y. great er Than(x).and(y. | essThan(x. successor)). not;

X. successor. predecessor . equal s(x);
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x

.plus(0). equal s(x);
y. gr eat er Than( 0)
.implies(x.plus(y).equals(x.plus(y.predecessor).successor);

y.l essThan(0).inplies(x.plus(y).equal s(x.plus(y.successor).predecessor);

x. pl us(x. negat ed) . i sZer o;

Xx. m nus(y). equal s(x.plus(y.negated));
x. nonNegat i ve. equal s(0. | essO Equal (x));
x. nonNegat i ve. equal s(x. i sNegati ve. not);
x.times(0). equal s(0);
x.times(1). equal s(x);

x.times(-1).equal s(x.negated);

y. great er Than(1)

.implies(x.times(y).equal s(x.times(y.predecessor).plus(x)));

y.lessThan(-1).inplies(x.times(y).equal s(x.times(y.negated).negated));

x.tinmesTen. equal s(x.tines(10));

B

6.2.1.2 Literal Form
The literal form of aninteger is asimple decima number, i.e. astring of decimal digits.

INT.literal ST {
INT : uint { $.equal s($1); }
| “+” uint { $.equals($2); }
| “-" uint { $.equal s($2. negated); };
INT uint : digit { $.equal s($1); }
| nunber digit { $.equal s($1.tinmesTen().plus($2)); };
INT digit : "O" { $.isZero; }
| "1 { $.equal s(0.successor); }
| "2" { $.equal s(1.successor); }
| "8" { $.equal s(7.successor); }
| "9" { $.equal s(8.successor); };
}

6.3 Real Number (REAL)

Mathematically, real numbers are the superset of integer numbers, rational numbers, and irrational
numbers. Real numbers are needed beyond integers whenever quantities of the real world are
measured, estimated, or computed from other real numbers.
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Note: This specification defines the real number data type in the broadest sense possible. However, it does not
imply that any conforming ITS or implementation must be able to represent the full range of Real numbers, which
would not be possible in any finite implementation. HL7’s current use cases for the Real number data type are
measured and estimated quantities and monetary amounts. These use cases can be handled with a restricted
Real value space, rational numbers, and even just very limited decimals (scaled integers.) However, we declare
the representations of the real value space as floating points, rationals, scaled integers, or digit strings) and their
limitations to be out of the scope of this specification.

This specification offers two choices for anumber datatype. The choice is made as follows: Any number attributeisareal if it
isnot known for surethat it isan integer. A number isan integer if it is always counted, typically representing an ordinal
number. If there are conceivable use cases where such a number would be estimated or averaged, it is not always an integer and
thus should be using the Real datatype.

type Real Nunber alias REAL extends QTY {
type REAL di ff;
di ff m nus( REAL Xx);
REAL plus(diff x);
REAL negat ed;
REAL ti mes(REAL Xx);
REAL i nverted;
REAL ti mesTen;
REAL t ent hs;
REAL power ( REAL Xx);
literal ST;
I NT pr eci si on;
denotion | NT;
pronmotion PQ
pronotion RTQ
i

6.3.1.1 precision : INT

The precision property indicates the quality of the approximation of adecimal real number
representation. Precision isthe number of significant decimal digitsin that decimal representation.
The precision attribute is the precision of a decimal digit representation, not the precision or accuracy
of the real number value. Precision does not play arolein deciding whether two real number values
are equal.

The purpose of the precision property for the real number datatypeisto faithfully capture the whole
information presented to humans in a number. The amount of decimal digits shown conveys
information about the uncertainty (i.e., precision and accuracy) of a measured value.

Note: the precision of the representation is independent from uncertainty (precision accuracy) of a measurement
result. If the uncertainty of a measurement result is important, one should send uncertain values as defined in
Section 10.4.

Therulesfor what digits are significant are as follows:
1. All non-zero digits are significant.
2. All zeroesto theright of asignificant digit are significant.
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3. When dl digitsin the number are zero the zero-digit immediately left to the decimal point is
significant (and because of rule 2, all following zeroes are thus significant too.)

Note, these rules of significance differ slightly from the more casual rules taught in school. Notably
trailing zeroes before the decimal point are consistently regarded significant here. Elsewhere, e.g., 2000
is ambiguous as to whether the zeroes are significant. This deviation from the common custom is
warranted for the purpose of unambiguous communication.

Examples:

2000 has 4 significant digits.
2e3 has 1 significant digit, used if one would naturally say "2000" but precision isonly 1.
0.001 has 1 significant digits.
le-3 has 1 significant digit, use thisif one would naturally say “0.001” but precisionisonly 1.
0 has 1 significant digit.
0.0 has 2 significant digits.

000.0 has 2 significant digits.

0.00 has 3 significant digits.
4.10 has 3 significant digits.
4,09 has 3 significant digits.
41 has 2 significant digits.

The precision of the representation should match the uncertainty of the value. However, precision of
the representation and uncertainty of the value are separate independent concepts. Refer to Section
10.4 for details about uncertain real numbers.

For example “0.123" has 3 significant digitsin the representation, but the uncertainty of the value may be in any digit shown or
not shown, i.e., the uncertainty may be 0.123+0.0005, 0.123+0.005 or 0.123+0.00005, etc. Note that external representations
should adjust their representational precision with the uncertainty of the value. However, since the precision in the digit string is
granular to +0.5 the least significant digit, while uncertainty may be anywhere between thisraster, 0.123+0.005 would also be an
adequate representation for the value between 0.118 and 0.128.

ITS Note: on a character based Implementation Technology the ITS need not represent the precision as an explicit
attribute if numbers are represented as decimal digit strings. In that case, the ITS must abide by the rules of an
unambiguous determination of significant digits. A number representation must not produce more or less
significant digits than were originally in that number. Conformance can be tested through round-trip encoding —

6.3.1.2 Algebraic Operations

Since the real number data type includes all of the semantics of the mathematical real number concept,
the basic operations plus (addition), times (multiplication) and power (exponentiation) are defined.

These operations are defined here as characterizing operations in the sense of 1SO 11404, and because these operations are
needed in other parts of this specifications, namely the semantics of the literal forms. The operations timesTen and times
oneTenth are primitives needed for the definition of the literal form, since the concept of 10 (0.1) must be defined before the
semantics of the literal form “10” (“0.1") can be defined. Unlike the integer numbers, the real numbers semanticsis not
inductively defined.

i nvari ant (REAL x, Yy, 2)
where x.nonNull.and(y. nonNumm . andz. nonNul ') {

X. pl us(0). equal s(x) /* neutral elenent */
X. pl us(x. negat ed) . equal s(0) /* inverse el enent */
x. plus(y).plus(z).equal s(x.plus(y.plus(z))); /* associ ative */
X. plus(y).equal s(y. pl us(x)) /* commut ative */
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x.times(0). equal s(0);

x.times(1). equal s(x); /* neutral elenent */

x.times(x.inverted).equal s(1) /* inverse el enent */

O.inverted.isNull; /* ...except for zero */

x.tinmes(y).times(z).equal s(x.times(y.tinmes(z)));/* associative */

x.times(y).equal s(y.times(x)); /* commut ative */

x.times(y.plus(z)) /* distributive */
.equal s(x.tinmes(y).plus(x.tines(z));

x.tinmesTen. equal s(x.tines(10));

x

.tinmesTen. tent hs. equal s(x);

. pover (0). equal s(1);

. pover (1) . equal s(x);

. power (y). power (z) . equal s(x. power (y.times(z)));

. power (y).times(x.power(z)).equal s(x.power(y.plus(z)));

. pover (y).inverted. equal s(x. power (y. negat ed)) ;

X X X X X X

. pover (y). power (y.inverted). equal s(x);

B

6.3.1.3 Literal Form

The syntax and semantics of real number literalsis defined below. In summary, areal number is
represented in decimal form with optional + or - sign, and optional decimal point, and optional
exponential notation using a case insensitive “e” between the mantissa and the exponent. The number
of significant digits must conform to the precision property.

REAL. literal ST {
REAL : mantissa { $.equal s($1); }
| mantissa /[eE]/ INT { $.equal s($1
.ti mes(10. power ($3)); };
REAL manti ssa
/0*] O { $.isZero; $.precision.equals(l); }
| 70%/ “.” [O*/ { $.isZero; $.precision.equals(
$3. 1 engt h. successor); }
| /70%/ “.” [0*/ fractional { $.equal s($4);
$. preci si on. equal s($4. precision); }
| integer { $.equals($1); }
| integer “.” fractional { $.equal s($1. plus($2));
$. preci si on. equal s($1. preci sion
.plus($3. precision)); };
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REAL i nt eger
ui nt val { $.equal s($2); }
| “+” uintval { $.equal s($1.tinmes($2)); }
| “-" uintval { $.equal s($1.tinmes($2).negated); };
REAL uintval : /0*/ uint { $.equal s(%$2); };
REAL uint : digit { $.equal s($1);
$. preci si on. equal s(1); }
| uint digit { $. equal s($1.tinesTen. plus(%$2));
$. preci si on. equal s(

$1. preci si on. successor; };

REAL fracti onal

digit { $.equal s($1.tenths);
$. preci si on. equal s(1); }
| digit fractional { $.equal s($1.plus($2.tenths));
$. preci si on. equal s(
$1. preci si on. successor); };
INT digit : /[0-9]/ { $.equal s($1); }

}s

Examples of red literals are for two-thousand are 2000, 2000., 2e3, 2. 0e+3, +2. Oe+3.

Note that the literal form does not carry type information. For example, “2000” is avalid representation of both areal number
and an integer number. No trailing decimal point is used to disambiguate from integer numbers. An ITS that uses this literal
form must recover the type information from other sources.

6.4 Ratio (RTO)

A ratio quantity is a quantity constructed through division of a numerator quantity with a denominator
quantity. Ratios are different from rational numbers, i.e., in ratios common factors in the numerator
and denominator never cancel out. A ratio of two real or integer numbers is not automatically reduced
to area number.

The purpose of the ratio data type is to support certain quantities produced by |aboratories, such as
titers (e.g., “1:128"). Ratios are not simply “structured numerics’, blood pressure measurements (e.g.
atios.

Note: This data type is not defined to generally represent rational numbers. In this Ratio data type, it is not correct
to cancel out common factors in numerator and denominator.

type Ratio alias RTO extends QTY {
Qry numer at or;

Qry denom nat or ;

denmoti on REAL;
denotion PQ

}s
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6.4.1.1 numerator (QTY)
Thisisthe numerator quantity. The default is the integer number 1 (one.)

6.4.1.2 denominator (QTY)

Thisisthe denominator quantity. The default is the integer number 1 (one.) The denominator must
not be zero.

i nvari ant (RTO x) where x.nonNul | {
X. denom nator.isZero().not();

B

6.4.1.3 Literal Form

The syntax and semantics of ratio literals is defined below. In summary, aratio literal form exists for
all ratios where both numerator and denominators have literal forms. A ratio is simply the numerator
literal a colon as separator followed by the denominator literal. When the colon and denominator are
missing adenominator INT 1 is assumed.

RTO. literal ST {

RTO : QrYy { $. nunerator.equal s($1);
$. denom nat or. equal s((INT)1); };
| Qry «.” Qry { $. nunerator.equal s($1);

$. denomi nat or . equal s($3); };

B

6.5 Physical Quantity (PQ)

A physical quantity is a dimensioned quantity expressing the result of a measurement act.

type Physical Quantity alias PQ extends QTY {
REAL val ue;
CSs unit;
BL equal s(PQ x)
BL | essOr Equal (PQ x) ;
BL conpar es( PQ x);
PQ canoni cal ;

type PQ di ff

diff m nus( PQ x) ;
PQ plus(diff x);
PQ negat ed;
PQ ti mes(REAL Xx);
PQ ti mes(PQ x);
PQ i nverted;
PQ power (I NT x);
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literal ST;
denoti on REAL;

}s

6.5.1.1 value: REAL
Thisis the magnitude of the quantity measured in terms of the unit.

6.5.1.2 wunit: CS

Thisisthe unit of measure. The unit of measure must be specified in the Unified Code for Units of
Measure (UCUM) [http://aurora.rg.iupui.edu/UCUM].

Note that equality of physical quantity does not require the values and units to be equal independently. Value and
unit is only how we represent physical quantities. For example, 1 m equals 100 cm. Although the units are
different and the values are different, the physical quantities are equal! Therefore one should never expect a
particular unit for a physical quantity but instead provide automated conversion between different comparable
units.

6.5.1.3 Equality, Ordering and the Canonical Form

Physical quantities semantically are the results of measurement acts. Although physical quantities are represented as pairs of
value and unit, semantically, a physical quantity is more than that. To find out whether two physical quantities are equdl, it is not
enough to compare equality of their two values and unitsindependently. For example, semantically 100 cm equals 1 m athough
neither values nor units are equal. To define equality we introduce the notion of a canonical form.

Every physical quantity has a canonical form. The canonical formisaphysical quantity expressed as a
pair of value and unit such that each dimension in a given unit system has one and only one canonical
value-unit pair. Defining the canonical form is not subject of this specification, only asserting that

such acanonical form exists for every physical quantity. A physical quantity is equal to its canonical
form.

For example, for a unit system based on the Systéme International (Sl) one can define the canonical form as (a) the product of
only the base units; (b) without prefixes; where (c) only multiplication and exponents are used (no division operation); and (d)
where the seven base units appear in a defined ordering (e.g., m, s, g...) Thus, 1 mm Hg would be expressed as

133322 m*s2g. Ascan be seen, the rules how to build the canonical form of units may be quite complex. However, for the

semantic specification it doesn’t matter how the canonical form is built, nor what specific canonical form is chosen, only that
some canonical form could be defined.

Two physical quantities are equal if each their values and their units of their canonical forms are equal.

Two physical quantities compare each other (and have an ordering and difference) if the units of their
canonical forms are equal.

invariant (PQ x, y) where x.nonNull.and(y.nonNull) {
X. canoni cal . equal s(x);
x. equal s(y).inplies(x.compares(y));

x. equal s(y) . equal s(x. canoni cal . val ue. equal s(y. canoni cal . val ue)

.and(x. canoni cal . uni t. equal s(y. canoni cal .unit)));

x. conpar es(y) . equal s(x. canoni cal . unit. equal s(y. canoni cal .unit));

}s

6.5.1.4 Algebraic Operations

Algebraic operations are defined for physical quantities because they are characterizing operations in the sense of 1SO 11404 and
because this specification makes use of them when defining the literal form.
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Any two physical quantities can be multiplied. The quotient of two comparable quantitiesis
comparable to the unity (the unit 1).

invariant (PQ x, vy, z)

where x.nonNull.and(y.nonNull).and(z.nonNull) {

X.conpares(y).inplies(x.tinmes(y.inverted).conpares(1));
x.tinmes(1l).equal s(x); /* neutral el enent */
x.tinmes(x.inverted).equal s(1); /* inverse el enent */
x.tinmes(y).times(z).equal s(x.tinmes(y.times(z)));/* associative */
x.tinmes(y).equal s(y.tines(x)); /* commut ative */

H

A physical quantity can be multiplied with areal number to form a scaled quantity. A scaled quantity
iscomparable to its original quantity. If two quantities Q, and Q, compare each other, there existsa
real number r suchthatr 1= Q. / Q..

i nvariant (PQ x, y; REAL r)
where x.nonNull.and(y.nonNull).and(r.nonNull) {
x.tinmes(r).val ue. equal s(x.val ue.tinmes(r));
X.tinmes(r).conpares(x);

H

A physical quantity Q that compares the unity (i.e. the unit 1) can be converted to areal number r such
thatr 1= Q.

i nvari ant (PQ x) where x.nonNull.and(x.conpares(unity) ({
unity. times((REAL)x) . equal s(x));
b

A physical quantity can be raised to an integer power.

invariant (PQ x; INT n) where x.nonNul |l {
x. power (0) . equal s(1);
n. great er Than(0) . i npl i es(
X. power (n) . equal s(x.ti nmes(x. power (n. predecessor))));
n. | essThan(0).i nmpli es(

X. power (n) . equal s(x. power (n. negat ed) . i nverted);

Two physical quantities that compare each other can be added.

invariant (PQ x, vy, 2)

where x.conpares(y).and(y.conpares(z)) {

x. plus(y).plus(z).equal s(x.plus(y.plus(z))); /* associ ative */
X.plus(x.times(0)).equal s(x) /* neutral elem */
X. pl us(x. negat ed) . equal s(x.tinmes(0)) /* inverse elem */
X. plus(y).equal s(y. pl us(x)) /* commut ative */
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forall (PQw wth w nonNull {
w. tinmes(x.plus(y)) /* distributive */

.equal s(w. times(x).plus(w.times(y)));

forall (REAL r) where r.nonNull {
X.plus(y).tinmes(r) /* distributive */
.equal s(x.times(r).plus(y.tines®));
i
};

6.5.1.5 Literal Form

The literal form for aphysical quantity is areal number literal followed by asingle space and a
character string representing a valid code in the Unified Code for Units of Measure.

PQliteral ST {
PQ: REAL “ ” unit { $.val ue. equal s($1);
$.unit.equal s($3); }

CS unit : ST { $.val ue. equal s($1);
$. codeSyst em equal s(2. 16. 840. 1. 113883. 3. 2); };

6.6 Monetary Amount (MO)

A monetary amount is a quantity expressing the amount of money in some currency. Currencies are
the units in which monetary amounts are denominated in different economic regions. While the
monetary amount is asingle kind of quantity (money) the exchange rates between the different units
arevariable. Thisisthe principle difference between physical quantity and monetary amounts, and the
reason why currency units are not physical units.

MO. i nterface MonetaryAnmount alias MO extends QTY {
REAL val ue;
CS currency;
type MO di ff
MO plus(diff x);
diff m nus( MO x) ;
MO negat ed;
MO ti mes(REAL Xx);
literal ST;
type MO diff;
iE

6.6.1.1 value: REAL
Thisis the magnitude of the monetary amount in terms of the currency unit.
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Note: monetary amounts are usually precise to 0.01 (one cent, penny, paisa, etc.) For large amounts, it is
important not to store monetary amounts in floating point registers, since this may lose precision. However, this
specification does not define the internal storage of real numbers as fixed or floating point numbers.

The precision attribute of the real number type is the precision of the decimal representation, not the precision of
the value. The real number type has no notion of uncertainty or accuracy. For example, “1.99 USD” (precision 3)
times 7 is “13.93 USD” (precision 4) and should not be rounded to “13.9” to keep the precision constant.

6.6.1.2 currency : CS

The currency unit as defined in 1SO 4217.

Table 16: Selected ISO 4217 currency codes.

Country Currency Code
Argentina Argentine Peso ARS
Australia Australian Dollar AUD
Brazil Brazilian Real BRL
Canada Candian Dollar CAD
Chile Unidades de Formento CLF
China Yuan Renminbi CNY
European Union Euro EUR
European Union ECU (until 1998-12-31) XEU
Finland Markka FIM
France French Franc FRF
Germany Deutsche Mark DEM
India Indian Rupee INR
Israel Shekel ILS
Japan Yen JPY
Mexico Mexican Nuevo Peso MXN
Netherlands Netherlands Guilder NLG
New Zealand New Zealand Dollar NzZD
Philippines Philippine Peso PHP
Russian Federation Russian Ruble RUR
South Africa Rand ZAR
Spain Spanish Peseta ESP
Switzerland Swiss Franc CHF
Thailand Baht THB
United Kingdom Pound Sterling GBP
United States US Dollar usD

6.6.1.3 Algebraic Operations

Equality of two monetary amounts — unlike physical quantities— is determined as the joint equality of
their value and currency propertiesindependently. (Thisisaccording to the general definition of
equality as defined in Section Error! Reference sour ce not found..) If the currencies are not equal,
the amounts can not be compared. Conversion between the currenciesis outside the scope of this
specification. In practice, foreign exchange rates are highly variable not only over long and short

amounts of time, but also depending on location and access to currency trade markets.

i nvariant (MO x, y) where x.nonNull.and(y.nonNull) {
x. equal s(y) . equal s(x. currency. equal s(y. currency)
.and(x. val ue. equal s(y. val ue)));

I

X.currency. equal s(y.currency).not.inplies(x.lessO Equal (y).isNull);
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Two monetary amounts can be added if they are denominated in the same currency.

invariant (MO x, y) where x.nonNull.and(y.nonNull)
.and(x. currency. equal s(y.currency)) {
X. plus(y).val ue. equal s(x. val ue. pl us(y. val ue));
X. plus(y).currency. equal s(x. currency);

B

Any monetary amount can be multiplied with areal number.

i nvariant (MO x; REAL r) where x.nonNull.and(r.nonNull) {
x.tinmes(r).val ue. equal s(x.val ue.tinmes(r));

x.tinmes(r).currency. equal s(x. currency);

H

6.6.1.4 Literal Form

MO literal ST {
MO : value “ " currency { $.val ue. equal s($1);
$. currency. equal s($3); }

REAL val ue : REAL { $.value.equal s($1); }

CS currency : ST { $.currency. val ue. equal s($1);
$. currency. codeSyst em
.equal s(2.16.840.1.113883.3.3); }

6.7 Point In Time (TS)

A point intimeisascalar defining apoint on the axis of natural time. A point intimeis most often
represented as a calendar expression. Semantically, however, natural time is independent from
calendars. The semantic properties of point in time are best described by its relationship to elapsed
time (measured as a physical quantity in the dimension of time.) A point in time plus an elapsed time
yields another point in time. Inversely, a point in time minus another point in time yields an elapsed
time. Asakind of quantity, pointsin time are a difference-scale quantity, where no absol ute zero-point
exists, where only differences are defined but no ratios. For example, no point in time is — absolutely
speaking — “twice aslate” as another point in time.)

Given some arbitrary zero-point, one can express any point in time as an elapsed time measured from
that offset. Such an arbitrary zero-point is called an epoch. This epoch-offset form isused as a
semantic representation here, without implying that any system would have to implement the TS data
typein that way. Systems that do not need to compute distances between pointsin time will not need
any other representation than a calendar expression literal.

type PointInTine alias TS extends QTY {
PQ of fset;
CS cal endar;
| NT pr eci si on;
PQ ti mezone;
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BL equal s(TS x);
TS pl us(PQ x);
PQ m nus(TS Xx);
literal ST;
type PQ diff;

B

6.7.1.1 offset: PQ

The time elapsed since any constant epoch, measured as a physical quantity in the dimension of time
(i.e., comparable to one second.) It isnot necessary for this specification to define a canonical epoch;
the semantics is the same for any epoch, aslong asit is constant. Two point-in-time values are equal if
and only if their offsets (relative to the same epoch) are equal.

invariant (TS x, y) where x.nonNull.and(y.nonNull) {
x. of f set. conpares(1 s);
x. equal s(y) . equal s(x. of fset. equal s(y. offset));

}s

ITS Note: the offset property may be treated as a purely semantic property that is not represented in any way
other than the calendar literal expression. However, an ITS may just as well choose to define a constant epoch
and represent point-in-time values as elapsed time offsets relative to that epoch. However, an ITS using an
epoch-offset representation would still need to communicate the calendar code and the precision of a calendar
representation once other calendars are supported.

6.7.1.2 calendar: CS

A code specifying the calendar used in the literal representation of this point in time.
Table 17: Calendar Codes.

Name Code Definition

Gregorian GREG  The Gregorian calendar is in effect in the most countries of
Christian influence since approximately 1582. This
calendar superceded the Julian calendar.

At thistime, no other calendars than the Gregorian calendar are defined. However, the notion of a calendar as an arbitrary
convention to specify absolute time isimportant to properly define the semantics of time and time-related data types.
Furthermore, other calendars might be supported when needed to facilitate HL 7's use in other cultures.

The purpose of this attribute is mainly to faithfully convey what has been entered or seen by auser in a
system originating such a point-in-time value. The calendar property aso advises any system
rendering a point-in-time value into aliteral form of which calendar to use. However, thisis only
advice; any system that renders point-in-time values to users may choose to use the calendar and literal
form demanded by its users rather than the calendar mentioned in the calendar property. Hence, the
calendar property is not constant in communication between systems, the calendar is not part of the
equality test.

Traditionally mankind has measured the even flow of time in various cycles defined by calendars. Such cyclesin the western
calendar are years, months, days, hours, minutes, seconds. Some of these cycles are synchronized and some are not.
Traditionally calendars have been defined based on astronomical phenomena, however, calendar years, months and days are not

attached directly to astronomical phenomena. The closest fit is the calendar day to the solar day, but the calendar month is
definitely not the same as alunar (synodal) month.

Figure 7 below visualizes a calendar as a trajectory summed up from four such cyclical movements, year, month, day and hour.
Imagine a clock that measures those cycle, but where the pointers are not all stacked on a common axis but each pointer is
attached to the end of the pointer measuring the next larger cycle. After rolling the time axesinto the traditional cycles, a
calendar expresses time as a sequence of integer counts of cycles, e.g., for year, month, day, hour, etc.
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A for the purpose of defining the literal form based on the calendar two private data types, Calendar
and CalendarCycle, are defined. These calendar data types exist only for defining this specification.
These private data types may not be used at all outside this specification.

A calendar is defined as a set of calendar cycles. A calendar has aname and acode. The head of the
calendar isthe largest calendar cycle appearing right most in the calendar expression. The epoch isthe
beginning of that calendar, i.e., the point in time where all calendar cycles are zero.

private type Cal endar alias CAL extends SET&LCYdA {

cv name;
CLCY head;
TS epoch;

b

invariant (CAL c) where c.nonNull {
c. nane. nonNul | ;
c.contai ns(c. head);

}s

A calendar cycle defines one group of decimal digitsin the calendar expression. A calendar cycle has
aname and two codes, aone letter code and atwo letter code. The property ndigits is the number of
decimal digits occupied in the calendar expression. The property start specifies where counting starts

1993

Mar 31

Apri

Figure 10: A calendar "rolls" the time axis into a complex convolute according to the calendar periods year
(blue), month (yellow), day (green), hour (red), etc. The cycles need not be aligned, for example, the week
(not shown) is not aligned to the month.
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(i.e,at 0or 1) Thenext property isthe next lower cycle in the order of the calendar expression. The
max(t) property is the maximum number of cycles at timet (max depends on the time t to account for
leap years and leap seconds.) The property value(t) is the integer number of cycles shown in the
calendar expression of timet. The property sum(t, n) is the sum of n calendar cycles added to the time
t.

private type Cal endarCycle alias CALCY extends ANY {

CE narme;

I NT ndigits;

| NT start;

CALCY next ;

I NT max(TS);

TS sum(TS t, REAL r);
I NT val ue(TS t);

B

i nvari ant (CALCY c) where c.nonNul | {
c. nane. nonNul | ;
c.start.equal s(0).or(c.start.equal s(1));

c.digits. greaterThan(0);
i

The calendar definition can be shown asin Table 18 for the modern Gregorian calendar. The calendar
definition table lists a calendar cyclein each row. The calendar units are dependent on each other and
defined in the value column. The sequence column shows the relationship through the next property.
The other columns are asin the formal calendar cycle definition.

Table 18: Calendar Periods for the Modern Gregorian Calendar

Name Code Counter Period Duration
one two seq. digits start condition value
year Y CcY 1 4 0 MY12
month of the year M MY 2 2 1 MY01,03,05,07,08,10,12 ® DM31
MY04,06,09,11 ® DM30
MYO02 Y/4 Y/100 ® DM28
MYO02 Y/4 ® DM29
MY02 ® DM28
month (continuous) CM 0 continuous MY
week (continuous) w CW 0 CD7
week of the year WYy 2 1 continuous Dw7
day of the month D DM 3 2 1 HD24
day (continuous) CD 0 CH24
day of the year DY 3 1 HD24
day of the week (begins with Monday) J DW 1 1 HD24
hour of the day H HD 4 2 0 MH60
hour (continuous) CH 0 CN60
minute of the hour N NH 5 2 0 UTC leap second ® SN61
® SN60
minute (continuous) CN 0 CS60
second of the minute S SN 6 2 0 Cs1
second (continuous) CS 0 basis

At present, the CalendarCycle properties sum and value are not formally defined. The computation of calendar digits involves
some complex computation which to specify here would be hard to understand and evaluate for correctness. Unfortunately, no
standard exists that would formally define the relationship between calendar expressions and elapsed time since an epoch.

ASN.1, the XML Schema Data Type specification and SQL92 all refer to SO 8601, however, | SO 8601 does only specify the
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syntax of Gregorian calendar expressions, but not their semantics. In this standard, we define the syntax and semantics formally,
however, we presume the semantics of the sum-, and value-properties to be defined.

6.7.1.3 precision : INT

The purpose of the precision property for the point in time data typeis to faithfully capture the whole
information presented to humans in a calendar expression. The number of digits shown conveys
information about the uncertainty (i.e., precision and accuracy) of a measured point in time. Although,
the precision of a calendar expression is not a good measure for the uncertainty of the value, the
precision of the calendar expression should match the accuracy of the measurement.

Note: the precision of the representation is independent from uncertainty (precision accuracy) of a measurement
result. If the uncertainty of a measurement result is important, one should send uncertain values as defined in
Section 10.4.

The precision property is dependent on the calendar. A given precision value relative to one calendar
does not mean the same in another calendar with different periods.

For example “20000403" has 8 significant digits in the representation, but the uncertainty of the value may be in any digit shown
or not shown, i.e., the uncertainty may be to the day, to the week, or to the hour. Note that external representations should adjust
their representational precision with the uncertainty of the value. However, since the precision in the digit string depends on the
calendar and is granular to the calendar periods, uncertainty may not fall into that grid (e.g., 2000040317 is an adequate
representation for the value between 2000040305 and 2000040405.)

ITS Note: on a character based Implementation Technology the ITS need not represent the precision as an explicit
attribute if point in time values are represented as literal calendar expressions. A point in time representation must
not produce more or less significant digits than were originally in that value. Conformance can be tested through

round-trip encoding — decoding — encoding.

6.7.1.4 time zone: PQ

Thetime zone is specified as the difference between the local time in that time zone and Universal
Coordinated Time (UTC, formerly called Greenwich Mean Time, GMT). Thetime zoneisa physical
guantity in the dimension of time (i.e., comparable to one second.) A zero time zone value specifies
UTC. Thetime zone value does not permit conclusions about the geographical longitude or a
conventional time zone name.

For example, 200005121800-0500 may be eastern standard time (EST) in Indianapoalis, IN, or central daylight savingstime
(CDT) in Decatur, IL. Furthermore in other countries having other latitude the time zones may be named differently.

invariant (TS x, y) where x.nonNull.and(y.nonNull) {
X.timezone. compares(1l s);

}s

When the time zone is NULL (unknown), “local time” is assumed. However, “local time” is aways
local to some place, and without knowledge of that place, the time zone is unknown. Hence, alocal
time can not be converted into UTC. The time zone should be specified for al point in time valuesin
order to avoid a significant loss of precision when pointsin time are compared. The difference of two
local times where the locality is unknown has an error of +12 hours.

In administrative data context, some time values do not carry atime zone. For adate of birthin
administrative data, for example, it would be incorrect to specify atime zone, since this may
effectively change the date of birth when converted into other time zones. For such administrative data
the time zone isNULL (not applicable.)

6.7.1.5 Addition and Subtraction

A point in time plus an elapsed time (i.e., physical quantity in the dimension of time) isapoint in time.
Inversely, the difference between two pointsin timeis an elapsed time.
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invariant (TS x, PQt)
where x.nonNull.and(t.conpares(1 s)) {
x.plus(t).of fset.equal s(x.offset.plus(t));
x. m nus(y).of fset. equal s(x.of fset.plus(y.offset.negated));

B

6.7.1.6 Literal Form

Point-in-time literals are simple calendar expressions, as defined by the calendar definition table. By
default, the western (Gregorian) calendar shall be used (Table 18).

For the default Gregorian calendar the calendar expression literals of this specification conform to the
constrained 1SO 8601 that is defined in ISO 8824 (ASN.1) under clause 32 (generalized time) and to
the HL7 version 2 TS data format.

Calendar expression literals are sequences of integer numbers ordered according to the “ Counter/ord.”
column of Table 18. Periods with lower order numbers stand to the left of periods with higher order
numbers. Periods with no assigned order number can not occur in the calendar expression for pointsin
time.

The “ Counter/digits’ column of Table 18 specifies the exact number of digits for the counter number
for any period.

Thus, Table 18 specifies that western calendar expressions begin with the 4-digit year (beginning counting at zero); followed by
the 2-digit month of the year (beginning counting at one); followed by the 2-digit day of the month (beginning with one);
followed by the 2-digit hour of the day (beginning with zero); and so forth. For example, “200004010315" isavalid
expression for April 1, 2000, 3:15 am.

A calendar expression can be of variable precision, omitting parts from the right.
For example, “20000401" is precise only to the day of the month.

The last calendar unit may be written as areal number, with the number of integer digits specified,
followed by the decimal point and any number of fractional digits.

For example, “20000401031520. 34" means April 1, 2000, 3:15 and 20.34 seconds.

When other calendars will be used in the future, a prefix “GREG. " can be placed before the western
(Gregorian) calendar expression to disambiguate from other calendars. Each calendar shall haveits
own prefix. However, the western calendar is the default if no prefix is present.

In the modern Gregorian calendars (and all calendars where time of day isbased on UTC,) the calendar
expression may contain atime zone suffix. The time zone suffix begins with aplus (+) or minus (-)
followed by digits for the hour and minute cycles. UTC is designated as offset “+00” or “- 00”; the
SO 8601 and I SO 8824 suffix “Z” for UTC is not permitted.

TS.literal ST {
TS : cal tinmestanp($1) { $.equal s($2); }
| tinestanp(GREG { $.equal s($1); };

TS ti nest anp(Cal endar C)
cycl es(C head, C epoch) zone(C) { $.equal s($1.m nus($2)); }
$.ti mezone. equal s($2); }
| cycles(C. head, C. epoch) { $.equal s($1);
$

.tinmezone. unknown; };
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Cal endar ca
/[a-zA-Z_][a-zA-Z0-9 ]*:/

TS cycl es(Cal endarCycle ¢, TS t)
cycle(c, t) cycles(c.next, $1)

| cycle(c, t) " REAL. fractiona

| cycle(c, t)

TS cycl e(Cal endarCycle c, TS t)
/[0-9]{c.ndigits}/

PQ zone( Cal endar C)
“+” cycl es(C. zonehead, C. epoch)

| “-" cycl es(C. zonehead, C. epoch)

{ $.equal s($1); };

$. equal s($2); }
$. equal s(c. sum($1, $3));
$. preci si on. equal s(

t. precision. plus($3.precision)); }

$. equal s($1); };

$. equal s(c. sun(t, $1));
$. preci si on. equal s(

t.precision.plus(c.ndigits)); };

$. equal s($2. mi nus(C. epoch)); }
$. equal s(C. epoch. mi nus(%$2)); };
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7

GENERIC
COLLECTIONS

This section defines data types that can “collect” other
data values, Set, Sequence, Bag and Interval. These
collection types are are defined as generic
(parameterized) types. The concept of generic types
is described in Section 2.5.

In some programming languages, “collection types’
are understood as containers of individually
enumerated dataitems, and thus, an interval (low —
high) would not be considered a collection. Such
narrow interpretation of “collection” however is
heavily representation/implementation dependent.
From a data type semantics viewpoint, it doesn’t
matter whether an element of a collection “is actually
contained in the collection” or not. Thereisno need
for all elementsin acollection to be individually
enumerated.

7.1 Set (SET)

A set isavalue that contains other values
of acertain datatype asits elements. The
elements are contained in no particular

T:QTY

Interval : IVL

low: T
lowClosed : BL
high: T

highClosed : BL |

width : T.diff
center: T

Set: SET

isEmpty : BL
nonEmpty : BL
cardinality : INT

contains(T) : BL
contains(SET<T>) : BL
union(SET<T>) : SET<T>
except(T) : SET<T>
except(SET<T>) : SET<T>
intersection(SET<T>) : SET<T>

Sequence : LIST

head: T

tail : LIST<T>
iSEmpty : BL
nonEmpty : BL
length : INT

T ANYJ

T: ANY

Bag : BAG

isEmpty : BL

contains(T) : INT
plus(BAG<T>) : BAG<T>
minus(BAG<T>) : BAG<T>

Figure 11: Generic Collection Data Types

ordering. All elementsin the set are distinct, the same element value can not be contained more than

oncein the set.

tenpl at eANY Ti

type Set dlfi al i as SETarfi ext ends ANY {

BL contains(T el ement);

BL i SEnpt y;

BL nonEnpt y;

BL cont ai ns( SETari subset) ;

| NT cardi nality;

SETarn uni on( SET4rf ot her set) ;

SETarn except (T el enent);

SETarn except ( SETarn ot her set) ;
SETarn i ntersecti on( SETarf ot herset) ;

pronoti on SETarf (T x);

}s

7.1.1.1 Element

The primitive semantic property of a set is the contains-relation of elementsin the set. On this
semantic primitive, al other properties are defined. A set may only contain distinct non-NULL
elements. Exceptional values (NULL-vaues) can not be elements of a set.
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i nvari ant (SETara x) where x. nonNul | {
forall (T e) where x.contains(e) { x.nonNull; };

B

7.1.1.2 Cardinality and Empty Set

The empty set is a set without any elements. The empty set is a proper set value, not an exceptional
(NuLL) value. The cardinality of a set is the number of distinct elementsin the set.

i nvari ant (SETari x) where x.nonNull {
X. nonEnmpty. equal s(exi sts(T e) { x.contains(e); });

X. i sEnpty. equal s(nonEnpty. not) ;

exi sts(T e) where x.contains(e) {
x.cardinality. equal s(x.except(e).cardinality.successor);
};
};

The cardinaity definition is not sufficient since it doesn’t converge for uncountably infinite sets (REAL, PQ, etc.) and it doesn’t
terminate for infinite sets. In addition, the definition of integer number type in this specification is incomplete for these cases, as
it doesn’t account for infinities. Finally the cardinality value is an example where it would be necessary to distinguish the
cardinality A, (alepho) of countably infinite sets (e.g., INT) from A ; (alephy), the cardinality of uncoutable sets (e.g., REAL,
PQ).

7.1.1.3 Subset

A subset of asuperset is a set where each element in the subset is also an element in the superset.

i nvari ant (SETari superset, subset; T el enent)
wher e superset.nonNul | .and(subset.nonNul | ). and(el enent.nonNull) {
super set . cont ai ns(subset)
. equal s(subset . contai ns(el ement) . i npl i es(superset.contains(elenment)));

}s

7.1.1.4 Union

A union of two sets X and Y isthe set Z where eis an element of Z if and only if eisalso an element of
Xor an element of Y.

i nvari ant (SETara x, y, z)
where x.nonNull.and(y.nonNull).and(z.nonNull) {
X. uni on(y) . equal s(z)
.equal s(forall (T e) {
z.contai ns(e). equal s(x.contains(e).or(y.contains(e)));

DE
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7.1.1.5 Difference

The difference (X except Y) of two setsisthe set Z, where eisan element of Zif and only if eisan
element of X and not an element of Y.

i nvari ant (SETara x, y, z)
where x.nonNull.and(y.nonNull).and(z.nonNull) {
x. except (y) . equal s(z)
.equal s(forall (T e) {
z.contai ns(e). equal s(x.contains(e).and(y.contains(e).not));

1)

The difference between a set X and an element d (X except d) isthe set Z, where e is an element of Z if
and only if eisan element of X and e is not equal to d.

i nvari ant (SETara x, z; T d)
where z.nonNul | . and(z.nonNull).and(d. nonNull) {
x. except (d) . equal s(z)
.equal s(forall (T e) {
z.contai ns(e). equal s(x.contains(e).and(d.equal s(e).not));
1)
b

7.1.1.6 Intersection

The intersection between two sets X and Y isthe set Z where eisan element of Z if and only if itis
contained in both of the sets X and Y.

i nvari ant (SETara x, y, z)
where x.nonNull.and(y.nonNull).and(z.nonNull) {
X.intersection(y).equal s(z)
.equal s(forall (T e) {
z.contai ns(e). equal s(x.contains(e).and(y.contains(e)));
1)
};

7.1.1.7 Literal Form

When the element type T has aliteral form, the set SETal'fihas aliteral form, wherein the elements of
the set are enumerated within curly braces and separated by semicola.
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SETari literal ST {
SETari : “{” elenments “}” { $.equal s($2); };
SETdrn el enent s

el enents “;” T
| T

.except ($2). equal s($1); }

. cont ai ns($1);

-
© ¥ &

.except ($1).i sEnpty; };
}

Note: this literal form for sets is only practical for relatively small enumerable sets; this does not mean, however,
that all sets are relatively small enumerations of elements.

For example,
{1; 3; 5; 7; 19} isaset of integer numbers or real numbers;
{1.2 m 2.67 m 17.8 n} isaset of discrete physical quantities;
{appl e; orange; banana} isaset of character strings.

ITS Note: a character-based ITS should choose a different literal form for sets if the Implementation Technology
has a more native literal form for such collections.

7.1.1.8 Promotions of any Values to Sets

A datavalue of type T can be promoted into atrivial SETaT fiwith that data value as its only element.

invariant (T x) {

(( SETarf x) . cont ai ns(x) ;

(( SETarf x) . except (x) . i SEnpty;
i

7.2 Sequence (LIST)

A sequenceis an ordered collection of discrete values.

tenpl at eANY Ti

type Sequencedli al i as LI STari ext ends ANY {
T head;
LI STarfA tail;

BL i SEnpt y;
BL nonEnpt y;
I NT | engt h;

pronotion LI STéar (T x);
s

A non-empty sequence has ahead and atail. An empty sequence has length zero. Notice the
difference between empty-sequence and NULL. The empty sequence is a proper sequence, not a NULL-
value.
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i nvari ant (LI STari x) x.isEmpty {
x. head. i sNul | ;
x.tail.isNull;

x. |l ength.i sZero;

i nvari ant (LI STari x) {
X. nonEnpty. equal s(x.i sEnpty. not);

The length of a sequence is the number of elementsin the sequence. NULL elements are counted as
regular sequence elements.

i nvari ant (LI STaTA x) where x.nonEnpty {

x. |l engt h. equal s(x.tail.length.successor);

Two listsare equal if and only if they are both empty, or if both their head and their tail are equal.

i nvari ant (LI STarA x, y) where x.isEnpty.and(y.isEmpty) {

x. equal s(y);

i nvari ant (LI STaTA x, y) where x.nonEnpty. and(y.nonEnpty) {
x. equal s(y) . equal s(x. head. equal s(y. head)
.and(x.tail.equals(y.tail)));
b

7.2.1.1 Literal Form

When the element type T has aliteral form, the sequence LISTarfihas aliteral form. List elementsare
enumerated, separated by semicolon, and enclosed in parentheses.

LI STari literal ST {

LI STari: “(” elenments “)” { $.equal s($2); };
LI ST&rn el ement s
T “;” elenents { $. head. equal s($1);
$.tail.equal s($3); }
| T { $. head. equal s(%$1);
$.tail.isNull; };
i
For example,
(1; 3; 5; 7; 19) is a sequence of integer numbers or real numbers;
(1.2 m 2.67 m 17.8 m is a sequence of discrete physical quantities;
(appl e; orange; banana) isasequence of character strings.
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ITS Note: a character-based ITS should choose a different literal form for sequences if the Implementation
Technology has a more native literal form for such collections.

7.2.1.2 Promotions of any Values to Sequences

A datavalue of type T can be promoted into atrivial sequence LISTaT fiwith that datavalue asitsonly
element.

invariant (T x) {
((LI STarf x) . head. equal s(x);
((Lrstargx).tail.isNull;

7.3 Bag (BAG)

A bag is an unordered collection of elements where each element can be contained more than oncein
the bag. The bag is defined only briefly here for completeness, since bags are a commonly recognized
collection type.

t enpl at e@ANY Tn
type Bagdlii al i as BAGATA ext ends ANY {

| NT contai ns(T kind);

BL i SEnpty;

BAGAT pl us( BAGATH ;

BAGAT# m nus( BAGATi) ;
pronoti on BAGAT (T x);

ITS Note: a bag can be represented in two ways. Either as a simple enumeration of elements, including repeated
elements, or as a “compressed bag” whereby the content of the bag is listed in pairs of element value and number.
A histogram showing absolute frequencies is a bag represented in compressed form. The bag is therefore useful
to communicate raw statistical data samples.

7.3.1.1 Elements

The semantic primitive for bags is the contains-function that maps element values to non-negative
integer numbers, where zero means that the element value is not contained in the bag. An empty bag is
distinguished from an exceptional bag value (the NULL bag.)

i nvari ant (BAGAaTAi x; T e) where x.nonNull.and(e.nonNull) {
X. cont ai ns(e). nonNegati ve;
X. i SEnpty. equal s(x. contains(e).isZero);

B

7.3.1.2 Addition and Subtraction

Bags can be added, meaning that the contains-values for each element are added. Bags can and
subtracted, meaning that the contains-values are subtracted. Note that bags can not carry deficites, i.e.,
the minimal contains-valueis zero.
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i nvari ant (BAGATA x, y, z) where x.nonNul |.and(y.nonNull) {
X. plus(y).equal s(z)
.equal s(forall (T e) where e.nonNul | {
z.contai ns(e). equal s(x.contains(e).plus(y.contains(e)));

DE

X. m nus(y). equal s(z)
.equal s(forall (T e) where e.nonNul | {
exi st s(I NT n)
wher e n. equal s(x. contai ns(e).m nus(y.contains(e)) {
n. nonNegat i ve. equal s(z. contai ns(e));

n.i sNegati ve. equal s(z. contai ns(e).isZero);

DE

7.3.1.3 Promotions of any Values to Bags

A datavalue of type T can be promoted into atrivial bag BAGAT fiwith that data value asits only
element.

invariant (T x) {
( ( BAGATM) x) . cont ai ns(x) . equal s(1);
forall (T y) { ((BAGATM) x).contains(y).inplies(x.equals(y)) };

7.4 Interval (IVL)

Aninterval isaset of consecutive values of any ordered datatype. Aninterval isthus acontiguous
subset of its base datatype. Any ordered type can be the basis of an interval. It does not matter
whether the base type is discrete or continuous. |f the base datatypeis only partially ordered, all
elements of the interval must be elements of atotally ordered subset of the ordered data type.

For example, physical quantities are considered ordered. However the ordering of physical quantitiesis only partial; atotal

order is only defined among comparable quantities (quantities of the same physical dimension.) Whileintervals between 2 and 4
meters exists, thereis no interval between 2 meters and 4 seconds.

Intervals are sets and have all the properties of sets. However, union and differences of intervals may
not be intervals any more, since the elements of these union and difference sets might not be
contiguous. Intersections of intervals are always intervals.
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tenpl at e&JTY TA
type Interval aii al i as | VLA ext ends SETarf {

T | ow;
BL | owCl osed,;
T hi gh;
BL hi ghCl osed;
T.diff wi dt h;
T center;
literal ST;
pronotion |VLAaTN (T x);

denotion T,

H

7411 low: T

Thisisthe low boundary of the interval.

i nvariant (1 VLari x; T e) where x.nonNull.and(x.contains(e)) {

X. |l ow. | essOr Equal (e);

7.41.2 high:T

Thisisthe upper boundary of the interval.

invariant (I VLarA x; T e) where x.nonNull.and(x.contains(e)) {
e. |l essOr Equal (x. hi gh);
b

7.4.1.3 width : T.diff

The width is the difference between high and low boundary. The purpose of distinguishing awidth
property isto handle all cases of incomplete information symmetrically. In any interval representation
only two of the three properties high, low, and width need to be stated and the third can be derived.

When both boundaries are known, width can be derived as high minus low. When one boundary and
the width is known, the other boundary is also known. When no boundary is known, the width may
still be known. For example, one knows that an activity takes about 30 minutes, but one may not yet
know when that activity is started.

i nvariant (1 VL&A x) {
X. | ow. | essOr Equal ( x. hi gh);
Xx.w dt h. equal s(x. hi gh. m nus(x.|ow));

82
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7.4.1.4 center: T

The center is defined of finite intervals and is then the arithmetic mean of the interval (low pus high
divided by 2). The purpose of distinguishing the center as a semantic property is for conversions of
intervals to point values. Thisis most relevant when intervals are used to express uncertainty.

i nvari ant (1 VLari x) where x.low. nonNul I .and(x. hi gh. nonNull) {

x. center. equal s(x. | ow. pl us(x.w dth.times(0.5))));

i nvari ant (1 VLari x) where x.low. isNull.or(x.high.isNull) {
X. cent er. not Appl i cabl e;

H

7.4.1.5 lowClosed : BL

Indicates whether the interval is closed or open at the low boundary. For a boundary to be closed, a
finite boundary must be provided, i.e. unspecified or infinite boundaries are aways open.

i nvari ant (1 VLari x) where x.nonNull {
X. I ow. nonNul I . i nplies(x.|owC osed. equal s(x. contai ns(x.|ow)));
X.low. isNull.inplies(x.|lowd osed. not);

b

7.4.1.6 highClosed : BL

Indicates whether the interval is closed or open at the high boundary. For a boundary to be closed, a
finite boundary must be provided, i.e. unspecified or infinite boundaries are aways open.

i nvari ant (I VLari x) where x.nonNull {

x. hi gh. nonNul | . i npl i es(x. hi ghd osed. equal s(x. cont ai ns(x. high)));
x. high.isNull.inplies(x.highC osed. not);
Ji

7.4.1.7 Literal Form

The literal form for the interval datatypeis defined such that it is asintuitive to humans a possible.
Four different forms are defined:

1) theinterval form using square brackets, e.g., “[3.5; 5.5[";

2) thedash-form, e.g., “3.5-5.5";

3) the“comparator” form, using relational operator symbols, e.g., “<5.5";
4) the center-width form, e.g., “4.5[2.0[".

5) the width-only form using square brackets, e.g., “[2.0[";

The presence of so many options deserves explanation. In principle, the interval form together with the width-only form would
be sufficient. However, theinterval form isfelt alien to many in the field of medical informatics. One important purpose of the
literal formsis to eradicate non-compliance through making compliance easy, without compromising on the soundness of the
concepts.

Furthermore, the different literal forms all have strength and weaknesses. The interval and center-width forms’ strength is that
they are most exact, showing closed and open boundaries. The interval form’s weakness, however, is that infinite boundaries

require special symbolsfor infinities, not necessary in the “comparator” form. The center-width form cannot specify intervals
with an infinite boundary at all. The*comparator” form, however, can only represent single-bounded intervals (i.e., where the
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other boundary isinfinite or unknown.) The dash form, while being the weakest of al, isthe most intuitive form for double

bounded intervals.

IVLaTRA literal ST {
| VLATA r ange

i nterval

| dash

| conpar at or

| center_wi dth
| width

| VLATA i nt erval

open T “;” T cl ose;

BL open : “[”

BL close : “]”

| VLari wi dt h

open T.diff close

| VLaTA center _wi dt h
T width

|VLaidash : T “-" T;

@ B B B B

B P P P B B B P

.equal s($1);
.equal s($1);
.equal s($1);
.equal s($1);
.equal s($1);

.| ow. equal s($2);

. hi gh. equal s($4) ;

. | owCl osed. equal s($1);

. hi ghd osed. equal s($5); };
.equal s(true); }

.equal s(false); };

.equal s(true); }

.equal s(false); };

. Wi dt h. equal s($2);
. | onwCl osed. equal s($1);

$. hi ghd osed. equal s($3); };

@ B P &

@ B B &~

.center. equal s($1);

.wi dt h. equal s($2. wi dt h) ;

.| owd osed. equal s($2. | owd osed) ;

. hi ghd osed. equal s($2. hi ghCl osed); };

.| ow. equal s($2);
. hi gh. equal s($4) ;
.1 owCl osed. equal s(true);

. hi ghd osed. equal s(fal se); };
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| VLaTSA conpar at or
| “<0 T { $. high.equal s(T);
$. hi gh. cl osed(fal se);
$. hi gh. negativelylnfinite; }
“>7 T { $.1ow equal s(T);
$. 1 ow. cl osed(fal se);
$.low positivelylnfinite; }
Y= T { $.high.equal s(T);
$. hi gh. cl osed(true);
$. hi gh. negativelylnfinite; }
“>=" T { $.1ow equal s(T);
$. 1 ow. cl osed(true);
$.low positivelylnfinite; };
i
Table 19: Examples of interval literals.
literal low high alternate
closed low high closed center width
3.5-5.5 true 3.5 5.5 false 4.5 2.0
[3.5;5.5] true 35 55 true 4.5 2.0
[3.5;5.5] true 35 5.5 false 4.5 2.0
4.5[2.0] true 3.5 5.5 true 45 2.0
4.5[2.0[ true 3.5 5,5 false 4.5 2.0
<5.5 false -¥ 5.5 false N/A ¥
>3.5 false 35 ¥ false N/A ¥
>=3.5 true 35 ¥ false N/A ¥
<=5.5 false -¥ 55 true N/A ¥
]-inf;5.5] false -¥ 55 true N/A ¥
[3.5; +inf][ true 35 ¥ false N/A ¥
1;5.5] false UNK 55 true UNK UNK
[3.5; true 3.5 unk false UNK UNK
-3.5-3.5 false -35 3.5 false 0.0 7.0
-5.5--3.5 false -55 -35 true -45 2.0
[-5.5;-3.5] true -55 -35 true -4.5 2.0
-4.5[2.0] true -5,5 -35 true -45 2.0
<-3.5 false -¥ 3.5 true N/A ¥
>-5.5 true -55 ¥ false N/A ¥
[3.5;3.5] true 3.5 3.5 true 3.5 0

7.4.1.8 Conversion Between

Point Values and Intervals

A quantity type T can be promoted into atrivia interval 1VLar fiwhere low and high boundaries are

equal boundaries closed.

invariant (T x) {

((lvLarf x) . | ow. equal s(x);
((1'vLarf x) . hi gh. equal s(x);
((1'vLarA x) . hi ghdl osed,;
((lvLarf x) . | owd osed;
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Aninterval IVLarfican be demoted to a simple quantity type T. If both boundaries are finite, the
conversion yields the center of theinterval. If one boundary isinfinite, conversion yields the other
boundary. If both boundaries are infinite, the conversion to a point value is not applicable.

invariant (I VL x) where x.nonNul |l {
X. |l ow. nonNul | . and( x. hi gh. nonNul I') . i mpli es(((T)x).equal s(x.center));
x. hi gh. nonNul | . and(x.l ow. i sNull').inplies(((T)x).equals(x.high));
X. |l ow. nonNul | . and(x. hi gh.isNull).inplies(((T)x).equals(x.l|ow));
X.low. i sNull.and(x.high.isNull).inplies(((T)Xx).notApplicable);

7.4.2 Interval of Physical Quantities (IVL&PQM)

Aninterval of physical quantitiesis constructed from the generic interval type. However, recognizing
that the unit can be factored from the boundaries, we add additional semantics and a separate literal
form. The additional view of an interval of physical quantitiesis an interval of real numbers with one
unit.

type I nteval &PQh alias | VLEP {
| VL&REALA val ue;
Cs uni t;

i

The unit appliesto both low and high boundary.

i nvari ant (1 VL&PQ1 x) where x.nonNul |l {

x. val ue. nonNul | ;

.l ow. val ue. equal s(x. val ue. | ow) ;

.low unit.equal s(x.unit);

.l owd osed. equal s(x. val ue. | owd osed) ;
. hi gh. val ue. equal s(x. val ue. hi gh);

.high.unit.equal s(x.unit);

X X X X X X

. hi ghdl osed. equal s(x. val ue. hi ghd osed) ;
i

The special literal form issimply an interval of real numbers a space and the unit.

IVL&PQi literal ST {

I VLPQH : | VL&REALA “ " unit { $.value($1l); $.unit.equal s($3); }
| | VL&REALRA { $.equal s($1); };
CS unit : ST { $.val ue. equal s($1);

$. codeSyst en( 2. 16. 840. 1. 113883.3.2); };
}

For example: “[ 0; 5] mmol / L” or “<20 ng/ dL” arevalid literal forms of intervals of physical quantities. The generic
[50 nm 2 ni”isasoalowed.

86
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7.4.3 Interval of Points in Time (IVLaTSH

A special literal form for interval of time is defined to allow an abbreviated dash-form notation where
the low boundary does not need to repeat digits on the |eft that are the same as for the high boundary.

The low boundary is right-aligned and the digits to the left copied from the high boundary. Thisisa
simple string operation and not shown formally here.

Example: May 12, 2000 from 8t0 9:30 PM is “200005122000- 2130". However, note that May 12, 2000 9:30 PM to May
13,2000 8 AM is“200005122130- 230800”, and not “200005122130- 0830".
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8 TIMING SPECIFICATION

T:ANY Figure 12: Overview of Timing Specification
Set: SET Data Types
iSsEmpty : BL
PointinTime : TS nonEmpty : BL
<<type>> diff : PQ ~ 1s cardinality : INT
offset : diff )
calendar : CS contains(T) : BL
efhrm contains(SET<T>) : BL
precision : INT union(SET<T>) : SET<T> T:QTY
. except(T) : SET<T>
equals(Ts) : BL except(SET<T>) : SET<T> < | Interval : VL
pll.JS(d'ﬁ) ‘TS . intersection(SET<T>) : SET<T> ow. T
minus(TS) : diff 0.% ow
- lowClosed : BL
high: T
- — highClosed : BL
GeneralTimingSpecification : GTS N width : T.diff
outerBound : IVL<TS> | SET<TS> center: T
—

nextAfter(TS) : IVL<TS> N

T:TS

IVL<TS>

PeriodicIntervalOfTime : PIVL

EventRelatedPIVL : EIVL
period : T.diff event: CV

plhase DIVL<T> offset : IVL<T.diff>
alignment : CS

occurrenceA(TS) : IVL<TS>
contains(TS) : BL contains(IVL<TS>) : BL

The timing specification suite of generic data typesis used to specify the complex timing of events and actions such as they
occur in order management and scheduling systems. It also supports the cyclical validity patterns that may exist for certain kinds
of information, such as phone numbers (evening, daytime), addresses (so called “snowbirds,” residing in the south during winter
and north during summer) and office hours.

The timing specification data types include point in time (TS) and the interval of time (I\VL&T'Sf), and adds to it other kinds of
collection types that are specifically suited to specify repeated schedules. These additional collectionsinclude periodic interval,
event-related periodic interval, and finally the generic timing specification typesitself. All these timing types are semantically
sets of time points SETATSA describing the time distribution of repeating states or events.

8.1 Periodic Interval of Time (PIVL)

The periodic interval of time specifies an interval of time that recurs periodically. Periodic intervals
have two properties, phase and period. The phase specifiesthe interval prototype that is repeated every
period.

For example, “every eight hours for two minutes’ is a periodic interval where the interval’ s width equals two minutes and the
period at which the interval recurs equals eight hours.

The phase also marks the anchor point in time for the entire series of periodically recurring intervals.
The recurrence of aperiodic interval has no beginning or ending, but is infinite in both future and past.

tenpl at edT'S Th

protected type Periodiclnterval afi al i as Pl VLAl ext ends SETarf {

T.diff peri od;
| VLarh phase;
CS al i gnnent ;
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BL cont ai ns(TS) ;
literal ST;

A periodic interval is fully specified when both the period and the phase are fully specified. The

interval may be only partialy specified where either only the width or only one boundary is specified.
For example: “every eight hours for two minutes’ specifies only the period and the phase' s width but no boundary of the phase.
Conversely, “every eight hours starting at 4 o' clock” specifies only the period and the phase’ s low boundary but not the phase's

high boundary. “Every eight hours for two minutes starting at 4 o’ clock” is fully specified since the period, and both the phase’'s
low boundary and width are specified (low boundary and width implies the high boundary.)

The periodic interval of timeis a generic data type PIVLarfiwhere the type parameter T is restricted to
the point in time (TS) datatype and it’s extensions. The parametric probability distribution of point in
time (PPDAr S is an extension of point in time and therefore can be used to form periodic intervals of
probability distributions of point in time (PIVL&PDAr Sit) values (uncertain periodic interval.)
Oftentimes repeating schedules are only approximately specified. For instance “three times a day for ten minutes each” does not
usually mean a period of precisely 8 hours and does often not mean exactly 10 minutesintervals. Rather the distance between
each occurrence may vary as much as between 3 and 12 hours and the width of the interval may be less than 5 minutes or more

than 15 minutes. An uncertain periodic interval can be used to indicate how much leeway is allowed or how “timing-critical”
the specification is.

8.1.1.1 Period : T.diff
The period specifies how frequently the periodic interval recurs. The period isa physical quantity in
the dimension of time (TS.diff.) For an uncertain periodic interval (PIVL&PPDAT Sff) the period isa

probability distribution over elapsed time (PPD&PQf). A non-NULL period exists for every non-NULL
periodic interval.

i nvari ant (Pl VLaTA x) where x.nonNul | {

X. peri od. nonNul | ;

B

8.1.1.2 Phase: IVLaTN

The phase specifies the interval prototype that is repeated every period. The phase also marks the
anchor point in time for the entire series of periodically recurring intervals. The recurrence of a
periodic interval has no begin or end but isinfinite in both future and past. A phase must be specified
for every non-NULL periodic interval. The width of the phase must be less or equal the period.

i nvari ant (PlVLarfi x) where x.nonNul | {
X. phase. nonNul | ;

X. phase. wi dt h. | essOr Equal ( x. peri od) ;
i

8.1.1.3 Alignment: CS

A periodic interval may be specified aligned to the calendar underlying the phase. A non-aligned
periodic interval recurs independently from the calendar. An aligned periodic interval is synchronized
with the calendar.

The domain of this codeis the calendar cycle code.

For example, “every 5" of the month” isa calendar aligned periodic interval. The period spans 28 to 31 days depending on the
calendar month. Conversely, “every 30 days’ is an independent period that will fall on adifferent date each month.
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The calendar alignment specifies a calendar cycle to which the periodic interval isaligned. The even
flow of time will then be partitioned by the calendar cycle. The partitioning is called the calendar
“grid” generated by the aligned-to calendar cycle. Each occurrenceinterval will then have equal
distance from the earliest point in each partition. In other words, the distance from the next lower grid-
line to the beginning of the interval is constant.

For example, with “every 5" of the month” the alignment calendar cycle would be month of the year (MY.) The even flow of
time is partitioned in months of the year. The distance between the beginning of each month and the beginning of its occurrence

interval is 4 days (4 days because day of month (DM) starts counting with 1.) Thus, as months differ in their number of days, the
distances between the recurring intervals will vary slightly, so that the interval occurs always on the 5.

8.1.1.4 Periodic Intervals as Sets

The essential property of aset isthat it contains elements. For non-aligned periodic intervals the
contains property is defined as follows. A point intimet is contained in the periodic interval of time if
and only if thereisan integer i for which t plusthe period timesi is an element of the phase interval.

invariant (PlIVLaISA x, TS t) where x.nonNul|l.and(x.alignment.isNull) {
Xx.contains(t).equal s(exists(INT i) {
X. phase. contai ns(t. plus(x.period.tinmes(i)));
});
b

For calendar-aligned periodic intervals the contains property is defined using the calendar-cycle's
sum(t, n) property that adds n such calendar cyclesto thetimet.

invariant (PIVLaTSh x, TS t, Cal endar Cycle c)
where x.nonNull.and(c.equal s(x.alignnent)) {
X.contains(t).equal s(exists(INT i) {
X. phase. contai ns(c.sum(t, i));

1)

8.1.1.5 Literal Form

There are two forms of literals for periodic intervals of time:

1. generic form, continuous: gphase : IVLAT/ deriod : T.diffA[ @ &alignmentii] [ IST ].
2. calendar pattern, aligned: &anchorfi [ &alendar digitsi] / &umber : INTA[ IST ]

The generic form is used to reflect all semantic properties directly.

For example, “[ 200004181100; 200004181110] / (7 d) @W specifies every Tuesday from 11:00 to 11:10 AM.
Conversely, “[ 200004181100; 200004181110]/ (1 no) @M specifies every 18" of the month 11:00 to 11:10 AM.

The continuous form is used to specify calendar-aligned timing more intuitively using calendar
patterns. A calendar pattern is acalendar date where the higher significant digits (e.g., year and
month) are omitted. In order to interpret the digits, a period identifier is prefixed that identifies the
calendar period of the left-most digits. This calendar period identifier anchors the calendar digits
following to the right. The calendar digits may also omit digits on the right.

For example: “M0219” is February 19 the entire day every year. “M02191100-1110" is February 19, 11:00 to 11:10 AM.

When digits are omitted on the right this means the interval from lowest to highest for these digits.
Other intervals can be specified using a dash followed by calendar digits matching the preceding
calendar expression from the right (seeinterval of point in time, Section 7.4.3)
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For example: “MD219” is February 19 the entire day from 0:00 to 23:59:59.999... which could have been specified as“D0219-
20" (the high boundary is assumed to be open.) “M)2191100- 1110” is February 19, 11:00 to 11:10 AM. Thisisalso equa

M)2191100-191110" and “MD2191100-02191110" asthe calendar digits after the dash areright aligned to the
calendar digits before the dash.

With the calendar pattern form, the calendar alignment is the right-most calendar period for which
digits are provided.

For example: “MD219” is February 19 every year. This periodic interval has the February 19 of any year asits phase, a period
of one year, and alignment month of theyear (MY).

A calendar pattern followed by a slash and an integer number n indicates that the given calendar
pattern isto apply every n™ time.
For example: “D19/ 2” isthe 19" of every second month.

A calendar pattern expression is evaluated at the time the pattern isfirst enacted. At thistime, the
calendar digits missing from the | eft are completed using the earliest date matching the pattern (and
following a preceding pattern in a combination of time sets).

For example: “D19/ 2” isthe 19" of every second month. If this expression is evaluated on March 14, 2000 the phase is

completed to: “[ 20000319; 20000320[ / (2 no) @M and thus the two-months cycle begins with March 19, followed by
May 19, etc. If the expression were evaluated by March 20, the cycle would begin at April 19, followed by June 19, etc.

If after the calendar period identifier no calendar digits follow, the pattern matches any date. The
integer number following the slash indicates the length of the cycle.

For example: “CDf 2" is every other day, “H/ 8” is every 8" hour.

| ST” to indicate that within the larger
calendar cycle (e.g., day for hour of the day) the repeating events are to be appointed at institution
specified times. Thisis used to specify such schedules as “three times a day” where the periods
between two subsequent events may vary well between 4 hours (between breakfast and lunch) and 10
hours (over night.)

The syntax and semantics of these periodic intervals are not yet formally specified in the body of this specification.

Table 20: Examples for literal expressions periodic intervals of time.

Literal Expression Meaning
M9 September
MY09 September (using explicit two letter code)
MD915 September 15
M)91516 September 15 at 4 PM
M)9151630 September 15 at 4:30 PM
MD915163034. 12 September 15 at 4:30:34.12 PM
M 2 every other month of the year (January, March, ...)
MD4- 09 April 1 to September 30
J6 every Saturday
DW6 every Saturday (using explicit two letter code)
J/ 2 every other day of the week (Tuesday, Thursday, Saturday)
J1-5 Monday to Friday
W2 every other week (continuous)
WY/ 2 every other week of the year
Wr1l5 the 15™ calendar week of every year
WWR the second week of the month
DY128 the 128" day of the year
[10 min]/(2 d) every other day for 10 minutes.
H8 every eighth hour (each time a 60 minutes interval)
H 8 | ST three times a day at institution specified times
Abbreviation Normal form
Bl D H 12 I ST two times a day at institution specified time
TID H8 IST three times a day at institution specified time
QD H6 |IST four times a day at institution specified time
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8.2 Event-Related Periodic Interval of Time (EIVL)
The event-related periodic interval of time allows specifying a periodic interval of time based on
activities of daily living, important events that are time-related but not fully determined by time.

For example, “one hour after breakfast” specifies the beginning of the interval at one hour after breakfast is finished. Breakfast
is assumed to occur before lunch but is not determined to occur at any specific time.

tenpl at edT'S Th

protected type Event Rel at edPeri odi cl nterval arfii al i as El VLaTfi ext ends SETarf {
cv event;
| VLAT. di f f fof f set ;

| VLarh occurrenceAt (TS event Ti ne) ;
BL cont ai ns(TS) ;
literal ST;

B

8.2.1.1 Event:CV

The event is acommon (periodical) activity of daily living based on which the event related periodic
interval is specified. Such events qualify for being adopted in the domain of this attribute for which all
of the following is true:

the event commonly occurs on aregular basis,
the event is being used for timing activities, and
the event is not entirely determined by time.

Table 21: Event Codes for Event-Related Periods

Code Definition
HS the hour of sleep (e.g., H18-22)

AC before meal (from lat. ante cibus)

PC after meal (from lat. post cibus)

IC between meals (from lat. inter cibus)
ACM before breakfast (from lat. ante cibus matutinus)
ACD before lunch (from lat. ante cibus diurnus)
ACV before dinner (from lat. ante cibus vespertinus)
PCM after breakfast (from lat. post cibus matutinus)
PCD after lunch (from lat. post cibus diurnus)

PCV after dinner (from lat. post cibus vespertinus)
ICM between breakfast and lunch

ICD between lunch and dinner

ICV between dinner and the hour of sleep

8.2.1.2 Offset : IVLAT.difffi

The offset is an interval that marks the offsets for the beginning, width and end of the event-related
periodic interval measured from the time each such event actually occurred.

For example: if the specification is“one hour before breakfast for 10 minutes’ the offset’s low boundary is- 1 h and the offset’s
width is 10 min (consequently the offset’s high boundary is - 50 min.)

8.2.1.3 Resolving the Event-Relatedness

An event-related periodic interval of timeisaset of time, that is one can test whether a particular time
or timeinterval is an element of the set. Whether an event-related periodic interval of time contains a
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given interval of timeisdecided using arelation event ~ time referred to as EVENT (event, time). The
property occurrenceAt(t) is the occurrence interval that would exist if the event occurred at timet.

i nvari ant (El VLaTA x, T eventTi me, | VLAlf v)
wher e v. equal s(x. occurrenceAt (eventTime)) {
v. | ow. equal s(event Ti me. pl us(x. of fset. |l ow));
v. hi gh. equal s(event Ti me. pl us(x. of fset. hi gh));
v. | owCl osed. equal s(x. of fset. | owCl osed) ;
v. hi ghd osed. equal s(x. of f set. hi ghdl osed) ;

B

Thus, an event related interval of time contains apoint intimet if thereis an event time e with an
occurrence interval v such that v containst.

invariant (Bl VLaTA x, T y) {
X. contai ns(y).equal s(exists(T e, |VLafA v)
wher e EVENT(x. event, vy)
.and(v.resol vedAt (y)) {

v.contai ns(y);

1)

8.2.1.4 Literal Form

The literal form for an event related interval begins with the event code followed by an optional
interval of the time-difference.

El VLarSh literal ST {

El VLATSA : event { $.event.equal s($1); }
| event offset { $.event.equal s($1); $.offset.equal s($2); };
CV event : ST { $.code. equal s($1);

$. codeSyst em equal s(2. 16. 840. 1. 113883. 5. 1019); }

| VLATS. di ff i of f set
“+” | VLaS. diffi {
“-7 | VLaS. diffi {

.equal s($2); }

. I ow. equal s($2. hi gh. negate) ;

. hi gh. equal s($2. | ow. negat e) ;
. Wi dt h. equal s($2. wi dt h);

.l owd osed($2. hi ghCl osed) ;

. hi ghdl osed($2. | owC osed); };

N H B B B B

B

For example, one hour after meal would be “PC+[ 1h; 1h]”. One hour before bedtime for 10 minutes: “HS- [ 50mi n; 1h]
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8.3 General Timing Specification (GTS)

The general timing specification (GTS) semantically is a general set of pointsintime. The purpose of
the GTS s to specify the complex timing of events and actions (mainly in orders and scheduling
systems.) The GTS also supports the cyclical validity patterns that may exist for certain kinds of
information, such as phone numbers (evening, daytime), addresses (so called “snowbirds,” residing in
the south during winter and north during summer) and office hours.

The GTS data type has the following aspects:

1) GTSasagenera set of pointsintime (SETarsf). From this aspect GTS answers whether any
given point in time fallsin the timing covered by the GTS value.

2) GTSasthe combination of multiple periodic intervals of time. This aspect describes how both
simple and complex repeat-patterns are specified with the GTS.

3) GTSasagenerator of a sequence of intervals of point intime (LISTAVLATS). From this aspect,
GTS can generate all occurrence intervals of an event or action, or all validity periods for afact.

4) GTSasan expression-syntax defined for acalendar. This aspect isthe GTS literal form.

In all casesthe GTSisdefined asaset of point intime (SETarSf). Using the set operations, union,
intersection and difference, more complex sets of time can be constructed from simpler one.
Ultimately the building blocks from which all GTS values are constructed are interval, periodic
interval, and event-related periodic interval. The construction of the GTS can be specified in the literal
form. No specia datatype structure id defined that would generate a combination of simpler time-sets
from agiven GTSvaue. While any implementation would have to contain such a structured
representation, it is not needed in order to exchange GTS values given the literal form.

type General Ti mi ngSpecification alias GIS extends SETalsh {
| VLarsn out er Bound;
| VLarshi next After (TS x)

denotion LI ST VLTSI
literal ST;

The GTS datatypeis defined as using intervals, periodic intervals, and event-related periodic intervals.
Intervals of time have been defined above. Periodic intervals and event-related intervals are defined in
the next two sub-sections.

8.3.1.1 GTS as a Sequence of Occurrence Intervals

A GTSvalueisagenerator of a sequence of time intervals during which an event or activity occurs, or
during which a state is effective. The next-after property maps to every point in time the greatest
occurrence interval that begins later than the given point in time.

This property is currently not completely formally defined. It is specified here to mark what is probably the GTS most
important use case: The GTS is used to specify and then generate a repeated schedule of activities.

invariant (GIS x, TS t, |VLaISA o) where o.equal s(x.nextAfter(t)) {
X. cont ai ns(0);
forall (I VLAISA p) where x.contains(p) {

p. contai ns(o).inplies(p.equal s(o));
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A GTSvalue can be converted into a generic Sequence of time intervals (LISTAVLAT Sif) where each

occurrence interval is fully specified:

8.3.1.2 Outer Bound Interval

A GTSvalue has one outer bound interval that is the least common superset of all occurrence intervals.

b. cont ai ns(x) ;

forall (TS e) where x.contains(e) {
e. |l essOr Equal (b. hi gh);
e. great er O Equal s(b. | ow) ;

B

i nvari ant (GIS x, |VLarSi b) where b. equal s(x. out er Bound) {

8.3.1.3 GTS Literal Form

The GTS literal allows specifying combinations of intervals, periodic intervals, and event related
periodic intervals of time using the set operations, unions and intersection. Unions are speechified by
a semicolon-separated list. Intersections are specified by awhitespace-separated list. Intersection has
higher priority than union. Exclusions (set differences) can be specified using a backslash; exclusions
have an intermediate priority, i.e. weaker than intersection but stronger than union.

Thisliteral form is specified based on the simpler time set data typesinterval, periodic interval, and

event related periodic interval.

GIS. literal ST {

SETA&rsi uni on

SETArsi excl usi on

SETA&rSh i nt er secti on

GIS : synbol { $.equal s($1);
| union { $.equal s($1);
| exclusion { $.equal s($1);

intersection “;” union { $.equal s($1.union($3));
| intersection { $.equal s($1);

exclusion “\” intersection { $.equal s($1.except($3));

.equal s($1);

factor “ ” intersection { $
| factor; { $
SETAarsh f act or

| VLarsni { $.equal s($1);
| PIVLarsn { $.equal s($1);
| ElVLarsn { $.equal s($1);

Be

.equal s($1l.intersection($3)); }

Copyright © 2000, Health Level Seven, Inc. All rights reserved.

95




HL7 Version 3 Data Types

BALLOT DRAFT 1 Revision 1.2

The following table contains paradigmatic examples for complex GTS literals. For simpler examples confer to the literal forms
for interval, periodic interval, and event related interval.

Table 22: Examples for Literal Expressions for Generic Timing Specifications.

Literal Expression

Meaning

M9 D15 H16 N30 S34.12

M1; MI3; M7
M)4-09 M 2
J1; J2; J4
w2 J2

1999 Wr15

W J6

MD5 VR J6

MD5 DMVD8- 14 J7
J1-5 HO800- 1600

J1-4 HO800-1600;

J5  H0800- 1200
[10 d] H8
HO800- 1600 \ J3

September 15 at 4:30:34.12 PM (as the intersection of multiple periodic
intervals of time)

January, March, and July (a union of three periodic intervals of time.)
Every second month from April to September (April, June, August)
Monday, Tuesday, Thursday

every other Tuesday (intersection of every other week and every Tuesday)
the 15" calendar week in 1999 (period code is optional for the highest calendar
unit)

Saturday of the 2" week of the month

Saturday of the 2™ week of May

Mother’s day (second Sunday in May.)

Monday to Friday from 8 AM to 4 PM

Monday to Thursday 8 AM to 4 PM and Friday 8 AM to 12 noon.

Three times a day over 10 days (each time a 60 minutes interval).
Every day from 8 AM to 4 PM, except Wednesday.

The following Table 23 defines symbolic abbreviations for GTS values that can be used in GTS literals
instead of their equivalent GTS term. Abbreviations are defined for common periods of the day (AM,
PM), for periods of the week (business day, weekend), and for holidays. The computation for the dates
of some holidays, namely the Easter holiday, involve some sophistication that goes beyond what one
would represent in aGTS literal term. It is assumed that the dates of these holidays are drawn from
some table or some generator module that is outside the scope of this specification.

Table 23: Abbreviations for General Timing Specifications

Code Definition Equivalent
AM Every morning at institution specified times. HO600- 1200 I ST
PM Every afternoon at institution specified times. H1200- 1800 I ST
JB Regular business days (Monday to Friday excluding holidays) J1-5 \JH
JE Regular weekends (Saturday and Sunday excluding holidays) J6-7 \JH
JH Holidays
Christian Holidays (Roman/Gregorian “Western” Tradition.)
JHCHRXME  Christmas Eve (December 24) ML224
JHCHRXMS  Christmas Day (December 25) ML225
JHCHRNEW New Year's Day (January 1) MD101
JHCHREAS  Easter Sunday. The Easter date is a rather complex calculation
based on Astronomical tables describing full moon dates.
Details can be found at [http://www.assa.org.au/edm.html, and
http://aa.usno.navy.mil/AA/fag/docs/easter.html]. Note that the
Christian Orthodox Holidays are based on the Julian calendar.
JHCHRGFR  Good Friday, is the Friday right before Easter Sunday.
JHCHRPEN  Pentecost Sunday, is seven weeks after Easter (the 50" day of
Easter.)
JHNUS United States National Holidays (public holidays for federal
employees established by U.S. Federal law 5 U.S.C. 6103.)
JHNUSMLK  Dr. Martin Luther King, Jr. Day, the third Monday in January. MD115-21 J1
JHNUSPRE  Washington’s Birthday (Presidential Day) the third Monday in MD215-21 J1
February.
JHNUSMEM  Memorial Day, the last Monday in May. MD525-31 J1
JHNUSMEMS  Friday before Memorial Day Weekend MD522-28 J5
JHNUSMEM6 Saturday of Memorial Day Weekend MD523-29 J6
JHNUSMEM7 Sunday of Memorial Day Weekend MD524-30 J7
JHNUSIND Independence Day (4th of July) M)704

JHNUSINDS  Alternative Friday before 4™ of July Weekend [5 U.S.C. 6103(b)]. M)703 J5
JHNUSIND1  Alternative Monday after 4" of July Weekend [5 U.S.C. 6103(b)]. M)705 J1

JHNUSLBR  Labor Day, the first Monday in September.

MD901-07 J1
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JHNUSCLM  Columbus Day, the second Monday in October. MLOO8- 14 J1
JHNUSVET  Veteran’s Day, November 11. ML111

JHNUSTKS  Thanksgiving Day, the fourth Thursday in November. ML122-28 J4
JHNUSTKSS5 Friday after Thanksgiving. ML123-29 J5

Note: this table is not complete. Neither does it include religious holidays other than Christian (of the Gregorian
(western) tradition), nor does it not contain national holidays on other countries. This is a limitation to be remedied
by subsequent additions.

Note: holidays are locale-specific. Exactly which religious holidays are subsumed under JH depends on the locale
and other tradition. For global interoperability, using constructed GTS expressions is safer than named holidays.
However, some holidays that depend on moon phases (e.g., Easter) or ad-hoc decree can not be easily
expressed in a GTS form.
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9

9.1

GENERIC TYPE EXTENSIONS

Generic type extensions are generic types with one parameter type, and that extend (specialize) their
parameter type. In the formal datatype definition language, generic type extensions follow the pattern:
tenpl at ed ype Th type GenericTypeExtensionName extends T { ... }; Thesegeneric
type extensions inherit most properties of their base type and add some specific feature to it. The
generic type extension is a specialization of the base type, thus a value of the extension data type can
be used instead of its base data type.

ITS Note: values of extended types can be substituted for their base type. However, an ITS may make some
constraints as to what extensions to accommodate. Particularly, extensions need not be defined for those
components carrying the values of data value properties. Thus, while any data value can be annotated outside

the data type specification, and ITS may not provide for a way to annotate the value of a data value property.

Annotated (ANT)

Annotatedarl fiiis a generic data type extension supporting arbitrary free-text annotations (note) for any
value of type T. The data type of the note property is CE, meaning that the note may be free text
(usually) or may alternatively be coded.

tenpl at e& ype Ti

type Annotated alias ANT extends T {
CE not e;

i

Note that annotations are annotations of specific values. Itisimproper use of annotations to tag
information to values which belong to another structure. For example, “ specimen hemolyzed”

isa property of a specimen, not of an observation value, and yet, in HL7 v2.x it was common to
send this as an annotation to the observation segment. T:ANY

Annotations must not be used when there are methods defined that are more robust. In HL7 Annotated : ANT
v2.x installations, there has been a great number of annotations, about reference ranges or note : CE
interpretation of values, recommendations, and more. In HL7 v3 most of this can —and must —
be communicated in properly defined data structures. For example, recommendations may be
treated as Service recommendation objects. Knowledge about interpretation can be presented in Figure 13: Annotation
adefined text attribute, or as detailed knowledge structures. Extension

Another problematic example is the utterance “forwarded to reference lab.” Thisislikely not an

annotation of any specific data attribute, but rather a complex statement about the specimen or an order. However, thisisan
interesting case that may or may not be covered by properly standardized HL 7-structures. What this shows is that such cases
should be brought to the attention of the standards committee rather than hidden in some code tagged to a data value to which it
doesn’t belong. In general, annotations should be used sparingly —amost never on aroutine basis—, or else are an indication for
ause case that should be given proper attention in the information model.

The domain of annotation notes can not be defined or circumscribed; every concept could potentially be used as
an annotation. Therefore, coded annotations are very likely to be non-standardized and non-interoperable.

HL7 does not define a standard domain of coded annotations. In the HL7 methodology, the use cases and
information requirements are explicitly modeled as well defined data elements. Instead of using coded
annotations, HL7 users and implementers should reuse this same HL7 methodology to extend the standard, e.g.,
adding new classes, fields, messages, etc. Such extended messages are not standard HL7 messages, but are
still clearer and better than lengthy tables of coded annotations; furthermore HL7 extensions may be fed into the
HL7 standardization process.

Coded annotations should therefore be only used casually and temporary, to provide immediate remedy to an
urgent business need, never to define long-lasting solutions.

9.1.1.1 note: CE

Thisisthe annotation as free-text or in coded form. Free text notes are conveyed in the original text
property of the CE value, while the code property isNULL. The annotation is meant for display to
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users or administrators or for computer-processing of exceptions. The annotation must not be used for
routine data exchange that is covered elsewhere by HL7. Example: “original wasillegible.”

9.2 History Item (HXIT)

This generic data type extension istags atime

range to its base datavalue. Thetimerangeis THANY

the time in which that datawas, is, or is SEIShISTZZ
expected to be valid. If the basetype T does 4@ - )

not possess a valid time property, the HXITAr hilisionilhISh L]

adds that property to the base type. If, carliest HXT<T> T ANy
however, the base type T does have avalid latest : HXIT<T> _

time property, that property can be mapped to earlier : HIST<T> V;'j:ge'te&<$§: T
the valid time property of the HXITAT i :

Note that data types are specifications of abstract Figure 14: History Item and History

properties of values. This specification does not mandate

how these values are represented in an ITS or implemented in an application. Specificaly, it does not mandate how the
represented components are named or positioned. In addition, the semantic generalization hierarchy may be different from a
class hierarchy chosen for implementation (if the implementation technology has inheritance.) Keep the distinction between a
type (interface) and an implementation (concrete data structure, class) in mind. The ITS must contain a mapping of I TS defined
features of any data type to the semantic properties defined here.

tenpl at e& ype Ti

type Historyltemdli al i as HXI TalA extends T {
| VLarsn val i dTi ne;

i

9.2.1 validTime : IVL &'Sh

Thetime interval during which the given information was, is, or is expected to be valid. Theinterval
can be open or closed infinite or undefined on either side.

9.3 History (HIST)

This generic data type is used to collect an entire history of any other datavalue. A history isanon-
empty set of data values that conform to the history item (HXIT) type, i.e., data values that have a
valid-time property. The history information is not limited to the past; expected future values can also

appear.

tenpl at eANY Ti
type Historyali al i as Hl STarfi ext ends SET&HXI Tari {
HXI Tarn earliest;

HI ST except Earli est;
HXI Tarn | at est;
HI ST except Lat est ;

denoti on HXI Tarf

The earliest history item is the item in the set whose valid time's low boundary (validity start time) is
less or equal (i.e. before) that of any other history item in the set. Likewise, the latest history itemis
the item in the set whose valid time's high boundary (validity end time) is greater or equal (i.e. after)
that of any other history item in the set.
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The semantics does not principaly forbid the time intervals to overlap. However, if two history items
have the same low (high) boundary in the valid time interval, it is undefined which one is considered
the earliest (latest).

Except earliest is the derived history that has the earliest item excluded. Except latest is the derived
history that has the latest item excluded.

i nvariant & ST xfi where x.nonNul |l {

X. nonEnpt y;

forall (HXIT e) where x.contains(e) {
x.earliest.validTine.lowlessOEqual (e.validTinme.|low;
x. |l atest. val i dTi me. hi gh. great er Or Equal (e. val i dTi ne. hi gh) ;

X. except Ear |l i est. equal s(x. except(x.earliest));

X. except Lat est . equal s(x. except (x. | atest));

((T)x).equal s(x.latest);

A type conversion exists between an entire history HISTarfiand a single history item HXITari This
conversion takes the latest data from the history. The purpose of this conversionisto allow an
information producer to produce a history of any value instead of sending just one value. An
information-consumer, who does not expect a history but a simple value, will convert the history to the
latest value.

Note from the definition of history item (HXIT) below, that HXITarfisemanticaly extends T. This means, that the information-
consumer expecting aT but given an HXITaTfiwill not recognize any difference (substitutability of specializations.)

ITS Note: the order of history items in the lists should be backwards in time.
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10 UNCERTAINTY AND PROBABILITY

This section defines a suite of generic data type extensions that are used to express uncertainty, probability, and frequency of
other datavalues. Thisincludes a qualitative annotation of data with a*“confidence code” (UVN), but concentrates on
quantitative specification of uncertainty using probabilities.

Figure 15: Generic Data
T:ANY .
T ANY Type Extensions for

0.*| UncertainvalueProbabilistic : UVP Uncertain Information
SET<UVP<T>> [@——=|probability : REAL

%
T:ANY T

NonParametricProbabilityDistribution : NPPD

mostLikely(INT) : SET<UDP<T>>

T:QTY T

-T : ANY

confidencelnterval(REAL) : IVL<T> UncertainvalueNarrative : UVN
probability(IVL<T>) : REAL confidence : CV
times(REAL) : PPD<T>

ParametricProbabilityDistribution : PPD
standardDeviation : T.diff

10.1 Uncertain Value — Narrative (UVN)

Thisis ageneric data type extension to specify one uncertain value tagged with a coded confidence

qualifier. The confidence qualifier is acoded representation of the confidence as used in narrative

utterances, such as “probably”, “likely”, “may be”, “would be supported”, “consistent with”,
imately”, etc.

tenplate &aype ThA
type UncertainVal ueNarrativedlfi al i as UVYNAri extends T {

cVv confi dence;

}s

10.1.1.1 confidence: CV
The confidence qualifier assigned to the value.

No standard terminology of confidence qualifiers exists, and it is unclear whether it can ever possibly exist. For
instance, is “probably” more or less confidant than “could be”? The use of the confidence qualifier is thus only
suited to communicate information between humans.

10.2 Uncertain Value — Probabilistic (UVP)

Thisis ageneric data type extension to specify one uncertain value tagged with a probability. The
probability expresses the information producer’s belief that the given value holds. How the probability
number was arrived at is outside the scope of this specification.

Probabilities are subjective and (as any pieces of data) apply in a context. The context of any dataitem is the data structure in
which that item appears. While the context dependence isimportant for any information, it is critical to understand the context
dependency of probabilities: when new information is found the probability might change. Thus, for any message (document, or
other information representation) the information —and particularly the probabilities — reflect what the information producer
believed was appropriate at the given time and for the given purpose for which the message (document) was created.
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Since probabilities are subjective measures of belief, they can be stated without being “correct” or “incorrect” per se, let alone
“precise” or “imprecise”. Notably, one does not have to entertain experiments to measure a frequency of some outcome in order
to specify a probability. In fact, whenever statements about individual people or events are made, it is not possible to confirm
such probabilities with “frequentists” experiments.

tenpl at e& ype Ti

type Uncertai nVal ueProbabi listicalfi ali as UVPalri extends T {
REAL probabi lity;

i

Thetype T is not formally constrained. In theory, discrete probabilities can only be stated for discrete datavalues. Thus,
generally UVPEREA Lfiand UV P&PQrivalues should not be stated. However, by definition a discrete value set is one that is finite
or countably infinite, and abiding by this definition any measured value or real number recorded with digitsis discrete. Thus, the
distinction between discrete and continuous valuesis not practical for our purpose. Indeed, even though integer numbers are
discrete (countably infinite) estimating a single integer number and tagging it with a probability is not reasonable. Most
textbook on statistics treat estimations of integers or ordinals as real numbers when defining the estimated value of arandom
sample X as the sum of x; xp(x) over dl x, T X.

10.2.1.1 probability : REAL

Thisisthe probability assigned to the value. The probability isarea number between 0 and 1. If the
probability is unstated (NULL), an UVPAaTfis indistinguishable from asimple datavalue T.

i nvari ant (UVPara x) where x. nonNul | . and(x. probabi lity. nonNull) {
((I' VL&REALD) [ 0; 1]) . cont ai ns(x. probabi lity);
b

Thereisno “default probability” that one can assume when the probability is unstated. Therefore, it isimpossible to make any
semantic difference between an UV Parfiwithout probability and asimple T. UV PaTfidoes not mean “uncertain”, and asimple T
does not mean “certain”. In fact, the probability of the UVPaTficould be 0.999 or 1, which is quite certain, whereasimple T
value could be avery vague guess.

10.3 Non-Parametric Probability Distribution (NPPD)

Thisis ageneric data type to specify avalue as a non-empty set of uncertain values forming a
probability distribution (histogram.) All the elementsin the set are considered alternatives and are
rated each with its probability expressing the belief (or frequency) that each given value holds.

The purpose of the non-parametric probability distribution is chiefly to support statistical data
reporting as it occurs in measurements taken from many subjects and consolidated in a histogram.
This occursin epidemiology, verterinary medicine, laboratory medicine, but also in cost controlling
and business process engineering.

Semantically, the information of a stated value existsin contrast to the complement set of unstated
possible values. Thus, semantically, a non-parametric probability distribution contains all possible
values and assigns probabilities to each of them.

ITS Note: even though semantically the NPPD assigns probabilities to all possible values, not all values need to
be represented explicitly. Those possible values that are not mentioned in a NPPD data structure will have the
rest-probability distributed equally over all unmentioned values. For example, if the value set is {A; B; C; D} but
the NPPD value states just {(B; 0.5); (C; 0.25)} then the rest-probability is 1 - 0.75 = 0.25 which is distributed
evenly over the complement set: {(A; 0.125); (D; 0.125)}. Semantically, the NPPD is the union of the stated
probability distribution and the unstated complement with rest-probability distributed evenly.
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tenpl at e& ype Ti
type NonParanetri cProbabilityDi stributionari
al i as NPPD<T> ext ends SETAJDPAT {
SETAJDPATm nost Li kel y(1 NT n);
};

Just aswith UVP, thetype T is not formally constrained, even though there are reasonable and unreasonable use cases. Typically
one would use the non-parametric probability distributions for unordered types, if only a“small" set of possible valuesis
assigned explicit probabilities, or if the probability distribution can (or should) not be approximated with parametric methods.
For other cases, one may prefer parametric probability distributions.

i nvari ant (NPPDarfi x) where x.nonNul | {
X. nonEnpt y;

X. cont ai ns(x. nost Li kel y(n));

x. most Li kel y(n).

foral | (U/P&fA d, e; SETANP&ifi nmp | NT n)

wher e x.contai ns(d)
.and(m equal s(x. nost Li kel y(n)))
.and(m contai ns(e)) {
e. greater O Equal (d). or (m contai ns(d));
i

10.4 Parametric Probability Distribution (PPD)

A parametric probability distribution is a generic data type extension specifying an uncertain value of a
quantity data type using a distribution function and its parameters. Aside from the specific parameters
of the distribution, a mean (expected value) and standard deviation is always given to help maintain
interoperability if receiving applications can not deal with a certain probability distribution.

tenpl at e&QJrY Ti
type ParanetricProbabilityDistributionadlfialias PPDarfi extends T {
T.diff st andar dDevi at i on;
CS type;
| VLarf confidencel nterval (REAL p);
REAL probabi i ty(lVLarA x) ;
PPDar ti mes(REAL Xx);
iE

Since a PPDaT fiextends the base type T, asimple T value is the mean (expected value or first moment)
of the probability distribution. Applications that can not deal with distributions will take the simple T
value neglecting the uncertainty. That simple value of type T is also used to standardize the data for
computing the distribution.
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Probability distributions are defined over integer or real numbers and normalized to a certain reference point (typically zero) and
reference unit (e.g., standard deviation = 1). When other quantities defined in this specification are used as base types, the mean
and the standard deviation are used to scale the probability distribution. For example, if a PPD&PQfifor alength is given with
mean 20 ft and a standard deviation of 2 in, the normalized distribution function f(x) that maps areal number x to a probability
would be trandated to f' (X') that maps alength X' to a probability asf’(x') = f((X’- m)/s).

Where applicable, the PPD specification conforms to the | SO Guide to the Expression of Uncertainty
in Measurement (GUM) as reflected by NIST Technical Note 1297, Guidelines for Evaluating and
Expressing the Uncertainty of NIST Measurement Results. The PPD specification does not describe
how uncertainty isto be evaluated but only how it is expressed. The concept of “standard uncertainty”
as set forth by the ISO GUM corresponds to the “ standard deviation” property of the PPD.

10.4.1.1 standardDeviation : T.diff

The standard deviation of the probability distribution. The standard deviation is used to normalize the
data for computing the distribution function. Applications that can not deal with probability
distributions can still get an idea about the confidence level by looking at the standard deviation.

The standard deviation of a probability distribution over atype T is of arelated type that can express
differences between values of type T. If TiSREAL or INT, T.diff isalso REAL or INT respectively.
However if T isapoint intime (TS), T.diff isaphysical quantity (PQ) in the dimension of time.

The standard deviation iswhat SO GUM calls “ standard uncertainty.”

10.4.1.2 type: CS

This code specifies the type of probability distribution. Possible values are as shown in the attached
table. The NuLL value (unknown) for the type code indicates that the probability distribution typeis
unknown. In that case, the standard deviation has the meaning of an informal guess.

Table 24 lists the defined probability distributions. Many distribution types are defined in terms of
special parameters (e.g., the parametersa and b for the g-distribution, number of degrees of freedom
for the t-distribution, etc.) For all distribution types, however, the mean and standard deviation are
defined. The PPD datatype is specified with the parameters mean and standard distribution only. The
definition column in Table 24 contains the relationship between the special parameters and the mean m
and standard deviation s.

ITS Note: an ITS does not need to represent any of the specialized parameters for the distribution types. As it
turns out, all of these specialized parameters can be calculated from the mean and standard deviation.

Table 24: Probability Distribution Types.

Name Code Definition

unknown (NuLL) Used to indicate that the mean is estimated without any closer consideration of its
probability distribution. In this case, the meaning of the standard deviation is not crisply
defined. However, interpretation should be along the lines of the normal distribution, e.g.,
the interval covered by the mean 1 standard deviation should be at the level of about
two thirds confidence.

uniform U  The uniform distribution assigns a constant probability over the entire interval of possible
outcomes, while all outcomes outside this interval are assumed to have zero probability.
The width of this interval is 2 s (8. Thus, the uniform distribution assigns the probability
densities f(x) = (2's €B)* tovaluesm- s (B 3 x£m +s B and f(x) = 0 otherwise.

normal N This is the well-known bell-shaped normal distribution. Because of the central limit

(Gaussian) theorem, the normal distribution is the distribution of choice for an unbounded random
variable that is an outcome of a combination of many stochastic processes. Even for
values bounded on a single side (i.e. greater than 0) the normal distribution may be
accurate enough if the mean is "far away" from the bound of the scale measured in terms
of standard deviations.

log-normal LN  The logarithmic normal distribution is used to transform skewed random variable X into a
normally distributed random variable U = log X. The log-normal distribution can be
specified with the properties mean mand standard deviation s. Note however that mean
mand standard deviation s are the parameters of the raw value distribution, not the
transformed parameters of the lognormal distribution that are conventionally referred to
by the same letters. Those log-normal parameters myg and sq4 relate to the mean mand
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standard deviation s of the data value through so4° = log (s?/nf + 1) and mg = log m-
2
Slog 12.
g (gamma) G  The gamma-distribution used for data that is skewed and bounded to the right, i.e. where
the maximum of the distribution curve is located near the origin. The g-distribution has a
two parameters a and b. The relationship to mean mand variance s”is m=a b and s =

a b’

exponential E Used for data that describes extinction. The exponential distribution is a special form of
gdistribution where a = 1, hence, the relationship to mean mand variance s® are m=b
and s® = b%.

c? (chi square) X2  Used to describe the sum of squares of random variables which occurs when a variance

is estimated (rather than presumed) from the sample. The only parameter of the ¢
distribution is n, so called the number of degrees of freedom (which is the number of
independent parts in the sum). The c?-distribution is a special type of g-distribution with
parametera=n/2andb =2. Hence, m=nands®=2n.

t (Student) T Used to describe the quotient of a normal random variable and the square root of a ¢
random variable. The t-distribution has one parameter n, the number of degrees of
freedom. The relationship to mean m and variance s” are: m=0and s>=n/(n- 2)

F F Used to describe the quotient of two c¢? random variables. The F-distribution has two
parameters n; and n,, which are the numbers of degrees of freedom of the numerator
and denominator variable respectively. The relationship to mean m and variance s? are:
m=n,/ (nz- 2)and s>= (2 Ny (N2 + Ny - 2))/ (ny (N2 - 2)% (N - 4)).

b (beta) B The beta-distribution is used for data that is bounded on both sides and may or may not
be skewed (e.g., occurs when probabilities are estimated.) Two parameters a and b are
available to adjust the curve. The mean mand variance s relate as follows: m= a/ (a +
b) and s? = ab/((a + b)* (a + b + 1)).

The three distribution-types unknown (NULL), uniform and normal must be supported by every system
that claimsto support PPD. All other distribution types are optional. When a system interpreting a
PPD representation encounters an unknown distribution type, it maps this type to the unknown (NULL)
distribution-type.

10.4.1.3 Literal Form
The parametric probability distribution has aliteral form. The general syntax is asfollows:

PPD. literal ST {
PPDari : T “(” type T.diff “)” { ((T)$).equal s($1);
$. type. equal s($3) ;
$. st andar dDevi ati on. equal s($4); };

CV type : ST { $.val ue. equal s($1);
$. system equal s(); };

}s

Examples: an example for a PPD&REALRAIs“1. 23( NO. 005) " for anorma distribution of areal number around 1.23 with a
standard deviation of 0.005. An example for aPPD&PQfis“1. 23 m (5 mm) " for adistribution of unknown type around the
length 1.23 meter with a standard deviation of 5 millimeter. An example for a PPDarsiis“2000041113( U4 h) " fora
uniform distribution around April 11, 2000 at 1pm with standard deviation of 4 hours.

10.4.2 Probability Distribution over Real Numbers (PPD&REAL)
The parametric probability distribution of real numbersisfully defined by the generic data type.

type ParanetricProbabilityDistributi ondREALM al i as PPDaREALTL

However, there are some special considerations about literal representations and conversions of probability distributions over
real numbers, which is defined in this section.
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10.4.2.1 Converting a real number (REAL) to an uncertain real number (PPD&REALR)

When converting a REAL into a PPD&REALN the standard deviation is calculated from the REAL
value' s order of magnitude and precision (number of significant digits). Let x be area number with
precision n. We can determine the order of magnitude e of x as e = log, [x| where e is rounded to the
next integer that is closer to zero (special case: if xis zero, eiszero.) The value of least significant
digit | isthen | = 10° " and the standard deviation s iss =1/ 2.

Table 25: Examples standard deviation computed from precision and order of magnitude.

Representation X e p e-p+1 I s
0 0 (0) 1 0 1 05
1 1 0 1 0 1 0.5
2 2 0 1 0 1 0.5
9 9 0 1 0 1 0.5
10 10 1 2 0 1 0.5
100 100 2 3 0 1 0.5
le+l 10 1 1 1 10 5
le+2 100 2 1 2 100 50
10e+1 100 2 2 1 10 5
1.1 1.1 0 2 -1 0.1 0.05
10.1 10.1 1 3 -1 0.1 0.05
1. 1le+2 110 2 2 1 10 5
1.1e-2 0.011 -2 2 -3 0.001 0.0005
1.1e-4 0.00011 -4 2 -5 0.00001 0.000005
10. 1le-4 0.00101 -3 3 -5 0.00001 0.000005
0.1le-1 0.01 -2 1 -2 0.01 0.005
0.0le-1 0.001 -3 1 -3 0.001 0.0005
0.0le-2 0.0001 -4 1 -4 0.0001 0.00005
0.00 0 (0) 3 -2 0.01 0.005

10.4.2.2 Concise Literal Form for PPD&REALIi

Besides the generic literal form of the PPD defined in Section 10.4.1.3, a concise literal form is defined
for PPD over real numbers. This concise literal form is defined such that the standard deviation can be
expressed in terms of the least significant digit in the mantissa. Thisliteral is defined as an extension
of the REAL literd:

PPDE&REALA literal ST {
PPDEREAL mant i ssa
REAL. manti ssa “(” type T.diff “)” { ((T)$).equal s($1);
$. type. equal s($3);
$. st andar dDevi ati on. equal s($4); }
{ $.equal s(%$1);
$. type. equal s($3);

| REAL. mantissa

$. st andar dDevi ati on. equal s($1.1eastSignificantDigit.tinmes(0.5)); };

CS type : ST { $.val ue. equal s($1);
$. syst em equal s(2.16.840.1.113883.5.1019); };
i

Examples: “1. 23e- 3 (U5e- 6) ” isathe unifom distribution around 1.23 " 103 with 5~ 10°% standard deviation in generic
literal form. “1. 230( U5) e- 3" isthe same valuein concise literal form.
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10.4.3 Parametric Probability Distributions over Physical Quantities (PPD&QM)

A parametric probability distribution over physical quantitiesis constructed from the generic PPD
type. However, recognizing that the unit can be factored from the boundaries, we add additional
semantics and a separate literal form. The additional view of a probability distribution over physical
quantities is a probability distribution over real numbers with one unit.

type ParanetricProbabilityDistributiondP(i alias PPDEPQH {
PPDE&REALA val ue;
CS uni t;

The unit applies to both mean and standard deviation.

i nvari ant (PPD&PQA x) where x.nonNul | {

x. val ue. nonNul | ;

((REAL) x. val ue) . equal s(((PQ x) . val ue);
x.unit.equal s(((PQX).unit);
x. val ue. st andar dDevi at i on. equal s(x. st andar dDevi ati on. val ue) ;

x. st andar dDevi ati on. uni t. equal s(x.unit);

B

10.4.3.1 Concise Literal Form for PPD&Q

A concise literal form for probability distributions of physical quantitiesis defined based on the
concise literal form of PPD&REALf(cf. Secion 10.4.1.3) where REAL isthevalue. Thislitera is
defined as an extension of the PQ literal.

PPDPQN | i teral ST {
PPD&PQN : PPDEREALA “ " uni t { $.val ue. equal s($1);
$. uni t. equal s($3); }

Examples. “1. 23e-3 m (N5e- 6 m) ” isthe normal-distributed length of 1.23" 10 mwith 5" 10°® m standard deviation in
generic literal form. “1. 230( N5) e- 3 nf isthe samevaluein concise literal form. “1. 23e- 3( NO. 005e- 3) m” isaso
valid; it isthe concise literal form for PPD&PQf combined with the generic literal form for PPD&REALfi

10.4.4 Probability Distribution over Time Points (PPDArsm)
The parametric probability distribution over time pointsis fully defined by the generic data type.

type ParanetricProbabilityDi stributionalSA alias PPDarsf

Note that the standard deviation is of type TS.diff, which isaduration (a physical quantity in the dimension of time.)

10.4.4.1 Converting a point in time (TS) to an uncertain point in time (PPDar s

When converting a TS into a PPDAT SA the standard deviation is calculated from the TS value's order
of magnitude and precision (number of significant digits) such that two standard deviations span the
maximal time range of the digits not specified. For example, in 20000609 the unspecified digits are
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hour of the day and lower. All these digits together span a duration of 24 hours, and thus, the standard
deviation s iss = 12 h from 20000609000000.0000... up to 20000609999999.9999... (= 20000610)

Thisruleis different from real numbersin that the range of uncertainty lies above the time value specified. Thisisto go with the
common sense judgement that June 9™ spans all day of June 9" with noon as the center, not midnight.
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A OBJECT IDENTIFIERS (NORMATIVE)

Note: some details of this table, namely the branches 5 and 6 (code systems) are subject to change in the
weeks of the ballot.

The HL7 root Object Identifier is

“Joint 1ISO/ITU-T (2) . Country Assignments (16) . United States of America (840) .
U.S Organizations (1) . Health Level Seven (113883)”; or “2.16.840.1.113883" for short.

Within the HL7 branch of OIDs the assignments of Table 26 are made. The Control Query Technical
Committee (CQ) is charged with the ongoing maintenance of the OID assignments. For this purpose,
CQ with the assistance of the HL7 headquarter will put into place a subcommittee or commissioner as

well as technical infrastructure so that applications for new OID assignments can be processed in a

timely manner.

Some OID branches will be assigned to the stewardship of other technical committees, which means
that suggestions for additions on these branches must come from the respective steward committee.

Upon reguest, the CQ committee shall assign one OID to all HL7 members and users (including non-
members) who do not have an OID already.

Table 26: HL7 Assigned Object Identifiers

Object Identifier

Definition

2.16.840.1.113883

Root of Health Level Seven’s Object Identifier subtree.

2.16.840.1.113883.3

Object identifiers assigned to HL7 members, users, and vendors.

2.16.840.1.113883.4
2.16.840.1.113883.4.1

2.16.840.1.113883.4.2

HL7 recognized external identifiers

United States Social Security Number (SSN). Assigned by the U.S. Social Security
Administration. Note: IRS assigned ITINs are often used as drop-ins for social security
numbers.

United States Individual Taxpayer Identification Number (ITIN). Assigned by the U.S.
Internal Revenue Service (IRS) to alien taxpayers not eligible to a social security number.
ITIN are used as drop-ins for Social Security Numbers.

2.16.840.1.113883.4.3

2.16.840.1.113883.4.3.1
2.16.840.1.113883.4.3.2
2.16.840.1.113883.4.3.4
2.16.840.1.113883.4.3.5
2.16.840.1.113883.4.3.6
2.16.840.1.113883.4.3.8
2.16.840.1.113883.4.3.9
2.16.840.1.113883.4.3.10
2.16.840.1.113883.4.3.11
2.16.840.1.113883.4.3.12
2.16.840.1.113883.4.3.13
2.16.840.1.113883.4.3.15
2.16.840.1.113883.4.3.16
2.16.840.1.113883.4.3.17
2.16.840.1.113883.4.3.18
2.16.840.1.113883.4.3.19
2.16.840.1.113883.4.3.20
2.16.840.1.113883.4.3.21
2.16.840.1.113883.4.3.22
2.16.840.1.113883.4.3.23
2.16.840.1.113883.4.3.24
2.16.840.1.113883.4.3.25
2.16.840.1.113883.4.3.26

United States Driver License Number. These identifiers are assigned by each state. The
OID numbers in this branch have been assigned according to FIPS PUB 5-2 numeric state
codes. U.S. territories have not been included. This branch is to be maintained such that
each driver license assigning authorities has one entry, independent of political
organization and independent of FIPS PUB 5-2.

Alabama Driver License Bureau

Alaska Driver License Bureau

Arizona Driver License Bureau

Arkansas Driver License Bureau

California Driver License Bureau

Colorado Driver License Bureau

Connecticut Driver License Bureau

Delaware Driver License Bureau

District of Columbia Driver License Bureau

Florida Driver License Bureau

Georgia Driver License Bureau

Hawaii Driver License Bureau

Idaho Driver License Bureau

lllinois Driver License Bureau

Indiana Bureau for Motor Vehicles (BMV)

lowa Driver License Bureau

Kansas Driver License Bureau

Kentucky Driver License Bureau

Louisiana Driver License Bureau

Maine Driver License Bureau

Maryland Driver License Bureau

Massachusetts Driver License Bureau

Michigan Driver License Bureau
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2.16.840.1.113883.4.3.27
2.16.840.1.113883.4.3.28
2.16.840.1.113883.4.3.29
2.16.840.1.113883.4.3.30
2.16.840.1.113883.4.3.31
2.16.840.1.113883.4.3.32
2.16.840.1.113883.4.3.33
2.16.840.1.113883.4.3.34
2.16.840.1.113883.4.3.35
2.16.840.1.113883.4.3.36
2.16.840.1.113883.4.3.37
2.16.840.1.113883.4.3.38
2.16.840.1.113883.4.3.39
2.16.840.1.113883.4.3.40
2.16.840.1.113883.4.3.41
2.16.840.1.113883.4.3.42
2.16.840.1.113883.4.3.44
2.16.840.1.113883.4.3.45
2.16.840.1.113883.4.3.46
2.16.840.1.113883.4.3.47
2.16.840.1.113883.4.3.48
2.16.840.1.113883.4.3.49
2.16.840.1.113883.4.3.50
2.16.840.1.113883.4.3.51
2.16.840.1.113883.4.3.53
2.16.840.1.113883.4.3.54
2.16.840.1.113883.4.3.55
2.16.840.1.113883.4.3.56

Minnesota Driver License Bureau
Mississippi Driver License Bureau
Missouri Driver License Bureau
Montana Driver License Bureau
Nebraska Driver License Bureau
Nevada Driver License Bureau

New Hampshire Driver License Bureau
New Jersey Driver License Bureau
New Mexico Driver License Bureau
New York Driver License Bureau
North Carolina Driver License Bureau
North Dakota Driver License Bureau
Ohio Driver License Bureau
Oklahoma Driver License Bureau
Oregon Driver License Bureau
Pennsylvania Driver License Bureau
Rhode Island Driver License Bureau
South Carolina Driver License Bureau
South Dakota Driver License Bureau
Tennessee Driver License Bureau
Texas Driver License Bureau

Utah Driver License Bureau

Vermont Driver License Bureau
Virginia Driver License Bureau
Washington Driver License Bureau
West Virginia Driver License Bureau
Wisconsin Driver License Bureau
Wyoming Driver License Bureau

2.16.840.1.113883.4.4

2.16.840.1.113883.4.5

U.S. IRS Assigned Employer Identification Number EIN. An EIN is a nine-digit number (for
example, “12-3456789") assigned to sole proprietors, corporations, partnerships, estates,
trusts, withholding agents, and other entities for tax filing and reporting purposes. An EIN
can not be used in place of a social security number (SSN).

U.S. IRS Assigned Preparer Tax Identification Number PTIN. Section 3710 of the Internal
Revenue Service Restructuring and Reform Act of 1998 defines the PTIN. The PTIN has
the form of an SSN. Itis used as an alias SSN to identify paid preparers of tax returns.

2.16.840.1.113883.5

2.16.840.1.113883.5.1
2.16.840.1.113883.5.2
2.16.840.1.113883.5.n

HL7 maintained code systems. (Steward: Vocabulary TC)
Sex code

Marital status

HL7 version 2.x table, where n is the table number and n < 1000.

2.16.840.1.113883.5.1001
2.16.840.1.113883.5.1002
2.16.840.1.113883.5.1003
2.16.840.1.113883.5.1004
2.16.840.1.113883.5.1007
2.16.840.1.113883.5.1008
2.16.840.1.113883.5.1009
2.16.840.1.113883.5.1010
2.16.840.1.113883.5.1011
2.16.840.1.113883.5.1012
2.16.840.1.113883.5.1013
2.16.840.1.113883.5.1014
2.16.840.1.113883.5.1015
2.16.840.1.113883.5.1016
2.16.840.1.113883.5.1017

2.16.840.1.113883.5.1018.1
2.16.840.1.113883.5.1018.2

2.16.840.1.113883.5.1019
2.16.840.1.113883.5.1020

2.16.840.1.113883.5.1021
2.16.840.1.113883.5.1022

Service mood code.

Service relationship type code

Service actor type code

Service target type code

Data type code. As specified by this specification.

Flavors of null. As specified in Table 3 of this specification.

Compression codes. As specified by Table 6 of this specification.

Integrity check algorithm. As specified by Table 7 of this specification.
Telecommunication address use code. As specified in Table 9 of this specification.
Postal Address use code. As defined by Table 11 of this specification.

Postal Address part type code. As defined by Table 10 of this specification.
Person Name part type as defined by Table 12 of this specification

Person Name part qualifier as defined by Table 13 of this specification.
Organization name type code as defined by Table 14 of this specification.
Calendar type. As specified in Section Table 17 of this specification.

Calendar cycle one letter code. As specified in Table 18 of this specification.
Calendar cycle two letter code. As specified in Table 18 of this specification.
Probability distribution type code. As specified in Table 24 of this specification.
Periodic Interval of Time literal abbreviations. As specified in Table 20 of this
specification.

GTS literal abbreviation. As specified in Table 23 of this specification.

Event codes for event-related periodic intervals, as specified by table Table 21.

2.16.840.1.113883.6
2.16.840.1.113883.6.1

External coding systems known to HL7. (Steward: Vocabulary TC)
Logical Observation Identifier Names and Codes (LOINC)
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2.16.840.1.113883.6.2
2.16.840.1.113883.6.3
2.16.840.1.113883.6.4
2.16.840.1.113883.6.5
2.16.840.1.113883.6.6
2.16.840.1.113883.6.7
2.16.840.1.113883.6.8
2.16.840.1.113883.6.9
2.16.840.1.113883.6.10
2.16.840.1.113883.6.11

2.16.840.1.113883.6.12
2.16.840.1.113883.6.13
2.16.840.1.113883.6.14

International Classification of Diseases revision 9, with Clinical Modifications (ICD 9 CM)
International Classification of Diseases revision 10 (ICD 10)

ICD Procedure Coding System (ICD 10 PCS)

Systemized Nomenclature in Medicine (SNOMED)

The Read code

NAACCR Cancer Registry

Unified Code for Units of Measure

ISO 4217 currency code

IETF MIME media types

Universal Resource Locator (URL) schemes. Currently there is no single authority for
URL schemes. The authority for URL scheme assighments clearly lies within IANA or
W3C and it is likely that a formal URL/URI assigning authority will be formed soon.
American Medical Association’s Current Procedure Terminology 4 (CPT-4) codes.
American Dental Association’s Current Dental Terminology 2 (CDT-2) codes.
Healthcare Financing Administration (HCFA) Common Procedure Coding System
(HCPCS). Is composed of three “levels”. Level | is CPT-4, level Il is CDT-2, and level 3
are the HCPCS modifiers. Only the HCPCS modifiers are maintained by the Alpha-
Numeric Editorial Panel, consisting of the Health Insurance Association of America and
the Blue Cross and Blue Shield Association.
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B SUMMARY OF FORMAL DEFINITIONS

This section is asummary of the formal definition. It has been automatically extracted from the body

of this specification.
protected type DataType extends DataVal ue {

CE narme;

}s

abstract type DataVal ue alias ANY {
Dat aType dataType;

BL nonNul | ;

CS nul | Fl avor ;

BL i sNulI;

BL not Appl i cabl e;
BL unknown;

BL ot her;

BL equal s(ANY x);

}s

i nvariant (ANY x) {
x. dat aType. nonNul | ;

i nvari ant (ANY x) {
x. nonNul | . equal s(x. nul | Fl avor.isNull);
X.isNull.equal s(x.nonNull.not);

}s

i nvari ant (ANY x) {

x. not Appl i cabl e. equal s(x. nul | Fl avor.inplies(NA));

X. unknown. equal s(x. nul | Fl avor.inplies(UNK));
x. ot her. equal s(x.nul |l Fl avor.inplies(QOTH));

}s

i nvari ant (ANY x) where x.nonNull {
x. dat aType. nonNul | ;
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invariant (ANY x, vy, z)
where x.nonNull.and(y.nonNull).and(z.nonNull)

{
x. equal s(x); [* reflexivity */
x. equal s(y) . equal s(y. equal s(x)); /[* symretry */
x. equal s(y).and(y. equal s(z)).inplies(x.equals(z)) /* transitivity */
x. equal s(y).inplies(x.dataType. equal s(y. dataType);

}

type Bool ean alias BL extends ANY
val ues(true, false)

{
BL and(BL x);
BL not ;
literal ST,
BL or(BL X);
BL eor (BL x);
BL i mplies(BL x);
b

invariant (BL x) {
true. not. equal s(fal se);
fal se. not. equal s(true);
X.isNull.equal s(x.not.isNull)

}s

invariant (BL x) {
x.and(true).equal s(x);
x. and(fal se). equal s(fal se);

}s

invariant(BL x, y) where x.isNull.and(y.isNull) {
x.and(y).isNull;

}s

invariant(BL x, y) {
x.or(y).equal s(x.not.and(y.not).not);
x. eor(y).equal s(x.or(y).and(x.and(y).not));

}s
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invariant (BL condition, conclusion) {

condi tion.inplies(conclusion).equal s(condition.not.or(conclusion));

}s

protected type BinaryData alias BIN extends LI ST&BLf

invariant (BIN x) where x.nonNull {
X. nonEnpt y;
x. | engt h. great er Than(0) ;

i

type EncodedData alias ED extends BIN {

G type;

Cs charset;

CS | anguage;

CS conpr essi on;

TEL reference

BI N i ntegrityCheck;

CS i ntegrityCheckAl gorithm
ED t hunbnai | ;

BL equal s(ED x);

}s

invariant (ED x) where x.nonNull {
X.type. nonNul I ;

}s

invariant (ED x) where x.thunbnail.nonNull {
X. thunbnail . t hunbnail .isNull;

s

type CharacterString alias ST restricts ED {
I NT | engt h;
ST head;
ST tail;
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invariant (ST x) where x.nonNull {
X.type. equal s(“text/plain”);
. conpr essi on. not Appl i cabl e;
.ref erence. not Appl i cabl e;

.integrityCheckAl gorithm not Appl i cabl e;

X
X
X. i ntegrityCheck. not Appli cabl e;
X
X. t hunbnai | . not Appl i cabl e;

invariant (ST x) where x.nonNull {
x. head. nonEnpty;
Xx. head. tail.isEnpty;

x.tail.isEmpty.inplies(x.|ength.equals(1));

x.tail.nonEnpty.inplies(x.length.equal s(x.tail.length.successor));
b
ST.literal ST {
ST . ["[7~]*"] { $.equal s($1); } /* quoted string */
| /[a-zA-Z0-9 1+ { $.equals($1); }; /* token form*/
b
t ype ConceptDescriptor alias CD extends ANY {
ST code;
ST di spl ayNane;
ab codeSystem
ST codeSyst enNane;
ST codeSyst enVer si on;
ED ori gi nal Text;

LI ST<CR> nodifier;
SET<CD> transl ati on;

BL equal s(CD x);
BL i mplies(CD x);

denption ED;

}s

invariant (CD x) where x.nonNull {
x. code. nonNul | ;

}s
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i nvariant (CD x) where x.code.nonNull {

X. codeSyst em nonNul | ;

invariant (CD x) where x.other {
x. code. i sNul | ;

X. codeSyst em nonNul | ;

invariant (CD x) {

X. codeSyst emNare. nonNul | . i npl i es(x. codeSystem nonNul |');

invariant (CD x) {

X. codeSyst emVer si on. nonNul | . i npl i es(x. codeSystem nonNul |');

}s

invariant(CD x, y) x.nonNull.and(y.nonNull) {
x. equal s(y) . equal s(x. code. equal s(y. code)
.and(x. codeSyst em equal s(y. codi ngSyst em)

.and(x. nodi fier.equal s(y.nodifier)));

invariant (CD x) {

x. di spl ayName. nonNul | . i npl i es(x. code. nonNul | );

invariant (CD x) where x.text.nonNull {
((ED) x) . equal s(x.text);

s

protected type ConceptRole alias CR extends ANY {
cv nane;
BL i nverted;
CD val ue;

invariant (CR x) where x.nonNull {

X. nane. nodi fier.isNull;

i nvariant (CR x) where x.nonNull {

x. val ue. nonNul | ;

}s
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type CodedSi npl eVal ue alias CS restricts CD {
ST code;
ST di spl ayNane;

s

invariant (CS x) {
X. codeSyst em equal s( CONTEXT. codeSyst en) ;
x. codeSyst enmVer si on. equal s( CONTEXT. codeSyst enVer si on) ;
X. codeSyst emNane. equal s( CONTEXT. codeSyst enNane) ;

x.original Text.isNull;
x.transl ation.isNull;
x. nmodi fi er. not Appl i cabl e;

b

type CodedVal ue alias CV restricts CD {
ST code;
ab codeSystem
ST codeSyst enNane;
ST codeSyst enVer si on;
ST di spl ayNane;
ST ori gi nal Text;

}s

invariant (CS x) {
x.transl ation.isNull;

x. modi fi er. not Appl i cabl e;

s
type CodedWt hEqui val ents alias CE restricts CD {
ST code;
ST di spl ayNane;
ab codeSystem
ST codeSyst enNane;
ST codeSyst enVer si on;
ED ori gi nal Text;

SET<CV> transl ation;
}s

invariant (CS x) {
x. modi fi er. not Appl i cabl e;

}s
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type Objectldentifier alias OD extends ANY {

| NT val ue;
ab nanespace;
literal ST;
denotion LI STA NTii
s
literal ST {
AOD: AaD*“.” INT { $. nanmespace().equal s($1);
$. val ue() . equal s($3); }
| I'NT { $.value().equal s($1); }
}
type Instanceldentifier alias Il extends ANY {
ST ext ensi on;
ab r oot ;
ST assi gni ngAut hori t yNane;
cv type;
| VLArSi val i dTi ne;
BL equal s(Il x);
s

invariant(ll x) where x.nonNull {

root. nonNul | ;

}s

invariant(ll x, y) where x.nonNull.and(y.nonNull) {
x. equal s(y) . equal s(x. root.equal s(y.root)
.and(x. extensi on. equal s(y. extension)));

}
protected type Universal ResourcelLocator alias URL extends ANY {
CS schene;
ST addr ess;
literal ST;

URL.literal ST {
URL : /[a-z0-9+.-]+/ “:" ST { $.schene. equal s($1);
$. addr ess. equal s($3);

}
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proctected type Tel ephoneURL restricts URL {

literal ST {
URL : /(phone)|(fax)/ “:” address { $.schene. equal s($1);
$. addr ess. equal s($3); };
ST address : “+" phoneDigits

ST phonebDigits : digitO Separator phoneDigits | digitO Separator

ST digitOrSeparator : digit | separator;
ST digit : /[0..9]/;

ST separat or

Iee.--11;

type Tel ecomuni cati onAddress alias TEL extends URL {

GI'S

val i dTi ne;

SET&CSH use;

BL

i nvariant (TEL x,

equal s(TEL x);

y) x.nonNull.and(y.nonNull) {

x. equal s(y).equal s(((URL)x).equal s((URL)Y));

protected type AddressPart alias ADXP extends ST {
G type;

type Post al AndResi denti al Address alias AD extends LI STAADXPq {
GTS val i dTi nme;
SET&CSA use;

BL equal s(AD x);

ST formatted;

invariant (TEL x, y) x.nonNull.and(y.nonNull) {
x. equal s(y) . equal s(( (LI STAADXP) x) . equal s( (LI STAADXPA y)) ;
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protected type PersonNanePart alias PNXP extends ST {

G type;
SET&CSH qualifier;

type PersonNanmeType alias PN extends LI ST&PNXPfi {

ST formatted;

s

type Organizati onNane alias ON extends ST {
CS type;

s

abstract type Quantity alias QIY extends ANY {
BL | essOr Equal (QTY x);
BL conpares(QTY x);

type qQry diff;

di ff m nus(QTY Xx);
qQry plus(diff x);
BL i sZero;
BL | essThan(QTY x);
BL greater O Equal (QTY x);
BL greater Than(QTY Xx);

}s

invariant (QIY x, vy, 2)

where x.nonNull.and(y.nonNull).and(z.nonNull) {

X. | essOr Equal (x);
x. | essOr Equal (y)
.inmplies(y.lessOEqual (x)).not();
X. |l essO Equal (y).and(y. | essO Equal (z))
.implies(x.lessOEqual (2))

x

x

.greaterO Equal (y).equal s(y. | essO Equal (x));

x

.greaterThan(y).equal s(y.lessThan(x));

x

/* reflexive */

/* asymetric */

/* transitive */

.l essThan(y) . equal s(x. | essOr Equal (y).and(x.equal s(y).not));

.conpares(y).equal s(x.lessO Equal (y).or(y.lessOr Equal (x)));
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invariant (QIY x, y) where x.conpares(y) {

X. mnus(y).nonNul I ;
X. m nus(x).isZero;
X. plus(y.mnus(x)).equal s(y);
b
type IntegerNunmber alias INT extends QTY {
I NT successor;
I NT pr edecessor;
type I NT diff;
diff m nus( I NT x);
I NT plus(diff x);
| NT negat ed;
BL i sNegati ve;
BL nonNegati ve
I NT times(INT x);
I NT ti mesTen();
literal ST;

pronotion REAL;

}s

invariant (I NT x, y) where x.nonNull.and(y.nonNull) {

X.

y.
X.

X X X X

successor. great er Than(x) ;
great er Than(x) . and(y. | essThan(x. successor)). not;

successor . predecessor. equal s(x);

.plus(0).equal s(x);
. great er Than(0)

.implies(x.plus(y).equals(x.plus(y.predecessor).successor);

.l essThan(0).inplies(x.plus(y).equal s(x.plus(y.successor).predecessor);

. pl us(x. negat ed) . i sZero;
.mnus(y).equal s(x.plus(y.negated));
.nonNegat i ve. equal s(0. | essO Equal (x));

.nonNegat i ve. equal s(x.i sNegative.not);
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X
X

X

y

.tinmes(0). equal s(0);
.tinmes(1l).equal s(x);
.times(-1).equal s(x.negated);
.greaterThan(1)

.implies(x.times(y).equal s(x.times(y.predecessor).plus(x)));

}s

y.lessThan(-1).inplies(x.times(y).equal s(x.times(y.negated).negated));
x.timesTen. equal s(x.tines(10));
S
INT.literal ST {
INT : uint { $.equals($1); }
| “+" uint { $.equals($2); }
| “-" uint { $.equal s($2.negated); };
I NT ui nt digit { $.equals($1); }
| nunber digit { $.equal s($1.timesTen().plus($2));
INT digit : "O" { $.isZero; }
[ " { $.equal s(0.successor); }
| "2 { $.equal s(1.successor); }
| { $.equal s(7.successor); }
| { $.equal s(8.successor); };
}
type Real Nunber alias REAL extends QTY {
type REAL diff;
di ff m nus( REAL Xx);
REAL plus(diff x);
REAL negat ed;
REAL ti mes(REAL Xx);
REAL i nverted,
REAL timesTen;
REAL t ent hs;
REAL power ( REAL Xx);
literal ST,
I NT pr eci si on;
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denotion | NT;
promotion PQ
pronotion RTO

invariant (REAL x, vy, 2)
where x.nonNull.and(y. nonNunm . andz. nonNul ') {

X. pl us(0). equal s(x) /* neutral elenent */
x. pl us(x. negat ed) . equal s(0) /* inverse el enent */
x. plus(y).plus(z).equal s(x.plus(y.plus(z))); /* associative */

x. plus(y).equal s(y. plus(x)) /* comutative */
x.times(0).equal s(0);

x.times(1). equal s(x); /* neutral elenent */
x.times(x.inverted).equal s(1) /* inverse el enent */
O.inverted.isNull; /* ...except for zero */
x.times(y).times(z).equal s(x.times(y.tinmes(z)));/* associative */
x.times(y).equal s(y.times(x)); /* commut ative */
x.times(y.plus(z)) /* distributive */

.equal s(x.tinmes(y).plus(x.tines(z));

x.timesTen. equal s(x.tines(10));

x

.tinmesTen. tent hs. equal s(x);

X. power (0). equal s(1);
X. power (1) . equal s(x);
X. power (y). power (z).equal s(x. power(y.times(z)));
X. power (y).times(x. power(z)).equal s(x.power(y.plus(z)));
X. power (y).inverted. equal s(x. power (y. negated));
X. pover (y). power (y.inverted). equal s(x);
b
REAL. literal ST {
REAL : mantissa { $.equals($1); }
| mantissa /[eE]/ INT { $.equal s($1

.times(10. power($3)); };
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REAL manti ssa

/10*/ 0
| 70*/ “.” [O*/
| /70*/ “.” J0*/ fractional
| integer
| integer “.” fractiona
REAL i nt eger
ui nt val
| “+” uintva
| “-" uintva
REAL ui ntval [ 0*/ uint
REAL ui nt digit
| uint digit

REAL fractiona
digit

| digit fractiona

INT digit

}s

/[0-9]/

type Ratio alias RTO extends QTY {

{

~

©»

.isZero; $.precision.equals(l); }
$.isZero; $.precision.equal s(
$3. 1 engt h. successor); }

$. equal s($4);

$. preci si on. equal s($4. precision); }

$. equal s($1); }

$. equal s($1. pl us($2));

$. preci si on. equal s($1. preci si on
.plus($3.precision)); };

$. equal s(%$2); }

$. equal s($1.tinmes($2)); }
$. equal s($1.times($2).negated); };

$. equal s($2); };

$. equal s($1);
$. precision.equal s(1); }
$. equal s($1.ti mesTen. pl us(%$2));
$. preci si on. equal s(

$1. preci sion. successor; };
$. equal s($1.tenths);
$. precision.equal s(1); }
$. equal s($1. pl us($2.tenths));
$. preci si on. equal s(

$1. preci si on. successor); };
$. equal s($1); }

Qry numer at or;
qQry denom nat or;
denotion REAL;
denotion PQ
b
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i nvari ant (RTO x) where x.nonNull {

X. denom nator.isZero().not();

i
RTO. literal ST {
RTO : QrY { $. nunerator.equal s($1);
$. denom nator. equal s((INT)1); };
| Qry “:” Qry { $.nunerator.equal s(%$1);

$. denomi nat or . equal s($3); };

}s

type Physical Quantity alias PQ extends QrIY {

REAL val ue;
CS uni t;
BL equal s(PQ x)
BL | essOr Equal (PQ x);
BL conpar es(PQ x);
PQ canoni cal ;
type PQ di ff
diff m nus( PQ x) ;
PQ plus(diff x);
PQ negat ed;
PQ ti mes(REAL Xx);
PQ times(PQ x);
PQ i nverted;
PQ power (I NT Xx);
literal ST;
denotion REAL;

}s

invariant (PQ x, y) where x.nonNull.and(y.nonNull) {
X. canoni cal . equal s(x);
X. equal s(y).inplies(x.compares(y));

x. equal s(y) . equal s(x. canoni cal . val ue. equal s(y. canoni cal . val ue)

.and(x. canoni cal . unit. equal s(y. canonical .unit)));

X. conpar es(y) . equal s(x.canoni cal . unit.equal s(y.canonical.unit));
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invariant(PQ x, vy, 2)
where x.nonNull.and(y.nonNull).and(z.nonNull) {

x.conpares(y).inplies(x.tinmes(y.inverted).conpares(1));

x.times(1).equal s(x); /* neutral elenent */
x.times(x.inverted).equal s(1); /* inverse el enent */
Xx.times(y).times(z).equal s(x.times(y.tinmes(z))); /* associative */
x.times(y).equal s(y.times(x)); /* commutative */

invariant (PQ x, y; REAL r)
where x.nonNull.and(y.nonNull).and(r.nonNull) {
x.times(r).val ue. equal s(x.value.tines(r));
X.times(r).conpares(x);

}s

i nvari ant (PQ x) where x.nonNull.and(x.conpares(unity) {
unity.tinmes((REAL) x). equal s(x));
s

invariant (PQ x; INT n) where x.nonNull {
X. power (0). equal s(1);
n. greater Than(0).inplies(
X. power (n). equal s(x.tines(x. power(n. predecessor))));
n.l essThan(0).inplies(
X. power (n). equal s(x. power (n. negated).inverted);

invariant (PQ X, vy, 2)

where x.conpares(y).and(y.conpares(z)) {

x.plus(y).plus(z).equal s(x.plus(y.plus(z))); /* associative */
X.plus(x.times(0)).equal s(x) /* neutral elem */
X. pl us(x. negat ed) . equal s(x.tinmes(0)) /* inverse elem */
x. plus(y).equal s(y. pl us(x)) /* commutative */

forall (PQwW wth w nonNull {
w. tinmes(x.plus(y)) /* distributive */

.equal s(w. times(x).plus(wtinmes(y)));
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forall (REAL r) where r.nonNull {
X.plus(y).tinmes(r) /* distributive */
.equal s(x.times(r).plus(y.tines®));
b
b

PQliteral ST {
PQ: REAL “ " wunit { $.val ue. equal s($1);
$.unit.equal s($3); }

CS unit : ST { $.val ue. equal s($1);
$. codeSyst em equal s(2.16.840.1.113883.3.2); };
b
MO i nterface MnetaryAmount alias MO extends QTY {
REAL val ue;
CSs currency;
type MO diff
MO plus(diff x);
di ff m nus( MO x) ;
MO negat ed;
MO ti mes(REAL Xx);
literal ST;
type MO diff;

invariant (MO x, y) where x.nonNull.and(y.nonNull) {
x. equal s(y) . equal s(x. currency. equal s(y. currency)

.and(x. val ue. equal s(y.val ue)));

x.currency. equal s(y.currency).not.inplies(x.lessOEqual (y).isNull);

}s

invariant (MO x, y) where x.nonNull.and(y.nonNull)
.and(x.currency. equal s(y.currency)) {
X. plus(y).val ue. equal s(x. val ue. pl us(y. val ue));

X. plus(y).currency. equal s(x. currency);

invariant (MO x; REAL r) where x.nonNull.and(r.nonNull) {
x.times(r).val ue. equal s(x.value.tines(r));

x.times(r).currency. equal s(x. currency);
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MO literal ST {

woon

MO : val ue currency { $.val ue. equal s($1);

$. currency. equal s($3); }

REAL val ue : REAL { $.value.equal s($1); }

CS currency : ST { $.currency. val ue. equal s($1);
$. currency. codeSyst em
.equal s(2.16.840.1.113883.3.3); }

s
type PointlnTime alias TS extends QTY {
PQ of fset;
Cs cal endar ;
| NT pr eci si on;
PQ ti mezone;
BL equal s(TS x);
TS pl us(PQ x);
PQ m nus(TS x);
literal ST;
type PQ diff;

}s

invariant (TS x, y) where x.nonNull.and(y.nonNull) {
x. of fset. conpares(1 s);
x. equal s(y) . equal s(x. of fset. equal s(y.offset));

}s

private type Cal endar alias CAL extends SET&LCYA

(&Y narme;
CLCY head;
TS epoch;

}s

invariant (CAL c) where c.nonNull {
c. nane. nonNul | ;

c.contai ns(c. head);

}s
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private type Cal endarCycle alias CALCY extends ANY {

CE narme;

I NT ndigits;

I NT start;

CALCY next ;

I NT max(TS);

TS sun({TS t, REAL r);
I NT val ue(TS t);

}s

i nvari ant (CALCY c) where c.nonNull {
c. nane. nonNul | ;
c.start.equal s(0).or(c.start.equal s(1));

c.digits. greaterThan(0);

invariant (TS x, y) where x.nonNull.and(y.nonNull) {

X.timezone. conpares(l s);

}s

invariant (TS x, PQt)
where x.nonNull.and(t.conpares(1 s)) {
x.plus(t).of fset.equal s(x.offset.plus(t));
x. mnus(y).of fset. equal s(x.of fset.plus(y.offset.negated));

TS.literal ST {
TS : cal tinmestanp($1) { $.equal s($2); }
| timestanp(CGREG { $.equal s($1); };

TS ti nestanp(Cal endar C)
cycl es(C. head, C epoch) zone(C) { $.equals($1.mnus(%$2)); }
.timezone. equal s($2); }

| cycl es(C. head, C. epoch) { $.equal s(%$1);

© B B B

.timezone. unknown; };

Cal endar cal
/[a-zA-Z ][a-zA-Z0-9_]*:/ { $.equal s($1); };
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TS cycl es(Cal endarCycle ¢, TS t)
cycle(c, t) cycles(c.next, $1) {
| cycle(c, t) "." REAL.fractional {

©»

.equal s($2); }
.equal s(c.sum($1, $3));
$. preci si on. equal s(

&

t. precision.plus($3.precision)); }
| cycle(c, t) { $.equals($1); };

TS cycl e(Cal endarCycle ¢c, TS t)
/[0-9]{c.ndigits}/ { $.equal s(c.sum(t, $1));
$. preci si on. equal s(

t.precision.plus(c.ndigits)); };

PQ zone(Cal endar C)
“+” cycl es(C. zonehead, C. epoch) { $.equal s($2.m nus(C.epoch)); }
| “-" cycles(C. zonehead, C.epoch) { $.equal s(C. epoch.m nus($2)); };

t enpl at e@NY TA
type Set dlfl al i as SETarfi ext ends ANY {

BL contains(T el ement);

BL i SEnpty;

BL nonEnpt y;

BL cont ai ns( SETarfi subset) ;

I NT cardinality;

SETarn uni on( SET4TH ot herset) ;

SETarn except (T el enent);

SETarn except ( SETarn ot herset) ;

SETarn i ntersection(SET4rf ot herset);
pronotion SETarf (T x);

i nvari ant (SETari x) where x.nonNull {
forall (T e) where x.contains(e) { x.nonNull; };

}s

i nvari ant (SETara x) where x. nonNul |l {
X. nonEmpty. equal s(exists(T e) { x.contains(e); });
X. i sEnpty. equal s(nonEnpty. not) ;
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exi sts(T e) where x.contains(e) {

x.cardinality. equal s(x.except(e).cardinality.successor);

i nvari ant (SETari superset, subset; T el enent)
wher e superset.nonNull.and(subset.nonNull).and(el enent.nonNull) {

super set . cont ai ns(subset)

.equal s(subset. contains(elenent).inplies(superset.contains(elenment)));

}s

i nvari ant (SETard x, y, z)
where x.nonNull.and(y.nonNull).and(z.nonNull) {
X. union(y). equal s(z)
.equal s(forall (T e) {

z.contains(e).equal s(x.contains(e).or(y.contains(e)));

1)

i nvariant (SETari x, y, z)
where x.nonNull.and(y.nonNull).and(z.nonNull) {
X. except (y) . equal s(z)
.equal s(forall (T e) {
z.contains(e).equal s(x.contains(e).and(y.contains(e).not));
1)
b

invariant (SETari x, z; T d)
where z.nonNull.and(z.nonNull).and(d. nonNull) {
X. except (d) . equal s(z)
.equal s(forall (T e) {
z.contains(e).equal s(x.contains(e).and(d.equal s(e).not));
1)
b

i nvari ant (SETard x, y, z)
where x.nonNull.and(y.nonNull).and(z.nonNull) {
X.intersection(y).equal s(z)
.equal s(forall (T e) {

z.contains(e).equal s(x.contains(e).and(y.contains(e)));

1)
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SETarf literal ST {
SETari ;. “{" elements “}” { $.equal s($2); };
SETAarfi el ement s
elements “;" T { $.except($2).equal s($1); }
| T { $.contains(%$1);
$. except ($1).i sEmpty; };

}s

invariant (T x) {

((SETATA) x) . cont ai ns(Xx);

(( SET&rf x) . except (x) . i sEnpty;

t enpl at e@NY TA

type Sequencedlii al i as LI STalfi ext ends ANY {

T head;
LI STara tail;

BL i SEnpty;
BL nonEnpt y;
| NT | engt h;

promotion LI STari (T x);

}s

i nvari ant (LI STari x) x.isEmpty {

x. head. i sNul | ;
x.tail.isNull;

x. |l ength.isZero;

i nvariant (LI STara x) {

X. nonEnpty. equal s(x.i sEnpty. not);

i nvari ant (LI STari x) where x.nonEnpty {

x. |l ength. equal s(x.tail.length.successor);

invariant (LI STl x, y) where x.isEnpty.and(y.isEnmpty) {

x. equal s(y);

132
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i nvariant (LI STaTA x, y) where x.nonEnpty. and(y. nonEnpty) {

x. equal s(y) . equal s(x. head. equal s(y. head)
.and(x.tail.equal s(y.tail)));

LISTan literal ST {

LISTai: “(” elenments “)” { $.equal s($2); };
LI ST&rf el ement s
T“;” elenments { $. head. equal s($1);
$.tail.equal s($3);
| T { $. head. equal s($1);

$.tail.isNull; };
}s

invariant (T x) {
((LI STarf x) . head. equal s(x);
((LIsTargx).tail.isNull;

t enpl at e@NY TA
type Bagdli al i as BAGATH ext ends ANY {

I NT contains(T kind);

BL i SEnpty;

BAGATfi pl us( BAGATH ;

BAGArfi m nus( BAGATH) ;
pronotion BAGATN (T x);

}s

i nvari ant (BAGATA x; T e) where x.nonNull.and(e.nonNull) {
X. cont ai ns(e). nonNegati ve;

X. i sEnpty. equal s(x.contains(e).isZero);

i nvari ant (BAGATA x, y, z) where x.nonNul|.and(y.nonNull) {

X. plus(y).equal s(z)
.equal s(forall (T e) where e.nonNull {

z.contains(e).equal s(x.contains(e).plus(y.contains(e)));

1)

}

Copyright © 2000, Health Level Seven, Inc. All rights reserved.

133



HL7 Version 3 Data Types BALLOT DRAFT 1 Revision 1.2

X. m nus(y). equal s(z)
.equal s(forall (T e) where e.nonNull {
exi sts(INT n)
where n. equal s(x. contains(e).mnus(y.contains(e)) {
n. nonNegati ve. equal s(z. contains(e));

n.isNegative. equal s(z.contains(e).isZero);

1)

invariant (T x) {
((BAGATf) x) . cont ai ns(x) . equal s(1);
forall (T y) { ((BAGAT) x).contains(y).inplies(x.equals(y)) };

t enpl at e&QTY TAH
type Interval & al i as | VLaTfA ext ends SETAarf {

T | ow,
BL | owd osed;
T hi gh;
BL hi ghCl osed;
T.diff wi dt h;
T center;
literal ST;
promotion | VLA (T x);

denmption T;

invariant (I VLA x; T e) where x.nonNull.and(x.contains(e)) {
x.low. | essO Equal (e);

}s

invariant (I VLaTA x; T e) where x.nonNull.and(x.contains(e)) {

e. |l essOr Equal (x. hi gh);

i nvariant (I VLara x) {
X. |l ow. | essO Equal (x. hi gh);
X. W dt h. equal s(x. hi gh. mi nus(x.|ow));
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i nvariant (I VLaTi x) where x.low nonNull.and(x. hi gh. nonNull) {
x. center.equal s(x.low plus(x.width.tines(0.5))));

}s

invariant (1 VLarA x) where x.low.isNull.or(x.high.isNull) {

X. cent er. not Appl i cabl e;

invariant (1 VLara x) where x.nonNul |l {
X.low. nonNul | . inplies(x.]owC osed. equal s(x. contains(x.low)));

x.low. isNull.inplies(x.lowd osed. not);

i nvariant (I VLaTA x) where x.nonNull {
x. hi gh. nonNul | . i npl i es(x. hi ghd osed. equal s(x. contai ns(x. high)));
x. high.isNull.inplies(x.highC osed.nnot);

IVLari literal ST {

| VLATA r ange

i nterval .equal s($1);
dash .equal s($1);

center_wi dth

}
}
.equal s($1); }
.equal s($1); }

}

I

| conparator
I

| width

e e e N )
@ B BH B B

.equal s($1);

| VLATA i nt er val

open T “;” T close; { $.1ow equal s($2);
$. hi gh. equal s($4);
$. 1 owdl osed. equal s($1);
$. hi ghd osed. equal s($5); };
BL open : “[” { $.equals(true); }
[ “1” { $.equals(false); };
BL close : “]” { $.equals(true); }
[ “[” { $.equal s(false); };
I VLarA wi dt h
open T.diff close { $.width. equal s($2);

$. 1 owCl osed. equal s($1);
$. hi ghd osed. equal s($3); };
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| VLA center _w dth
T width { $.center.equal s($1);
.wi dt h. equal s($2. wi dt h);
.l owCl osed. equal s($2. | owd osed);

. hi ghCl osed. equal s($2. hi ghCl osed); };

R -

IvLari dash : T “-" T, { $.1ow equal s($2);
. hi gh. equal s($4);

.1 owd osed. equal s(true);

@ B B P

. hi ghd osed. equal s(fal se); };

| VLaTSh conpar at or

| “<" T { $. high.equal s(T);

. hi gh. cl osed(fal se);
.high.negativelylnfinite; }
.l ow. equal s(T);

.l ow. cl osed(fal se);

.low positivelylnfinite; }
. hi gh. equal s(T);

. high. closed(true);
.high.negativelylnfinite; }
.l ow. equal s(T);

.l ow. cl osed(true);

.low positivelylnfinite; };

}s

invariant (T x) {
((IvLarg x) . I ow. equal s(x);
((1'vLarf x) . hi gh. equal s(x);
((lI'VLarf x) . hi ghd osed;
((IvLarf x) . | owd osed;

H

invariant (I VL x) where x.nonNull {
X. I ow. nonNul I . and(x. hi gh. nonNul I').i nplies(((T)x).equal s(x.center));
x. hi gh.nonNul | . and(x.low. isNull).inplies(((T)x).equals(x.high));
X. 1 ow. nonNul | . and(x. high.isNull).inplies(((T)x).equals(x.low));
X.low. isNull.and(x.high.isNull).inplies(((T)Xx).notApplicable);

}s
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type Inteval &PQi alias | VL& {
| VLEREALA val ue;
CS uni t;

b

i nvariant (1 VL&PQ1 x) where x.nonNull {

x. val ue. nonNul | ;

.l ow. val ue. equal s(x. val ue. | ow);

.low unit.equal s(x.unit);

.1 owd osed. equal s(x. val ue. | owd osed);
. hi gh. val ue. equal s(x. val ue. hi gh);

.high.unit.equal s(x.unit);

X X X X X X

. hi ghdl osed. equal s(x. val ue. hi ghd osed) ;
i

IVLPQI literal ST {

IVLPQH : | VL&REALA Y " unit { $.value($1l); $.unit.equal s($3); }
| | VL&REALR { $.equals($1); };
CS unit : ST { $.val ue. equal s($1);

$. codeSysten( 2. 16. 840. 1. 113883. 3. 2); };
b

t enpl at edl'S T

protected type Periodiclnterval afi al i as Pl VLAIA ext ends SETArf {

T.diff peri od;

| VLarfA phase;

CS al i gnnent ;

BL contains(TS);
literal ST;

}s

i nvari ant (Pl VLaTA x) where x.nonNull {
X. period. nonNul | ;

}s

i nvariant (PlVLarfA x) where x.nonNull {
X. phase. nonNul | ;
X. phase. wi dt h. | essOr Equal ( x. peri od);
}
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invariant (PIVLaTSA x, TS t) where x.nonNul | .and(x.alignment.isNull) {
Xx.contains(t).equal s(exists(INT i) {

X. phase. contai ns(t. plus(x.period.tinmes(i)));

1)

invariant (PIVLaTSA x, TS t, Cal endarCycle c)
where x.nonNull.and(c.equal s(x.alignnent)) {
x.contains(t).equal s(exists(INT i) {
X. phase. contai ns(c.sum(t, i));
1)
b

tenpl at edl'S Th

protected type Event Rel at edPeri odi cl nterval arfi al i as El VLaTA ext ends SETarf {
cv event;
| VLAT. di f f fof f set ;

| VLarf occurrenceAt (TS event Ti ne);
BL cont ai ns(TS);
literal ST;

invariant (El VLATA x, T eventTine, |VLAA v)

where v. equal s(x. occurrenceAt (eventTinme)) {
.l ow. equal s(event Ti me. pl us(x. offset.low));
. hi gh. equal s(event Ti ne. pl us(x. of fset. high));
.l owd osed. equal s(x. of fset.| owC osed);

< < < <

. hi ghdl osed. equal s(x. of f set. hi ghd osed);
b

invariant (EIVLaTA x, T y) {
x.contai ns(y).equal s(exists(T e, |VLaM v)
wher e EVENT(Xx. event, vy)
.and(v.resol vedAt (y)) {

v.contains(y);

s
}
ElVLaTSh literal ST {
El VL&TSi : event { $.event.equal s($1); }
| event offset { $.event.equal s($1); $.offset.equal s($2); };
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CV event : ST { $.code.equal s($1);
$. codeSyst em equal s(2. 16. 840. 1. 113883. 5. 1019) ; }

| VLATS. di ff i of f set
“+” | VLaS. di ffi {
“-r |VLarS. di ffi {

.equal s($2); }

. I ow. equal s($2. hi gh. negate);
. hi gh. equal s($2. | ow. negat e) ;
.wi dt h. equal s($2. wi dt h);

.| owCl osed( $2. hi ghCl osed) ;

. hi ghd osed($2. | owC osed); };

R - A < A - B I <

type General Ti mi ngSpecification alias GIS extends SETarsh {
| VLaTSi out er Bound;
| VLarshi next After (TS x)

denotion LI STd VLATS
literal ST;

invariant (GIS x, TS t, |VLASA o) where o.equal s(x.nextAfter(t)) {
X. cont ai ns(0);
forall (I VLarSA p) where x.contains(p) {

p. contai ns(o).inplies(p.equals(o));

invariant (GIS x, |VLaSA b) where b. equal s(x. outerBound) {
b. cont ai ns(x);
forall (TS e) where x.contains(e) {
e. |l essOr Equal (b. hi gh);
e. great er O Equal s(b. | ow);

}s

GIS. literal ST {

GTS : synbol { $.equals($1); }
| union { $.equal s($1); };
| exclusion { $.equal s($1); };
SETATSH uni on
intersection “;” SETarSAi { $.equal s($1.union($3)); }
| intersection { $.equals($1); };
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SETArsi excl usi on

SETarsfi “\” intersection { $.equal s($1.except($3)); 1};

SETArSA i nt er secti on

factor
| factor; { $.equal s($1);

SETArsi f act or

| VLATSi { $.equal s(%$1);
| PIVLATSH { $.equal s(%$1);
| ElI'VLATSH { $.equal s(%$1);

}s

tenpl at e& ype Ti

type Annotated alias ANT extends T {
CE not e;

b

tenpl at e& ype Th

type Historyltendlfialias HXI Talfi extends T {
| VLArSsi val i dTi ne;

s

t enpl at e@ANY ThA

intersection { $.equals($l.intersection($3));

}

}
}
}s

type Historydlfi alias H STalfi ext ends SET&XI Tarfi {

HXI Tarn earliest;

H ST except Earli est;
HXI Tarni | at est;
HI ST except Lat est;

denotion HXI Tarfm
}s

invariant & ST xfi where x.nonNull {

X. nonEnpty;

forall (HXIT e) where x.contains(e) {

x.earliest.validTime.low |essOrEqual (e.validTime.|low);

x. |l atest.validTi ne. hi gh. great er Or Equal (e. val i dTi ne. hi gh) ;

}s

X. except Earli est. equal s(x. except(x.earliest));

X. except Lat est. equal s(x. except(x.latest));

}

140

Copyright © Health Level Seven, Inc. All rights reserved.



Appendix B Summary of Formal Definitions

((T)x).equal s(x.latest);
s

tenpl ate &ype Th
type UncertainVal ueNarrativedlf alias UVYNAaTA extends T {

cv confi dence;

}s

tenpl at e& ype Ti

type Uncertai nVal ueProbabilisticalfialias UVParfi extends T {
REAL probability;

s

i nvari ant (UVParia x) where x.nonNull.and(x. probability.nonNull) {
((I'VL&REAL) [ 0; 1]) . cont ai ns(x. probability);
b

tenpl at e& ype Ti
type NonParanetri cProbabilityDistributiondli
al i as NPPD<T> extends SETAJDPATH {
SETAJDPAT nost Li kel y(I NT n);
i

i nvari ant (NPPDarfi x) where x.nonNul | {
X. nonEnpty;

X. cont ai ns(x. nmost Li kel y(n));
x. most Li kel y(n).
foral |l (U/P&fA d, e; SETANP&ifi mp | NT n)
wher e x.contains(d)
.and(m equal s(x. nost Li kel y(n)))
.and(m contains(e)) {
e.greaterOrEqual (d).or(mcontains(d));
i
b

tenpl at e&QJTY ThA

type ParanetricProbabilityDistributiondliialias PPDari extends T {
T.diff st andar dDevi ati on;
CSs type;
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| VLarf confidencel nterval (REAL p);
REAL probabi lity(IVLATA x);
PPDarfi ti mes(REAL Xx);

}s

PPD.literal ST {
PPDarii: T “(” type T.diff “)” { ((T)$).equal s($1);
$. type. equal s($3);
$. st andar dDevi ati on. equal s($4); };

CV type : ST { $.val ue. equal s($1);
$. system equal s(); };

type Paranetri cProbabilityDistributi ondREALA al i as PPDE&REALR

PPDE&REALA literal ST {

PPD&REALM mant i ssa
REAL. mantissa “(” type T.diff “)” { ((T)$).equal s($1);
$. type. equal s($3);
$. st andar dDevi ati on. equal s($4); }
| REAL. mantissa { $.equal s($%$1);
$. type. equal s($3);
$. st andardDevi ati on. equal s($1.1eastSignificantDigit.tines(0.5)); };

CS type : ST { $.val ue. equal s($1);
$. system equal s(2.16. 840.1.113883.5.1019); };

type Paranetri cProbabilityDistributiondPQialias PPDPQH {
PPDEREALAA  val ue;
CS uni t;

b

i nvari ant ( PPD&PQA x) where x.nonNul |l {

x. val ue. nonNul | ;

((REAL) x. val ue) . equal s(((PQ x) . val ue);

x.unit.equal s(((PQXx).unit);

x. val ue. st andar dDevi at i on. equal s(x. st andar dDevi ati on. val ue);
x. st andar dDevi ati on. unit. equal s(x.unit);

}s
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PPD&PQN | iteral ST {
PPD&PQA : PPDEREALA “ " unit { $.value.equal s($1);
$. unit.equal s($3); }
b

type Paranmetri cProbabilityDistributionalSh ali as PPDarsf
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