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Preface

This document is one of two parts specifying the HL7 Version 3 Data Types on an abstract layer,
independent of representation.

Part | explains Version 3 Data Typesin astyle that can be readily understood by interface analysts
and programmers.

Part Il provides arigorous definition of Version 3 Data Typesin astyle that is suited for those
readers with a strong academic background in Computer Science and Mathematics.

Each part can stand on its own and is addressed to different kinds of audience and slightly different
purpose. Both parts are normative; therefore both parts must remain consistent in their description of
Version 3 Data Types. Due to its more thorough nature, Part |1 takes precedence over Part | in cases of
conflict or unclear interpretation. Casual readers who need a quick orientation into the matter should
read Part I. However, for any serious implementation work understanding the additional detail
provided in Part Il isusually required.

This standard is further accompanied by one or more |mplementable Technology Specifications (ITS)
to specify the concrete representation of the Version 3 Data Types.
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1 Introduction

1.1.1 What is a Data Type?

Every data element has adatatype. Datatypes define the meaning (semantics) of data valuesthat can
be assigned to adata element. Meaningful exchange of datareguires that we know the definition of
values so exchanged. Thisistruefor complex “values’ such as business messages as well asfor
simpler values such as character strings or integer numbers.

According to 1SO 11404, adatatypeis“aset of distinct values, characterized by properties of those
values and by operations on those values.” A datatype hasintension and extension. Intensionally, the
data type defines the properties exposed by every datavalue of that type. Extensionally, data types
have a set of datavaluesthat are of that type (the type's“value set”).

Semantic properties of datatypes are what SO 11404 calls “properties of those valuesand [...]
operations on those values.” A semantic property of adatatypeisreferred to by aname and hasa
value for each datavalue. The value of adatavalue’s property must itself be avalue defined by a data
type — no data val ue exists that would not be defined by a data type.

Datatypes are thus the basic building blocks used to construct any higher order meaning: messages,
computerized patient record documents, or business objects and their transactions. What, then, isthe
difference between a data type and a message, document, or business object? Data type values stand
for themselves, thevalueisall that counts, neither identity nor state or changing of stateis

defined for adata value. Conversely in business objects, we track state and identity; the properties of
an identical object might change between now andlater. Not so with datavalues: adatavalue and its
properties are constant. For example, number 5 is always number 5, there is no difference between this
number 5 and that number 5 (no identity distinguished from value), number 5 never changes to number
6 (no change of state). One can think of data values asimmutable objects where identity does not
matter (identity and equality are the same.)*

1.1.2 Representation of Data Values

Data values can be represented through various symbols but the data value’ s meaning is not bound to
any particular representation.

For example, cardinal numbers (non-negative integers) are defined— intensionally — as a datatype
where each value has a successor value, where zero is the successor of no other cardinal value. Based
on this definition we can define addition, multiplication, and other mathematical operations. Whatever
representation reflects the rules we stated in the intensional definition of the cardinal datatypeisa
valid representation of cardinal numbers. Examplesfor valid cardinal number representations are
decimal digit strings, bags of glass marbles, or scratches on awall. The number two is represented by
the word “five” by the Arabic number “5” or the Roman number “V”. The representation does not
matter aslong asit conforms to the semantic definition of the datatype.

Another example, the Boolean data type is defined by its extension, the two distinct valuestrue and
false and the rules of negation and combining these valuesin conjunction and disjunction. The
representation of Boolean values can be the words “true” and “false,” “yes’ and “no,” the numbers 0
and 1, any two signsthat are distinct from each other. The representation of datatypes does not matter
aslong asit conforms to the semantic definition of the datatype.

This specification defines the semantics, the meaning of the HL 7 data types. This specification is
about semantics only, independent from representational and operational concernsor specific
implementation technologies. Additional standards for representing the data values defined here are

1 The HL7 Message Development Framework defines “ update modes” for fieldsin amessage. Note that because data
values have neither identity nor state nor changing of state, these update modes do not apply for the propertiesof data
values. Data values and their properties are never updated. A field of an object (e.g., amessage) can be updated in
which case the field' s value is replaced by another value. But the value itself is never updated.

4 Copyright © Health Level Seven, Inc. All rights reserved.



PART Il — Unabridged Specification 1 Introduction

being defined for various technological approaches. These standards are called “ I mplementable
Technology Specification” (ITS.) Those ITS define how values are represented so that they conform to
the semantic definitions of this specifications, this may include syntaxes for character or binary
representations, and computer procedures to act on the representation of datavalues. The meaning of
these I TS representations communicated, generated, and processed in computer programs, is defined
based on this standard, the semantic data type specification.

1.1.3 Properties of Data Values

Datavalues have properties defined by their datatype. The “fields’ of “composite datatypes’ arethe
most common example of such properties. However, more generally one should think of adatavalue's
property as logical predicates or as mathematical functions; in simpler but still correct terms, properties
are questions one can ask about a data value to receive another data value as an answer.

A property isreferred to by its name. For example, the data type integer may have a property named
“sign.” A property hasadomain, which isthe set of possible “answer” values. The set of possible
“answer” valuesis defined by the property’ s datatype, but the domain of a property may be a subset of
the data type’ s value set.

A property may also have arguments, additional information one must supply with aquestion to get an
answer. For example, an important property of an integer number isthat oneinteger plusanother
integer results in another integer, so the plus property of one integer needs an argument: the other
integer.

Whether semantic properties have argumentsis not afundamentally relevant distinction. A datatype’s
semantic property without argumentsis not necessarily a“field” of a “composite” datatype. For
example, for integer values, we can define the property is-zero that has the Boolean value true when

the number is zero and fal se when the number is not zero. This does not mean that is-zero must be an
explicit component of any integer representation.

A datatype’ s semantic property with arguments has no specific operational notions such as“procedure
call,” “passing arguments,” “return values,” “throwing exceptions,” etc. These are all concepts of
computer systems implementation of data types— but these operational notions are irrelevant for the
semantics of datatypes.

” o

This specification isabout semantics of data typesonly. Neither isit about value representation
syntax (not even an abstract syntax), nor isit about an operational interfaceto the data values.

1.1.4 Need for the Abstraction

Why doesthis specification make such a bigissue about itsbeing abstract from representation
syntax aswell as oper ational implementation?

HL7 needsthiskind of abstract semantic data type specification for avery practical purpose. One
important design feature of HL7 version 3 isits openness towards representation and implementation
technologies. All HL7 version 3 specifications are supposed to be done in aform independent from
specific representation and implementation technologies. HL7 acknowledges that, while at times some
representation and implementation technol ogies may be more popular than others, technology is going
to change — and with changing technol ogy, representations of datavalueswill change. HL7 standards
are primarily targeted to healthcare domain information, independent from the technology supporting
thisinformation. HL7 expectsthat specifications defined independent from today’ s technology will
continue to be useful, even after the next technological “ paradigm shift”.

Theissue of datatypesis closer to implementation technology than most other HL7 information
standards — and therein lays a certain danger that we define data types too dependent on current
implementation technologies.

The majority of HL7 standardsis about complex business objects. Complex business objects with
many informational attributes can be specified as abstract syntax, where components are eventually

Copyright © 2000, Health Level Seven, Inc. All rights reserved. 5
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defined in terms of datatypes. Conversely, defining datatypesin terms of abstract syntax is of little
use because the components of such abstract syntax constructs would still have to have data types.?

Why doesn’t thisspecification define a set of primitive data types based on which composite data
types could be defined ssimply as abstract syntax?

Any concrete implementation of the HL7 standards must ultimately use the built-in data types of their
implementation technology. Therefore, we need avery flexible mapping between HL 7 abstract data
types and those data types built into any specific implementation technology. With a semantic
specification, an Implementable Technology Specification (ITS) can conform simply by stating a
mapping between the constructs of its technology and the HL 7 version 3 data type semantics. Whether
adatatypeisprimitive of composite isirrelevant from a semantic perspective, and the answer may be
different for different implementation technol ogies.

For example, this standard specifies a character string as a data type with many properties (e.g.,

charset, language, etc.) However, in many I|mplementation Technologies, character strings are
primitive first class datatypes. We encourage that these native data types be used rather than a
structure that slavishly represents all the semantic properties as “components.” This specification only
requires that the properties defined for data values can somehow be inferred from whatever
representation is chosen, it does not matter how these values are represented. Whether “primitive” or
“composite”, with few or many “components’, as “fields” or “methods” — thisisall irrelevant.

For another example, a decimal representation, afloating-point register and a scaled integer are all
possible native representations of real numbers for different implementation technologies. Some of
these representations have properties that others do not have. Scaled integers, for instance, havea
fixed precision and arelatively small range. Floating-point values have variable precision and alarge
range, but floating-point values |ose any information about precision. Decimal representations are of
variable precision and maintain the precision information (yet are slow to processing.) The datatype
semantics must be independent from all these accidental properties of the various representations, and
must define the essential properties that any technology should be able to represent.

1.1.5 Need for an HL7 Data Type Standard

Why doesHL 7 need itsown data type sandard? Why can’t HL 7 smply adopt a sandard
defined by some other body?

As noted in the previous section, all HL7 implementation technol ogies have some data type system,

but there are differences among the data type systems between implementation technologies. In
addition, many implementation technologies’ datatype systems are not powerful enough to expressthe
concepts that matter for the HL 7 application layer.

For example, few implementation technol ogies provide the concepts of physical quantities, precision,
ranges, missing information, and uncertainty that are so relevant in scientific and health care
computing.

On the other hand, implementation technol ogies do make distinctions that are not relevant from the
abstract semantics viewpoint, e.g., fixed point vs. floating-point real numbers; 8, 16, 32, or 64-bit
integers; date vs. timestamp.

A number of datatype systems have been used asinput to this specification. Theseinclude the type
systems of many major programming languages, including BASIC, Pascal, MODULA-2, C, C++, JAVA,
ADA, Lispand SCHEME. Thisalso includes type systems of language-independent implementation
technologies, such as Abstract Syntax Notation One (ASN.1), Object Management Group’s (OMG)
Interface Definition Language (IDL) and Object Constraint Language (OCL), SQL 92 and SQL 3, the

SO 11404 language independent data types, and XML Schema Part 2 datatypes. Health care
standards related data types have been considered as well, among these HL 7 version 2.x, types used by
CEN TC 251 messages and Electronic Health Record Architecture (EHCRA) and DICOM.

2 Thisisthe reason why the 1SO Abstract Syntax Notation 1 (ASN.1) is not an appropriate formalism for semantic data
type specifications.

6 Copyright © Health Level Seven, Inc. All rights reserved.
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1.1.6 Forms of Data Type Definitions

This specification defines data types in several forms, using textual description, UML diagrams, tables,
and aformal definition.

1.1.6.1 Formal Data Type Definition Language

A formal definition of datatypesisused in order to clarify the semantics of the proposed types as
unambiguously as possible. This datatype definition language is described in detail in Section 1.3.
Formal languages make crisp essential statement and are therefore accessible to some formal argument
of proof or rebuttal. However, the terseness of such formal statements may also be difficult to
understand by humans. Therefore, all the important inferences from the formal statements are also
included as plain English statements.

1.1.6.2 Tables of Properties

For aquick overview at the beginning of many data types this specification contains tables listing what
iscalled “primary” properties. “Primary” properties are a somewhat fuzzy notion of those properties
that are more likely to be thought of as“fields” when the data type where implemented as arecord
(“composite datatype”). These tables only exist to facilitate an overview of the content and purpose of
datatypes. While their content is part of the normative specification, the fact that a property isor is not
listed in these tables has no significance. Thereis no requirement that the properties listed in these
tables be represented as fields, and these tables are not abstract syntax definitions.

Property tables are not shown for all datatypes. Again, this does not mean that those data types have
no properties. It also does not mean that those data types are “ primitive” data types as per this
specification. The property tables are used as a helpful summary only, and are not used when they
would confuse more than they would help.

Each row of the property tables describes one property with the following columns:;

Name - the name of the property as of the formal definition. For some data types, the namefield of the
first property may be empty. This may happen in those data types that are defined as extension of
other datatypes and when it is not useful for the summary of the child to show any properties of
the parent.

Type—the datatype of that property.
Status— indicates the “importance” of the property. Status valuesinclude:

Default — a default value isatypical value of this property (when the status of .the property is“fixed,”
the default specifies that predetermined value.) In an interface, a property takes on that default
valueif avaluefor that property is not otherwise determined in the representation received by that
interface. Default values are what isimplicitly understood. A default may be determined at various

levels.
Table 1: Levels of Determination for Defaults

Status Definition

immediate The default is known and mentioned in this specification. The default
column then contains that a literal for that default value (not the word
“immediate”).

NULL No default is defined.

ITS The default is determined by the Implementable Technology Specification
(ITS) either immediately or through some ITS-specified rule.

CONTEXT The default is determined depending on the context of a data value. For

example, it may be determined by some other data in the same message.

Constraint — for coded properties, this column contains the named domain (as per the HL7 domain
specifications.) For other properties, this column contains other constraints— these constraints are
fully specified in the formal data type definition.

Copyright © 2000, Health Level Seven, Inc. All rights reserved. 7
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Definition — a short text describing the meaning of the property.

1.1.6.3 Unified Modeling Language (UML) Diagrams

The Unified Modeling Language (UML) isused for agraphical presentation of how datatypesrelate.
Datatypes are shown as UML classes. The name compartment contains the long name of the data type
followed by a colon and the standard abbreviation. Properties of types without argunments are shown in
the UML attribute compartment. Properties with arguments are shown in the UML operations
compartment. Generalization links indicate extension and restriction relationships. Aggregations are an
additional representation of properties, when the relation between data types through that property is
important. Generic types are shown as UML parameterized classes, with UML realization links

relating their instantiations.

8 Copyright © Health Level Seven, Inc. All rights reserved.
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1.2 Overview of Data Types

Table 2: Overview of HL7 Version 3 Data Types

Name

Symbol

Description

Boolean

Encapsulated Data

Character String

Coded Simple
Value

Coded Value

Coded With
Equivalents

Concept Descriptor

Coded With
Category

Instance Identifier

Telecommunication
Address

Postal Address

Entity Name

Person Name

Organization Name

Trivial Name
Integer Number

Real Number

Physical Quantity

Monetary Amount

BL

ED

ST

CE

CD

CcC

TEL

AD

EN

PN

TN
I NT

REAL

PQ

The Boolean type stands for the values of two-valued logic. A Boolean value can be
either true or false.

Data that is primarily intended for human interpretation or for further machine
processing outside the scope of this specification. This includes unformatted or
formatted written language, multi-media data, or structured information in as defined
by a different standard (e.g., XML-signatures.) Instead of the data itself, an ED may
contain only a reference (see TEL.) Note that the ST data type is a specialization of
the ED data type when the ED media type is text/plain.

Text data, primarily intended for machine processing (e.g., sorting, querying, indexing,
etc.) Used for names, symbols, and formal expressions.) Note that the ST data type
is a specialization of the ED data type when the ED media type is text/plain.

Coded data, consists of a code and display name. The code system and code system
version is fixed by the context in which the CS value occurs. CS is used for coded
attributes that have a single HL7-defined value set.

Coded data, consists of a code, display name, code system, and original text. Used
when a single code value must be sent.

Coded data, consists of a coded value (CV) and, optionally, coded value(s) from other
coding systems that identify the same concept. Used when alternative codes may
exist.

Coded data, is like a CE with the extension of modifiers. Modifiers for codes have an
optional role name and a value. Modifiers allow one to express, e.g., “FOOT, LEFT”
as a postcoordinated term built from the primary code “FOOT” and the modifier
“LEFT".

A specific restriction of the CD used to communicate a possibly local code with
another code that specifies the category of the communicated concept in an HL7-
defined standard code.

An identifier to uniquely identify an individual instance. Examples are medical record
number, order number, service catalog item number, etc. Based on the ISO Object
Identifier (OID)

A telephone number or e-mail address specified as a URL. In addition, this type
contains a time specification when that address is to be used, plus a code describing
the kind of situations and requirements that would suggest that address to be used
(e.g., work, home, pager, answering machine, etc.)

For example, a mailing address. Typically includes street or post office Box, city,
postal code, country, etc.

A name of a person, organization, place, or thing. Can be a simple character string or
may consist of several name parts that can be classified as given name, family name,
nickname, suffix, etc.

A name of a person. Person names usually consist of several name parts that can be
classified as given, family, nickname etc. PN is a restriction of EN.

A name of an organization. ON name parts are typically not distinguished, but may
distinguish the suffix for the legal standing of an organization (e.g. “Inc.”, “Co.”, “B.V.”,
“GmbH?”, etc.) from the name itself. ON is a restriction of EN.

A restriction of EN that is equivalent with a plain character string (ST). Typically used
for the names of things, where name parts are not distinguished.

Positive and negative whole numbers typically the results of counting and
enumerating. The standard imposes no bounds on the size of integer numbers.
Fractional numbers. Typically used whenever guantities are measured, estimated, or
computed from other real numbers. The typical representation is decimal, where the
number of significant decimal digits is known as the precision.

A dimensioned quantity expressing the result of measurement. It consists of a real
number value and a physical unit. Physical quantities are often constrained to a
certain dimension by specifying a unit representing the dimension (e.g. m, kg, s,
kcal/d, etc.) However, physical quantities should not be constrained to any particular
unit (e.g., should not be constrained to centimeter instead of meter or inch.)

The amount of money in some currency. Consists of a value and a currency
denomination (e.g., U.S.$, Pound sterling, Euro, Indian Rupee.)

10
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Ratio RTO A quantity explicitly including both a numerator and a denominator (e.g. 1:128.) Only
in the rare cases when the numerator and denominator must stand separate should
the Ratio data type should be used. Normally, the REAL, PQ, or MO data types are
more appropriate.

Paint in Time TS A time stamp.

Set Collection SET<T>  An unordered collection of unique values of any type T.

List Collection LI ST<T> A sequence of values of any type T.

Bag Collection BAG<T>  Anunordered set of values of any type T where each value can occur more than once
(rare.)

Interval | VL<T> Ranges (intervals) of values of type T. An interval is a set of consecutive values of any

guantity data type, such as, integer, real number, point in time, physical quantity,
monetary amount, and ratio.) Intervals should be preferred instead of two attributes
expressing a start and an end separately.

History HI ST<T> A collection of data where each element is tagged with a valid-time interval.

Uncertain value UVP<T> A nominal value with a probability number indicating the level of certainty for the value

using probabilities to apply in the given context.

Non-parametric NPPD<T> A collection of alternative uncertain values. Used to represent frequency distributions

probability (histograms) but also other weighed alternatives (e.g., utility distributions in

distribution preferences.

Parametric PPD<T> A probability distribution used to indicate certainty (accuracy) of a quantitative value.

probability Allows specifying a distribution type and applicable parameters. All distribution types

distribution have the parameters mean and standard distribution. The mean is the value that
would be reported if no probability distribution were available.

General Timing GTS One or more time intervals used to specify the timing of events. Every event spans

Specification one time interval (occurrence interval). A repeating event is timed through a

sequence of such occurrence intervals. Such timings are often specified not directly
as a sequence of intervals but as a rule, e.g., “every other day (Mon — Fri) between
08:00 and 17:00 for 10 minutes.”

1.3 Introduction to the Formal Data Type Definition Language

Important Disclaimer: This is not an APl specification. While this formal language might
resemble some programming language or interface definition language, it is not intended to define the
details of programs and other means of implementation. The formal definitions are normative part of
this specification, but this particular language needs not be implemented or used in conformant
systems; nor need all the semantic properties be implemented or used by conformant systems. The
internal working of systems, their way to implement data types, their functionality and services is
entirely out of scope of this specification. The formal definition only specifies the meaning of
the data values through making statements how one would theoretically expect these values to relate
and behave.

Thisformal datatype definition language® specifies:
type name and short name;
named values of afully enumerated extension;
semantic properties, unary, binary, and higher order properties;

invariants, i.e. constraints over the properties.

3 The data type definition language employed here is a conclusion of experiments and experience with various
alternatives. These alternativesinclude datatype definition tables and the use of the Object Management Group’s
(OMG) Interface Definition Language (IDL). The disadvantage of the data type definition tables was that they gave
the wrong impression of this specification being a specification of abstract syntax rather than semantics. Conversely,
the disadvantage with IDL was that IDL gave the wrong impression of this specification being an application
programming interface (API) definition.

The resulting data type definition language borrows significantly from IDL, the Object Constraint Language (OCL),
Java, C++, and the parser generation toolsLex and YAacc. Itisinspired by features and style of these languages but
amalgamating and augmenting these languages into precisdly what isneeded for thisdatatype specification. Thegoal
was alanguage that is minimal, and self-consistent. Also, asthe main purpose of thislanguageisto define datatypesit
tries to get by without any built-in data types.
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allowable type conversions,
syntax of character string value literals (if any);

Definition of adatatype occursintwo steps. First, the datatypeisdeclared. The declaration claimsa
name for anew datatype with alist of names, types, and signatures of the new type’'s semantic
properties. Thisdeclares, not definesthetype. The definition occursin both logic statements about
what is always true about this type’ s values and their properties (invariant statements.)

1.3.1 Declaration

Every datatypeis declared in aform that begins with the keywordt ype. For example, the following
isthe header of a declaration for the data type Boolean that has the short name alias BL and extends
(specializes) the datatype ANY.*

type Bool ean alias BL extends ANY
val ues(true, false)

BL not ;
BL and(BL Xx);

I

The Boolean data type declaration also containsaval ues-clause that declares the Boolean's
complete set of values (its extension) as named entities. These named values are also valid character
string literals. None of the other datatypes defined in this specification has afinite value set, which is
why theval ues-clauseis unique to the Boolean. Inthe marked-up formal language, value names use
Italics font.

The block in curly braces following the header contains declarations of the semantic properties that
hold for every value of the datatype. A semicolon terminates each property declaration; and another
semicolon after the closing curly brace terminates the data type declaration.

A property declaration mentions from left to right: (1) the data type of the property’ s value domain, the
property name, and (3) an optional argument list. The argument list of aproperty isenclosed in
parentheses containing a sequence of argument declarations. Each argument is declared by the data
typ% name and argument name. Semantic properties without arguments do not use an empty argument
list.

The ext ends-clause has the usual meaning of a specialization relationship known from the object-
oriented method.® Specialization means (a) inheritance of properties from the genus to the species, and
(b) substitutability of values of the speciestype for variables of the genustype. In addition, however,
this data type definition language specifies two variants of specialization: extension (ext ends) and
restriction (r est ri ct s). Extensionindicates that additional properties are being defined for the
specialized type. Restriction indicates that the inherited properties are being constrained.

4 As can be seen, thet ype keyword isin place of IDL’s and Java’si nt er f ace and C++ amd Java'scl ass
keyword. The alias clauseisunique to this specification as we do have the need for extremely short data type
mnemonics in addition to more descriptive names. Theext ends clause is the same as Java’s whichispreferred
over C++ or IDL’s colon clause as its meaning is more obvious.

®Note that the IDL’ s notion of input and output arguments and IDL’s, Java’sand C++ snotion of return valuesand
exceptions are all irrelevant concepts for this specification. The semantics of datatypesis not about procedure calls
and parameter passing or normal and abnormal returns of control from a procedure body. Instead, each semantic
property is conceptualized as a function that mapsavalue and optional argumentsto another value. Thismappingis
not “computed” or “generated” it logically exists and we do not need to “call” such afunction to actualize the mapping.
5«Extends’ means “refines” or “specializes and adds properties.” Thiskind of “extension” (specidization) hasnothing
to do with the “extensional” (vs. “intensional”) definitions of datatypes.
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An example for inheritance is: when ANY has the property isNull and BL extends ANY then BL also
has this property isNull even though isNull is not listed explicitly in the property declaration of BL.
An example for substitutability is: when a property is declared as of adatatype ANY and BL extends
ANY then avalue of such property may be of type BL. In other words, substitutability isthe same as
subsumption of all values of type BL being also values of type ANY.’

Thet ype-declaration may be qualified by the keywordabst r act and pr ot ect ed. An abstract
typeisatype where no value can bejust of this type without belonging to a concrete specialization of
the abstract. A protected typeisatype that is used inside this specification but no property outside this
specification should be declared of a protected type.® (We also usethe qualifier pri vat e at one
point. Private types are only specified for the sake of formal definition of other types and are not used
in any form outside this specification.)

1.3.2 Invariant Statements

The declaration of semantic properties, their names, data types, and arguments provide only clues asto
what the new data type might be about. Thetrue definition liesin the invariant statements. Invariant
statements are logical statementsthat aretrue at all times.

Throughout this specification, invariant statements are provided in aformal syntax but are also written
in plain English. The advantage of the formal syntax isthat it can be interpreted unambiguously, and
that it is strongly typed. The advantage of plain English statementsisthat they are more
understandable, especially to those untrained in reading formal languages.

The formal syntax does help to sharpen the decisiveness of this specification. In some cases, however,
the full semantics of atype are beyond what can be fully expressed in such invariant statements. The
combination of both plain and formal language hel ps to make this specification more clear.

Invariant statements are formed using thei nvar i ant keyword that declares one or more variablesin
the same form as an argument list of a property. The invariant statement can contain awher e clause
that constrains the arguments for the entire invariant body. Theinvariant body isenclosed in curly
braces. It containsalist of assertionsthat must all be true.

invariant (BL x) where x.nonNull {
x. and(true).equal s(x);

I

The semantics of theinvariant statement is alogic predicate with auniversal quantifier (“for all”).

The above invariant statement can be read in English as*“ For all Boolean values x, where x is non-
NULL it holdsthat x AND true equals x.” All properties should be named such that one can read the
assertions like English sentences.’

"Therestriction variant of specialization deserves explanation. It is generally touted that inheritance should not retract
properties that have been defined for the genus. Thisisstill true for the restriction as properties are not actually
retracted but constrained to a smaller value set. This may mean constraining properties toNuLL, if NULL wasan
allowed value for that property in the parent type. Inany case, logicaly, restriction is aspecialization, with inheritance
and substitutability. Furthermore extends and restricts are not hard opposites as a specialized type may both extend and
constrain; the two keywords are mainly used to be comprehensible to a human reader.

8 Note the meaning of protected isalittle different from the accessibility qualifiers (public, package, protected, private)
as known from Java and C++. The protection used here is not about hiding thetypeinformation or baring properties
defined by aprotected type from access outside of this specification “ package.” It mainly isastrong recommendation
not to declare attributes or other features of such protected types. Protected types should be used as“wrapped” inother
types. The protected typeisstill directly accessible within the “wrap,” no notion of “delegated properties” exists.
9 The invariant statement syntax and semanticsis similar to the OCL “inv” clause. We did not use OCL in this
specification, however, for several reasons. (1) OCL syntax hasa Smalltalk style that does not fit the C++/Javastyle of
the data type definition language. (2) OCL has many primitive constructs and data types, while this specification
avoids many primitives. (3) In part because of the richnessin primitive constructs, OCL isfairly complex, morethanis
needed in this specification.
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The argument list of an invariant statement need not be specified if no such argument is needed.

invariant {
true. not . equal s(fal se);

fal se. not. equal s(true);

I

1.3.2.1 Assertion Expressions

Assertionsin invariant statements are expressions built with the semantic properties of defined data
types. Assertion expressions must have a Boolean value (true or false.)'® No primitive datatypes, or
operations, pre-exist the definition of any datatype. The only preexisting features of the assertion
expression language are:**

character strings representing utterances in the data type definition language;
the notion of an assertion being successful (true) or failing (false);

theinvariant statement: i nvariant(...) where ... {...};

theuniversal quantifier expressionformforal I (...) where ... {...}; synonymousto
theinvariant statemen;

the existence quantifier expressionformexi sts(...) where ... {...};

theimplicit conjunction (logical AND) between the semicol on-separated assertions: assertions;
assertiony; ...; assertiony;

variables and declarationsin theinvariant argument list;
the property reference using the period: x. property;
implicit and explicit type conversion: ( T) x;
parentheses to override the priorities of the conversion and property resol ution operators:
(T) x. property versus( ( T) X) . property.
1.3.2.2 Nested Quantifier Expressions

Within assertion expressions, nested quantifier statements can be formed similar to invariant
statements. In fact, the universal quantifier built using thef or al | keyword isthe same asthe
invariant statement. The universd quantifier can be used in a nested expression when the compl exity
of the problem requiresit, such asin the following example:

10 This construct is somewhat cyclical, there is a preexisting notion of Boolean val ues even though the Boolean is a
type defined just like any other type. In addition, since this data type definition language iswritten in character strings,
the notion of character strings pre-existsthe definition of the character string type. Thesetwo types, character string
and Boolean aretherefore exceptional, but on the surface, they are defined just like any other datatype. Sincethisdata
type specification language is not meant to be implemented, the cyclicality isnot areal issue. Evenif thislanguage
was implemented, one can use a*“bootstrapping” technique asis common, e.g., for compilersthat compile themselves.
1 Most of these syntactic features are in the spirit of the Java language, useof argument lists, curly bracesto enclose
blocks, semicolon to finish a statement, and the period to reference value properties. The double colon:: asused by
C++ or IDL to distinguish between member-references and val ue-referencesare not used (asin Java). Unlike Javabut
like C++ and IDL, every statement is ended by a semicolon, including type declarations. Implicit type conversionis
also retained from C++.
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i nvariant (SET<T> x, y) where x.nonNull {
X. subset (y) . equal s(
forall (T el ement) where x.contains(el ement) {
y. contai ns(el ement);
1)
b

The existence quantifier has the meaning asin common propositional logic. For example, the
following invariant means: “ SET valuesx andy intersect if and only if there exists an elemente that is
contained in both setsx and y.”

invariant (SET x, y) where x.nonNul | {
X.intersects(y).equal s(
exists(T e) {
X. cont ai ns(e);
y.cont ai ns(e);

1)

The existence quantifier may have awhere-clause, however, there is no difference whether an assertion
is made as awhere-clause or in the body of the existence quantifier. Conversely, for universal
quantifiers, the where-clause weakens the assertion since the body now only applies for values that
meet the criterion in the where-clause.

1.3.3 Type Conversion

This specification defines certain allowable conversions between datatypes. For example, thereisa
pair of conversions between the Character String (ST) and Encode Data (ED). Thismeansthat if aone
expects an ED value but actually has an ST value instead, one can turn the ST valueinto an ED.?

Three kinds of type conversions are defined: promotion, demotion, and character string literals. Type
conversions can beimplicit or explicit. Implicit type conversion occurs when acertain typeis
expected (e.g. as an argument to a statement) but a different typeisactually provided. If thetype
provided has a conversion to the type expected the conversion should be done implicitly.

ITS Note: an Implementation Technology Specification will have to specify how implicit type
conversions are supported. Some technologies support it directly others do not; in any case,
processing rules can be set that specify how these conversions are realized.

An explicit conversion can be specified in an assertion expression using the converted-to type namein
parenthesis before the converted value. For example the following isan explicit type conversion in the
where clause of an invariant statement.

invariant (ED x) where ((ST)x).nonNull { ... };

The type conversion has lower priority than the property resolution period. Thus“( T) a. b ” converts
the value of the property b of variable a to datatype T while“( ( T) a) . b " converts the value of
variablea to T and then references property b of that converted value.

2 These type conversions add necessary flexibility to support i nter-version compatibility and localization. Note: HL7
v2.x used to have implicit type conversions as a side effect of its delimiter-based syntax. It wasthuspossiblefor the
specification to define additional componentsto afield, or change the datatype of afield (e.g., ID to CE) and still
maintain backward compatibility.
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Implicit type conversionsin the assertion expressions are performed where possible. |f aproperty’s
formal argument is declared of datatype T; but the expression used as an actual argument is of type U;
and if U does not extend T; and if U defines a conversion to T, that conversion from T to U takes
effect.

1.3.3.1 Demotion

A demotion is aconversion with anet loss of information. Generally, this means that a more complex
typeis converted into a simple type.

An example for ademotion isthe conversion from Interval (IVL) to asimple Quantity (QTY), e.g. the
center of the interval. In the data type definition language, a demotion is declared using the keyword
denot i on and the data type name to which to demote:

type Interval alias IVL {
denot i on qQry;

I

The specification of demotions shall indicate what information islost and what the major
consequences of losing thisinformation are.

1.3.3.2 Promotion

A promotion is aconversion where new information is generated. Generally, this meansthat asimpler
type is converted into a more complex type.

For example, we alow any Quantity (QTY) to be converted to an Interval (IVL). However, IVL has
more semantic properties than QTY, low and high boundary. Thus, the conversion of QTY tolVL isa
promotion. The additional propertiesof QTY not present in VL must assume new values, default
values, or computed values. The specification of the promotion must indicate what these values are or
how they can be generated.

A promoting conversion from type QTY to type IVL is defined as a semantic property of datatype
QTY using the keyword promotion and the data type name to which to promote:

type Quantity alias QTY {

pronotion | VL;

I

Typicaly, apromotion is defined from a simple type to a more complex type. Also typically, the
simpletypeisdeclared earlier in this document than a more complex type. Declaring al promotionsto
complex typesin the simple type would thusinvolve forward references and would be confusing to the
reader. Therefore, an alternative syntax allows promotions to be defined in the more complex type.
Thisisindicated by naming the type from which to promote in an argument list behind the type to
which to promote.
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type Interval alias IVL {
pronotion |VL (QTY Xx);

}s

1.3.4 Literal Form

A literal isacharacter string representation of adatavalue. Literals are defined for many types, simple
types and types that are more complex. A literal isatype conversion from and to a specially formatted
Character String (ST).

Not every conversion from and to an ST isaliteral conversion (e.g., the ED/ST conversionisnot a
literal.) A literal for adatatype should be able to represent the entire value set of a datatype (the
ED/ST conversion can not represent the entire value set of ED.)

The purpose of having literalsis so that one can write down values in a short human readable form.

For example, literalsfor the types Integer (INT) and Real (REAL) are strings of sign, digits, possibly a
decimal point, etc. The more important Interval types (IVL<REAL>, IVL<PQ>, IVL<TS>) have

literal representationsthat allow oneto use, e.g., “<5" to mean lessthan 5, which is much more
readable than afully structured form of the Interval. For some of the more advanced data types such as
intervals, general timing specification, and parametric probability distribution we expect that the literal
form may be the only form seen for representing these values until users have become used to the
underlying conceptualizations.

Each literal conversion hasits own syntax (grammar,) often aligned with what people find intuitive.
This syntax may therefore not be completely straightforward from a computer's perspective.™®

ITS Note: Character string based Implementable Technology Specifications (ITS) of these abstract
data types may or may not choose the literals defined here as a their representations for these data
types. For the XML ITS we expect that some of the literals defined here be used.

1.3.4.1 Declaration

In the data type definition language we declare aliteral form as aproperty of a datatype using the
keyword literal followed by the datatype name ST, since theliteral isaconversion to and from the ST
datatype.

type | ntegerNunber alias |INT {

literal ST;

1.3.4.2 Definition

The actual definition of the literal form occurs outside the data type declaration body using an attribute
grammar. An attribute grammar isagrammar that specifies both syntax and semantics of language
structures. The syntax isdefined in essentially the Backus-Naur-Form (BNF).**

18 The different grammars of literals are not meant to be combined into one overall HL 7 value expression grammar.
Although attempt have been made to resolve potential ambiguities between the literals of different types where they
would be harmful, some of these ambiguities still remain. For example“1.2" can beavalid literal for both Object
Identifier (OID) and a Real Number.
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For example, consider the following simple definition of a datatype for cardinal numbers (positive
integers.) Thistype definition depends only the Boolean datatype (BL) and has a character string

literal declared:

type Cardinal Nunber alias CARD {
BL i sZer o;
BL equal s( CARD x) ;
CARD successor ;
CARD pl us( CARD x) ;
CARD ti mesTen;

literal ST;
i

1.3.421  Syntax Definition
Theliteral syntax and semanticsisfirst exposed completely and then described in all detail.

CARD. literal ST {
CARD
CARD digi t { $.equal s($1.tinesTen. pl us(%$2); }
| digit { $.equal s(%$1); };
CARD di gi t
“0” { $.isZero; }
| “1” { $.equal s(0.successor); }
| “2” { $.equal s(1.successor); }
| “8” { $.equal s(7.successor); }
| “9” { $. equal s(8.successor); }
i

Every syntactic rule consists of the name of asymbol, a colon and the definition (so called production)
of the symbol. A production is asequence of symbols. These other symbols are also defined in the
grammar, or they areterminal symbols. Terminal symbols are character strings written in double
quotes or string patterns (called regular expressions) Thusthe form:

CARD : CARD digit | digit;

means, that any cardinal number symbol isacardinal number symbol followed by adigit or just a
digit. The vertical bar standsfor adisjunction (logical OR.) A syntactic rule ends with a semicolon.

Every symbol has exactly one value of adefined datatype. The datatype of the symbol’svalueis
declared where the symbol is defined:

14 The BNF variant used hereis similar to the Yacc parser and LEx lexical analyzer generator languages but is
simplified and made consistent to the syntax and declarative style of thisdatatype definition language. Thedifferences
arethat all symbols have exactly one attribute, their value strongly typed as one of the defined datatypes. Each
symbol’ stypeisdeclared in front of the symbol’s definition (e.g.: INT digit : “0" | “1" | ...| “9";).
The start symbol has no name but just atype (e.g., INT : digit | I NT digit;). Adaatypenamecanoccur
as a symbol name meaning aliteral of that data type.
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CARD digit : “0" | “21” | “2" | ... | “8 | “9”;

means that the symbol digits has avalue of type CARD. The start-symbol isthe datatypeitself and
does not need a separate name.

1.3.4.2.2 Semantics Definition

The semantics of the literal expression is specified in semantic rules enclosed in curly braces for each
of the defined productions of a symbol:

symbol : production; { rule;} | production,{ rule;} | ...| production,{ rule,};

A semantic rule is simply a semicolon-separated list of Boolean assertion expressions of the same kind
as those used in invariant statements. However, there are special variables defined in the semantic rule
that all begin with adollar character (e.g., $,$1,$2,$3, ...) Thesimple$ standsfor the value of the
currently defined symbol; while $1, $2, $3, etc. stand for the values of the parts of the semantic rule’s
associated production. For example, in

CARD
CARD di gi t { $.equal s($1.tinesTen. plus($2); }
| digit { $.equal s($1); };

thefirst production “CARD di gi t ” has asemantic rule that says: the value $ of the defined symbol
equalsthe value $1 of thefirst symbol CARD times ten plusthe value $2 of the second symbol
digit?

1.3.4.2.3 Terminal Symbols

A terminal symbol can be specified as a string pattern, so-called regular expression. The regular
expression syntax used here isthe classic syntax invented by Aho and used in AWK, LEX, GREP, and
PERL. Regular expressions appear between two slashes/ .../ . Inaregular expression pattern every
characterexcept[ ] ~$ . / : () \ | ? * + { } matchesitself. The other characters
that are actually used in this specification are defined in Table 3.

Table 3: Special Characters for Regular Expressions

Pattern Definition

[ ...] Specifies a character class. For example,/ [ A- Za- z] / matches the characters of the upper and
lower case English alphabet.

[~..] Specifies a character class negatively. For example, / [ #BCD] / matches any character except B,
C, and D.

L2 The preceding pattern is optional. For example, / ab?c/ matches “ac” and “abc”.

X The preceding pattern may occur zero or many times. For example, / ab* ¢/ matches “ac”, “abc”,
“abbc”, “abbbc”, etc.

ot The preceding pattern may occur one or more times. For example, / ab+c/ matches “abc”,“abbc”,

“abbbc”, but not “ac”.

...{n, m}  The preceding pattern may occur n to m times where n and m are cardinal numbers 0 £ n £ m. For
example, / ab{ 2, 4} c/ matches “abbc”, “abbbc”, and “abbbbc”.

I The pattern on either side of the bar may match. For example, / ab| cd/ matches “abd” and “acd”
but not “abcd”.

(...) The pattern in parentheses is used as one pattern for the above operators. For example,
/a(bc)*/ matches “a”, “abc”, “abcbc”, “abcbchc”, etc.
The left pattern matches if followed by the right pattern, but the right pattern is not consumed by a

15 Note that the equal s property (defined for all datatypes, see Section 1.4.2.3) isardation, atest for equdity, not an
assignment statement. One can not assign avalue to another value. Unlike Yacc and Lexandyzers, thisdatatype
definition language is purely declarative it has no concept of assignment. For thisreason, the grammar rules define
both parsing and building literal expressions.
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match. For example, / ab: ¢/ matches “abc” but not “ab”, however, the value of a symbol thus
matched is “ab” and the “c” is left over for the next symbol. The colon is a slight deviation from the
conventional slash / but the slash is also conventionally used to enclose the entire pattern and may
occur as a character to match — three meanings is one too many.

R N Matches the following character literally, i.e. escapes from any special meaning of that character.
For example, / a\ +b/ matches “a+b”.
Y Matches the slash as a character. For example, / a\ / bc/ macthes “a/ bc”.

1.3.5 Generic Data Types

Generic datatypes are incompl ete type definitions. Thisincompletenessis signified by one or more
parametersto the type definition. Usually parameters stand for other types. Using parameters, a
generic type might declare semantic properties of other not fully specified datatypes. For example, the
generic datatype Interval is declared with aparameter T that can stand for any Quantity datatype
(QTY). The componentslow and high are declared as being of type T.

tenpl at e<QTY T>

type Interval <T> alias |IVL<T> {
T | ow;
T hi gh;

I nstantiating a generic type means completing its definition. For example, to instantiate an Interval,
one must specify of what base data type the interval should be. Thisis done by binding the parameter
T. Toinstantiate an Interval of Integer numbers, one would bind the parameter T to the type Integer.
Thus, theincomplete data type Interval is completed to the data type Interval of Integer.

For example the following type definition for MyType declares a property named “ multiplicity” that is
an interval of the cardinal number data type used in the above examples.

type MyType alias M {
I VL<CARD> nultiplicity;
i

1.3.5.1 Generic Collections

Generic datatypes for collections are being used throughout this specification. The most important of
them are

Set (SET<T>.) A set contains elementsin no particular order and without duplicate elements. The
SET<T> datatyperequires all elements of aset to be of the same datatype.

Sequence (LIST<T>.) A sequenceisacollection of valuesin an arbitrary but particular order. A
sequence has ahead and atail, where the head is an element and the tail is the sequence without its
head.

Interval (IVL<T>) Aninterval isa continuous subset of an ordered type.

These and other generic types are fully defined in Section 1. These generic datatypes and their
properties are being used in this specification early on. For the best understanding of this specification
knowledge about the set, sequence and interval isimportant and the reader is advised to refer to
Section 1 when coming across a generic type being used to define another type.

1.3.5.2 Generic Type Extensions

Generic datatype extensions are generic types with one parameter type that the generic type extends.
In the formal data type definition language, generic type extensionsfollow the pattern:
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tenpl at e<ANY T> type Generi cTypeExt ensi onName extends T { ... };

These generic type extensions inherit properties of their base type and add some specific featureto it.
The generic type extension is a specialization of the base type, thus avalue of the extension datatype

can be used instead of its base data type.*®

annotate the value of a data value property.

ITS Note: values of extended types can be substituted for their base type. However, an ITS may
make some constraints as to what extensions to accommodate. Particularly, extensions need not be
defined for those components carrying the values of data value properties. Thus, while any data
value can be annotated outside the data type specification, an ITS may not provide for a way to

1.4 Data Type and Data Value

1.4.1 Data Type (type)

This section defines the fundamental properties of all data
typesand all datavalues. Thetype DataTypeisameta-type
declared in order to allow the formal definitionsto speak
about the datatype of avalue. Any datatype defined in this
specification isavalue of the type DataType.

protected type DataType extends DataVal ue {
CE nane;
b
1.4.1.1 Name: CE

A datatype nameis acode with equivalents (CE, see Section
24.4.3). The short aliasname, if defined, isthe main code

Boolean : BL
not : BL

and(BL) : BL
or(BL) : BL
eor(BL) : BL
implies(BL) : BL

v

DataValue : ANY

1

dataType : DataType
nullFlavor : CS
nonNull : BL
isNull : BL
notApplicable : BL
unknown : BL

other : BL

equals(ANY) : BL

Figure 1: Fundamental data types

value, in which case the long nameis an equivalent translation in the CE value.

1.4.2 Data Value (ANY)

Thetype DataV a ue defines the basic properties of every datavalue. Thisis an abstract type, meaning
that no value can be just a data value without belonging to any concrete type. Every concretetypeisa

specialization of this general abstract DataV alue type.

abstract type DataVal ue alias ANY {
Dat aType dat aType;
BL nonNul | ;
CS nul | Fl avor ;
BL i sNull;
BL not Appl i cabl e;
BL unknown;
BL ot her;
BL equal s(ANY x);
IE

Copyright © 2000, Health Level Seven, Inc. All rights reserved.
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1.4.2.1 dataType : Data Type

Every datavalueis of adatatype. The datavalueimplicitly carriesthe information about its own type.
Thus, given adatavaluein an HL7 message, one can inquire about its data type.

i nvariant (ANY x) {
X. dat aType. nonNul | ;

I

1.4.2.2 Exceptional Values (NULL-Values)

Exceptional values express missing information and possibly the reason why the information is
missing. Exceptional values are also called NULL-values, and the exception is called the “flavor” of
NULL.

Thus, every datavalueis either aproper valueor itisNULL. If the valueisNULL, the null Flavor
property isnon-NULL. If thevalueisnot NULL, itsnullFlavor property isNULL (not applicable.)

invariant (ANY x) {
x. nonNul | . equal s(x. nul | Fl avor.isNull);

X. i sNul | . equal s(x. nonNul | . not);

¥
Table 4: Flavors of NULL
Concept Symbol Implies Definition
no information NI No information whatsoever can be inferred from this exceptional
value. This is the most general exceptional value. It is also the
default exceptional value.
not applicable NA NI No proper value is applicable in this context (e.g., last menstrual
period for a male.)
unknown UNK NI A proper value is applicable, but not known.
not asked NASK UNK This information has not been sought (e.g., patient was not asked)
asked but ASKU UNK Information was sought but not found (e.g., patient was asked but
unknown didn't know)
temporarily NAV ASKU Information is not available at this time but it is expected that it will
unavailable be available later.
other OTH The actual value is not an element in the value domain of a
variable. (e.g., concept not provided by required code system.)*
positive infinity PINF OTH Positive infinity of numbers.
negative infinity NINF OTH Negative infinity of numbers.
not present NP Value is not present in a message. NP is a presentation layer

concept only, not and application layer concept! All values not

18 Generic type extensions are sometimes called “mixins’, since their effect isto mix certain propertiesinto the
E)reexisti ng data type.

" Thereis afine difference in coded data types between nuLL/other and “coded with extensibility’ (CWE.) TheCWE
concept is defined elsewhere (HL7 Development Framework). CWE vocabulary domainsinclude any pertinent local
coding system. Since CWE domains includeevery localy defined concept, thereishardly any case where aconcept is
not within that value domain. Thus, NuLL/other hardly ever occursfor CWE fields outside of applications. However,
an interface that cannot interpret the local code used for anot otherwise coded concept will still map such local-coded
value to NuLL/other, because it might not be able or willing to expand its interpretable value domain.

For example, if the standard domain for administrative gender contains only the concepts male andfemale, and the
concept intersex needs coding, intersex might be coded using alocal code that extendsthe gender code. However, a
receiving system that does not know about that non-standard code for intersex will map the unknown code to
NuLL/other. Alternatively, the sending system could have used nuLL/other instead of itslocal codein thefirst place.
For CWE fields, the local codeis allowed, for CNE (coded, non-extensible) fields NuLL/other istheonly lega way.
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present in a message must be replaced by the applicable default
value, or no-information (NI) if no other default value is defined.

Note the distinction between value domain and vocabulary domain. A vocabulary domain is a value
domain for coded values, but not all value domains are vocabulary domains. The null flavor other is
used whenever the actual value is not in the required value domain, this may be, for example, when
the value exceeds some constraints that are defined too restrictive (e.g., age less than 100 years.)

Some of these null flavors are defined as named properties that can be used as simple predicates for all
datavalues. Thisisdoneto simplify the formulation of invariantsin the remainder of this
specification. Note the difference between semantic properties and representational “components’ of
datavalues. AnITS must only represent those components that it needs toinfer the semantic
properties. The null-flavor predicates nonNull, isNull, notApplicable, unknown, and other can all be
inferred from the nullFlavor property.

i nvariant (ANY x) {
X. not Appl i cabl e. equal s(x. nul | Fl avor. i nplies(NA));
x. unknown. equal s(x. nul | Fl avor. i nplies(UNK));
x. ot her. equal s(x. nul | Fl avor.inplies(OrH));

When a property, RIM attribute, or message field is called mandatory this means that any non-NULL
value of the type to which the property belongs must have anon-NULL value for that property, in other
words, afield may not be NULL, providing that its container (object, segment, etc.) is present.

In other HL7 specifications the label “mandatory” is used, while this specification formulates the
mandatory constraint explicitly. For example, the following invariant says that the dataType property
ismandatory for any datavaluethat is non-NULL.

i nvari ant (ANY x) where x.nonNul | {
X. dat aType. nonNul | ;

ITS Note: nuLL-flavors are applicable to any property of a data value or a higher-level object attribute.
Where the difference of null flavors is not significant, ITS are not required to represent them. If
nothing else is noted in this specification, ITS need not represent general nuLL-flavors for data-value
properties.

1.4.2.3 Equality

Any two data values can be tested for equality. Equality isareflexive, symmetric, and transitive
relation. Only values of the same data type can be equal.

invariant (ANY x, vy, z)
where x.nonNul | .and(y. nonNul|).and(z. nonNul |')

{
X. equal s(x); [* reflexivity */
x. equal s(y) . equal s(y. equal s(x)); [* symretry */
x. equal s(y).and(y. equal s(z)).inplies(x.equal s(z)) [* transitivity */
x. equal s(y).inplies(x.dataType. equal s(y. dataType);

}
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How equality is determined must be defined for each datatype. If nothing elseis specified, two data
values are equal if they are indistinguishable, that is, if they differ in none of their semantic properties.
A datatype can “override” this general definition of equality, by specifying its own equals
relationship. This overriding of the equality relation can be used to exclude semantic properties from
the equality test. If a datatype excludes semantic properties from its definition of equality, thisimplies
that certain properties (or aspects of properties) that are not part of the equality test are not essential to
the meaning of the value.

For example the physical quantity has the two semantic properties (1) areal number and (2) a coded
unit of measure. The equality test, however, must account for the fact that, e.g., 1 meter equals 100
centimeter; independent equality of the two semantic propertiesistoo strong a criterion for the equality
test. Therefore, physical quantity must override the equality definition.

Note: with data values, no distinction exists between equality and identity. Equality is a static property
between two values, and values never change.

24
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2 Basic Types

2.1 Boolean (BL)

The Boolean type stands for the values of two-valued logic. A Boolean value can be either “true” or
“false”. With any datavalue potentially being NULL, the two-valued logic is effectively extended to a
three-valued logic as shown in the following truth tables:

Table 5: Truth tables for Boolean logic with NULL values

NOT AND true false NULL OR true false NULL
true false true true false NULL true true true true

false | true false | false false false false | true false NULL
NULL NULL NULL NULL  false  NULL NULL | true NULL  NULL

type Bool ean alias BL extends ANY
val ues(true, false)

{
BL and(BL x);
BL not ;

literal ST;

BL or(BL x);
BL eor (BL x);
BL i mplies(BL x);

i

Theliteral form of the Boolean is determined by the named values specified in the values clause.

2.1.1.1 Negation

Negation of a Boolean turnstrue into false and false into true and isNULL for NULL values.

invariant (BL x) {
true. not. equal s(fal se);
fal se. not. equal s(true);

X.isNull.equal s(x.not.isNull);
IE

2.1.1.2 Conjunction

Conjunction (AND) is associative and commutative, withtrue as a neutral element. False AND any
Boolean value isfalse. Theseruleshold even if one or both of the operands are NULL.

invariant (BL x) {
x.and(true).equal s(x);
x. and(f al se). equal s(fal se);

Copyright © 2000, Health Level Seven, Inc. All rights reserved.
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If both operands for AND are NULL, the result iSNULL.

invariant (BL x, y) where x.isNull.and(y.isNull) {
x.and(y).isNull;
i

2.1.1.3 Disjunction

The disjunctions OR and exclusive OR can be specified interms of negation and conjunction. The
disjuntion x ORy isfalseif and only if x isfalse andy isfalse. The exclusive-OR constrains OR such
that x and y may not both be true.

invariant (BL x, y) {

x.or (y).equal s(x.not.and(y. not).not);

x. eor (y).equal s(x.or(y).and(x.and(y).not));
b

2.1.1.4 Implication

Thelogica implication isimportant to make invariant statements. Animplicationisarule of theform
IF condition THEN conclusion. Logically theimplication is defined as the disjunction of the negated
condition and the conclusion, meaning that when the condition is true the conclusion must be true to
make the overall statement true.

i nvariant (BL condition, conclusion) {

condi tion.inplies(conclusion).equal s(condition.not.or(conclusion));

}s

Theimplication is not reversible and does not specify what is true when the condition is false (ex falso
quodlibet).

EncapsulatedData : ED
type : CS <<restriction>> CharacterString : ST
Icahnars:t; C(S:S type = text/plain head : ST

guage - tail : ST
S e BN ey B T

. 1 1
integrityCheck : BIN L e !
integrityCheckAlgorithm : CS Sequence RIS
thumbnail : ED head : T
tail : LIST<T>
equals(ED) : BL isEmpty : BL
nonEmpty : BL
v length : INT
BinaryData : BIN 7
//I
RA /
Boolean : BL LIST<BL>

not : BL Z’

and(BL) : BL L.*

or(BL) : BL

eor(BL) : BL

implies(BL) : BL

Figure 2: Overview of Text and Multimedia Data Types
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2.2 Encapsulated Data (ED)

The encapsulated data (ED) type can convey any data. ED isawrapper around a block of binary data.
Therefore, binary data must be defined first.

Table 6: Summary of Primary Properties of Encapsulated Data (ED)

Name Type  Status Default  Constraint Definition
BIN mandatory  NULL The binary data.
type CS mandatory text/plain  IANA: MIME Identifies the encoding of the data
media types and a method to interpret the
data.
charset CS implied ITS IANA: Where applicable, specifies the
charset character set and character
encoding used.
language CS implied CONTEXT Where applicable, specifies the
language of text data.
compression CS optional NULL Indicates whether the raw byte

data is compressed, and what
compression algorithm was used.

reference TEL optional NULL A telecommunication address that
resolves to the binary data.
integrityCheck BIN optional NULL A short binary value representing

a cryptographically strong
checksum over the binary data.

integrityCheckAlgorithm Cs fixed SHA-1 Specifies the algorithm used to
compute the integrityCheck value.

thumbnail ED optional NULL An abbreviated rendition of the full
data.

2.2.1 Binary Data (BIN)

Binary datais a sequence of uninterpreted bits. A bit isidentical with aBoolean value. Thus, all
binary data is— semantically — a sequence of Boolean values. The binary datatype is protected; it
should not be used directly but only inside the encapsulated data (ED).

protected type BinaryData alias BIN extends LIST<BL>;

ITS Note: the representation of arbitrary binary data is the responsibility of an ITS. How the ITS
accomplishes this depends on the underlying Implementation Technology (whether it is character-
based or binary) and on the so represented data. Semantically character data is represented as
binary data, however, a character-based ITS should not convert character data into arbitrary binary
data and then represent binary data in a character encoding. Ultimately even character-based
implementation technology will communicate binary data.

An empty sequence is not considered binary data but counts asaNULL-value. In other words, non-
NULL binary data contains at |east one bit.

invariant (BIN x) where x.nonNul | {

X. nonEnpt y;
X. | engt h. gr eat er Than( 0) ;

I

2.2.2 Properties of Encapsulated Data (ED)

The encapsulated data (ED) type can convey any data. ED is based on binary data (BIN), however, in
order for that binary datato convey meaning, it must be decoded and further interpreted. ED addsto
BIN amechanism to specify the method of interpretation of the binary data. Encapsulated data may be
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aplain character string, formatted text, or any of several kinds of multimediadata. The kind of
encoding is conveyed in three properties:

type — specifies the protocol, or application used to decode and interpret the data (also called the
“mediatype”’ when referring to multi-media data.)

char set — identifies the character set and character encoding for character-based “media.”

compr ession — data may be given in acompressed form in which case compression identifies the
compression algorithm used.

Encapsulated data can be present in two forms, inline or by reference. Inline datais communicated or
moved as part of the encapsul ated data value, whereas by-reference data may reside at a different
(remote) location. The dataisthe same whether it islocated inline or remote.

type Encapsul atedData alias ED extends BIN {

Cs type;

CS charset ;

Cs | anguage;

(0 conpr essi on;

TEL ref erence

BI N i ntegrityCheck;

Cs i ntegrityCheckAl gorithm
ED t hunbnai | ;

BL equal s(ED x);

2221 type :CS

Identifies the encoding of the data and identifies the method to interpret or render the data. The
domain of the encapsulated data’ s type property are the MIME mediatypes, defined by the Internet
Assigned Numbers Authority (IANA).

The encapsul ated data’ s type is a mandatory property, i.e., every non-NULL instance of encapsulated
data must have a defined type property.

invari ant (ED x) where x.nonNul | {
x. type. nonNul | ;
b

ThelANA defined domain of mediatypesis established by the Internet standard RFC 2046
[ftp://ftp.isi.edu/in-notes/rfc2046.txt ]. RFC 2046 defines the mediatype to consist of two parts:

top level mediatype, and
media subtype.

However, this specification treats the entire media type as one atomic code symbol in the form defined
by IANA, i.e., top level type followed by aslash “/” followed by media subtype. Currently defined
mediatypes are registered in a database [ http://www.isi.edu/in-notes/iana/assignments/media-types]
maintained by IANA. Currently more than 160 different MIME mediatypes are defined, with the list
growing rapidly. Ingeneral, all those types defined by the IANA may be used.

28
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To prevent the interoperability-problems associated with this diversity, this specification prefers
certain mediatypesto others. Thisisto define a greatest common denominator on which
interoperability is not only possible, but that is powerful enough to support even advanced multimedia
communication needs.

Table 7 below assigns a status to certain MIME mediatypes, where the status means one of the
following:

required

Every HL7 application must support at least the required mediatypesif it supportsagiven kind of
media. One required media-type for each kind of mediaexists. Some mediatypes are required for a
specific purpose, which is then indicated as “required for ..."*®

recommended

Other mediatypes are recommended for a particular purpose. For any given purpose there should be
only very few additionally recommended mediatypes and the rationale, conditions and assumptions of
such recommendations must be made very clear.

indifferent

This status means, HL 7 does neither forbid nor endorse the use of this mediatype. All mediatypes not
mentioned here by default belong into the indifferent category. Since there is one required and several
recommended media types for most practically relevant use cases, mediatypes of this status should be
used very conservatively.

deprecated

Deprecated mediatypes should not be used, because these mediatypes are flawed, because there are
better alternatives, or because of certain risks. Such risks could be security risks, for example, the risk
that such amediatype could spread computer viruses. Not every flawed mediatype is marked as
deprecated, though. A mediatype that is not mentioned, and thus considered other by default, may
well be flawed.

Table 7: Use of MIME media types

Media Type Status Use Case

text/plain required For any plain text. This is the default and is equivalent to a character
default string (ST) data type.

application/x-cda- required For XML documents according to the HL7 CDA Level 1 standard.

level-1 for HL7 CDA
documents

text/x-hl7-ft recommended For compatibility, this represents the HL7 v2.x FT data type. Its use is
for compatibility = recommended only for backward compatibility with HL7 v2.x systems.

text/html recommended For marked-up text according to the Hypertext Mark-up Language.

HTML markup is sufficient for typographically marking-up most written-
text documents. HTML is platform independent and widely deployed.
application/pdf recommended The Portable Document Format is recommended for written text that is
completely laid out and read-only. PDF is a platform independent,
widely deployed, and open specification with freely available rendering

tools.
text/sgml other For structured character based data. There is a risk that general
text/xml SGML/XML is too powerful to allow a sharing of general SGML/XML
documents between different applications.
text/rtf other The Rich Text Format is widely used to share word-processor

documents. However, RTF does have compatibility problems, as it is
quite dependent on the word processor. May be useful if word

18 The set of required mediatypes, however, is very small so that no undue requirements are forced on HL7
applications, especially legacy systems. In general, no HL7 application would be forced to support any given kind of
media other than written text. For example, many systems just do not want to receive audio data, becausethose systems
can only show written text to their users. It isamatter of application conformance statements to say: “l will not handle
audio”. Only if asystem claimsto handle audio media, it must support the required mediatype for audio.
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2.2.2.2

processor edit-able text should be shared.

application/msword deprecated This format is very prone to compatibility problems. If sharing of edit-
able text is required, text/plain, text/html or text/rtf should be used
instead.
audio/basic required This is a format for single channel audio, encoded using 8bit ISDN mu-
for audio law [PCM] at a sample rate of 8000 Hz. This format is standardized
by: CCITT, Fascicle Ill.4 -Recommendation G.711. Pulse Code
Modulation (PCM) of Voice Frequencies. Geneva, 1972.
audio/mpeg recommended MPEG-1 Audio layer-3 is an audio compression algorithm and file
for CD quality format defined in ISO 11172-3 and I1SO 13818-3. MP3
audio has an adjustable sampling frequency for highly compressed
telephone to CD quality audio.
audio/k32adpcm recommended ADPCM allows compressing audio data. It is defined in the Internet
for audio specification RFC 2421 [ftp://ftp.isi.edu/in-notes/rfc2421.txt]. Its
compression implementation base is unclear.
image/png required Portable Network Graphics (PNG) [http://www.cdrom.com/pub/png] is
for images a widely supported lossless image compression standard with open
source code available.
image/gif other GIF is a popular format that is universally well supported. However GIF
is patent encumbered and should therefore be used with caution.
image/jpeg required This format is required for high compression of high color photographs.
for high color Itis a “lossy" compression, but the difference to lossless compression
images is almost unnoticeable to the human vision.
image/g3fax recommended This is recommended only for fax applications.
for FAX
video/mpeg required MPEG is an international standard, widely deployed, highly efficient for
for video high color video; open source code exists; highly interoperable.
video/x-avi deprecated The AVI file format is just a wrapper for many different codecs; it is a
source of many interoperability problems.
modelivrml recommended This is an openly standardized format for 3D models that can be useful

for 3D models

for virtual reality applications such as anatomy or biochemical research
(visualization of the steric structure of macromolecules)

application/x-dicom

other

For HIS/PACS interface applications that need to encapsulate DICOM
data in HL7 data.

charset : CS

For character-based encoding types, this property specifies the character set and character encoding
used. The charset is defined according to Internet RFC 2278, | ANA Char set Registration Procedures,
[http://www.isi.edu/in-notes/rfc2278.txt .

The charset domain is maintained by the Internet Assigned Numbers Authority (IANA)

[http://www.isi.edu/in-notes/iana/assignments/character-sets]. The IANA source specifies names and
multiple aliases for most character sets. For the HL7’ s purposes, use of multiple alias namesis not
allowed. The standard name for HL7 isthe one marked by IANA as“preferred for MIME.” If IANA
has not marked one of the aliases as “ preferred for MIME” the main name shall be the one used for

HL7.

Table 8listsafew of the IANA defined character setsthat are of interest to current HL7 members. The
definitions of the “ status’ columnisasgiven for Table 7.

Table 8: Select Character Set Codes as defined by IANA

Code Status Description
US-ASCII required ANSI X3.4-1968
UTF-8 required 8 bit Unicode Transfer Format [RFC 2279]. This is the default character set
for Unicode  (1ISO 10646/Unicode) and encoding for XML and natively supported by
Java. Itis backward compatible to 7-bit US-ASCII.

ISO-10646-UCS-2 deprecated  Unicode ISO 10646, the 16 bit per character Basic Multilingual Plane.
Unicode has a special protocol to specify the byte order, which must be
followed. To avoid byte ordering problems (and — for the western part of
the world — to conserve bandwidth) the UTF-8 encoding should be used.

ISO-10646-UCS-4 deprecated  Unicode ISO 10646, the full code-set (32-bit per character.) Unicode has a

special protocol to specify the byte order, which must be followed. To avoid
byte ordering problems (and — for the western part of the world — to
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conserve bandwidth) the UTF-8 encoding should be used.

UTF-7 indifferent 7 bit Unicode Transfer Format [RFC 2152]. This is a Unicode encoding that
is sure to be safe for older communication links or file formats that remove
the 7" bit of each transferred byte.

ISO-8859-1 indifferent ISO 8859 Latin-1 character set is native on western European (and U.S.)
Microsoft Windows installations and on many Unix/X-Windows systems.

ISO-8859-2 indifferent ISO 8859 Latin-2 character set for the Slavic languages of Central Europe
(Polish, Czech).

ISO-8859-5 indifferent ISO 8859 Cyrillic character set for the languages Russian, Bulgarian,
Byelorussian, Macedonian, Serbian and Ukrainian.

JIS-2022-JP indifferent ISO 2022 is a character-encoding framework in which multilingual code-

pages can be switched in and out. JIS-2022-JP, is ISO 2022 as released as
a Japanese Information Standard and as the Internet specification
Japanese Character Encoding for Internet Messages [RFC 1468].

EBCDIC indifferent Extended binary-coded decimal interchange code. A coded character set of
256 8-bit characters commonly used by IBM mainframes.

2.2.2.3 language : CS

For character based information the language property specifies the language of the text.® The
principles of the code domain of this attributeis specified by RFC 1766, Tags for the I dentification of
Languages [http://www.isi.edu/in-notes/rfc1766.txt]. Itisaset of pre-coordinated pairs of one 2-letter
I SO 639 |language code and one 2-letter 1SO 3166 country code.?°

L anguage tags do not modify the meaning of the characters found in the text; they are only an advice
on if and how to present or communicate the text.?*

ITS Note: representation of language tags to text is highly dependent on the ITS. An ITS should use
the native way of language tagging provided by its target implementation technology. Some may
have language information in a separate component, e.g., XML has the xml:lang tag for strings.
Others may rely on language tags as part of the binary character string representation, e.g., ISO
10646 (Unicode) and its “plane-14" language tags.

The language tag should not be mandatory if it is not mandatory in the implementation technology.
Semantically, language tagging of strings follows a default-logic. If nothing else is specified the local
language is assumed. If a language is set for an entire message or document, that language is the
default. If any information element or value that is superior in the syntax hierarchy specifies a
language, that language is the default for all subordinate text values.

If language tags are present in the beginning of the encoded binary text (e.g., through Unicode’s
plane-14 tags) this is the source of the language property of the encapsulated data value.

2.2.2.4 compression : CS

Indicates whether the raw byte datais compressed, and what compression algorithm wasused.

Table 9: Compression Algorithms

Name Code Status Description and Comment
deflate DF required The “deflate” compressed data format as specified in RFC 1951
[ftp://ftp.isi.edu/in-notes/rfc1951.txt].
gzip Gz other A compressed data format that is compatible with the widely used

GZIP utility as specified in RFC 1952 [ftp://ftp.isi.edu/in-
notes/rfc1952.tx{] (uses the deflate algorithm.)

zlib ZL other A compressed data format that also uses the deflate algorithm.
Specified as RFC 1950 [ftp://ftp.isi.edu/in-notes/rfc1950.tx{]

¥ The need for alanguage code for text data values is documented in RFC 2277, IETF Policy on Character Setsand
Languages [http://www.isi.edu/in-notes/rfc2277.txt]. Further background information can be found in Using
International Charactersin Internet Mail [http://www.imc.org/mail-i18n.html], a memo by the Internet Mail
Consortium.

2 RFC 1766 isthe HL7-approved coding system for all reference to human languages, in data types and el sewhere.
2L For this reason, asystem or site that does not deal with multilingual text or namesin the real world can safely ignore
the language property.
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compress z deprecated Original UNIX compress algorithm and file format using the LZC
algorithm (a variant of LZW). Patent encumbered and less
efficient than deflate.

Compression may not be allowed for encapsul ated data depending on the attribute or component that is
declared encapsulated data. Character strings (see Section 2.3) may never be compressed.

2.2.2.5 reference: TEL

A telecommunication address (TEL ), such asa URL for HTTP or FTP, which will resolve to precisely
the same binary datathat could as well have been provided asinline data.

The semantic value of an encapsulated data value is the same, regardless whether the datais present
inline data or just by-reference. However, an encapsulated data value without inline data behaves
differently, since any attempt to examine the data requires the data to be downloaded from the
reference.

An encapsulated data value may have both inline data and a reference. The reference must point to the
same data as provided inline.

By-reference encapsul ated data may not be allowed depending on the attribute or component that is
declared encapsulated data. Character strings (see Section 2.3) must always beinline.
2.2.2.6 integrityCheck : BIN

Theintegrity check isashort binary value representing a cryptographically strong checksum that is
calculated over the binary data. The purpose of this property, when communicated with areferenceis
for anyoneto validate later whether the reference still resolved to the same data that the reference
resolved to when the encapsul ated data value with reference was created.

Theintegrity check is calculated according to theintegrity check algorithm. By default, the Secure
Hash Algorithm-1 (SHA-1) shall be used. The integrity check is binary encoded according to the rules
of the integrity check algorithm.

Theintegrity check is calculated over the raw binary datathat is contained in the data component, or
that is accessible through the reference. No transformations are made before the integrity check is
calculated. If the datais compressed, the Integrity Check is calculated over the compressed data.

2.2.2.7 integrityCheckAlgorithm : CS
Specifies the algorithm used to compute the integrityCheck value.??

Table 10: Integrity Check Algorithm

Name Code Description

Secure Hash Algorithm —1  SHA-1  This algorithm is defined in FIPS PUB 180-1: Secure Hash Standard. As
of April 17, 1995.

2.2.2.8 thumbnail : ED

A thumbnail is an abbreviated rendition of the full data.>® A thumbnail requires significantly fewer
resources than the full data, while still maintaining some distinctive similarity with the full data. A

2 The cryptographically strong checksum algorithm Secure Hash Algorithm-1 (SHA-1) iscurrently theindustry
standard. It has superseded the MD5 algorithm only acouple of years ago, when certain flawsin the security of MD5
were discovered. Currently the SHA -1 hash algorithm is the default and required only choicefor theintegrity check
algorithm. However, there is no assurance that SHA -1 will not be superseded at anytime when its flaws will be
discovered.

2 Originally, the term thumbnail refers to an image in alower resolution (or smaller size) than another image.
However, the thumbnail concept can be metaphorically used for mediatypes other than images. For example, amovie
may be represented by a shorter clip; an audio-clip may be represented by another audio-clipthat isshorter, hasalower
sampling rate, or alossy compression.
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thumbnail istypically used with by-reference encapsulated data. It allows auser to select data more
efficiently before actually downloading through the reference.

Thumbnails may not be allowed depending on the attribute or component that is declared encapsul ated
data. Character strings (see Section 2.3) never have thumbnails, and a thumbnail may not itself contain
athumbnail.

i nvari ant (ED x) where x.thunbnail.nonNul |l {
X. t hurmbnai | . t hunbnai | . i sNul | ;
i

ITS Note: the ITS should consider the case where the thumbnail and the original both have the same
properties of type, charset and compression. In this case, these properties need not be represented
explicitly for the thumbnail but might be “inherited” from the main encapsulated data value to its
thumbnail.

2.2.2.9 Equality

Two values of type Encapsulated Data are equal if and only if their type and referenced data are equal.
For those ED values with compressed data or remote data, only the de-referenced and uncompressed
data counts for the equality test. The compression and reference property themselves are excluded
from the equality test, asisthe thumbnail and the language property. If the ED.typeis character based
and the charset property is not equal, the charset property must be resolved through mapping of the
data between the different character sets.

The integrity check algorithm and integrity check is excluded from the equality test. However, since
equality of integrity check valueis strong indication for equality of the data, the equality test can be
practically based on the integrity check, given equal integrity check algorithm properties.

2.3 Character String (ST)

The character string is arestricted encapsul ated data type (ED), whose type property isfixed to
text/plain, and whose data must be inlined and not compressed. Thus, the properties compression,
reference, integrity check, algorithm, and thumbnail are not applicable. The character string datatype
is used when the appearance of text does not bear meaning, which istrue for formalized text and all
kinds of names.

Table 11: Summary of Primary Properties of Character String (ST)

Name Type  Status Default  Constraint Definition
BIN mandatory  NULL The binary data of the character

string.

type CS fixed text/plain  IANA: MIME

media types

charset CS implied ITS IANA: charset  Specifies the character set and
character encoding used.

language CS implied CONTEXT Specifies the language of text data.

The character string (ST) data type interprets the encapsul ated data as character data (as opposed to
bits), depending on the charset property of the encapsulated data type.

type CharacterString alias ST restricts ED {

I NT | engt h;
ST head;
ST tail;
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i nvariant (ST x) where x.nonNul |l {

x

.type. equal s(“text/plain”);
. conpr essi on. not Appl i cabl e;
.reference. not Appl i cabl e;

X
X

X. i ntegrityCheck. not Appl i cabl e;
X.integrityCheckAl gorithm not Appl i cabl e;
X

.t hunbnai | . not Appl i cabl e;

ITS Note: because many of the properties of the encapsulated data are bound to a default value, an
ITS need not represent these properties at all. In fact, if the character encoding is also fixed, the ITS
only represents the encoded character data.

The character string inherits the properties head, tail, and length from BIN (via ED). These properties
head, tail, and length, are redefined so that the character string appears as a sequence of entities each of
which uniquely identifies one character from the joint set of all characters known by any language of
the world.?* The properties head, tail, and length therefore refer to character, string, and character
counts respectively, rather than bits and bit counts.

The head of astring isastring of only one character. A character string must at least have one
character or elseitisNULL. Thelength of acharacter string isthe number of charactersin the string.
A zero-length string is an exceptional value (NULL), not a proper character string value.

i nvariant (ST x) where x.nonNul | {
X. head. nonEnpt y;
Xx. head.tail.isEnpty;

X.tail.isEnpty.inplies(x.|ength.equals(l));
Xx.tail.nonEnpty.inplies(x.length.equals(x.tail.length.successor));

I

The length of a string is the number of characters, not the number of encoded bytes. Byte encoding
is an ITS issue and is not relevant on the application layer.

2.3.1.1 Literal Form

Two variations of character string literals are defined, atoken form and a quoted string?® The token
formconsists only of the lower case and upper case English a phabet, the ten decimal digits and the

24 |SO/IEC 10646-1: 1993 defines a character as“ A member of a set of elements used for the organisation, control, or
representation of data.” |SO/IEC TR 15285 — An operational model for characters and glyphs. Discussesthe
problemsinvolved in defining characters. Notably, characters are abstract entities of information, independent of type
font or language. The 1SO 10646 (UNicope [http://www.unicode.org]) — or in Japan, JIS X0221 — isaglobally
applicable character set that uniquely identifies all characters of any language in the world.

In this specification, | SO 10646 serves as a semantic model for character strings. The important point is that for
semantic purposes, thereisno notion of separate character sets and switching between character sets. Character set and
character encoding are ITS layer considerations. Theformal definition givesindication to this effect because each
character is by itself an ST value that has a charset property. Thus, the binary encoding of each character isaways
understood in the context of acertain character set. Thisdoes not mean that the I TS should represent a character string
as a sequence of full blown ED values. W hat it meansisthat on the application layer the notion of character encoding
isirrelevant when we deal with character strings.

% A character string literal is aconversion from a character string to another datatype. Obviously, character string
literals for character stringsisacyclical if not redundant feature. Thisliteral form, therefore, mainly specifies how
character strings are parsed in the data type specification language.
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underscore. The quoted string can contain any character between double-quotes. The double quotes
prevent a character string from being interpreted as some other literal. The token form allows
keywords and names to be parsed from the data type specification language.

ST.literal ST {
ST . ["["]*"] { $.equal s($1); } /* quoted string */
| /[a-zA-Z0-9 ]+ { $.equals($1); }; /* token form */
i

ITS Note: since character string literals are so fundamental to implementation technology, most ITS
will specify some modified character string literal form. However, ITS designers must be aware of the
interaction between the character string literal form and the literal forms defined for other data types.
This is particularly critical if the other data type’s literal form is structured with major components
separated by break-characters (e.g., real number, physical quantity, set, and list literals, etc.)

2.4 Concept Descriptor (CD)

A concept descriptor represents any kind of concept. The CD refersto aconcept usually by citing a
code defined in acoding system. A given concept may be expressed in multiple terms where each
term isatrandation or re-encoding of the meaning in another code system. In addition compositional
code systems are supported. In exceptional cases, the concept descriptor may not contain a code but
only freetext describing that concept. The CD istypically used through one of itsrestrictions
described in Section 2.4.3.

Table 12: Summary of Primary Properties of Concept Descriptor (CD)

Name Type Status Default  Constraint Definition
code ST mandatory  NULL The plain code symbol
displayName ST auxilary NULL A name or title for the code, under

which the sending system shows the
code value to its users

codeSystem oD mandatory  CONTEXT Specifies the code system that defines
the code

codeSystemName ST auxilary NULL A common name of the coding system

codeSystemVersion ST optional NULL If applicable, a version descriptor
defined specifically for the given code
system

originalText ED auxilary NULL The text or phrase used as the basis for
the coding

modifier LIST<CR>  optional NULL Specifies additional codes that modify
the meaning of this concept descriptor

translation SET<CD> optional NULL A set of other concept descriptors that

translate this concept descriptor into
other code systems.
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CodedSimpleValue : CS
code : ST
displayName : ST

<<restriction>

CodedWithEquivalents : CE

code : ST
displayName : ST
codeSystem : OID
codeSystemPrintName : ST
codeSystemVersion : ST
originalText : ED

translation : SET<CV>

<<restriction>

translation

ConceptDescriptor : CD

code : ST

displayName : ST
codeSystem : OID
codeSystemName : ST
codeSystemVersion : ST

originalText : ED <grestriction>

maodifier : LIST<CR>
translation : SET<CD>

implies(CD) : BL
equals(CD) : BL

translation $ 0.*

CodedValue : CV

code : ST
displayName : ST
codeSystem : OID
codeSystemPrintName : ST |
code SystemVersion : ST
originalText : ST

<<restrictioh>

name : CV
name inverted : BL
%‘ value : CD

value
modifen 0..*

ConceptRole : CR

CodeWithCategory : CRC

code : ST

displayName : ST
codeSystem : OID
codeSystemName : ST
codeSystemVersion : ST
originalText : ED

modifier : LIST<CRC>
translation : SET<CD>

modifien| 1

ConceptRoleForCategory : CRC

<<restri

name : CS = "GEN"
value : CS

tion>

Figure 3: The Concept Descriptor information model. The concept descriptor is mostly used in
one of its restricted or “profiled” forms, CS, CE, CV, and CC.

type Concept Descriptor alias CD extends ANY {
ST code;
ST di spl ayNane;
ab codeSyst em
ST codeSyst enNang;
ST codeSyst enVer si on;
ED ori gi nal Text;
LI ST<CR> nodi fier;
SET<CD> transl ati on;
BL equal s(CD x);
BL i mplies(CD x);

demotion ED,
b
24.1.1 code: ST

Thisisthe plain code symbol defined by the code system. For example, “784.0" is the code symbol of
the ICD-9 code “784.0" for headache.

36
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A non-exceptional CD value has anon-NULL code citing avalid code from an identified coding
system. Conversely, a CD value without the code or with a code not from the cited coding systemis
an exceptional value (NULL of flavor other).

i nvariant (CD x) where x.nonNul | {

X. code. nonNul | ;

2.4.1.2 codeSystem : OID

Specifies the code system that defines the code. Code systems shall be referred to by 1SO Object
Identifiers (OID). The OID allows unambiguous reference to standard HL 7 codes, other standard code
systems, and local codes. HL7 shall assign an OID to each of its code tables as well asto external
standard coding systems that are being used with HL7. Local sites can use their OID to construct a
globally uniquelocal coding system identifier.

Under HL 7' sbranch, 2.16.840.1.113883, the sub-branches 5 and 6 contain HL 7 standard and external
code system identifiersrespectively. The HL7 Vocabulary Technical Committee maintains these two
branches.

A non-exceptional CD value (i.e. aCD value that has a non-null code property) has anon-NULL code
system specifying the system of concepts that defines the code. In other words whenever thereisa
code thereis also a code system.

ITS Note: although every non-nuLL CD value has a defined code system, in some circumstances, the
external representation of the CD value needs not explicitly mention the code system. For example,
when the context mandates one and only one code system to be used specifying the code system
explicitly would be redundant. However, in that case the code system property assumes that context-
specific default value and is not NULL.

nvari ant (CD x) where x.code. nonNul | {

x. codeSyst em nonNul | ;

}s

An exceptional CD of NULL-flavor “other” indicates that a concept could not be coded in the coding
system specified. Thus, for these coding exceptions, the code system that did not contain the
appropriate concept must be provided in the code system property.

Some code domains are qualified such that they include the portion of any pertinent local coding
system that does not simply paraphrase the standard coding system (coded with extensibility, CWE.)
If a CWE qualified field actually contains such a local code, the coding system must specify the local
coding system from which the local code was taken. However, for CWE domains the local code is a
valid member of the domain, so that local codes in CWE domains constitute neither an error nor an
exceptional (NuLL/other) value in the sense of this specification.

nvari ant (CD x) where x.other {
x. code. i sNul | ;

X. codeSyst em nonNul | ;

2.4.1.3 codeSystemName : ST

Thisisacommon name of the coding system referred to by the codeSystem OID. The code system
name is optional and has no function in communication. The purpose of a code system nameisto
assist an unaided human interpreter of a code value to interpret the code system OID. It issuggested—
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though not absolutely required—that I TS provide for code system name fields in order to annotate the
OID for hurmen comprehension.

HL7 systems must not functionally rely on the code system name. The code system name can never
modify the meaning of the code system OID value and can not exist without the OID value.

invariant (CD x) {

X. codeSyst enName. nonNul | . i npl i es(x. codeSyst em nonNul |');
}i

2.4.1.4 codeSystemVersion : ST

Specifies aversion of the code system as a plain character string. HL7 shall specify how these version
strings are formed for each external code system. If HL7 has not specified how version strings are
formed for a particular coding system, version designations have no defined meaning for such coding
system.

Different versions of one code system must be compatible. Whenever a code system changesin an
incompatible way, it will constitute anew code system, not simply a different version, regardless of
how the vocabulary publisher callsit.

For example, the publisher of ICD-9 and ICD-10 calls these code systems, “revision 9" and “revision
10" respectively. However, ICD-10 is acomplete redesign of the ICD code, not a backward
compatible version. Therefore, for the purpose of this data type specification, ICD-9 and ICD-10 are
different code systems, not just different versions. By contrast, when LOINC updates from revision
"1.0j" to"1.0k", HL7 would consider this to be just another version of LOINC, since LOINC revisions
are backwards compatible.

invariant (CD x) {

X. codeSyst enVer si on. nonNul | . i npl i es(x. codeSyst em nonNul | ) ;

I

2415 displayName: ST

The display name isaname or title for the code, under which the sending system typically or actually
showsthe code valuetoits users. It isincluded both as acourtesy to an unaided human interpreter of a
code value and as a documentation of the name used to display the concept to the user. The display
name has no functional meaning; it can never exist without a code; and it can never modify the

meaning of the code.

Note: display names may not alter the meaning of the code value. Therefore, display names should
not be presented to the user on a receiving application system without ascertaining that the display
name adequately represents the concept referred to by the code value. Communication must not
simply rely on the display name. The display name’s main purpose is to support debugging of HL7
protocol data units (e.g., messages.)

nvari ant (CD x) {

x. di spl ayNane. nonNul | . i npl i es(x. code. nonNul |');

I

2.4.1.6 translation : SET<CD>

The translation property of a concept descriptor y holds a set X of other concept descriptorsx; 1 X that
translate the concept descriptor y into different code systems. Each elementx; T X wastranslated from
the concept descriptor y. Each translation x; may also contain translations. Thus, when acodeis
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translated multiple times the information about which code served as the input to which trand ation will
be preserved.

Note: the translations are quasi-synonyms of one real-world concept. Every translation in the set is
supposed to express the same meaning “in other words.” However, exact synonymy rarely exists
between two structurally different coding systems. For this reason, not all of the translations will be
equally exact.

2.4.1.7 originalText : ED

Thisisthetext or phrase used as the basis for the coding. The original text existsin a scenario where
an originator of the information does not assign a code, but where the code is assigned later by a coder
(post-coding.) Inthe production of aconcept descriptor, original text may thus exist without a code.

Although the concept descriptor’ s value property iSNULL, origind text may still exist for the CD value.
Any CD value with the code property of NULL signifies a coding exception. In this case, the text
property isaname or description of the concept that was not coded. Such exceptional CD may contain
translations. Such translations directly encode the concept described in the original text property.

Neither display name nor original text is part of the information a receiving system must
automatically recognize. An information producer is responsible for the proper coding of all
information in the value attribute, for any information consumer may safely ignore the display
name and original text attributes.

A concept descriptor can be demoted into an ED value representing only the original text of the CD
value.

invariant (CD x) where x.text.nonNull {
((ED)x) . equal s(x.text);
i

2.4.1.8 modifier : LIST <CR>

Specifies additional codes that modify the meaning of this concept descriptor. The primary code and
all the modifiers together make up one concept. A concept descriptor with modifiersisalsocalled a
code phrase.

Modifiers can only be used according to well-defined rules of post-coordination. A concept descriptor
may only have modifiersif the code system defines the use of such modifiersor if thereisathird code
system that specifies how other code systems may be combined.

For example, SNOMED allows constructing concepts as a combination of multiple codes. SNOMED
RT defines a concept “cellulitis (morphologic abnormality)” (M-41650) arole “ associated topography”
(G-C505) and another concept “left foot (body structure)” (T-D9720). SNOMED-RT allows one to
combine these codes in a code phrase:

<findi ng code="M 41650”
codeSyst enr" &SNOVED- RT; "
di spl ayName="cel lulites (rorphol ogic abnornality)”>
<modi fi er code="T-D9720”
di spl ayNane="left foot”">
<name code="G C505" di spl ayName="associ at ed t opography” />
</ nodifier>
</ fi ndi ng>

In this example, there is one code system, SNOMED-RT that defines all the primary code and the
modifiers and how these are used, which is why in our exampl e representation the codeSystem does
not need to be mentioned for the modifier name and value (the codeSystem is inherited from the
primary code.)
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Another common exampleisthe U.S. Health Care Financing Administration (HCFA) procedure codes.
HCFA procedure codes (HCPCS) are based on CPT-4 and add additional modifiersto it. For example,
the patient with above finding (plus peripheral artherial disease, diabetes mellitus, and a chronic skin
lesion at the left great toe) may have an amputation of that toe. The CPT-4 concept is“ Amputation, toe
matatarsophalangeal joint” (28820) and a HCPCS modifier needs to be added to indicate “left foot,

great toe” (TA). Thus we code:

<pr ocedur e code="28820"
codeSyst enr" &CPT-4;
di spl ayNarme=" Anput ati on, toe mat at ar sophal angeal joint”>
<modi fi er code="TA’
codeSyst en" &HCPCS; "
di spl ayNanme="|eft foot, great toe” />
</ pr ocedur e>

In this example, the code system of the modifier (HCPCS) is different than the code system of the
primary code (CPT-4.) It isonly because there are well-defined rules that define how these codes can
be combined, that the modifier may be used. Note also, that the role nameis optional, and for HCPCS
codes there are no distinguished role names.

The order of modifiersis preserved, particularly for the case where the coding system allows post-
coordination but defines no role names. (e.g., some ICD-9CM codes, or the old SNOMED “multiaxial”
coding.)

2.4.2 Concept Role (CR)

The concept roleis used to hold code modifiers with optionally named roles. Both modifier roles and
values must be defined by the coding system. For example, if SNOMED RT defines aconcept “leg”, a
rolerelation “has-laterality”, and another concept “left”, the concept role relation allows to add the
modifier “has-laterality: |eft” to aprimary code“leg” to construct the meaning “left leg”.

Table 13: Summary of Primary Properties of Concept Role (CR)

Name Type  Status Default Constraint Definition

value CD mandatory  NULL Specifies the code system that defines the code

name cv optional NULL Specifies the manner in which the value modifies the
meaning.

inverted BL mandatory  false Indicates that the sense of the role name is reversed

The use of modifiersis strictly governed by the code system used. The CD does not permit using code
modifiers with code systems that do not provide for modifiers (e.g. pre-coordinated systems, such as
LOINC, ICD-10 PCS.) Therules of the modifier use must be governed by the code system (e.g.,

recent SNOMED RT revision, GALEN.)

protected type Concept Rol e alias CR extends ANY {

(Y namne;
BL i nverted;
CcD val ue;

2.4.21 name:CV

Specifies the manner in which the value contributes to the meaning of a code phrase. For example, if
SNOMED RT defines a concept “leg”, arolerelation “has-laterality”, and another concept “left”, the
concept rolerelation allows to add the modifier “ has-laterality: left” to a primary code “leg” to
construct the meaning “left leg”. Inthisexample “has-laterality” isthe CR.name.
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If acoding system allows postcoordination but no role namesthe name attribute can be NULL. The
name attribute must not itself have modifiers.

i nvariant (CR x) where x.nonNul |l {

X. nane. nodi fier.isNull;

2.4.2.2 value: CD

Thisisthe concept that modifies the primary code of a code phrase through the rolerelation. For
example, if SNOMED RT defines a concept “leg”, arolerelation “has-laterality”, and another concept
“left”, the concept role relation allows to add the modifier “has-laterality: left” to aprimary code “leg”
to construct the meaning “left leg”. Inthisexample“left” isthe CR.value.

This component is of type concept descriptor and thus can be in turn have modifiers. Thisallows
modifiersto nest. Modifiers can only be used asfar asthe underlying code system definesthem. Itis
not allowed to use any kind of modifiersfor code systems that do not explicitly allow and regulate
such use of modifiers.

invari ant (CR x) where x.nonNul |l {

x. val ue. nonNul | ;

}s

2.4.2.3 inverted : BL

Indicatesif the sense of the role nameisinverted. Thiscan be used in cases where the underlying code
system defines inversion but does not provide reciprocal pairs of role names. By default, inverted is
false.

For example, acode system may define the role relation “ causes” besides the concepts “ Streptococcus
pneumoniae”’ and “Pneumonia’. If that code system allowsits rolesto be inverted, one can construct
the post-coordinated concept “ Pneumococcus pneumonia’ through “ Pneumonia— causes, inverted —
Streptococcus pneumoniae.”

Roles may only beinverted if the underlying coding systems allows such inversion. Notably, if a
coding system definesrolesin inverse pairs or intentionally does not define certain inversions, the
appropriate role code (e.g. “ caused-by") must be used rather than inversion. It must be known whether
theinverted property istrue or false, if it iSNULL, the role cannot be interpreted.

invariant (CR x) where x.nonNul |l {

X.inverted. nonNul | ;

I

ITS Note: the property “inverted” should be conveyed in an indicator attribute, whose default value is
false. That way the inverted indicator does not have to be sent when the role is not inverted.

2.4.3 Comparing Concept Descriptors

The main use of concept descriptorsisfor the purpose of indexing, querying and decision-making

based on acoded value. A semantically unambiguous specification of coded values therefore requires a
clear definition of what equality of concept descriptor values means and how CD values should be
compared.
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2.4.3.1 Equality

The equality of two concept descriptor valuesis determined solely based upon the code and coding
system. The code system version is excluded from the equality test.?® If modifiers are present, the
modifiers areincluded in the equality test. Translations are not included in the equality test.?’
Exceptional concept descriptor values are not equal even if they have the same NULL-flavor or the
same original text?®

invariant (CD x, y) x.nonNull.and(y.nonNull) {
x. equal s(y) . equal s(x. code. equal s(y. code)
. and( x. codeSyst em equal s(y. codi ngSyst en))
.and(x. nodi fier.equal s(y.nodifier)));

I

Some code systems define certain style optionsto their code values. For example, the U.S. National
Drug Code (NDC) has a dash and a non-dash form. An example for the dash form may be 1234-5678-
90 when the non-dash form is 01234567890. Another example for this problem iswhen certain 1SO or
ANSI code tables define optional aphanumeric and numeric forms of two or three character lengths all
in one standard.

In the case where code systems provide for multiple representations, HL 7 shall make a ruling about
which isthe preferred form. HL7 shall document that ruling where that respective external coding
systemisrecognized. HL7 shall decide upon the preferred form based on criteria of practicality and
common use. In absence of clear criteriaof practicality and common use, the safest, most extensible,
and |east stylized (the least decorated) form shall be given preference.?

2.4.3.2 Implication

Naturally, concepts can be narrowed and widened to include or exclude other concepts. Many coding
systems have an explicit notion of concept specialization and generalization. The HL7 vocabulary
principles also provide for concept specialization for HL7 defined value sets. The implies-property isa
predicate that compares whether one concept is a specialization of another concept, and therefore
impliesthat other concept.

When writing predicates (e.g., conditional statements) that compare two codes, one should usually
test for implication not equality of codes.

For example, in Table 22 the “telecommunication use” concepts: work (W), home (H), primary home
(HP), and vacation home (HV) are defined, where both HP and HV imply H. When selecting any
home phone number, one should test whether the given use-code cimpliesH. Testing for c equalsH
would only find unspecified home phone numbers, but not the primary home phone number.

% The code system versions do not count in the equality test since by definition acodesymbol must havethesame
meaning throughout all versions of a code system. Between versions, codes may beretired but not withdrawn or

reused.

2" Translations are not included in the equality test of concept descriptors for safety reasons. Analternativewould have
been to consider two CD values equal if any of their translations are equal. However, some translations may be equal

because the coding system of that translation is very coarsegrained. More sophisticated comparisons between concept
descriptors are application considerations that are not covered by this specification.

2 NuLL-valuesare exceptional values, not proper concepts. It would be unsafe to equate two values merely on the basis
that both are exceptional (e.g., not codable or unknown.) Likewisethereisno guaranteethat original text representsa
meaningful or unique description of the concept so that equality of that original text does not constitute concept
equality. Thereverseisalso true: since there is more than onepossibleorigina text for aconcept, thefact that original

text differs does not constitute a difference of the concepts.

P Thisruling at design-time is necessary to prevent HL 7 interfaces from being burdened by code literal style
conversions at runtime. Thisis notwithstanding the fact that some applications may require mapping from one form
into another if that application has settled with the representation option that was not chosen by HL 7.
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Operationally, implication can be evaluated in one of two ways. The code system literals may be
designed such that one single hierarchy isreflected in the code literal itself (e.g., ICD-9.) Apart from
such special cases, however, aterminological knowledge base and an appropriate subsumption
agorithm will be required to evaluate implication statements. For post-coordinated coding systems,
designing such a subsumption algorithm is anon-trivial task.*

2.4.4 Restrictions for the Concept Descriptors

Use of the full concept descriptor datatype is exceptional. It requires a conscious decision and
documented rationale. In all other cases, one of the CD restrictions shall be used. !

All CD restrictions constrain certain properties of the CD. Properties may be constraint to the extent
that only one value may be allowed for that property, in which case mentioning the property becomes
redundant. Constraining aproperty to one value isreferred to as suppressing that property. Although,
conceptually a suppressed property is still semantically applicable, it issafeforan HL7 interface to
assume the implicit default value without testing.

2.4.4.1 Coded Simple Value (CS) restricts CD

The Coded Simple Vaue (CS) isarestriction of the concept descriptor (CD). The CS suppresses all
properties of the CD, except for code and display name. The code system and code system versionis
fixed by the context in which the CS value occurs. Original text is not applicableto CS values.

Table 14: Summary of Primary Properties of Coded Simple Value (CS)

Name Type Status Default  Constraint Definition

code ST mandatory  NULL The plain code symbol

displayName ST auxiliary NULL A name or title for the code, under which the
sending system shows the code value to its
users

codeSystem oIb fixed CONTEXT Specifies the code system that defines the
code

codeSystemName ST fixed CONTEXT A common name of the coding system

type CodedSi npl eVal ue alias CS restricts CD {
ST code;
ST di spl ayNane;

b

i nvari ant (CS x) {
X. codeSyst em equal s( CONTEXT. codeSyst en) ;
x. codeSyst enVer si on. equal s( CONTEXT. codeSyst enVer si on) ;
x. codeSyst emNane. equal s( CONTEXT. codeSyst emNan®) ;

® Thisis one reason why the CD.modifiers for post-coordination are to be used sparingly and with caution. An
additional problem of post-coordinated coding is that a general rule for equality may not exist at all.

%1 The advantage of the concept descriptor datatypeisits expressiveness, however, if all of itsfeatures, such ascoding
exceptions, text, translations and modifiers are used at all times, implementation and use become very difficult and
unsafe. Therefore, the CD typeis most often used in arestricted form with reduced features.
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X.original Text.isNull;
X.transl ation.isNull;
x. modi fi er. not Appl i cabl €;

I

CS can only be used in either of the following cases:

1) for acoded attribute which has a single HL 7-defined code system, and where code additions to that
value set require formal HL7 action (such as harmonization.) Such coded attributes that are designated
“structural” codes must be assigned the CS restriction.

2) for atechnical property in this specification that is assigned to a single code system defined either in
this specification or defined outside HL7 by a body that has authority over the concept and the
mai ntenance of that code system.

For example, since the ED type subscribes to the MIME design, it trusts |ETF to manage the media
type. Thisincludesthat this specification subscribes to the extension mechanism built into the MIME
mediatype code (e.g., “ application/x-myapp”).

For CS values, the designation of the domain qualifier will alwaysbe CNE (coded, non-extensible) and
the context determines unambiguously which HL7 value set applies?
2.4.4.2 Coded Value (CV) restricts CD

The Coded Value (CV) isarestriction of the concept descriptor (CD). The CV suppresses the CD
propertiestranslation and modifier, which are both not applicable. The CV aso constrainsthe original
text to acharacter string (ST) instead of the more general encapsulated data (ED) type.

Table 15: Summary of Primary Properties of Coded Value (CV)

Name Type Status Default  Constraint Definition

code ST mandatory  NULL The plain code symbol

displayName ST auxilary NULL A name or title for the code, under which the
sending system shows the code value to its
users

codeSystem OoIb mandatory  CONTEXT Specifies the code system that defines the
code

codeSystemName ST auxilary NULL A common name of the coding system

codeSystemVersion ST optional NULL If applicable, a version descriptor defined
specifically for the given code system

originalText ST auxilary NULL The text or phrase used as the basis for the
coding

% This is not withstanding the fact that an external referenced domain, such asthe IETF MIME mediatype may include
an extension mechanism. These extended MIME type codes would not be considered “extensions” in the sense of
violating the CNE provision. The CNE provisionisonly violated if an attempt ismadein using adifferent code system
(by means of the CD.codeSystem property), which is not possible with the CS data type.
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}s

ST
ab
ST
ST
ST
ST

invariant (CV x) {

X.transl ation.isNull;

type CodedValue alias CV restricts CD {

code;

codeSyst em
codeSyst emNane;
codeSyst enVer si on;
di spl ayNane;

ori gi nal Text;

x. modi fi er. not Appl i cabl e;

Thistypeisused when any reasonabl e use case will require only asingle code value to be sent. Thus,
it should not be used in circumstances where multiple alternative codes for agiven value are desired.
Thistype may be used with both the CNE (coded, non-extensible) and the CWE (coded, with
extensibility) domain qualifiers.

2.4.4.3 Coded With Equivalents (CE)

The datatype “ Coded with Equivalents’ (CE) isarestriction of the concept descriptor (CD). The CE
suppresses the CD modifier property, which is not applicable. The CE also restricts the translation
property such that the translation is a set of CV values. CV values may not themselves contain

translations.

Table 16: Summary of Primary Properties of Coded with Equivalents (CE)

Name Type Status Default  Constraint Definition

code ST mandatory  NULL The plain code symbol

displayName ST auxilary NULL A name or title for the code, under which
the sending system shows the code
value to its users

codeSystem oIb mandatory CONTEXT Specifies the code system that defines
the code

codeSystemName ST auxilary NULL A common name of the coding system

codeSystemVersion ST optional NULL If applicable, a version descriptor
defined specifically for the given code
system

originalText ED auxilary NULL The text or phrase used as the basis for
the coding

translation SET<CV> optional NULL A set of other concept descriptors that

translate this concept descriptor into
other code systems.
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type CodedWt hEqui valents alias CE restricts CD {

ST code;

ST di spl ayNane;

a b codeSyst em

ST codeSyst emNane;

ST codeSyst enVer si on;
ED ori gi nal Text;

SET<CV> transl ati on;
}s

i nvariant (CE x) {

x. modi fi er. not Appl i cabl e;

}s

The CE typeis used when the use case indicates that alternative codes may exist and whereit is useful
to communicate these. The CE type provides for aprimary code value, plus a set of alternative or
equivalent representations.

2.4.4.4 Coded With Category (CC)

The datatype “ Coded with Category” (CC) isaspecific profile of using the concept descriptor (CD)
used for certain coded attributes that have such large domains that multiple coding systemsincluding
local codes are used.® In these cases HL 7 has established a mechanism where HL 7 defined a set of
coarse-grained categories (e.g. “material”, “animal”, “chemical”, “place”) under which external

concept repertoires are assigned (e.g., an IUPAC code under “chemical”.) Sincetherewill belocal
codes communicated for such fields, the concept and it’s HL 7 defined category may not be known to a
receiver of such local code. The CC datatype is defined to communicate a fine-grained code together
with one HL 7 defined coarse-grained category code.

Table 17: Summary of Primary Properties of Coded with Category (CC)

Name Type Status Default Constraint Definition
code ST mandatory  NULL The plain code symbol
displayName ST auxilary NULL A name or title for the code, under

which the sending system shows the
code value to its users

codeSystem OoIb mandatory  CONTEXT Specifies the code system that
defines the code

codeSystemName ST auxilary NULL A common name of the coding
system

codeSystemVersion ST optional NULL If applicable, a version descriptor

defined specifically for the given
code system

originalText ED auxilary NULL The text or phrase used as the basis
for the coding
modifier LIST<CRC>  conditional CONTEXT  Only if the For one modifier that tells the HL7-
codeSystem  defined category of the coded
is not concept.
registered
with HL7
translation SET<CV> optional NULL A set of other concept descriptors

that translate this concept descriptor
into other code systems.

% There are two attributesin the RIM 1.0, Entity.type_cd and Act.type _cd.
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type CodedWthCategory alias CC restricts CD {

ST code;

ST di spl ayNane;

a b codeSyst em

ST codeSyst enNang;

ST codeSyst enVer si on;
ED ori gi nal Text;

LI STKCRC> nodifier;
SET<CV> transl ati on;

I

i nvari ant (CC x)
where x.nonNul | {
. and(x. codeSyst em val ue(2. 16. 840. 1. 113883. 3) . nonEnpty) {
x. modi fi er. head. nonNul [ ;
x. modi fier.tail.isEnpty;
i

The datatype code-role for category (CRC) is arestriction of the CR data type constraining both the
name and the value to CS and binding the name to afixed code “ has-generalization” (GEN).

Table 18: Summary of Primary Properties of Concept Role For Category (CRC)

Name Type Status Default  Constraint Definition

value CS mandatory ~ CONTEXT  CONTEXT An HL7 defined code for the category of the
concept.

name CS fixed NULL “GEN” Fixed to “has-generalization” (GEN).

protected type CodeRol eForCategory alias CRC restricts CR {

Cs namne;
CS val ue;

}s

invari ant (CRC x) where x.nonNul | {
X. name. codeSyst em equal s(2. 16. 840. 1. 113883. 5. &0 be assignedf) ;
X. hane. code. equal s(“CGEN’) ;
x. val ue. nonNul | ;
x. val ue. codeSyst em equal s(2. 16. 840. 1. 113883. 5. a0 be assignedf ;

X.inverted. equal s(fal se);
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2.5 Instance Identifier (II)

The Instance Instanceldentifier : Il
| dentifier s(e|<|j) data Objectidentifier : OID extension : ST
type IS US to. LIST<INT> leaf : INT root |assigningAuthorityName : ST
uniquely identify an <} butleaf : OID =—@l{type : CV
instance. thing or 1 validTime : IVL<TS>
! 9 value(OID namespace) : OID
object. Examples '
are object identifier L) B

for HL7 RIM

Figure 4. Instance ldentifier data types.

objects, medical
record number,
order id, service catalog itemid, etc. Instanceidentifiers are defined based on 1SO object identifiers.

Table 19: Summary of Primary Properties of Instance Identifier (II)

Name Type Status Default Constraint Definition

root QD mandatory  NULL A unique identifier that guarantees
the global uniqueness of the instance
identifier. The root alone may be the
entire instance identifier, an
extension value is not needed.

extension ST optional NULL An identifier that is unique in the
namespace designated by the root

assigningAuthorityName auxiliary A name or mnemonic for the
assigning authority of this identifier if
applicable

validTime IVL<TS> optional If applicable, specifies during what
time the identifier is valid

2.5.1 ISO Object Identifier (OID)

The 1SO Object Identifier is defined by | SO/IEC 8824:1990(E) clause 28.

28.9 The semantics of an object identifier value are defined by reference to an object
identifier tree. An object identifier tree is atree whose root corresponds to [the | SO/IEC
8824 standard] and whose vertices[i.e. nodes] correspond to administrative authorities
responsible for allocating arcs[i.e. branches] from that vertex. Each arc from that treeis
|abeled by an object identifier component, which is[an integer number]. Each information
object to beidentified is allocated precisely one vertex (normally aleaf) and no other
information object (of the same or adifferent type) is allocated to that same vertex. Thus
an information object is uniquely and unambiguously identified by the sequence of
[integer numbers] (object identifier components) labeling the arcsin a path from the root
to the vertex allocated to the information object.

28.10 An object identifier value is semantically an ordered list of object identifier
component values. Starting with the root of the object identifier tree, each object identifier
component value identifies an arc in the object identifier tree. The last object identifier
component value identifies an arc leading to a vertex to which an information object has
been assigned. It isthisinformation object, which isidentified by the object identifier
value. [...]

From I SO/IEC 8824:1990(E) clause 28
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Figure 5: Example for
a tree of ISO object

identifiers. HL7's OID
is 2.16.840.1.113883.

421292, JAGFA

10008@DICOM ) S Govt.

840@USA (ANSI)

S0 identified org. ountry assignments

SO member body

joint ISCATU-T

type ojectlidentifier alias O D extends LIST<INT> {

| NT | eaf ;

ab but | eaf ;

ab val ue(namespace A D);
literal ST;

HL7 shall establish an OID registry and assign OlDsin its branch for HL 7 users and vendors upon
their request. HL7 shall also assign Ol Dsto public identifier-assigning authorities both U.S. nationally
(e.g., the U.S. State driver license bureaus, U.S. Social Security Administration, HIPAA Provider ID
registry, etc.) and internationally (e.g., other countries Social Security Administrations, Citizen ID
registries, etc.)

When assigning Ol Dstto third parties or entities, HL7 shall investigate whether an OID is already
assigned for such entities through other sources. It thisis the case, HL7 shall record such OID in a
catalog, but HL 7 shall not assign aduplicate OID inthe HL7 branch. If possible, HL7 shall notify a
third party when an OID is being assigned for that party inthe HL7 branch.

Though HL7 shall exercise diligence before assigning an OID in the HL7 branch to third parties, given
thelack of aglobal OID registry mechanism, one cannot make absolutely certain that thereisno
preexisting OID assignment for such third-party entity. Also, a duplicate assignment can happen in the
future through another source. If such cases of supplicate assignment become knownto HL7, HL7
shall make efforts to resolve this situation. For continued interoperability in the meantime, the HL7
assigned OID shall be the preferred OID used.

While most owners of an OID will “design” their namespace sub-tree in some meaningful way, thereis
no way to generally infer any meaning on the parts of an OID. HL7 does not standardize or require

any namespace sub-structure. An OID owner, or anyone having knowledge about the logical structure
of part of an OID, may still use that knowledge to infer information about the associated object;
however, the techniques cannot be generalized.

An HL7 interface must not rely on any knowledge about the substructure of an OID for which it
cannot control the assignment policies.
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2.5.1.1 Literal Form

OD literal ST {

AD: INT “.” D { $.head.equal s($1);
$.tail.equal s($3); }
| INT { $. head. equal s($1);

$.tail.isEnpty; }

For Implementation Technologies that do not have native support for ISO OIDs, the ITS
representations for OIDs may be a character string literal rather than a recursive data structure. The
character string literal is more concise and most of the time OIDs will only be compared for equality
but not analyzed further.

For compatibility with the DICOM standard, the literal form of the OID should not exceed 64
characters. (see DICOM part 5, section 9).

2.5.1.2 Structured Form: Sequence of Integers versus Value and Namespace

According to | SO/IEC 8824 an object identifier is asequence of object identifier component values,
which are integer numbers. These component values are ordered such that the root of the object
identifier tree isthe head of the list followed by all the arcs down to the leaf representing the
information object identified by the OID. Thefact that OID extends LIST<INT> represents this path
of object identifier component values from the root to the leaf.

The leaf and * butleaf” properties take the opposite view. Theleaf isthelast object identifier
component value in thelist, and the “butleaf” property isall of the OID but the leaf. In asense, the
leaf istheidentifier value and al of the OID but the leaf refers to the namespace in which the leaf is
unique and meaningful.

However, what part of the OID is considered value and what isnamespace may be viewed differently.
In general, any OID component sequence to the left can be considered the namespace in which the rest
of the sequence to the right is defined as a meaningful and unique identifier value. The value-property
with anamespace OID asits argument represents this point of view.>*

invariant (A D x) x.nonNull {
X. nonEnpt y;
x.tail.isEnpty.inplies(x.|eaf.equals(x.tail));

X.tail.nonEnpty.inplies(x.|eaf.equals(x.tail.leaf);

x.tail.isEmpty.inplies(x.butleaf.isNull);
x.tail.nonEnpty.inplies(x.butleaf.head. equal s(x. head)

.and(x. butleaf.tail.equal s(x.butleaf(x.tail))));

forall (A D v; AOD n) where v.equal s(x.value(n)) {
n.i seEnpty.inplies(v.equal s(x));
n. nonEnpty. i nplies(v. equal s(x.value(n.tail)));

}s

% The val ue/namespace view on | SO object identifiers hasimportant semantic relevance. It representsthe notion of
identifier value versus identifier assigning authority (= namespace), which is common in healthcare information
systemsin general, and HL7 v2.x in particular.
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2.5.2 Properties of the Instance Identifier

type Instanceldentifier alias Il extends ANY {
ST ext ensi on;
abD root ;
ST assi gni ngAut hori t yNane;
v type;

| VL<TS> val i dTi ne;

BL equal s(1'l x);

2.5.2.1 root: OID

Theroot of an instance identifier guarantees the global uniqueness of the identifier. Theroot alone
may be the entire unique identifier; an extension value is not needed.*®

In the presence of a non-null extension, the root is commonly interpreted as the “ assigning authority”,
that is, it is supposed that the root OID somehow refersto an organization that assigns identifiers sent
in the extension. However, the root does not have to be an organizational OID, it can also be an OID
specifically registered for an identifier scheme.

invariant (Il x) where x.nonNull {
root. nonNul | ;

I

2.5.2.2 extension: ST

The extension is a character string that is unique inthe namespace designated by the root. If a non-
NULL extension is exists, the root specifies a namespace (sometimes called “ assigning authority” or
“identifier type”.) The extension property may be NULL in which case theroot OID isthe complete
unique identifier.

It is recommended that systems use the OID scheme for external identifiers of their communicated
objects. The extension property is mainly provided to accommodate |egacy alphanumeric identifier
schemes.

Some identifier schemes define certain style optionsto their code values. For example, the U.S. Social
Security Number (SSN) is normally written with dashes that group the digitsinto a pattern “123-12-
1234”. However, the dashes are not meaningful and a SSN can just as well be represented as
“123121234" without the dashes.

In the case where identifier schemes provide for multiple representations, HL 7 shall make aruling
about which isthe preferred form. HL7 shall document that ruling where that respective external
identifier schemeis recognized. HL7 shall decide upon the preferred form based on criteria of
practicality and common use. |n absence of clear criteria of practicality and common use, the safest,
most extensible, and least stylized (the least decorated) form shall be given preference.®®

% DICOM objects areidentified by OID only. For the purpose of DICOM/HL7 integration, it would be awkward if
HL7 required the extension to be mandatory and to consider the OID only as an assigning authority. Since OID values
are simpler and do not contain therisks of containing meaningless decoration, we do encourage systemsto use simple
OID identifiers as external references to their objects.

% This ruling at design-time is necessary to prevent HL7 interfaces from being burdened by identifier literal style
conversions at runtime. Thisis notwithstanding the fact that some applications may require mapping from one form
into another if that application has settled with the representation option that was not chosen by HL 7.
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HL7 may also decide to map common external identifiersto the value portion of thell.root OID. For
example, the U.S. SSN could be represented as 2.16.840.1.113883.4.1.123121234. The criteria of
practicality and common use will guide HL 7’ s decision on each individual case.

2.5.2.3 assigningAuthorityName : ST

Thisis aname or mnemonic for the assigning authority of thisidentifier if applicable. Thisnameis
provided solely for the convenience of unaided humansinterpreting an 11 value. The assigning
authority name need not be unique or globally meaningful.

Note: no automated processing must depend on the assigning authority name to be presentin any
form.

The assigning authority name is not the name for the individually identified object, but for the
namespace, that immediately contains that object identifier. Two casesexist. 1) If the extension
property is non-NULL, the root OID identifies the assigning authority; hence the assigning authority
name is aname or mnemonic for the entireroot OID. 2) If the extension isNULL, the assigning
authority nameis the name or mnemonic of the namespace property of the OID value.

2.5.2.4 validTime : IVL<TS>

Theidentifier isvalid in this optional time-range. By default, the identifier isvalid indefinitely. Any
specific interval may be undefined on either side indicating unknown effective or expiry time.

Note: identifiers for information objects in computer systems should not have restricted valid times,
but should be globally unique at all times. The identifier valid time is provided mainly for real-world

identifiers, whose maintenance policy may include expiry (e.g., credit card numbers.)

Thell type conformsto the history item datatype extension (Section0). This means that the data
types HXIT<II> and || are the same.

2.5.25 Equality
Two instance identifiers are equal if and only if their root and extension properties are equal.

invariant (11 x, y) where x.nonNull.and(y. nonNull) {

x. equal s(y) . equal s(x.root.equal s(y.root)
.and( x. ext ensi on. equal s(y. extension)));

2.6 Telecommunication Address (TEL)

A telecommunication addressis alocator for some resource UniversalResourceLocator : URL
(information or services) mediated by telecommunication scheme : CS
equipment. The semantics of atelecommunication addressis ~|address : ST
that a communication entity responds to that address (the
responder.) and therefore can be contacted by a >

communication initiator TelecommunicationAddress : TEL
use : SET<CS>

The responder of atelecommunication address may be an validTime : GTS
automatic service that can respond with information (e.g.,
FTPor HTTP services.) In such case atelecommunication

equals(TEL) : BL

address is areference to that information accessible through Figure 6: Telecommunication
that address. A telecommunication address val ue can thus be Address and URL data types.
resolved to some information (in the form of encapsulated

data, ED.)
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Table 20: Summary of Primary Properties of Telecommunication Address (TEL)

Name Type Status Default Constraint Definition
URL mandatory  NULL
use SET<CS>  optional NULL TelecommunicationAddressUse A code advising a system or

user which telecommunication
address in a set of like
addresses to select for a given
telecommunication need

validTime  GTS optional NULL Identifies the periods of time
during which the
telecommunication address
can be used.

The telecommunication address is an extension of the Universal Resource Locator (URL) that specifies
asan Internet standard RFC 1738 [http://www.isi.edu/in-notes/rfc1738.txt]. The URL specifiesthe
protocol and the contact point defined by that protocol for the resource. Notable use casesfor the
telecommunication address data type are for telephone and fax numbers, e-mail addresses, Hypertext
references, FTP references, etc.

2.6.1 Universal Resource Locator (URL)
This data type is defined as an Internet standard RFC 1738 [ftp:/ftp.isi.edu/in-notes/rfc1738.txt ].

Just as there are many different methods of access to resources, there are several schemes
for describing the location of such resources.

The generic syntax for URLs provides a framework for new schemes to be established
using protocols other than those defined in this document.

URLsare used to “locate” resources, by providing an abstract identification of the
resource location. Having located aresource, a system may perform avariety of
operations on the resource, as might be characterized by such words as “access’, “update”,
“replace”, “find attributes’. In general, only the “access’ method needs to be specified for
any URL scheme.

From RFC 1738
protected type Uni versal ResourcelLocator alias URL extends ANY {
Cs schere;
ST addr ess;
literal ST;

}s

2.6.1.1 Literal Form

URL.literal ST {
URL : /[a-z0-9+. -1+ “:” ST { $.schene. equal s(%$1);
$. addr ess. equal s($3); }

2.6.1.2 scheme:CS

The URL scheme identifies the protocol used to access the resource. URL schemes are registered by
the Internet Assigned Numbers Authority (IANA) [http://www.iana.org], however IANA only registers
URL schemesthat are defined in Internet RFC documents. In fact there are anumber of URL schemes
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defi ned3(7)utsi de RFC documents, part of which isregistered at the World Wide Web Consortium
(W30).

Similar to the MIME mediatypes, HL 7 makes suggestions about URL schemes classifying them as
reguired, recommended, other, and deprecated. Any scheme not mentioned has statusother.

Table 21: URL Schemes

Code Status Definition
tel required A voice telephone number [draft-antti-telephony-url-11.txt].
fax required A telephone number served by a fax device [draft-antti-telephony-url-11.txt].
mailto required Electronic mail address [RFC 2368].
http required Hypertext Transfer Protocol [RFC 2068].
ftp required The File Transfer Protocol (FTP) [RFC 1738].
file other Host-specific local file names [RCF 1738]. Note that the file scheme is not

interoperable. It only works with site-agreements for specific local files or shared file
systems (NFS or AFS global file system.)

telnet other Reference to interactive sessions [RFC 1738]. Some sites, (e.g., laboratories) have
TTY based remote query sessions that can be accessed through telnet.
modem  other A telephone number served by a modem device [draft-antti-telephony-url-11.txt].

Note that this specification explicitly limitsitself to URLs. Universal Resource Names (URN) are not
covered by this specification. URNsare akind of identifier scheme for other than accessible
resources. This specification isonly concerned with accessible resources, which belong into the URL

category.
2.6.1.3 address: ST
The addressis a character string whose format is entirely defined by the URL scheme.

2.6.1.4 Telephone and FAX Numbers

Note that thereis no special datatype for telephone numbers, telephone numbers are
telecommunication addresses and are specified asa URL.

The telephone number URL is defined in the Internet RFC 2806 [http://www.isi.edu/in-
notes/rfc2806.txt ] URLs for Telephone Calls. Itsdefinition is summarized in this subsection. This
summary does not override or change any of the Internet specification’srulings.

The voice telephone URLs begin with “t el : ” and fax URLs begin with “f ax: ”

The address part of the URL contains the telephone number in accordance with the ITU-T
Recommendation E.123 Telephone Network and | SDN Operation, Numbering, Routing and Mobile
Service: Notation for National and International Telephone Numbers (1993.) While HL7 does not add
or withdraw from the URL specification, the preferred subset of the URL address syntax is given as
follows:

proctected type Tel ephoneURL restricts URL {
literal ST {

URL : /(tel)|(fax)/ “:” address { $.schene. equal s($1);
$. addr ess. equal s($3); };

%" The data type of the scheme property isstill CSand for HL 7 purposes, the scheme property isa CNE domain. This
seems odd, because we just said that the URL scheme domain is not strictly defined anywhere. However we cannot
allow extension of the URL scheme using the HL7 mechanism of local alternative code systems, which is why
technically the URL schemeisaCS datatype.
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ST address : “+” phoneDigits
ST phoneDigits : digitO Separator phoneDigits | digitO Separator
ST digitOrSeparator : digit | separator;
ST digit : /[0..9]/;
ST separator : /[().-]1/;
}
b

The global absolute tel ephone numbers starting with the “+” and country code are preferred. Separator
characters serve as decoration but have no bearing on the meaning of the telephone number. For
example “t el : +13176307960” and“t el : +1(317) 630- 7960" are both the same telephone
number; “f ax: +49308101724" and “f ax: +49( 30) 8101- 724" are both the same fax number.

2.6.2 Properties of Telecommunication Address

A given telecommunication address value may have limited validity through time and may be tagged
by a use code to indicate under what circumstances a specific telecommunication address may be
preferred among a set of alternatives.

type Tel ecommuni cati onAddress alias TEL extends URL {

GI'S val i dTi ne;
SET<CS> use;

BL equal s(TEL Xx);

2.6.2.1 validTime : GTS

I dentifies the periods of time during which the telecormmunication address can be used. For a
telephone number, this can indicate the time of day in which the party can be reached on that
telephone. For aweb address, it may specify atime range in which the web content is promised to be
available under the given address.

The TEL datatype where validTime s constrained to asimple interval of time (IVL<TS>) conformsto
the history item data type extension (HXIT, see Section4.1.1). Thus, HXIT<TEL>isasimple
restriction of TEL.

2.6.2.2 use: SET<CS>
A code advising a system or user which telecommunication addressin a set of like addresses to select
for agiven telecommunication need.

Table 22: Telecommunication Address Use Code

Concept Code Implies Definition

home H A communication address at a home, attempted contacts for
business purposes might intrude privacy and chances are one will
contact family or other household members instead of the person
one wishes to call. Typically used with urgent cases, or if no other
contacts are available.

primary home HP H The primary home, to reach a person after business hours.

vacation home HV H A vacation home, to reach a person while on vacation.

work place WP An office address. First choice for business related contacts during
business hours.

answering service AS An automated answering machine used for less urgent cases and if
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the main purpose of contact is to leave a message or access an
automated announcement.

emergency contact EC A contact specifically designated to be used for emergencies. This
is the first choice in emergencies, independent of any other use
codes.

pager PG A paging device suitable to solicit a callback or to leave a very short
message.

mobile contact MC A telecommunication device that moves and stays with its owner.

May have characteristics of all other use codes, suitable for urgent
matters, not the first choice for routine business.

The telecommunication use code is not a compl ete classification for equipment types or locations. Its
main purpose is to suggest or discourage the use of a particular telecommunication address. There are
no easily defined rules that govern the selection of atelecommunication address.

2.6.2.3 Equality

Two telecommunication address values are considered equal if both their URLs are equal. Use code
and valid time are excluded from the equality test.

invariant (TEL x, y) x.nonNull.and(y.nonNull) {
x. equal s(y) . equal s(((URL)x).equal s((URL)Y));

2.7 Postal Address (AD)

The postal address datatypeis used to communicate mailing and home or office addresses. The main
use of such dataisto allow printing mail labels, or to allow a person to physically visit that address.

The postal address datatype is not supposed to be a container for additional information that might be
useful for finding geographic locations (e.g., GPS coordinates) or for performing epidemiological
studies. Only those parts of addresses that are conventional for designating mailboxes or home or
office addresses are part of the address data type. HL 7 has other and better ways to handle global
positioning or census units.

Table 23: Summary of Primary Properties of Postal Address (AD)

Name Type Status Default Constraint Definition
LIST<ADXP> mandatory  NULL The address data
use SET<CS> optional NULL AddressUse A code advising a system or user which

address in a set of like addresses to select
for a given purpose

validTime  GTS optional NULL Identifies the periods of time during which the

address can be used.

The postal address datatype is essentially a sequence of address part values. Addresses are
conceptualized astext with added mark-up. The mark-up may break the address into lines and may
describe in detail the role of each address part if it isknown. Address parts occur in the addressin the
order in which they would be printed on amailing label. The model issimilar to HTML or XML

markup of text.

2.7.1 Address Part (ADXP)

An address part is essentially a character string that may have atype-tag signifying itsrolein the
address. Typical partsthat exist in about every address are street, house number, or post box, ZIP
code, city, country but other roles may be defined regionally, nationally, or on an enterprise level (e.g.
in military addresses). Addresses are usually broken up into lines, indicated by special line-break
tokens.
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CharacterString : ST
head : ST
. tail : ST EntityN Part : ENXP
AddressPart : ADXP By ' ntityNamePart :
type : CS length : INT — type : CS
qualifier : SET<CS>
I T:ANY
1.
1 1.% Sequence : LIST 1
head : T
Sl tail | LIST<T> LIST<ENXP>
isEmpty : BL
4 nonEmpty : BL 4
length : INT
PostalAddress : AC EntityName “EN

use : SET<CS>
formatted : ST
validTime : GTS

formattted : ST

PersonName : PN <krestriction>

equals(AD) : BL

<<restriction= <<restriction>

OrganizationName : ON | | TrivialName : TN

Figure 7: Data types for Postal Address and Entity Names (Person, Organization, and Trivial
Names) are all based on extensions of a character string.

Table 24: Summary of Primary Properties of Address Part (ADXP)

Name Type Status Default Constraint Definition
ST mandatory  NULL The address part data
type CS optional NULL AddressPartType Indicates whether an address part is the street,

city, country, postal code, post box, etc.

cs
}s

protected type AddressPart alias ADXP extends ST {

type;

2.7.1.1 type :CS

Indicates whether an address part is the street, city, country, postal code, post box, etc. If thetypeis
NULL the address part is unclassified and simply appears on the label asis.

Table 25: Address Part Type Code

Concept Code Definition

delimiter DEL Delimiters are printed without framing white space. If no value component is provided,
the delimiter appears as a line break.

country CNT Country

state or province STA A sub-unit of a country with limited sovereignty in a federally organized country.

city CTY City

postal code ZIP A postal code designating a region defined by the postal service.

street name STR Street name or number.

house number HNR The number of a house or lot alongside the street. Also known as "primary street
number”, but does not number the street but the house.

direction DIR direction (e.g., N, S, W, E)

additional locator ~ ADL

This can be a unit designator, such as apartment number, suite number, or floor.
There may be several unit designators in an address (e.g., “3rd floor, Appt. 342".) This
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can also be a designator pointing away from the location, rather than specifying a
smaller location within some larger one (e.g., Dutch "t.0." means "opposite to" for
house boats located across the street facing houses.)

post box POB A numbered box located in a post station.

2.7.2 Properties of Postal Addresses

Addresses are essentially sequences of address parts, but add a“use” code and avalid time range for
information about if and when the address can be used for agiven purpose. The propertg “formatted”
has a character string value with the address formatted in lines and with proper spacing.®®

type Postal Address alias AD extends LI ST<ADXP> {
GIS val i dTi ne;
SET<CS> use;

BL equal s(AD x);

ST formatted,

2.7.2.1 validTime: GTS

This General Time Specification (GTS) identifies the periods of time during which the address can be
used. Typically, thisisused to refer to different addresses for different times of the year or to refer to
historical addresses.

The AD datatype where validTimeis constrained to asimple interval of time (IVL<TS>) conformsto
the history item data type extension (HXIT, see Section4.1.1). Thus, HXIT<AD> isasimple
restriction of AD.

2.7.2.2 use:SET<CS>

Thisisacode advising asystem or user which addressin a set of like addresses to select for agiven

purpose.
Table 26: Address Use Code
Concept Code Implies Definition
visit address RES Used primarily to visit an address.
mail address PST Used to send mail.
invoice address INV PST An address at which to send invoices
temporary address TMP A temporary address, may be good for visit or mailing. Note that an address
history can provide more detailed information.
bad address BAD A flag indicating that the address is bad, in fact, useless.
home H A private (home) address.
primary home HP H The primary home.
vacation home HV H A vacation home, to reach a person while on vacation.
work place WP An office address.

An address without specific use code might be a default address useful for any purpose, but an address
with a specific use code would be preferred for that respective purpose.

%8 Remember that semantic properties are bare of all control flow semantics. The property formatted could be
implemented as a “procedure” that would “return” the formatted address, but it would not usually be avariableto
which one could assign aformatted address. However, HL7 does not define applications but only the semantics of
exchanged data values. Hence, the semantic model abstracts from concepts like “procedure”, “return”, and
“assignment” but speaks only of property and value.
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2.7.2.3 Equality

Two address values are considered equal if both their address part lists are equal. Use code and valid
time are excluded from the equality test.

invariant (AD x, y) x.nonNull.and(y.nonNull) {
x. equal s(y) . equal s(( (LI ST<ADXP>) x) . equal s( (LI ST<ADXP>)y));

2.7.2.4 Formatting Addresses

This address datatype’ s main purpose is to capture postal addresses so that one can visit that address
or send mail toit. Humanswill look at addressesin printed form, such ason amailing label. The
address data type defines precise rules of how its datais formatted

Addresses are ordered lists of address parts. Each address part is printed in the order of the list from
left to right and top to bottom (or in any other language-specific reading direction.) Every address part
valueisprinted. Most address parts are framed by white space. The following six rules govern the
setting of white space.

1) White space never accumulates, i.e. two subsequent spaces are the same as one. Subsequent line
breaks can be reduced to one. White space around aline break is not significant.

2) Literasmay contain explicit white space, subject to the same white space reduction rules.
Thereisno notion of aliteral line break within the text of a single address part.

3) Leading and trailing explicit white spaceisinsignificant in all address parts, except for
delimiter (DEL) address parts.

4) By default, an address part is surrounded by implicit white space.
5) Delimiter (DEL) address parts are not surrounded by any implicit white space.
6) Leading and trailing explicit white space is significant in delimiter (DEL) address parts.

Thismeans that all address parts are generally surrounded by white space, but white space does never
accumulate. Delimiters are never surrounded by implicit white space and every white space
contributed by preceding or succeeding address partsis discarded, whether it wasimplicit or explicit.

Examples. The following shows examples of addressesin an XML encoded form, where the XML tag
isthe address part role and the data content is the address part value. The use of XML in these
examples does not preempt any XML implementation technology specification, itis solely for the
purpose of this example.

1050 Wishard Blvd. RG 5" floor,
Indianapoli, IN 46240.

has the following three valid encodings

<AD pur pose="RES" >
1050 W shard Blvd, RG 5th fl oor<DEL/>
I ndi anapolis, IN 46240

</ AD>

<AD pur pose="RES" >
<STR>1050 W shard Bl vd</ STR><ADL>RG 5t h fl oor </ ADL><DEL/ >

% These rules for formatting addresses are part of the semantics of addresses because addresses are primarily defined as
text displayed or printed and consumed by humans. Other uses (e.g., epidemiology) are secondary —although not
forbidden, the AD datatype may not serve these other use cases very well, and HL7 will define better waysto handle
these use cases. Note that these formatting rules arenot ITSissues, since this formatting appliesto presentationsfor
humans whereas I TS specifications are presentations for computer interchange.
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<CTY>I ndi anapol i s</ CTY><STA>| N</ STA><ZI| P>46240</ Z| P>
</ AD>

<AD pur pose="RES" >

<HNR>1050</ HNR><STR>W shar d Bl vd</ STR><ADL>RG 5t h
fl oor </ ADL><DEL/ >

<CTY>| ndi anapol i s</ CTY><STA>| N</ STA><ZI P>46240</ Z| P>
</ AD>

the second encoding in this example is more specific about the role of the address parts than the first
one. Thefirst form would result from a system that only stores addressesasline 1, line 2, etc. The
second formisthe typical form seen in the U.S., where street address is sometimes separated, and city,
state and ZIP code are always separated. However, in the U.S. the house number is not usually
separated from the street address, where in Germany many systems keep house number as separate
fields (third example.)

This example shows the strength of the mark-up approach to addresses. A typical German system that
stores house number and street name in separate fields would print the address with street name first
followed by the house number. For U.S. addresses, thiswould be wrong as the house number in the
U.S. iswritten before the street name. The marked-up address allows keeping the natural order of
address parts and still understanding their role.

2.8 Entity Name (EN)

An entity name data val ue specifies a name of a person, organization, place or thing. Examplesfor
entity name values are “Jim Bob Walton, Jr.”, “Health Level Seven, Inc.”, “Lake Tahoe”, etc. An
entity name may be as simple as a character string or may consist of several entity name parts (ENXP),
such as, “Jim”, “Bob”, “Walton”, and “Jr.”, “Health Level Seven” and “Inc.”, “Lake” and “ Tahoe”.

Table 27: Summary of Primary Properties of Entity Name (EN)

Name Type Status Default Constraint Definition
LIST<ENXP> mandatory NULL The name data

2.8.1 Entity Name Part (ENXP)

An entity name part is a character string token that may have atype code signifying the role of the part
in the whole entity name. Typical name parts that exist in about every name are given names, and
family names, titles, etc.

Table 28: Summary of Primary Properties of Entity Name Part (ENXP)

Name Type Status Default Constraint Definition
ST mandatory  NULL The entity name part data
type Cs optional NULL EntityNamePartType  Indicates whether the name part is a given
name, family name, prefix, suffix, etc.
qualifier SET<CS> optional NULL EntityNameQualifier A set of codes each of which specifies a

certain subcategory of the name part in
addition to the main name part type

protected type EntityNanePart alias ENXP extends ST {
(65 type;
SET<CS> qualifier;
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2.8.1.1 type:CS

Indicates whether the name part is a given name, family name, prefix, suffix, etc. Not every name part
must have atype code, if the type code is unknown, not applicable, or simply undefined thisis
expressed by anull value (type.isNull). For example, aname may be “Rogan Sulma’ and it may not
be clear which oneisafirst name or which isalast name, or whether Rogan may be atitle.

Table 29: Name Part Type

Name Code Definition
family FAM  Family name, this is the name that links to the genealogy. In some cultures (e.g. Eritrea) the
family name of a son is the first name of his father.
given GV Given name (don't call it “first name" since this given names do not always come first)
prefix PFX A prefix has a strong association to the immediately following name part. A prefix has no

implicit trailing white space (it has implicit leading white space though). Note that prefixes
can be inverted.

suffix SFX A suffix has a strong association to the immediately preceding name part. A prefix has no
implicit leading white space (it has implicit trailing white space though). Suffixes cannot be
inverted.

delimiter DEL A delimiter has no meaning other than being literally printed in this name representation. A

delimiter has no implicit leading and trailing white space.

2.8.1.2 qualifier : SET<CS>

The qualifier isaset of codes each of which specifies a certain subcategory of the name partin
addition to the main name part type. For example, agiven name may be flagged as a nickname, a
family name may be a pseudonym or a name of public records

Table 30: Name Part Qualifier

Name Code Definition
Name change classifiers describe how a name part came about. More than one value allowed.
birth BR A name that a person had shortly after being born. Usually for family names but may be used

to mark given names at birth that may have changed later.

unmarried MD A name that a person (either sex) had immediately before her/his first marriage. Usually
called "maiden name", this concept of maiden name is only for compatibility with cultures that
keep up this traditional concept. In most cases maiden name is equal to birth name. If there
are adoption or deed polls before first marriage the maiden name should specify the last
family name a person acquired before giving it up again through marriage.

chosen CH A name that a person assumed because of free choice. Most systems may not track this, but
some might. Subsumed in the concept of "chosen" are pseudonym (alias), and deed poll.
The difference in civil dignity of the name part is given through the R classifier below. l.e. a
deed poll creates a chosen name of record, whereas a pseudonym creates a name not noted
in civil records.

adoption AD A name that a person took on because of being adopted. Adoptions may happen for adults
too and may happen after marriage. Whether adoption name or the birth name is considered
the "maiden" name is not fully defined and may, as always, simple depend on the discretion
of the person or a data entry clerk.

spouse SP The name assumed from the partner in a marital relationship (hence the "M). Usually the
spouse's family name. Note that no inference about gender can be made from the existence
of spouse names.

Affix types. Usually only one value per affix.

voorvoegsel VV A Dutch "voorvoegsel" is something like "van" or "de" that might have indicated nobility in the
past but no longer so. Similar prefixes exist in other languages such as Spanish, French or
Portugese.

academic AC Indicates that a prefix like “Dr.” or a suffix like “M.D.” or “Ph.D.” is an academic title.

professional PR Primarily in the British Imperial culture people tend to have an abbreviation of their
professional organization as part of their credential suffices.

nobility NB In Europe and Asia, there are still people with nobility titles (aristocrats.) German "von" is
generally a nobility title, not a mere voorvoegsel. Others are "Earl of" or "His Majesty King
of..." etc. Rarely used nowadays, but some systems do keep track of this.

legal status LS For organizations a suffix indicating the legal status, e.g., “Inc.”, “Co.”, “AG”, “GmbH", “B.V.”
“S.A.", “Ltd.” etc.
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Additional qualifiers. More than one value allowed.

nick NK
callme CL
record RE
initial IN
weak WK
invisible HD

Indicates that the name part is a nickname. Not explicitly used for prefixes and suffixes,
since those inherit this flag from their associated significant name parts. Note that most
nicknames are given names although it is not required.

A callme name is (usually a given name) that is preferred w hen a person is directly
addressed.

This flag indicates that the name part is known in some official record. Usually the antonym
of nickname. Note that the name purpose code "license" applies to all name parts or a name,
whereas this code applies only to name name part.

Indicates that a name part is just an initial. Initials do not imply a trailing period since this
would not work with non-Latin scripts. Initials may consist of more than one letter, e.g., "Ph."
could stand for "Philippe" or "Th." for "Thomas".

Used only for prefixes and suffixes (affixes). A weak affix has a weaker association to its
main name part than a genuine (strong) affix. Weak prefixes are not normally inverted.
When a weak affix and a strong affix occur together, the strong affix is closer to its
associated main name part than the weak affix.

Indicates that a name part is not normally shown. For instance, traditional maiden names are
not normally shown. "Middle names" may be invisible too.

Note: an entity may have multiple names as defined through the RIM class Entity_name, which is
outside the scope of this specification.

2.8.2 Properties of Entity Name

Entity names have no additional properties adding information to the sequence of entit}/ name parts.
The property “formatted” has a character string value with the formatted person name.*

I

type EntityName alias EN extends LI ST<PNXP> {
ST

formatted,

2.8.2.1 Formatting Entity Names

The entity name data type’s main purposeis to capture names so that one can understand the parts and
render them correctly on labels, addresses, badges, etc. Humanswill look at namesin printed form,
such asonamailing label. Thisentity name data type therefore defines precise rules of how itsdatais

formatted **

Entity names are ordered lists of entity name parts. Each entity name part is printed in the order of the
list from left to right (or in any other language-specific reading direction.) Every entity name part
(except for those marked “invisible”) isprinted. Most entity name parts are framed by whitespace.
The following six rules govern the setting of whitespace.

1) White space never accumulates, i.e. two subsequent spaces are the same as one.

2) Literalsmay contain explicit white space subject to the same white space reduction rules.

3) Except for prefix, suffix and delimiter name parts, every name part is surrounded by implicit
white space. Leading and trailing explicit whitespace isinsignificant in all those name parts.

4) Delimiter name parts are not surrounded by any implicit white space. Leading and trailing
explicit whitespace is significant in in delimiter name parts.

40 Remember that semantic properties are bare of all control flow semantics. The property formatted could be
implemented as a“procedure” that would “return” the formatted name. It would not usually be implemented as a
variable to which one could assign aformatted person name. However, HL7 does not define applications but only the
semantics of exchanged data values. Hence, the semantic model abstractsfrom conceptslike* procedure’, “return”,
and “assignment” but speaks only of property and value.

4 These rulesfor formatting names are part of the semantics of names because the name parts have been designed with
the important use case of displaying and rendering on labels. Note that these formatting rules arenot I TSissues, snce
this formatting applies to presentations for humans whereas | TS specifications are presentations for computer

interchange.
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5) Prefix name parts only have implicit leading white space but no implicit trailing white space.
Trailing explicit whitespace is significant in prefix name parts.

6) Suffix name parts only haveimplicit trailing white space but no implicit leading white space.
Leading explicit whitespace is significant in suffix name parts.

This meansthat all entity name parts are generally surrounded by whitespace, but whitespace does
never accumulate. Delimiters are never surrounded by implicit white space, prefixes are not followed
by implicit white space and suffixes are not preceded by implicit white space. Every whitespace
contributed by preceding or succeeding name parts around those special name partsis discarded,
whether it wasimplicit or explicit.

Examples. The following shows examples of entity namesin an XML encoded form, wherethe XML
tag isthe entity name part type and the data content is the entity name part value. The use of XML in
these examples does not preempt any XML implementation technology specification; it is solely for
the purpose of this example.

A very simple encoding of “John W. Doe” would be:

<EN>
<@ V>John</ d V>
<G V>W </ d V>
<FAM>Doe</ FAM>
</ EN>

none of the special qualifiers need to be mentioned if they are unknown or irrelevant. The next
example shows extensive use of multiple given names, prefixes, suffixes, for academic degrees,
nobility titles, vorvoegsels (“van™), and professional designations.
<EN>

<PFX Q="AC'>Dr. phil. </PFX>

<@ V>Regi na</ G V><d V>Johanna</ G V><d V>Mari a</ G V>

<PFX Q="NB">G afin_</ PFEX><PFX Q="VV">von_</ PFX>

<FAM @&" MD' >Hochhei mk/ FAM><DEL>- </ DEL><FAM
Q" SP" >Wei | enf el s</ FAM>

<SFX Q="PR WK">NCFSA</ SFX>
</ EN>

The next example is an organization name, “Health Level Seven, Inc.” in simple string form:
<EN>Heal th Level Seven, |nc.</EN>

and asafully parsed name
<EN>Heal t h Level Seven<DEL>, </DEL><SFX Q="LS">Inc. </ SFX></ EN>

2.8.3 Restrictions of Entity Name

Three restrictions to Entity Name are defined in order to allow making specific constraints for certain
kinds of entities, trivial name (TN), person name (PN), and organization name (ON).

2.8.3.1 Trivial Name (TN)

Thetrivial name (TN) is an entity name that consists of only one name part without any name part type
or qualifier. The TN, and its single name part are therefore equivalent to asimple character string.
Thisequivalenceis expressed by adefined demotion to ST and promotion from ST.
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type Trivial Nanme alias TN extends LI ST<ST> {

ST formatted;
denot i on ST;
promotion TN (ST x);
}s

invariant (TN x) where x.nonNul | {
X. head. nonNul | ;
x.tail.isEnpty;
x. formatted. equal s(x. head) ;

invari ant (ST x) {
((TN) x) . head. equal s(x);
i

2.8.3.2 Person Name (PN)

Since most of the functionality of entity nameisin support of person names, the person name (PN) is
only avery minor restriction on the entity name part qualifier.

type PersonName alias PN extends LI ST<PNXP> {
ST formatted,;

I

protected type PersonNanePart alias PNXP extends ST {
CS type;
SET<CS> qualifier;

IE

i nvari ant (PNXP x) where x.nonNul | {

x.qualifier.contai ns(“LS"). not;

}s

2.8.3.3 Organization Name (ON)

A name for an organization, such as“Health Level Seven, Inc." An organization name consists only of
untyped name parts, prefixes, suffixes, and delimiters.

type O gani zati onNane alias ON extends LI ST<ONXP> {
ST formatted;

}s
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cs type;
SET<CS> qualifier;

I

i nvariant (ONXP x) where x.nonNul | {
X.type.inplies(“FAM). not;
X.type.inplies(“AV’).not;

i

protected type Organi zati onNamePart alias ONXP extends ST {

Quantity : QTY
<<type>> diff : QTY
isZero : BL

lessOrEqual(QTY) : BL

<
1
@

Ratio

lessThan(QTY) : BL
greaterOrEqual(QTY) : BL

numerator : QTY
denominator : QTY

greaterThan(QTY) : BL

PointinTime : TS

<<type>> diff : PQ ~ 1s
offset : dift

calendar : CS

precision : INT
timezone : dif

1

compares(QTY) : BL )

minus(QTY) : diff CAUEE(IE) © Bl

plus(diff) : QTY plus(diff) : TS

minus(TS) : diff
Integer : INT Real : REAL PhysicalQuantity : PQ MonetaryAmount : MO

<<type>>diff : INT | [<<type>> diff : REAL ||<<type>> diff : PQ <<type>> diff : MO
isOne : BL negated : REAL value : REAL value : REAL
successor : INT inverted : REAL unit : CS currency : CV
predecessor : INT precision : INT canonical ; PQ negated : MO
.negated': INT negated : PQ
isNegative : BL plus(diff) : REAL inverted : PQ plus(diff) : MO

nonNegative : BL minus(REAL) : difl
times(REAL) : REAL

power(REAL) : REAL

plus(diff) : INT
minus(INT) : diff
times(INT) : INT

equals(PQ) : BL
compares(PQ) : BL
plus(PQ) : PQ
minus(PQ) : PQ

times(PQ) : PQ
times(REAL) : PQ
power(INT) : PQ

minus(MO) : difi
times(REAL) : MO

Figure 8: Quantity Data Types
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2.9 Abstract Type Quantity (QTY)

The quantity datatypeis an abstract generalization for all datatypes (1) whose value set has an order
relation (less-or-equal, £) and (2) where differenceis defined in all of the datatype’ stotally ordered
value subsets. The quantity type abstraction is needed in defining certain other types, such as the
interval and the probability distribution.

abstract type Quantity alias QIY extends ANY {
BL | essOr Equal (QTY x);
BL conpares(QryY x);

type Qry di ff;

diff m nus(QTY x);
qQry plus(diff x);
BL i sZer o;
BL | essThan( QTY x);
BL great er O Equal (QTY Xx);
BL great er Than( QTY x);

i

2.9.1.1 Ordering

An ordered set isaset with an order relation (e.g., less-or-equal, £). An order relation isasymmetric
and transitive.

A totally ordered set is an ordered set where all pairs of elements have a defined order (e.g., the integer
and real numbers are totally ordered.)

A partially ordered set is an ordered set where not all pairs of elements are comparable through the
order relation (e.g., atree structure or the set of physical quantitiesisapartially ordered set.) Two data
values x and y of an ordered type are comparable (x.compares(y)) if the less-or-equal relation holdsin
either way (XEyory £ x).

A partial order relation generatestotally ordered subsets whose union isthe entire set (e.g., the set of
al length isatotally ordered subset of the set of all physical quantities.)

For example, atree structureis partially ordered, where theroot is considered less or equal to aleaf,

but there may not be an order among the leafs. Also, physical quantities are partially ordered, since an
order exists only among quantities of the same dimension (e.g., between two lengths, but not between a
length and atime.) A totally ordered subset of atreeisapath that transitively connects aleaf to the
root. The physical dimension of timeisatotally ordered subset of physical quantities.

invariant (QIY x, y, 2z)
where x.nonNull.and(y.nonNull).and(z.nonNull) {
X. | essO Equal (x); [* reflexive */
X. | essOr Equal (y) /* asymmetric */
.inplies(y.lessOEqual (x)).not();
X. |l essO Equal (y).and(y. | essOr Equal (z)) [* transitive */
.inplies(x.|essOEqual (z))
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x

.l essThan(y) . equal s(x. | essO Equal (y).and(x. equal s(y).not));
.greater O Equal (y) . equal s(y. | essO Equal (x));

x

x

. greater Than(y) . equal s(y. | essThan(x));

x

.conmpar es(y) . equal s(x. | essO Equal (y).or(y.lessO Equal (x)));

2.9.1.2 Difference

A differenceis defined in an ordered set if it is semantically meaningful to state that Dis the difference
between the valuesx and y. This difference Dmust be meaningful independently from the valuesx and
y. Thisindependence existsif for all valuesu one can meaningfully derive avalue v such that Dwould
also be tgg difference betweenu andv. Thejudgment for what ismeaningful can not be defined
formally.

The diff-property is a data type that can express the difference between two values for which the
ordering relation is defined (i.e., two elements of acommon totally ordered subset.) For example, the
difference data type of integer number isinteger number, but the difference type of pointintimeisa
physical quantity in the dimension of time. A difference datatypeisatotally ordered datatype.

The difference between two valuesx minusy must be defined for all x and y in acommon totally
ordered subset of the datatype’svalue set. Zero isthe difference between avalue and itself.

invariant (QIY x, y) where x.conpares(y) {
X. mnus(y).nonNul [ ;
X. m nus(x).isZero;
X. plus(y. m nus(x)).equal s(y);

I

2.10 Integer Number (INT)

Integer numbers are precise numbers that are results of counting and enumerating. Integer numbers are
discrete, the set of integersisinfinite but countable. No arbitrary limit isimposed on the range of
integer numbers. Two exceptional values are defined for the positive and negative infinity.

type IntegerNunmber alias INT extends QrY {
BL i sOne;
I NT successor ;
I NT plus(diff x);
I NT times(INT x);

42 The quantity data type abstraction correspondsto thenotion of difference scalesin contrast to ordinal scalesand ratio
scales (Guttman and Stevens). A datatype with only the order requirement but not the difference requirement would
be an ordinal. Ordinals are not currently defined with a special datatype. Instead, ordinasareusually coded values,
where the underlying code system specifies ordinal semantics. Thisordinal semantics, however, isnot reflected in the
HL 7 data type semantics at thistime.
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type I NT di ff;
diff m nus( | NT x);
I NT pr edecessor;
I NT negat ed;
BL i sNegati ve;
BL nonNegat i ve;

literal ST;

IE

2.10.1.1 Algebraic Operations

Since the integer number datatype includes all of the semantics of the mathematical integer number
concept, the basic operations plus (addition) and times (multiplication) are defined. These operations
are defined here as characterizing operations in the sense of 1SO 11404, and because these operations
are needed in other parts of this specifications, namely the semantics of the literal form.

Thetraditional recursive definitions of addition and multiplication are due to Grassmann:*3

invariant (INT x, o, i) where x.nonNull.and(o.isZero()) {
.l essThan(x. successor);

. pl us(0). equal s(x);

X
X
X. pl us(y. successor) . equal s(x. pl us(y) . successor);
X.times(o).equal s(0);

X

.tinmes(y.successor).equal s(x.tines(y)).plus(x);

}s

The inverse element, negation, and predecessor are defined as follows

invariant (I NT x) where x.nonNul | {

x

. pl us(x. negat ed) . i sZer o;

x

. successor . predecessor . equal s(x);
. nonNegat i ve. equal s(0. | essO Equal (x));

x

X. i sNegati ve. equal s(x. nonNegat i ve. not);

2.10.1.2 Literal Form

Theliteral form of an integer isasimple decimal number, i.e. astring of decimal digits.

43 H. Grassman. Lehrbuch der Arithmetik. 1861. We prefer Grassman’ s original axiomsto the Peano axioms, because
Grassman'’s axiomswork for all integers, not just for natural numbers. Also, “it is rather well-known, through Peano's
own acknowledgment, that Peano borrowed his axioms from Dedekind and made extensive use of Grassmann'swork in
his development of the axioms." (Hao Wang. The Axiomatization of Arithmetic. J. Symb. Logic; 1957:22(2); p. 145,

68 Copyright © Health Level Seven, Inc. All rights reserved.



PART Il — Unabridged Specification

2 Basic Types

INT. literal ST {
I NT digit

INT uint : digit
| uint digit

INT : uint
| “+" uint

| “-” uint

.isZero; }

. equal s(0. successor);
.equal s(1. successor);
. equal s(2. successor);
. equal s(3. successor);

. equal s(5. successor);
. equal s(6. successor);

. equal s(7.successor);

el e e e T e e e e N e N )
© B B B B B B B B B

}
}
}
}
. equal s(4. successor); }
}
}
}
}

. equal s(8. successor);

-~
©*

.equal s($1); }
{ $.equal s($1.tinmes(9.successor).plus($2));

{ $.equal s($1); }
{ $. equals($2); }
{ $.equal s($2. negated); };

s

2.11 Real Number (REAL)

Mathematically, real numbers are the superset of integer numbers, rational numbers, and irrational

numbers. Real numbers are needed beyond integers whenever quantities of the real world are
measured, estimated, or computed from other real numbers.

scope of this specification.

Note: This specification defines the real number data type in the broadest sense possible. However,
it does not imply that any conforming ITS or implementation must be able to represent the full range
of Real numbers, which would not be possible in any finite implementation. HL7’s current use cases
for the Real number data type are measured and estimated quantities and monetary amounts. These
use cases can be handled with a restricted Real value space, rational numbers, and even just very

limited decimals (scaled integers.) However, we declare the representations of the real value space
as floating points, rationals, scaled integers, or digit strings) and their limitations to be out of the

This specification offers two choices for anumber datatype. The choiceis made asfollows: Any

number attributeisareal if it is not known for surethat it isaninteger. A number isanintegerifitis
always counted, typically representing an ordinal number. If there are conceivable use cases where
such anumber would be estimated or averaged, it is not always an integer and thus should be using the

Real datatype.
type REAL
diff
REAL
REAL

type Real Nunber alias REAL extends QY {

diff;

m nus( REAL Xx);
plus(diff x);
negat ed;
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REAL times(REAL X);
REAL i nverted;
REAL power ( REAL Xx);
literal ST;
| NT preci si on;
denoti on | NT;
pronotion REAL (I'NT x);

promotion PQ
pronotion RTQ

2.11.1.1 Algebraic Operations

The algebraic operations are specified here as characterizing operations in the sense of 1SO 11404, and
because these operations are needed in other parts of this specifications. Here, the specification of the
real numbersis based on the homomorphism (the type conversion that preserves integer arithmetic)
between integer and real numbers:

invariant (I NT n, n) where n.nonNul | .and(m nonNul ) {
((REAL) n. pl us(m) . equal s(((REAL)n). pl us((REAL) M) ) ;
((REAL)Nn.times(m).equal s(((REAL)n).times((REAL)M));

Unlike the integer numbers, the real numbers semantics are not inductively defined but only their
algebraic properties described.

invariant (REAL x, y, 2)
where x.nonNul | . and(y. nonNumm . andz. nonNul I') {
/* ADDI TI ON */

X. pl us(0) . equal s(x) /* neutral elenment */
X. pl us(x. negat ed) . equal s(0) /* inverse el ement */
x. pl us(y). pl us(z).equal s(x.plus(y.plus(z))); /* associative */
x. plus(y) . equal s(y. pl us(x)) /* commutative */

/* MULTI PLI CATI ON */
X.tinmes(0).equal s(0);

x.tinmes(1).equal s(x); /* neutral elenment */
X.times(x.inverted).equal s(1) /* inverse el ement */
O.inverted.isNull; /* ...except for zero */
X.times(y).times(z).equal s(x.tines(y.tines(z)));/* associative */
x.tinmes(y).equal s(y.tines(x)); [* commutative */
Xx.times(y.plus(z)) /* distributive */

.equal s(x.times(y).plus(x.tines(z));

70
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/* EXPONENTI ATI ON */
X. power (0) . equal s(1);

X. power (1) . equal s(x);

x

. power (y) . power (y.inverted). equal s(x);

. power (y) . power (z) . equal s(x. power (y.times(z)));

X. power (y) . times(x. power(z)).equal s(x.power(y.plus(z)));
X. power (y) . i nverted. equal s(x. power (y. negated));
X

2.11.1.2 Literal Form

The syntax and semantics of real number literalsis defined below. In summary, areal number is
represented in decimal form with optional + or - sign, and optional decimal point, and optional
exponential notation using acase insensitive “e” between the mantissa and the exponent. The number
of significant digits must conform to the precision property.

REAL. literal ST {
REAL : mantissa
| mantissa /[eE]/ |INT
REAL nantissa
/0*/ 0O
| /0*/ “.” [0*/
| /70%/ “.” [/0*/ fractiona
| integer
| integer “.” fractiona
REAL i nt eger
ui ntva
| “+" uintva
| “-" uintval
REAL ui nt val /0*/ uint
REAL ui nt digit
| uint digit

.equal s($1); }
. equal s($1

.times(10. power ($3)); };

$.isZero; $.precision.equals(l); }

$.isZero; $.precision.equal s(

B B B B

B H B ©®

$3. 1 engt h. successor); }

. equal s($4);

. preci si on. equal s($4. preci sion); }
.equal s($1); }

. equal s($1. pl us($2));

. preci si on. equal s($1. preci si on

.plus($3. precision)); };

.equal s($2); }
.equal s($1.tinmes($2)); }
.equal s($1.ti mes($2).negated); };

.equal s($2); };

.equal s($1);
. precision.equals(1); }
.equal s($1.tinmes(10). plus(%$2));

. preci si on. equal s(

$1. preci si on. successor; };
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REAL fractiona
digit { $.equal s($1.tinmes(10.inverted));
$. preci sion. equal s(1); }
| digit fractional { $.equal s(
$1. pl us($2. ti mes(10.inverted));
$. preci si on. equal s(
$1. preci si on. successor); };

INT digit : /[0-9]/ { $.equals($l); }

Examples of redl literals are for two-thousand are 2000, 2000., 2e3, 2. 0e+3,+2. 0e+3.

Note that the literal form does not carry type information. For example, “2000" isavalid
representation of both areal number and an integer number. No trailing decimal point is used to
disambiguate from integer numbers. An ITSthat usesthisliteral form must recover the type
information from other sources.

2.11.1.3 precision : INT

The precision property indicates the quality of the approximation of adecimal real number
representation. Precision isthe number of significant decimal digitsin that decimal representation.
The precision attribute is the precision of adecimal digit representation, not the precision or accuracy
of the real number value. Precision does not play arolein deciding whether two real number values
areequal.

The purpose of the precision property for the real number datatype isto faithfully capture the whole
information presented to humansin anumber. The amount of decimal digits shown conveys
information about the uncertainty (i.e., precision and accuracy) of ameasured value.

Note: the precision of the representation is independent from uncertainty (precision accuracy) of a
measurement result. If the uncertainty of a measurement result is important, one should send
uncertain values as defined in Section 4.4.

Therulesfor what digits are significant are as follows:
All non-zero digits are significant.
All zeroesto theright of asignificant digit are significant.

When all digitsin the number are zero the zero-digit immediately |eft to the decimal point is
significant (and because of rule 2, al following zeroes are thus significant too.)

Note, these rules of significance differ slightly from the more casual rules taught in school.
Notably trailing zeroes before the decimal point are consistently regarded significant here.

Elsewhere, e.g., 2000 is ambiguous as to whether the zeroes are significant. This deviation
from the common custom is warranted for the purpose of unambiguous communication.

Examples:
2000 has 4 significant digits.
263 has1significant digit, used if one would naturally say "2000" but precisionisonly 1.
0.001 has 1 significant digits.
1le-3 has1significant digit, use thisif one would naturally say “0.001” but precisionisonly 1.
0 has 1 significant digit.
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00 has2significant digits.
0000 has2significant digits.
0.00 has3significant digits.
410 has 3 significant digits.
4.09 has3significant digits.
41 has2significant digits.

The precision of the representation should match the uncertainty of the value. However, precision of
the representation and uncertainty of the value are separate independent concepts. Refer to Section
4.4.2 for details about uncertain real numbers.

For example “0.123" has 3 significant digitsin the representation, but the uncertainty of the value may
bein any digit shown or not shown, i.e., the uncertainty may be 0.123+0.0005, 0.123+0.005 or
0.123+0.00005, etc. Note that external representationsshould adjust their representational precision
with the uncertainty of the value. However, since the precision in the digit string is granular to£0.5
the least significant digit, while uncertainty may be anywhere between thisraster, 0.123+0.005 would
also be an adequate representation for the value between 0.118 and 0.128.

ITS Note: on a character based Implementation Technology the ITS need not represent the precision
as an explicit attribute if numbers are represented as decimal digit strings. In that case, the ITS must
abide by the rules of an unambiguous determination of significant digits. A number representation
must not produce more or less significant digits than were originally in that number. Conformance
can be tested through round-trip encoding — decoding — encoding.

2.12 Ratio (RTO)

A ratio quantity is a quantity constructed through division of anumerator quantity with a denominator
quantity. Ratios are different fromrational numbers, i.e., in ratios common factors in the numerator

and denominator never cancel out. A ratio of two real or integer numbersis not automatically reduced
to areal number.

Table 31: Summary of Primary Properties of Ratio (RTO)

Name Type Status Default Constraint  Definition
numerator QTY mandatory  (INT) 1 The numerator of the ratio.
denominator  QTY mandatory  (INT) 1 10 The denominator of the ratio

The purpose of the ratio datatype isto support certain quantities produced by laboratories, such as
titers (e.g., “1:128"). Ratiosare not simply “structured numerics’, blood pressure measurements (e.g.
“120/60") are not ratios.

Note: This data type is not defined to generally represent rational numbers. In this Ratio data type, it
is not correct to cancel out common factors in numerator and denominator. For example, if a ratio is
recorded as 2:8, it should not be reduced to 1:4.

type Ratio alias RTO extends QTY {
Qry nuner at or ;
Qry denom nat or ;

denotion REAL;
denotion PQ
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2.12.1.1 numerator (QTY)

Thisisthe numerator quantity. The default isthe integer number 1 (one.)

2.12.1.2 denominator (QTY)

Thisisthe denominator quantity. The default istheinteger number 1 (one.) The denominator must
not be zero.

invari ant (RTO x) where x.nonNul | {

X. denom nat or. i sZero(). not ();

I

2.12.1.3 Literal Form

The syntax and semantics of ratio literalsis defined below. In summary, aratio literal form existsfor
al ratios where both numerator and denominators have literal forms. A ratio issimply the numerator
literal acolon as separator followed by the denominator literal. When the colon and denominator are
missing, the integer number 1 is assumed as the denominator.

RTO literal ST {

RTO : Qry { $. nunerator.equal s($1);
$. denom nat or. equal s((INT)1); };
| Qry “:” Qry { $. nunerator.equal s($1);

$. denomi nat or . equal s($3); };

2.13 Physical Quantity (PQ)

A physical quantity is a dimensioned quantity expressing the result of a measurement act.

Table 32: Summary of Primary Properties of Physical Quantity (PQ)

Name Type Status Default Constraint Definition

value REAL mandatory ~ NULL The magnitude of the quantity measured in terms of the
unit

unit CS mandatory 1 UCUM The unit of measure

type Physical Quantity alias PQ extends QTY {
REAL val ue;
cSs unit;
BL equal s(PQ x)
BL | essOr Equal (PQ x);
BL conpar es(PQ x);
PQ canoni cal ;
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type PQ diff
diff m nus( PQ Xx);
PQ plus(diff x);
PQ negat ed;
PQ ti mes(REAL x);
PQ times(PQ x);
PQ i nvert ed;
PQ power (I NT x);

literal ST;

denmotion REAL;

b

2.13.1.1 value: REAL

Thisisthe magnitude of the quantity measured in terms of the unit.

2.13.1.2 unit: CS

Thisisthe unit of measure. The unit of measure must be specified in the Unified Code for Units of
Measure (UCUM) [http://aurora.rg.iupui.edu/UCUM].

Note that equality of physical quantity does not require the values and units to be equal
independently. Value and unit is only how we represent physical quantities. For example, 1 m equals
100 cm. Although the units are different and the values are different, the physical quantities are
equal! Therefore one should never expect a particular unit for a physical quantity but instead provide
automated conversion between different comparable units.

2.13.1.3 Equality, Ordering and the Canonical Form

Physical quantities semantically are the results of measurement acts. Although physical quantities are
represented as pairs of value and unit, semantically, a physical quantity is more than that. To find out
whether two physical quantities are equal, it is not enough to compare equality of their two values and
unitsindependently. For example, semantically 100 cm equals 1 m although neither values nor units
areequa. To define equality we introduce the notion of a canonical form.

Every physical quantity hasacanonical form. The canonical formisaphysical quantity expressed asa
pair of value and unit such that each dimension in a given unit system has one and only one canonical
value-unit pair. Defining the canonical formis not subject of this specification, only asserting that
such acanonical form existsfor every physical quantity. A physical quantity isequal toits canonical
form.

For example, for aunit system based on the Systéme International (Sl) one can define the canonical
form as (a) the product of only the base units; (b) without prefixes; where (¢) only multiplication and
exponents are used (no division operation); and (d) where the seven base units appear in a defined
ordering (e.g., m, s, g...) Thus, 1 mm Hg would be expressed as 133322 m ' s g. Ascan be seen, the
rules how to build the canonical form of units may be quite complex. However, for the semantic
specification it doesn’t matter how the canonical form is built, or what specific canonical formis
chosen, only that some canonical form could be defined.

Two physical quantities are equal if each their values and their units of their canonical forms are equal.

Two physical quantities compare each other (and have an ordering and difference) if the units of their
canonical forms are equal.
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i nvariant (PQ x, y) where x.nonNull.and(y.nonNull) {

X. canoni cal . equal s(x);

x. equal s(y).inplies(x.conpares(y));

x. equal s(y) . equal s(x. canoni cal . val ue. equal s(y. canoni cal . val ue)

.and(x. canoni cal . uni t. equal s(y. canonical .unit)));

X. conpar es(y) . equal s(x. canoni cal . uni t. equal s(y. canoni cal . unit));

}s

2.13.1.4 Algebraic Operations

Algebraic operations are defined for physical quantities because they are characterizing operationsin
the sense of SO 11404 and because this specification makes use of them when defining the literal
form.

Any two physical quantities can be multiplied. The quotient of two comparable quantitiesis
comparable to the unity (the unit 1).

invariant (PQ x, vy, z)
where x.nonNull.and(y.nonNull).and(z. nonNul ') {
x. conpares(y).inplies(x.times(y.inverted).conpares(1));
X.times(1).equal s(x); /* neutral elenment */
x.times(x.inverted).equal s(1); /* inverse el ement */
x.times(y).tinmes(z).equal s(x.tinmes(y.tinmes(z))); /* associative */
x.tinmes(y).equal s(y.tines(x)); /* commutative */

I

A physical quantity can be multiplied with areal number to form ascaled quantity. A scaled quantity
iscomparable to itsoriginal quantity. If two quantitiesQ; and Q, compare each other, there exists a
real number r such thatr 1 =Q; / Q..

invariant (PQ x, y; REAL r)
where x.nonNul |l .and(y. nonNul |').and(r.nonNul ') {
x.times(r).val ue. equal s(x.val ue.times(r));
X.tinmes(r).conpares(x);

I

A physical quantity Q that compares the unity — i.e. the unit 1 (one) — can be converted to areal
number r such thatr 1 =Q.

i nvari ant (PQ x) where x.nonNul|.and(x. conpares(unity) {
uni ty. times((REAL) x). equal s(x));
i

A physical quantity can be raised to an integer power.
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invariant (PQ x; INT n) where x.nonNull {
X. power (0) . equal s(1);
n. great er Than(0).i mpli es(
X. power (n) . equal s(x.tines(x. power (n. predecessor))));
n. |l essThan(0).inplies(

X. power (n) . equal s(x. power (n. negat ed) . i nverted);

Two physical quantitiesthat compare each other can be added.

invariant (PQXx, vy, z)
wher e x. conpares(y).and(y. conpares(z)) {

x. pl us(y). pl us(z).equal s(x. plus(y. plus(z))); /* associative */
X. plus(x.tines(0)).equal s(x) /* neutral elem */
X. pl us(x. negat ed) . equal s(x. ti nes(0)) /* inverse elem */
x. plus(y) . equal s(y. pl us(x)) /* commutative */

forall (PQw wth w nonNull {

w. times(x.plus(y)) /* distributive */
.equal s(w. times(x).plus(wtinmes(y)));

}s

forall (REAL r) where r.nonNul |l {
X. plus(y).times(r) /* distributive */
.equal s(x.times(r).plus(y.tines®));

2.13.1.5 Literal Form

Theliteral form for aphysical quantity isareal number literal followed by optional white space anda
character string representing avalid code in the Unified Code for Units of Measure.

PQliteral ST {
PQ : REAL unit { $.val ue. equal s($1);
$.unit.equal s($2); }

CS unit : ST { $.val ue. equal s($1);
$. codeSyst em equal s(2. 16. 840. 1. 113883.6.8); };

I

For example 20 minutesis“20 mi n”.

2.14 Monetary Amount (MO)

A monetary amount is a quantity expressing the amount of money in some currency. Currencies are
the units in which monetary amounts are denominated in different economic regions. Whilethe
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monetary amount is asingle kind of quantity (money) the exchange rates between the different units
arevariable. Thisisthe principle difference between physical quantity and monetary amounts, and the
reason why currency units are not physical units.

Table 33: Summary of Primary Properties of Monetary Amount (MO)

Name Type Status Default Constraint Definition

value REAL mandatory ~ NULL The magnitude of the monetary amount in terms of
the currency unit.

currency CS mandatory  NULL ISO 4217 The currency unit

type MonetaryAmount alias MO extends QY {
REAL val ue;
(05 currency;
type MO diff
MO plus(diff x);
di ff m nus( MO x) ;
MO negat ed;
MO ti mes(REAL Xx);
literal ST;
type MO diff;
b

2.14.1.1 value: REAL

Thisisthe magnitude of the monetary amount in terms of the currency unit.

Note: monetary amounts are usually precise to 0.01 (one cent, penny, paisa, etc.) For large amounts,
it is important not to store monetary amounts in floating point registers, since this may lose precision.
However, this specification does not define the internal storage of real numbers as fixed or floating
point numbers.

The precision attribute of the real number type is the precision of the decimal representation, not the
precision of the value. The real number type has no notion of uncertainty or accuracy. For example,
“1.99 USD” (precision 3) times 7 is “13.93 USD” (precision 4) and should not be rounded to “13.9” to
keep the precision constant.

2.14.1.2 currency : CS
The currency unit asdefined in SO 4217.

Table 34: Select ISO 4217 currency codes

Country Currency Code
Argentina Argentine Peso ARS
Australia Australian Dollar AUD
Austria Austrian Schilling ATS
Belgium Belgian Franc BEF
Brazil Brazilian Real BRL
Canada Candian Dollar CAD
Chile Unidades de Formento CLF
China Yuan Renminbi CNY
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Cuba Cuban Peso CuUP
European Union Euro EUR
European Union ECU (until 1998-12-31) XEU
Finland Markka FiM

France French Franc FRF
Germany Deutsche Mark DEM
India Indian Rupee INR

Israel Shekel ILS

Japan Yen JPY

Korea (south) Won KRW
Luxembourg Luxembourg Franc LUF
Mexico Mexican Nuevo Peso MXN
Netherlands Netherlands Guilder NLG
New Zealand New Zealand Dollar NzD
Norway Norwegian Krone NOK
Philippines Philippine Peso PHP
Russian Federation Russian Ruble RUR
Singapore Singapore Dollar SGD
South Africa Rand ZAR
Spain Spanish Peseta ESP
Sweden Swedish Krona SEK
Switzerland Swiss Franc CHF
Thailand Baht THB
Taiwan New Taiwan Dollar TWD
United Kingdom Pound Sterling GBP
United States US Dollar UsD

2.14.1.3 Algebraic Operations

Equality of two monetary amounts— unlike physical quantities— is determined as the joint equality of
their value and currency propertiesindependently. (Thisisaccording to the general definition of
equality as defined in Section 1.4.2.3.) If the currencies are not equal, the amounts can not be
compared. Conversion between the currenciesis outside the scope of this specification. In practice,
foreign exchange rates are highly variable not only over long and short amounts of time, but also
depending on location and access to currency trade markets.

invariant (MO x, y) where x.nonNul |.and(y. nonNul ') {

x. equal s(y) . equal s(x. currency. equal s(y. currency)
.and(x. val ue. equal s(y. val ue)));

X.currency. equal s(y.currency).not.inplies(x.lessOEqual (y).isNull);

I

Two monetary amounts can be added if they are denominated in the same currency.

invariant (MO x, y) where x.nonNull.and(y. nonNulI')
.and(x. currency. equal s(y. currency)) {
X. plus(y) . val ue. equal s(x. val ue. pl us(y. val ue));
X. plus(y) . currency. equal s(x. currency);

I
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Any monetary amount can be multiplied with areal number.

invariant (MO x; REAL r) where x.nonNull.and(r.nonNull) {
Xx.times(r).val ue. equal s(x.val ue.times(r));
x.tinmes(r).currency. equal s(x. currency);

I

2.14.1.4 Literal Form

Theliteral form for amonetary amount is areal number literal followed by optional white space and a
character string representing avalid code.

MO literal ST {
MO : val ue currency { $.val ue. equal s(%$1);
$. currency. equal s($2); }

REAL val ue : REAL { $.value.equal s($1); }

CS currency : ST { $.currency. val ue. equal s($1);
$. currency. codeSyst em
.equal s(2.16.840.1.113883.6.9); }

}s

For example U.S. $176,000is“176000 USD".

2.15 Point In Time (TS)

A pointintimeisascalar defining apoint on the axis of natural time. A point in timeismost often
represented as a calendar expression. Semantically, however, time isindependent from calendars. The
semantic properties of point in time are best described by their relationship to elapsed time (measured
asaphysical quantity in the dimension of time.) A point intime plusan elapsed time yields another
pointintime. Inversely, apoint in time minus another point in time yields an elapsed time. Asakind
of quantity, pointsin time are a difference-scale quantity, where no absol ute zero-point exists, where
only differences are defined but no ratios. (For example, no point in time is— absolutely speaking —
“twice aslate” as another point intime.)

Given some arbitrary zero-point, one can express any point in time as an elapsed time measured from
that offset. Such an arbitrary zero-point is called an epoch. This epoch-offset formisused asa
semantic representation here, without implying that any system would have to implement the TS data
typein that way. Systems that do not need to compute distances between pointsin time will not need
any other representation than a calendar expression literal.

type PointInTime alias TS extends QTY {

PQ of f set;

(05 cal endar;

| NT preci si on;

PQ ti mezone;

BL equal s(TS x);
TS pl us(PQ x);
PQ m nus(TS X);
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literal ST,
type PQ diff;

2.15.1.1 offset: PQ

Thetime elapsed since any constant epoch, measured as a physical quantity in the dimension of time
(i.e., comparableto one second.) It isnot necessary for this specification to define a canonical epoch;
the semanticsisthe same for any epoch, aslong asit is constant. Two point-in-time values are equal if
and only if their offsets (relative to the same epoch) are equal.

invariant (TS x, y) where x.nonNull.and(y. nonNull) {
x. of fset. conpares(1 s);
x. equal s(y) . equal s(x. of fset. equal s(y. offset));

}s

ITS Note: the offset property may be treated as a purely semantic property that is not represented in
any way other than the calendar literal expression. However, an ITS may just as well choose to
define a constant epoch and represent point-in-time values as elapsed time offsets relative to that
epoch. However, an ITS using an epoch-offset representation would still need to communicate the
calendar code and the precision of a calendar representation once other calendars are supported.

2.15.1.2 calendar : CS

A code specifying the calendar used in the literal representation of this point in time.**

Table 35: Calendar Codes

Name Code Definition

Gregorian GREG The Gregorian calendar is in effect in the most countries of
Christian influence since approximately 1582. This
calendar superceded the Julian calendar.

The purpose of this attribute is mainly to faithfully convey what has been entered or seen by auserina
system originating such a point-in-time value. The calendar property also advises any system
rendering a point-in-time value into aliteral form of which calendar to use. However, thisisonly

advice; any system that renders point-in-time val ues to users may choose to use the calendar and literal
form demanded by its users rather than the calendar mentioned in the calendar property. Hence, the
calendar property is not constant in communication between systems, the calendar is not part of the
equality test.

A calendar is aconcept of measuring timein various cycles. Such cycles are years, months, days,
hours, minutes, seconds, and weeks. Some of these cycles are synchronized and some are not (e.g.,
weeks and months are not synchronized.) After “rolling thetime axis” into these cycles (see Figure 9,)
acalendar expresses a point in time as a sequence of integer counts of cycles, e.g., for year, month,
day, hour, etc. The calendar isrooted in some conventional start point, called the “epoch.”

For the purpose of defining the literal form based on the calendar two private data types, Calendar
(CAL) and CalendarCycle (CLCY,) are defined. These calendar datatypes exist only for defining this
specification. These private datatypes may not be used at all outside this specification.

4 At thistime, no other calendars than the Gregorian calendar are defined. However, the notion of acalendar asan
arbitrary convention to specify absolute timeisimportant to properly define the semantics of time and time-related data
types. Furthermore, other calendars might be supported when needed to facilitate HL 7' s use in other cultures.

Copyright © 2000, Health Level Seven, Inc. All rights reserved. 81



HL7 Version 3 Data Types BALLOT DRAFT 2 Revision 1.3

Figure 9: A calendar "rolls" the time axis into a complex convolute according to the calendar
periods year (blue), month (yellow), day (green), hour (red), etc. The cycles need not be aligned,
for example, the week (not shown) is not aligned to the month.*®

Calendar isdefined as a set of calendar cycles, and has aname and acode. The head of the Calendar is
the largest CalendarCycle appearing right most in the calendar expression. The epoch is the beginning
of that calendar, i.e., the point in time where all calendar cycles are zero.

private type Cal endar alias CAL extends SET&CLCYRA {

cv nane;
CLCY head;
TS epoch;

}s

invariant (CAL c) where c.nonNul |l {
c. nane. nonNul | ;
c.cont ai ns(c. head) ;

}s

A calendar cycle defines one group of decimal digitsin the calendar expression. A calendar cycle has
aname and two codes, a one-letter code and atwo-letter code. The property ndigitsisthe number of

s Imagine aspecia clock that measures those cycles, where the pointers are not all stacked on acommon axis but each
pointer is attached to the end of the pointer measuring the next larger cycle.
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decimal digits occupied in the calendar expression. The property start specifies where counting starts
(i.e,a0or 1) Thenext property isthe nextlower cyclein the order of the calendar expression. The
max(t) property isthe maximum number of cycles at timet (max depends on thetimet to account for
leap years and leap seconds.) The property value(t) isthe integer number of cycles shown in the
calendar expression of timet. The property sum(t, n) isthe sum of n calendar cycles added to the time
t.

private type Cal endarCycl e alias CALCY extends ANY {

CE namne;

| NT ndigits;

I NT start;

CALCY next ;

I NT max(TS);

TS sum(TS t, REAL r);
I NT val ue(TS t);

I

i nvari ant (CALCY c) where c.nonNull {

c. name. nonNul | ;
c.start.equal s(0).or(c.start.equal s(1));

c.digits. greaterThan(0);
IE

The calendar definition can be shown asin Table 36 for the modern Gregorian calendar. The calendar
definition table lists acalendar cyclein each row. The calendar units are dependent on each other and
defined in the value column. The sequence column shows the rel ationship through the next property.
The other columns are asin the formal calendar cycle definition.*®

Table 36: Calendar Periods for the Modern Gregorian Calendar

Name Code Counter Period Duration
one two seq. digits start condition value
year Y CY 1 4 0 MY12
month of the year M MY 2 2 1 My01,03,05,07,08,10,12 ® DM31
MY04,06,09,11 ® DM30
MY02 Y/4 Y/100 ® DMm28
MYO02 Y/4 ® DM29
MY02 ® DMm28
month (continuous) CM 0 continuous MY
week (continuous) w W 0 CD7
week of the year WY 2 1 continuous Dw7
day of the month D DM 3 2 1 HD24
day (continuous) CD 0 CH24
day of the year DY 3 1 HD24
day of the week (begins with Monday) J DwW 1 1 HD24
hour of the day H HD 4 2 0 MHG60

“ At present, the CalendarCycle properties sum and val ue arenot formally defined. The computation of calendar digits
involves some complex computation which to specify here would be hard to understand and evaluate for correctness.
Unfortunately, no standard exists that would formally define the relationship between caendar expressionsand elapsed
time since an epoch. ASN.1, the XML Schema Data Type specification and SQL92 all refer to | SO 8601, however,

1SO 8601 does only specify the syntax of Gregorian calendar expressions, but not their semantics. In thisstandard, we
define the syntax and semantics formally, however, we presume the semantics of the sum-, and value-propertiesto be
defined elsewhere.

Copyright © 2000, Health Level Seven, Inc. All rights reserved. 83



HL7 Version 3 Data Types BALLOT DRAFT 2 Revision 1.3

hour (continuous) CH 0 CN60
minute of the hour N NH 5 2 0 UTC leap second ® SN61

® SN60
minute (continuous) CN 0 CS60
second of the minute S SN 6 2 0 Cs1
second (continuous) CS 0 Dbasis

2.15.1.3 precision : INT

The purpose of the precision property for the point in time data typeisto faithfully capture the whole
information presented to humansin a calendar expression. The number of digits shown conveys
information about the uncertainty (i.e., precision and accuracy) of ameasured point in time. Although,
the precision of acalendar expression is not agood measure for the uncertainty of the value, the
precision of the calendar expression should match the accuracy of the measurement.

Note: the precision of the representation is independent from uncertainty (precision accuracy) of a
measurement result. If the uncertainty of a measurement result is important, one should send
uncertain values as defined in Section 4.4.

The precision property is dependent on the calendar. A given precision value relative to one calendar
does not mean the same in another calendar with different periods.

For example “20000403" has 8 significant digitsin the representation, but the uncertainty of the value
may be in any digit shown or not shown, i.e., the uncertainty may beto the day, to the week, or to the
hour. Notethat external representationsshould adjust their representational precision with the
uncertainty of the value. However, since the precision in the digit string depends on the calendar and
isgranular to the calendar periods, uncertainty may not fall into that grid (e.g., 2000040317 isan
adequate representation for the val ue between 2000040305 and 2000040405.)

ITS Note: on a character based Implementation Technology the ITS need not represent the precision
as an explicit attribute if point in time values are represented as literal calendar expressions. A point
in time representation must not produce more or less significant digits than were originally in that
value. Conformance can be tested through round-trip encoding — decoding — encoding.

2.15.1.4 time zone: PQ

The time zone s specified as the difference between the local time in that time zone and Universal
Coordinated Time (UTC, formerly called Greenwich Mean Time, GMT). Thetime zoneisa physica
quantity in the dimension of time (i.e., comparable to one second.) A zero time zone value specifies
UTC. Thetime zone value does not permit conclusions about the geographical longitude or a
conventional time zone name.

For example, 200005121800-0500 may be eastern standard time (EST) in Indianapolis, IN, or centra
daylight savingstime (CDT) in Decatur, IL. Furthermore in other countries having other |atitude the
time zones may be named differently.

invariant (TS x, y) where x.nonNul |.and(y. nonNulI') {
X. tinezone. conpares(1 s);

}s

When the time zone isNULL (unknown), “local time” is assumed. However, “local time” isaways
local to some place, and without knowledge of that place, the time zone is unknown. Hence, alocal
time can not be converted into UTC. The time zone should be specified for all pointintime valuesin
order to avoid asignificant loss of precision when pointsin time are compared. The difference of two
local times where the locality is unknown has an error of +12 hours.

In administrative data context, some time values do not carry atime zone. For adate of birthin
administrative data, for example, it would be incorrect to specify atime zone, since this may

84

Copyright © Health Level Seven, Inc. All rights reserved.




PART Il — Unabridged Specification 2 Basic Types

effectively change the date of birth when converted into other time zones. For such administrative data
thetime zoneisNULL (not applicable.)
2.15.1.5 Addition and Subtraction

A point in time plus an elapsed time (i.e., physical quantity in the dimension of time) isapoint in time.
Inversely, the difference between two pointsin timeis an elapsed time.

invariant (TS x, PQt)
where x.nonNull.and(t.conmpares(l s)) {
x. plus(t).of fset.equal s(x.of fset.plus(t));
X. mnus(y).of fset.equal s(x. of fset. plus(y. offset.negated));

I

2.15.1.6 Literal Form

Point-in-time literals are simple calendar expressions, as defined by the calendar definition table. By
default, the western (Gregorian) calendar shall be used (Table 36).

For the default Gregorian calendar the calendar expression literals of this specification conform to the
constrained 1SO 8601 that is defined in 1SO 8824 (ASN.1) under clause 32 (generalized time) and to
theHL7 version 2 TS dataformat.

Calendar expression literals are sequences of integer numbers ordered according to the “ Counter/ord.”
column of Table 36. Periodswith lower order numbers stand to the left of periods with higher order
numbers. Periods with no assigned order number cannot occur in the calendar expression for pointsin
time.

The“ Counter/digits’ column of Table 36 specifies the exact number of digits for the counter number
for any period.

Thus, Table 36 specifies that western calendar expressions begin with the 4-digit year (beginning
counting at zero); followed by the 2-digit month of the year (beginning counting at one); followed by
the 2-digit day of the month (beginning with one); followed by the 2-digit hour of the day (beginning
with zero); and so forth. For example, “200004010315" isavalid expression for April 1, 2000,
315am.

A calendar expression can be of variable precision, omitting parts from the right.
For example, “20000401" is precise only to the day of the month.

Thelast calendar unit may be written as areal number, with the number of integer digits specified,
followed by the decimal point and any number of fractional digits.

For example, “20000401031520. 34" means April 1, 2000, 3:15 and 20.34 seconds.

When other calendars will be used in the future, aprefix “GREG. ” can be placed before the western

(Gregorian) calendar expression to disambiguate from other calendars. Each calendar shall haveits
own prefix. However, the western calendar isthe default if no prefix is present.

In the modern Gregorian calendars (and all calendars where time of day isbased on UTC,) the calendar
expression may contain atime zone suffix. The time zone suffix beginswith aplus (+) or minus (- )
followed by digitsfor the hour and minute cycles. UTC isdesignated as offset “+00” or “- 00”; the
SO 8601 and ISO 8824 suffix “Z” for UTC is not permitted.
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TS. literal ST {
TS : cal tinestanp($1)
| timestanp(GREQ

TS ti nest anp( Cal endar Q)
cycl es(C head, C epoch) zone(QC

| cycl es(C head, C. epoch)

Cal endar cal
[[a-zA-Z J[a-zA-Z0-9_]*:/

TS cycl es(Cal endarCycle c, TS t)
cycle(c, t) cycles(c.next, $1)
| cycle(c, t) "." REAL.fractional

| cycle(c, t)

TS cycl e(Cal endarCycle ¢, TS t)
/[0-9]{c.ndigits}/

PQ zone( Cal endar Q)
“+" cycl es(C. zonehead, C. epoch)
| “-" cycles(C zonehead, C.epoch)

$. equal s($2); }
$. equal s($1); };

.equal s($1. minus($2)); }
.timezone. equal s($2); }

.equal s($1);

B #H B B

.ti mezone. unknown; };

$. equal s($1); };

$. equal s($2); }

$. equal s(c. sun($1, $3));

$. preci si on. equal s(
t.precision.plus($3.precision)); }

$. equal s($1); };

$. equal s(c. sun(t, $1));
$. preci si on. equal s(

t.precision.plus(c.ndigits)); };

$. equal s($2. m nus(C. epoch)); }
$. equal s(C. epoch. mi nus($2)); };
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3 Generic Collections

TIANY
T:QrY Set:SET T
Interval ' TVL isEmpty : BL
ow T T:QTY nonEmpty : BL
lowClosed : BL cardinality : INT
o SET<Q
E:gnél-cl;sed - BL —[>ltotallyOrdered : BL ——>| contains(T) : BL
width : T.diff hull : IVL<T> contains(SET<T>) : BL
et o i union(SET<T>) : SET<T>
' except(T) : SET<T>

. except(SET<T>) : SET<T>

Mull(VL<T>) : IVL<T> intersection(SET<T>) : SET<T>

T:ANY -
T:ANY !
Sequence : LIST i
head : T Bag : BAG
tail : LIST<T> isEmpty : BL
iSEmpty : BL
nonEmpty : BL contains(T) : INT
length : INT plus(BAG<T>) : BAG<T>
minus(BAG<T>) : BAG<T>

Figure 10: Generic Collection Data Types

This section defines data types that can “ collect” other data values, Set, Sequence, Bag and Interval.*’
These collection types are defined as generic (parameterized) types. The concept of generic typesis
described in Section 1.35.

3.1 Set (SET)

A setisavaluethat contains other values of acertain datatype asits elements. The elementsare
contained in no particular ordering. All elementsin the set are distinct, the same element value can not
be contained more than once in the set.

t enpl at e<ANY T>

type Set<T> alias SET<T> extends ANY {
BL contains(T el enent);
BL i SEnpty;
BL nonEmpt y;
BL cont ai ns( SET<T> subset);
I NT cardinality;
SET<T> uni on( SET<T> ot herset) ;
SET<T> except (T el enent);
SET<T> except (SETATA ot herset);
SET<T> i nt er secti on( SET<T> ot herset);

47 |In some programming languages, “ collection types” are understood as containers of individually enumerated data
items, and thus, an interval (low —high) would not be considered a collection. Such narrow interpretation of
“collection” however is heavily representation/implementation dependent. From a data type semantics viewpoint, it
doesn’t matter whether an element of acollection “isactually contained in the collection” or not. Thereisno need for
all elementsin acollection to be individually enumerated.
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literal ST;
pronotion SET<T> (T x);

3.1.1.1 Element

The primitive semantic property of aset isthe containsrelation of elementsin the set. Onthis
semantic primitive, all other properties are defined. A set may only contain distinct non-NULL
elements. Exceptional values (NULL-values) can not be elements of a set.

i nvari ant (SET<T> x) where x.nonNul | {

forall (T e) where x.contains(e) { x.nonNull; };

I

3.1.1.2 Cardinality and Empty Set

The empty set is aset without any elements. The empty set isaproper set value, not an exceptional
(NULL) value. The cardinality of aset isthe number of distinct elementsin the set.

i nvari ant (SET<T> x) where x.nonNul | {
X. nonEnpt y. equal s(exi sts(T e) { x.contains(e); });
X. i SEnpty. equal s(nonEnpty. not);

exi sts(T e) where x.contains(e) {
x. cardinality. equal s(x. except(e).cardinality.successor);
s
b

The cardinality definition is not sufficient since it doesn’t converge for uncountably infinite sets
(REAL, PQ, etc.) and it doesn’t terminate for infinite sets. In addition, the definition of integer number
type in this specification isincomplete for these cases, asit doesn’t account for infinities. Finally the
cardinality value is an example where it would be necessary to distinguish the cardinality A, (alephg)
of countably infinite sets (e.g., INT) from A ; (alephy), the cardinality of uncoutable sets (e.g., REAL,
PQ).

3.1.1.3 Subset

A subset of asuperset is aset where each element in the subset is also an element in the superset.

i nvari ant (SET<T> superset, subset; T el enent)
wher e superset.nonNul | . and(subset. nonNul |'). and(el enent. nonNul |') {
super set . cont ai ns(subset)

. equal s(subset. contains(el enent).inplies(superset.contains(el enent)));

3.1.1.4 Union

A union of two setsX and Yis the set Zwhere eisan element of Zif and only if eisalso an element of
Xor an element of Y.
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i nvari ant (SET<T> x, y, 2z)
where x.nonNull.and(y.nonNull).and(z.nonNul ') {

X. uni on(y) . equal s(z)
.equal s(forall (T e) {

z. contai ns(e).equal s(x.contains(e).or(y.contains(e)));

1)

3.1.1.5 Difference

The difference (X except Y) of two setsisthe set Z, whereeisan element of Zif and only if eisan
element of X and not an element of Y.

i nvari ant (SET<T> x, Yy, 2)
where x.nonNull.and(y.nonNull).and(z. nonNul I') {
X. except (y) . equal s(z)
.equal s(forall (T e) {
z. contai ns(e). equal s(x.contains(e).and(y.contains(e).not));
1)
}i

The difference between a set X and an element d (X except d) isthe set Z, where e isan element of Z if
and only if eisan element of X and eis not equal tod.

invariant (SET<T> x, z; T d)
where z.nonNul | . and(z. nonNul |').and(d. nonNul I') {
X. except (d) . equal s(z)
.equal s(forall (T e) {
z. cont ai ns(e) . equal s(x. contains(e).and(d. equal s(e).not));

1)

3.1.1.6 Intersection

The intersection between two sets X and Y is the set Zwhere eisan element of Zif and only if itis
contained in both of the setsX and Y.

i nvari ant (SET<T> x, y, 2z)
where x.nonNull.and(y.nonNull).and(z.nonNul ') {
X.intersection(y).equal s(z)
.equal s(forall (T e) {

z. cont ai ns(e). equal s(x. contains(e).and(y.contains(e)));

1)
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3.1.1.7 Literal Form

When the element type T has aliteral form, the set SET<T> has aliteral form, wherein the elements of
the set are enumerated within curly braces and separated by semicola.

SET<T>.literal ST {

SET<T> : “{” elenents “}” { $.equal s($2); };
SET<T> el ement s
elements “;” T { $.except($2).equal s($1); }
| T { $.contains($1);

$. except ($1) . i sEnpty; };

Note: this literal form for sets is only practical for relatively small enumerable sets; this does not
mean, however, that all sets are relatively small enumerations of elements.

For example,
{1; 3; 5; 7; 19} isaset of integer numbers or real numbers;
{1.2 m 2.67 m 17.8 m isaset of discrete physical quantities;

{appl e; orange; banana} isasetof character strings.

ITS Note: a character-based ITS should choose a different literal form for sets if the Implementation
Technology has a more native literal form for such collections.

3.1.1.8 Promotions of any Values to Sets
A datavalue of type T can be promoted into atrivial SET <T> with that data value asits only element.

invariant (T x) {
((SET<T>) x) . cont ai ns(x) ;
((SET<T>) x) . except (x) . i SEnpty;

3.1.2 Sets of Quantities, Total Ordering, and Convex Hull

Sets of quantities may be totally ordered sets when thereis an order relationship defined between any
two elementsin the set. Note that “ ordered set” does not mean the same as Sequence (LIST). For
example, the set { 3; 2; 4; 88; 1} isan ordered set. The ordering of the elementsin the set notationis
till irrelevant, but elements can be compared to establish an order (1; 2; 4; 88).

Totally ordered sets have convex hull. A convex hull of atotally ordered set Sisthe smallest interval
that isasuperset of S. Thisconcept is going to beimportant later on.

type Set<QryY> alias SET<QTY> {
BL total | yOrdered;
| VL<T> hul | ;
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i nvari ant (SET<QTY> s) where s.nonNull {
s.total l yOrdered. equal s(forall (QTY x, y) where s.contains(x)
.and(s.contains(y)) {
x.conpares(y); });
b

invari ant (SET<QTY> s) where s.totall yOrdered {
s. hul |l . contains(s);
forall (T e) where s.contains(e) {
s.hull.low | essO Equal (e);
e. |l essO Equal (s. hul | . hi gh);
b
b

Note that hull isdefined if and only if the actual set isatotally ordered set. The datatype of the
elementsitself need not be totally ordered. For example, the datatype PQ is only partially ordered
(since only quantities of the same kind can be compared), but a SET<PQ> may still be totally ordered
(if it contains only comparable quantities.) For example, the convex hull of {4 s, 20 s, 55 s} is[4 5,55
s]; the convex hull of {“apples’; “oranges’; “bananas’} is undefined because the elements have no
order relationship among them; and the convex hull of {2 m; 4 m; 8 s} is likewise undefined, because
it is not totally ordered (seconds are not comparable with meters.)

set I | ] I | ]

convex hull | |

N
7

ordering
Figure 11: Convex Hull of a Totally Ordered Set

3.2 Sequence (LIST)

A sequenceisan ordered collection of discrete values.

t enpl at e<ANY T>

type Sequence<T> alias LIST<T> extends ANY {
T head;
LI ST<T> tail;

BL i SEnpt y;

BL nonEnpt y;

| NT | engt h;
literal ST;

pronotion LIST<T> (T x);
b

A non-empty sequence hasahead and atail. Anempty sequence haslength zero. Noticethe
difference between empty-sequence and NULL. The empty sequenceisa proper sequence, not a NULL-
value.

Copyright © 2000, Health Level Seven, Inc. All rights reserved. 91



HL7 Version 3 Data Types BALLOT DRAFT 2 Revision 1.3

i nvari ant (LI ST<T> x) where X.isEnmpty {
X. head. i sNul | ;
x.tail.isNull;
X. |l ength. i sZero;

}s

i nvariant (LI ST<T> x) {
X. nonEnpt y. equal s(x. i SEnpty. not);

Thelength of a sequence isthe number of elementsin the sequence. NULL elements are counted as
regular sequence elements.

i nvariant (LI ST<T> x) where x.nonEnpty {

x. l engt h. equal s(x.tail.length.successor);

Two listsare equal if and only if they are both empty, or if both their head and their tail are equal.

i nvariant (LI ST<T> x, y) where Xx.isEnpty.and(y.isEmpty) {

x. equal s(y);

i nvari ant (LI ST<T> x, y) where x.nonEnpty. and(y.nonEnmpty) {

x. equal s(y) . equal s(x. head. equal s(y. head)
.and(x.tail.equal s(y.tail)));

3.2.1.1 Literal Form

When the element type T has aliteral form, the sequence LIST<T> hasalitera form. List elements
are enumerated, separated by semicolon, and enclosed in parentheses.

LI ST<T>.literal ST {
LI ST<T>
“(" elenents “)” { $.equals($2); }
| < ) { $.isEnpty; };
LI ST<T> el enent s
T “:” elenents { $. head. equal s($1);
$.tail.equal s($3); }
| T { $. head. equal s($1);
$.tail.isEnpty; };
IE
For example,
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(1, 3; 5;, 7; 19 isaseguence of integer numbers or real numbers;
(1.2 m 2.67 m 17.8 nm) isasequenceof discretephysical quantities;

(appl e; orange; banana) isasequence of character strings.

ITS Note: a character-based ITS should choose a different literal form for sequences if the
Implementation Technology has a more native literal form for such collections.

3.2.1.2 Promotions of any Values to Sequences

A datavalue of type T can be promoted into atrivial sequence LIST<T> with that datavalue asits
only element.

invariant (T x) {
( (LI ST<T>) x) . head. equal s(x);
((LIST<T>)x).tail.isEnpty;
IE

3.3 Bag (BAG)

A bag is an unordered collection of elements where each element can be contained more than oncein
the bag. The bag isdefined only briefly here for completeness, since bags are acommonly recognized
collection type.

t enpl at e<ANY T>
type Bag<T> alias BAGT> extends ANY {

I NT cont ai ns(T kind);

BL i SEnpty;

BAG<T> pl us( BAG<T>) ;

BAG<T> m nus( BAGT>) ;
pronmotion BAG<T> (T x);

I

ITS Note: a bag can be represented in two ways. Either as a simple enumeration of elements,
including repeated elements, or as a “compressed bag” whereby the content of the bag is listed in
pairs of element value and number. A histogram showing absolute frequencies is a bag represented
in compressed form. The bag is therefore useful to communicate raw statistical data samples.

3.3.1.1 Elements

The semantic primitive for bags is the contains-function that maps element values to non-negative
integer numbers, where zero means that the element value is not contained in the bag. An empty bagis
distinguished from an exceptional bag value (the NULL bag.)

invari ant (BAGKT> x; T e) where x.nonNull.and(e.nonNull) {
X. cont ai ns(e) . nonNegati ve;
X. i sEnpty. equal s(x. contai ns(e).isZero);

I
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3.3.1.2 Addition and Subtraction

Bags can be added, meaning that the contains-values for each element are added. Bags can and

subtracted, meaning that the contains-values are subtracted. Note that bags can not carry deficites, i.e.,
the minimal contains-vaueis zero.

i nvari ant (BAGT> x, y, z) where x.nonNull.and(y.nonNull) {
X. pl us(y) . equal s(z)
.equal s(forall (T e) where e.nonNull {

z. cont ai ns(e). equal s(x.contains(e).plus(y.contains(e)));

1)

X. m nus(y).equal s(z)
.equal s(forall (T e) where e.nonNull {
exi st s(I NT n)
wher e n. equal s(x. contains(e).m nus(y.contains(e)) {

n. nonNegat i ve. equal s(z. contai ns(e));
n. i sNegati ve. equal s(z. contains(e).isZero);

Ii5

1

3.3.1.3 Promotions of any Values to Bags

A datavalue of type T can be promoted into atrivial bag BAG<T> with that data value asits only
element.

invariant (T x) {

((BAG<T>) x) . cont ai ns(x) . equal s(1);

forall (T y) { ((BAGT>)x).contains(y).inplies(x.equals(y)) };
b

3.4 Interval (IVL)

Aninterval isaset of consecutive values of any ordered datatype. Aninterval isthus a contiguous
subset of its base datatype. Any ordered type can be the basis of an interval. It does not matter
whether the base typeis discrete or continuous. If the base datatypeisonly partially ordered, all
elements of the interval must be elements of atotally ordered subset of the ordered data type.

For example, physical quantities are considered ordered. However the ordering of physical quantities
isonly partial; atotal order is only defined among comparable quantities (quantities of the same

physical dimension.) Whileintervals between 2 and 4 meter exists, there is no interval between 2
meters and 4 seconds.

Intervals are sets and have all the properties of sets. However, union and differences of intervals may
not beintervals any more, since the elements of these union and difference sets might not be
contiguous. Intersections of intervals are alwaysintervals.
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tenpl at e<QTY T>
type Interval <T> alias | VL<T> extends SET<T> {
T | ow;
BL | owd osed;
T hi gh;
BL hi ghd osed;
T.diff wi dt h;
T center;
| VL<T> hul I (1 VL<T> x);
literal ST,
pronotion | VL<T> (T x);
denotion T;
}s

3411 low:T
Thisisthe low boundary of theinterval.

invariant (1 VL<T> x; T e) where x.nonNull.and(x.contains(e)) {

X. | ow. | essOr Equal (e);

I

3.41.2 high:T
Thisisthe upper boundary of theinterval.

invariant (1 VL<T> x; T e) where x.nonNull.and(x.contains(e)) {
e. |l essOr Equal (x. hi gh);
b

3.4.1.3 width : T.diff

The width is the difference between high and low boundary. The purpose of distinguishing awidth
property isto handle all cases of incomplete information symmetrically. Inany interval representation
only two of the three properties high, low, and width need to be stated and the third can be derived.

When both boundaries are known, width can be derived as high minuslow. When one boundary and
the width is known, the other boundary is also known. When no boundary is known, the width may
till be known. For example, one knows that an activity takes about 30 minutes, but one may not yet
know when that activity is started.

i nvariant (I VL<T> x) {
X. | ow. | essOr Equal ( x. hi gh) ;
X. wi dt h. equal s(x. hi gh. mi nus(x.1ow);

I
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3.4.14 center: T

The center is defined of finite intervals and is then the arithmetic mean of theinterval (low plus high
divided by 2). The purpose of distinguishing the center as a semantic property is for conversions of
intervalsto point values. Thisis most relevant when intervals are used to express uncertainty.

invari ant (1 VL<T> x) where x.|ow nonNul|.and(x. hi gh. nonNul I') {

x. center. equal s(x.|ow plus(x.width.tines(0.5))));

I

invariant (1 VL<T> x) where x.low. isNull.or(x.high.isNull) {
X. cent er. not Appl i cabl e;

}s

3.4.1.5 IlowClosed : BL

Indicates whether the interval is closed or open at the low boundary. For aboundary to be closed, a
finite boundary must be provided, i.e. unspecified or infinite boundaries are always open.

invari ant (1 VL<T> x) where x.nonNul | {
X. | ow. nonNul | . i nplies(x.|owd osed. equal s(x.contains(x.low)));
X. low isNull.inplies(x.|owd osed. not);

3.4.1.6 highClosed : BL

Indicates whether the interval is closed or open at the high boundary. For aboundary to be closed, a
finite boundary must be provided, i.e. unspecified or infinite boundaries are always open.

invariant (1 VL<T> x) where x.nonNul | {

X. hi gh. nonNul I . i npl i es(x. hi ghd osed. equal s(x. contai ns(x. high)));
x. high.isNull.inplies(x.highC osed.not);

}s

3.4.1.7 Literal Form

Theliteral form for the interval datatypeis defined such that it is asintuitive to humans a possible.
Five different forms are defined:*®

1) theinterval form using square brackets, e.g., “[3.5; 5.5[";
2) thedash-form, eg., “3.5-5.5";

48 The presence of so many options deserves explanation. In principle, theinterval form togetherwiththewidth-only
form would be sufficient. However, the interval form isfelt alien to many in the field of medical informatics. One
important purpose of the literal formsis to eradicate non-compliance through making compliance easy, without
compromising on the soundness of the concepts.

Furthermore, the different literal forms all have strength and weaknesses. The interval and center-widthforms
strength is that they are most exact, showing closed and open boundaries. Theinterval form’s weakness, however, is
that infinite boundaries require special symbolsfor infinities, not necessary in the “comparator” form. The center-
width form cannot specify intervals with an infinite boundary at all. The “comparator” form, however, can only
represent single-bounded intervals (i.e., where the other boundary isinfinite or unknown.) The dash form, while being
the weakest of all, isthe most intuitive form for double bounded intervals.
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3) the“comparator” form, using relational operator symbals, e.g., “<5.5";
4) the center-width form, e.g., “4.5[2.0[".

5) thewidth-only form using square brackets, e.g., “[2.0[".

IVL<T>.literal ST {
I VL<T> range

: interval

| dash

| conparat or
| center_width
| width

| VL<T> i nt erval

open T “;” T cl ose;
BL open : “[”
| H] ”
BL close : “]”
| " [ ”
| VL<T> wi dt h

open T.diff cl ose

I VL<T> center_w dth
T width

| VL<T> dash : T “-" T,

et Bl T e W Y

Lo e S e S =

B H B B

B B P B P L P B

.equal s($1);
. equal s(%$1);
.equal s($1);
. equal s(%$1);
.equal s($1);

—— e e o o

.equal s(true);
.equal s(fal se);
.equal s(true);
.equal s(fal se);

.l ow. equal s($2);

. hi gh. equal s($4);

.1 owd osed. equal s($1);

. hi ghd osed. equal s($5); };

}
IE

}
%

{ $.width. equal s($2);

$. 1 owd osed. equal s($1);
$. hi ghd osed. equal s($3); };

{ $.center.equal s($1);

$. wi dt h. equal s($2. wi dt h) ;
$. | owd osed. equal s($2. | owd osed);
$. hi ghd osed. equal s($2. hi ghd osed); };

{ $.1ow equal s($2);
$. hi gh. equal s(%$4) ;
$. 1 owd osed. equal s(true);

$. hi ghd osed. equal s(true); };
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| VL<TS> conpar at or

“< T
“> T
i
“>=" T

Bh P B P B B BB P B P

. hi gh. equal s(T);
. hi gh. cl osed(fal se);
.l ow negativelylnfinite; }

.l ow equal s(T);

.low cl osed(fal se);
.high.positivelylnfinite; }
. hi gh. equal s(T);

. hi gh. cl osed(true);

.low negativelylnfinite; }
.low equal s(T);

.l ow. cl osed(true);

.high.positivelylnfinite; };

Table 37: Examples of interval literals

literal low high alternate
closed low high closed center width
3.5-5.5 true 35 55 true 4.5 2.0
[3.5;5.5] true 35 5,5 true 45 2.0
[3.5;5.5] true 35 55 false 4.5 2.0
4.5[2.0] true 35 5.5 true 4.5 2.0
4.5[2.0] true 35 5.5 false 4.5 2.0
<5.5 false _¥ 55 false N/A ¥
>3.5 false 35 ¥ false N/A ¥
>=3.5 true 35 ¥ false N/A ¥
<=5.5 false Y 55 true N/A ¥
]-inf;5.5] false Y] 55 true N/A ¥
[3.5;+inf] true 35 ¥y false N/A ¥
]1:5.5] false UNK 55 true UNK UNK
[3.5; true 3.5 UuUNK false UNK UNK
-3.5-3.5 true -35 3.5 true 0.0 7.0
-5.5--83.5 true -55 -35 true -45 2.0
[-5.5;-3.5] true -55 -35 true -45 2.0
-4.5[2.0] true -55 -35 true -45 2.0
<-3.5 false -y -35 false N/A ¥
>-5.5 false -55 ¥ false N/A ¥
[3.5;3.5] true 35 3.5 true 35 0
[2.5] true UNK UNK true UNK 25
[2.5] true UNK UNK false UNK 2.5

3.4.1.8 Conversion Between Point Values and Intervals

A quantity type T can be promoted into atrivial interval 1VL<T> where low and high boundaries are

equal and boundaries closed.

98
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invariant (T x) {
((1'VL<T>) x) . | ow. equal s(x);
((1'VL<T>) x) . hi gh. equal s(x);
((1'VL<T>) x) . hi ghd osed;
((1'VL<T>) x) . | owd osed;

b

Aninterval IVL<T> can be demoted to a simple quantity type T. If both boundaries are finite, the
conversion yields the center of theinterval. If one boundary isinfinite, conversion yields the other
boundary. If both boundaries are infinite, the conversion to apoint value is not applicable.

invariant (1 VL<T> x) where x.nonNul | {
X. | ow. nonNul | . and(x. hi gh. nonNul I ) .i mplies(((T)x).equal s(x.center));
x. hi gh. nonNul I . and(x. | ow. i sNul |').inplies(((T)Xx).equals(x.high));
X. I ow. nonNul I . and(x. high.isNull).inplies(((T)x).equals(x.low));
X.low. i sNull.and(x.high.isNull).inplies(((T)x).notApplicable);

i

3.4.1.9 Convex Hull

A convex hull or “interval hull” of operands | | | | R
two intervalsistheleast interval that >
. ) ) convex hull | |
isasuperset of its operands. This

concept will play an important role Figure 12: Convex Hull of two Intervals

|ater on.

invariant (1 VL<T> h, IVL<T> i, j) where h.equal s(i.hull(j)) {
i.lowlessOEqual (j.low.inplies(h.|ow equal s(i.low));
j.low | essOEqual (i.low.inplies(h.|ow equals(j.low));
i . high.lessO Equal (j.high).inplies(h.high.equals(j.high));
j . high.lessO Equal (i.high).inplies(h.high.equals(i.high));
}i

3.4.2 Interval of Physical Quantities (IVL<PQ>)

Aninterval of physical quantitiesis constructed from the generic interval type. However, recognizing
that the unit can be factored from the boundaries, we add additional semantics and a separate literal
form. The additional view of an interval of physical quantitiesisan interval of real numbers with one
unit.

type I nteval <PQ> alias |VL<PQ> {
| VL<REAL> val ue;
CS unit;

The unit appliesto both low and high boundary.

i nvariant (1 VL<PQ> x) where x.nonNul |l {

X. val ue. nonNul [ ;
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x. | ow. val ue. equal s(x. val ue. | ow) ;

X.low unit.equal s(x.unit);

x. | owd osed. equal s(x. val ue. | owd osed) ;

x. hi gh. val ue. equal s(x. val ue. hi gh);

X. hi gh. uni t. equal s(x.unit);

x. hi ghd osed. equal s(x. val ue. hi ghd osed) ;
b

The special literal formissimply aninterval of real numbers a space and the unit.

IVL<PQ>. literal ST {

| VL<PQ>

| VL<REAL> “ " unit { $.value($1); $.unit.equal s($3); }
| I VL<REAL> { $.equal s($1); };
CSunit : ST { $.val ue. equal s($1);

$. codeSysten( 2. 16. 840. 1. 113883. 3. 2); };
i

For example “[ 0; 5] mmol / L” or “<20 ng/ dL” arevalid literal forms of intervals of physical
quantities. Thegenericinterval form, e.g.,“[ 50 nm 2 m ” isalso alowed.

3.4.3 Interval of Pointin Time (IVL<TS>)

The generic interval datatype definestheinterval of pointsin timetoo. However, there are some

special considerations about literal representations and conversions of intervals of point in time, which
are specified in this section.

type Inteval <TS> alias | VL<TS> {
literal ST
pronotion | VL<TS> (TS x);

3.4.3.1 Promotion of TS to IVL<TS>

A TS can be promoted to an I VL<TS> whereby the low boundary isthe TS value itself, and the width
isinferred from the precision of the TS and the duration of the least significant calendar period
specified. The high boundary is open. For example, the TSliteral “200009” is converted to an
IVL<TS> with low boundary 200009 and width 30 days, which isthe interval

“[200009; 200010[ ".

3.4.3.2 Literal Form
The literal form for interval of point in timeis exceptional.
The“dash form” is not allowed for intervals of point in time

A “hull form” is defined instead

In order to avoid syntactic conflicts with the timezone and slightly different usage profiles of the ISO
8601 that occur on some I TS platforms, the dash form of theinterval isnot permitted for
IVL<TS>. Theinterval-form using square bracketsis preferred.
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Example: May 12, 1987 from 810 9:30 PM is “[ 198705122000; 198705122130] .

Note: The precision of a stated interval boundary is irrelevant for the interval. One might wrongly
assume that the interval “[ 19870901; 19870930] " stands for the entire September 1987 until
end of the day of September 30. However, this is not so! The proper way to denote an entire
calendar cycle (e.g., hour, day, month, year, etc.) in the interval notation with is to use an open high
boundary. For example, all of September 1987 is denoted as “[ 198709; 198710[ ".*

The“hull-form” of theliteral is defined asthe convex hull (cf. Section 3.4.1.9) of interval-promotions
from two time stamps.

[VL<TS> hull : TS “..” TS; { $.equal s(((IVL<TS>)$1).hull((IVL<TS>)$3)); };

For example, “19870901. . 19870930” isavalid literal using the hull form. The value is equivalent
to theinterval form “[19870901; 19871001[ ".*°

The hull-form further allows an abbreviation, where the higher timestamp literal does not need to
repeat digits on the left that are the same as for the lower timestamp literal. The two timestamps are
right-aligned and the digits to the left copied from the lower to the higher timestamp literal. Thisisa
simple string operation and is not formally defined here.

Example: May 12, 1987 to May, 23, 1987 is “19870512. . 23". However, notethat May 12, 1987 to June 2,
1987is“19870512. . 0602, and not “20000512. . 02".

4 This statement seems to directly contradict the ruling about the promoationof TStoIVL<TS>. However, thereisno
contradiction. The precision of aboundary does not have any relevance, but the precision of asimple timestamp (not as
an interval boundary) is relevant, when that timestamp is promoted to an interval.

% The hull form appears superfluous for the simpleinterval all by itself. However, the hull form will become important
for the periodic interval notation asit shortens the notation and (perhaps arguably) makes the notation of more complex

timing structures more intuitive.
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4 Generic Type Extensions

Generic type extensions are generic types with one parameter type, and that extend (specialize) their
parameter type. Intheformal datatype definition language, generic type extensions follow the pattern:
t enpl at e<ANY T> type GenericTypeExtensionName extends T { ... }; Thesegeneric

type extensions inherit most properties of their base type and add some specific featuretoit. The
generic type extension is a specialization of the base type, thus a value of the extension datatype can
be used instead of its base data type.

ITS Note: values of extended types can be substituted for their base type. However, an ITS may
make some constraints as to what extensions to accommodate. Particularly, extensions need not be
defined for those components carrying the values of data value properties. Thus, while any data
value can be annotated outside the data type specification, and ITS may not provide for a way to
annotate the value of a data value property.

At this time HL7 does not permit use of generic type extensions, except where explicitly
enabled (in this or another HL7 specification) for such use cases where this advanced
functionality is important.™

4.1 History (HIST) and History Item (HXIT)

This generic datatype is used to collect an entire history of any other datavalue. A history isanon-
empty set of data valuesthat conform to the history item (HXIT) type, i.e., datavaluesthat have a
valid-time property. The history information is not limited to the past; expected future values can also

appear.

t enpl at e<ANY T>
type H story<T> alias H ST<T> extends SET<HXI T<T>> {

HXI T<T> earliest;

H ST except Earl i est;

HXI T<T> | at est ;

H ST except Lat est ;
denotion  HXl T<T>;

I

The earliest history item isthe item in the set whose valid time'slow boundary (validity start time) is
less or equal (i.e. before) that of any other history itemintheset. Likewise, the latest history itemis
the item in the set whose valid time' s high boundary (validity end time) is greater or equal (i.e. after)
that of any other history item in the set.

The semantics does not principally forbid the time intervalsto overlap. However, if two history items
have the same low (high) boundary in the valid timeinterval, it is undefined which oneis considered
the earliest (latest).

Except-earliest is the derived history that has the earliest item excluded. Except-latest isthe derived
history that has the latest item excluded.

invariant (H ST x) where x.nonNul | {
X. nonEnpt y;

51 This specification imposes a sel f-restraint upon itself to allow existing systems agraceful transition. However, the
formal specification keeps the generic type extensions as substitutable for their base types. This self-restraint may be
omitted in the future. New implementations are advised to accommodate some generalizable support for these generic
datatype extensions.
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foral |l (HXI T<T> e) where x.contains(e) {
x.earliest.validTime.low | essO Equal (e.validTime. | ow;

x. | atest.val i dTi ne. hi gh. great er O Equal (e. val i dTi ne. hi gh) ;
iE

X. except Earl i est. equal s(x. except(x.earliest));
X. except Lat est . equal s(x. except (x.latest));

((T)x).equal s(x.latest);
IE

A type conversion exists between an entire history HIST<T> and asingle history item HXIT<T>. This
conversion takesthe latest data from the history. The purpose of this conversionisto allow an
information producer to produce a history of any value instead of sending just onevalue. An

information-consumer, who does not expect a history but asimple value, will convert the history to the
latest value.

Note from the definition of history item (HXIT) below, that HXIT<T> semantically extends T. This
means, that the information-consumer expecting a T but given an HXIT<T> will not recognize any
difference (substitutability of specializations.)

| ITS Note: the order of history items in the lists should be backwards in time.

4.1.1 History Iltem (HXIT)

This generic datatype extension tags atime range to its base datavalue. Thetimerangeisthetimein
which that datawas, is, or is expected to bevalid. If the basetype T does not possessavalid time
property, the HXIT<T> adds that property to the basetype. If, however, the basetype T does have a
valid time property, that property can be mapped to the valid time property of the HXIT<T>.%2

t enpl at e<ANY T>
type H storyltenxkT> alias HXI T<T> extends T {
| VL<TS> val i dTi ne;

41.1.1 wvalidTime : IVL <TS>

Thetimeinterval during which the given information was, is, or is expected to be valid. Theinterval
can be open or closed infinite or undefined on either side.

4.2 Uncertain Value — Probabilistic (UVP)

Thisisageneric datatype extension to specify one uncertain value tagged with a probability. The
probability expresses the information producer’ s belief that the given value holds. How the probability
number was arrived at is outside the scope of this specification.

52 Note that data types are specifications of abstract properties of values. This specification does not mandate how
thesevaluesarerepresented in an I TS or implemented in an application. Specifically, it does not mandate how the
represented components are named or positioned. In addition, the semantic generalization hierarchy may be different
from aclass hierarchy chosen for implementation (if the implementation technology hasinheritance.) Keep the
distinction between atype (interface) and an implementation (concrete data structure, class) inmind. ThelTS must
contain a mapping of ITS defined features of any data type to the semantic properties defined here.
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Probabilities are subjective and (as any pieces of data) apply in acontext. The context of any dataitem
isthe data structure in which that item appears. While the context dependence isimportant for any
information, it is critical to understand the context dependency of probabilities: when new information
isfound the probability might change. Thus, for any message (document, or other information
representation) the information — and particularly the probabilities— reflect what the information
producer believed was appropriate at the given time and for the given purpose for which the message
(document) was created.

Since probabilities are subjective measures of belief, they can be stated without being “ correct” or
“incorrect” per se, let alone “precise” or “imprecise”. Notably, one does not have to entertain
experiments to measure afrequency of some outcome in order to specify a probability. In fact,
whenever statements about individual people or events are made, it is not possible to confirm such
probabilities with “frequentists” experiments.

t enpl at e<ANY T>

type Uncertai nVal ueProbabilistic<T> alias U/P<T> extends T {
REAL probabi lity;

i

Thetype T isnot formally constrained. Intheory, discrete probabilities can only be stated for discrete
datavalues. Thus, generally UVP<REAL> and UVP<PQ> values should not be stated. However, by
definition adiscrete value set is one that isfinite or countably infinite, and abiding by this definition
any measured value or real number recorded with digitsis discrete. Thus, the distinction between
discrete and continuous valuesis not practical for our purpose. Indeed, even though integer numbers
are discrete (countably infinite) estimating a single integer number and tagging it with a probability is
not reasonable. Most textbook on statistics treat estimations of integers or ordinals as real numbers
when defining the estimated value of arandom sample X as the sum of x; xp(x;) over al x; 1 X.

4.2.1.1 probability : REAL

Thisisthe probability assigned to the value. The probability isarea number between 0 and 1. If the
probability isunstated (NULL), an UVP<T> isindistinguishable from asimple datavalue T.

i nvariant (UVP<T> x) where x.nonNul|.and(x. probability.nonNull) {
((1 VL<REAL>)[0; 1]) . cont ai ns(x. probability);

Thereisno “default probability” that one can assume when the probability is unstated. Therefore, itis
impossible to make any semantic difference between an UV P<T> without probability and asimple T.
UV P<T> does not mean “uncertain”, and asimple T does not mean “certain”. In fact, the probability

of the UVP<T> could be 0.999 or 1, which is quite certain, where asimple T value could be avery
vague guess.

4.3 Non-Parametric Probability Distribution (NPPD)

Thisisageneric datatype to specify avalue as a non-empty set of uncertain valuesforming a
probability distribution (histogram.) All the elementsin the set are considered alternatives and are
rated each with its probability expressing the belief (or frequency) that each given value holds.

The purpose of the non-parametric probability distribution is chiefly to support statistical data
reporting as it occursin measurements taken from many subjects and consolidated in a histogram.
This occursin epidemiology, verterinary medicine, laboratory medicine, but also in cost controlling
and business process engineering.

104

Copyright © Health Level Seven, Inc. All rights reserved.




PART Il — Unabridged Specification 4 Generic Type Extensions

Semantically, theinformation of a stated value existsin contrast to the complement set of unstated
possible values. Thus, semantically, a non-parametric probability distribution containsall possible
values and assigns probabilities to each of them.

ITS Note: even though semantically the NPPD assigns probabilities to all possible values, not all
values need to be represented explicitly. Those possible values that are not mentioned in a NPPD
data structure will have the rest-probability distributed equally over all unmentioned values. For
example, if the value set is {A; B; C; D} but the NPPD value states just {(B; 0.5); (C; 0.25)} then the
rest-probability is 1 - 0.75 = 0.25 which is distributed evenly over the complement set: {(A; 0.125); (D;
0.125)}. Semantically, the NPPD is the union of the stated probability distribution and the unstated
complement with rest-probability distributed evenly.

t enpl at e<ANY T>
type NonParanetri cProbabilityD stributionalfi
al i as NPPD<T> ext ends SET<UDP<T>> {
SET<UDP<T>> nost Li kel y(I NT n);

}s

Just aswith UVP, thetype T is not formally constrained, even though there are reasonable and
unreasonabl e use cases. Typically one would use the non-parametric probability distributions for
unordered types, if only a“small" set of possible valuesis assigned explicit probabilities, or if the
probability distribution cannot (or should not) be approximated with parametric methods. For other
cases, one may prefer parametric probability distributions.

i nvari ant (NPPD<T> x) where x.nonNull {
X. nonEnpt y;

X. cont ai ns(x. nost Li kel y(n));

X. nost Li kel y(n) .

foral | (UWP<T> d, e; SET<UWP<T>> m |NT n)

wher e x. cont ai ns(d)
.and(m equal s(x. nost Li kel y(n)))
.and(m contai ns(e)) {
e. greater O Equal (d). or(m cont ai ns(d));
H
b

4.4 Parametric Probability Distribution (PPD)

A parametric probability distribution is a generic data type extension specifying an uncertain value of a
quantity datatype using a distribution function and its parameters. Aside from the specific parameters
of the distribution, amean (expected value) and standard deviation is always given to help maintain
interoperability if receiving applications can not deal with a certain probability distribution.

tenpl at e<Q@TY T>

type ParanetricProbabilityD stribution<T> alias PPD<T> extends T {
T.diff st andar dDevi at i on;
(6 type;
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| VL<T> confi dencel nt erval (REAL p);
REAL probabi lity(l VL<T> Xx);
PPD<T> ti mes(REAL Xx);

i

Since a PPD<T> extendsthe basetype T, asimple T value is the mean (expected value or first
moment) of the probability distribution. Applications that can not deal with distributions will take the
simple T value neglecting the uncertainty. That simple value of type T is also used to standardize the
data for computing the distribution.

Probability distributions are defined over integer or real numbers and normalized to a certain reference
point (typically zero) and reference unit (e.g., standard deviation = 1). When other quantities defined
in this specification are used as base types, the mean and the standard deviation are used to scale the
probability distribution. For example, if aPPD<PQ> for alength is given with mean 20 ft and a
standard deviation of 2 in, the normalized distribution function f(x) that maps areal number xto a
probability density would be translated tof'(x’) that maps alength x’ to a probability density asf (x’) =
f((<- m/s).

Where applicable, the PPD specification conforms to the | SO Guide to the Expression of Uncertainty
in Measurement (GUM) as reflected by NIST Technical Note 1297, Guidelines for Evaluating and
Expressing the Uncertainty of NIST Measurement Results. The PPD specification does not describe
how uncertainty isto be evaluated but only how it isexpressed. The concept of “standard uncertainty”
as set forth by the ISO GUM correspondsto the “ standard deviation” property of the PPD.

4.4.1.1 standardDeviation : T.diff

The standard deviation of the probability distribution. The standard deviation is used to normalize the
data for computing the distribution function. Applicationsthat can not deal with probability
distributions can still get an idea about the confidence level by looking at the standard deviation.

The standard deviation of a probability distribution over atype T is of arelated type T.diff that can
express differences between values of type T. If TisREAL or INT, T.diff is also REAL or INT
respectively. However if T isapointintime(TS), T.diff isaphysical quantity (PQ) in the dimension
of time.

The standard deviation iswhat 1SO GUM calls “ standard uncertainty.”

4.4.1.2 type:CS

This code specifies the type of probability distribution. Possible values are as shown in the attached
table. The NULL value (unknown) for the type code indicates that the probability distribution typeis
unknown. In that case, the standard deviation has the meaning of an informal guess.

Table 38lists the defined probability distributions. Many distribution types are defined in terms of
specia parameters (e.g., the parameters a and bfor the gdistribution, number of degrees of freedom

for the t-distribution, etc.) For al distribution types, however, the mean and standard deviation are
defined. The PPD datatype is specified with the parameters mean and standard distribution only. The
definition column in Table 38 contains the rel ationship between the special parameters and the mean m
and standard deviation s.

ITS Note: an ITS does not need to represent any of the specialized parameters for the distribution
types. As it turns out, all of these specialized parameters can be calculated from the mean and
standard deviation.
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4.4.1.3

Table 38: Probability Distribution Types

Name

Code

Definition

unknown

uniform

normal
(Gaussian)

log-normal

g(gamma)

exponential

& (chi square)

t (Student)

b (beta)

(NULL) Used to indicate that the mean is estimated without any closer consideration of its

LN

X2

probability distribution. In this case, the meaning of the standard deviation is not crisply
defined. However, interpretation should be along the lines of the normal distribution, e.g.,
the interval covered by the mean +1 standard deviation should be at the level of about
two thirds confidence.

The uniform distribution assigns a constant probability over the entire interval of possible
outcomes, while all outcomes outside this interval are assumed to have zero probability.
The width of this interval is 2 s (8. Thus, the uniformdistribution assigns the probability
densities f(x) = (2 sCB)* to values m- s(B 3 x £ m+ s(B and f(x) = 0 otherwise.
This is the well-known bell-shaped normal distribution. Because of the central limit
theorem, the normal distribution is the distribution of choice for an unbounded random
variable that is an outcome of a combination of many stochastic processes. Even for
values bounded on a single side (i.e. greater than 0) the normal distribution may be
accurate enough if the mean is "far away" from the bound of the scale measured in terms
of standard deviations.

The logarithmic normal distribution is used to transform skewed random variable X into a
normally distributed random variable U = log X. The log-normal distribution can be
specified with the properties mean mand standard deviation s. Note however that mean
nrand standard deviation sare the parameters of the raw value distribution, not the
transformed parameters of the lognormal distribution that are conventionally referred to
by the same letters. Those log-normal parameters mog and s o4 relate to the mean rmand
stanzdard deviation s of the data value through s 05> = log (S/r+ 1) and mog = log m
Siog 12.

The gamma-distribution used for data that is skewed and bounded to the right, i.e. where
the maximum of the distribution curve is located near the origin. The gdistribution has a
twtc;zparameters aand b. The relationship to mean nand variance s° is n¥ aband s =
ab’.

Used for data that describes extinction. The exponential distribution is a special form of
gdistribution where a= 1, hence, the relationship to mean rmand variance * are n¥ b
and & =b’

Used to describe the sum of squares of random variables which occurs when a variance
is estimated (rather than presumed) from the sample. The only parameter of the &-
distribution is n so called the number of degrees of freedom (which is the number of
independent parts in the sum). The c-distribution is a special type of gdistribution with
parameter a= n/2 and b =2. Hence, ¥ nand =2 n

Used to describe the quotient of a normal random variable and the square root of a &
random variable. The t-distribution has one parameter n the degrees of freedom. The
relationship to mean mand variance s? are: n¥ 0 and * = n/ (n- 2)

Used to describe the quotient of two ¢ random variables. The F-distribution has two
parameters n, and rp, which are the numbers of degrees of freedom of the numerator
and denominator variable respectively. The relationship to mean mand variance s’ are:
mEn/(p-2)and =2 (R+n- 2)/(n(r- 2)%(re- 4).

The beta-distribution is used for data that is bounded on both sides and may or may not
be skewed (e.g., occurs when probabilities are estimated.) Two parameters aand b are
available to adjust the curve. The mean rrand variance <° relate as follows: ¥ a/ (a+
b) and & = abl((a+ b)? (a+ b+ 1)).

The three distribution-ty pes unknown (NULL), uniform and normal must be supported by every system
that claims to support PPD. All other distribution types are optional. When a system interpreting a

PPD representation encounters an unknown distribution type, it maps this type to the unknown (NULL)
distribution-type.

Literal Form

The parametric probability distribution has aliteral form. The general syntax isasfollows:
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PPD<T>.literal ST {
PPD<T> : T “(” type T.diff “)” { ((T)$).equal s($1);
$. t ype. equal s($3) ;
$. st andar dDevi ati on. equal s($4); };

CV type : ST { $.val ue. equal s($1);
$. system equal s(); };

}s

Examples: an example for aPPD<REAL>is“1. 23( NO. 005) " for anormal distribution of areal
number around 1.23 with a standard deviation of 0.005. An examplefor aPPD<PQ>is“1.23 m (5
nmm) ” for adistribution of unknown type around the length 1.23 meter with a standard deviation of
5millimeter. Anexamplefor aPPD<TS>is“2000041113( U4 h) ” for auniform distribution
around April 11, 2000 at 1pm with standard deviation of 4 hours.

4.4.2 Probability Distribution over Real Numbers (PPD<REAL>)
The parametric probability distribution of real numbersisfully defined by the generic data type.

type Paranetri cProbabilityD stributi ondREALA al i as PPD<REAL>;

However, there are some special considerations about literal representations and conversions of
probability distributions over real numbers, which are specified in this section.

4.4.2.1 Converting a real number (REAL) to an uncertain real number (PPD<REAL>)

When converting aREAL into a PPD<REAL >, the standard deviation is calculated from the REAL
value' s order of magnitude and precision (number of significant digits). Letx be areal number with
precision n. We can determine the order of magnitude e of x as e =10g; [x| where eisrounded to the
next integer that is closer to zero (special case: if xiszero, eis zero.) The value of |east significant
digit | isthen| =10% " and the standard deviation siss=1/ 2.

Table 39: Examples of standard deviations computed from precision p and order of magnitude e

Representation X e p e-p+1 | s
0 0 0) 1 0 1 0.5
1 1 0 1 0 1 0.5
2 2 0 1 0 1 0.5
9 9 0 1 0 1 0.5
10 10 1 2 0 1 0.5
100 100 2 3 0 1 0.5
le+l 10 1 1 1 10 5
le+2 100 2 1 2 100 50
10e+1 100 2 2 1 10 5
1.1 1.1 0 2 -1 0.1 0.05
10.1 10.1 1 3 -1 0.1 0.05
1. 1e+2 110 2 2 1 10 5
1.1le-2 0.011 -2 2 -3 0.001 0.0005
1.1e-4 0.00011 -4 2 -5 0.00001 0.000005
10. le-4 0.00101 -3 3 -5 0.00001 0.000005
0.le-1 0.01 -2 1 -2 0.01 0.005
0.01le-1 0.001 -3 1 -3 0.001 0.0005
0.0le-2 0.0001 -4 1 -4 0.0001 0.00005
0.00 0 0) 3 -2 0.01 0.005
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4.4.2.2 Concise Literal Form for PPD<REAL>

Besides the generic literal form of the PPD defined in Section4.4.1.3, a concise literal form is defined
for PPD over real numbers. This concise literal form is defined such that the standard deviation can be
expressed in terms of the least significant digit in the mantissa. Thisliteral is defined asan extension
of the REAL literal:

PPD<REAL>.literal ST {
PPD<REAL> nmanti ssa
REAL. mantissa “(” type T.diff “)” { ((T)$).equal s($1);
$. type. equal s($3);
$. st andar dDevi at i on. equal s($4); }
| REAL.mantissa { $.equal s($1);
$. t ype. equal s($3);
$. st andar dDevi at i on. equal s($1.| eastSignificantDigit.tinmes(0.5)); };

CS type : ST { $.val ue. equal s($1);
$. syst em equal s(2. 16. 840. 1. 113883. 5. 1019) ; };

Examples “1. 23e- 3 ( U5e- 6) " isathe unifom distribution around 1.23~ 10 3 with5" 10°®
standard deviationin generic literal form. “1. 230( U5) e- 3” isthe samevalue in concise literal
form.

4.4.3 Parametric Probability Distributions over Physical Quantities (PPD<PQ>)

A parametric probability distribution over physical quantitiesis constructed from the generic PPD
type. However, recognizing that the unit can be factored from the boundaries, we add additional
semantics and a separate literal form. The additional view of a probability distribution over physical
quantitiesisa probability distribution over real numbers with one unit.

type ParanetricProbabilityDistribution<PQ@ alias PPD<PQ> {
PPD<REAL> val ue;
Cs uni t;

b

The unit appliesto both mean and standard deviation.

i nvari ant (PPD<PQ> x) where x.nonNul | {

X. val ue. nonNul [ ;

((REAL) x. val ue) . equal s(((PQ x) . val ue);

x.unit.equal s(((PQXx).unit);

x. val ue. st andar dDevi at i on. equal s(x. st andar dDevi ati on. val ue) ;
X. st andar dDevi ati on. uni t. equal s(x. unit);
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4.4.3.1 Concise Literal Form for PPD<PQ>

A conciseliteral form for probability distributions of physical quantitiesis defined based on the
concise literal form of PPD<REAL> (cf. Section4.4.2.2) where REAL isthevalue. Thislitera is
defined as an extension of the PQ literal.

PPD<PQ>. literal ST {
PPD<PQ> : PPD<REAL> “ " unit { $.val ue. equal s($1);
$. unit.equal s($3); }
b

Examples “1. 23e-3 m (N5e- 6 n) " isthe normal-distributed length of 1.23° 10 mwith5°
10 °® m standard deviation in generic literal form. “1. 230( N5) e- 3 ni isthe same valuein concise
literal form. “1. 23e- 3( NO. 005e- 3) m” isasovadlid; it isthe concise literal form for PPD<PQ>
combined with the generic literal form for PPD&REALf

4.4.4 Probability Distribution over Time Points (PPD<TS>)

The parametric probability distribution over time pointsisfully defined by the generic data type.

type ParanetricProbabilityD stribution<TS> alias PPD<TS>;

The standard deviation is of type TS.diff, which isaduration (aphysical quantity in the dimension of
time)

4.4.4.1 Converting a pointin time (TS) to an uncertain point in time (PPD<TS>)

When converting a TS into a PPD<TS>, the standard deviation is calculated from the TS value' s order
of magnitude and precision (number of significant digits) such that two standard deviations span the
maximal time range of the digits not specified. For example, in 20000609 the unspecified digits are

hour of the day and lower. All these digits together span a duration of 24 hours, and thus, the standard
deviation siss = 12 h from 20000609000000.0000. .. up to 20000609999999.9999... (= 20000610)

Thisruleisdifferent from real numbersin that the range of uncertainty lies above the time value
specified. Thisisto go with the common sense judgment that June 9™ spans all day of June 9™ with
noon as the center, not midnight.
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5 Timing Specification

5 Timing Specification

T:ANY |
Set: SET T '
iSEmpty : BL T:QTY !
nonEmpty:BL (| L .
cardinality : INT Interval : TVL
low :
- . contains(T) : BL lowClosed : BL
PointinTime : TS contains(SET<T>) : BL high: T
<<type>> diff : PQ ~ 1s union(SET<T>) : highClosed : BL
offset : diff except(T) : SET<T> w idth : T.diff
calendar : CS except(SET<T>) : center : T
precision : INT intersection(SET<T>) : SET<T>
timezone : diff hull(IVL<T>) :
equals(TS) : BL 0\0
plus(diff) : TS SET<TS>
minus(TS) : diff totallyOrdered :BL=true | 4 ______| IVL<TS
hull : IVL<TS>

3 NG NN

______________

T:TS

GeneralTimingSpecification : GTS
hull : IVL<TS>

PeriodicIntervalOfTime : PIVL
period : T.diff
phase : IVL<T>

alignment : CS

event : CV

offset : IVL<T.diff> nextAfter(TS) : IVL<TS>

nextTo(TS) : IVL<TS>
interleaves(GTS>) : BL
periodicHull(GTS>) : BL

occurrenceAt(TS) : IVL<TS>
contains(IVL<TS>) : BL

contains(TS) : BL

Figure 13: Overview of Timing Specification Data Types

Thetiming specification suite of generic datatypesis used to specify the complex timing of events and
actions such as they occur in order management and scheduling systems. It also supportsthe cyclical
validity patternsthat may exist for certain kinds of information, such as phone numbers (evening,
daytime), addresses (so called “snowbirds,” residing in the south during winter and north during
summer) and office hours.

The timing specification datatypesinclude point in time (TS) and the interval of time (IVL<TS>), and
add to it other kinds of collection typesthat are specifically suited to specify repeated schedules.
These additional collectionsinclude periodic interval, event-related periodic interval, and finally the
generic timing specification typesitself. All these timing types are semantically sets of time points
SET<TS>, describing the time distribution of repeating states or events.

5.1 Periodic Interval of Time (PIVL)

The periodic interval of time specifies an interval of time that recurs periodically. Periodic intervals
have two properties, phase and period. The phase specifiesthe interval prototype that isrepeated every
period.

Table 40: Summary of Primary Properties of Periodic Interval of Time (PIVL<TS>)

Name Type Status Default ~ Constraint Definition

phase IVL<TS> mandatory A prototype of the repeating interval,
may anchor the periodic interval
seqguence at a certain point in time.

period PQ mandatory A time duration specifying the
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(~1s) frequency at which the periodic
interval repeats.

alignment CS optional Specifies an alignment of the

repetition to a calendar (e.g., to
distinguish every 30 days from “the
5™ of every month”.)

institutionSpecifiedTime  BL optional false Indicates whether the exact timing is

up to the party executing the
schedule (e.g., to distinguish “every 8
hours” from “3 times a day”.)

For example, “every eight hours for two minutes’ is a periodic interval where the interval’ swidth
equals two minutes and the period at which the interval recurs equals eight hours.

The phase also marks the anchor point in time for the entire series of periodically recurring intervals.
Therecurrence of aperiodic interval has no beginning or ending, but isinfinite in both future and past.

tenpl at e<TS T>
protected type Periodiclnterval <T> alias PlVL<T> extends SET<T> {

T.diff peri od;
| VL<T> phase;
CS al i gnnent ;
BL i nstitutionSpecifiedTine;
BL contai ns(TS);
literal ST;

I

A periodic interval isfully specified when both the period and the phase are fully specified. The
interval may be only partially specified where either only the width or only one boundary is specified.

For example: “every eight hours for two minutes” specifies only the period and the phase’ s width but
no boundary of the phase. Conversely, “every eight hours starting at 4 o’ clock” specifiesonly the
period and the phase’ s low boundary but not the phase’ s high boundary. “Every eight hours for two
minutes starting at 4 o’ clock” isfully specified since the period, and both the phase’ slow boundary
and width are specified (low boundary and width implies the high boundary.)

The periodic interval of timeis ageneric datatype PIVL<T> where the type parameter T isrestricted
tothe point intime (TS) datatype and it’s extensions. The parametric probability distribution of point
intime (PPD<TS>) isan extension of point in time and therefore can be used to form periodic intervals
of probability distributions of point in time (PlIVL<PPD<TS>>) values (uncertain periodic interval.)

Oftentimes repeating schedules are only approximately specified. For instance “threetimes aday for
ten minutes each” does not usually mean a period of precisely 8 hours and does often not mean exactly
10 minutesintervals. Rather the distance between each occurrence may vary as much as between 3
and 12 hours and the width of the interval may be less than 5 minutes or more than 15 minutes. An
uncertain periodic interval can be used to indicate how much leeway is allowed or how “timing-

critical” the specificationis.

5.1.1.1 Period : T.diff

The period specifies how frequently the periodic interval recurs. The period is aphysical quantity in
the dimension of time (TS.diff.) For an uncertain periodic interva (PIVL<PPD<TS>>) the periodisa
probability distribution over elapsed time (PPD<PQ>). A non-NULL period existsfor every non-NULL
periodic interval.
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i nvariant (Pl VL<T> x) where x.nonNull {

X. peri od. nonNul | ;

5.1.1.2 Phase : IVL<TS>

The phase specifiestheinterval prototypethat is repeated every period. The phase also marksthe
anchor point in time for the entire series of periodically recurring intervals. The recurrence of a
periodic interval has no begin or end but isinfinite in both future and past. A phase must be specified
for every non-NULL periodic interval. The width of the phase must be less or equal the period.

invariant (PIVL<T> x) where x.nonNull {
X. phase. nonNul | ;

X. phase. wi dt h. | essO Equal (x. peri od) ;
i

5.1.1.3 Alignment : CS

A periodic interval may be specified aligned to the calendar underlying the phase. A non-aligned
periodic interval recursindependently from the calendar. An aligned periodic interval is synchronized
with the calendar.

The domain of this code isthe calendar cycle code.

For example, “every 5" of the month” is a calendar aligned periodic interval. The period spans 28 to
31 days depending on the calendar month. Conversely, “every 30 days’ is an independent period that
will fall on adifferent date each month.

The calendar alignment specifies a calendar cycle to which the periodic interval isaligned. The even
flow of timewill then be partitioned by the calendar cycle. The partitioning is called the calendar
“grid” generated by the aligned-to calendar cycle. The boundaries of each occurrence interval will
then have equal distance from the earliest point in each partition. In other words, the distance from the
next lower grid-line to the beginning of the interval is constant.

For example, with “every 5 of the month” the alignment calendar cycle would be month of the year
(MY.) Theeven flow of timeis partitioned in months of the year. The distance between the beginning
of each month and the beginning of its occurrenceinterval is 4 days (4 days because day of month
(DM) starts counting with 1.) Thus, as months differ in their number of days, the distances between
the recurring intervalswill vary slightly, so that the interval occurs always on the 5.

5.1.1.4 Institution Specified Time

A Boolean property indicating whether the exact timing is up to the person or organization executing
the time plan. For example, with a schedule “three times aday” the average time between repetitionsis
8 hours, however, with institution specified time indicator true, the timing could follow somerule
made by the executing person or organization (“institution”), that. e.g., three times aday schedules are
executed at 7 am, noon, and 7 pm.

5.1.1.5 Periodic Intervals as Sets

The essential property of aset isthat it contains elements. For non-aligned periodic intervals, the
contains-property isdefined asfollows. A pointintimet iscontained in the periodic interval of timeif
and only if thereisaninteger i for whicht plusthe period timesi isan element of the phase interval.
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invariant (PIVL<TS> x, TS t) where x.nonNull.and(x.alignment.isNull) {
X.contains(t).equal s(exists(INT i) {
x. phase. contai ns(t. pl us(x. period.tinmes(i)));

1)

}s

For calendar-aligned periodic intervals the contains property is defined using the calendar-cycle's
sum(t, n) property that addsn such calendar cyclesto thetime t.

invariant (PIVL<TS> x, TS t, Cal endarCycle c)
where x.nonNull.and(c. equal s(x.alignment)) {
X.contains(t).equal s(exists(INT i) {
X. phase. contai ns(c. sun(t, i));

1)

5.1.1.6 Literal Form
Generic Literal Form. The generic literal form for periodic intervals of timeis asfollows:

gphase: IVL<T>fi/ period : T.diffi[ @&lignmentii] [ | ST ].

PIVL<T>.literal ST {
Pl VL<T>
S2 { $.equal s(%$1); }
| S2 “1ST” { $. phase. equal s($1. phase) ;
$. peri od. equal s($1. peri od);
$.institutionSpecified. equal s(true); };
Pl VL<T> S2
S1 { $.equal s(%$1); }
| S1“@ “(” PQ*“)” { $.phase. equal s($1. phase);
$. peri od. equal s($1. peri od);
$. al i gnment . equal s($4); };
Pl VL<T> S1
| VL<T> “/” T.diff { $.phase. equal s($1);
$. peri od. equal s($3); }
| “/7 T.diff { $.period. equal s($2); };
i

For example, “[ 200004181100; 200004181110]/ (7 d) @W specifiesevery Tuesday from
11:00t0 11:10 AM. Conversely, “[ 200004181100; 200004181110]/ (1 no) @M specifies
every 18" of the month 11:00 to 11:10 AM.

See Table 36 for calendar-period codes defined for the Gregorian calendar. There are 1-character and
2-character symbols. The 2-character symbols are preferred for the alignment period identifier.
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Calendar Pattern Form. Thisform is used to specify calendar-aligned timing more intuitively using
“calendar patterns.” The calendar pattern syntax is (semi-formally) defined asfollows:

danchorfi [ &alendar digitsii[ . . &alendar digitsfi ]]/ &umber : INTA[ | ST]

A calendar pattern is acalendar date where the higher significant digits (e.g., year and month) are
omitted. In order to interpret the digits, a period identifier is prefixed that identifies the calendar
period of the left-most digits. This calendar period identifier anchors the calendar digits following to
theright.

See Table 36 for calendar-period codes defined for the Gregorian calendar. There are 1-character and
2-character symbols. The 1-character symbols are preferred for the calendar pattern anchor.

For example: “MD219” is February 19 the entire day every year. This periodic interval hasthe
February 19 of any year asits phase (e.g., “[ 19690219; 19690220[ " ), aperiod of one year, and

alignment month of the year (M). The alignment calendar-cycle is the same as the anchor (e.g., in this
example, month of the year.)

The calendar digits may also omit digits on the right. When digits are omitted on the right, this means
theinterval from lowest to highest for these digits. For example, “M0219” is February 19 the entire
day; “MD21918" isFebruary 19, the entire hour between 6 and 7 PM.

In absence of aformal definition for this, the rulesfor parsing a calendar pattern are as follows
(exampleis“MD21918. . 21")

1. Read the anchoring period identifier (e.g. “M’)
a. thePlIVL’saignmentisequal to thiscalendar period (e.g. month of the year)

b. usethecurrent pointintimeand format aliteral exact to the next higher significant
calendar period from the anchoring calendar period (e.g. year, “2000”, constructing
“2000021918"), thisisthe “stem literal”

2. Read thisconstructed literal (e.g., “2000021918”) into a TS value and convert that value to
an IVL<TS> according to Section3.4.3.1 (e.g., “[ 2000021918; 2000021919[ ") thisis
the“low interval.”

3. If the hull-operator token “. . ” follows, read the following calendar digits(e.g., “21")
a. Right-align the stem literal and the calendar digitsjust read

“2000021918”
« 21"

b. and copy all digitsfrom the stem literal that are missing to the left of the calendar
digitsjust read (e.g., yields“2000021921"))

c. Readthisconstructed literal (e.g., “2000021918") into a TS value and convert that

valueto an IVL<TS> according to Section3.4.3.1 (e.g.,
“[2000021921; 2000021922[ ") thisisthe “high interval.”

d. Thephaseinterval isthe convex hull of thelow interval and the highinterval (e.g.,
“[2000021918; 2000021922[ ).

4. If the hull-operator was not present, the phaseis simply the low interval.

Interleave. A calendar pattern followed by a slash and an integer number n indicates that the given
calendar pattern isto apply every n' time.

For example: “D19/ 2" isthe 19" of every second month.

A calendar pattern expression is evaluated at the time the pattern isfirst enacted. At thistime, the
calendar digits missing from the left are completed using the earliest date matching the pattern (and
following a preceding pattern in a combination of time sets).
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For example: “D19/ 2" isthe 19" of every second month. If thisexpressionisevaluated on March 14,
2000 the phase is completed to: “[ 20000319; 20000320[/ (2 np) @M’ and thus the two-months
cycle beginswith March 19, followed by May 19, etc. If the expression were evaluated by March 20,
the cycle would begin at April 19, followed by June 19, etc.

If no calendar digitsfollow after the calendar period identifier, the pattern matches any date. The
integer number following the slash indicates the length of the cycle. The phase interval in these cases
has only the width specified to be the duration of the anchoring calendar-cycle (e.g., in thisexample 1
day.)

For example: “CD/ 2” isevery other day, “H/ 8” isevery 8" hour, for the duration of one hour.

Institution Specified Time, Both, ageneric periodic interval literal and a calendar pattern may be
followed by the three letters“1 ST” to indicate that within the larger calendar cycle (e.g., for “hour of
the day” the larger calendar cycleis“day”) the repeating events are to be appointed at institution
specified times. Thisisused to specify such schedules as “three times aday” where the periods
between two subsequent events may vary well between 4 hours (between breakfast and lunch) and 10
hours (over night.)
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Table 41: Examples for literal expressions for periodic intervals of time

Generic Form

Calendar Pattern Form

Description

[198709; 198710[/ (1 a) @N

[ 19870915; 19870916[/ (1 a) @M
[1987091516; 1987091517[/ (1 a) @M

[ 198709151630; 198709151710] / (1 a) @M
[1987091516; [/ (1 a) @M
[198709151630; 198709151631/ (1 a) @M
[ 1987091516; 1987091517[/ (1 1) @M
[ 1987091516; 1987091517[/ (1 nm)

[1987091516; 1987091517[/ (1 mo) @D
[1 mo]/ (2 o) @W

[198701; 197502[/ (2 np) @W
[198702; 197503[/ (2 no) @W
[19870401; 19870930[/ (1 a) @M
19870401- 0930/ (1 a) @M

[ 20001202; 20001203[/ (1 wk) @W
[ 20001202; 20001203[/ (2 wk) @W
[ 20001202; 20001203[/ (3 wk) @W
[1d]/(2 d)@W

[ 20001204; 20001205[ / (2 d) @W
[ 20001204; 20001205[/ (2 d)
[19870601; 19870606[/ (1 wk) @W
[19870601; 19870608[ /(2 wk)
[19870101; 19870105/ (2 wk) @W

[ 19870406; 19870413[/ (1 a) @W
[19870105; 19870112[/ (1 o) @WM
[ 19870508; 19870509/ (1 a) @Y
[10 min]/(2 d)

[1 h]/(8 h)

[1 h]/(8 h) IST

/(8 h)y 1ST

M9

MD915
MD91516
M09151630..1710

MD9151630
D1516. . 17

MO1..12/2
MD2..12/2
MD4. . 09
MD401. . 0930
J6

J6/ 2

J6/3

J/ 2
J2..6/2
D/ 2
J1..5
W2

WY/ 2

Wr15

DY128

H 8
H 8 I ST

September, the entire month, every year (note that in the year 1987 in the generic form is irrelevant
since the periodic interval recurs every year past and future.)

September 15, the entire day, every year

September 15 at 4 PM, the entire hour, every year

September 15 at 4:30 5:10 PM, every year

September 15 at 4 PM, end time explicitly unknown, every year

September 15 at 4:30 PM, the entire minute, every year

every 15" day of the month at 4t0 5 PM

September 15, 1987 from 4 to 5 PM and then every 730.5 hours continuously (this example has little
practical value beyond comparing the unaligned with the aligned form in the preceding row.)
September 15, 1987 from 4 to 5 PM and then every 30.4375 days, but aligned to the hour of the day.
every other month of the year; (Jan, Mar, ...) vs. (Feb, Apr, ...) is undefined

every other month of the year, Jan, Mar, ...

every other month of the year, Feb, Apr, ...

April 1until (and including) September 30

April 1 to September 30 (the generic form uses the dash-form for the phase interval)

every Saturday

every other Saturday

every third Saturday

every other day of the week; (Mon, Wed, Fri, ...) vs. (Tue, Thu, Sat, ...) is undefined

every other day of the week (Tue, Thu, Sat, Tue, Thu, Sat, ...)

every other day (Tue, Thu, Sat, Mon, Wed, Fri, Sun, Tue, ...)

Monday to Friday every week

every other week (continuous)

every other week of the year (a blunt example on the impact of the calendar alignment: the phase
interval spans only 4 days and yet it represents an entire week in the calendar alignment “week of
the year”.)

the 15" calendar week of every year

the second week of the month, every month

the 128" day of the year, every year

every other day for 10 minutes (only width of repeating interval is known)

every eighth hour (each time a 60 minutes interval)

three times a day at institution specified times (each time a 60 minutes interval)

three times a day at institution specified times. Nothing about the repeating interval is known i.e., this
includes only a period (frequency), while the phase is left undefined
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5.2 Event-Related Periodic Interval of Time (EIVL)

The event-related periodic interval of time allows specifying a periodic interval of time based on
activities of daily living, important events that are time-related but not fully determined by time.

For example, “one hour after breakfast” specifies the beginning of the interval at one hour after
breakfast isfinished. Breakfast isassumed to occur before lunch but is not determined to occur at any
specific time.

tenpl at e<TS T>

protected type Event Rel at edPeri odi cl nterval <T> alias El VL<T> extends SET<T>{
cv event;
| VL<T. di ff> of f set;

| VL<T> occurrenceAt (TS event Ti ne) ;
BL contai ns(TS);
literal ST;

5211 Event:CV

A code for acommon (periodical) activity of daily living based on which the event related periodic
interval is specified. Such events qualify for being adopted in the domain of this attribute for which all
of the following istrue:

the event commonly occurs on aregular basis,
the event is being used for timing activities, and

the event is not entirely determined by time.

Table 42: Event Codes for Event-Related Periods

Code Definition
HS the hour of sleep (e.g., H18-22)
AC before meal (from lat. ante cibus)
PC after meal (from lat. post cibus)
IC between meals (from lat. inter cibus)

ACM before breakfast (from lat. ante cibus matutinus)
ACD before lunch (from lat. ante cibus diurnus)

ACV before dinner (from lat. ante cibus vespertinus)
PCM after breakfast (from lat. post cibus matutinus)
PCD after lunch (from lat. post cibus diurnus)

pPCv after dinner (from lat. post cibus vespertinus)
ICM between breakfast and lunch

ICD between lunch and dinner

ICV between dinner and the hour of sleep

5.2.1.2 Offset : IVL<T.diff>

Aninterval that marks the offsets for the beginning, width and end of the event-related periodic
interval measured from the time each such event actually occurred.

For example: if the specification is“one hour before breakfast for 10 minutes’ the offset’slow
boundary is- 1 h and the offset’ swidth is 10 min (consequently the offset’ s high boundary is- 50 min.)
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5.2.1.3 Resolving the Event-Relatedness

An event-related periodic interval of timeisaset of time, that is one can test whether a particular time
or timeinterval is an element of the set. Whether an event-related periodic interval of time contains a
giveninterval of timeisdecided using arelationevent * time referred to as EVENT (event, time). The

property occurrenceAt(t) isthe occurrence interval that would exist if the event occurred at timet.

invariant (El VL<T> x, T eventTinme, |VL<T> v)
wher e v. equal s(x. occurrenceAt (eventTine)) ({

.l ow. equal s(event Ti ne. pl us(x. of fset.l ow));

%
v. hi gh. equal s(event Ti ne. pl us(x. of fset. hi gh));
v. | owd osed. equal s(x. of fset.| owd osed) ;

v

. hi ghd osed. equal s(x. of f set. hi ghCl osed) ;

Thus, an event related interval of time containsapoint intimet if thereis an event time e with an

occurrence interval v such that v containst.

invariant (Bl VL<T> x, Ty) {
X. contai ns(y).equal s(exists(T e, |VLT> v)
wher e EVENT(x. event, y)
.and(v.resol vedAt (y)) {
v. cont ai ns(y);

1),

5.2.1.4 Literal Form

Theliteral form for an event related interval begins with the event code followed by an optional

interval of the time-difference.

El VL<TS>. literal ST {

| VL<TS. di ff> of f set
“4” | VL<TS.diff> { $.equal s(%$2); }

$. wi dt h. equal s($2. wi dt h) ;

$. | owd osed( $2. hi ghd osed) ;
$. hi ghCl osed($2. | owd osed) ;

El VL<TS> : event { $.event.equal s($1); }
| event offset { $.event.equal s($1); $.offset.equal s($2);
CV event : ST { $.code. equal s($1);

| “-" IVL<TS.diff> { $.1ow equal s($2. hi gh. negate);
$. hi gh. equal s($2. | ow. negat e) ;

}s

}s

$. codeSyst em equal s(2. 16. 840. 1. 113883. 5. 1019) ;

}
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For example, one hour after meal would be “PC+[ 1h; 1h] ”. One hour before bedtime for 10
minutes. “HS- [ 50ni n; 1h] .

5.3 General Timing Specification (GTS)

The general timing specification (GTS) semantically isageneral set of pointsintime. The purpose of
the GTSisto specify the complex timing of events and actions (mainly in orders and scheduling
systems.) The GTS also supportsthe cyclical validity patternsthat may exist for certain kinds of
information, such as phone numbers (evening, daytime), addresses (so called “snowbirds,” residing in
the south during winter and north during summer) and office hours.

The GTS datatype has the foll owing aspects:

GTSasagenera set of pointsintime (SET<TS>). From this aspect GTS answers whether
any given point in time fallsin the schedule described by the GTS value.

GTS as the combination of multiple periodic intervals of time. This aspect describes how
both simple and complex repeat-patterns are specified with the GTS.

GTSasagenerator of asequence of intervals of pointintime (LIST<IVL<TS>>). From this
aspect, GTS can generate all occurrence intervals of an event or action, or al validity periods
for afact.

GTSas an expression-syntax defined for acalendar. Thisaspect isthe GTSliteral form.

In all casesthe GTSisdefined as a set of point intime (SET<TS>). Using the set operations, union,
intersection and difference, more complex sets of time can be constructed from simpler ones.
Ultimately the building blocks from which all GTS values are constructed areinterval, periodic
interval, and event-related periodic interval. The construction of the GTS can be specified in the literal
form. No special datatype structure is defined that would generate a combination of simpler time-sets
fromagiven GTSvaue. While any implementation would have to contain such a structured
representation, it is not needed in order to exchange GTS values given the literal form.>*

type CGeneral Ti m ngSpecification alias GIS extends SET<TS> {
| VL<TS> hul | ;
| VL<TS> next To( TS x)
| VL<TS> next After (TS x)

GIS peri odi cHul | (GTS Xx);
BL i nterl eaves(GIS x);

denotion LI ST<I VL<TS>>;
literal ST,

I

The GTSdatatypeis defined as using intervals, periodic intervals, and event-related periodic intervals.
Intervals of time have been defined above

%8 The GTSis an example of adatatypethat is only defined algebraically without giving any definition of a data
structure that might implement the behavior of such a data type. The algebraic definition looks extremely simple, so
that one might assume it isincomplete. Since at this point we are relying entirely on the literal form to represent GTS
values, all the definition of data structure isrealy contained in the grammar for the literal definition.
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5.3.1.1 Convex Hull

A convex hull isthe least interval that isasuperset of all occurrence intervals. Asnoted in Section
3.1.2, all totally ordered sets have a convex hull. Because a GTSisa SET<TS> and because a
SET<TS> isatotally ordered set, all GTS values have aconvex hull.

The convex hull of aGTS can lessformally be called “outer bound interval”. Thus, the convex hull of
a GT S describes the absol ute beginning and end of the repeating schedule. For infinite repetitions (e.g.,
asimple periodic interval) the convex hull has infinite bounds.

schedue [ [ | el —

convex hull | |

time
Figure 14: Convex Hull of a Schedule

5.3.1.2 GTS as a Sequence of Occurrence Intervals

A GTSvalueisagenerator of asequence of timeintervals during which an event or activity occurs, or
during which a stateis effective.

The nextTo-property mapsto every point in timet the greatest continuous subset (an “ occurrence
interval”) v of the GTSvalue S; where vistheinterval closest tot that beginslater than t or that
containst.

invariant(GIS S, TS t, |VL<TS> v) {
v. equal s(S. next To(t)) . equal s(
S. cont ai ns(0)
.and(foral | (I VL<TS> u) where x.contains(u) {
u.contains(v).inplies(u.equals(v)); })
.and( v.contai ns(t)
.or(forall (TS i) where t.lessO Equal (i)
.and(i.lessThan(v.low)) {
S.conatins(i).not; })));
i

The nextAfter-property maps to every point in timet the greatest continuous subset (an “ occurrence
interval”) v of the GTSvalue S; wherevistheinterval closest tot that begins later thant.

invariant (GIS S, TS t) where {
S. contai ns(t). not
.inplies(S nextAfter(t).equal s(S.nextTo(t)));
S. contai ns(t)
.inplies(S. nextAfter(t).equal s(S.except(nextTo(t)).nextTo(t)));
b

A GTSvalue can be converted into a generic Sequence of timeintervals (LIST<IVL<TS>>) of
occurrenceintervals.

i nvariant (GTS x) where x.isEmpty { ((LIST<IVL<TS>>)x).isEnpty; };
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i nvariant (GIS x, |VL<TS> first)
wher e x. nonEnpty
.and(x. hul I . I ow. nonNul 1)
.and(first.equal s(x.next To(x. hull .l ow))

( (LI ST<I VL<TS>>) x) . head. equal s(first);
((LI'ST<I VL<TS>>) x) . tai | . equal s( (LI ST<I VL<TS>>) x. except (first));

5.3.1.3 Interleaving Schedules and Periodic Hull

For two GTS valuesA and B we say that A interleaves B if their occurrence intervalsinterleave on the
timeline. This concept is visualized in Figure 15.

schedule A [ [
schedule B { | — | | —>
periodic hull [ [ [ time

Figure 15: Interleaving Schedules and Periodic Hull

For the GTS values A and B to interleave the occurrence intervals of both groups can be arranged in
pairs of corresponding occurrenceintervals. It must further hold that for all corresponding occurrence
intervalsal Aandbl B, astartsbefore b starts (or at the same time) and b ends after aends (or at the
sametime).

Theinterleaves-relation holds when two schedul es have the same average frequency, and when the
second schedule never “outpaces’ thefirst schedule. That is, no occurrence interval in the second
schedule may start before its corresponding occurrence interval in the first schedule.

With two interleaving GTS values one can derive aperiodic hull such that the occurrence intervals of
the periodic hull isthe convex hull of the corresponding occurrenceintervals.

The periodic hull isimportant to construct two schedules by combining GTS expressions. For example,
to construct the periodic interval from Memorial Day to Labor Day every year, one first needsto set up
the schedules M for Memorial Day (the last Monday in May) and L for Labor Day (the first Monday in
September) and then combine these two schedul es using the periodic hull of M and L.

invariant (GTS A, B) where x.nonNull.and(y. nonNul I') {
A interl eaves(B). equal s(
forall (IVL<TS> a, b, c; TS t)
where a. equal s(A next To(t))
.and(b. equal s(B. next To(a. |l ow)))
.and(c. equal s(A next To(b. high))) {
b. equal s(B. next To(a. hi gh));
a.l ow | essO Equal (b. | ow);
c. equal s( A next To(b. hi gh));
c.equal s(a).or(c.equal s(A nextAfter(a.high)));

1)
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For two GTS valuesA and B where A interleaves B, aperiodic hull is defined as the pair wise convex
hull of the corresponding occurrence intervals of A and B.

invariant (GTS A, B, O where A interleaves(B) {
A periodi cHul | (B). equal s(C) . equal s(
forall (I VL<TS> a, b; TS t)
where a. equal s(A next To(t))
.and(b. equal s(B. nextTo(a.low))) {
C. contai ns(c).equal s(c.equal s(a. hull(b)));

)5

i

The interleaves-relation isreflexive, asymmetric, and intransitive. The periodic hull operation is non-
commutative and non-associative.>*

5.3.2 GTS Literal Form

The GTSliteral allows specifying combinations of intervals, periodic intervals, and event related
periodic intervals of time using the set operations, unions and intersection. This literal form is specified
based on the simpler time set datatypesinterval, periodic interval, and event related periodic interval.>®

Unions are speechified by a semicolon-separated list. Intersections are specified by awhite space
separated list. Intersection has higher priority than union. Exclusions (set differences) can be
specified using a backslash; exclusions have an intermediate priority, i.e. weaker than intersection but
stronger than union.

Table 43: GTS Set-Operators

Operation Operator Priority
Intersection “ “(white space) high
Union “ " (semicolon) low
Exclusion “\ ” (back slash) low
Periodic Hull “, . " (two periods) high

Also parentheses can be used to overcome operator precedence when necessary.

GIS.literal ST {

GTS : synbol { $.equals($1); }
| union { $.equals($1); };
| excl usion { $.equal s($1); };

SET<TS> uni on
intersection “;” union $. equal s($1. union($3)); }
$

.equal s(%$1); };

~

| intersection

> The interleaves property may appear overly constrained. However, these constraints are reasonable for the use case
for which the interleaves and periodic hull properties are defined. To safely and predictably combine two schedules
one would want to know which of the operands sets the start points and which sets the endpoints of the periodic hull’s
occurrence intervals.

%5 This literal specification again looks surprisingly simple, so one might assume it isincomplete. However, the GTS
literal isbased onthe TS, IVL, PIVL, and EIVL literals and does also imply the literals for the extensions of TS,

notably the PPD<TS>. The GTS literal specification itself only needs to tie the other literal forms together, which is
indeed afairly simple task by itself.
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SET<TS> excl usi on

exclusion “\” intersection { $.equal s($1. except($3)); };

SET<TS> intersection
factor intersection

| factor;

SET<TS> hul |

factor “..” hull

| factor;

SET<TS> fact or

| VL<TS>
| PlVL<TS>
| ElVL<TS>
| “(" ars )

I

{ $.equal s($1.intersection($2)); }
{ $.equal s(%$1); }

{ $.equal s($1. periodicHull ($3)); }
{ $.equal s(%$1); }

. equal s(%$1);
. equal s(%$1);
. equal s(%$1);

B H B B

}
}
}
}

. equal s(%$1);

53.21

The following Table 45 defines symbolic abbreviations for GTS values that can be used in GTS literals
instead of their equivalent GTS term. Abbreviations are defined for common periods of the day (AM,
PM), for periods of the week (business day, weekend), and for holidays. The computation for the dates
of some holidays, namely the Easter holiday, involve some sophistication that goes beyond what one
would represent ina GTSliteral term. It isassumed that the dates of these holidays are drawn from
some table or some generator modul e that is outside the scope of this specification.

The following table contains paradigmatic examples for complex GTSliterals. For simpler examples
confer to theliteral formsfor interval, periodic interval, and event related interval.

Table 44: Examples for Literal Expressions for Generic Timing Specifications

Literal Expression

Meaning

MD9 D15 H16 N30 S34.12

M)915163034. 12

MO1; MO3; MO7
MO4..09 M2
J1; J2; J4
w2 J2

1999 Wr15

We J6
MO5 W2 J6

MD5 DMDS. .14 J7
J1..5 HO800..1600
J1..4 HO800..1600
J5 H0800. . 1200
[10 d] H 8
HO800. . 1600 \J3

(MD825. .31 J1)..M831

JHNUSMEM . JHNUSLBR

September 15 at 4:30:34.12 PM as the intersection of multiple periodic intervals
of times (calendar patterns)

September 15 at 4:30:34.12 PM as one simple periodic interval of time
(calendar pattern)

January, March, and July (a union of three periodic intervals of time)

Every second month from April to September (April, June, August)

Monday, Tuesday, Thursday

every other Tuesday (intersection of every other week and every Tuesday)
the 15™ calendar week in 1999 (period code is optional for the highest calendar
unit)

Saturday of the 2" week of the month

Saturday of the 2" week of May

Mother’s day (second Sunday in May.)

Monday to Friday from 8 AM to 4 PM

Monday to Thursday 8 AM to 4 PM and Friday 8 AM to 12 noon.

Three times a day over 10 days (each time a 60 minutes interval).
Every day from 8 AM to 4 PM, except Wednesday.

The last calendar week of August.

The season from the U.S. holidays Memorial Day to Labor Day

Symbolic Abbreviations for GTS expressions.
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These abbreviations are named GTS values and they can in turn be afactor of a GTS term. For
example, one can say “JHCHRXME HO08. . 12” toindicate that the office hours on Christmas Eveis

from 8 AM to 1PM only. And one can say “JHNUSMEM . JHNUSLBR’ for the typical mid-western
swimming pool season from Memorial Day to Labor Day.

Table 45: Abbreviations for General Timing Specifications

Code Definition Equivalent
AM Every morning at institution specified times. HO0O. .11 I ST
PM Every afternoon at institution specified times. H12..23 | ST
BI D two times a day at institution specified time H 12 | ST
TID three times a day at institution specified time H 8 I ST
QD four times a day at institution specified time H 6 | ST
JB Regular business days (Monday to Friday excluding holidays) J1..5 \JH
JE Regular weekends (Saturday and Sunday excluding holidays) J6..7 \JH
JH Holidays
Christian Holidays (Roman/Gregorian “Western” Tradition.)

JHCHRXME Christmas Eve (December 24) ML224

JHCHRXMS  Christmas Day (December 25) ML225

JHCHRNEW  New Year's Day (January 1) MO101

JHCHREAS  Easter Sunday. The Easter date is a rather complex calculation
based on Astronomical tables describing full moon dates.
Details can be found at [http://www.assa.org.au/edm.html, and
http://aa.usno.navy.mil/AA/fag/docs/easter.html]. Note that some
Eastern Orthodox Holidays are based on the Julian calendar.
JHCHRGFR  Good Friday, is the Friday right before Easter Sunday.
JHCHRPEN Pentecost Sunday, is seven weeks after Easter (the 50" day of
Easter.)
JHNUS United States National Holidays (public holidays for federal
employees established by U.S. Federal law 5 U.S.C. 6103.)
JHNUSMLK Dr. Martin Luther King, Jr. Day, the third Monday in January. MD115..21 J1
JHNUSPRE Washington’s Birthday (Presidential Day) the third Monday in MD215..21 J1

February.
JHNUSMEM  Memorial Day, the last Monday in May. MD525. .31 J1
JHNUSMEM5  Friday before Memorial Day Weekend MD522. .28 J5
JHNUSMEM6  Saturday of Memorial Day Weekend MD523. .29 J6
JHNUSMEM?7  Sunday of Memorial Day Weekend MD524. .30 J7
JHNUSIND Independence Day (4" of July) MO704

JHNUSIND5  Alternative Friday before 4™ of July Weekend [5 U.S.C. 6103(b)]. M0703 J5
JHNUSINDL  Alternative Monday after 4™ of July Weekend [5 U.S.C. 6103(b)]. M0705 J1

JHNUSLBR Labor Day, the first Monday in September. MD901..07 J1
JHNUSCLM  Columbus Day, the second Monday in October. MLO08. .14 J1
JHNUSVET Veteran’s Day, November 11. ML111

JHNUSTKS Thanksgiving Day, the fourth Thursday in November. ML122. .28 J4
JHNUSTKS5  Friday after Thanksgiving. ML123..29 J5

Note: this table is not complete. Neither does it include religious holidays other than Christian (of the
Gregorian (western) tradition), nor does it contain national holidays on other countries. This is a
limitation to be remedied by subsequent additions.

Note: holidays are locale-specific. Exactly which religious holidays are subsumed under JH depends
on the locale and other tradition. For global interoperability, using constructed GTS expressions is
safer than named holidays. However, some holidays that depend on moon phases (e.g., Easter) or
ad-hoc decree can not be easily expressed in a GTS form.
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