CORBAservices: Common Object
Services Specification

Revised Edition- March 31, 1995
Updated: March 28, 1996
Updated: July 15, 1996
Updated: November22, 1996
Updated: March 1997

Updated: July 1997

Updated: November 1997

Copyright 1996, AT&T/Lucent Tectwoiogies,Inc.

Copyright 1995, 1996 AT&T/NCR

Copyright 1995, 1996 BNR Europe Limited

Copyright 1996, Cooperative Research Centre for Distributed Systems Tech(D®F§ PtyLtd).
Copyright 1995, 1996 Digital Equipment Corporation
Copyright 1996, Gradient Banologies, Inc.

Copyright 1995, 1996 Groupe Bull

Copyright 1995, 1996 Hewlett-Packa@mpany

Copyright 1995, 1996 HyerDesk @rporation

Copyright 1995, 1996 ICL plc

Copyright 1995, 1996 Ing. C. Olivetti & C.Sp

Copyright 1995, 1996 International Bnsss Machine €orporation
Copyright 1996 InternationalComputers Limited

Copyright 1995, 1996 lona TecblogiesLtd.

Copyright 1995, 1996 Itasca Sgms, Inc.

Copyright 1996, Nortel Limited

Copyright 1995, 1996 Novell, Inc.

Copyright 1995, 1996 02 Tanologies

Copyright 1995, 1996 Object Design, Inc.

Copyright 1995, 1996 Object Magement Grougnc.
Copyright 1995, 1996 Objectivity, Inc.

Copyright 1995, 1996 Ontos, Inc.

Copyright 1995, 1996 Oracle Corporation

Copyright 1995, 1996 PestenceSoftware

Copyright 1995, 1996 Servio,dEp.

Copyright 1995, 1996 Siemens Nixdorf Informatssyseme AG
Copyright 1995, 1996 Sun Microggms,Inc.

Copyright 1995, 1996 SunSoft, Inc.

Copyright 1996, Sybase, Inc.

Copyright 1996, Taligent, Inc.

Copyright 1995, 1996 Tandemo@puters Inc.

Copyright 1995, 1996 Teknekron Software @yss,Inc.
Copyright 1995, 1996 Tivoli Systems, Inc.

Copyright 1995, 1996 Transarc Corporation

Copyright 1995, 1996 MsantObject Technology Corporation

The compnies liged above have granted to the Objectridgenent Group, Inc. (OMG) aonexclusve, royalty-free, paid up, worldide license to opy
and distribute this document andrmdify this document and distribute copies of thedified verson.

Each of the copyright holders listed above has agreed that no person shalineel de havéenfringed thecopyright, inthe induded material of any such
copyright holder by reason of having usee speification set forth herein or ing conformed angomputer software to the ecification.

NOTICE
The information contained in thissdument is subject to changétlmout notice.

The material in this doguent cetails an Ofect Management Group specifition in acordancewith the licenseand notices set rth onthis page. This
document doesot represent a commitment to implement aoxtion of this specification in anyompany’sproducts.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATETHE OBJECT MANAGEMENT GROUP AND THE
COMPANIESLISTED ABOVE MAKE NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOTLIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PRTICULAR PURPOSE. TheDbject ManagemerBroup and
the companies listedbave shalhot beliable for errorscontaned herein or for inidental or consequéial damages in conneion with the furnishing,
performance or use of this material.

The copyright holderfisted atpve acknowledge that th©bject MangementGroup (acting itelf or thraugh its desigees) is anishall at all times be the
sole entity that mayputhorize developers, supgrs and sellers afomputer software to use certification marks¢gémarks oother special designations to
indicate compliance ith these materials.

This documentontainsinformationwhich isprotected by copyright. AlRights Reserved. No part tifis work covered by copyrht herein may be
reproduced or used amy form or by any means--graphic, electronic, or magdcal, including photocoping, recording, taping,r information storage and
retrieval sysems--without permisson of thecopyright owner.

RESTRICTED RIGHTS EGEND. Use, dplication, or dislosure by government is subject to téstions as setorth in subdivision c) (1) (ii) of the
Right in TechnicaData and @mputer Software fause at FARS 252.227.7013

OMG® andObject Managment are mgistered tralemarks of the Gject Managenent Group, Inc.
Object Request ®ker, OMG IDL, ORB, CORBA, CORBfacilities, CORBAservices, and@SS are tradearks of the Object Magement Giup, Inc.

X/Open is a trademark of X/@nCompany Ltd.

Table of Contents

0.1 About This Documer . .. - I
0.1.1 ObjectManagementGro T (1
0.1.2 X/Open..............................ini
0.2 Intended Audienc.xli

0.3 Need for Object Servic . . ——T
0.3.1 Whatls an Object Serwce Specmcatu. oo Xlidi

0.4 Associated Documen. JXliii
0.5 Structure othisManua.Xlv
0.6 Acknowledgement.Xlv

1. OVEIVIEW . . . o 1-1

1.1 Summary oKey Feature.11
1.1.1 NamingServict........................1-1
1.1.2 EventServic.........................12
1.1.3 LifeCycleService......................1-2
1.1.4 PersistentObjectServi.................1-3
1.1.5 TransactionServic.....................13
1.1.6 Concurrency Control Servi 1-3
1.1.7 Relationship Servic.14
1.1.8 Externalization Servic.1-4
119 QueryServic......................... 15
1.1.10 Licensing Servic.1-5
1.1.11 PropertyServic.1-5
1.1.12 TimeServict.cvv...... 16
1.1.13 SecurityServic........................1-6
1.1.14 Object Trader Servit.1-7

CORBAservices November 1997 i

Contents

1.1.15 Object Collections Servic. 17
2. General Design Principle.o oo 2-1
2.1 ServiceDesign Principle. . 21
2.1.1 Build on CORBA Concept 2 |
2.1.2 Basic,FlexibleServices.2-2
2.1.3 GenericServices. ce .22
2.1.4 Allow Local andRemoteImpIementatlon .22
2.1.5 Quality of Service is animplementation
Characteristir . e 0 272
2.1.6 ObjectCOftenConsplre in cSerwce . 22
2.1.7 Use ofCéllbackInterface:. 24
2.1.8 AssumeNo GloballdentifierSgaces........ 24
2.1.9 Finding aService isOrthogonal tcUsing It. .. 2-4
2.2 Interface Style Consisten . . ce 24
2.2.1 Use ofExceptlons an(Return Code< L. 24
2.2.2 Explicit Versuslmplicit Operations. 2-5
2.2.3 Use ofinterfacelnheritance. 25
2.3 Key Design Decisior 25
231 NamlngSerwce Dlstmct from Property and
Trading Sevices. . o)
2.3.2 Universd Object Idently .25
2.4 Integration with luture Object Service. 25
241 ArchiveService........................26
2.4.2 Backup/RestoreServi..................2-6
2.4.3 Change ManagementServ. 2-6
2.4.4 DatalnterchangeServi.................2-6
245 Internationalizatio Service............... 2-6
2.4.6 Implementation Repositor 2-7
2.4.7 Interface Repositor.2-7
24.8 LoggingService.027
249 RecoveryServic.......................2-8
2.4.10 ReplicationServic......................2-8
2411 Startup Servic. o299
2.4.12 Data Interchange Servi.................29
25 ServiceDependencit.29
251 EventServic.........................29
25.2 LifeCycleService..29
2.5.3 Persistent ObjectServi.................29
2.5.4 RelationshipServic. 2 10
25.5 Externalization Servic.2-10

i CORBAservices November 1997

Contents

25.6 TransactionServic....................2-10

2.5.7 Concurrency Control Servic.2-11

258 QueryServic.21

25.9 Licensing Servic.2-11

2.5.10 Property Servic.2-12

2511 TimeService.ccvvvnn.....2-12

2.5.12 SecurityServic.......................2-12

25.13 Trader Servict.2-12

2.5.14 Collections Servic. . .2-12

2.6 Relationship to CORA. . .2-12
2.6.1 ORB Interoperablllty ConS|derat|o Transactlon

Service 2-12

2.6.2 Life Cycle Servm(.. 2-13

2.6.3 NamlngSerV|c<.......................2—13

2.6.4 Relationship Servic.2-13

2.6.5 Persistent Object SerV| cee.... 2-13

2.6.6 General Interoperability Requweme .. 2-13

2.7 RelationshiptoOlgctMode.2-14

2.8 Conformance to Existing Standar. 2-14

3. Naming Service Specificatior. 3-1

3.1 ServiceDescriptior 034

311 Overview 31

312 Name.32

3.1.3 NameslLibrar.........................33

3.1.4 Example Scenaric.33

3.1.5 DesignPrinciple.......................34

3.1.6 Resolution of Technical¢sies. 35

3.2 The CosNamingModul......................... 36

3.2.1 Binding Object:........................38

3.22 ResolvingName.......................39

3.2.3 UnbindingName.310

3.2.4 Creating Naming Contex.3-11

3.25 DeletingContext.311

3.2.6 ListingaNamingConte................ 312

3.2.7 The Bindinglterator Intdace.3-12

3.3 The Names lbrary . - e ... 313

3.3.1 Creating a L|brary Name Componn . 3-14

3.3.2 CreatingaLibrary Nam................ 3-15

3.3.3 The LNameComponentterface.3-15

CORBAservices November 1997 iii

Contents

3.3.4 The LName Interfac . . 3-15
Destroying a lerary Name Component
PseudoObjec. 3-16
Inserting aName Componen. 3-16
Getting the® Name Componen. 3-16
Deleting a Name Compone 3-17
Number of Name Componen. 3-17
Testing forEquality 3-17
TestingforOrder. 3-17
Producingan IDLforn. 3-18
TranslatinganIDLForn.............. 3-18
Destroying a Library Name Pseudo-Ob. 2c 3-18
4. Event Service Specificatio. 4-1
41 ServiceDescriptior. oL 4]
411 OVerview............ .41
4.1.2 EventCommunicatio...................4-2
4.1.3 Example Scenar. ...4-2
4.1.4 Design Principle. ca .44
4.1.5 Resolution of Technlcal $$1e< . 4-4
4.1.6 QualltyofSerwc'.......................4—6
4.2 Generic Event Communicatic.4-6
421 PushMode.4-6
422 PullModel............47
43 The CoseEventComm Modu.4-8
4.3.1 The PushConsumerinterfe.............. 4-8
4.3.2 The PushSupplier Interfac. 49
4.3.3 The PullSupplier Interfac. 49
4.3.4 The PullConsumer Interfa.4-10
44 Event Channel. ..4-10
441 Push- Style Communlcatlon W|th arvat
Channel. ...4-10
4.4.2 Pull-Style Communlcatlon Wlth an Event
Channel. - ... 4-11
443 Mixed Style Communlcatlon W|th anvEnt
Channel. C ... 4-11
4.4.4 Multiple Consumers and Multlple Supplle .. 4-12
445 Event Channel Administratio.4-13
45 The CosEventChannelAdmin Modi. 4-15
45.1 The EventChannel Interfa.............. .4-16
45.2 The ConsumerAdmin Interfac............4-17
453 The SupplierAdmin Interfac.4-17
454 The ProxyPushConsumer Interfe.4-17
455 The ProxyPullSupplier Interfac.4-18

CORBAservices

November 1997

Contents

45.6 The ProxyPullConsumer Interfe..........4-18

4.5.7 The ProxyPushSupplier Interfa.4-19

46 Typed Event Communicati¢.4-19
46.1 TypedPushModi.....................419

46.2 TypedPullMode......................4-20

47 The CosTypedEventComm Modt. 421
4.7.1 The TypedPushConsumer Interf..........4-22

4.7.2 The TypedPullSupplier Interfa.4-23

48 Typed Event Channe. . . . i ... 4-23
49 The CosTypedEventChanneIAdmln Mod . co...4-24
4.9.1 The TypedEventChannel Interfa. e ... 4-26

49.2 The TypedConsumerAdminterface. 4-26

4.9.3 The TypedSupplierAdmin Interfac. 4-27

49.4 The TypedProxyBshConsumer lerface. ... 4-28

495 The TypedProxyPullSupplier Interfa 4-28

4.10 Composing Event Channels and Filter4-28
4.11 Policies for Finding EventChanne.. 429
5. Persistent Object Service Specificatior. 5-1
51 Introductior b
52 GoalsandPrmgerties............................53
5.2.1 BasicCapabilities.53

5.2.2 Object-orientecStorage.53
InterfacestoDati.................... 5-4

Self-descrigbn 5-4

Abstaction L 5-4

5.2.3 Open Architecturc......................54

524 ViewsofService.......................55

Client....... 5-5

Object Implementatior. 5-6

Persistent Data Servic. 5-6

Datastore. 5-6

5.3 Service Structur . S N 4
5.4 The CosPersistencePID Mod. ceeee.....5-8
5.4.1 PID Interface . . s 5°

54.2 ExampIePIDFactory Interfao e85 11

55 The CosPersistencePOMod511
55.1 ThePOlInterface......................5-12

55.2 ThePOFactoryInterfac................ 514

553 TheSDInterface......................5-14

5.6 The CosPersistenceM Module.5-15

CORBAservices November 1997 v

Contents

Vi

5.7 Persisten Date Service (PDS) Overview.5-
5.8 The CosPersistencDSModule
5.9 The Direct AccessHDS_DA) Protoco.5

5.10 The CosPersistencePDS_DA Mod .

5.10.1
5.10.2
5.10.3
5.104
5.105
5.10.6
5.10.7
5.10.8

5.12 TheDynamic Date Objeci (DDO) Protocol.5-
5.13 The CosPersistenceDDOMod.

The PID_DA Interfac .
The Generic DAObject Interfal

The DAObjectFactory Interfac.5-
The DAObjectFactoryFinder Interfa.

The PDS_DA lterface. .
Defining and Using DA Data Objec

TheDynamicAttributeAccess mterface e

The PDS_ClusteredDA tarface.5-
5.11 The ODMG-93 Protoct. .

5.14 OtherProtocols.....................b-

5.15 Datastores: CosPersistenceDS_CLIMoc.5-

5.15.1
5.15.2
5.15.3
5.154
5.15.5
5.15.6
5.15.7

The UserEnvironment terface............5-
The Connection Interfac. 5-

The ConnectionFactory Interfa.5-
The Cursor Interfac.
The CursorFactory Interfa.b-
The PID_CLI Interfac.
The Datastore CLl Interfac.5

5.16 OtherDatastore.b-
5.17 Standards Conformae.5-

518 Reference............. b

6. Life Cycle Service Specificatior

6.1 ServiceDescriptior .

6.1.1
6.1.2
6.1.3

6.1.4

6.1.5
6.1.6

Overwew
Organlzatlon of thls Chapt

Client'sModel of Object Life Cycle e
Client’s Model of Creatior.

Client’'s Model of Deldhg an Objec.
Client’s Model of Copying or Moving an

Object.............,

Factory Finder. .

Multiple Factory Flnders
Design Principle.
Resolution of Technical $sies.

CORBAservices November 1997

Contents

6.2

6.3

6.4
6.5

CORBAservices

The CosLifeCycle Modul. . N 0
6.2.1 The LlfeCycIeObject Interfac. R o £ i |
COPY . v v et 6-11

MOVE . . ottt e 6-12

FEMOVE . . .o 6-13

6.2.2 The FactoryFinder Interfac.6-13
find _factories 6-13

6.2.3 The GenericFactory Interfa.6-14
create objec................ Ll 6-15

SUPPOIS. .« v et 6-16

6.24 Criteria...........6-17
Implementing Factorie6-18
6.3.1 Minimal Factorie.6-19
6.3.2 Administered Factorie.6-19
Target's Use of Factories an@dtory Finder.6-21
Summary of Life Cycle Servic. -6-21
6.5.1 Summary of LlfeCycIe Serwce Structw 6-22

November 1997

Creating a Compound Life Cycle Operat|0|6-33
Applying the Copy Operation to a Graph of

Related Object. 6-33
Applying the Move Operation to@raph of
Related Object. 6-34
Applying the Remove Opetian to aGraph of
Related Object. 6-34
Destroying the Copound Opegation. 6-35
CopyingaNode..................... 6-35
MovingaNode. 6-36
RemovingaNode. 6-37
Getting the Node’s Life Cycle Objer.... 6-37
CopyingaRole. 6-38
MovingaRole 6-38
Getting a Propagi@n Value. 6-39
Copying the Relationshij. 6-39
Moving the Relationshi............... 6-40
Getting a Propag@nValue............ 6-41
Create a Traversal Criteria Based on Life Cycle
Propagation Value. 6-41
Visibility of the Federation Grap 6-52
Service Interface vs. Admistration Interéice 6-53
Multiple Service Interface. 6-53
Cycles and Peer-to-Peer Relationst. . .. 6-53
bind_generic factor. 6-56
unbind_generic factor............... 6-56
resolve generic factor............... 6-57
list generic_factorie:. 6-57
match_service. 6-57
get hint........................... 6-57
get link_properties., 6-57
vii

Contents

7. Concurrency Control Service. 7-1
7.1 ServiceDescriptior . - B
7.1.1 Basic Concepts of Cm:mlrrency Contro oo 7-1
Clientsand Resourct. 7-1
Transactionsas Clien................ 7-2
Locks. 7-2
LockModes 7-2
Lock Granularity. 7-2
Conflict Resolution. 7-3
Conflict Resolution for Transactior. 7-3
Lock Duration.cccvvu.... 7-3
7.2 Locking Model. . P
7.2.1 LockMode< T4
Read, Wnte and Upgrade Loc 7-4
Intention Reacnd Inention WriteLocks . 7-4
Lock Mode Compatibility. 75
7.2.2 Multiple Possession Semant. 7-5
7.3 Two-Phase Transactional Locki.7-6
74 Nested Transactior.cccvvuu.... -6
7.5 CosConcurrencyControlModu7-7
75.1 TypesandExceptiol....................79
7.5.2 LockCoordinator Interfac. 79
753 LockSetlInterfact. 7 10
754 TransactlonaILockSet Interfa e .7-11
7.5.5 LockSetFactory Interfac. 7-13
8. Externalization Service Specificatior 8-1
8.1 ServiceDescriptior. e84
8.2 Service Structur . - c.....82
8.2.1 Client sModeI of Object Externallzatlc .. 82
8.2.2 Stream’s Model of Object Externallzat\. ... 83
8.2.3 Object’'s Model of Externalizatic.......... 84
8.2.4 Object’'s Model of Internalizatic. 85
8.3 Object and Interface Hierarchi....................8-7
8.4 Interface Summar. 8-10
ExternallzatlorSerwce Ach|tectureAud|-

ence/BearerMappin................. 8-11
85 CosExternalizatonModu812
8.5.1 StreamFactory Interfac. 812
Creating a SeamObjec.............. 8-12
8.5.2 FileStreamFactory Interfac.8-13

Creating a $eam Object Associated with a
File 8-13
85.3 Streaminterfac.......................8-13

Vili CORBAservices November 1997

Contents

8.6

8.7

8.8
8.9
8.10
8.11

8.12

9. Relationship Service Specificatiot

9.1

CORBAservices

Externalzing an Object. 8-13

Externalzing Groups of Olgicts 8-14

Internalizing an Objec. 8-14

CosStream Modu. . 8-15
8.6.1 Standard Stream Data Fnat 8-17
8.6.2 The StreamlO Interfac. 8-18
8.6.3 The Streamable Interfa . 8-18
Writing the Object’s State to arsam 8-19

Reinitializing the Object’s State from a .
Stream...........
8.6.4 The StreamableFactory Interfe.
Creating a Seanable Object.

CosCompound Externalization Modt.

8.7.1 The Node lterface..
ExtemnalzingaNode...............
InternalizingaNode

8.72 TheRolelInterfac.....................
ExternalizingaRole.
Internalizing aRole.
Getting a Propad@n Value.

8.7.3 The Relationship Interfar.
Externalizing the Relationsh
Internalizing the Relationshi.
Getting a Propad@n Value.

8.7.4 The PropagationCriteriaFactory Interfe. . . .

8-25

Create a Traversal Criteria Based on Extézaal

tion Propagatior.
Specific Externalization Relationshi.
The CosExternalizationContainmentMod
The CosExternalizationReference Mod.

Standard Stream Data Forn .

8.11.1 OMG Externalized Oht;ct Dat« e
8.11.2 Externalzed Repeated ReferenceL.
8.11.3 Externalzed NILDate..................

Reference. i

ServiceDescriptior .
9.1.1 Key Features of the Relat|onsh|p Ser\

9.1.2 The Relationship Services. CORBA Object

Reference: . :
Relatlonsh|ps that Are Multlcblcnona
Relationships that Allow Third Party

Manipulation.
Traversals that Ar8upported for Graphs
of Related Object.

November 1997

Contents

9.2

9.3

9.4

Relationships and RolésatCan Be Extended with

Attributesand Behavio. 9-4
9.1.3 Resolution of Technical¢sies. 94
Modeling and Relationship Samtics. ... 9-4
Managing Relationshig............... 9-4
Constraining Relationshig. 9-5
Referential Integrit. 9-5

Relationships and Roles as First Class Obj9-5
Different Models for Na\gatingand

Constructing Relationshig. 9-5

Efficiency Congleratons. 9-6

Service Structur . . * N
9.2.1 Levels of Serwc' . . N
Level One: Base Relatlonsh|| 9-7

Level Two: Graphs of Related Objec... 9-8

Level Three: Specific Relationsh 9-9

9.2.2 Hierarchy of Relationship Interfa.9-10
9.2.3 Hierarchy of Role Interfac...............9-10
9.2.4 Interface Summar.....................911
The Base Relationship Mod . C c.....9-13
9.3.1 Relationship Attrlbmes and Oprat|on< ... 9-14
Rationale. 9-15

9.3.2 Higher Degree Relationshi..............9-15
Rationale. 9-15

9.3.3 Operations. 917
Creation. 9-17

Navigation. 9-18

Destruction. i 9-18

9.3.4 Consistency Costraints.9-18
9.3.5 Implementation Strategit. 9-19
9.3.6 The CosObjectldentity Modu9-19
The IdentifableObject Interfac. 9-19

constant random_................... 9-20

is_identical 9-20

9.3.7 The CosRelationshs Module . co.....9-20
Example of Containment Relat|onsh|. .. 923

The RelationshipFactory Interfac. 9-23

The Relationship letface 9-25

Destroying a Ret@onship. 9-26

The Role Interface. 9-26

The RoleFactory Interfac. 9-30

The Relationshipérator Interfice 9-32

Graphs of Related Objer.9-33
9.4.1 Graph Architectur.9-33
Nodes 9-35

9.4.2 Traversing Graphs of Related Obje 9-35
Detecting and Representing Cyc 9-35

Detemining the Relevant Nodes and Edge9-36

CORBAservices November 1997

Contents

CORBAservices

November 1997

9.4.3 Compound Operatiot9-36

9.4.4 An Example Traversal Criter.9-37
Propagatior. 9-37

9.4.5 The CosGraphs Modu . ce e9-38

The TraversalFactoryﬂerface 9-41

The Travesal Interface. 9-42

The TraversalCriterianterface. 9-43

The Noddnterface. 9-44

The NodeFetory Interface. 9-46

The RoleInterface................... 9-46

The Edgekrator Interce 9-47

9.5 Specific Relationshif . e 9-47
951 Contamment and Referer ce......9-48

9.5.2 The CosContainment MOdL. ..., .9-48

9.5.3 The CosReferenceModt.9-50

96 Reference.................. ... 951
10. Transaction Service Sgcification 10-1
10.1 ServiceDescriptior . . .10-2
10.1.1 Overview of Transactlor v, 102

10.1.2 Transactional Appllcatlor. A K 0 EC

10.1.3 Definitions. c ... 10-3
Transactlonal Cllen 10-4

Transactional Objec. 104

Recoverable Objects and Resourcegdty 10-5

Transactional Serve. 10-6

Recoverable Serve. 10-6

10.1.4 Transaction Service Functional10-6
Transaction Models. 10-6

Transaction Ternmation. 10-7

Transaction Integrit. 10-8

TransactionConte>. 10-8

Synchrorzation 10-8

10.1.5 Principles of Functin, Design, and Performar10-8
Functional Requirement. 10-9

Design Requements. 10-10

Performace Requirements. 10-11

10.2 Service Architectur.10-12
10.21 TypicalUsag........................10-13

10.2.2 TransactionConte10-13

10.2.3 Context Manageme10-14

10.24 Datatype: 10-15

10.2.5 Structure . .. 10-15

10.2.6 Exceptlon‘ e . .10-16
Standard Exceptlon 10-16

Heuristic Exceptins. 10-16
WRONG_TRANSACTIONException . .. 10-17

Xi

Contents

Other Exceptions. 10-17

10.3 Transaction Service Intlrces. . . . 10-17
10.3.1 Current Interfac.10-18
begin......... L 10-19

commit 10-19

rollback L. 10-19

rollback only 10-20

get status., 10-20

get transacbn_name. 10-20

set timeou........................ 10-20
getcontrol........................ 10-20

suspend. 10-20

FESUME. . oot e e i e e 10-21

10.3.2 TransactionFactory Interfa10-21
create. 10-21

recreateé. 10-22

10.3.3 Control Interfac.10-22
get terminatol. 10-23

get coordinato., 10-23

10.3.4 Terminator Interfac.10-23
commit 10-23

rollback L. 10-24

10.3.5 Coordinator Interfac..................10-24
get status., 10-25

get parent stat.. 10-26

get top level statt................. 10-26

is same transactic................. 10-26
is_ancestor_transactic. 10-26

is_descendant transactic. 10-26
is_related_transactio. 10-27

is_top_level transactio............... 10-27
hash_transactiol. 10-27
hash top level tre.................. 10-27
register_resourc. 10-27
register_synchronizatio. 10-28
register_sulbban_aware. 10-28

rollback only. 10-28

get transacbin_name................ 10-28
create_subtransactic................ 10-28

gettxconte». 10-29

10.3.6 Recovery Coordinator Interfa..10-29
replay_completior.................. 10-29

10.3.7 Resourcelnterfac....................10-29
prepare 10-30

rollback 10-31

commit ... 10-31
commit one _phas.................. 10-31

forget....... 10-32

10.3.8 Synchronization Interfac.10-32
before_completior.................. 10-32
after_completior. 10-32

Xii CORBAservices November 1997

Contents

10.3.9 Subtransaction Aware Resourcgdrface. .. .10-33

commit_subtransactio. 10-33
rollback_subtransactio............... 10-33
10.3.10TransactionalObject Interfa.10-34
10.4 The User’s View. .. ceee......10-34
10.41 Application Programming Mdel<10-34
Direct Context Management: Epr|C|t
Propagatior. 10-35
Indirect Context Management: Implicit
Propagatior. 10-35
Indirect Context Management: Explicit
Propagatior. 10-35
Direct Context Management: Implicit
Propagatior. 10-35
10.4.2 Interfaces . - ceevo.o.....10-36
10.4.3 Checked Transaction Behav ce.....10-36
10.4.4 X/Open Checked Transactio............10-37
ReplyCheck....................... 10-37
CommitCheck..................... 10-37
ResumeChecl..................... 10-38
10.4.5 Implementing a Tansactional Gént: Heurstic
Completions. . .. ce........10-38
10.4.6 Implementing a Recoverableeﬁler ... 10-38
Recoverable Obje.. 10-38
ResourceObjec. 10-39
Reliable Server. 10-39
10.4.7 Application Portability.10-39
Flat Transaction. 10-39
X/Open Cheked Transaction. 10-40
10.4.8 Distributed Transactior.10-40
10.4.9 Applications Using Both Checked and Unchecked
Services . . 10-40
10.4.10Examplet. . . . 10-40
A Transaction Originator Indirect and
Implicit 1041
Transaction Origintar: Directand Explicit 10-41
Example of a Recoverable Sen. 10-42
Example of a Transactional Obje. 10-43
10.4.11Model Interoperabilit10-44
Importing Transaction. 10-44
Exporting Transaction. 10-46
Programming Rule:. 10-46
10.4.12Failure Model.. T 0 1
Transaction Onginato 10-47
Transactional Serve. 10-48
Recoverable Serve. 10-48
10.5 The ImplementersView . . i10-48
10.5.1 Transaction Serwce Protoa cee e10-49

CORBAservices November 1997 Xili

Contents

Xiv

General Principle. 10-49
Normal Transaction Cophetion 10-50
Failuresand Recovery................ 10-57
Transaction Copletion after Faure 10-57
10.5.2 ORBI/TS Implementation Consideratic.10-60
Transaction Propagatic. 10-60
Transaction Service Interoperati. 10-61
Transaction Service Portabili. 10-63
10.5.3 Model Interoperabilit.................10-67
10.6 The CosTransactionsModt.10-69
10.6.1 The CosTSPortability Modu10-73
Xxeopen......... 10-75
tx close......... 10-75
tXx begin 10-75
tx_ rollback 10-75
tx_ocommitand tx_set commit_retu. 10-75
tx_set_transaction_contr............. 10-76
tx_set transaction_timeo. 10-76
tx info.......... .. 10-76
OSI TP Transaction Identifie. 10-81
Inconing OSI TP Comunications (Imported
Transactions. 10-81
Outgoing OSI TP Communications (Exported
Transactions. 10-82
LU 6.2 Transaction Identifiers. 10-82
Incoming LU 6.2 Comnmunicatons 10-83
Outgoing LU 6.2 Comunications. 10-83
ODMG Standarc. 10-83
Integration of MG ODBMSs with the
Transaction Service. 10-84
11. Query Service Specificatior. 11-1
11.1 ServiceDescriptior. 114
11.1.1 Overview oo i i 1141
11.1.2 Design Principle.11-1
11.1.3 Architecture11-2
Query Evaluators: Nesting and Federal.on11-3
Collectons, 11-4
Queryable Collections for Scope and ResL11-5
QueryObjects. 115
11.14 Querylanguagé.11-6
SQLQUENY . .ot 11-7
OQL i 11-7
SQLQuery=0QL................... 11-8
11.15 KeyFeature.119
11.2 ServiceStructur.11-10
11.21 Overview 11-10
Type One: Collections.11-10
Type Two: Query Frameworl 11-10
11.2.2 Collection Interfce Stucture.11-10

CORBAservices November 1997

Contents

11.2.3 Query Framework Integice Hierarchy/

Structure.11-10
11.2.4 Interface Overviev.11-11
11.3 The Collection Mode . c A I % 24
11.3.1 Common 1ypes ofCoIIect|0n< ce ... 11412
11.3.2 lIterators. . 1112
11.4 The CosQueryCoIIectlon ModL. . I
11.4.1 The CollectionFactory Interfat. I Y
Creating a Coliction 11-16
11.4.2 The Collection Interfac.11-16
Deteminingthe Cardinality. 11-16
AddinganElemen. 11-16
Adding Elements from a Collectio. 11-17
Inserting arElement. 11-17
Replacingan Elemer. 11-17
Removingan Elemer. 11-17
Removing allElement. 11-18
Retrievingan Elemen. 11-18
Creating anteratol. 11-18
11.4.3 The lterator Interfac . .. ce.....11-18
Accessing the Current Eleme 11-18
Resetting the lteratio. 11-19
Testing for Completion of an Iteratic. . . . 11-19
11.5 The Query FrameworkMod11-19
11.5.1 QueryEvaluator.11-19
11.5.2 Queryable Collection.................11-20
11.5.3 Query Manager......................11-21
11.54 QueryObject.11-21
11.6 The CosQuery Modul.. . o ce...011-23
11.6.1 The QueryLanguageType Inta[fe' ... 11-24
11.6.2 The QueryEvaluator Interfac.11-25
Detemining the Supported Query
Language Type 11-25
Detemining the De&ult Query Laguage
TYype .o 11-25
Evaluatinga Quen.................. 11-25
11.6.3 The QueryableCollection Interfa. 11-25
11.6.4 The QueryManager Interfa.............11-25
Creating a Query Objet. 11-26
11.6.5 The Query Interfac . : .. .11-26
Detemmlngthe Assmated QuenManagerll -26
Preparing the Query for Executic. 11-26
Executingthe Quen................. 11-26
Deteminingthe Query Statu:. 11-27
Obtaining the QueryResu. 11-27
11.7 Reference.............o n .0 10-27

CORBAservices November 1997 XV

Contents

Xvi

12. Licensing Service Specificatior. 12-1

12.1 Existing License Management Prodt.12-1

12.1.1 Business Polic.12-2

12.1.2 LicenseType.. 122

12.1.3 A History of License Type12-3

12.1.4 Asset Mamgemen.....................12-3

12.15 License Usageractices. 124

12.1.6 Scalability.124

12.1.7 Reliability.124

12.1.8 Legacy Application.12-5

12.1.9 Security. Cee ... 126

12.1.10 Cllent/Server Authentlcatlc12-6

12.1.11Example: Application Acqumng and Releasmg a

Concurrentleenst.12-6

12.2 ServiceDescriptior . e .12-7

12.2.1 Overwew 12-7

12.2.2 Key Components of a Llcensmg Syst . 12-8

License Attributes. 12-8

Licensing Policy. 12-8

Interfaces Isolated From Busiss Policies 12-10

12.2.3 Licensing in the CORBA Envimment12-11

12.2.4 Design Principle.12-12

12.2.5 Licensing Service Inteates.12-13

Interfaces are Mandator. 12-13

Constraints on ObjectBehavi......... 12-14

12.2.6 Licensing Event Tace Dagram.12-15

12.3 The CosLicensing Modul. . N 22 I

12.31 LlcenseSerwceManager Interf: e ... 12-19

12.3.2 ProducerSpecificLicenseService Interfi. .. .12-20

12.4 Reference...... 12-22

13. Property ServiCe.t 13-1

13.1 Overview. . e 134

13.11 SerwceDesoptlon...... I 1 |

Client’'s Model ofPropernes 13-2

Object's Model of Propertie.. 13-2

13.1.2 OMG IDL Interface Summar.............13-3

13.1.3 Summary oKey Feature13-3

13.2 Service Interface. 134

13.2.1 CosPropertySerwce |\/|OdL cee1344

DataTypes......... ..., 13-5

Exception 13-7

13.2.2 PropertySetinterfac...................139
CORBAservices November 1997

Contents

Defining and Modifying Propertie 13-9
define_propertie. 13-10
Listing and Getting Propertie. 13-11
get all property nam............... 13-11
get property value. 13-11
get _properties. 13-11
get all properties. 13-12
Deleting Properties. 13-12
delete_property. 13-12
delete_propertie. 13-13
delete_all_propertie. 13-13
Detemining If aProperty Is Already

Defined.......... 13-14
13.2.3 PropertySetDef Interfac13-14
Retrieval of PropertySet Cdmamts 13-15
get alloned_propertie. 13-15

Defining and Modifying Properties with
Modes. 13-15
define_properties_with_ mod. 13-16
Getting and Setting Property Mod. 13-17
get property mode. 13-18
set property mod. 13-18
set property mode................. 13-19
13.2.4 Propertieslterator Interfa.13-19
next one,next_.................... 13-19
Destroying the lterato 13-20
13.2.5 PropertyNamesiterator Interfa.13-20
Resetting the Positionin an Itera.. 13-20
next one,next_.................... 13-20
Destroying the lterato 13-21
13.2.6 PropertySetFactory Interfa.13-21
13.2.7 PropertySetDefFactory Interfa.13-22
14. Time Service Specificatior. 14-1
14.1 Introductior . . e 144
14.11 T|me Serwce Reqwremel . R |
14.1.2 Representationof Tim.................14-1
1413 Sourceof Tim.14-2
14.1.4 General ObjectMode¢..................14-3
14.15 Conformance Point.144
142 BasicTimeServici.14-4
14.2.1 ObjectMode144
1422 DataType.......................... 145
Type TimeT 14-6
Type Inaccuracyl. 14-6
Type TdfT. ... 14-6
Type UtcT.o 14-6
TypelntervalT 14-6
Enum ComparisonTyp 14-7
Enum TimeComparisc. 14-7

CORBAservices November 1997 XVii

Contents

xviii

Enum OverlapTypt.t 14-7
14.2.3 Exceptions 14-8
T|meUnava|IabIe 14-8
14.2.4 Universal Time Object (UTC.............14-8
Readonly attribute tim. 149
Readonly attribute inaccurac. 149
Readonly attribute td. 149
Readonly attribute utc_tin. 14-9
Operation absolute_tim............... 14-9
Operation compare_tim.............. 14-10
Operation tne_to_interva. 14-10
Operationinterva. 14-10
14.25 Time Interval Object (TIO..............14-10
Readonly attribute time_intervi........ 14-10
Operationspar.o.o.... 14-11
Operationoverlap 14-11
Operationtime 14-11
14.2.6 Time Service . . R
Operatlon umvnesal tlme 14-12
Operation secure_unm&al_nme 14-12
Operation new_univeal_time.......... 14-12
Operation uto_from ut............... 14-12
Operation new_interve. 14-13
14.3 TimerEventServic.14-13
14.3.1 ObjectMode14-13
14.3.2 Usage. e 1414
14.3.3 DataType I S
Enum TlmeType 14-14
Enum EventStatu. 14-15
Type TimerEventl. 14-15
14.3.4 Exceptions. 14415
14.3.5 Timer Event Handle c ... 1415
Attribute status 14-16
Operationtime se.................. 14-16
Operationset time 14-16
Operation candetimer. 14-16
Operationset dat.................. 14-16
14.3.6 Timer EventServic.14-16
Operationregiste. 14-17
Operation unregiste. 14-17
Operation event tim................ 14-17
14.4 Conformanci................ ... 1417
Administration of Time 14-19
Protection ofOperations and Mandatory
Audits 14-19
Synchrorzation of Time 14-19
15. Security Service Specifficatior. 15-1
15.1 IntroductiontoSecurit..........................15-1
15.1.1 Why Security®.15-1
CORBAservices November 1997

Contents

15.1.2 What Is Security". . -15-1
15.1.3 Threatsina Dlstrlbuted Object Systl ... 15-2
15.1.4 Summary oKey Security Feature.15-3
15.1.5 Goals. .. 15623
Slmpllcny 15-4

consistenc 15-4

Scalability L 154

Usability for End User. 154

Usability of Administrators. 15-5

Usability for Implementor. 15-5

Flexibility of Security Policy........... 155

Independence of Security Technolo. ... 15-5

Application Potability 15-6

Interoperability. 15-6

Performace 15-6
ObjectOrientatior. 15-6

Specific Searity Goals. 15-7

Security Architecture Goa 15-7

15.2 Introduction to the Specificatic . ceeeaee......15-8
15.2.1 Conformance to CORBA Secur ... 159
15.2.2 Specification Structur.15-10
Normative and Non normatlve Materl .. 15-10

Section Summarie. 15-11

Proofof Concef.................... 15-12

15.3 Security Refeence Mode . -15-12
15.3.1 Definition of a Securlty Reference Moc ...15-12
15.3.2 Principals and Their Security Attribut.15-14
15.3.3 Secure Object Invocatiol15-15
Establi®iing Security Assm]auons 15-16

Message Prettion. 15-17

15.3.4 Access Control Mode . .. co....15-19
Object Invocatlon Access Pohc 15-19

Application Access Polic'. 15-20

Access Policies. 15-20

15.3.5 Auditing . e 15222
15.3.6 Delegatlor .. c ... 15-24
Pr|V|Iege Dedagauon 15-25

Overview of Delegation Scheme. 15-26

Facilities Potentially Availabl. 15-26

Specifying Delgation Options. 15-29

Technology Support for Degation Options 15-29

15.3.7 Non-repudiatior......................15-30
15.3.8 Domains. . . i ... 15-32
Securlty Pollcy Domaln: 15-33

Security Environment Domair 15-35

Security Technaolgy Donains 15-36

Domains and Interopability 15-37

15.3.9 Security Management and Administrati. . . .15-38
Managing Security Policy Domair. 15-38

CORBAservices November 1997 Xix

Contents

XX

Managing Security Environment Domaiinsl15-39
Managing Security Techmayy Domains. . 15-39

15.3.10lmplementing the Mode15-40
15.4 Security Architecture. 15-40
15.4.1 Different Users Vlew of the Secunly Moc 115-40
Enterprise Manageemt View. 1541
EndUserView..................... 1541
Application Developer View. 15-42
Administrator's View. 15-42
Object System Implementofgew 15-43
15.4.2 Structural Mode. . e ... 1544
Application Component 15-45
ORB Services., 15-45
Security Services. 15-48
Security Policies and Domain Objec. . .. 15-48
15.4.3 Security Technoloc. . .. c......15-49
15.4.4 Basic Protection and Commun|cat|(....15-50
EnvironmentDomain:. 15-50
Component Protectio 15-50
15.4.5 Security Object Model15-52
The Model as Seen by Appatons 15-52
AdministrativeModel 15-69

The Model as Seen by the @bis
ImplementingSecurity 15-73
Summary of Objects inthe Mod 15-80
15.5 Application Developer’'s Intedces.15-82
15.5.1 Introduction15-82
Secunty Funct|onaI|ty Conforman 15-83
Introduction to the Interface........... 15-84
15.5.2 Finding Security Featur:. . cevveen.....15-90
Description of FaC|I|t|ef 15-90
Interfaces. L 15-90
Portability Implications 15-90
15.5.3 Authentication of Principal.15-90
Description of Facilities. 15-90
Interfaces. L 15-91
Portability Implications 15-93
15.5.4 Credential . . ceeee 001594
Descnptlon of FaC|I|t|ef 15-94
Interfaces. L 15-94
Portability Implications. 15-98
15.5.,5 Object Referenc. 15-98
Description of FaC|I|t|ef 15-98
Interfaces. L 15-99
Portability Implications. 15-102
15.5.6 Security Operationson Curre15-102
Descriptior. 15-102
Interface L. 15-103
15.5.7 SecurityAudit.15-107

CORBAservices November 1997

Contents

Description of Facilitie. 15-107
Interface L 15-107
Portability Implications. 15-109
15.5.8 Administering Security Polic...........15-109
15.5.9 Use of Interfaces foAccess Contrc. 15-109
Description of Facilitie. 15-109
Interface, 15-110
Portability Implications. 15-111
15.5.10Use of Interfaces for Delegati.15-111
Description of Facilitie. 15-111
Interface 15-112
Portability Implications. 15-112
15.5.11Non-repudiatiol . . : ceevv.....15-113
Description of FaC|I|t|e 15-113
Interface, 15-114
15.6 Administrator's Interface.15-121
15.6.1 Concept. . e - S 22
Admlnlstrators 15-122
Policy Domain 15-122
Security Policier. 15-123
15.6.2 Domain Managemer. . ceeee .. 15-123
Policy........ 15-124
Domain Manage. 15-124
ConstructiorPolicy. 15-125
Extensions to the Object Interfe. 15-125
15.6.3 Security Policies Introductio15-126
15.6.4 AccessPolicie.15-127
Rights. 15-127
AccessPolicynterfact. 15-129
Specific Invocation Access Polici. 15-130
DomainAccessPolicy Interfa. 15-130
15.6.5 Audit Policies.15-136
Audit Adm|n|3ral|on Interface 15-136
15.6.6 Secure Invocation and Delegation Polii. .:s15-138
Secure Invocation Polici. 15-139
Invocation Delegation Polic.......... 15-142
15.6.7 Non-repudiation Policy Manageme. 15-143
15.7 Implementor’'s Security Inteaices.15-145
15.7.1 GenericORB Services anmterceptor‘ .. 15-146
15.7.2 Request-Level Interceptc.............15-146
Message-Level Interceptc. 15-147
Selecting Interceptor. 15-147
Interceptor Interface. 15-147
15.7.3 Security Interceptol.15-147
Invocation Time Policie. 15-149
Secure Invocation Intercep 15-150
Access Controltercepto 15-152

15.74 Implementatlon Level Securlty Q)é:ct
Interfaces . e 15-152

CORBAservices November 1997 XXi

Contents

XXii

Vault 15-153
Security Context Obje. 15-155
Access Decision Obje. 15-158
AuditObjects. 15-159
Principal Authenticatio 15-160
Non-repudiatiol. 15-160
15.7.5 Replaceable SecurityeBvices...........15-160
Replacing Authenticatioand Security Association
Service: 15-160
Replacing Access Decision Polic. 15-160
Replacing Audit Service............. 15-161
Replacing Non-repudiation Servic. 15-161
Other Replaceabilit. 15-161
Linking to External Sagrity Services. 15-161
15.8 Security and Interoperabili15-162
15.8.1 Interoperability Mode15-163
Security Information in the Object
Referenc.. 15-164
Establitiing a Security Associati. 15-165
Protecting Messges. 15-165
Security Mechanisms for Secure
Object Invocation. 15-165
Security Mechanism Typ 15-166
Interoperating between Underlying Setur
Service 15-167
Interoperating between Security Policy
Domains. 15-167
Secure Interoperability Bridg. 15-168
15.8.2 Protocol Enhancemen................15-168
15.8.3 CORBA Interoperable Object Reference with
Security.15-168
Security Components ofthe IC. 15-169
Operational Smantics. 15-172
15.8.4 Secure ltter-ORB Protocol (SECIOF. 15-174
SECIOP Message Heat. 15-174
SECIOF 15-175
Contextld. 15-175
ContextldDefr. 15-175
Message Definition. 15-176
SECIOP Protocol State Tabl......... 15-179
15.8.5 DCE-CIOP with Securit.15-182
Goals of Secure DCE-CIC........... 15-182
Secure DCE-CIOP Overvie.......... 15-183
IOR Seurity Components for DCE-CIC F15-183
DCE RPC Security Servic 15-188
Secure DCE-CIOP Operational Semar .i15-189
Request-Level Interceptc. 15-218
Message-Level Intercept.. 15-219
Distributed TrustedComputingBas 15-249
Protection Bundaies. 15-251
Controlled Communicatior 15-252

Example Using Trusted Generation Tools and

CORBAservices November 1997

Contents

ORBs.....oo i 15-253
Commercial System with Lirted Searity

Requirement. 15-254
Higher Searity Systen. 15-254
Logging onto the Syste. 15-256

Walkthrough of Secure Object Invation . 15-256
Object and Object Referencee@tion15-257

AuthorizationPolicy Informatior 15-258
Audit Policy Informationand Audit Log:. . 15-258
Target Object Identitie. 15-259
Assumptions about Security Association

Mechanisms. 15-259
Invoking Special Objec. 15-260
Integrity of the ORBand Security Service

Objects. i 15-261

Safeguarding the Dispatching Mechan 315-262
Safeguarding Information in Sharedulta

Objects. 15-262

16. Trading Object Service Specification................ 16-1
16.1 Overview. . ¢ E 4
16.1.1 Dlver5|ty and Scalablllt‘ i ... 16-3

16.1.2 LlnklngTrader<.......................16-3

16.1.3 Policy. . . 163

16.1.4 Addltlonal ObjectID ... 1644

16.2 ConceptsandDataTyp........................16-4
16.21 Exportet.164

16.2.2 Importer . Y

16.2.3 Service Type 164

Service Type Mode 16-5

16.2.4 Propertie . N I Y4

16.2.5 Service Offer C. T 1 14
Modmable Propertles 16-8

Dynamic Properties. 16-8

16.2.6 Offer Identifier. . .. 21699

16.2.7 Offer Selectior. . ce cee......16-9

Standard Consirnt Language 16-9

Preference 16-10

Links 16-11
Policies......... 16-12

Trader Policies. 16-16

Link Follow Behavior. 16-16

Importer Policies. 16-17

Exporter Policiet. 16-18

Link Creation Policie.. 16-18

16.2.8 Interworking Mechanism...............16-18

Link TravesalControl. 16-18

Federated Query Examp 16-19
ProxyOffers....................... 16-20

CORBAservices November 1997 XXili

Contents

XXiV

16.2.9 Trader Attributes.16-21
16.3 Exception:. . 16-23
16.3.1 For CosTradlng modu16-23
Exceptions used in more than one
interface 16-23
Additional Exceptions for Lookup
Interface 16-24
Additional Exceptions For Register
Interface, 16-25
Additional Exceptions for Link Interfac. . 16-26
Additional Exceptions for Bxy Offer
Interface 16-27
16.3.2 For CosTradingDynamic modu. 16-27
16.3.3 For CosTradingReposmodt............16-27
16.4 Abstract Intefaces. . e 16-28
16.41 TraderComponen cee ..., 16-28
16.4.2 SupportAttribute:.16-29
16.4.3 ImportAttributes.16-29
16.4.4 LinkAttributes16-30
16.5 Functional Intefaces 16-30
16.5.1 Lookup.. . Ce ... 16-30
Query Operatlor 16-31
16.5.2 Offerlterator........................16-35
Signature. 16-35
Function. 16-36
16.5.3 Register. . ce ... 16-36
Export Operatron 16-39
Withdraw Operatior. 16-41
Describe Operatiol. 1641
Modify Operatior 16-42
Withdraw Using Constraint Operatic. . . . 16-44
Resolve Operatio. 16-45
16.54 Offeridlterator..16-45
Signhature. 16-45
Function 16-46
16.5.5 Admin. . ceve.....16-46
Attrlbutes and Set Operans 16-48
List Offers Operatior 16-48
List Proxies Opetion. 16-49
16.5.6 Link 16-49
Add L|nk Operatlon 16-51
Remove Link Operatior. 16-52
Describe Link Operatic. 16-52
ListLinks Operation. 16-53
Modify Link Operation. 16-53
16.5.7 Proxy . C ... 16-54
Export Poxy Operatron 16-56
Withdraw Proxy Operatio. 16-58

CORBAservices

November 1997

Contents

Describe Proxy Operatic. 16-59
16.6 Service ype Repositor . . c e16-59
Add Type Operatror 16-63
Remove Type Operatic. 16-64
List Types Operatior 16-64
DescribeType Opeation. 16-65
Fully Describe Type Operatio 16-65
Mask Type Operatior. 16-66
Unmask Type Operatio. 16-66
16.7 Dynamic Property Evaluation interfa.16-67
16.8 Conformance Criteri. . - .. .16-69
16.8.1 Conformance Requwements for Tradlng
InterffacesasServe.16-69
Lookup Interface. 16-70
Register Interfaci. 16-70
Admin Interfface.................... 16-70
Link Interface. 16-71
Proxy Inerface 16-71
16.8.2 Conformance Requirements for Implementation
Confomance Classe.16-71
QueryTrade...................... 16-72
SimpleTrade 16-72
Stand-alone Trade¢. 16-72
Linked Trader. 16-73
Proxy Trader. 16-73
Full-service Trade 16-73
17. Object Collection Specification. 17-1
17.1 Overview. e AT 2
17.2 Service Structur . .. N Y £ 4
17.21 Comblned Property CoIIectlo e 17-3
Restricted Access CoIIectlor 17-4
CollectionFactories 175
17.2.2 lIterators. T Y £
17.2.3 Function Interace< c Y
Collectible Elements al Type Safet) L1777
Collectible Elementsnd th Operat|ons
Interface 17-7
Collectible Elements Key Collection. .. 17-8
17.2.4 List of Interfaces Define. 17-8
17.3 Combined Collectior17-10
17.3.1 Combined Collectlons Usage Samr ..17-10
Bag, SortedBa., 17-10
EqualitySequenct. 17-11
Heap 17-11
KeyBag, KeySortedBe. 17-11
KeySet, KeySortedS. 17-12
Map, SortedMay 17-12
Relation, SortedRelatic. 17-13

CORBAservices November 1997 XXV

Contents

Set,SortedSe¢. 17-13

SequencCe. 17-13

17.4 RestrictedAccess Cllections17-14
17.4.1 Restricted Access Collectns Usage &nples. 17-14
Deque........ 17-14

PriorityQueue 17-14

QUEUE 17-15

Stack. 17-15

17.5 The CosCollectionModul17-15
17.5.1 Interface Hierarchie..................17-15
Collection Interface Hierarchie. 17-15

lterator Hiearchy 17-18

17.5.2 Exceptions ar Type Definition:.17-19
17.5.3 Abstract Collection Interface............17-21
TheCollection Interface. 17-21

The OderedCollection Interfac 17-28
TheSequentialCdéction Interface. 17-31
TheSortedCollection Interfac. 17-37
TheEqualityColection Interface. 17-37

The KeyCdlection Interface. 17-42
TheEqualityKeyCollectionnterface 17-50
TheKeySortedCollection Interfac. 17-51

TheEqualitySortedCollection Interfac. . . 17-53
The EqualityKeySortedC édction Interfac 2 17-55
The EqualitySequentialCollection Interfacil7-55

17.5.4 Concrete Collections Inteaces17-57
TheKeySet Interface. 17-57
TheKeyBag Interface. 17-57
TheMap Interface. 17-57
TheRelation Interface 17-61
The Setmterface. 17-61
TheBag Interface. 17-62
TheKeySortedSet Interfac. 17-62
TheKeySortedBag Interfac. 17-63
TheSortedMap Interface. 17-63
TheSortedRelation Interfac. 17-63
TheSortedSet Interface. 17-63
TheSortedBag Interfac. 17-64
TheSequencentterface. 17-64
TheEqualitySequence Interfac. 17-64
TheHeap Interface. 17-64
17.5.5 Restricted Access Collectiontarfaces.17-65

17.5.6 Abstract RestrictedAccessCollection Interfal7-65
TheRestrictedAccessCollection Intacke . 17-65

17.5.7 Concrete Restricted Access dettion

Interfaces17-66
TheQueue Interface. 17-66

TheDequeue Interfac. 17-67

TheStack Interface. 17-67
ThePriorityQueue Interface. 17-69

17.5.8 Collection Factory Iterface:.17-70

XXVi CORBAservices November 1997

Contents

CORBAservices

The CollectionFactornand ColectionFactories

Interfaces. L 17-71
The RACollectonFactoryand RACollection
Factories Interface. 17-74
The KeySetFaoty Interface 17-75
TheKeyBagFactory Interfac. 17-75
TheMapFactory Interface. 17-76
TheRelationFactory Interfac 17-76
TheSetFactory Interfac. 17-77
TheBagFactory Interfact. 17-77
TheKeySortedSetFactory Interfac. 17-78
TheKeySortedBagFactory Interfac. 17-78
TheSortedMapFactory Interfa. 17-79
The SortedRelationFactory Interfar. 17-79
The SortedSetFactory Interfac. 17-80
The SortedBagFactorpterface. 17-80
TheSequenceFactorytiarface. 17-81
TheEqualitySequence Factomterface . . 17-81
TheHeapFactory Interfac. 17-82
TheQueueFactory Interfac. 17-82
The StackFactory Interfac. 17-83
TheDequeFactory Interfac. 17-83
ThePriorityQueueFatory Interface. 17-83
17.5.9 lterator Intefaces.17-84
Iterators as pointer abstracti 17-84
Iterabrs and support for generic
programming.t 17-84
Iterabrs and pgormance. 17-85
TheManaged lteratorMode 17-85
The lterator Intedce 17-86
The Oderedlterator Interfac. 17-97
The Sequentialltator Interface. 17-106
The Keyterator Interface. 17-108
The Equaliylterator Interfac 17-110
The EqualityKeylrator Interfac. 17-111
The Sortedlteator Interfac. 17-112
The KeySatedlterator Interfac. 17-112
The EqualitySoddIterator Interfac. 17-114

The EqualityKeySortHiterator Interface. . 17-117
The EqualitySequentiaétator Interfac. . .17-117

17.5.10Function Interbces.17-118
The Opeations Interface. 17-118
The Command and Cqarator Interfac. . 17-122
Identificaton and astification of
Difference. 17-124
CosQueyCollection Module Detailed
Comparisol. .. .ovv v 17-126
Container...............c. v 17-133
Algorithms. 17-134
lterators. 17-134
Considerationon choic. 17-135
November 1997 XXVi

Contents

XXVili CORBAservices November 1997

Listof Figures

Figure 2-1

Figure 3-1
Figure 3-2
Figure 3-3

Figure 4-1

Figure 4-2

Figure 4-3

Figure 4-4

Figure 4-5

Figure 4-6

Figure 4-7

Figure 4-8

Figure 4-9

CORBAservices

An event channel as a collection of objects
conspiring to manage multiple simultaneous

consumerclients.2-3
A Naming Graph.32
The CosNaming Module.3-6
The Names lbrary Inteface inPIDL3-14
Push-style Communication Between ap$lier and
aConsume e AT
Pull-style Communication Between a Supplier and a
Consumel. e AT
The OMG IDL Madule CosEventComn.............4-8

Push-style Communication Between ap$lier and
an Event Channel, and a Consumer and an Event
Channel 412

Pull-style communication between a slipp and
an event channel and a consumer and the event
channel. 411

Push-style Communication Between apglier and
an Event Channel, and Pull-style Comnuation

Between a Consumer and an Event Che4-12

An Event Channel with Multlple Supplleeend

Multiple Consumers . e e Vi

A newly created event chaeh The channehas no

suppliersor consumel4-13

State diagramofapro>. 4-14
November 1997 XXIiX

XXX

Figure 4-10

Figure 4-11

Figure 4-12

Figure 4-1:
Figure 4-14
Figure 5-1
Figure 5-2
Figure 5-3
Figure 5-4
Figure 5-5
Figure 5-6
Figure 5-7
Figure 5-8
Figure 5-9
Figure 5-10
Figure 5-11
Figure 5-12

Figure 6-1

Figure 6-2

Figure 6-3

Figure 6-4

Figure 6-5

Figure 6-6

CORBAservices

The CosEventChannelAdmin Modu.4-16

Typed Push-style Comunication Betveen a

Supplieranda Consume4-20
Typed Pull-style Communication Between a Supplier
andaConsume.t 421
The IDL ModuleCosTypedEventComtr. 4-22
The CosTypedEventChannelAdmin Mdd4-25
Roles in the Persistent Object Serv5-1
Major Components of the POS arfeeir Interactons5-8
The CosPersistencePIDModL59
TheCosPersistencePOModu512
The CosPersistencePOM Modt.5-15
Example to illustrate POMFunctior5-18
The CosPersistencePDSMod5-20
Direct Access Protocolnterfaces. 521
The CosPersistencePDS_DA Modt.5-22
Structure ofaDDO.531
The CosPersistenceDDO Modt.5-32
The CosPersistenceDS_CLIModt. 535
Life Cycle servicedefines how alient cancreate

an object “overthere”6-1

Life Cycle Service defines how a client can move
or copy an object overther......................6-2

The object life cycle problem for graphs of objects is

to determine the bawaries of a giph of objects and
operate on that graph. In the above example, a document
contains a graphic and a logefers to a dictionarand
iscontainedinafolde..........................6-3

To create an objec¢bver there” a client must
possess an object ezEnce to a factory ovehere.
The client simply issues r@quest on the factory...... 6-4

An example of a document factory intace. This
interface is defined for clients aspart of application
development..6-5

To delete an object, a client must posseslgaoch
reference supporting ttLifeCycleObjec interface
and issues remove request on the objec.6-6

November 1997

Figure 6-7

Figure 6-8

Figure 6-9
Figure 6-10

Figure 6-11

Figure 6-12

Figure 6-13

Figure 8-1

Figure 8-2

Figure 8-3

Figure 8-4

Figure 8-5

Figure 8-6

CORBAservices

Life cycle serviceslefinehow a clientcan move or

copy an object from heretother.................6-7
The FactoryFinde interface can be “mixed in” with

interfaces of more pwerful finding serices..6-8
The CosLifeCgle Module6-10

The Life Cycle service novides a gneric creation

capabilty. Ultimately, implementation specific

creation code is invoked by the creation service.

The implementation specificode also supports the
GenericFactor interface........................6-15

Factores assemble resources for the execution of an
object. A minimalimplementation adleves this with
a single factorymplementation..6-19

In an administered environment, factory
implementationgan delegate the eation problem

to a generic factory. The generic factory can apply
resource allocation policies. Ultimatelythe creation
service communicates witimplementation specific

code that assembles resources forthe6-20

The copy and moveperations are pasd a

FactoryFinder to represent "there." The implementation
of the targetuses thd~actoryFinder to find a

factory obgct for ceation over there. Thgrotocol

between the object and the factory isvpte.They can
commujnicate and transfer state actogdto any
implementation-dehed protocol.6-21

Externalization control flow when streamable object
is notin a graph of related objec.84

Externalization control flow when streamable object
is a node in a graph of related obje85

Internalization control flow when object is not in a
graph ofrelatedgbects. 86

Internalization control flow when object is in a graph
of related objects.87

Object Externalization Seice Booch Class
(=Interface) Diagram.89

Client Functional Interfaces support client’s model
of externalization.8-10

November 1997 XXXI

XXXii

Figure 8-7

Figure 8-8

Figure 8-9
Figure 8-10

Figure 8-11

Figure 8-12
Figure 8-13
Figure 9-1
Figure 9-2
Figure 9-3
Figure 9-4
Figure 9-5
Figure 9-6

Figure 9-7

Figure 9-8

Figure 9-9

Figure 9-10
Figure 9-11
Figure 9-12
Figure 9-13
Figure 9-14
Figure 9-15
Figure 9-16
Figure 9-17

Figure 9-18

Figure 9-19
Figure 9-20

CORBAservices

Service Constrction Interiices support service

implementation’s model of externalizatic.

Compound Externalization Inticessupport service

implementation’s model of gph exéernalization.
The CosStream modul.

The CosCompundExternalization Module.

Internalizing a node returns tew object and the

corresponding i@s
The CosExternalizationContainment modt.
The CosExternalizationReference modt.
Base refitionships. L
Navigation functionality obaserelationships....... ..
An example graph of related obje.
Relationship intedicehierarchy
Role interface lerarchy

Simple relationship type: documentference books. .

.8-10

8-11
.8-15
.8-20

. 8-22
. 8-26
.8-28

O-7.
9-8
9-9
9-10

.9-10
.9-14

Simple relationship instance: my document references

the book “Warand Peace".

A ternary check-out relatlonshlp type weten books,
libraries and persot.

An unsatisfactory representation of the ternary

check-out relationship using binary relationst
Another unsatisfactory representati.
Creating a role for anobjec.
A fully established binaryalationship.
The CosObjectldentity Modul..
The CosRelationships Modu.9-21
Two binary one-to-many contairent relationship
An example graph of related obje.

A traversal of a gaph for compound copy operati . . .

How deep, shllow and none propagation vas

affect nodes, roles and rdlatships.
The CosGraphs Modul.

The CosContainmentModu

November 1997

.9-14

. 9-15

9-16

.9-16
.9-17
9-17

9-19

9-23
9-34
9-37

9-38

.9-39
.9-48

Figure 9-21
Figure 10-1

Figure 10-2

Figure 10-3
Figure 10-4
Figure 10-5
Figure 10-6
Figure 11-1
Figure 11-2
Figure 11-3
Figure 11-4
Figure 11-5
Figure 11-6
Figure 11-7
Figure 11-8
Figure 11-9
Figure 12-1
Figure 12-2
Figure 12-3
Figure 12-4
Figure 13-1
Figure 13-2

Figure 13-3

Figure 13-4

Figure 13-5
Figure 13-6

Figure 13-7

Figure 13-8
Figure 13-9

Figure 13-10

CORBAservices

The CosReference Modul.

Application Including Bsic Elements.

This figure illustates the major coponents and

interfaces of the Transaction Serv.
X/Openclient
XIOPEN SEIVE e
Example.
Model interoperability example.
Query Evaluators: Nesting and Federati.
Queryable Collections.
SQLQuery =0QL
Collection interbcestructure
Query Framework intéace herarchy/structure.
CosQueryCollection Module.
Query EvaluatoandQueryable Collectior
Query Manager anQuery Object
QueryLanguageyipe InterfaceHierarchy
Licensing Service Relationshiy..................
Licensing Service Instance Diagra.
Licensing Event Trace Diagra
CosLicensingManager Modul
Datatypeso

PropertySet intdace exceptions.

Operationaused to @fine new propernes or set

new value:.

Operationaused to retrieve pperty names and

values. e
Operationaused to delete pperties.

is_property_defined operatit.

Operationaused to retrieve infonation related to

CONStraint.t e e
Operationaused to éfine new propeigs or value. . . .
Operationaused to get and setqperty mode.

resetoperatior

November 1997

.....9-50
......10-4

10-12
.10-45
.10-45
.10-46
10-68
.11-3
..11-5
. 11-8
.11-10
11-11
.11-14
11-20
11-21
11-24
12-7
.12-14
12-16
. 12-17
13-5
13-7

13-9

13-11
13-12
. 13-14

13-15
13-16
13-18
.13-19

XXXiii

XXXV

Figure 13-11
Figure 13-12
Figure 13-13
Figure 13-14
Figure 13-15
Figure 13-16
Figure 13-17
Figure 14-1
Figure 14-2
Figure 14-3
Figure 14-4
Figure 14-5
Figure 15-1
Figure 15-2
Figure 15-3
Figure 15-4
Figure 15-5
Figure 15-6
Figure 15-7
Figure 15-8
Figure 15-9
Figure 15-10
Figure 15-11
Figure 15-12
Figure 15-13
Figure 15-14
Figure 15-15
Figure 15-16
Figure 15-17
Figure 15-18
Figure 15-19
Figure 15-20

CORBAservices

next_one and next_operations (properties.
destroy operatio
resetoperatior
next_one, next_n operations (PestyNames
destroy operatio
PropetySetFactory interfa.

PropertySetDefFactory interfa
General Object Model for Servic..
Object Model for Time Servic.
[llustration of Intewal Overlap
.14-13
.14-19
.15-13
.15-15
.15-15

Object Model of Tmer Event Service
Time Service and®xies
A Security model for object systen
Credential containing security attribut.
Target ObjectviaORLE.
Message pr@ction,
Accesscontrol model L
Authorizaion model
Auditing model
Delegation model.
No delegation
Simple delegatior.,
Composite delegatiol
Combined privileges@egation
Traced delegatior.
Proof of receipi.
Non-repudiation service.
Security policy domains.
Policy domain hierardes
Federated policy domair
System- and apigation-enforced policie:.

Overlapping policy domain....................15-35

November 1997

13-20
13-20
13-20
13-21
13-21

. 13-21

13-22
14-3
14-5
14-8

15-18

15-19
15-21

15-23
15-24

.15-27

15-27

15-28
15-28

15-28
15-31

.15-31
.15-33
.15-34
.15-34

15-35

Figure 15-21
Figure 15-22
Figure 15-23
Figure 15-24
Figure 15-25
Figure 15-26
Figure 15-27
Figure 15-28
Figure 15-29
Figure 15-30
Figure 15-31
Figure 15-32
Figure 15-33
Figure 15-34
Figure 15-35
Figure 15-36
Figure 15-37
Figure 15-38
Figure 15-39
Figure 15-40
Figure 15-41
Figure 15-42
Figure 15-43
Figure 15-44
Figure 15-45
Figure 15-46
Figure 15-47
Figure 15-48
Figure 15-49
Figure 15-50

Figure 15-51

CORBAservices

Framework of domain
Structural mael
ORB SEIVICES. .. o it i e e e e
Objectrefeence
Domainobjects.
Controlled relationship
Object encapsulatiol.
Authentication. o
Multiple credentials.
Changing security attribies
.15-57
.15-58
.15-59
.15-60

Making a secure invocatic.
Target object securit
Security-unaware intermétte object.
Securityaware intermediteobject
access_allowed applicatic.
get_policy application.
audit_write applicatior
Audit decision objec. o L
set_NR_faturesoperation
generate_token operatic.
Non-repudiation service.
verify_evidence operatiot.
Proof of originmessag(.
Managing security @licies
Securinginvocatins
get_policy operatior
ORB Security Seficeso.....
Accessdecision object L
Target objects siring securitynames
Object created by application or factc.

Relationship beteen main object..

November 1997

.15-37

15-45

.15-46

15-47
15-48

.15-51
15-51
. 15-53
15-55

15-56

15-61

15-62
.15-63
15-63

15-64

.15-65
.15-67
.15-68
.15-68
.15-72
15-74
15-75
15-76
A5-77
.15-79
.15-80
15-81

XXXV

XXXVi

Figure 15-52

Figure 15-53
Figure 15-54
Figure 15-55
Figure 15-56
Figure 15-57
Figure 15-58
Figure 15-59
Figure 15-60
Figure 15-61
Figure 15-62
Figure 15-63
Figure 15-64
Figure 15-65
Figure 15-66
Figure 15-67
Figure 16-:

Figure 16-:

Figure 16-3

Figure 16-4
Figure 17-1
Figure 17-2
Figure 17-3

Figure 17-4

CORBAservices

Security Functionality Implemented by Security

Service Objects.
Secure Interoperability Mode.
New CORBA 2.0Protoco.
Binding Model
Normal System Interactior.
. 15-250
.15-252
.15-253

Distributed TCB

Base Potection and Communicams.
Protection Boundariet.
Distribution of Security Functionalitand Trust . . .
IntendedUse by AccessDesion.
Supporting Overlappingdccess Policy Domait.
Hierarchical Domain.
Retrieving Granted Righ
Mutual Authenticatior.

Confidential Mesage withContext Establishme

15-148
15-164
15-174
15-217
15-248

15-260

15-273
.15-274
.15-274
. 15-275
.15-279

15-280

Fragmented GIOP Request with Context Establish 15-281

Interactons between adder and its client.

Property Strengtl.

Pipeline View of Tader Query Steps and

Cardinality Constraint Applicatio
Flow of a query through atrader graj...........
Collections IrterfacesHierarchy
Restricted Acces€ollections Interface Hierahy . .
Iterator InterbceHierarchy.

Inheritance Redtionships17-126

November 1997

... 16-1
...16-5

16-15
.16-19
17-17
A7-17
.17-18

List of Tables

Table 3-5
Table 3-6
Table 3-7

Table 3-8

Table 6-1

Table 6-2

Table 6-3

Table 8-1

Table 9-1

Table 9-2

Table 9-3

Table 9-4

Table 9-5

Table 10-1

CORBAservices

Exceptons Raised byinding Operation.
Exceptons Raised by Resolve &mtior.
Exceptons Raised by Unbin@peratior............

Exceptons Raised by Creatlmgew
Contexts .

Suggested Convemtns forFactory Finder
Keys .

Suggested Convemtns for Generic Factory

KeYS .
Suggested @eria.

Tag Byte Values and Data Formats for Basic

CORBAData Type. oo i i i e e e

InterfacesDefined in the CosObJectIdentlty
Module. e e

InterfacesDefined in the CosRationships

Module.
InterfacesDefined in the CosGraphs Modt.

InterfacesDefined in the CosGaainment

Module

InterfacesDefined in the CosRefence

Module.

Use of Transaction Service Functadity10-36

November 1997

.3-10
.3-10

. 3-11

. 6-14

6-16
. 6-17

. 8-30

. 9-11

9-11
9-12

9-12

9-13

XXXVii

XXXViii

Table 11-1

Table 12-1

Table 13-1
Table 13-2

Table 13-3

Table 13-4

Table 13-5

Table 13-6

Table 15-1

Table 15-2

Table 15-3

Table 15-4

Table 15-5

Table 15-6

Table 15-7

Table 15-8
Table 15-9
Table 15-10
Table 15-11
Table 15-12

Table 15-13

Table 15-14
Table 16-1

Table 16-2

CORBAservices

Interfaces Defined in th€EosQueryCollection

Module

Exceptions Raised by Licensing Service

Operation. i i
Property Serice Inteffaces.

Exceptions Raised by Define ©mtions.

Exceptions Raised by List and Get

PropertesOperations.

Exceptions Raised by delete peopes

Operation. i i e e

Exceptions Raised byefine Operation...........

Exceptions Raised by Get and Set Mode

Operation. i

DomairmAccessPlicy

User Privilege Attributes (NdDeflned by
This Specification . e

DomairnAccessPlicy (with Privilege

Attributes).

DomainAccessmlicy (with Delegate

Entry)o

Interface Instance.

DomairnAccessPlicy (with Required

Rights Mapping.

RequiredRights for Intesafces c1, c2

and Ca.
Standard Audit Polic.
Option Definitions.
IORExample..........
Client State Tabl.
Target State Tabl.

Association Optlon Mapplng to DCE
Security. . C .

Relationship beteenldentifiers
Preference i

Scoping Policie.

November 1997

11-12

12-19
.13-3
.13-10

A13-12

13-13
.13-17

.13-19
15-131

..15-131

15-132

15-132
15-133

15-133

15-134
.15-137
15-171
.15-172
15-179
15-181

..15-186
15-188

.16-10
16-13

Table 16-3
Table 16-4
Table 16-5

Table 17-1

Table 17-.

Table 17-3

Table 17-4

Table 17-5

Table 17-6

Table 17-7

Table 17-8

Table 17-9

Table 17-10

Table 17-11

Table 17-12

Table 17-13

Table 17-14

CORBAservices

Capability Suppaed Paolicies.
Trader Attributes.

Primary/Secondary Policy Parame

Interfaces deved from combinatins of cdlection

PrOPErties. . . o

Iterators and Collection.17-19

Collection interbces and theerator intefaces

supported.

Implementation Category Exampl

Required element andy-type specific usedefined
information for KeySetFactory. []- implied by

key compare........ i

Required element andy-type specific usedefined
information for KeyBagFactory [] |m|11d by
key compare. .

Required element andey-type specific usedefined
information for MapFactory. []- implied by

key compare.

Required element andy-type specific usedefined
information for RelationFactory.[]- implied by

key compare. i,

Required element andy-type specific usedefined

information for SetFactory.[]- implied by cqgrare.. ..

Required element andey-type specific usedefined

information for BagFactory.[]- impéd by conpare. . .

Required element andy-type specific usedefined
information for KeySortedSetFactory.[]- implied

by key compare.

Required element andey-type specific usedefined
information for KeySortedBagFactory.[]- impHt

by key compare.

Required element andey-type specific usedefined
information for SortedMapFactory.[]- implied by

key compare.

Required element andy-type specific usedefined
information for SortedRelationFactory.[]- imet

by key compare.

November 1997

.16-15

16-21
16-56

17-4

17-27
A7-72

L17-75

.17-76

.17-76

17-77

A7-77

.17-78

17-78

17-79

.17-79

17-80

XXXIX

x|

Table 17-15

Table 17-16

Table 17-17

Table 17-18

CORBAservices

Required element andey-type specific usedefined
information for SortedSetFactory. []- implied

bycompare........

Required element andy-type specific usedefined
information for SortedBagFactory. []- implied

by compare.

Required element andey-type specific usedefined

information for EqualitySequenceFacto

Required element andey-type specific usedefined
information for PriorityQueueFactory. [] - impd

by key_compare.

November 1997

.17-80

17-81

17-82

17-83

Preface

0.1 About This Document

Under the terms of the collaboration between OMG andp¥fOCo Ltd, this document
is a candidate for endorsement by X/Open, initially as a Preliminary Specificetibn
later as a full CAE Specification. The collaboratmiween OMG and X/Open Co Ltd
ensures joint review and cohesive support for emerging object-bBpsedications.

X/Open Preliminary Specifications undergo close scrutiny through a review process at
X/Open before publication and are inherently staiplecifications. Upgrade twll

CAE Specification, after a reasonable interval, takes place following further review by
X/Open. This further review considers the implementation experience of members and
the full implications of conformance and branding.

0.1.1 Object Management Group

The Object Management Group, INOMG) is an inérnational organization supported

by over 750 members, including information system vendors, software developers and
users. Founded in 1989, the OMG promotes the theorypraudice of object-oriented
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to provide a
common framework for application development. Primary goals are the reusability,
portability, and interogrability of object-based software distributed,heterogeneous
environments. Conformance to these specifications will make it possible étope
heterogeneous applications environment across all majowhegcphtforms and

operating systems.

OMG's objectives are to foster the growth of object technologyirghukenceits
direction by establishing the Object Management Architecture (OMAE OMA
provides the conceptuaifrastructureupon which all OMGspecifications are based.

CORBAservices November 1997 xli

xlii

0.1.2 X/Open

X/Open is an independent, worldwide, open systems organization supported by most of
the world's largest information systesuppliers, user organizations and software
companies. Its mission is to bring to users greater value from compihtioggh the
practical implementation of open systems.

0.2 Intended Audience

The specifications described in this manual are aimed at software desigders
developers who want to produagplications that comply with OMG standards for
object services; the benefits of compliance are outlined in the following sectiead“N
for Object Services.”

0.3 Need for Object Services

To understand ho Object Services benefil computer vendorand users, it is
helpful to understantheir context within OMG'’s vision of object managemerite
key to understanding the structure of the architecture iReference Model, which
consists of the following components:

» Object Request Brokel, which enables objects to transparently make and receive
requests and responses in a distributed environment. It is the foundation for
building applications from distributed objects and for interability between
applications in hetero- and homogeneous environments. The architecture and
specifications of the Object Request Broker are describ CORBA: Common
ObjectRequest Broker Architecture ai@pecification.

» Object Servicey, a collection of services (interfacand djects) that support
basic functions for using arichplementingobjects. Services are necessary to
construct any distributed application and areaglsvindependent of application
domains. For example, the Life Cycle Service defines conventions for creating,
deleting, copying, and moving objects; it does digtate how the objects are
implemented in an application. Specifications for Object Services are contained in
this manual.

» Common Facilities, a collection of services that many applications may share,
but which are not as fundamental as the Object Services. For instance, a system
management or electronic mail féy could be classified as a common facility.
Informationabout Common &cilities iscontained irCORBAfacilities: Common
Facilities Architecture.

» Application Objects, which are products of a single vendor on in-house
development group which contrdlseir interfaces. Applicatio®bjects
correspond to the traditional notion of applications, so they are not standardized
by OMG. Instead, Application Objects mstitute the uppermost layer of the
Reference Model.

The Object Request Broker, then, is the core of the Reference Model. Nevertheless, an
Object Request Broker alone cannot enatleroperability at the application semantic
level. AnORB is like a telephone exchange: it provides the basic mechanism for
making and receivingalls but does not ensure meaningful communication between

CORBAservices November 1997

subscribers. Meaningful, productive communicatipends on additional interfaces,
protocols, and policies that are agregmbn outside the telephone system, such as
telephones, modems and directory services. This is equivalent to the role of Object
Services.

0.3.1 What Is anObject Service Specification?

A specification of an Object Service usually consists of a set of interfacka

description of the service’'s behavior. The syniaed to specify the interfaces is the
OMG Interface Definition Languac(OMG IDL). The semaiits that specify a

services’s behavior are, in general, expressedrins ofthe OMG Object Model. The
OMG Object Model is based on objects, operations, types, and subtyping. It provides a
standard, commonly understood setarims with which to describe a service’s

behavior.

(For detailed informatiorabout the OMG Reference Model and the OMG Object
Model, refer to theObject Management Architecture Guide).

0.4 Associated Documents

The CORBA documentation set includes thBowing books:

 CORBA: Common Object Request Broker Asgdture andSpecificationcontains
the architecture and specifications for the Object Request Broker.

» CORBAservices: Common Object Services Specificcontains specifications
for the object services.

» CORBAfacilities: Common Fdities Architecturecontains information about the
design of Common Facilites; it provides tiramework for Common Facility
specifications.

» ObjectManagement Khitecture Guidedefines the OMG's technical objectives
and terminology and describes the conceptual mogmia which OMG standards
are based. It al:iprovides information about the policiesd procedures of
OMG, such as howtandards are proposed, evaluated, and accepted.

OMG collects information foeach book in the documentation set by issuing Requests
for Information, Requests for Proposads)d Requests fatomment and, with its
membership, evaluating the responses. Specificationsdamed as standards only
when representatives of the OMG membership accept them as such by vote.

To obtain books in the documentation set, or other OMG publications, refer to the
enclosed sukcription card or contact thObject Management Group, Irat:
OMG Headquarters
492 Old Connecticut Path
Framingham, MA 01701
USA
Tel: +1-508-820-4300
pubs@omg.org
http://www.omg.org

Preface Associated Documer November 1997 xliii

0.5 Structure of this Manual

In addition to this prefac CORBAservices: Common Object Servicontains the
following chapters:

Overview provides an introduction to the CORBA object services, including a
summary of features for each service.

General Design Principlesprovides information about the principles that were used in
designing each service; explains the dependencies among services; and explains how
Object Services relate to each other, CORBA, and industry standards in general.

Chapters 3 through 16 each contain a specification for the following Object Services:
* Naming
* Event
» Persistent Object
* Life Cycle
e Concurrency Control
» Externalization
» Relationship
» Transaction
* Query
* Licensing
* Property
» Time
e Security
» Trading
 Collections

0.6 Acknowledgements

The following companies submitted parts of the specifications that werevaplphby
the Object Management Group to beccCORBAservices:

AT&T/Lucent Technolgies
AT&T/NCR

BNR EuropeLimited
CooperativeResearch Centre f@istributed Systems dchnology (DTSC Pty Ltd.)
Digital Equipment Corpa@tion
Expersoft @rporation
Gradient Technologies, Inc.
Groupe Bull

Hewlett-Packard Company
HyperDesk Corporation

ICL PLC

Ing. C. Olivetti & C.Sp

xliv CORBAservices November 1997

International Business Machir Corporation
International Computers Liited

lona Technologies Ltd.

Itasca Systems, Inc.

Nortel Limited

Novell, Inc.

02 Technologies, SA

Object Design, Inc.

Obijectivity, Inc.

Odyssey Research Associates, Inc.
Ontos, Inc.

Oracle Corporation

Persistence Software, Inc.

Servio Corporation

Siemens Nixdorf Informationssysteme AG
Sun Mcrosystems, Inc.

SunSoft,Inc.

Sybase, Inc.

Taligent, Inc.

Tandem Computers, Inc.

Teknekron Softare Systems, Inc.
Tivoli Systems, Inc.

Transarc Corporation

Versant Object Technology Caation

Preface Acknowledgemer November 1997 xlv

xIvi CORBAservices November 1997

Overview 1

1.1 Summary of Kelyeatures

1.1.1 Naming Service

The Naming Service provides the ability to bind a name to an object relative to a
naming catex. A naming context is an object that contains a set of name bindings
in which each name is unique. resolve a nan is to determine the object
associated with the name in a given context.

Through the use of a very general model drdling with names in their structural
form, naming service implementations can be application §pecibe based on a
variety of naming systems currently available on system platforms.

Graphs of naming contexts can be supported in a distributed, federated fashion. The
scalable design allows tlistributed, heterogneousmplementatiorand
administration of names and name contexts.

Because name component attribute values arasgined or interpreted by the
naming service, higher levels of software are not constraingstrims ofpolicies
about the use and managemenattfibute values.

Through the use of a “names library,” name manipulatiaginglified andnames
can be made representation-independent thus allowing their representation to evolve
without requiring client changes.

Application localization is facilitated by name syntaxiépendence and the
provision of a name “kind” attribute.

CORBAservices November 1997 1-1

1.1.2 Event Service

® The Event Service providdsasic capaliities thatcan be configured together in a
very flexible and powerful manner. Asynchronous events (decoupled event
suppliers and consumers), evéfan-in,” notification “fan-out,” and (through
appropriate event channiehplementations) reliable event delivery are supported.

® The Event Service design ssalable and is suitable fdistributed environments.
There is no requirement for a centralized server or dependenayyoglobal
service.

® The Event Servicenterfaces allow implementations thaovide different qualities
of service to satisfy different application requirements. In addition, the event
service does not impose higher level policies (e.g., specific event types) allowing
great flexibility on how it isused in a given application environment.

® Both push and pull event delivery models are supported: that is, consumers can
either request events or be notified of events, whichever is needetify
application requirements. There canrbeltiple consumers and multiple suppliers
events.

® Supplers can generate events withdambwing the identities of the consumers.
Conversely, consumers can receive events witknowing the identities of the
suppliers.

® The event chamel interfacecan be subtyped to support extended capabiliiibs.
event consumer-supplier interfaces syenmetric,allowing the chaining of event
channels (for example, to support various event filtering models). Event channels
can be chained by third-parties.

® Typed event channels extebdsic event channels to support typetraction.

® Because event gpliers, consumers arghannels are objects, advantage can be
taken of performance optimizations provided by ORB implementations for local and
remote objects. No extension is required to CORBA.

1.1.3 Life Cycle Sevice

® The Life Cycle Service defines conventions for creating, deleting, copying and
moving objects. Because CORBA-based environments sudistributec objects,
life cycle services define servicaad conentions that allow clients to perform life
cycle operations on objects in different locations.

® The client's model o€reation is defined iterms offactory objects. A factory is an
object that creates another object. Factoriesnoi special objects. As with any
object, factories have well-defined OMG IDL interfaces and implementations in
some programming language.

® The Life Cycle Service defines an interface for a generic factory. This allows for
the definition of standard creation services.

® The Life Cycle Service definesLifeCycleObjec interface. This interface defines
remove, copy and move efations.

CORBAservices November 1997

The Life Cycle Service has been extended to support compdfencytle
operations on graphs of related objects. Compound objects (graphs of objects) rely
on the Relationship Service for the definition of object graphs.

1.1.4 Persistent Object Service

The Persistent Object Service (POS) provides a set of common interfaces to the
mechanisms used for retaining and managing theigient state of objects.

The objectultimately has the responsibility of managing its state, but can use or
delegate to the Persistent Object Service for the astordd. A major feature of the
Persistent Object Service is @gpenness. In this case, that means that there can be a
variety of different clienteandimplementations of the Persistent Object Service,

and they can work together. Thisparticularly important for storage, where
mechanisms useful for documents may not be appropriate for employee databases,
or the mechanisms appropriate for mobile computers do not apply to mainframes.

1.1.5 Transaction Service

The Transaction Seite supports multiple transaction models, includingfthe
(mandatory in the specification) and nested (optional) models.

The Object Tansaction Service supports interoperabitigtween different
programming models. For instance, some users waaddabjectmplementations
to existingprocedural applicationand to augment objeanplementations with
code that uses the procedural paradigm. To do so in satthon environment
requires the object and procedural code to share a singsadtam.

Network interoperability is also supported, since users maadmunication
betweendifferent systems, including the ability tave one transaction service
interoperate vth a cooperating transaction service using different ORBs.

The Transaction Seice supports botimplicit (system-maaged transaction)
propagation and exiplt (application-managed)rppagation. Withmplicit

propagation, transactionbehavior is not specified in the operation’s signature.
With explicit propagation, applications define their own mechanisms for sharing a
common transaction.

The Transaction Seice can beémplemented in a TP monitor environntgso it
supports the ability to execueultiple ransactions concurrently, and to execute
clients, servers, and transaction services in separate processes.

1.1.6 Concurrency Control Seice

The Concurrency Control Service enabladtiple clients to coordinate their access

to shared resources. Coordinating access to a resource means thatultipda,
concurrent clients access a single resource, any conflicting actions by the clients are
reconciled so that the resource remains in a consistent state.

Overview Summary of Key Featur November 1997 1-3

1-4

Concurrent use of a resource is regulated with locks. Each lock is associated with a
single resource and a single client. Coordination is achieved by preventing multiple
clients from simultaneously possessing locks for the same resource if the client's
activities might conflict. l¥nce, a client must obtain an appropriate lock before
accessing a shared resource. The Concurrency Control Service defines several lock
modes, which corregmd to diferent categories of access. This variety of lock

modes provides flexible conflict resolution. For example, providing different modes
for reading and witing lets a resource suppantultiple concurrent clients on a read-

only transaction. The Concurrency Control Service also defines Intention Locks that
support locking amultiple levels of granularity.

1.1.7 Relationship Swice

The Relationship &vice allows entities and relationships to be explicitly
represented. idities are represented as CORBA objects. The service defines two
new kinds of objects: relatiships and roles. A role represents a CORBA object in
a relatiorship. The Relationship interfa@an be extended to add relationship-
specific attributes and operations. In addition, relationships of arbiteagsee can

be defined. Similarly, thRole interface can be extended to add role-dpeci
attributes and operations.

Type and cardindl constraints can bexpressed and checked: exceptions are
raised when the constraints are violated.

The Life Cycle Service defines operations to copy, move, and remove graphs of
related objects, while the Relationship Service allows graphs of related objects to be
traversed withougctivating the relatedbjects.

Distributedimplemenations of the Relationship Service can have navigation
performance and availaltyf similar to CORBAobject references: role objects can
be located with their objects and need notethebon a centralized repository of
relationship information. As such, navigating a relationship can be a local
operation.

The Relationship &vicesupports the compound life cycle component of the Life
Cycle Service by defining object graphs.

1.1.8 Externalization Sevice

The Externalization Service defines protocols and conventions for externadiaohg
internalizing objects. Externalizing an object is to record the object state in a stream
of data (in memory, on a disk file, across the netwand so forth) and then be
internalized into a new object in the same or a diffepgatess. The externalized
object canexist for arbitrary amounts of time, be transported by means outside of
the ORB, and be internalized in a differedisconnected ORB. For portability,

clients can request that externalized data be stored in a file idroszt is defined

with the Externalization Service Specification.

The Externalization Service is related to the Relationship Service and parallels the
Life Cycle Service in defining externalization protocols for simple objects, for
arbitrarily related objectsand for fadities, directoryservices, and file services.

CORBAservices November 1997

1.1.9 Query Service

® The purpose of the Query Service is to allow usersodijects to invoke queries on
collections of other object§.he queries are declarative statements with predicates
and include the ability to specify values of attributes; to invoke arbitraayatipns;
and to invoke other Object Services.

® The Query Service allows indexing; maps welthe query mechanisms used in
database systems and other systems that store and access large collections of
objects;and is based oaxisting standards faguery, including SQL-92, OQL-93,
and OQL-93 Basic.

® The Query Service provides an atebture for a nested and federated service that
can coordinatenultiple, nested query evaluators.

1.1.10 Licensing Service

® The Licensing Setiee provides a mechanism for producers to control the use of
their intellectual property. Producers damplement the Licensing Service
according to their own needs, and the needbe@f customershecause the
Licensing Service does not impose it own business policies or practices.

® Alicense in the Licensing Service has three types of attributes that allow producers
to apply controls flexiblytime; value mappin, andconsume. Time allows licenses
to have start/duration and expiration dates. Value mapping allows producers to
implement a licensing scheme according to units, allocation (through concurrent use
licensing), or consumption (for example, metering or allowance of grace periods
through “overflow licenses.”) Consumattributesallow a license to be reserved or
assiqed for sgcific entities; for example, a licenseuld be assigned to a
particular machine. Theicensing Service allows producers to combine and derive
from license attributes.

® The Licensing Seie consists of iLicenseServiceManac interface and a
ProducerSpecificLicenseServ interface: these interfaces do not impose business
policiesupon mplementors.

1.1.11 Property Service

® Provides thability to dynanically associate named values with objects outside the
static IDL-type system.

® Defines operations to create and manipulate sets of name-value pairs or name-
value-mode tuplesThe names are simple OMG IDL stringghe valuesare OMG
IDL anys. The use ofype any is significant in that it allows a property service
implementation to deal with any value that can be represented in the OMG IDL-
type system. The modes are similar to those defined ilnterface Repository
AttributeDef interface.

® Designed to be a basic building block, yet robustugih to be applicabltor a
broad set of applications.

Overview Summary of Key Featur November 1997 1-5

® Provides “batch” operations to deal with sets of properties as a whole. The use of
“batch” operations is significant in that the systems aetivork management
(SNMP, CMIP, ...) commnities have proven such a need wherating with
“attribute” manipulation in a distritted environment.

® Provides exceptions such ttPropertySe implementors may exercise control of (or
apply castraint: to) the nameand types of prperties associated with an object,
similar in nature to the control one wld have with CORBA attributes.

® Allows PropertySe implementors to restrict modification, addition and/or deletion
of properties (readonly, fixedimilar in nature to the restrictiorme would have
with CORBA attributes.

® Provides client access and control of doaiats and property modes.

® Does not rely on any other object services.

1.1.12 Time Service
® Enables the ser to obtain current time together with an egstimate associated
with it.
® Ascertains the order in which “events” occurred.
® Generates time-based events basetimarsand aarms.
® Computes théntervalbetween two events.

® Consists of two servicetience defines two service interfaces:
» Time Service manages Universal Time Objects (UTOs) and Time Intebjat®
(T1Os), and is represented by {TimeServic interface.
e Timer Event Service manages Timer Event Handler objects, and is represented by
the TimerEventServic interface.

1.1.13 Security Service

The security functionality defined by this specification comprises:

® |dentification andauthentication of principals (human users and objects which
need to operate und#reir own rights) to verify they are who they claim to be.

® Authorization andacces:control - deciding whether a principal can access an
object, normally using the identity and/or other privilege attributes of the principal
(such as role, groups, security clearance) and the control attributes of the target
object(stating which principals, or principals withhich attributes)can access it.

® Security auditing to make users accountable for their security related actions. It is
normally the human user who should be accountable. Auditing mechanisms should
be able to identify the user correctByenafter a chain of calls through many
objects.

CORBAservices November 1997

1

® Security of communicatior between objects, which is often over insecure lower
layer communications. This requires trust to be established between the client and
target, which may requirauthentication of clients to target: andauthentication
of targets to clients. It also require integrity protection and (optionally)
confidentiality protection of messages in trandietween objects.

® Non-repudiation provides irrefutable evidence of actions such as proof of origin of
data to the recipient, or proof of receipt of data to the sender to protect against
subsequent attempts to falsely deny the receiving or sending of the data.

® Administration of security information (for example, security policy) is also
needed.

1.1.14 Object Trader Service

The Object Trader Service provides a matchmaking service for objects.

The Service Provider registers the availapibf the service by moking an export
operation on the trader, passing as parameters information about the offered service.
The export operation carries an object rafeethat can be used by a client to invoke
operations on the advertised services, a description of the type of the offered service
(i.e., the names of the operations to which it will respond, along with their parameter
and result types), information on the distinguishing attributes of the offered service.

The offer space managed by traders may bgtipaned to easadministration and
navigation. This information is stored persistently by the Tradéenever a potential
client wishes to obtain a reference to a service that does a particular job, it invokes an
import operation, passing as parameters a description of the service reqied. G

this import request, the Trader checks appropriate offers for acceptability. To be
acceptable, an offenusthave a type that e¢dorms to that requested and have
properties consistent with the constraints specified by an imported.

Trading service in a single trading domain may be distributed over a number of trader
objects. Traders in different domains may be federated. Federation esyditass in
different domains to negate the sharing of services without losing control of their
own policiesand services. A domain can thus share information with other domains
with which it has leen federated, and it can now be searched for appropriate service
offers.

1.1.15 Object Collections Seice

Collections aregroups of objects which, as a group, support sopgaiionsand

exhibit specific behaviors that are related to the nature of the collection rather than to
the type of object they contain. Examples of collections are satsieg, stacks, lists,
binary, and trees. The purpose of tha@l€ction Object Service is to provide a uniform
way to create and manifate the most common collections generically.

Examples of collections are sefgjeues, stacksists, binary,and trees. For example,
sets might support the following operations: insert new element, membership test,
union, intersection, cardinality, equaligst, emptiesstest, etc. One of theefining

Overview Summary of Key Featur July 1997 1-7

1-8

semantics of a set is that, if an object O is a member of a set S, then inserting O into S
results in the set being unchanged. This property would not hold for acotreation
type called a bag.

CORBAservices November 1997

General Design Principles 2

This chapter discusses the principles that were considered in designing Object Services
and their interfaces. It also addresdependencies between Object Services, their
relationship to CORBA, andheir conformance to existing standards.

2.1 Service Design Principles

2.1.1 Build on CORBA Concepts

The design of each Object Service uses and builcCORBA concepts:
e Separation of interface archplementation
» Object references are typed by interfaces
 Clients depend on interfaces, niwiplementations
e Use of muiiple inheritance of interfaces
» Use ofsubtyping to extend, evolve and specialize functionality

Other related principles that the desighere to include:

» Assune good ORB and Bject Services implementatic. Specifically, it is
assumed that CORBA-compliant ORB implementations are being built that
support efficient locahnd remote access to “fine-grainbjectsand have
performance characteristics that place no major barriers to the pervasive use of
distributed objects for virtually all servi@nd gplication elements.

e Do not build non-type properties into interfaces

A discussion and rationale for the design of object services was included in the HP-
SunSoft response to the OMG Object Services RFI (OM@®Cument 92.2.0).

CORBAservices November 1997 2-1

2.1.2 Basic,Flexible Services

The services are designed to do one thing well and are omlyngslicated as they
need to be. Individual services are by themselves relatively simple yetahepy
virtue of their structuring as objects, be combined together in interestihgowerful
ways.

For example, the event and life cycle services, plus a future relationship service, may
play together to support graphs of objects. Object graphs commonly occur in the real
world and must be supported in many applicat A functionally-rich Folder

compound objectfor example, may be constructed using the life cycle, naming,
events, and futureelationship services as “building blocks.”

2.1.3 GenericServices

Services are designed to be generic in that they do not depend on the type of the client
object nor, in general, on the type of data passed in requests. For example, the event
channel interfaces accept event data of apg.tflients of the service cagrthmically
determine the actual data typad handle it approjately.

2.1.4 Allow Local andRemotelmplementations

In general the services are structured as CORBA object<OMG IDL interfaces that

can be accessed locally or remotely and wicimh have local library or remote server
styles of implementations. This allows considerable flexibility as regards the location
of participating objects. So, for example, if the performance requirements of a
particular application dictate it, objeatan be implemented to work with a Library
Object Adapter that enables their execution in the same process as the client.

2.1.5 Quality of Service is animplementatiorCharacteristic

Service interfaces are designed to allow a wide rangmmEmentationapproaches
depending on the quality of service required paaticular environment. For example,
in the Event Service, an event channel can be implemented to provide fast but
unreliable delivery of events astower but guaranteed delivery. However, the
interfaces to the event channel are the same for all implementations and all clients.
Because rules are not wired into a complex type hierarchy, develmreselect
particular implementations as building blocks and easily combine them with other
components.

2.1.6 ObjectsOften Canspire in aService

Services are typically decomposed into several distinct interfaces that provide different
views for different kinds of clients of the service. For example, the Evawic® is
composed oPushConsum, iIPullSupplie anc EventChanncinterfags. This

simplifies the way in \Wwich a particular client uses a service.

CORBAservices November 1997

2

A particular service implementatiaran support the ewstituent interfaces as a single
CORBA object or as a collection of distinct objects. This allows considerable
implementation flexibilit. A client of a service may usedifferent object reference to
communicate with each distinct service function. Conceptually, these “internal” objects
conspire to provide the complete service.

As an example, in the Event Service an event channel can providPushConsumar
andEventChanneinterfaces for use by different kinds of client.particular client

sends a request not to a single “event channel’” object but to an object that implements
either thePushConsum: andEventChannt interface. Hidden to all the clients, these
objects interact to support the service.

The service designs also use distinct objectsithplement specific service interfaces

as the means to distinguish and coordinate different clients without relying on the
existence of an object equality test or some special way of identifying clients. Using
the event service again as an example, when an event consumer is connected with an
event channel, a new object is created that supporPullSupplie interface. An

object reference to this object is returned to the event consumer edrichen request
events by invoking the appropriateesption on the new “supplier” objeddecause

each client uses different object reference to interact with tevent channel, the

event channel can keep track of and manmagéiple simultaneous clients. This is

shown graphically irtFigure 2-1.

PullConsumer)
L PushSupplier
-]
R

consumer } | / _
: supplier

PullSupplier

N’ullConsumer

|
consumer | 1

PushConsumer

event channel

PullSupplier

] A

Figure 2-1 An event channel as a collection of objects conspiring to manage multiple
simultaneous consumer clients.

Thegraphical notation shown in Figure 2-1 is used throughout this doc and in

the full service specifications. Aarrow with avertical ba is used to showhat the

target object supports the interface narbebbw the arrow and thatients holding an

object reference to it of this type can invoke operations. In shorthand, one says that the
object referace (held by the client) supports titerface. The arrow points from the

client to the target (server) object.

General Design Principles Service Design Principli November 1997 2-3

A blob (misshapen circle) delineates a conspiracy of one or more objects. In other
words, it corresponds to a conceptual object that may be composed of one or more
CORBA objects that together provide some coordinated service to potentially multiple
clients making requests using different object references.

2.1.7 Use ofCallback Interfaces

Services often emplocallback interfaces. Callback interfaces are interfaces that a
client object is required to support to enable a servicall bacl to it to invoke some
operation. The callback maye, for example, to pass back data asynchronously to a
client.

Callback interfaces have two major benefits:
® Theyclearly define how a client object participates in a service

® They allowthe use of the standard interface definition (OMG IDL) andrafion
invocation (object reference) mechanisms

2.1.8 AssumeNc Global Identifier Sgaces

Several services employ identifiers to label and distinguish vaélmmsents. The

service designs do not assume or rely on any gloleatifter service or global id

spaces in order to function. The scope of identifiers is always limited to some context.
For example, in the naming service, the scope of names fmttieular naming

context object.

In the case where a service generates ids, clients can assume that an id is unique withir
its scope but should not make any othssumption.

2.1.9 Finding a Service is Orthogonal toUsing It

Finding a service is at a higher level and orthogonal to using a service. These services
do not dictate a particulapproach. They do not, for example, mandate dHat

services must be found via the naming service. Because services are structured as
objects there does not need to be a special way of finding objects assodiated w
services - general purpose finding services can be used. Solutions are anticipated to be
applicationand policy specific.

2.2 Interface Style Consistency

2.2.1 Use ofExceptions anReturn Cades

Throughout the serviceexceptions are used @usively forhandling exceptional
conditions such as error returns. Normal return codes are passed back via output
parameters. An example of this is e of a DONE return code to indicate iteration
completion.

CORBAservices November 1997

2.2.2 Explicit VersusImplicit Operations

Operations are always explicit rather than implied e.g. by a flag passed as a parameter
value to some “umbrella” operation. In other words, there is always a distinct operation
corresponding to each distinct function of a service.

2.2.3 Use ofInterfacelnheritance

Interface inheritanc(subtyping) is used whenever one can imagine that client code
should depend on less functionality than thk interface. Services are often
partitioned into several unrelated interfaces when it is possitgartiion the clients
into different roles. For example, an adistrative interface is often unrelated and
distinct in the type system from the interface used by “normal’ clients.

2.3 Key Design Decisions

2.3.1 NamingService: Distinct from Property and Trading Services
The Naming Service is addressed separately frroperty and trading services

Naming contexts have somarslarity to property lists(that is, ists of values

associated with objectsdhgh not necessarily part of the adije stat). The Naming
Service in generaalso has lements in common with a trading service. However,
following the “Bauhaus” principle of keeping services as simple and as orthogonal as
possible, these services have been kepindisand are being addressed separately.

2.3.2 Universd Object Identiy

The servicesdescribed in this manudo not require the concept of object ider. ity

2.4 Integration with future Object Services

This section discusses how the Object Services could evolve to integrate with future
services, such as:

* Archive

» Backup/Restore

e Change Management (Versioning)
» Data Interchange

* ImplementationRepostory

* Internationalization

* Logging

e Recovery

* Replication

e Startup

General Design Principles Key Design Decisiol July 1997 2-5

2.4.1 Archive Service

Persistent Object Service The Archive Service copies objects from an
active/persistent store to a backup store and vice versa. This service should be able to
archive objects stored with the Persistent Obg=awice.

Externalization Service.The Archive Service copies objedtem an active/persistent
store to a backup store and vice versa. This service could use the Externalization
Service to get the internal state of objects for saving and to subd§qrecreate

objects with this stored state. If only persistent objects need to be archived, then the
Object Persistence Service could be used instead.

2.4.2 Backup/Restore Service

Externalization Service. The Backup/Restore Service provides recovergradt
system failure or a user error. This service could use the Object Externalization Service
as an underlying mechanism for objects regardless of whether they are persistent.

Persistent Object Service The Backup/Restore Service provides recoadtgr a
system failure or a user error. This service could use the Persistent Object Service as
an underlying mechanism for persistent objects.

Transaction Service. Thepermanence of effe property of a transaction implies that

the state established by the commitment of a transaction will not be lost. To guarantee
this property, the storage media on which the objects updated by the transaction are
stored must be backed-up to secondary storage to ensure that they are not lost should
the primary storage media fail. Similarly, the storage media used by the logging
service must be restorable should the media fail. Since thersudtiple components

which require backup services, a singieerface would bexdvantageous.

2.4.3 Change Management Service

Persistent Object ServiceThe Change Management Service supports the
idenftfication and consistent evolution of objects including version and configuration
management. This service showdrk with thePersistent Object Service to allow
persistent objects tevolve from the old to new versions.

2.4.4 Data Interchange Service

Persistent Object Servic. The Data Interchange Service enables objects to exchange
some or all of their associated state. This service shooitkl with Persistent Object
Service to allowstate to beechanged when one or more of the objects amsigtent.

2.4.5 Internationalizatiol Service

Naming Service.Naming Service interfaces may also need to be exter(for|
example, he structure of names extended, additional name resolution operations
added)to better support representiand resolvinchamesfor some languages and
cultures.

CORBAservices November 1997

2.4.6 Implemeantation Repository

Persistent Object Servic. The Implementation Repository supports the management
of objectimplemenations. The Persistent Object Service may @ep onthis to

determine what persistent data an object contains.dggendency is at the
implementation level.

2.4.7 Interface Repository

Persistent Object Servic. Thelnterface Repository supports runtime accesOMG
IDL-specified definitionssuch as object interfaces and tygedfinitions. The Persistent
Object Service depends on thisdetermine if a persistent objestipports certain
interfaces.

2.4.8 Logging Service

Transaction Service A logging service implements the abstract notion of an infinitely
long, seqentially-accessible, agend-only file. It typicallysupportsmultiple log fies,

where each log file consists of a sequence of log records. New log records are written
to the end of a log file, old log records can be reath any position in the file. To

stop log files fromgrowing toolarge for the underlying storage medium, a log service
must provide an operation to archive old log records to allow the log file to be
truncated.

Various components of a transaction processing system may require the services of a
log service:
» Transaction Service: during the two-phasenmitprotocol the Transaction
Service must log its state to ensure that the outcome of the committing transaction
can bedetermined should there beailure.
» Recoverable (transactional) objects: a log can be used to record old and new
versions of a recoverable object for the purposes of supporting recovery.
» Locking service: a log can be used to recordlocks held on an object at prepare
time to facilitate recovery.

Since there arenultiple components within a distributed transaction processing system
that require the services of a log service, a single log service interface (and potentially
server) that is shared between the components is clearly advantageous.

The correctness of a transaction serdepends upon the services of a log senfize,
this reason, the log service must meet the following requirements:

1. Restart.

A restart facility allows rapid rexvery from the cold start of an applicatiorhe
recovery service used by the application (indirectly through the application’s use of
recoverable objects) would use the restactlity to establish icheckpoir: a

consistent point in the execution state of the application from which the recovery
process can proceed. In the absence of a checkpoint the recovery service would
have to scan the erd log to ensure restart recovery occurs correctly.

General Design Principles Integration with Future Object Service July 1997 2-7

2. Buffering and forcing operatits.

A log service should provide two classes of operation for writing log records:

a. An operation to buffer a log record (the record is not written directly to the
underlying storage medium). Used during the execution of a transaction. Since
the log record is buffered the write is inexpensive.

b. An operation to force a log record to the underlying storage medised
during the two-phaseommit protocol taguarantee the correctness of the
transaction. Forcing a log record also flushes all previously written, but
buffered, log records.

3. Robustness.

The log service should ensutee consistency of the underlying storage medium in
which log files are stored. This usually involves the log service employing protocols
that update the storage in a manner that would not result in the loss of any existing
data (i.e. careful updates), along with supportnfigmroring the storage media to
tolerate media failures.

4. Archival.

A log service should provide support for archiving log records. Archival is
necessary to allow the log to be truncated to ensure that it does not grow without
bounds.

5. Efficiency.

Since the log service may be written toroyltiple components whin a
transaction, the addition of log records museHeient toavoid the bandvdth of
log from becoming a bottleneck in the sys.em

2.4.9 Recovery Service

Transaction Service.As recoverable objects are updated during a transaction, they (as
resource managers) keep a record of the changes made to their state that is sufficient tc
undo the updates should the transaction rollback. The component resptorstbls

task is termed threcovery servic: Various different forms of recovery are possible,
however the most common form is callvalue loggin(and involves the recoverable
object recording both the old and new values of the object. When a transaction is
recovered due to failure, the old value of an object is used to undo changes made to the
object during the transaction. Most recovery services employ the serviceogging

service (described ithis section) to maintain the “undahformation. The definition

of a standard recovery service interface is one posadd@&ional CORBA-compliant

object service.

2.4.10 Replication Service

Persistent Object Servic. The Replication Service provides explicit replication of
objects in a distributed environment and maits theconsistency of replicated copies.
This service could use the Persistent Object Service to manage persistent replicas.

CORBAservices November 1997

2.4.11 Startup Sevice

Persistent Object Servic. The Startup Service supports bootstrapping and
termination of the Persiste@bject Service.

2.4.12 Data Interchange Service

Externalization Service.The Data Interchange Service enables objects to exchange
some or all of their associated state. This service could use the Object Externalization
Service to allow state to be exchanged regardless of whether the objectssistipt.

2.5 Service Dependencies

The interface designs of all the services are general in natgrelo not presume or
require the existence of specific supporting software in order to implemer. An:m
implementation of thdName ®rvice, for instance, could use naming or directory
services provided in a general-purpose networking environment. For example, an
implementation may bbased on the naming services provided by ONC or DCE. Such
an implementation could provide enterprise-wide naming services to both object-based
and non-object-based clients. Object-based software would see such serviegis thro
the use of NamingContext objects.

Although the Object Services do not depenpbn specific software, some
dependencieand relationshipdo exist between services.

2.5.1 Event Service

The Event Service does not depend upon other services.

2.5.2 Life Cycle Sevice

Interfaces for theLife Cycle Service depend on the Naming Service.

ThelLife Cycle Service also defines compound operations that depend on the
Relationship Servic for the definition of object grap. Appendix A describes the
topic of compound life cycle, and its dependence on the Relationship Service, in detalil.

2.5.3 Persistent Object Service

The Externalization Service provides functions that provide for the transformation of
an object into a form suitable for storage on an external media or for transfeehetw
systems.The Rersistent Object Service uses this service as a POS protocol.

The Life Cycle Service provides operations for managing object creation, deletion,
copy and equivalence. Theersistent Object Service depends on this service for
creating and deleting all required objects.

General Design Principles Service Dependenci July 1997 2-9

The Naming Service provides mappings between user-comprehensible names and
CORBA object references. TheeRistent ObjecBervice depends ahis service to
obtain the object referenad, say, a PDS from its name o id

2.5.4 Relationship Swice

The Relationship Service does not depend on other services. Note bspleaiche
Relationship Service does not depend on any common storage service.

For guidelines about when to use Relationship Service and when to ~™CORBA
object referaces, refer to theection “The Relationship Service vs CORBA Object
References,” in Chapter 9.

2.5.5 Externalization Sevice

The Externalization Service works with the Lif@ycle Service in defining

externalization protocols for simptebjects, for artirarily relatedobjects, and for

graphs of related objects that support compd operations. (gcifically, this service

uses the Life Cycle Service to create and remove Stream and StreamFactory objects.
ORB services may be used in Stream implementations to identify InterfaaaBef
ImplementationDef objects corresponding to an externalized olajedtto support

finding an appropriate factory for recreating that object at internalization time.

The Externalization Service can also work with Relationship Service.
Implementations of Stream and StreamlO operations could use the Relationship
Service to ensure thatultiple references to the same object or circular references
don’t result in duplication of objects at internalization time or in the external
representation.

In addition, the Externalization Service accompound externilation semantics to
the containment and refereneationships in the Relationship Service. Detailed
information is provided ir“Specific Externalization Relationships” on page €.-26

2.5.6 Transaction Service

As concurrent requests are processed by an object a mechanism is requiesliate
access. This is necessary to provide the transaction property of isoldten.
Concurrency Control Service is one possibiplementation of a locking service.

The Transaction Service depends upon the Concurrency Control Service in the
following ways:
e Concurrency Control Service musipport transaction duration lockshigh
provide isolation of concurrent requests by different transactions.
» Concurrency Control Service must record transaction duration locks on persistent
media, such as a log, as part of the prepare phasenohitment.
« If nested transactions are supported by the Transaction Sthen the
Concurrency Control Service must also support locks that prosadiation

between siblings in a traaction family angrovide inheritace of locks owned
by a subransaction to its parent when the subtransamiomits.

2-10 CORBAservices November 1997

2

» Transactional clients of the Concurrency Control Service are responsible for
ensuring that all locks held by a transaction are dropfid all reovery or
commitment operationisave taken place. The drop-licks operation is provided by
the LockCoordinator interface for this purpose.

The Transaction Service suppoatomicity and durability properties through the

Persistent Object Servi (POS. TheTransaction Service canork with the IOS to

support atomic execution of operations on persistent ok Transactions and

persisence are not provided by the same service. When coordinationltple state
changes are required to persistent data, a persistence service requires a transaction
service. The POS can provigersistence, but its implementatineecs to be changed

to support transactional behavior. There are no changes to the interfaces of the POS to
support transactions. The following discussion appliesipport ofpersistence Wwen a
transaction servicis required.

Supportfor persistence can be built from other specia iservices that can also be
shared by other object services. Examples include:

* Recovery service: this supports ta@micity and durability properties.

» Logging service: this is used by the recovery servicassist insupporting the
atomicity and durabilityproperties. It is also used by the Tsaotion Service to
support thetwo-phasecommitprotocol.

» Backup and restore servidhis supports thésolation property.

This view is consistent with the X/Open DTP (Distributed Transaction Processing)
model which separates the transaction manager service (i.e. the implementation of a
generalized two-phassmmit protocol) from a resouraaanagethat provides

services for data ith alife beyond process execution. Tliermitsboth transactions

on transient objects aron persistent objects without transactions

2.5.7 Concurrency Control Seice

The Concurrency Control Service does not depend on any other service per se.
Nevertheless, it is designed to work with the Transaction Service.

2.5.8 Query Service

The Query Service does not depend on other service but is closely related to these
Object Services: Life Cycle; Persistent Object; RelationshgmcGrrency ©ntrol,
Transaction; Property; and Collection.

2.5.9 Licensing Service

The Licensing Service depends on the ExService. It may depend on the Relationship,
Property, and Query Services for some enpéntatons. This dependency is determined
by an implementation’s policy definition and entgpability. The Licensing Swice also
depends on the SedyrService, because the Licensing Serviogeifacecan useunforge-
able and secure events. The Licen:Service will use Security Service interfaces to sup-
port therequirements addressed by the challenge nmestma

General Design Principles Service Dependenci July 1997 2-11

2.5.10 Property Service

The Property Service does not depend upon atheiices; haever, it is closely
related to Collection Service.

2.5.11 Time Service

The Time Service does not depend upon other services.

2.5.12 Security Service

The Security Service does nagpkend upon other services.

2.5.13 Trader Service

The Trader Service does not depend upon other services.

2.5.14 Collections Service

The Collections Serviceads not depend upon othesrvices; however, it is closely
related to these services: Concurrency, Naming, Persistent Object, Property, and

Query.

2.6 Relationship to CORA

This section provides information about the relationshipther service to the
CORBA specification.

2.6.1 ORB Interoperability Consideratio: Transaction Service

Someimplemenétions of tle Transaction Service will support:

® The ability of a singlepplication to use both object and procedural interfaces to the
Transaction Service. This igsdcribed as part of the specification, particularly in the
sections “The User's Viewand ‘The Implementor’s View.”

® Theability for different Transaction Service implementations to interoperate across
a single ORB. This is provided as a consequence of this specification, which defines
IDL interfaces for all interactions between Transaction Sefiviggementations.

® The ability for the same Traaction Service to interoperate with another instance of
itself across different ORBs. (This ability ssipported by the Interoperéibi
specification of CORBA 2.0.)

® Theability for different Transactioservices implementations to interoperate
across different ORBs. (This ability is supported by the Interoperability
specification of CORBA 2.0.)

2-12 CORBAservices November 1997

2

® A critical dependency for Transaction Service interoperation across different ORBs

is the handling of t :propagation_context between ORBs. This includes the

following:

« Efficient transformatiorbetweendifferent ORB representations of the
propagation_context

» The ability to carry the ID information (typically an@pen XID) between
interoperating ORBS.

» The ability to do interposition tonsureefficient localexecution of the
is_same_transaction operation.

2.6.2 Life Cycle Sevice

The Life Cycle Service assumes CORBA implementat&umsort object relocation.

2.6.3 Naming Sevice

Entities thatare not CORBA objects - that is to say, not objects accessed vibjectO
RequesBrokel - are used for names (in the guisepseudo objects). In both cases the
interfaces to these entities conformcéssely as possible IOMG IDL while satisfying
the specific service design requirements, in order to emadémum flexibility in the
future. Specificay, in the Naming Service, name objects are pseliobjects with
interfaces defined in pseudDL (PIDL). Theseobjects look like CORBA objects but
are specifically desiged to be accessed usingmgramming language binding. This
is done for reasons based on the expecte cf these objec.s

2.6.4 Relationship Swice

The Relatimship Service requires CORBA Interface Repositoriesufiport theability
to dynamically determine if an InterfaceDef conforms to another Inedf; that is,
if it is a subtype. This is neededitoplement type constraints for particular
relationships.

2.6.5 Persistent Object Service

The Persistent Obje&ervice requires CORBA Interface Repositories.

2.6.6 General Interoperability Requirements

Interoperabilitybetween Object Services and users of Object Services implemented on
different ORBs requires common RepositorylDsused to iéntify types in both
systems.The typesdentified by these RepositorylDs must also be consistently
defined. As described in Common Object Request Brokeghifectureand

Specification, Pragma iiectives for Repository Idection, all CORBAservice IDL
presented in this specificationimaplicitly preceded at filscope by the following
directive:

#pragma prefix “omg.org”

General Design Principles Relationshipto CORA November 1997 2-13

Object Service Implementations that choose to extend the staintkenfdces must do
so by deriving new interfaces rather than by modifying the standard interfaces.

2.7 Relationship to Object Model

All specificationscontained in this manuiconform to the OMG Object ModeNo
additional components qrofiles are required bany service.

2.8 Conformance to Existing Standards

In general, existing relevant standards do not have object-oriented interfaces nor are
they structured in a form that is easily mappedhecds. These specificatiomave

been influenced by existing standards, and services have been designed which
minimize the dfficulty of encapsulatingupporting software. The naming service
specification is believed to be compatiblghnX.500, DCE CDS and ONC NIS and
NIS+.

These spcifications arebroadly conformant to emerging ISO/IEC/CCITT ODP
standards:
» CCITT Draft Recommendations X.900, IS8BEC 10746 Basic Reference Model
for Open Dstributed Computing
* ISO/IEC JTC1 SC21 WG7 N743 Workirigocument on dpic 9.1 - ODP Trader

2-14 CORBAservices November 1997

Naming Service Specification 3

3.1 Service Description

3.1.1 Overview

A name-to-object association is calle name bindin. A name binding is always
defined relative to inaming conte.. A naming context is an object that contains a set
of name bindings in which each name is unique. Different names caoube to an
object in the same or different contexts at the same. There is no requirement,
howeer, that all objects must be named.

Toresolve a nan is to determine the object associated with the name in a given
context. Tobind a nam is to create a name hinding in a given context. A name is
always resolvedelative to a context — there are absolute namas

Because a context is like any othéjext, it can also bedund to a namen a raming
context. Binding contexts in other contexts creatnaming grap — a directed graph
with nodesand labeled edges where the nodes are co. A nhaminggraph allovs

more complex nans to referencen objedt. Given a contexin a raming grap, &
sequence of nars can eference n objedt. This «equence of nans (called a

compound nan) defines a path in the naming graph to navigate the resolution f. ocess
Figure 3-1 shows an exahe of a naming graj.h

CORBAservices March 1995 3-1

user

Sys
ome
4 .
0 U3 bin lib
u2 il \alden
O O O
11/ \ 12
ol
4
0 O O O

Figure 3-1 A Naming Grah

3.1.2 Names

Many of the operations defined omaming context take names as parameiasnes
have structure. A name is an ordered sequencomponent.;

A name with a single component is callesimple nare; 8 name withmultiple
components is called compound nan. Each component except tlest is used to
name a context; the lasbmponent denotes the bouoldjec. The notation:

< componentl ; component2 ; component3 >

indicates the sequences of compone. its

Note —The semicoln (;) characters are simply the notation used in this docuareht
are not intended to imply that names are sequences of characters separated by
semicolou

A name component consists of tatributes:the identifier attribute and thekind
attribute. Both theidentifier attribute and thekind attributeare represented as
IDL strings.

Thekind attribute adds descriptiveoprer to names in a syntax-independent way.
Examples of the value of ttkind attribute includec_sourc,, object_cod,
executabl, postscrip, or“” . The naming system does not interpret, assigmamnage

CORBAservices March 1995

3

these values in any way. Higher levels of software may makeiggohbout the use
and management of these values. This feature addresses the napplcations that
use syntactic naming conventions to distinguish related obfamtexample Unix uses
suffixessuch as.c and.o . Applications (such as the C compilei@pend on these
syntactic convention to make name transformations (for example, to trarfoo.c

to foo.o).

The lack ofnamesyntax is especially important when consideiinternationalization

issue. Software that does not depend on the syntactic conventions for names does not
have to be changed when it is localized for a natural language thdiffeasnt

syntactic conventions — unlike ftware thaidoes ieperd cn the syntactic conventis

(which rrust be chaned to adopt to new conventions).

To avoid issues of differing name syntax, the Naming Service always deals with names
in their structural form (that is, there are no canonical syntaxes or distinguished meta
characters). It is assumed that various programs and system services will map names
from the representation into the structural form in a manner that is convenient t> them.

3.1.3 Names Library

To allow the representation of names twmlge without affectingexisting clients, it is
desirable to hide the representation from client code. Ideally, names themselves would
be OMG IDL objects; however, names must be lightwedgtiities that can be very
efficiently created and manipulated in men and passed as parameters in requests by
value In order tosimplify name manipulation angrovide representation

independence, names can be presented to programs throtnames librar. Note,

however, it is not necessary to use the names library to use the basic operations of the
naming service.

The names library implements namespseud«~object:. A client makes calls on a
pseudo-bject in the same way it makes calls on an ordinary object. Library names are
described in pseudo-IDL. Theames library supports twpseudo-IDLinterfaces: the
LNameComonen interface and thLName interface. TheLNameCompone interface
defines the get and set operations associated with name comidentifier and
thekind attributes.TheLName Interface includes operations for manipulating library
name and library name component pseudo objects and producing and translating a
structure that can be passed as a parameter to a normal object request.

3.1.4 Example Scenarios

This section provides two short scenarios that illustrate how the naming service
specification can be used by tairly differentkinds of systems -- systems that differ
in the kind ofimplementationsused to build the Naming Service and that differ in
models of how clients might use the Naming Service with other object services to
locate objects.

In one system, the Naming Service is implemented using an underlying enterprise-
wide naming server such as DCE CDS. The Naming Service is used to construct large,
enterprise-wide naming graph&are NamingContextsodel "directories” or "folders"

and other names identify "document"“éite” kinds of objects. In other words, the

Naming Servicev1.0 Service Descriptic March 1995 3-3

naming service is used as the backbone of an enterprisdiliidesystem. In such a
systemnnon-object-based access to the naming service may well be as commonplace as
object-based access to the naming service. For example, the name of an object might
be presented to the DCE directory service as htautinated ASClIstringsuch as
“/....DME/nls/moa-1/ID-1".

The Naming Service providdgke principal mechanism through which most clients of

an ORB-based system locate objects that they intend to use (make requests of). Given
an initial naming context, clients navigate naming contexts retrieving lists of the names
bound to that context. In conjunction with peyties and security services, clients look

for objects with certain "externally visible" characteristics, for example, for objects

with recognized names or objects with a certairetlast-modified (all subject to

security considerations). All objects used in such a scheme register their externally
visible characteristics with other services (a name service, a properties service, and so
on).

Conventions are employed in such a scheme that meaningfully partition the name
space. For example, individuals are assigned naming contexts for personal use, groups
of individuals may be assigned shared naming contexts while other contexts are
organized in a public section of the naming graph. Similarly, conventions are used to
identify contexts thalist thenames of services that are available in the system (e.g.,
that locate a translation or printing service).

In an alternative system, the Naming Service can be used in aimdes kole and

can have a less shisticated implementation. In this model, naming contexts represent
the types and locations of services that are available in the system and a much
shallower namingyraph is employed. For example, the Naming Service is used to
register the object references of a mail service, an information sea filing service.

Given a handful of references to "root objects" obtaimethfthe Naming Service, a
client uses the Rationship and Query Services to locate objects contained in or
managed by the services registered withNaening Service. In such a system, the
Naming Service is used sparingly and instead clients rely on other services such as
guery services to navigate through large collections of objects. Also, objects in this
scheme rarely register "external characteristics” with another s« instead they
support the interfaces of Query or Relationship Services.

Of course, nothing precludes the Naming Service presented here from being used to
provide both models of use at the same time. These two scenarioadrte how

this specification isuitable foruse in two fairly different kinds of systems with
potentially quite different kinds of implementations. The service provides a basic
building block on whichhigher-level services impose the conventions and semantics
which determine how frameworks of application dadilities objects locate other
objects.

3.1.5 Design Principles

Several principles have driven the design of the Naming Service:

CORBAservices March 1995

3

1. The design imparts no semantics or interpretation of the names themselves; this is
up to higher-level software. The naming service provides only a structural
convention for names, e.gompound names.

2. The design supportistributed, heterogeneousiplementation and administration
of names and name contexts.

3. Names are structures, not just character sis A:struct is necessary to avoid
encodinginformation syntactically in the name stringgg.separating the human-
meaningful name and its type with a “.”, and the tgpd version with a “I"), which
is a bad idea with respect to the generality, extensibility,i@ednationalization of
the name service. The structure define includes a human-chosen string plus a kind

field.

4. Naming service clients need not be aware of the physiabf name servers in a
distributed environment, or which server interprets what portionaaingound
name, or of the way that servers are implemented.

5. The Naming Service is a fundamental object service, with no dependencies on other
interfaces.

6. Name contexts of arbitrary and unknowmplementation may be utilized together
as nested graphs of nodes that cooperate in resolving names for a client. No
“universal” root is needed for a name hierarchy.

7. Existing name and directory services employedifferent network computing
environments can be transparently encapsulated using name contexts. All of the
above features contribute to makitigs possible.

8. The design does not address name security since there is currently no OMG security
model. The Naming Service can be evolved to provide name security when an
object security service is standardized.

9. The design does not addrenamespace administration. It is the responsibility of
higher-level software to administer the namespace.

3.1.6 Resolution of Technical Issues

This specification addresses the issues identified for a name service in the OMG
Object Services Architectt documer? as follows:

® Naming standarc: Encapsulation of existing naming standaads protocols is
allowed using naming contexts. Transparent encapsulation is made possible by the
design features outlined above.

1.0bject Services Architecte, Document Number 92-8-4, Object Managmemtu@r Framingham, MA,
1992.

Naming Servicev1.0 Service Descriptic March 1995 3-5

3-6

® Federation of nanespace: The specification supports distributed federation of
namespaces; no assumptions are made afemirtalized or universal functions.
Namespaces may be nested in a graph in any fashion, independent of the
implementation of each namespace. There need be no distinguished root context,
andexisting graphs may be joined aty point.

® Scope of nam: Name contexts define name scope. Names must be unique within a
context. Objects may have itiple names, and may exist in multiple name

contexts. Name contexts may be named objects nested within another name context,

and cycles arpermitted. The name itself is not a full-fledged ORB object,dogs
support structure, so it may hanailtiple commnents. No requirements are placed
on namingconventions, in order to support a wide variety of conventions and
existing standards.

® Operation: The specification supports bind, unbind, lapk and sequence

operations on a name context. It does not support a rename operation, because we

do not see how to implement this correctly idistributed environment witiut
transactions.

3.2 The CosNamig Module

The CosNaming Module is a collection of interfaces that together define the naming
service. This module contains two interfaces:

® TheNaming@ntex interface
® TheBindinglteratoi interface

This section describes these interfaces and their operations in detail.

The CosNamingModule isshown in Figure 3-2. Note thistring is a placeholder
for a future IDL internationalized string data type.

{

module CosNaming

typedef string Istring;

struct Name Component {
Istring i d;
| string kind;

b

typedef sequence <NameComponent> Name;
enum BindingType { nobject, ncontext};
struct Binding {

Nane binding_name;
BindingType binding_type;

Figure 3-2 The CosNaming Module

CORBAservices March 1995

b

typedef sequence <Binding> BindingList;

interface Bindinglterator;

interface NamingContext {

b

enum NotFoundReason { missing_node, not_context, not_object};

exception NotFound {
NotFoundReason why;
Name rest_of _name;

b

exception CannotProceed {
NamingContext cxt;
Name rest_of name;

h

exception InvalidName{};
exception AlreadyBound {};
exception NotEmpty{};

void bind(in Name n, in Object obj)
raises(NotFound, CannotProceed, InvalidName, AlreadyBound)
void rebind(in Name n, in Object obj)
raises(NotFound, CannotProceed, InvalidName);
void bind_context(in Nam e n , in NamingContext nc)
raises(NotFound, CannotProceed, InvalidName, AlreadyBound);
void rebind _context (in Name n, i n NamingContext nc)
raises(NotFound, CannotProceed, InvalidName);
Object resolve (in Name n)
raises(NotFound, CannotProceed, InvalidName) ;
void u nbind(in Name n)
raises(NotFound, CannotProceed, InvalidName);
NamingContext new_context() ;
NamingContext bind_new_context(in Na men)
raises(NotFound, AlreadyBound, CannotProceed, InvalidName);
void destroy()
raises(NotEmpty);
void | st (i n unsigned long h ow_many,
out BindingList bl, out Bindinglterator bi

interface Bindinglterator {

boolean next_one(out Binding b);
boolean next_n(i n unsigned long h ow_many,

Figure 3-2 The CosNaming Modu (Continued)

Naming Servicevl.0 The CosNaming ModL March 1995

3-8

out BindingList bl);
void destroy();

Figure 3-2 The CosNaming Modu (Continued)

The following sectiondescrite the cperatiors of theNamingCantex interface:

binding objects

name resolution
unbinding

creating naming contexts
deleting contexts

listing a naming context

3.2.1 Binding Objects

The binding opeationsnane &n objec in a naming conte. Once an object isdund,
it can be found vth theresolve operation. The Naming Service supports four
operations to create bindincbind, rebinc, bind_conte» andrebind_contet.

void bind(in Name n, in Object obj)
raises(NotFound, CannotProceed, InvalidName, AlreadyBound);
void rebind(in Name n, in Object obj)
raises(NotFound, CannotProceed, InvalidName);
void bind_context(in Nam e n , in NamingContext nc)
raises(NotFound, CannotProceed, InvalidName, AlreadyBound) ;
void rebind_context(in Name n, in NamingContext nc)
raises(NotFound, CannotProceed, InvalidName);

bind
Creates a binding of a name san ject in the naming conte. Naming
contexts that are bound usibind do notparticipate in ame resolution when
compound names are passed to be resolved.

A bind operation that is passed a compound name is defined as follows:

ctx->bind(< cl;c2; ...;cn >, obj=
(ctx->resolve(< ¢l ; c2; ... ; cn-1 B->bind(< cn >, obj)

rebinc
Createsa binding of a name and an object in treening contextven if the
name is already bound in the cont Naming contexts that at@ound using
rebind do not participate in name resolution when compound names are
passed to be resolved.

CORBAservices March 1995

bind_context
Namesan cject that is naming context. aming contexts that are bound using
bind_context () participate in name resolution wheampound names are
passed tdbe lesohed.

A bind_context operationthat is passed a compound name is defined as
follows:

ctx->bind_context(< cl ; c2 ;.. ; cn >, nc)=
(ctx->resolve(< cl ; €2 ;.. ; cn-1>))->bind_context(< cn >, n):

rebind_context
Creates a binding of a name and a naming context ingheng context even if
the name is already bound in the context. Naming contexts that are bound using
rebind_context () participate in name resolution when corapd names are
passed to be resolved.

Table 3-: describes the exceptions raised by the binding operations.

Table 3-1 Exceptions Raised by Binding Operations

Exception Raised Description

NotFound Indicates te name does not identify a binding.

CannotProceed Indicates that the implementatihasgiven p for some reson. The
client, however, may be able to continue the operatidheaeturned
naming context.

InvalidName Indicates te name is invalid(A name of length 0 is invalid;
implementations may place other restrictions on ngmes.

AlreadyBound Indicates an object is already bound to the specifade. (nly one
object can be bound to a particular name in a contexthind and
the bind_context operations raisthe AlreadyBound
exception if the name is bound in the context;rebind and
rebind_contexoperatiois unbird the name and rekd the name to
the object passed as an argument.

3.2.2 Resolving Names

Theresolve operationis the process of retrieving an objectubd to a name in a
given contey. The given name must exactly match bound name. The naming

service does not return the type of the object. Clients are responsible for “narrowing
the object to the appropriate type. That is, clients typically cast the returned object
from Object to a more specialized interfache OMG IDL definition oftheresolv e
operation s:

”

Object resolve (in Name n)
raises (NotFound, CannotProceed, InvalidName);

Naming Servicevl.0 The CosNaming ModL March 1995 3-9

Names can have multiple compons; therefore, ame resolution can traverse multiple
contexts. A compound resolve is definedfaléows:

ctx->resolve(<cl ; c2 ;.. ;cn >)=
ctx->resolve(< cl ; ¢c2 ;.. ; cn-1 >)>resolve(< cn >)

Table 3-: describes the exceptions raised byresolve operation.

Table 3-2 Exceptions Raised by Resolve Operation

Exception Raised Description

NotFound Indicates te name does not identify a binding.

CannotProceed Indicates that the implementatihasgiven p for some reson. The
client, however, may be able to continue the operatidheaeturned
naming context.

InvalidName Indicates te name is invalid(A name of length 0 is invalid;
implementations may place other restrictions on ngmes.

3.2.3 Unbinding Names

Theunbind operation removes a nhame binding from a confelxé defnition of the
unbind operationis:

void u nbind(in Name n)
raises (NotFound, CannotProceed, InvalidName);

A unbind operationthat is passed a compound name is definefol&svs:

ctx->unbind(<cl ; c2;...;cn >=
(ctx->resolve(< ¢l ; c2; ... ; cn-1 >))->unbind(< cn >)

Table 3-3 describes the exceptions raised byunbind operation.

Table 3-3 Exceptions Raised by Unbind Operation

Exception Raised Description

NotFound Indicates te name does not identify a binding.

CannotProceed Indicates that the implementatihasgiven p for some reson. The
client, however, may be able to continue the operatidheaeturned
naming context.

InvalidName Indicates te name is invalid(A name of length 0 is invalid;
implementations may place other restrictions on ngmes.

3-10 CORBAservices March 1995

3.2.4 Creating Naming Contexts

The Naming Service supports two operations to create new connew_contexand
bind_new_catex.

NamingContext new_context();

NamingContext bind_new_context(in Nam en)
raises(NotFound, AlreadyBound, CannotProceed, InvalidName);

new_contet
This operation returns a naming context implemented by the same naming server
as the context on which the operativas invoked. The new context is not
bound to any name.

bind_new_context
This cperation creates mew context and binds it to the name supplied as an
argument. The newy-created context is implemented by the same naming server
as the context in which it was bou(ttiat is, the naming server that implements
the context denoted by the name argument excluding the last cort)sonen

A bind_new_context that is passed compound name is defined as follows:

ctx->bind_new context(< cl ; c2 ;.. ; cn >)=
(ctx->resolve(< cl; c2; ... ; cn-1 B->bind_new context(< cn >)

Table 3-4 describes the exceptions raigdun newcontexts are being created.

Table 3-4 Exceptions Raised by Creating New Contexts

Exception Raised Description

NotFound Indicates te name does not identify a binding.

CannotProceed Indicates that the implementatihasgiven p for some reson. The
client, however, may be able to continue the operatidheaeturned
naming context.

InvalidName Indicates te name is invalid(A name of length 0 is invalid;
implementations may place other restrictions on ngmes.

AlreadyBound Indicates an object is already bound to the specifade. (nly one
object can be bound to a particular name in a ca. itext

3.2.5 Deleing Contexts

The destroy operatiin deletes :naming contex.:

void destroy()
raises(NotEmpty);

Naming Servicevl.0 The CosNaming ModL March 1995 3-11

3-12

If the naming context contains bindings, NotEmpty exception is raised.

3.2.6 Listing aNaming Context

Thelist operation allows a client to iterate through a set of bindings aming
contest.

enum BindingType {object, ncontext};

struct Binding {
Name binding_name ;
BindingType binding_type;
h

typedef sequence <Binding> BindingList;

void | st (i n unsigned long h ow_many,
out BindingList bl, out Bindinglterator bi);

h

Thelist operation returns at most the requested number of bincnigs i
BindingList bl .

® |f the naming context contains additional bindings,list operation returns a
Bindinglterator with the additional bindings.

® |f the naming contexdoes not contain additional bindings, the binditegatc is €
nil object reference
3.2.7 The Bindinglterato! Interface

The Bindinglteratol interfaceallows a client to iterate through the bindings using the
next_one or next_n operations:

interface Bindinglterator {
boolean next_one(out Binding b);
boolean next_n(i n unsigned long h ow_many,
out BindingList bl);
void destroy();

next_one
This cperation returns the next bindinlf there are no more bindir, false is
returned.

next_n
This cperation returns at most the requested number of bir. lings

CORBAservices March 1995

destroy
This operation destroys the iterator.

3.3 The Names Library

To allow the representation of names twwlee without affectingexisting clients, it is
desirable to hide the representation of names from client code. Ideally, names
themselves would be objs; hawever, names must be lightweightiéas that are
efficient tocreate, manipulate, and trimit. As such, names are presented to prosram
through he names librar.

The nameslibrary implements names ipseud«~object:. A client makes calls on a
pseu-object in the same vy it makes calls olan ordinay abject. Library names are
described in pselo-IDL (to suggest the appropriate language bin). C and C++
client? use the same client language bindings foudselDL (PIDL) as they use for
IDL.

Pseudo-objecreference«cannot be passed across OMG IDL interfaAs described
in Section 3.2, “The&CosNamingModule,” the naming serviceupports the
NamingConte; OMG IDL interfact. The names library supports an operation to
convert a library name into a value that can be passed to the name through he
NamingConte: interface.

Note —It is not a requirement to use the names library in order to use the Naming
Service.

The names library consists of two pseudo-Iterfaces: the.NameCompone 1t
interface and thiLName interface, ashown inFigure 3-3.

2.As anticipated

Naming Servicev1.0 The Names Librar March 1995 3-13

interface LNameComponent { /I PIDL
exception NotSet{};
string get_id()
raises(NotSet);
void set_id(in string i);
string get_kind()
raises(NotSet);
void set_kind(in string k);
void destroy();
|3

i nterface LName { /I PIDL
exception NoComponent{};
exception OverFlow{}
exception InvalidName{};
LName insert_component(i n unsigned long i ,
in LNameComponent n)
raises(NoComponent, OverFlow) ;
LNameComponent g et_component(i n unsigned long i)
raises(NoComponent);
LNameComponent d elete_component(i n unsigned long i)
raises(NoComponent);
unsigned long n um_components();
boolean equal(in LName In);
boolean less_than(in LName In);
Name to_idI_form()
raises(InvalidName);
void from_idl_form(in Name n);
void destroy();
|3

LName create_Iname(); IIc /C++
LNameComponent create_Iname_component(); /I CIC++

Figure 3-3 The Names Library Interface in PIDL

3.3.1 Creating a Library Name Component

To create a library name component p:o-cbject, usethe following C/C++ function:

LNameComponent create_Iname _component(); /I CIC++

The returned pseudo-object can then be operated on using the operations in Figure 3-3.

3-14 CORBAservices March 1995

3.3.2 Creating a Library Name

To create a library name psto-cbject, usethe following C/C++ functin.

LName create_Iname(); /I CIC++

The returned pselo-cbject reference can then be operated on using the opera ons i
Figure 3-3.

3.3.3 The LNameComponent Interface

A name component consists of tatiributes:the identifier attribute and the
kind attribute.The LNameComonen interface defines the operatioassociated with
theseattributes.

string get_id()
raises(NotSet);
void set_id(in string k);
string get_kind()
raises(NotSet);
void set_kind(in string K);

get id
Theget id operation returns thidentifier attribute’s value. If the
attributehas not been set, tiNotSet exception is raised.

set id
Theset_id operation sets thidentifier attribute tothe string argument.

get_kind
Theget_kind operation returns thkind attribute’svalue. If the attribute has
not been set, thNotSet exception is raised.

set_kind
Theset_kind operation sets thkind attribute to the string argument

3.3.4 The LName Interface

The following operations are described in this section:
« destroying a library name component pde dject
* creating a library name
e inserting a hame component
* getting the f name component
* deleting a name component
* number of name components

Naming Servicev1.0 The Names Librar March 1995 3-15

3-16

* testing for equality

» testing for order

» producing an idform

« translating an idl form

« destroying a library name pseudbject

Destroying a Library ldme @mponent Pseudo Object

The destroy operatiol destroys library name component pseudo-objects.

void destroy();

Inserting e Name @mponent

A name has one or more componeftach component except thest is used to
identify names of subcontexts. (The last component denotdstived object.) he
insert_component operation inserts a component after ponii.o

LNameinsert_component(i nunsignedlongi ,i nLNameComponentinc)
raises(NoComponent, OverFlow);

If componenii-1 is undefined ancomponeni is greater than, the
insert_component operation raises thNoComponent exception.

If the library cannot allocate resources for the inserted componerOverflow
exception is raised.
Getting the® NameComponent

The get_component operation returns thé' component. The first component is
numberecl.

LNameComponent g et_component(i n unsigned long i)
raises(NoComponent);

If the component does not exist, INoComponent exception is raised.

CORBAservices March 1995

Deleting aName Component

The delete_component operatin removes and returnhe " component.

LNameComponent d elete_component(i n unsigned long i)
raises(NoComponent);

If the component does not exist, INoComponent exception is raised.

After adelete_component operationhas been perform, thecompound name has
one fewer component and components previously identifié+1...n are now
identified asi...n-1.

Number oName Components

The num_components operation returns the number of components in a library
name.

unsigned long n um_components();

Testing folEquality

Theequal operation tests for equality with library name In.

boolean equal(in LName In);

Testing foilOrder

Theless_than operaton tests for the order of a library nameré@tation to library
name In.

boolean less_than(in LName In);

This operation eturn: true if the library name is less than the library nan fassed as
an argumet. The Ibrary implementation defines the ordering on names.

Naming Servicev1.0 The Names Librar March 1995 3-17

3-18

Producing an IDL form

Pseudo-objectsannot be passed across OMG IDL interfaces. The library name is a
pseudo object; therefore, it cannot be passed across the IDL interface for the naming
service. ‘everal operations in thNamingConte: interface have arguments of anL-J
defined structureName. The following PIDL opertion on library nams groduces a
strucure that can be passed across the IDL recjuest

Name to_idl_form()
raises(InvalidName);

If the name is of length O, ttinvalidName exception is returned.

Translating an IDLForm

Pseudo-objects cannot be passed across OMG IDL interfaces. The library name is a
pseudo object; therefore, it cannot be passed across the IDL interface for the naming
service. TheNamingConte; interface defines operations that return an IDL struct of
type Name. The following PIDL operation on librangames sets the components and
kind attribute for a library name from aturned IDL defined structurName.

void from_idl_form(in Name n);

Destroying cLibrary Name Psedio-Object

The destroy operation destroys library name pseudo-objects

void destroy();

CORBAservices March 1995

Event Service Specification 4

4.1 Service Description

4.1.1 Overview

A standard CORBA request results in the synchronous execution of an operation by an
object. If the operation defines parameters or return values, data is communicated
between the client and the server. A request is directed to a particular object. For the
request to be successful, both the client and the senwstr be available. If a request

fails because the server is unavailable, the client receives aptéxtand must take

some appropriate action.

In some scenarios, a more decoupled communication model between objects is
required. For example:

® A system administration tool is interested irolng if a disk runs out of space.
The software managing a disk is unaware of the existence of the system
administrationtool. The software simply reports that the disk is flllhen a disk
runs out of space, the systaaministration toobpens a window to inform the user
which disk has run out of space.

® A propertylist object is associated with an application object. The propistty
object is physically separate from the application object. The application object is
interested in the changes made to itspprties by a user. The propertieen be
changed without involving thepplication object. That is, in order tave
reasonable response time for the user, changing a property daagivate the
application object. However, when the application object is activated, it needs to
know about the changes its properties.

® A CASE tool is interested in being notifizehen a sourc@rogram has been
modified. The source prgram simply reports when it is modified. Itusaware of
the existence of the CASE tool. In response tonthigfication, the CASE tool
invokes acompiler.

CORBAservices March 1995 4-1

® Several documents are linked to a spreadsheet. The documents are interested in
knowing whenthe value of certain cells have changed. Wherc#ilevalue
changes, the documents updtiteir presentationsased on the spreadsheet.
Furthermore, if a document is unavailable because of a failurestitl isxterested
in any changes to the cells and wants to be notified of those chahgasitw
recovers.

4.1.2 Event Communication

The Event Service decoupld®e communication between objects. The Event Service
defines two roles for objects: the supplier raled the consumer rolSupplier:;
produce event data aiconsuners process event data. Event data are communicated
between suppliers and consumers by issuing standard CORBA requests.

There are two approachesititiating event communication betweenpliers and
consumers, and two orthogonal approaches to the form thabtheunicationcan
take.

The two approaches faitiating event communication are callehe pust mode and

the pull mode. The push model allows a supplier of events to initiate the transfer of

the event data to consumers. The pull model allows a consumer of events to request the
event data from a supplier. In the push model, the supplier is takingitibgve; in

the pull model, the consumer is taking th#iative.

The communication itself can be eithgeneric or typec. In the generic case, all
communication is by means of genepush or pull operations that take a single
parameter that packages all the event data. In the typed case, communication is via
operations defined in OMG IDL. Event data is passed by means of the parameters,
which can be defined in any manner desired. Section 4.2 thismaion 4.5 discuss
generic event communication in detail; section #h®ughsection 4.9 discuss typed
event communication in detalil.

An event chann is an intervening object that allowsultiple suppliers to

communicate with multipleonsumers asynchronously. An event channel is both a
consumer and a supplier of events. Event channels are standard CORBA objects and
communication with an event channel is @oplished using standard CORBA

requests

4.1.3 Example Scenario

This section provides a general scenario thadtrates how the Ever8ervice can be
used.

The Event Service can be used to provide “charg#ication”. When an object is
changed (its state is modified), an event can be generated that is propagated to all
interested partiedzor example, when a spreadsheelt object is modified, all
compound documents which contain a reference (linkhao cell can beotified (so

the document can redisplay the referenced or recalculate values that depend on

CORBAservices March 1995

4

the cell). Sinilarly, when an engineering specification object is modified, all engineers
who haveregistered an interest in the specification can be notified that the
specification has cheged.

In this scenario, objects that can be “cfped” act as suppliers, parties interested in
receiving nofications of changes act as consur, and one or more event channel
objects are used as intermediaries between consumers and suEither the push or
the pull model can be used at either end.

If the push model is used by suppliers, objects that can be changed support the
PushSupplie interface so that event communication can be discontinued, use the
EventChanni, theSupplierAdmi and theProxyPushConsum interfaces to register as
suppliers of events, and use ProxyPushConsum interface to push events to event
channels.

When a change occurs to an object, a changeable object invpush operation on
the channel. It provides as an argument topush operation information that
describes the event. Thisfamnmation is of datdype any - it can be asimple or as
complex as is necessary. For example, the @néortmation might identify the object
reference of the object that has been changed, it mightifgiehe kind of change that
has occurred, it might provide a new displayable image of thegeldaobject or it
might identify one or moreadditional objects that describe tbleange that has been
made.

If the pull model is used by consumers, all client objects that want to be notified of
changes support ttPullConsumelinterface so communication can be discontinued,
using theEventChanny, IConsumerAdm andProxyPullSupplie interfaces to register
as consumers of events, and usingProxyPullSupplie interface to pull events from
event channels.

The consumemay use either a blocking or non-blocking mechanism for receiving
notification of changes. Using thtry pull operation, the consumer can periodically
poll the channel for events. Alternatively, the consumer can uspull operation

which will block the consumer’s execution thread until an event is generated by some
supplier.

Event dhannels act as the intermediaries between the objects being changed and objects
interested irknowing about changes. The channels that provide chaatiécation

can be general purpose, well-knowjects (eg., “persistent server-based objects” that

are run as part of a workgroup-wide framework of objects that provide “desktop
services”) or specific-to-task objedts.g., temporary objects that are created when
needed). Objects that use event channels may locate the channels by looking for them
in a persistently available server (e.g., by looking for them in a naming service) or they
may be given references to these objects as part of a specific-to-task object protocol
(e.g., when an “open” operation is invoked on an object, the object may return the
reference to an event channel which theleashould use until the object is closed).

Event channels detmine how changes are propagated betweenisuppind

consumers, i.e., trqualities of servic (Section4.1.6. For example, an event channel
determines the persistence of an event. The channekesgyan event for a specified
period of time, passing it along to any consumer who registers with the channel during

Event Servicevl.0 Service Descriptic March 1995 4-3

4-4

that

period of timge.g., it may keep evemiotifications abouthanges to engineering

specifications for a week).fernatively, the channel may only pass on events to
consumers who are currently waiting for notificationchinges (e.gnotifications of
changes to a spreadsheet cell may only be sent to consumers who are currently
displaying that cell).

This scenario exemplifies one way the event service described here forms a basic
building block used in providing higher-level services specific to an application or
commonfacilities framework of objects.

Instead of using the generic event channel, a typed event channel could also have been

used.

4.1.4 Design Principles

The

Event Service desigatisfiesthe following principles:

Events work in aistributed environment. The designes not depend on any
global, critical, or centralized service.

Event services allow multiple consumers of an event and multiple event suppliers.
Consumers can either request events or be notified of events, whichever is more
appropriate for application desigmd performance.

Consumers and suppliers of events support standard OMG IDL interfaces; no
extensions to CORBA are necessary to define these interfaces.

A suppler can issue a single standard request to communicate event d#ta to
consumers at once.

Suppliers can generate events withoubwimg theidentities of the consumers.
Conversely, consumers can receive events without knowing the identities of the
suppliers.

The Event Service interfaces allow multiple qualities of senfameexample, for
different levels of reliability. It also allows for future interface extensions, such as
for additional functionality.

The Event Service interfaces are capable of being implemented and used in
different operating environments, for example, in environments that support
threading and those that do not.

4.1.5 Resolution of Technical Issues

This specification addresses the issues identified for event services in th«Object
Services Architectu} document aollows:

1.0bject Services Architecte, Document Number 92-8-4, Object Managmemtu@r Framingham, MA,
1992.

CORBAservices March 1995

4

® Distributed environment: The interfaces are designed to allow consumers and
suppliers of events to be disconnected frimetto time, and do not require
centralized event identification, processing, routing, or other services that might be
a bottleneck or a single point of failure.

Events themselves anot objects because the CORRH#stributed object model
does not support passing objects by value.

Event generation The specification describes how events are generated and delivered
in a very general fashion, with event channels as intermemiatimg points. It does

not require (or preclude) polling, nor does it require that an event sugphketly

notify every interested party.

Events involving multiple objects Complex events may be handled by constructing a
notification tree of event consumer/supplielecking for successively moreesgfic

event predicates. The specification does not require a general or global event predicate
evaluation service as this may not be sufficiently reliable, efficient, or secure in a
distributed,heterogeneous (potentially decoupled) environment.

Scoping, grouping, andfiltering events The specification takeadvantage of

CORBA's distributed sgping and grouping mechanisms for tdentifier and type of
events. Eventiltering is easilyachieved through event channels theliectively

deliver events from suppliers to consumers. Event channels can be composed; that is,
one event channel can consumer evenppkad by another.

Typed event channels can providkefing based on event type.

Registration and generation of event: Consumers and suppliers register with event
channels themselves. Event channels are objects and they are found by any fashion that
objects can be found. A global registration service is not requargdpbject that

conforms to the IDL interface may consume an event.

Event parameters: The specification supports a parameter of tany that can be
delivered with an event, used for application-specific data.

Forgery and secure eventsBecause event ppliers are objects, the specification
leverages any ORB work on security for object referermrescommunication.

Performance: The design is a mimalist one,and requires only one OR&ll per

event received. It supports both push-style antigiyle notification toavoid

inefficient event polling. Since event suppliers, consunemnd, channels arall ORB
objects, the service directly benefits from a Library Object Adapter or any other ORB
optimizations.

Formalized Event Information: For specific application environments and
frameworks it may be benefal to formalize the data associateithwan event

(defined in this specification as type any). This can be accomplished by defining a
typed structure for this information. Depending on the needs of the environment, the
kinds of information included might be a priority, timestamp, origin stramgl
confirmation indicator. This information might be solely for the benefit ofethent
consumer or might also be interpreted by particular event chanpkimentations.

Event Servicevl.0 Service Descriptic March 1995 4-5

Confirmation of Reception: Some applications may require that consumers of an
event provide an explicit confirmation of receptioack to the supplier. This can be
supported effectively using a “reverse” event channel through whicsuocoers send
back confirmations as normal events. This obviates the need for any special
confirmation mechanism. However, strict atomic delivieeyween all sppliersand all
consumers requires additional interfaces.

4.1.6 Quality of Sevice

Application domains requiring event-style communicati@ve diverse reliality
requirements, from “at-most-oe” semantics (best effort) to guaranteed “exactly-
once” semantics, availaltyf requirements, thraghput requirements, performance
requirements (i.e., hovast events are disseminated), and scalability requirements.

Clearly no singlémplementation of the #ent Service can ojmtize such a diverse
range of technical requirements. Henceltiple implementations of event services are
to be expected, with different services targeted toward different environments. As
such, the event interfaces do not dicqualities of servic. Different implementations
of the Event Service interfaces can supdfferent qualities of service to meet
different applicatiomeeds.

For example, aimplementation that trades at most once delivery to a saaylsumer

in favor of performance is useful for some applications; an implementatioratiasf
performance but cannot preclude duplicate delivery is useful for other applications.
Both are acceptabienplementations of the interfaces described in this chapter.

Clearly, an implementation of an event channel that discards all evenotia usefu
implementation. Useful implemenitains will at least support “best-effort” delivery of
events.

Note that the interfaces defined in this chapter are incomplete for implementations that
supportstrict notions of atomicity. That is, additional interfaces rageded by an
implementation to guarantee that eithercalhsumers receive an event or none of the
consumers receive an event; and tilaevents are received in the same order by all
consumers

4.2 Generic Event Communication

There are two basic moddls communicating event data betwesuppliers and
consumers: thpush modt and thepull mode.

4.2.1 Push Model

In the push model, suppliers “push” event data to consumers; that is, suppliers
communicate event data by invokipush operations on thPushConsumeinterface.

To set up a push-style communication, consumers and sis exchane
PushConsum::and PushSupplie iobject referencesEvent communication can be
broken by invokin a disconnect_push_consumer operation on the

CORBAservices March 1995

4

PushConsumt interface or by invoking disconnect_push_supplier operation
on thePushSupplieinterface. If thePushSpplier object reference is nil, the
connection cannot be broken via thegiier.

Figure 4-1 illustrates push-style communication between aisupid a consumer.

PushSupplier

consumer) | supplier
|
1

PushConsumer

Figure 4-1 Push-style Communication Between a Supplier and a Consumer

4.2.2 Pull Model

In the pull model, consumers “pull” event data from suppliers; that is, consumers
request event data by invokipull operations on thPullSupplierinterface.

To set up a ull-style communication, consumers and suppliers mustaggh
PullConsumeiandPullSupplierobject references. Event communication can be broken
by invoking adisconnect_pull_consumer operation on thiPullConsumer
interface or by invoking disconnect_pull_supplier operation on the
PullSupplierinterface. If thePullConsume object reference is nil, the coaction

cannot be broken via the consumer.

Figure 4-2 illustrates pull-style communicatibatween a supplier and a consumer.

PullConsumer

|
consumer .) | \ supplier
|
&

PullSupplier

Figure 4-2 Pull-style Communication Between a Supplier and a Consumer

Event Servicerl.0 Generic Event Communicati March 1995 4-7

4

4.3 The CosEventComm Module

The communication styleshown in kgure 4-1 and Figure 4-2 are both supported by
four simple interfacesPushConsumy, IPushSpplier, andPullSupplieranc
PullConsume. These interfaces are defined in an OMG IDL module named
CosEventComm, as shown in Figure 4-3.

module CosEventComm {
exception Disconnected{};

i nterface PushConsumer {
void push (in any data) raises(Disconnected);
void disconnect_push_consumer();

}s

interface PushSupplier {
void disconnect_push_supplier();

b

i nterface PullSupplier {
any pull () raises(Disconnected);
any try_pull (out boolean has_event)
raises(Disconnected);
void disconnect_pull_supplier() ;

b

i nterface PullConsumer {
void disconnect_pull_consumer();

b

Figure 4-3 The OMG IDL Module CosEventComm

4.3.1 The PustConsumer Interface

A push-style consumer supports PushConsumeinterface to receive event data.

interface PushConsumer {
void push (in any data) raises(Disconnected);
void disconnect_push_consumer();

A supplier communicates event data to the consumer by invokirpush operation
and mssingthe event data as a param. If the event communication has already been
disconnected, thDisconnected exception is raised.

4-8 CORBAservices March 1995

4

The disconnect_push_consumer operation terminates the event communication;
it releases resources used at the consumaspport the event communicaticThe
PushConsum: object reference is disposed.

4.3.2 The PushSupplier Interface

A push-style supjdr supports thiPushSuppér interface.

interface PushSupplier {
void disconnect_push _supplie r(;
3
Thedisconnect_push_supplier operation terminates the event communication;

it releases resources used at the sappd support the event communicatiThe
PushSupplie object reference is disposed.

4.3.3 The PullSupplier Interface

A pull-style supplier supports ttPullSupplie interface to transmit event data.

interface PullSupplier {
any pull () raises(Disconnected);
any try_pull (out boolean has_event)
raises(Disconnected);
void disconnect_pull_supplier()

A consumer requests event data from the supplier by invoking eithpull
operation or thery pull operation on the supplier.

®* Thepull operation blocks until the event data is avail or an exception is
raised? It returns the event data to the consumer. If the evemimunicatiorhas
already been disconnected, iDisconnected exception is raised.

®* Thetry pull operation does not block: if the event data is available, it returns
the event data and sets thas_event parameter tdrue; if the event is not
available, it sets thhas_event parameter tdalse and the event data is returned
as long with an undefined va. If the event communication has already been
disconnected, thDisconnected exception is raised.

2.This, of course, may be a standardRB2A excepton.

Event Servicerl.0 The CosEventComm Mod March 1995 4-9

The disconnect_pull_supplier operation terminates the event communication;
it releases resources used at the sappd support the event communicatiThe
PullSupplie object referace is disposed.

4.3.4 The PullConsumer Interface

A pull-style consumesupports thePullConsumeiinterface.

interface PullConsumer {
void disconnect_p ull_ consumer();

h

Thedisconnect_pull_consumer operation terminates the event communication;
it releases resources used at the consumaigport the event communicati The
PullConsume object reference is disposed.

4.4 Event Channels

The event chann is a service that decouples the communicatietween suppliers
and consumers. The event channel is itself bcconsumer and a pplier of the event
data.

An event channel can provide asynchronous communication of event data between
suppliers and consumers. Although consumers andisuopgbmmunicate with the

event channel using standard CORBA requests, the event channel does not need to
supply the event data to its consumer at the same tioomstumes the data froits
supplier.

4.4.1 Push-Style Communication with an Event Channel

The suppekr pushes event data to the event channel; the event channel, in turn, pushes
event data to the consumer. Figure 4-4 illustrates a push-style communimttiaen
a suppler and the eventhannel, and a consumer and the event channel.

4-10 CORBAservices March 1995

\ PushSupplier I PushSupplier |

consumer I L > /I | (>

supplier

I |
PushConsumer\ eventchannel PushConsume

Figure 4-4 Push-style Communication Between a Supplier and an Event Channel, and a
Consumer and an Event Channel

4.4.2 Pull-Style Communication with an Event Channel

The consumer pulls event ddtam the event channel; the event channel, in tputls
event data from the supplier. Figure 4-5 illustrates a pull-style communication between
a suppler and the eventhannel, and a consumer and the event che nnel.

\PullSuppller /\PullSuppher | /

consumer | suppller

' |
PullConsumer event channel PuIIConsumer

Figure 4-5 Pull-style communication between a supplier and an event channel and a consumer
and the event channel

4.4.3 Mixed StylecCommunication with an Event Channel

An event channel can communicate with a sigoplsingone style ocommunication,
and communicate with a consumer usindiféerent style of communication.

Figure 4-6 illustrates a push-style communicati@miween a seplier and an event
channel, and aull-style communicatiobetween a consumer and the event channel.
The consumer pullthe event data that the supplier has pushed to the event channel.

Event Servicerl.0 EventChanne March 1995 4-11

PullConsumer PushSupplier |
|
consumer | I . /I I [>supplier
|
/PuIISuppIier

Figure 4-6 Push-style Communication Between a Supplier and an Event Channel, and Pull-
style Communication Between a Consumer and an Event Channel

event channel PushConsumer

4.4.4 Multiple Consumers and Multiple Suppliers

Figure 4-4, Figure 4-5, and Figure 4-6 ilicege eventhannels with a single supplier
and a single consumer. An event channel can also provide many-to-many
communication. The channel consumes events fsneor more suppliers, and
supplies events to one or more consumers. Subject quality of service of a
particular implementation, an event chanpelvides an event tall consumers.

Figure 4-7 illustrates an event channel with multiple push-style consumers and
multiple push-style suppliers.

\PushSuppliel’ i PushSupplier /
7 - !

consumer } .

1 I supplier
/ PushConsurer IPushConsumer
event channel
pushSupplier F’ushSupplierl /
consumer _| : \> : l&’supplier
/ IpushConsumer PushConsumer

Figure 4-7 An Event Channel with Multiple Suppliers and Multiple Consumers

An event channel can support consumers and suppliers using differemtunication
models.

4-12 CORBAservices March 1995

4

If an event channel has at lease push-style consumer orlaastone pending pull
request, the event channel requires an event. If the event channel has pull suppliers, it
will issue a request on a pull supplier to satisfy its requirement

4.4 5 Event Channel Administration

The event channel is built up incrementally.h&h an event channel is created, no
suppliers or consumers are connected to the event cl.iUpon creation of the
channel, the factory returns an object reference that suppolEventChannel
interface, as illustrated in Figure 4-8.

event channel

EventChannel

Figure 4-8 A newly created event chaal. The ®iannel has no suppliers or consumers.

The EventChanne interface defines three administrative operations: an operation
returning aConsumerAdm object for adding consumers, an operation returning a
SupplierAdmi object for adding suppliers, and an operation for destroying the
channel.

The operationgor adding consumers retuproxy supplier. A proxy supplier is
similar to a normal supplier (in fact, it inherits the interface sfipplier), but includes
an additional method for coenting a consumer to the progyppler.

The operationgor adding suppliers returproxy consume. A proxy consumer is
similar to a normal consumer (in fact, it inherits the interface of a consumer), but
includes an additional method for connecting a supplier to the proxy consumer.

Registration of groducer or consumer is a two step process. An event-generating
application first obtains proxy consumer from a channel, then “connects” to the
proxy consumer by providing it with a supplier. Similarly, an event-receiving
application first obtains proxy supplier from a&hannel, then “connects” to the proxy
supplier by providing it with a consumer.

Event Servicerl.0 EventChanne March 1995 4-13

The reasorior the two-step registration process isstgoport composing evtn

channels y an external agent. Such an agent would compose two channels by
obtaining a proy supplier fromone and a proxy consumer from the other, and passing
each of them a reference to the other as pattief connect operatic. 1

Proxies are in one of threstatesdisconnecte, lconnecte or destroye. Figure 4-9
gives a state diagram for a proxy. The nodes of the diagram are theasthtibe
edges are labelled with the operations that change the state of thePush/pull
operations are only valid in trconnecte state.

event
commurgation

connectgs

obtain . connect
disconnecteg

Figure 4-9 State diagram of a proxy.

4-14 CORBAservices March 1995

4.5 The CosEventChannelAdmin Module

The CosEventChannelAdmin module defines the interfaces for making
connections between suppliers and consumiédre CosEventChannelAdmin
module is defined in Figure 4-10.

#include “CosEventComm.idl”

module CosEventChannelAdmin {

exception AlreadyConnected {};
exception TypeError {};

interface ProxyPushConsumer: CosEventComm::PushConsumer {
void connect_push_supplier(
in CosEventComm::PushSupplier push_supplier)
raises(AlreadyConnected);

h

interface ProxyPullSupplier: CosEventComm::PullSupplier {
void connect_pull_consumer(
in CosEventComm::PullConsumer pull_consumer)
raises(AlreadyConnected);

h

interface ProxyPullConsumer: CosEventComm::PullConsumer {
void connect_pull_supplier(
in CosEventComm::PullSupplier pull_supplier)
raises(AlreadyConnected, TypeError);

h

interface ProxyPushSupplier: CosEventComm::PushSupplier {
void connect_push_consumer(
in CosEventComm::PushConsumer push_consumer)
raises(AlreadyConnected, TypeError);

Event Servicer1.0 Th€osEventChannelAdmin Module March 1995

4-15

4-16

interface ConsumerAdmin {
ProxyPushSupplier obtain_push_supplier();
ProxyPullSupplier obtain_pull_supplier();
b

interface SupplierAdmin {
ProxyPushConsumer obtain_push_consumer();
ProxyPullConsumer obtain_pull_consumer();

b

interface EventChannel {
ConsumerAdmin for_consumers();
SupplierAdmin for_suppliers();
void destroy();

Figure 4-10 The CosEventChannelAdmin Module

4.5.1 The EventChannel Interface

TheEventChanncinterface defines three administrative operations: adding consumers,
adding suppliers, and destroying the channel.

interface EventChannel {
ConsumerAdmin for_consumers();
SupplierAdmin for_suppliers();
void destroy();

Any object that possesses an object reference that suppoEventChanntinterface
can perform these operations:

®* The ConsumerAdmiinterface allovs consumers to be connecte the event
channelThefor_consumers operation returns an object reference that supports
the ConsumerAdm interface.

®* TheSupplierAdmirinterface allovs suppliers to beonnectedo the event channel.
Thefor_suppliers operation returns an object reference that supports the
SupplierAdmi interface.

® Thedestroy operation destroys the event channel.

Consumer administration and suigpladministration are defined as separate obsots
thet the creator of the channcar control the addition of suppliers asdnsumer:iFor
example, a creator mightish to be the sole supplier of event data but allow many
consumers to be connected to the cha'In such a case, the creator would simply
export theConsumerAdm obiject.

CORBAservices March 1995

4 5.2 The ConsumerAdmin Interface

The ConsumerAdm interfacedefines the first step for omecting consumers to the
event channeiclients use it to obtain proxy ppliers

interface ConsumerAdmin {
ProxyPushSupplier obtain_push_supplier();
ProxyPullSupplier obtain_pull_supplier();

The obtain_push_supplier operation returns ProxyPushSpplier object. The
ProxyPushSpplier object is then used to connect a push-style consumer.

The obtain_pull_supplier operation returns ProxyPullSupplie object. The
ProxyPullSupfier object i< ther used to connect jull-style consumer.
4.5.3 The SupplierAdmin Interface

The SupplierAdmi interface defines the first step foonnecting suppliers to the event
channelclients use it to obtain proxy consumers.

interface SupplierAdmin {
ProxyPushConsumer obtain_push_consumer();
ProxyPullConsumer obtain_pull_consumer();

The obtain_push_consumer operation returns ProxyPushConsum object. The
ProxyPushConsum object is then used to connect a push-styjspBer.

The obtain_pull_consumer operation returns ProxyPullConsume object. The
ProxyPullConsume object isthenused to connect a pull-style suigpl

4.5.4 The ProxyPushConsumer Interface

The ProxyPushConsumeinterfacedefines the second step for connecting push
suppliers to the event channel.

interface ProxyPushConsumer: CosEventComm::PushConsumer {
void connect_push_supplier (
in CosEventComm::PushSupplier push_supplier)
r aises(AlreadyConnected);

Event Servicerl.0 The CosEventChannelAdminMoc March 1995 4-17

A nil object referene may b jpassed to te connect_push_supplier operatim,;
if so a channel cannot invoke ttdisconnect_push_supplier operation on the
supplier; the suppr may be disconnected from the channel without being infcrmed

If the ProxyPushConsum is already connected toPushSupplie, then the
AlreadyConnected exception is raised.
4.5.5 The ProxyPullSupplier Interface

The ProxyPullSupplieinterface defines the second step for connecting pull consumers
to the event chann:l.

interface ProxyPullSupplier: CosEventComm::PullSupplier {
void connect_pull_consumer (
in CosEventComm::PullConsumer pull_consumer)
r aises(AlreadyConnecte d);

A nil object reference may be passed toconnect_pull_consumer operation; if
so ¢ channel cannot invokedisconnect _pull_consumer gperation on the

consumer; the consumer may be disconnected from the channel without being
informec.

If the ProxyPullSupplie is already connected toPullConsume, then the
AlreadyConnected exception is raise.d

4.5.6 The ProxyPullConsumer Interface

The ProxyPullConsumeinterface defines the second step for connedgingsuppliers
to the event chann:l.

interface ProxyPullConsumer: CosEventComm::PullConsumer {

void connect_pull_supplier (
in CosEventComm::PullSupplier pull_supplier)
r aises(AlreadyConnected , TypeError);

b

Implementations should raise the CORBA standard BAD_PARAM exception if a nil
object reference is passed to connect_pull_supplier operation.

If the ProxyPullConsume is already connected toPullSupplie, then the
AlreadyConnected exception is raise.d

An implementation of iProxyPullConsume may put additional requirements on the
interface supported by the pull supplier. If the pull suppliees not meet those
requirements thProxyPullConsumeraises theTypeError exception. (See section
4.7.2for an example.)

4-18 CORBAservices March 1995

4.5.7 The ProxyPushSupplier Interface

The ProxyPushSpplier interface defines the second step for connecting push
consumers to the event chanel.

interface ProxyPushSupplier: CosEventComm::PushSupplier {
void connect_push_consumer (
in CosEventComm::PushConsumer push_consumer)
r aises(AlreadyConnected , TypeError);

b

Implementations should raise the CORBA standard BAD_PARAM exception if a nil
object reference is passed to connect_push_consumer operation.

If the ProxyPushSupplicis already connected toPushConsumj, then the
AlreadyConnected exception is raise.d

An implementation of iProxyPushSupplit may put additional requirements on the
interface supported by the push consumer. If the push consumer does not meet those
requirements thProxyPushSupplieraises theTypeError exception. (Sesection
4.7.1for an example.)

4.6 Typed Even€Communcation

Section 4.2 discusses generic event communication push andpull operations.
The next fewsections describe how event communication can be described in OMG
IDL and how typed event channels can support such typed esemhunication.

4.6.1 Typed Push Model

In the typecpush model, suppliers call emtions on consumers using some mutually
agreed interfacl. The inerfacel is defined in IDL, and may contain any operations
subject to the followingestrictions:

® All parameters must bin parameters only.
® No return values are permitted

These are the samestrictions as CORBA imposes oneway operations, and for
similar reasons: event communication is unidirectional,goas notdirectly support
responses. The operations can beatecloneway, but need not be.

To set up typed push-style communication, consumers and supplie@ngrc
TypedPushConsun andPushSupplie object referaces. (Note that the supplier
interface is the same as the untyped case.) Theisupipén invokes the
get_typed_consumer operation of theTypedPushConsun interface, which
returns an object reference supporting the typed interl, referred to as al-

referenc. The particular interfacd, that the reference supports is dependent on the

Event Servicevd.0 Typed Event Communicat March 1995 4-19

particular TypedPushConsurr, and must be mutually agreed by suppéierd
consumer. Once the suplhas obtained thi-reference, it can call operations in
interfacel on the consumer.

As in the case of the generic push-style, exmmimunicationcan be broken by
invoking adisconnect_push_consumer operation on thiTypedPushConsun er
interface or by invoking disconnect_push_supplier operation on the
PushSupplieinterface. If thePushSupplie object reference is nil, the connection
cannot be broken via the supplier.

Figure 4-11 illustrates typed push-style communication between supplier and
consumer.

PushSupplier

I k > supplier

1
- ! TypedPushConsumer
i
ro

Figure 4-11 Typed Push-style Communication Between a Supplier and a Consumer

consumer)

4.6.2 Typed Pull Model

In the typed pull model, consumers call operations on suppliersiesgipgevent
information, using some mutually agreed interfPull<I>3. For every interfaci
having the properties describedseaction 46.1, aninterfacePull<I> is defined as
follows:

® For every oprationo in |, Pull<I> contains two operations:

* pull_o , with allin parameters changed out parameters. When calletthis
operation will return with the event data in fout parameters. If no-event is
currently available, it wilblock.

e boolean try 0o, with allin parameters changed to out parameters. When
called, this operation will check whether c-event is currently available. If so,
it will returntrue , with the event data in ttout parameters. If not, it will
returnfalse , with theout parameters ndefined

3.Pulll> isused as notation for acomputed interface frominterface I. TH is an interface
DocumelitEvent;, Pull<I> is an interfac PullDocumentEvents.

4-20 CORBAservices March 1995

4

TheinterfacePull<I> is designed to allow pulling of exactly the same events that can
be pushed usinmterfacel.

To set up typed pull-style communication, consunard suppliers exchange
PullConsume and TypedPullSuplier object references. (Note that the consumer
interface is the same as the untyped case.) The consumer then invokes the
get_typed_supplier operation of thiTypedPullSpplier, which returns an object
reference supporting the typed interfaPull<I>, referred to as Pull<I>-reference.
The particular interfacePull<l>, that the refenece supports is dependent on the
particularTypedPullSupplic, and must be mutually agreed by supplier andsaorer.
Once the consumer has obtained Pull<l>-referenc,, it can call gerations in
interfacePull<I> on the supplier.

Figure 4-12 illustrates typed pull-style communication between supplier and consumer.

PullConsumer

consumer supplier

~—]|

g
. |
TypedPullSupplier
1
|

Pull<l>

Figure 4-12 Typed Pull-style Communication Between a Supplier and a Consumer

4.7 The CosTgedEventComm Module

The typed communication styles shown in Figure 4-11 eFigure 4-12 are both
supported by two new interfaceTypedPushConsun and TypedPullSupplie and two
existing interfaes,PushSupplie andPullConsume. The firsttwo interfaces are

Event Servicevd.0 The CosTypedEventComm Moc March 1995 4-21

defined in an OMG IDL module nam¢CosTypedEventCon, as shown in
Figure 4-13. The last two are the same as for untyped eeemnunicationand were
defined in theCosEventCom module in Figure 4-3.

#include “CosEventComm.idl”
module CosTypedEventComm {

interface TypedPushConsumer : CosEventComm::PushConsumer {
Object get_typed_consumer();

k

interface TypedPullSupplier : CosEventComm::PullSupplier {
Object get_typed_supplier();
|3

Figure 4-13 The IDL ModuleCosTypedEventComm

4.7.1 The TypedPushConsumer Interface

A typed pish-style consumer supports {TypedPushConsun interface both to
receive event data in the generic manner, and to supply dispygged interface
through which to receive it in typddrm.

interface TypedPushConsumer : CosEventComm::PushConsumer {
Object get_typed_consumer();

k

The TypedPushConsurr can behave just like an untypPushConsum, described in
section 4.31. In addition, if the supplier wishes mbmmunicate event data to the
consumer in typed rather than generic form, it first invokes the
get_typed_consumer operation. This returns é-reference supporting an

interfacel. The particular interfac I, that the reference supports is dependent on the
particular TypedPushConsurr. The return type of the operationObjec, because
different TypedPushConsume¢ will return references of different types, so the actual
type cannot be specified in a general definition. Once the supplier has obtaiil-:d the
referenc, it can narrow it t I, and then call operations interfacel on the consumer.
Mutual agreement aboll is needed between the supplier and consumer. If they do not
agree, the narrow operation will fail.

As noted above, TypedPushConsumr must support thpush operation, inherited
from CoEventComm::PushConsun. Implementingpush fully is an unnecessary
burden if the consumer is intended for typed use only. It is therp&reissible to
implement aTypedPushConsurr with a null implementation cpush that merely
raises the standaCORBA exceptiorNO_IMPLEMEN. Clearly, suppliers must know
this and confine themselves to type@mmunication with such consumers.

4-22 CORBAservices March 1995

4.7.2 The TypedPullSupplier Interface

A typed pul-style suppier supports thiTypedPullSupplie interface both to allow
consumers to pull event data in the generic manner, and to supply a specific typed
interface through which they can pull it in typed form.

interface TypedPullSupplier : CosEventComm::PullSupplier {
Object get_typed_supplier();
3

The TypedPullSupplie can behavgust like an untpedPullSupplie, described in
section 4.33. In addition, if the consumer wishes to pull event data from the suppl

in typed rather than generic form fitst invokes theget_typed_supplier

operation. This returns Pull<I>-reference supporting an interfacPull<I>. The
particular interfacePull<l>, that the reference supports is dependent on the particular
TypedPullSupplie. The return type of the operationObjec, because different
TypedPullSuppérs will return references of different types, so the actual type cannot
be specified in a general definitio@ncethe consumer has obtained Pull<I>-
referenc, it can narrow it ttPull<l>, and then call perations in interfacPull<I> on

the supplier. Mutual agreement abPull<l> is needed between the supplier and
consumer. If they do not agree, harrow operation will fail.

As noted above, TypedPullSupplie must support thpull andtry _pull

operations, inherited from CEventComm::Pull8pplier. Implementing these

operations fully is an unnecessary burden if the supplier is intended for typed use only.
Itis therefore permissible to implemenTypedPullSupplie with null implementations

of pull andtry_pull that merely raise the standéCORBA exception
NO_IMPLEMEN. Clearly, consumers must know this and confine themselvypéd
communication with such suppliers.

4.8 Typed Event Channels

Typed event channels are analogougeneric event channels, but they support both
typed and generic event communication. These forms can be mixed at will. A single
channel can handle eventgpgliedand consumed in any combination of fbems
defined earlier (push/pull, generic/typed). An event suppliedpedjorm can be
consumed in generic form, or vice vel;a.

4.Doing this does require an understanding on the part of the generic suppliers and consonetiseof
channel packages parameters of typed calls when converting them to generic form. Details of this
packaging are dependent on the implementation of the channel.

Event Servicevd.0 Typed EventChann¢ March 1995 4-23

4

4.9 The CosTgedEventChannelAdmin Module

The CosTypedEventChannel Admin module defines the interfaces for making
connections between suppliers and consumers that use either generic or typed
communication. It is defined in Figure 4-14. Most of its interfaces are specializations
of the corresponding interfaces in iICosEventChannel module defined in

Figure 4-10.

4-24 CORBAservices March 1995

#include © CosEventChannel.idl”
#include “CosTypedEventComm.idl”

module CosTypedEventChannelAdmin {

exception InterfaceNotSupported {};
exception NoSuchimplementation {};
typedef string Key;

interface TypedProxyPushConsumer :
CosEventChannelAdmin::ProxyPushConsumer,
CosTypedEventComm::TypedPushConsumer {};

interface TypedProxyPullSupplier :
CosEventChannelAdmin::ProxyPullSupplier,
CosTypedEventComm::TypedPullSupplier { };

interface TypedSupplierAdmin :
CosEventChannelAdmin::SupplierAdmin {
TypedProxyPushConsumer obtain_typed_push_consumer(
in Key supported_interface)
raises(InterfaceNotSupported);
ProxyPullConsumer obtain_typed_pull_consumer (
in Key uses_interface)
raises(NoSuchlmplementation);

h

interface TypedConsumerAdmin :
CosEventChannelAdmin::ConsumerAdmin {
TypedProxyPullSupplier obtain_typed_pull_supplier(
in Key supported_interface)
raises (InterfaceNotSupported);
ProxyPushSupplier obtain_typed_push_supplier(
in Key uses_interface)
raises(NoSuchlmplementation);

k

interface TypedEventChannel {
TypedConsumerAdmin for_consumers();
TypedSupplierAdmin for_suppliers();
void destroy ();

Figure 4-14 The CosTypedEventChannelAdmin Module

Event Servicevd.0 The CosTypedEventChannelAdmin Mo March 1995

4-25

4.9.1 The TypedEventChannel Interface

interface TypedEventChannel {
TypedConsumerAdmin for_consumers();
TypedSupplierAdmin for_suppliers();
void destroy ();

This interface is analogous to (EventChannelAdmin::EventChannel

However, it returns typed versionstbe consumer and suppliadministration
interfaces, which are capable of providing proxies for either generic or typed
communication.

4.9.2 The TypedConsumerAdmin Interface

The TypedConsumerAdn interface defines the first step for connecting consumers to
typed event channel; clients use it to obtain proxy suppliers.

interface TypedConsumerAdmin :
CosEventChannelAdmin::ConsumerAdmin {
TypedProxyPullSupplier obtain_typed_pull_supplier(
in Key supported_interface)
raises (InterfaceNotSupported);
ProxyPushSupplier obtain_typed push_supplier(
in Key uses_interface)
raises(NoSuchimplementation);

The obtain_typed_pull_supplier operation takes a Key parameter that
identifies an interfacePull<I>. The scope of the key is the typed event channel. It
returns eTypedProxyPullSuppli for interfacePull<|>. The TypedProxyP ullSpplier
will allow an attached pull consumer to pull events either in generic form or using
operations in interfac Pull<I>. It is up to the implementation of

obtain_typed_pull_supplier to create or find an appropriate
TypedProxyPullSuppli. If it cannot, it raises the exception
InterfaceNotSupported

The obtain_typed_push_supplier operation takes Key parameter that

identifies an interfacel. The scope of the key is the typed event channel. It returns a
ProxyPushSpplier that calls operations in interfal, rather tharpush operations. It

is up to the implementation ©obtain_typed_push_supplier to create or find

an appropriatc ProxyPushSupplil. If it cannot, it raises the exception
NoSuchimplementation

4-26 CORBAservices March 1995

4

Such aProxyPushSupplic is guaranteed only to invoke operations defined in interface
I. Any event on the channel that does not correspond to an operation defined in
interfacel is not passed on to the consumer. SuProxyPushSuppli¢ is therefore an
eventfilter based on type.

4.9.3 The TypedSupplierAdmin Interface

The TypedSupplierAdm interface defines the first step for connecting suppliers to the
typed event channel; clients use it to obtain proxy consumers.

interface TypedSupplierAdmin :
CosEventChannelAdmin::SupplierAdmin {
TypedProxyPushConsumer obtain_typed_push_consumer(
in Key supported_interface)
raises(InterfaceNotSupported);
ProxyPullConsumer obtain_typed_pull_consumer (
in Key uses_interface)
raises(NoSuchimplementation);

The obtain_typed_push_consumer operation takes Key parameter that
identifies an interfac I. The scope of the key is the typed event channel. It returns a
TypedProxyPushConsun for I. An attached supplier can provide events by using
operations in interfacl. It is up to the implementation of

obtain_typed_push_consumer to create or find an appropriate
TypedProxyPushConsun. If it cannot, it raises thexception
InterfaceNotSupported

The obtain_typed_pull_consumer operation takes Key parameter that

identifies an interfacePull<l>. The scope of the key is the typed event channel. It
returns eProxyPullConsume that calls operations in interfaPull<l>, rather than
pull operations. Itis up to the implementation of

obtain_typed_pull_consumer to create or find an appropric e
ProxyPullConsume. If it cannot, it raises thexceptionNoSuchimplementation

Such aProxyPullConsume is guaranteed only to invokeerations defined in
interfacePull<l>. Any event request that does not cormgpto an opration defined
in interfacePull<I> is not pulled from the supplieBuch aProxyPullConsume is
therefore an event filter based on type.

5.see Appendix Afor implementatiomasiderations.

Event Servicevd.0 The CosTypedEventChannelAdmin Mo March 1995 4-27

4.9.4 The TypedProxyPushConsumer Interface

The TypedProxyPushConsuminterface defines the second step for aating push
suppliers to the typed event channel.

interface TypedProxyPushConsumer :
CosEventChannelAdmin::ProxyPushConsumer,
CosTypedEventComm::TypedPushConsumer {};

* By inheriting from both CcEventChannelAdmin::ProxyPushConsumer
and CoTypedEventComm::TypedPushConsumer , this interface supports:

» Connection and disconnection of push suppliers, exactly as in the generic event

channel,
» Genericpush operation and

» Obtaining the typed view, so that the supplier can use typed push
communicationThe eference returned kget_typed_consumer has the
interface identified by thKey used when thiTypedProxyPushConsun was
obtained. (Sesection 4.9.3)

4.9.5 The TypedProxyPullSupplier Interface

The TypedProxyPullSupplieinterface defines theecond step for connecting pull
consumers to the typed event channel.

interface TypedProxyPullSupplier :
CosEventChannelAdmin::ProxyPullSupplier,
CosTypedEventComm::TypedPullSupplier { };

By inheriting from both CcEventChannelAdmin::ProxyPullSupplier and
CosTypedEventComm::TypedPullSupplier , this interface supports:
» Connection and disconnection of pull consumeragcty as in the generievent
channel,
» Genericpull andtry_pull operations and
» Obtaining the typed view, so that the consumer can use typed pull
communication.The eference returned kget_typed_supplier supports

the interface identified by thKey used wherthis TypedProxyPullSupplic was
obtained. (Sesection 4.9).

4.10 Composing Event Channels and Filtering

4-28

The event channel administration operations defined in sectiosupport the
composition of event channels. Thatase event channel can consume events
supplied by another. This architecture allowsithplementaibn of an event channel
that filters the events supplied by another.

CORBAservices March 1995

4

Since th: ProxyPushSpplier for interfac¢ | of a typed event channel only pushes
events that corregmd tol, it acts as a filtebased on type. Similarly, tie
ProxyPullConsume for interfact Pull<I> of a typed event channel only pulls events
that correspond tPull<I>, it also acts as a filtdrased on type.

4.11 Policies for Finding Event Channels

The Event Service does nestablish a policy for finding event channels. Finding a
service is orthogonal to using the service. Higher levels of software (such as the
desktop) can make policies for using the event channel. That is, higher layers will
dictate when an everhannel is created and how references to the event channel are
obtained. By representing the event channel asbch it hasall of the properties

that apply to objects, including support by finding mechanisms.

For example, when a user performdrag-and-drop ~ or cut-and-paste

operation, an event channel could be created aatiftkd to suppliersnd corsumers.
Alternatively, the event channel could be named in a naming context, or it could be
exported through an operation on @lnjec.

Event Servicevl.0 Policies for Finding Event Channe March 1995 4-29

4

Appendix A Implementing Typed Event Channels

Note —Implementation details do not form part of an OMG specification, and should
not be standardized. On the other hand, it is not obvious that typed channels can be
implemented without extensions to CORBA. This section indicone strategy for
implementing typed event channels. It is included to show that typed event channels
can be implemented; it is not intended in any way testrain implementations.
Optimized implement&ns are certainly possible.

Figure 4-15 demonstrates a possible implementation of a typed event channel. This
appendix concentrates on push stydenmunication. The implementation of pull-style
communication is analogous.

The mplementation interposes iencode between typedtgle suppliersand the
channel and idecode between the channel and typed-style consumers.

l i |
<] I
typed IPC encode | typed

consume supplier

PC = PushConsumer
| = interface |

Figure 4-15 A possible implementation of a typed event channel.

At the supplier end, aencode converts operation calls push calls.
At the consumer end, decode convertspush calls back to operation calls.

The effect of such aommunication is thus that the original operation is eventually
called on theconsumer, but the communication is routed via the channel. Of course,
there can benultiple suppliersand mitiple consumers on the same channel.
Whenever one of the supgxis calls an operation, it is delivered by the channel to all
consumers.

The encoder must package thgeration identificatiorand theparameters in a manner
that the decoder can unpack theatrectly.

Given the OMG IDL definition of an interfacl, an encoder generator could generate
an implementation thaupports the interfa | and convertsll calls on this interface
to push calls on an event channel.

Similarly, it is possible t@enerate an I-decoder from the OMG IDL definition of I.

4-30 CORBAservices March 1995

The typed eent channel is responsible for findingeating or implementing the
appropriateencoders. An appropriate encoder is found or created in response to the
obtain_typed_push_consumer request on the typed event channel. The encoder
is returned in response to tget_typed_consumer request.

Similarly, the typed event channel is responsible for finding, creating or implementing
the appropriatdecoders. An appropriate decoder is found or created in response to the
connect_push_consumer request on the typed event char nel.

Implementing Typed Event ChannelsPolicies for Finding Event Channt March 1995 4-31

4

Appendix B

4-32

An Event Channel Use Example

This sectionllustrates arexample use of the event channel, including the following:

e Creating an everthannel
e Consumers and/or suppliers finding the channel
» Suppliers using the event channel

* In this example, the document object creates event channels and defines
operations in its interface to allow consumers t@tded.

» TheDocumer interface defines two operations to retesrent channels:

interface Document {
ConsumerAdmin title_changed();

ConsumerAdmin new_section();

Thetitle_changed operation causes the document to generate an event when
its title ischanged; thnew_section operation causes the document to generate

an event when a nesection isadded. Both operations retuConsumerAdm n
object reference. This allows consumers to be added to the event channel.

® Thetitle_changed implemenation contains instance variables for using and

administering theevent channels.

/* Factory for creating event channels. */
EventChannelFactoryRef ecf;

/* For title changed event channel */

EventChannelRef event_channel,
ConsumerAdminRef consum_admin;
SupplierAdminRef supplier_admin;

ProxyPushConsumerRef proxy_push_consumer;
PushSupplierRef doc_side_connection;

CORBAservices March 1995

® At some point, the document implementation creates the ehannel, gets
suppler andconsumer adimistrative references, and adds itself as a sui.lier

event_channel = ecf->create_eventchannel(env);

supplier_admin = event_channel->for_suppliers(env);
consumer_admin = event_channel->for_consumers(env);
proxy_push_consumer = supplier_admin->obtain_push_consumer(env);

proxy_push_consumer->connect_push _supplie r(env,
doc_side_connection)

® Thetitle_changed operation returns thConsumerAdm object reference.

return consumer_admin;

Clients of this operationan add consumers.

®* When the tie changes, the documemmhplementatiorpushes the event to the
channel.

proxy_push_consumer->push(env,data);

The documentmplementation similarly initializes, expo, and uses the event channel
for reporting new sections.

6.For readability, exception Indling is omitted from theseode fragments.

Event Channel Use Example Policies for Finding Event Channe March 1995 4-33

4-34 CORBAservices March 1995

Persistent Object Service Specification 5

5.1 Introduction

The goal of thePersistent Object Servi¢(POS)is to provide common interfaces to the
mechanisms used for retaining and managing the persitaatofobjects. The
Persistent Objecservice will be used in conjetion with other object services, for
example, naming, relationships, transactions, life cyand so fort. The Persistent
Object Service has the primary responsibility for storingpersistenstat¢ of objects,
with other services providing other capabilities.

Object Reference

Object

Dynamic state

Persistent state

Persistent Object Service

Figure 5-1 Roles in the Persistent Object Service

CORBAservices March 1995 5-1

5-2

Figure 5-1 hows the participants in the Persistent Object Service. The state of the
object can be considered in two parts, dynamic stal, which is typically in memory
and is not likely to exist for the wholddtime of the object (for example, it would not
be preserved in the event of a system failure), anpersistent sta, which the object
could use to reconstruct the dynamic state.

Although the ORB provides the dibj for an object reference to be persistent, it
cannot ensure that the state of the object will be available just because the object
reference isstill valid.

The objectultimately haghe respornibility of managing its state, but can use or
delegate to the Persistent Object Service for the actual work. There is no requirement
that any object use any particular persistence mech. Far example, it may write its

data to files usingan-CORBAInterface, or a single-level-store mechanism may be
used However, the Persistent Object Service provides chpebithat should be

useful to a wide variety of objects.

Whether or not the client of an object is aware of the persistent state is a choice the
object hasCORBA already provides a persistent reference handling interface (i.e.,
object_to_string, string_to_object, release, etc.). We expect thatithize sufficient

for most clients to manage persistence of their referenced oletidecause certain
kinds of flexibility require the client to manareference bjects’ persisten the
Persistent Object Service defirobject nterfaces for doing so. If this flexibility is not
required, then these interfaces need not be sup| or used.

The size structure, access patteraisd other properties of the dynamic gretsistent
state of the object varies tremendously. For many objects,ptigiary semantics are
the efficient storagand access of itstate for particular pugses. It is critical that the
Persistent Object Service be able to supgoeatly different styles afisage and
implementation in order to be useful to as many objects as possible.

As usual for object services, the primary task of this persistence specification is to
define the interfaces that are needed to usd#rsistent Object Service, and the
conventions for how objects can work together using it.

The architecture of the Persistent Object Service defineliple commnents and
interfaces. In a particular situation, different parts of the service may be used. In no
case des this specificationssume the use of a particular implementation of a
component, and it is expected that different implementations of the components will in
fact work togethe.r

Section 5.2 describes the overall goals and prigseof the Persistent Object Service.
Section 5.3 defines the components which compose it. Section 5.4 presents the
CosPRersistenePID module which defines the Persistence lifient(PID). Section 5.5
presents the CosPersistencePO module with interfaces borrerditdnt Objects, and
Section 5.6 presents th&terface to the Persistent Object Manager (POM). Seétibn
presents an overview of the Persistent Data Service (PDS) which interfaces both to the
Protocol which communicates between PO and PDS, and to the Datastore which
actually stores the data; following this, SectmB defines the CosPersistencePDS
Module which defines base functionality inherited by every protocol. Three protocols
are presented in this specifimat although more are possible; the Direct Access

CORBAservices March 1995

5

Protocol (PDS_DA) is described in Section 5.9 and its IDL module is presented in
Section 5.10. The ODMG-93 Protocol is described in Section 5.11. The Dynamic Data
Object (DDO) Protocol is described in Sectiod.andits IDL module is presented

in Section 5.13. Other possible protocols are discusgetly in Section5.14. One
possible datastore, implementable using abemof database arfile mechanisms, is
described in Section 5.15; other possible datastores are discussed in Séétion 5
Finally, Section 5.18 $its outside works referenced in this chapter.

5.2 Goals and Properties

The Persistent Object Service playkey role in structuring the object system. The
model of how many objects work ¢sitically dependent on caistentand integrated

use of persistence. Like other object services, the Persistent Object Service provides
interfaces that can suppdifferentimplementations in order to obtain different
gualities of service. Those interfaces allow different components to work together.

The overall persistence architecture hrasltiple component. Each vill be introduced
in turnin this section, following presentation come basic capabilitieand propeies
provided by he overall architectu.e

5.2.1 BasicCapabilities

The pinciple requirement to be supported is the need for an object to be able to make
all or part of its state be persistenithi®ugh theCORBA system defines object
references as persistent (that is, they are usable until threleasedegardless of the

life time of their containing addrespace), it defined no particular way for the object

to make its state persistent. The Persistent Olentice is intended ultimately to be

the most common way to implement this. Therefore, there must be a way for the object
to decide whastate needs to be made persistent, and ways to storetaede that

state.

It is often necessary to expose fersistent state from an object, so that the ctant
control the object’'s persistence to achieve certain types of flexibilitg.Persistent
Object Service defines a convention for doing this. Clients of objectstsnesneed
ways to refer to the persistent statad request various operations on it. It is often not
necessary to expose thersistent state from an object, so that the object
implementatioritself determines its persistence. lrese ases, nersistence-specific
object interfacs reed be supported.

5.2.2 Object-orientecStorage

In existing non-object-oriented systems, persistence is accomplished by a number of
data storage mechanisms. Generalych mechnisms do not provide the key

properties that object systems provide—unifomerfaces, self-descriptiorand
abstraction. The Persistent Object Service brings these properties to storage by
applying object technology and principles.

Persistent Object Service: v1.0 Goalsand Propertie March 1995 5-3

Interfaces to Data

To manage object persistence, the POS defines an architecture with interfaces defined
using the CORBA IDL type system. Whetlggtailingthe particular data to be stored,
describing theprotocol for accessing the state, or defining the convention for making
state visible for client controthe same “languag is use. This makes persistence a
natural part of the software environment. These interfacedesigned to be used in a

wide variety of situations, creating unifoitynby encouraging most objects to support
them, while allowing opihization andevolution.

By accessing data through an interface, many problems of data manipulation and
exchange can be avoided. For example, programs always see data in the representation
that is appropriate for the machine, programming language, etc., apfhieation.

Data can be translated as needethtilitate use in different objetypes and
implementations and for different storage formor underlying persistent storage
mechanisms (e.g. stream files, record files, or various databehen it is accessed

through thenterface.

Self-description

A powerful characteristic of object-oriented systems is that the elements are self-
describing. It is possible to determifrem anobject what kind of object it is and what
interfaces it supports. In the persistence archite this means, for example, that a
client can determine whether or not an object wishes to magerggstent state visible
by checking to see if the object supports the interface for doing so.

It also means that ttdatacan be manipulated to some degree indepely of the
objects whose state they represent. This can allow geneiiidida such as ackup,
migration, storage accounting, etc., to lmmeé independent of the objects whose state
is being stored.

Abstraction

In order to support a wide and evolving set of uses, a service must be able to improve
and replacédts implementations without affecting the clients of that service. The desire
for reuse of objects requires that those objects not depend itdly €in other objects

and services, but rather be willing to work with any other components that support the
required interface.

A variety of value-added products are also possible assuming that the adlejpetsd

only on the definednterfaces. By interposing enpected implementatis, for

example, it may be possible to support features such as replication or versioning in a
transparent way.

5.2.3 Open Architecture

A major feature of the Persistent Object Service (and the OMG architecture) is its
openness. lihis case, that means that there can be a variety of different dishts
implementations of the Persistent Object Service, and they can work together. This is

CORBAservices March 1995

5

particularly important for stoge, where the mechanisms that are useful for documents
may not be appropriate for employee databases, or the mechanisms appropriate for
mobile computers may not be appropriate for mainframes.

Implementations can be lightweight, consisting of mostly library code, or powerful,
leveraging decades of experience with database systems. Of course, the architecture
specifies several interfaces, but alsowh how newinterfaces can be intduced when
needed whilestill exploiting the rest of the architecture.

As with other object services, themistent Object Service is inted to be part of a
collection of services. As a result, it does not attempt to sdlvyeroblems that might

relate to storage. Rather, it assumes other services will provide the solutions. For
example, the Persistent Object Service does not do naming, but assumes that the Name
Service will perform that function; itaks not do transactions, but assumes that they

will be added as appropriate; it does not handle issues of generabwatnpbjects,

but assumes that there will be a scheme that spans persistence, lifecycle, printing and
other services.

A key idea in object systems thatdstical for persistence is the ability for new and
existing storage services to be able to integrate into the architecture. The requirement
for such components to “plug and play” together is paramount, one @nnot expect

all data to be maintained in a particukind of file or database syste Thus, the
architecture has features to allow existing databases or other storage mechanisms to be
used fompersistace, and for new storage meetisms to be developed that campport

both Rersistent ObjecEervice clients and other kinds of clients.

The POSarchitecture is open with respect to PersistentDataService, Datastore,
Protocol, and PID interfaces. Although we define soni@mum requirements for

these in some cases, many alternatives are allowed, including ones that have not yet
beendefined.

5.2.4 Views oiService

There are multiple views of the service, and each participant may need to consider only
a part of the architecture.

Client

It is common for clients of objects tweed to control or tassist in managing
persistece. In particular, the timing of when the persistent state is preserved or
restoredand the i@éntification ofwhich persistet <tate is to be used for an obj, are
two aspects often ohferest to clients. The ability of a client to see the olgedits
data separately allows different objéwiplementaibns to be used with the same data
and allows differenfiles or databasesnd formats to be used with the same object
implementation.

However,the client need only deal with such complexitiiemthis type of
functionality is necessarylhe client of theobject can be completely ignorant of the
persistence mechanism, if the object chooses to hide it.

Persistent Object Service: v1.0 Goalsand Propertie March 1995 5-5

5-6

The Persistent Object Service provides an interface for (s to use when they want
to expose their persistence to their clients. fterfacedoes not completelgbandon
encapsulation, but gives the cliensibility to thosefunctions t needs. In fact, the
client is generallyjunaware of how or if the object uses other parts of the Persistent
Object Service.

Object Implementation

The object has the most involvement with the persisée and thenost options in
deciding how to use it. Defining and manipulating the persistent state of the object is
often the most crucial part of its implementatidhe first decision the object makes is
what interface to its data it needs. Ther$stent Object Service captures that choice in
the selection of the Protocol used by the object. Some Protocols provide simple
interfaces andimited functionality, others may provide more control and more
powerful operations.

The object also has the choice of delegating the manageméstmdrsistent data to
other services, or maintaining f-grainec control over it.The Persistent Object

Service defines a Persistent Object Manager that handles much of the complexity of
establishing connectiorietween objects and storage, aflog new components to be
introduced without affecting the objectstbeir clients.

The dbject may also provide the diby for its clients to manipulate its persistent state
in various ways. This is important for creating a uniform view of persistence in the
system.

Persistent Data Se&ice

The Rersstent Data Service (PDS) actually implements the mechanism for making data
persistentand manipulatingt. A particular PDS supports a Protocol defining the way
data is moved in and out of the object, and an interface to an underlying Datastore.

The PDS has theesponsibility of translating from the object world above it to the
storage world belovit. It plays critical roles in identifying the storage as well as
providing convenient and efficient access to it.

We define multiple kinds of DSs, each tuned to a particuprotocol inddata storage
mechanisn since the range of requirements frformance, cosand qualitative

features is so large. Multiple PDSs must work together to create the impression of a
uniform persistence mechanism. The Persistent Object Manager provides the
framework for PDSs to cooperate this way.

Datastore

The lowest-level interface we define is a Datastorlthough Datastore interfacs are

the least visible part of the persistence architecture, it may be the madtleakince
there are so many different Datastores offering a wide spectrum of tradeoffs between
availability, data integrity, resource consumption, performamzecost, and it is

CORBAservices March 1995

5

expected that more will be created. By having an interface thidden from objects
andtheir clients @ Datastore can provide service to any afidbjects that indirectly
use the Datastore interface.

The Datastor@lays a key role in interoperating with other storage services. It is the
manifestation in the object world of the various means of storing data that are not
objects Generally, standards for Datastore interfaces have alreadydeéieed for
differentkinds of data repositories - relational, object-oriented, and file systems.

5.3 Service Structure

This sectionpresents an overview oach of the major compones end how they
inteirelate.Subsequensections present the OMG IDL as divided into modules which
correspond closely (but not exactly) to these components, as noted below.

The major componenof the Persistent Object Service are illustrated in Figditeon
page . Theyare:

® Persistent Identifier (PID) - This describes the locatioan object’s ersistent data
in some Datastore and generates a string iftemfior that date .

® Persistent Object (PO) - This is an ob whose persistence is controlled externally
by its clients.

® Persistent Object Manager (POM) - Tcomponenprovides a uniform interface
for the implementation of an object’'s persigte operations. An object has a single
POM to which itroutes its high-level ersistenceoperations to achieve plug and
play.

® Persistent Data Service (PDS) - Tcomponenprovides a uniform interface for
any conbination of Datastorand Protocol, and coordinates the basic persistence
operations for a single object.

® Protocol - Thiscomponenprovides one of several ways to get data in and out of an
object.

® Datastore - Thicomponenprovides one of several ways to store an object’s data
independently of the address space containing the object.

Persistent Object Service: v1.0 Service Structur March 1995 5-7

;

Persistent Object Pq PID | Persistent Identifier

4
Protocol =mm PersistentObjectManager
PersistentDataService PDS
Datastore ‘ ‘
N~/

Figure 5-2 Major Componeis of the POS and their Interactions

The term “gersistent object” isised to refer both to objects whagsersistence is
controlledinternally or externally. Either kind (persistent object can be supported by
the Persistent Object Servic POM, PDS, Protocol anDatastore interfaes. The PO
interface supports externally controlled persistence.

5.4 The CosPersistencePID Module

5-8

The CosfrsistencPID module contains the basic interface fetrieving a PID:
® The PID Interface

This section describes thisterface, plus an example factory interfaaadtheir
operations in detail.

CORBAservices March 1995

The CoslersistencPID Module isshown inFigure 5-3: .

module CosPersistencePID {
interface PID {

attribute string datastore_type;
string get_PIDString();

h

Figure 5-3 The CosPersistencePID Module

The PID identifiesone or more locations within adbastore that represent the
persistent data of an objeaid generates a string iddiet for that data. An object
musthave a PID in order to store its datarsistently.The client carcreate aPID,
initialize its attributesand connect it to the object. persistent object’s
implementation uses trPOM interface by passing the object and the PID as
parametels

The PID should not be confused withe CORBA object referend®ID). Theyare
similar in thatboth have an operation that producestring formthat can be stored or
communicated in whatever ways strings may be manipulated andisatrto get the
original PID or OD. They differ in that the PID identifies data while the OID
identifies a CORBA object.

For example, assume mySpreadSheet object is referenced by both myDowaidbaicyo
objects. If mySpreadSheet’'s OID is stored persistently with myDoc aridgowand

then all three are brought into memory, then both documents will always see the same
spreadsheet object. If mySpreadSheet’s PID is stored persistently with rapBoc
yourDoc and then athree object are brought into memory, each documéhtee a
differentspreadsheet object whosttes will behe same initially but will diverge
overtime.

5.4.1 PID Interface

The OMG IDL deinition for the PID is asfollows

interface PID {
attribute string datastore_type;
string get_PIDString();

The PIDcontains at least one attribute:

Persistent Object Service: v1.0 The CosPersistencePID Mod March 1995 5-9

5-10

attribute gting datastore_type;
This identifies the interface of a Datastore. Exandatastore_types
might be ‘DBZ", “PosixFS " and ‘ObjectStore ". The PDS hideshe
Datastore’s interface from the client, tppersistent object and ttPOM, but
PDS implementations are dependent on tlatastore’s interface.

Other attributes can be added via subtypingRH2 basetype toreflect nore
specialized PIDs. Unless tldatastore_type contains only a single object’s
persistent data, there isn@ed for morespecific location informaan in the PID. The
following example PID subtypeBustrate this:

#include "CosPersistencePID.idl"

interface PID_DB : CosPersistencePID::P ID{
attribute string database_name; // name of a database

b

interface PID_SQLDB : PID_DB {
attribute string sql_statement; // SQL statement

h

interface PID_O ODB : PID_DB {
attribute string segment_name;// segment within database
attribute unsigned long oid; /I object id w ithin a segment

b

The PIDprovides a single operation:

string get_PIDString();
This operation returns a string version of the PID calledPiiString.A client
should only obtain the PIDString using tget_PIDString operaton. This
allows the PID implementation to decide the form of the Rting.

Some implementations may simply concatenate thea®tiibutes. Others may return a
more compact form specialized for specific Datastores or even databases within a
Datastore. Still others may return a universally unique identifier (UUID) that facilitates
movement of its persistent data either within a single Datastore or between Datastores.
A UUID-based PID might be implemented by overriding theaget set atibute
operations and the get PIDString operation to bind aoklule the mapping between
UUID and location information in a speciabntext in the Name Service. Using such a
UUID-based PID, when an object is moved, tesv location would be changed by
settng theattributes to indicatéhe new location, and the PID would make the
modification in the Namé&ervice. The PID$ihg would contain the UUID that does

not change when an object’s data is moved, so that references retaain

Some applications need to be able to restore an object given a PID but without
knowing which type oimplementaibn to use. The PID can be subtyped to
accommodate this by adding the type or implementation as a PID attribute.

CORBAservices March 1995

5.4.2 ExamplePIDFactory Interface

The OMG IDL definition for an example PIDFactory is as follows (others are also
possible):

interface PIDFactory {

CosPersistencePID:: PID create_PID_from_key(in string key);
CosPersistencePID:: PID create_PID_from_string (

i n string pid_string);
CosPersistencePID:: PID create_PID_from_string_and_key(

in string pid_string, in string key);

This example PIDFactorprovides hree vays of creating a PID:

CosPersistetePID::PID create_PID_from_key(in strik@y);
This creates an instance of a PID given a key that identifies a partiiidlar
implemenation.

CosPersistetePID:PID create_PID_from_string(in string pid_string);
This creates an ingtae of a PID given a PIBtring. The PIDString must include
some way to identify a particular PID implementation (the'®key) in some
way that allows this operation to extract the PID’s key from the PIDStrinig. T
key identifies thePID implementation for th@ewly created PID.

CosPersistetePID:PID create_PID_from_strg and_key(irstring pid_string, in
string key);
This creates an ingtae of a PID whose implementation is identified by the key
in the input parameter instead of tkey in the PIDString, and whose value is
determined by the PIDString. This is useful fonem persistent data is moved
between Datastores that require different PID interfaces.

5.5 The CosPersistencePO Module

The CoslersistencePO bdule collects the interfaces which are borne besiptent
object to allow its clients and the POM to control the PQO’s relationship with its
persistent data. This module includes two interfaces:

® The PO Interface
® The SD Interface

plus an example factory interface.

The PQinterface is borne by the PO and used by the cliem.SD interface is borne
by the PO and used by the POM.

This section describes these interfaces and their operations in detail.

Persistent Object Service: v1.0 The CosPersistencePO Mod March 1995 5-11

The CoslersistencePO bdule is shown in Figure 5-4::

#include "CosPersistencePDS.idl"
/Il CosPersistencePDS.idl #includes CosPersistencePID.idl

module CosPersistencePO {

interface PO {
attribute CosPersistencePID::PID p;
CosPersistencePDS:: PDS connect (
in CosPersistencePID::PID p);
void disconnect (in CosPersistencePID::PID p);
void store (in CosPersistencePID::PID p);
void restore (in CosPersistencePID::PID p);
void delete (in CosPersistencePID::PID p);

|3
interface SD {

void pre_store();
void post_restore();

h

Figure 5-4 TheCosPersistencePO Module

5.5.1 ThePO Interface

The PO interface provides two mechanisms for allowing a client to externally control
the PO’s relatioghip with its persistent data:

® Connection: This mechanism establishes a close relationship between the PO and its
Datastore where the twdata representatiorcan be viewed as orfor the duration
of the connection. When the connection is ended, the data is the same in the PO and
the Datastore, and threlationship betweerthem no longer exists. An object can
have only one corettion at a time.

® Store/restore: Thesegerations allow the client to move data between the PO and its
Datastore in each direction separately, with each movement in each direction
explicitly initiated by the client.

The POinterface operationallow client ontrol of a single PO’s grsistent datawhen

one of these jperations is performed on a PO, what data is included in these operations
is up to that PO’s implementatioFor example, cly part of the PO’s private data may

be included. Other POs may be included based on deyiarIf other POs are

included, the target PO’s implementation becomes their diedtis responsible for
controlling their persistence.

A PO client is responsible for the following:

® Creating a PID for the PO aritializing the PID. For storage, whatever location
information is not specified will be determined by the Datas®oe.a retrieval or
delete operation, the location information must be complete.

5-12 CORBAservices March 1995

5

® Controlling the relationshipetween the data in the PO and the Datastore. This is
done by asking the PO to connect(), disoect(), store(), restore() or deletéfeli.

The OMG IDL definition for a PO is as follows:

interface PO {
attribute CosPersistencePID::P ID p;

CosPersistencePDS:: PDS connect (

i n CosPersistencePID:: PID p) ;
void disconnect (in CosPersistencePID:: PIDp);
void store (in CosPersistencePID:: PID p);
void restore (in CosPersistencePID:: PIDp);
void delete (in CosPersistencePID:: PIDp);

The POinterfacehas the following operations:

CosPersistetePDS::PDS corett (in CosPersisteePID::PIC p);
This begins a connectidretween the data in the PO and thetd>tore location
indicated by the PID. The persistent state mayjdated as operations are
performed on the object. This operation returns the PDS that hared&stence
for use by those Protocols that require the PO to call the PDS.

void disconnect (irCosPersistencePIIPID p);
This ends a connection between the data in the PO and the Datastore location
indicated by the PID. It is undefined whether or not the object is usable if not
connected to psistent state. The PID can be nil.

void store (inCosRersstencePIDPID p);
This copies he persistent data out of the object in memory and puts it in the
Datastore loation indicated by the PID. The PID can be nil.

void restore (irCosRersstencePIDPID p);
This copies he object's persistent data from the Datastore location indicated by
the PID and inserts it into the object in memoFpe PID can be nil.

void delete(in CosPersistetePID:PID p) ;
This deletes the object’s persistent data from the Datastoatidaindicated by
the PID.The PID can be nil.

To adhere to the plug and play philosophy, objects these requesthroughto the
POM, so that the interface for PO parallels that of the POM. This delegation to the
POM allows objects to change PDSs (combinatioDatastore and Protocol) without
changing their implementation.

Persistent Object Service: v1.0 The CosPersistencePO Mod March 1995 5-13

5.5.2 The POFactory Interface

The OMG IDL definition for an example POFactory is as follows (others are also
possible):

#include "CosPersistencePO.idl"
/I CosPersistencePO.idl #includes CosPersistencePDS.idl
/I CosPersistencePDS.idl #includes CosPersistencePID.idl

interface POFactory {
CosPersistencePO::PO create_PO (
in CosPersistencePID::PID p,
in string pom_id);

The example POFactory provides the following operation:

CosPersistatePO::PCcreate PO(irCosPesistencePID::Pll p, in string pom_id);
This creates an instance of a PO thadws which POM to use and witkts pid
attribute alreadyssigned.

5.5.3 The SD Interface

Some objects may be implemented Wiy they are going to begpsistent. Manguch
objects have both transient apdrsistent data. Th&ynchronized Rta (SD) Interface

is provided to allow such objects to synchronize their transient and persistent data.
Operations on the SD ainevoked only by thePOM. Persistent objects whose
persistence is controlled either internally or externally (PO)scgport the SD
interface.

The OMG IDL definition for SD is as follows:

interface SD {
void pre_store();
void post_restore();

The inerface for SD provides two operations:

void pre_store();
This ensures that theepsistent datiare ynchronized with the transient data.

void post_restore();
This ensures that the transient daare tynchronized with the persistent diita.

A word processing document provides a good example of how these openaitihis
be implemented. Suppose the document typmEemented \ith the following data:

® text buffer (persistent)

5-14 CORBAservices March 1995

® attributes (persistent)
® text cache (transient)

® cursor location (transient)

The document could henplemented such that all work is done in the text cache. Then

at store time, the text buffer needs to be updated, since it contains the actual data that
will be stored. As such, the pre_storeeogtion should be implementsdch that any
updates in the text cache are propagated to the text buffepost_restore

operation should be implemented such that the text cadhgitialized with a state
consistenwith the text buffer.

5.6 The CosPersistenceiM Module

The CosPesistencePOM module contains the interface which is borne by the POM and
used by the PO. It contains a single interface:

® The POM Interface
This section describes thisterfaceand its @erations in detalil.

The CoslersistencBOM Module is shown in Figure 5-5:

#include "CosPersistencePDS.idl"
/Il CosPersistencePDS.idl #includes CosPersistencePID.idl

module CosPersistencePOM {

interface Object;
interface POM {
CosPersistencePDS::PDS connect (
in Object obj,
in CosPersistencePID::PID p);
void disconnect (
in Object obj,
in CosPersistencePID::PID p);
void store (
in Object obj,
in CosPersistencePID::PID p);
void restore (
in Object obj,
in CosPersistencePID::PID p);
void delete (
in Object obj,
in CosPersistencePID::PID p);

Figure 5-5 The CosPersistencePOM Module

Persistent Object Service: v1.0 The CosPersistencefM Module ~ March 1995 5-15

Clients of a PO will see the operations ce POM nterface indirectly through trPO
interface. The implementation of a persistent object with either externally or internally
controlled persistenccan (se the POM interface. The POM provides a uniform
interface across all P85, so different PDSs (combination of Datastore and Protocol)
can be used without changing the object’s implementation

The OMG IDL definition of the POM is as follows:

interface POM {

CosPersistencePDS:: PDS connect (

in Object obj,

in CosPersistencePID::PID p);
void disconnect (

in Object obj,

in CosPersistencePID::PID p);
void store (

in Object obj,

in CosPersistencePID::PID p);
void restore (

in Object obj,

in CosPersistencePID::PID p);
void delete (

in Object obj,

in CosPersistencePID::PID p);

The POMinterfacehas the following oprations:

CosPersistetePDS::PDS camec (in Object obj, inCosRersistencPID::PID p);
This begins a connection between data in the object and the Datastore location
indicated by the PID. The persistent state mayjdated as operations are
performed on the object. This operation returns the PDS that isveddige
object’s PID for use by those Protocols that require the PO to call the PDS.

void disconnec(in Object obj, inCosPersisterePID:PID p);
This ends a connection between the data in the object and the Datastore location
indicated by the PID. It is undefined whether or not the object is usable if not
connected to psistent state. The PID can be nil.

void store (in Object obj, iCosPersistencePIIPID p);
This gets the persistent data out of the object in memory and puts it in the
Datastore loation indicated by the PID. The PID can be nil.

void restor: (in Object obj, inCosPersistencePIIPID p);
This gets the object’s persistent data from the Datastore location indicated by
the PID and inserts it into the object in memoFpe PID can be nil.

void delet' (in Object obj, inCosPesistencePIDPID p);
This deletes the object’s persistent data from the Datastoa¢idaindicated by
the PID.The PID can be nil.

5-16 CORBAservices March 1995

5

The najor function of thePOM is toroute requests to PDS that can support the
combination of Protocol and Datastore needed by the persistent object. To do this, the
POM mustknow which PD<Ss are available and which Protocol and Datastore
combinations they support. There are several possible ways that this inforozation

be made available to a POM:

® How a Protocol is associated with an object. One possibility is for the client to set
the Protocol for that object. Another possibility is for the Protocol to be associated
with the object’s type or implementation.

®* How a POM finds out the set of avdila PDSs and which Protocol (or object type)
and Datastores they support. One possibility is for the POM to find the information
in a configuration file or a registry. Another possibility is to provide an interface to
the POM for registering the infoation. Thebest or most natural techniqgue may
depend on the environment.

Because there are tiple ways to accomplish thebove and more experience is
needed to better understand whether there is a best way and what that might be, a POM
interface for registering this information in the POMhi# specified at this time.

When the POM is asked to store dnjext, the following steps logically occur:
1. From thePID, the POM gets the datastore_type attribute.

2. Regardless of how the Protocol is associated with the object, the POM uses the
combination of Protocol and datastore_type to determine the PDS.

3. The POM passethe store requethroughto the PDS.

4. The PDS gets data from the object using a Protacdlstores the data in the
Datastore.

The routing function of the POM serves to shield the client from having to know the
details of how actual data storage/retrieval takes place. A cinthange the
repository of an object bchanging the PID. The change widisult in routing the next
store/restore request to whatever the appropriate PDS is for the new Datastore.

Figure 5-6 illustrates an example of the routing logic for the storage of myDoc in a
DB2 database. This figure and tfedlowing example steps assume that, for this POM,
the Protocol is associated with object type:

. The POM is asked to perform a store on myDoc with pid1.
. The POM finds the datastore type associated pidh (e.g., DB2).
. The POM finds the object type of myDocde document).

1
2
3
4. The POM determines that myDoc will use a particular PDS (e.g., pdsl).
5. The POM routes the store/restore to pdsl.

6

. The PDS gets the persistent data using protocoll and stores the data in the DB2
Datastore at pic.1

Persistent Object Service: v1.0 The CosPersistencefM Module ~ March 1995 5-17

pidl pid2 pidl

datastore_type=DB2 datastore_type=0ObjectStore datastore_type=FS

protocoll

\j POM
PDS Registry
— protocol2 object type,datastore_type PDS
document,DB?Z pasT
SpreadSheet,ObjectStore
document,FS —p pds3

protocol2

\

‘ ‘ DB2 ‘ ‘ObjectStore
NS 4

-
(0]

(

Figure 5-6 Example to illustrate POMFunctions

5.7 PersistenData Servic((PDS) Overview

5-18

The PDSimplementaibn is responsible for the following:

® Interacting with the object to get data in and out of the object usprotoco.
Protocols are intduced in thissection; three example prails and a discussion of
additional protocols are presented in Section 5.9 through Section 5.14.

Interacting with theDatastore to get data in and out of the object. Datastores are
introduced in this section, and an example datastore plus a discussion of
implementing additional datastores are presented in Sestidnhand 8ction 5.16.

A PDS performs the work for moving data into and out of an object and moving data

into and out of a Datastore. There can be a watety of implementations of PDSs
which provide different performance, robustness, stoedfieiency, storage format, or
other characteristicgnd which are tuned to the size, structuranglarity, or other
properties of the object’s state.

Because the range of storage requirements is so large, there midfetsant ways in
which the object can best access its persistent daththere may be differemtays in
which the PDS can store that deThe way in whichthe object interacts with the PDS

CORBAservices March 1995

5

is called the Protocol. A Protocol may consist of calls from the object to theclS,
from the PDS to the object, implicit operations implemented wittdridnterfaces, or
some combination. The interaction might be explicit, for example, asking the object to
stream out its data, omplicit, for example, the object might be mapped into persistent
virtual memory. The Protocol igitiated when an object’s persistent state is stored,
restored, or ennected; this may bieitiated by a POM or by the objeitself. What
happensafter thatdepends on thparticular Protocol. An object that uses a particular
Protocol can work with any PDS that supports that Protocol. There is no “standard”
protocol. This spcification defines three Protocols: the Direct Attribute (DA) Protocol,
the ODMG Protocol, and the Dynamic Data &tij(DDO) Protocol. A PDS might also
use a programming language-specific or runtime environment-specific or other
Protocol.

A PDS may use either a standard or a proprietary interface to its Datastore. A
Datastore might be a file, virtual memory, some kind of database, or anything that can
store information. This specification defines one Datastore interfaceghdie
implemented by a variety of databases (Section 5.15).

The PDS compieent interface is specified here as one module containing only the base
PDS interface, plus one additional module per protocol. Each protocol-specific module
inherits from the base module, augmenting the base functionaligeted.

5.8 The CosPersistencePDS Module

The CosRrsistencePD®odule contains the bageterfaceupon which protocol-
specific interfaces are built. It contains a single interface: the PDS Interface.

This section describes thisterfaceand its @erations in detalil.

Persistent Object Service: v1.0 The CosPersistencePDS Module March 1995 5-19

The CoslersistencePD#odule is shown in Figure 5-7ome Protocols may require
specialization of the PDS interface. However,nmatter whatProtocol or Datastore is
used, a PDS always supports at least the followiterface:

#include "CosPersistencePID.idl"
module CosPersistencePDS {
interface Object;

interface PDS {
PDS connect (in Object obj,

i n CosPersistencePID:: PID p) ;
void disconnect (in Object obj,

i n CosPersistencePID:: PID p) ;
void store (in Object obj,

i n CosPersistencePID:: PID p) ;
void restore (in Object obj,

i n CosPersistencePID:: PID p) ;
void delete (in Object obj,

i n CosPersistencePID:: PID p) ;

b
b

Figure 5-7 The CosPersistencePDS Module

The exact semantics of the connect, disconnect, store, and restore operations depend on
the Protocol, since there may be other steps involved in the Protocol. In all four
operations, the persistent state is determined by the PID of the object.

PDS onnect (in Object obj, in CossistencePID::Pl p);
This connects the object its persistent state, aftdisconnecting any previous
persistent state. The persistent statey be updated as operations are performed
on the object.

void disconnect (in Object obj, in CosBistencePIDPID p);
This disconnects the object from the persisgtate. It isundefined whether or
not the object is usable if not connected to persistzie.

void store (in Object obj, in CosPersistencePID: p);
This saves the object's persistent state.

void restore (in Object obj, in CosPersistencePID: p),D
This loads the object's persistent state. The persistent state will not be modified
unless a storor other mutating operation is performed on the persistate.

void delete (in Object obj, in CosPersistencePID: p);J
This disconnects the object from itersistent state anceletes the object's
persistent data from the Datastore location indicated by th.2 PID

5-20 CORBAservices March 1995

5.9 The Direct Access (PDS_DA) Protocol

Thefirst protocol to be describddere is the PDS_DA or Direétccess Protocol. The

Direct Access Protocol supports direct access to persistent data through typed
attributes organized in data objects that are definedData DefinitionLanguage

(DDL). An object using this Protocol would represent its persistent dataeasr more
interconnected data objects. For uniformity, the persistent data of an object is
described as a single data object; however, that data object might be the root of a graph
of data objects interconnected by stored data object references. If an object uses
multiple data objects, the object traverses the graph by following stored data object
references.

An object must define the types of the data objects it uses. Those types are specified in
DDL, which is a subset of the OMG Interface Definition Langu@@®G IDL) in

which objects consist solely of attributes. The state of the data object is accessed using
the attributeaccess operations defined in CORBA in conjunction with the appropriate
programming language mapping.

Object (Client of PDS)
Data Object References PDS Object Referenc

\

PDS_DA

data objects

Figure 5-8 Direct Access Protocol Interfaces

The PDS_DA Protocol has twmarts, ashown inFigure 5-8. When connected to a

PDS, the object (which is effectively the client of the PDS) has an object representing
the PDS which supports tlPDS_DA interfaceThe dject performs operations

defined in the PDS_DA interface to get references to the data objects in the PDS. The
persistent data is manipulated by performing operations using the data object
references to geandset attributes on the collection of data objects in the PDS.

5.10 The CosPersistencePDS DA Module

The CosPaistencePDS_DA Module is a collection ofeirfaces which together define
the protocol. This module contains the following interfaces:

®* The PID_DA Interface

Persistent Object Service: v1.0 The Direct Access (PDS_DA) Protc March 1995 5-21

5-22

® The DAObject Interface

® The DAObjectFactory Interface

® The DAODbjectFactoryFinder Interface
® The PDS_DA Interface

® The DynamicAttributéccess Interface
® The PDSClustered_DA Interface

This section describes these interfaces and their operations in detail.

The CosfrsistencePDS_DA Miule isshown inFigure 5-9: :

#include "CosPersistencePDS.idl"
/I CosPersistencePDS.idl #includes CosPersistencePID.idl

module CosPersistencePDS_DA {
typedef string DAObjectID;

interface PID_DA : CosPersistencePID::PID {
attribute DAObjectID oid;

h

interface DAObject {
boolean dado_same(in DAObject d);
DAObijectID dado_oid();
PID_DA dado_pid();
void dado_remove();
void dado_free();

k

interface DAObjectFactory {
DAObiject create();

h

interface DAObjectFactoryFinder {
DAObijectFactory find_factory(in string key);
3

interface PDS DA: CosPersistencePDS::P DS {
DAObject get_data();
void set_data(in DAObject new_data);
DAODbject lookup(in DAObjectID id);
PID_DA g et_pid();
PID_DA g et_object_pid(in DAObject dao);
DAObjectFactoryFinder data_factories();

b

Figure 5-9 The CosPeaistencePDS_DA Module

CORBAservices March 1995

typedef sequence<string> AttributeNames;
interface DynamicAttributeAccess {
AttributeNames attribute_names();
any attribute_get(in string name);
void attribute_set(in string name, in any value);

h

t ypedef string ClusterID;
typedef sequence<ClusterlD> ClusterIDs;
interface PDS ClusteredDA : PDS_DA{
ClusterlD cluster_id();
string cluster_kind();
ClusterIDs clusters_of();
PDS_ClusteredDA c reate_cluster(in string kind);
PDS_ClusteredDA o pen_cluster(in ClusterlD cluster);
PDS_ClusteredDA c opy_cluster(
in PDE_DA source);

h

g
Figure 5-9 The CosPeaistencePDS_DA Module

5.10.1 The PID_DA Interface

The Pesistent Identifier§PIDs) used by the PDS_DA contain an objdentifier that
is local to the particular PDS. This value may be accessed with the following extension
to theCosPersistencePID interface:

interface PID_DA: CosPersistencePID::P ID {
attribute DAODbjectID oid;

b

The DAObjectlD has thdollowing atribute:

attribute DAObjectID oid();
This returns the data object identifiegsed by this PDS for the data object
specified by the ®.The DAObjectID type is defined as an unbounded sequence
of bytes that may be vendor-dependent.

Persistent Object Service: v1.0 The CosPersistencePDS_DA Moc March 1995 5-23

5.10.2 The Generic DAObject Interface

The DAObject interface definetelow provides operations that many data object
clients need. A Datastoimplementation mayrovide support for these operations
automatically for its data objects. A data object is not required to support this interface.
A client can obtain access to these operations by narrowing a data objectoefere

the DAObject interface:

interface DAObiject {
boolean dado_same(in DAObjectd);
DAChbjectID dado_oid();
PID_DA d ado_pid();
void dado_remove();
void dado_free();

The DAObject has the following operations:

boolean dado_same(in DAObject d);
This returns true if the target data object andpghemeter data object are the
same data object. This operation can be useestodata object references for
identity.

DataObjectID dadooid();
This returns the object identifier for the data object. $bape of data object
identifiers is implementation-specific, but is not guaranteed to be global.

PID_DA dado_pid();
This returns a PID_DA for the data object.

void dado_remove();
This deletes the object from the persistent store and deletesthemory data

object.

void dado_free();
This informs the PDS that the data object is not required for the time being, and
the PDS may move it back to persistent store. The data object must be preserved
and must be brought back thext time it is refereced. This operation is only a
hint and is provided to improve performance and resource usage.

5.10.3 The DAObjectFactory Interface

The scheme fofactories is consistent with that of the Life Cycle Service. The factory
supports the followingnterface:

interface DAODbjectFactory {
DAObject create();

b

5-24 CORBAservices March 1995

The DAObjectFactory has thillowing operation:

DAObijectFactory create();
creates a new data object in the PDS.

5.10.4 The DAObjectFactoryFinder Interface

This scheme for factorie®llows the Life Cycle Services specificatioThe factory
finder supports théollowing interface:

interface DAODbjectFactoryFinder {
DAObijectFactory find_factory(in string key);
i

The DAObjectFactoryFinder has the following operation:

DAObijectFactoryFinder find_factory(istring key);
This finds a factory for data objects as specified bykég.

5.10.5 The PDS_DA lterface

The DA Protocol uses an extendPDS interface callePDS_DA:

interface PDS_DA : CosPersistencePDS::PDS {
DAObiject get_data();
void set_data(in DAObject new_data);
DAODbiject lookup(in DAODbjectID id);
PID_DA get_pid();
PID_DA get_object_pid(in DAObject dao);
DAObjectFactoryFinder data_factories();

The PDS_DA frovides the following operations:

DAObiject get_data();
This returns the single root data object of the PDS.

void set_data(in DAObject new_data);
This sets the single root data object

DAObiject lookup(in DAObjectiDid);
This finds a data object by object id.

PID_DA get_pid();
This constructs &1D that corresponds to the single root data object of this PDS.

PID_DA get _object_pid(in DAObject dao);
This constructs a PID that corresponds to the specified data object, which must
be in this PDS.

Persistent Object Service: v1.0 The CosPersistencePDS_DA Moc March 1995 5-25

5-26

DAObjectFactoryFinder data_factories();
This returns a factory findeihe factory finder will providdactories for the
creation ofnew data objects within the PLIS

5.10.6 Defining and Using DA Data Objects

A PDS_DA implements data objects thizve a set odttributesdefined in sData
Definition Language (DDL. DDL is a subset oOMG IDL. In DDL, all interfaces
consist only of attribute, that is, there are no operatm The programming interface
for accessing the persistent state is the CORBA-defittgithute access operations as
specified in the particular programming tarage mapping. /PDS_DA mplements
those accessor operations and transfers the perssadgthetween theDatastore and
data objects as necessary.

DA data objects are used like normal CORBA objects. They are manipulated using
object references, sometimes cal‘data object referenc”. Language mappings to
data object interfaces are generated just like language mappings for other interfaces.

To define a DAdatacbject (DADO), the developer decides what state must be made
persistent. For example, goose the object's persistent data consists of two values, one
integer and one floating point number. The developer would define a bjett o
interface MyDataObject describing this data:

interface MyDataObject {
attribute short my_short;
attribute float my_float;

b

The DDL definition must be compiled, installed andkiéd with the object
implementation as necessary for the particPDS and CORBA environment.
Mechanismsimiar to those for creating stubs for IDL interfaces ased to provide
the callable routines and create the runtime information necessary for the PDS
implementation. The precise mechanisms are not defined ispecification.

CORBAservices March 1995

5

Once the object hasebn connected to ttPDS, the factory operations descrikadzbve
are used to create the data object and set it as the root object in th&HeDS8ject
gets or sets values for tlad¢tributes using th«CORBA accessor operations, for
example:

/I PDS_DA Examples

/I C++ code

/l'Include IDL compiler output from CosPersistencePDS_DA.idl

#include "CosPersistencePDS_DA.xh"

/I CosPersistencePDS_DA.idl #includes CosPersistencePDS.idl

/I CosPersistencePDS.idl #includes CosPersistencePID.idl

/I connect to PDS

CosPersistencePDS_DA::PDS DA m y pds =
pom->connect(my_object ,my_PID) ;

/I get factory finder

DAObjectFactoryFinder daoff = my_pds->data_factories();

/I get factory for MyDataObject

DAObjectFactory my_factory =
daoff->find_factory(“MyDataObject”);

/I create an instance of MyDataObject

MyDataObjectRef my_obj = my_factory->create();

/I set the object to be the root object

my_pds->set_data(my_obj);

/I put persistent state in attributes

my_obj->my_short(42);

my_obj->my_float(3.14159);

/I use persistent state

my_obj->my_short(my_obj->my_short()+12);

The DA Protocol allows developers to build ple object implementations that just

read and wte attribute values whenever they need to. There is no need for an object to
cache prsistent data in its transient store or to explicitly request it to be read or
written.

Attributes can be defined using thdl flexibility of the DDL type system. A
particular PDS may restrict thetribute types it supports.

A data object may contain object references to other data objedts ordinary
CORBA objects. Here is an example that extends the previous example by adding a
data object reference attribute and an ordinary CORBA object reference:

interface MyDataObject {
attribute short my_short;
attribute float my_float;
attribute MyDataObject next_data;
attribute SomeOtherObject my_object_ref;

Persistent Object Service: v1.0 The CosPersistencePDS_DA Moc March 1995 5-27

This example allows an instance of MgtaCbject to refer to another instee. A
Datastore implementation migtgstrict thescope of stored data objaetferences. For
example, it might permit only references to data objects in the same Datastore.

DDL interfaces support inheritance with semanidentical to IDL. In the follaving
example, a new type of data object is defined thatldbe attributes of
MyDataObiject, plus an additional integer:

interface DerivedObject : MyDataObject {
attribute short my_extra;

h

Like other CORBA objects, data objects support operations on object references. In
particular, the get_interface operation, which returns an interface repository reference
to the object’'s most derived interface, is useful for dynamically determining the type of
a data objet

5.10.7 The DynamiAttributeAccess Interface

Becausedata objects are CORBA objects, ICORBA Dynamic Invocation Interface

can be used to get and set data olg#tcibutes dynamically, usingtrings toidentify
attributes at run time. Heever, to simgfy dynamic access tdata objectttributes,
theDynamicAttributeAccess interface is defined. This interfdeBnes operations that
allow determination of the names of the attributes of a data object and getting and
seting individual attribute values by name. A data object is not required to support this
interface. It can béetermined whether or not a data object supports these operations
by narrowing a data object reference to the DynamicAttributeAdoe=sace.

typedef sequence<string> AttributeNames;
interface DynamicAttributeAccess {
AttributeNames attribute_names();
any attribute_get(in string name);
void attribute_set(in string name, in any value);

b

AttributeNames attribute_names();
This returns a sequence containing the names of the obg¢ritaites.

any attribute_géin string name);
This returns the value of the specifiadribute.

void attribute_set(irstringname, in any value);
This sets the value of the named attribute to the value specified by the any
parameter.

5-28 CORBAservices March 1995

5.10.8 The PDS_ClusteredDA Interface

It is often useful to group data objects together within a PDS. Common reasons include
locking, sharing, performance, etc. TPDS_ClustereDA is an extension to the
PDS_DA A non-clustere(PDS_DA s effectively a single cluster.

Eachcluster is represented as a distinct instance oPDS_ ClusteredDAnterface,

although they willtypically all be implemented by the same service using the same
Datastore.

In addition to supporting the normPDS_DA nterface, a ClusterePDS_DA las the
following interface:

typedef string ClusterID;
typedef sequence<ClusterlD> ClusterlIDs;
interface PDS_ClusteredDA : PDS_DA({
ClusterID cluster_id();
string cluster_kind();
ClusterlDs clusters_of();
PDS_ClusteredDA c reate_cluster(in string kind);
PDS_ClusteredDA o pen_cluster(in ClusterlD cluster);
PDS_ClusteredDA c opy_cluster(
in PDS_DA source);

ClusterID cluster_id();
This returns the id of this cluster.

string cluster_kind();
This returns the kind of this cluster.

ClusterIDs clusters_of();
This returns a sequence of ClusterIDs listatigof the clusters in this Datastore.

PDS_ClusteredDAreate_cluster(in string kind);
This creates a new cluster of the specified kind in this Datastore and returns a
PDS_ClusteredDAnstance to represent it.

PDS_ClusteredDA pen_cluster(in ClusterID cluster);
This opens amxisting cluster thalhas the specified ClusterID.

PDS_ClusteredDAopy_cluster(inPDS_DA wurce);
creates a new cluster, loading its state from the specified cluster, which may be
implemented in a different Datastore.

Persistent Object Service: v1.0 The CosPersistencePDS_DA Moc March 1995 5-29

5

5.11 The ODMG-93 Pratcol

A group of Object-Oriented Database Management System (ODBMS) vendors has
recently endorsed and published a common ODBMi§pation calledODMG-9¢.

That specification defines an extisd version of IDL for defining ODBMS object
types as well aprogramming language interfaces for objexnipulation.

The ODMG-93 Protocol is siilar to the DA Protocol, in that the object accesses
attributes organized as data objects. The primary difference is that the ODMG-93
Protocol uses the Object Definition hguage (ODL) defined in ODMG-93 instead of
DDL, and it uses the programming language mapping defined for data objects
specified in ODMG-93, rather than the CORBA IDL attribute operations.

If the ODMG-93 database object inherits PDS_DA nterface, then the database
object can be used with the rest of tspecification Objects using the ODMG-93
Protocol would manipulate persistent data using the interfaces specified in ODMG-93.

Note that in addition to using the ODMG-&8erface as anoth¢qrotocol, it would be
straightforward to implement the DA Protocol using an ODMG-93 ODBMS as a PDS.
Since the DA Protocol is a subset of the functionality in ODMG-93, in most
programming languass the language mapping for the DRittributes would be a

trivial layer on the ODMG-93 mapping. Using the ®B-93 Protocol wouldully

exploit the capabilities of ODMG-93; using an ®3-93 ODBMS toimplement the

DA Protocol captures those objects that use Frotoco.

5.12 TheDynamicDataObjec (DDO) Protocol

5-30

The DDO is a Datasto-neutral representation of an object’s persistent data. Its
purpose is to contaiall of the data for a single objec¢tigure 5-1 illustrate:an

example f aDDO. A DDO has a single PID, object_type and set of data items whose
cardinality is data_count. Each piece of data has a data_name, datanthheset of
properties whose cardinality is property_count. Each property has a property_name and
a property value.

Although any data can be stored in a DDO, the following example illustrates how it
might map onto a row in &ble:

® aDDO = arow

® data_count = number of rows

® data_item = column

® data_name = column name

® data_value = column value

® property_count = number of column projpes
® property_name = e.g., type size

® property value = e.g., character or 255

CORBAservices March 1995

a DDO
PID data_count=2 object_type
a data item a data item
data_name="" |data_va|ue:any | | data_name="" | |data_va|ue:any |
| property_count=2 | | property_count=1 |
a property a property
| property_id=1 | | property_id=1 |
property_name="" | property_name="" |
property_value=any | property_value=any |
a property
| property_id=2 |
| property_name="" |
| property_value=any |

Figure 5-10 Structure of a DDO

A DDO provides a Protocol when the persistent object supports theib®@eace. In

this case, the DDO interface is used to get data in and out of the persistent object. It
may even provide the way that the persistent object stisré@sternaldata, in which

case a copy anegkformat step is avoided.

To facilitate fastandsimple storage ancbtrieval in specialized types (Datastore,

DDOs can be used with particular conventions that are more suitadhféet@nttypes

of Datastore. If the DDO is used for both a Protocol and as a direct way to get data in
and out of a Datastore, then copy dodnat costs are greatly daced.

5.13 The CosPersistenceDDO Module

The CaPersisteceDDOmodule contains the OMG IDL to support the DDO protocol.
The module comins oneinterface, the DDO interface.

This section describes the CosPersistenceDDO module in detail.

The CoslersistenceDDO Mdule is shown in Figure 5-11.

Persistent Object Service: v1.0 The CosPersistenceDDO Mod March 1995 5-31

5-32

#include "CosPersistencePID.idl"
module CosPersistenceDDO {

interface DDO {
attribute string object_type;

attribute CosPersistencePID:: PID p;

short add_data();

short add_data_property (in short data_id);

short get_data_count();

short get_data_property _count (in short data_id);
void get_data_property (in short data_id,

in short property_id,
out string property_name,
out any property_value);
void set_data_property (in short data_id,
in short property_id,
in string property_name,
in any property_value);
void get_data (in short data_id,
out string data_name,
out any data_value);
void set_data (in short data_id,
in string data_name,
in any data_value);

h

I3

Figure 5-11 The CosPersistenceDDO Module

A DDO has two attribute:s

attribute string object_tyy;e
This identify the object_type that this DDO is associated.with

attribute CoskersstencePIDPID p;
This identify the PID of the DDO.

A DDO has the following oprations for getting data iand out of the DDO:

short add_data();
This adds a newalaitem and returns a new data_id that can be used to access
it.

short add_data_property (in short data_id);
This adds a newroperty within the data item identified by dataaidd returns
the new property_id that can be used to access it within the context of the data
item.

short get_data_count();
This gets the number of data items in the DDO.

CORBAservices March 1995

short get_data_property_count (in short data_id);
This gets the number of properties associated with the data item identified by
data_id.

void get_data_property (in short data_id,
in short property _id,
out string property_name,
out any property_value);
This gets the name and value of the property identified by property_id within the
data item identified by data_id.

void set_data property (in short data_id,
in short property_id,
in string property_name,
in any property_value);
This sets the name and value of the propemytified byproperty id within the
data item identified by data_.id

void get_data (in short data_id,
out string data_name,
out any data_value);
This gets the name and value of the data item identified by data_id.

void set_data (in short data_id,
in stringdata_name,
in any data_value);
This sets the name and value of the digan identified by data_.d

5.14 Other Protocols

This specification includes threprotocols, but otheprotocols can be supported in this
architectureThe proliferation ofprotocols would reduce theommonality of different
objects, so it is desirable to use an exisprotocol if that is possible. However, when
a newprotocol is required, it is still possible to use other parts of the Pers@gect
Service with it. In general, tkprotocol should be independent of the Datastore
interface, although some Datastore interfagésbe better suited to somrprotocols.

Someprotocols are already defined and are not specified here. Sudtastanterfaces
as POSIX files are already in wide used there is no need to respecify themthiis
case, the PID would include the file name, andprotocol would consist of reads and
writes.

Other protocols are intended to be value-added and non-standard. For example, a
LISP-specific PDS might take advantage kifowledge of the LISRuntime
environment to create the appearance of glaifevel store of LSP objects. Although
such a PDS would not be usalilem other programming langges, it could provide
significant value to LISP pgrammers. Of course, it is also possible for a particular
value-addecprotocol to beéimplemented as kyer on a standard Protocol.

This specification allows sucprotocols to be integrated in the ovelPOS
architecture withoutltanging thatrchitecture.

Persistent Object Service: v1.0 OtherProtocol March 1995 5-33

5

5.15 Datastores: CosPersishces CLI Module

5-34

The last mjor component in the architecture iDataStore, which provides epations

on a data repository underneath the Protocols just discussed. As with Protocols, a
variety of DataStore interfaces may be definEldere is no “standard” DataStore
interface. Only one kind of DataStore is defined here, for record-oriented databases,
because other standard interfaces already exist at thisaledghany customers may
choose taomit this level ofthe architecture altogether for performance in an object-
oriented database by using the DA or ODMG Protocol directly on the DBMS.

Datastore_CLI provides a uniform interface for accessing many different Datastores
either individually orsimultaneously. The acronym Clrkefers to the X/Open Data
Management Call Level Interface on which the module is based. Datastore_CLI is
especially suited for record database and file systems (e.g., relational, IMS,
hierarchical databases, and VSAM fiigstems) that support user sessions,
connections, transactions, and scanning through data items using cursors.

The specification of this framework, where appropriate, is consistéifit thve X/Open

CLI, IDAPI, and ODBC standards. These are industry standards which specify
procedure-oriented application programming interfaces for accessing data stored in any
type of Datastore.

More detailed explanations amshumeration of the options in the Datastore_CLI
operations can be found in the X/Open ClpeSification.

DDOs are used as the way data are passed intodtasiore_CLI interface. If DDO is

also being used as the Protocol, the PDS can use this DDO directly as a parameter to
calls to the Datastore_ CLWhen a different Protocol is being used, the PDS must
create a new DO and populate it with data prior to calling the Datastore_CLI.

The CoslersistenceDS_CLI ndule contains the interfaces derived from OD&el
IDAPI, providing cursors into relational and other databases. The module contains the
following interfaces:

® The UserEnvironment Interface
® The Connection Interface

® The ConnectionFactory Interface
® The Cursor Interface

® The CursorFactory Interface

® The PID_CLI Interface

® TheDatastore CL Interface

This section describes these interfaces and their operations in detail.

CORBAservices March 1995

The CoslersistenceDS_CLI dule is shown in Figure 5-12:

#include "CosPersistenceDDO.idl"
/I CosPersistenceDDO.idl #includes CosPersistencePID.idl

module CosPersistenceDS_CLI {
interface UserEnvironment {

void set_option (in long option,in any value);
void get_option (in long option,out any value);
void release();

3

interface Connection {
void set_option (in long option, in any value);
void get_option (in long option,out any value);

h

interface ConnectionFactory {
Connection create_object (
in UserEnvironment user_envir);

h

interface Cursor {
void set_position (in long position,in any value);
CosPersistenceDDO::DDO fetch_object();

|3

interface CursorFactory {
Cursor create_object (
in Connection connection);

b

interface PID_CLI : CosPersistencePID::PID {
attribute string datastore_id;
attribute string id;

3

Figure 5-12 The CosPersistenceDS_CLIodule

Persistent Object Service: v1.0 Datastores: CosPersistenceDS_CLI Mot

March 199 5-35

5-36

interface Datastore_CLI {
void connect (in Connection connection,
in string datastore_id,
in string user_name,
in string authentication);
void disconnect (in Connection connection);
Connection get_connection (
in string datastore_id,
in string user_name);
void add_object (in Connection connection,
in CosPersistenceDDO::DDO data_obj);
void delete_object (
in Connection connection,
in CosPersistenceDDO::DDO data_obj);
void update_obiject (
in Connection connection,
in CosPersistenceDDO::DDO data_obj);
void retrieve_object(
in Connection connection,
in CosPersistenceDDO::DDO data_obj);
Cursor select_object(
in Connection connection,
in string key);
void transact (in UserEnvironment user_envir,
in short completion_type);
void assign_PID (in PID_CLI p);
void assign_PID_relative (
in PID_CLI source_pid,
in PID_CLI target_pid);
boolean is_identical _PID (
in PID_CLI pid_1,
in PID_CLI pid_2);
string get_object_type (in PID_CLI p);

Cursor execute (in Connection connection,
in string command);

b

void register_mapping_schema (in string schema_file);

Figure 5-12 The CosPersistenceDS_CLIodule

5.15.1 TheUserEnvironment Interface

The UsermBvironment OMG IDL is agollows:

interface UserEnvironment {
void set_option (in long option,in any value);
void get_option (in long option,out any value);
void release();

CORBAservices March 1995

The Usermlvironment has théllowing operations:

void set_option (in long option, iany value);
This sets the option to the desired value. Téteof settable options is specified
in the X/Open CLI $ecificationand the IDAPI Specification.

void get_option (in long option, oany value);
This gets the value of the optiofihelist of gettable options is the same as that
for set_option().

void release();
This releases all resources associated with the UserEnvironment.
5.15.2 The Connection Interface

The Comection OMG IDL is as follows:

interface Connection {
void set_option (in long option, in any value);
void get_option (in long option,out any value);

The Comection interface contains ttiellowing operations:

void set_option (in long option,in any value);
This sets the option to the desired value. Tteof settable options is specified
in the IDAPI Specification.

void get_option (in long option, oatny value);

This gets the value of the optiofhelist of gettable options is the same as that
for set_option.

5.15.3 The ConnectionFactory Interface

The ConnectionFactory OMG IDL is as follows:

interface ConnectionF actory {
Connectionc reate_object (
in UserEnvironment user_envir);

The ComectionFactory has the following operation:

Connection create_object (
in UserEnvironment user_envir);
This creates an instance of Connection. @nection is created within the
context of a single UserEnvironment.

Persistent Object Service: v1.0 Datastores: CosPersistenceDS_CLI Mo« March 199 5-37

5.15.4 The Cursor Interface

The Cursor OMG IDL is as follows:

interface Cursor {
void set_position (in long position,in any value);
CosPersistenceDDO::D DO fetch_object();

A cursor is a movable pointer into a list of DB, through Mich a client can move
about theist or fetch a DDO from thést. The Cursoihas the following oprations:

void set_position (in long posin, in any value);
This sets the Cursor position to the desired valbe. ist of settable positions is
specified in the IDAPI Specification.

CosPersisteceDDO::DDOfetch_obect();
This fetches the next DDO from the list, based on the curesiign of the
Cursor.

5.15.5 The CursorFactory Interface

The CursorFactory OMG IDL is dellows:

interface CursorFactory {
Cursor create_object (
in Connection ¢ onnection);

The CursorFactory habke following operations:

Cursor create_object (in Connection connection);
This create an instance of Cursor. A Cursor is created within the context of a
single Connection. See the X/Op€nl Specification and IDAPI Sgrification
for more information.

5.15.6 The PID_CLI Interface

The PID_CLI IDL is adollows:

interface PID_CLI : CosPersistencePID::PID {
attribute string datastore_id;
attribute string id;

5-38 CORBAservices March 1995

5

PID_CLI subtypes the PID base type (seect®n 5.41), adding attributes required for
the Datatstore_CLI interfac&he PID_CLI nterface has the followingttributes:

attribute sting datastore_id;
This identifies the specific datastoretise. Most datastore products support
multiple datastores. For a relatiort@tabase, this might be the name of a
particular database containingultiple tables. For a Posix file sgst, this
might be the pathname of a file.

attribute gting id;
This identifies a particular data elemerithin a datastorefor a relational
database, this might be a table name and primary key indicagiagieular row
in a table. For a Posiie system, this might be a logical offset within the file
indicating where the data starts.

Persistent Object Service: v1.0 Datastores: CosPersistenceDS_CLI Mo« March 199 5-39

5-40

5.15.7 The Datastore CLI Interface

The Datastore_CLI OMGDL is as follows:

interface Datastore_CLI {
void connect (in Connection ¢ onnection,
in string datastore_id,
in string user_name,
in string authentication);
void disconnect (in Connectionc onnection);
Connectiong et_connection (
in string datastore_id,
in string user_name) ;
void add_object (in Connection connection,
in CosPersistenceDDO::DDO data_obj);
void delete_object (
in Connection connection,
in CosPersistenceDDO::DDO data_obj);
void update_object (
in Connection connection,
in CosPersistenceDDO::DDO data_obj);
void retrieve_object(
in Connection connection,
in CosPersistenceDDO::DDO data_obj);
Cursor select_object(
in Connection connection,
in string key);
void transact (in UserEnvironment user_envir,
in short completion_type);
void assign_PID (in PID_CLI p);
void assign_PID_relative (
in PID_CLI source_pid,
in PID_CLI target_pid);
boolean is_identical PID (
in PID_CLI pid_1,
in PID_CLI pid_2);
string get_object_type (in PID_CLI p);
void register_mapping_schema (in string schema_file);
Cursor execute (in Connectionc onnection,
in string command);

In general, a client goes thugh the following steps to storestore or deletDDOs:
1. Create a UserEnvironment and set the appropriate options to their desired values.

2. Create ¢Connection nd set the appropriate options to their desired valdpsn a
conrection to the Datastore, viaenect().

3. To store a DDO, call add_object() or update_object(). To restore a D&IO,
retrieve_object(). To delete a DDO, call delete_object().

4. If necessarygall transact() to commit or abort a Datastore transaction.

CORBAservices March 1995

5. Repeat steps 3 and 4 as necessary.

6. Close the conection to the Datastore, via disutect(). Celete thi:corresponding
Connection.

7. Delete the UserEnvironment.
The Datastore_CLI onnection operations are:

void connect (irConnection onnection,
in string datastore _id,
in string user_name,
in string authentication);
This opens a connection to thatastore using thConnectior A client can
establish more than one connection, but only one connection can be current at a
time. The connection that conneatgtablishes becomes the current connection.

void disconnect (irConnection onnecion);
This closes thiConnectior.

Connection et_connection (
in string datastore_id,
in stringuser_name);
This returns th«cConnection ssociated with the datastore_id.

When any of the data manipulation operations is called, a datastore transaction begins
implicitly if the Connectionnvolved is not already active. Connection ecomes
activeonce theransaction beginand remains activantil transact() is called.

The Datastore_CLI ata manipulation operations are:

void add_dject (in Connection onnection,
in CosPersistenceDDO::DDO data_obj);
This adds the DDO to thedfastore. If necessary, get the mapping schema
information for the DDO first.

void delete_object (iConnection onnection,
in CosPersistenceDD(DDO data_obj);
This deletes the DDO from the Datastore. If necessary, get the mapping schema
information for the DDO first.

void update_object (ilConrection onnection,
in CosPersistenceDD(DDO data_obj);
This updates the DDO in theafastore. If necessary, get the mapping schema
information for the DDO first.

void retrieve_object (irConnection onnection,
in CosPersistenceDD(DDO data_obj);
This retrieves the DDO from the Datastore. If necessary, get the mapping
schema information for the DDO first. To improve performance, the
DBDatastoe_CLI rray obtain access to more than one DDO at a éintecache
these.

Cursor select_object (in Connection connection,

Persistent Object Service: v1.0 Datastores: CosPersistenceDS_CLI Mo« March 199 5-41

in string key);
This selects and retrieve the DDO(s) which match thefiay the Datastore.
The DDO(s) are returned through t8@arsor. If necessary, get the mapping
schema information for the kdirst. This operation is provided to support the
Query Service. In addition, ttDatastore_CLIill support any otherperation
required by the Object Query Service.

The Datastore_CLlunctions as a resource manager for the DDOs that it manages. As
such, it will supporall resource manager operations specified by the Transaction
Service.When the Transaction Service is not being used, a transaciioitiased

implicitly by either a Connection or a transac#hd ended with &ransact():

void transact (in UserEnvironment user_envir,
in short completion_type);

This completes (commit or rollback) a Datastore transaclicamsaction
completion enacts or undoes any add_objeapdate_object() or
delete_object() operations performeday Connection \ithin the
UserEnvironment since the cagation was established or sinc@raviouscall
to transact() for the same UserEnvironm The values of completion_type are
specified in the X/Open CLI&cification.

The Datastore_CLI ID Operations are:

void assign_PID (in PID_CLI p};
This assign a value for the id attribute of the pid. Titet atribute,
datastore_type, must liled in before calling this operation. If only tHigst
attribute is filledin, then this operation will fill in thesecond attribute,
datastore_id, as well.

void assig_PID relative (inPID_CLI source_pid,
in PID_CLlI farget_pid);

This assigns values for the attributes of the targetbas®d on the values of the
source_pid. The target_pidfgst two atributes, datastore _type and
datastore_id, will be assigned the same values as those of the source_pid. Its id
attribute will beassigned a new value which is based on some relationship with
that of the source_pidhe algorthm defining that relationship is up to the
implemenation.

boolean is_identicaPID (in PID_CLI gid_1, in PID_CLI pid_2);
This tests to see if the two pids are identical. In order for the two pids to be
identical, the following conditions must be true:

1. Both pidsmust be managed by this PDS

2. all three attributes of the pids must be identical individually.

string get_object_type (itPID_CLI p};
This gets the object_type of the pid.

OtherDatastore_CLI perations ar:2

5-42 CORBAservices March 1995

void register_mapping_schema (in string scheite); f
This registers the mapping schema information contained within the schema_file
with the Datastore_CL The mapping schengenerally consist of individual
mappings each of which is applicable to a given pair of object_type and
datastore_type.

Cursor execute (ilConrection ©nnection,
in string command);
This executes command on the Datastore. If there are any DDOs to be returned
as a result,his is one through the Curs.or

5.16 Other Datastores

There are other &tastore interfaces thaan be used by PDSs. Some of these
interfaces are not CORBA object interfaces, in that they are not defined in IDL and the
Datastores are not objects.

Some Datastores are simple, such as POSIX Others ray be databases, and may
use generic interfaces for databases and record files such as SQLOpgen>CLI

API, IDAPI or ODBC. Some Datastores dumed to support nested documents or
other specific kinds of objects such as Bento.

Because the Btastore interface is nekposed to object implementations or clients, the
choice of Datastore interface is up to PDS. So long as the PDS can support its
Protocol using the particular Datastore interface, immplementation of the Datastore
can be used by that PDS. The identification of data within different typeatetidres

is facilitated by the PID, which can be specializecdch Datastore type.

5.17 Standards Conformaiec

5.18 References

This service is specified in standcOMG IDL.

The Datastore_CLI ortion of the Persistent Object Service is consistent with the
X/Open CLI craft standed.

The ODMG-93 PDS Object Protocol incorporates the ODMGsp8cificiation.

The X/Open ClLlistandarcis documented itX/Open Data Manageemt Call Level
Interface (CLI) Draft Preliminary Specificati. Reading, UK: X/Open Ltd.,993.

The IDAPI standard is documented IDAPI Working Draf. Scotts Valley, CA:
Borland International, August 1993.

The term “ODBC"refers toMicrosoft Open Database Caorctivity Software
DevelopmenKit, Programmer Referen, Version 1.. Redmond, WA: Ncrosoft
Corpg., 199z.

Persistent Object Service: v1.0 Other Datastore March 1995 5-43

The term “Bento’refers taJed Harris and Ira RubiThe Bento Becification, Revision
1.0dt. Cupertino, CA: Apple Computer, Inculy 15, 1993,

The term “ODMC-93" refers to R.G.G.Cattell, T.Atwood, J.Duhl, G.Ferran,
M.Loomis, and D.Wad, The Object Database Standard: ODMG. San Mateo, CA:
Morgan Kaufman, 1993.

5-44 CORBAservices March 1995

Life Cycle Service Specification 6

6.1 Service Description

6.1.1 Overview

Life Cycle Service defines services and eentions for creating, deleting, copying and
moving objects. Because CORBA-based environments sudistributec objects, the
Life Cycle Service defines conventions that allow clients to perfdentycle
operations on objects in different locato

This overview describes the life cycle problem for distributed olggstems.

The problem of creation

Figure 6-1lillustrates the problem of a client ane locationcreating an object in
another.

HERE THERE

Figure 6-1 Life Cycle service defines how a client can create an object “over there”.

To create an object in a different location, the following questions mumtdvered:

® Can the clientontrol the location for the new object?

CORBAservices November 1996 6-1

6-2

On the other hand, can the location be determined according toasbmeistered
policy?

What entity does the client communicate with in order thaéw doject is created?
How does the client find thantity?

How much control does the client have over deciding the implementation of the
created object?

Can the client influence the initial values of the newly created object?

Can the client create an object inimplementatio specific fashion?

The problem of moving or copying an adxt

Figure 6-2 illustrates the problem of moving or copying an objectdistaibuted
object system.

Co Cocome3

HERE SOMEWHERE THERE

Figure 6-2 Life Cycle Service defines how a client can move or copy an object over there.

To support moving or copying an object, the following questions muanbeered:

Can the client control the location fthe copied or migrated object?

On the other hand, can the location be determined according toasbmeistered
policy?

What entity does the client communicate withctpy ormigrate the object?
How does the client find thantity?

What happens to the implementation code of a copied or migrated bject

CORBAservices November 1996

The problem of operating on a aph of distributed objecs

Distributed objects do ndloat in space; they are connected to one another. The
connections are callerelationship:. Relationships allow semantics to belad to
referencedbetween objects. For exampte]ationshipsallow one object tccontair
another. Life Cycle services must work in the presence of graphs of related objects.

HERE SOMEWHERE THERE

Figure 6-3 The object life cycle problem for graphs of objects is to determine the boundaries
of a graph of objects and operate on that grapthdraboveexample, a document
contains a graphic and a logo, refers to a dictionary and is contained in a folder.

Figure 6-3 illustrates the object life cycle problem for graphs of objects. In the
example, the foldecontain: a document, the documecontain: a graphic and a logo
andreference a dictionary.The graphicreference the logo that iscontainet in the
document. For graphs of objectde Icycle services mugtnswerthe following
guestions:

®* What are the boundaries of the graph? For example, if a client copies the document,
which objects are affected?

® |f multiple objectsare affected, how is the life cycle operation actually applied to
those objects?

® Are cycles in the graph preserved? For example, if copying the docueseilts in
copying the graphic and the logo, is the cycle preserved in the copy?

6.1.2 Organization of this Chapter
This specification defines services and conventiorentwerthese life cycle issues.

Section 6.1.3pecifies eclient's mode of object life cycle. It describe the model a
client has of factories and life cycle operations. A wide variety of implementations of
this model are possible.

Section 6.1.4 discuss factory finder: in detail.

Life Cycle Servicevl.0 Service Descriptic November 1996 6-3

Section 6.2 defines trCo<LifeCycle module. This module defis the service
interfaes and the interface supported by objects that participate in the service.

Section 6.3 discuss factory implementation strateg. s

Section 6.4 discusses how objects can use factord factory finderso support the
copy anc moveoperation.

Section 6.5 summarizes the object life cycle frame.vork

Appendix A contains an addendum to the Life CycleéService; the addendum
provides a specification for compound life cycle operatims.

This chapter also includes additioregdpendices that are not part of the Life Cycle
Service specification: they are indied as backgrounaaterial. Agendix B suggests
a filtering language for the fér criteria. Apendix C discussesdministration of
generic factories. Appendix D discusses support for PCTE objects.

6.1.3 Client’'s Model of Object Life Cycle

A client is any piece of code thattiaites a life cycle operation for some object. A
client has esimple view of the ife cycle operations.

Client’s Model of Creation

The client'smodel of creation is defined in terms factory objects. A factory is an
object that creates another object. Factorie:nol special objects. As with any object,
factories have well-defined IDL interfacasdimplementations in some programming
language.

Client i -
DocFactory

HERE THERE

Figure 6-4 To create an object “over there” a client must posses an object reference to a
factory over there. The client simply issues a request on the factory

There is ncstandar: interface for a factory. Factories provide the client with
specialized operations to creatied hitialize new instances in a natural way for the
implementation. Figure 6-3lustrates a factory for document.

interface DocFactor y{
Document create();

Document create_with_title(in string title);

CORBAservices November 1996

Document create_for(in natural_language nl);
|3

Figure 6-5 An example of a document factory interface. This interface is defined for clients as
a part of application development.

Factories are objed@nplenentationdependent. A differenimplementaibn of the
document could define different factory interface.

While there is no standard interface for a factorgeaericfactoryinterface is defined

by the life cycle service in section263. A generic factory is ereation service. It
provides a generic operation for creation. Insteamhwdking an object specific
operation on a factory witktaticallydefined parameters, the client invokes a standard
operation whose parameters can include information about resdtecg &tate
initialization, policy preferences, etc.

To create an object, a client must possess an object reference for a factory, which may
be either a generic factory or an object-specific factory, and issue an appropriate
request on the factory. As a result, a new object is created and typically an object
reference is returned.

There is nothing special about thigeraction.

A factory assembles the resources necessary for the existence of an object it creates.
Therefore, the factory represents a scope of resource allocation, which is the set of
resources available to the factory. A factory may support an interface that dtsbles
clients to constrain the scope.

Clients find factory objects in the same fashion they fingl object. Two common
scenarios for clients to find factories are:

® Clients use a finding mechanism, such a naming context, drag-and-drop, or a trader,
to find factories.
® Clients are passed factory objects as a parameter to an operation the client supports.

Variousimplenentationstrategies for factories adéscussed in detail in section 6.3.

Life Cycle Servicevl.0 Service Description November 1996 6-5

6-6

Client’s Model of Deleting an Object

A client that wishes to delete an object issuremove ! request on an object
supporting theLifeCycleObjec interface. (TheLifeCycleObjec interface is defined in
section 6.2.) The object receiving the request is calle target.

Client ll @
LifeCycleObject

HERE SOMEWHERE

Figure 6-6 To delete an object, a cliemustposses an object reference supporting the
LifeCycleObjec interface and issuesremove request on the object.

Figure 6-6 illustrates a client deleting the document.

Client’s Model of Copying or Moving an Object

A client that wishes to move or copy an object issumove or copy request on an
object supporting thLifeCycleObjec interface. The object receiving the request is
called thi target.

The move and copy operations exp an object reference supportine th
FactoryFinde interface. Te factory finder epresents the “THERE” in Figure 6-7.
The client isindicating to move or copy the tat using a factory within the scope of
the factory finde Section 6.1.4 dseribes factory findersn more detail.

1.The operabn is named remve, rather than delete, because delete collides with the delete operator in
C++.

CORBAservices November 1996

6

The implemetations of move and copy can use the factory finder to find appropriate
factories “over there”. Section 6.4 describes how objemtsimplement movand

copy using the factory finder. This is invisible to tient.
actory
Finder

Client

]
|
LifeCycleObject

HERE SOMEWHERE THERE

Figure 6-7 Life cycle services define how a client can move or copy an object from here to
there.

In the example of Figure 6-7, client code woslthply issue a&opy request on the
document and pass it an object supportingRaetoryFinderinterface as an argument.

When a client issues a copy request on a target, it is assumed that the target, the
factory finder, and the newly created object can all communicate via the ORB. With
externalization/internalization there is no such assumption. In the presence of a future
externalization service, the externalized form of the olgaatexist outside of the

ORB for arbitrary amounts of time, be transported by means outside of the@RB

can beinternalized in a different, disomected ORB.

Note —In general, a client is unaware of how a target and a factory finder are
implementedThe target mayepresent a simple object or it may represent a graph of
objects. Snilarly, afactory finder may represent a very concrete location, such as a
specific storage device, or it may represent a more abstract location, such as a group of
machines. The client uses the same interface in all of these cases.

6.1.4 Factory Finders

Factory finders support an operatiéind_factories , which returns a sequence of
factories. Clients pass factory findershe move and copy operations, whiclpitally
invoke this operation to find a factory to interact with. (This is described in detail in
section6.4.) The new copy or the migratetject will then be within the scope of the
factory finder.

Some examples of locations that a factory finder might represent are:
» somewhere on a work group’s local area network
 storage device A on machine X
e Susan’s notebook computer

Life Cycle Servicevl.0 Service Description November 1996 6-7

Multiple Factory Finders

The factory finder interfacgiven in section 6.2 represents thenimal functionality
supported byall factory finders. Target implementations a&pend orthis operation
being available. More sophisticated factory findfagilities can be provided by
extended finding services.

Currently, the only finding service being considered for standardization by the OMG is
the naming service. Others are likely to be standardized in the future. It is likely that
there will always be multiple finding services, of different expressive powers, in
distributed object systems.

As demonstrated in Figure 6-8, tRactoryFinderinterface can be mixed-in with
interfaces for finding services, allowing multiple finding servidéany clients simply

pass factory finders on to target objects. However, objects that need the services of a
more powerful finding mechanism can narrow the factory finder to an appropriate,
more specific interface.

FactoryFinder NamingContext FactoryFinder Trading

Naming>&l$ctoryl:inder Tr%déﬁjer

Figure 6-8 The FactoryFinderinterface can be “mixed in” with interfaces of more powerful
finding services.

The power of dactory finder is determined by the power of the finding service.

6.1.5 Design Principles
Several principles have driven the design of the Life Cycle Service:

1. A factory object registered at a factory finder represents an implementation at that
location. Thus, a factory finder allows clients to query a location for an
implementation.

2. Object implementations can embokyowledge of finding a factory, relative to a
location. Objecimplementaibns usually do not embodynowledge of location.

3. The desired result for life cycle operatisugeh as copy and move depends on
relationshipsbetween the targetbgectand other objects. The design given in
Appendix A hasuilt-in support for the two most basic kinds of relationships,
containmentandreference and supports the definition of new kinds of relationships
and propagation semacs.

4. The Life Cycle Service is not dependent on anyiqdar model of persistenand
is suitable for distribted, heterogeneous environments.

5. The design does not include an object equivalence service nor rely on global object
identifiers.

CORBAservices November 1996

6.1.6 Resolution of Technical Issues

This specification addresses the following issues that wersificed for theLife Cycle
Service in the OMCObject Services Architecti? =

® Creatior: Many of the parameters supplied to an obcreate operator will be
implementation-dependent, so that a standardized universal IDL signature for object
creation is not possible. IDL signatures for object creation will be defined for
various kinds of object factories, but the signatures will be specific to type,
implementation, and pgistent storage mechanism of the object to be created.

® Deletior: A remove operator is defined on any object supporting the
LifeCycleObjec interface. This model for deletion supports any desired paradigm
for referential integrity Appendix A describes support for the two most common
paradigms, based on reference and containnedationships. Only one type of
deletion is supported; a different operation should be used fhiveug an object.
This interface can support many paradigms for storage management, e.g. garbage
collectionandreference counts. Since storage managemeimhpementation-
dependentits interfacedoes not belong in the generalized life cycle interfaces.

® Copyin¢ Appendix A describes support for shallow and deep copyrefedential
integrity. A scheme based on refereracel containmentelationships defines
scopes for operations such agpygoThe concept of afactory finde is used for
object location. This paradigm for copying, deleting, and moving objects works
regardless of an object’'s ORB, persistent storage mechaaigtimplementation.
This design is extensible because objgetgicipate in the traversal algorithm, and
the relatimship service presented in the appendix supportdefieition of new
kinds of relationships with different behavior.

® Equivalenc: There was no need for an object equivalence service or global object
identifiers in the design of thefe Cycle Service to support real world applications
or other object services.

2.0bject Services Architecte, Document Number 92-8-4, Object Managmemtu@r Framingham, MA,
1992.

Life Cycle Servicevl.0 Service Descriptic November 1996 6-9

6.2 The CoslfieCycle Module

Client code accesses the basic life cycle functicy via the CosLifeCycle module.
This module defines elFactoryFinder, LifeCycleObje and GenericFactor /
interfaces and deeribes the operations of these interfaces in detail

#include “Naming.idl”
module CosLifeCycle {

typedef Naming::Name Key;
typedef Object Factory;
typedef sequence <Factory> Factories;
typedef struc t NVP {
Naming::Is tring name;
any value;
} NameValuePair ;
typedef sequence <NameValuePair> Criteria;

exception NoFactory {
Key search_key;
3
exception NotCopyable { string reason; } ;
exception NotMovable { string reason; } ;
exception NotRemovable { string reason; };
exception Invali dCriteria{
Criteria invalid_criteria;
3
exception CannotMeet Criteria {
Criteria unmet_criteria;

b

Figure 6-9 The CosLifeCycle Module

6-10 CORBAservices November 1996

interface FactoryFinder {
Factories find_factories(in Key factory_key)
raises(NoFactor y);

h

interface LifeCycleObject {
LifeCycleObject copy(in FactoryFinder there,
in Criteria the_criteria)
raises(NoFactory, NotCopyable, InvalidCriteria,
CannotMeetCriteria);
void move(in FactoryFinder there,
in Criteria the_criteria)
raises(NoFactory, NotMovable, InvalidCriteria,
CannotMeetCriteria);
void remove()
raises(NotRemovable);

3
interface GenericFactor y{
boolean supports(in Key k) ;
Object create_object(
in Key K,
i n Criteria the_criteria)
raises (NoFactory, Invalid Criteria,
Cannot MeetCriteria);
3

Figure 6-9 The CosLifeCycle Module

6.2.1 The LifeCycleObject Interface

The LifeCycleObjecinterface definecopy , m ove andremove operatiois. Objects
participate in the life cycle service Isypporting this interface.

copy

LifeCycleObject copy(in FactoryFinder there,
in Criteria the_criteria)
raises(NoFactory, NotCopyable, InvalidCriteria,
CannotMeetCriteria);

The copy operation makes a copy of the object. The ccs located in the scope of
the factory finder passed as the first param The copy operation returns an object
reference to thenew object. The new object isitialized from the existing objer:t.

The frst parametert her e, may be a nil object reference. If passed a nil object
reference, the target object can determine the locatiofaibwith the NoFactory
exception.

Life Cycle Servicevl.0 The CosLifeCycle Modt November 1996 6-11

The seconcarameterthe_criteria , allows for a number of optional parameters
to be passed. Typically, the target simply pasisissparameter to the factoryed in
creating the new object. The criteria parameter is explained in detail in se@idn 6

If the target cannot find an appropriate factory to create a copy “over there”, the
NoFactory exception is raised. An implementation that refuses to @sp¥f shaild
raise theNotCopyable exception If the target does not understand the criteria, the
InvalidCriteria exception is raised. If the target understandsctheria but
cannot satisfy the criteria, ttCannotMeetCriteria exception is raised.

In addition to these exceptions, implementations may raise standard CORBA
exceptions. For example, if resources cannot be acquired for the copied object,
NO_RESOURCI will be raised.Similarly, if a targetdoes not implement theopy
operation, theNO_IMPLEMEN exception will be raised.

It is implementation dependent whether thigigiion isatomic.

move

void move(in FactoryFinder there,
in Criteria the_criteria)
raises(NoFactory, NotMovable, InvalidCriteria,
CannotMeetCriteria);

The move operation on the target moves the objo the scope of the factory finder
passed as the firsapameterThe object reference for the target object remains valid
aftermove has successfully executed.

The frst parameterthere , may be a nil object reference. If passed a nil object
reference, the target object can determine the locatiofaibwith the NoFactory
exception.

The secongarameterthe_criteria , allows for a number of optional parameters
to be passed. Typically, the target simply pasisissparameter to the factorged in
migrating the new object. Theriteria parameter isxplained in detail in section 6.2.4

If the target cannot find an appropriate factory to support migration of the object “over
there”, theNoFactory exception is raised. An implementation that refuses to move
itself should raise thNotMovable exceptionlf the target does not understand the

criteria, thelnvalidCriteria exception is raised. If the target wndtands the
criteria but cannot satisfy the criteria, iCannotMeetCriteria exception is
raised.

In addition to these exceptions, implementations may raise standard CORBA
exceptions. For example, if resources cannot be acquiredigoating the object,
NO_RESOURCI will be raised.Similarly, if a targedoes not implement the move
operation, theNO_IMPLEMEN exception will be raised.

It is implementation dependent whether thigigiion isatomic.

6-12 CORBAservices November 1996

remove

void remove()
raises(NotRemovable);

Remove instructs the object to cease to e. The object reference for the target is no
longer valid after remove successfully completehe client is not responsible for
cleaning up any resources thieject uses. An implementation that refuses to remove
itself should raise thNotRemovable exception. In addition to this exception,
implementations may raise standard CORBA exceptions.

6.2.2 The FactoryFinder Interface

Factory finders support an operatifind_factories , which returns a sequence of
factories. Clients pass factory finders to the move and copy operatibit$, typically
invoke this operation to find a factory to interact with. (This is described in detail in
section 6.4).

The factory finder interface represents tminima functionality supported bgll
factory finders.

find_factories

Factories find_factories(in Key factory_key)
raises(NoFactory);

Thefind_factories operation is passed a kaged to identify the desired factory.

The key is a name, as defined by the nanseiyice. More than one factory may

match the key. As such, the factory finder returns a sequence of factories. If there are
no matches, thNoFactory exception is raised.

The scope of the key is thiactory finder.Thefactory finder assigns no semantics to
the key. It simply matches keys. It makes no guarantees about the interface or
implementation of the returned factories or objects they create.

Life Cycle Servicevl.0 The CosLifeCycle Modt November 1996 6-13

6-14

It is beyond the scope diis specification to standardize tkey space. The space of
keys is established kconventiol in particular environments. Tlkind field® of the key
is useful for partitioning the kegpace Suggeste values for thed andkind fields
are given in Table 6-1.

Table 6-1 Suggested conventions for factory finder keys.

id field kind field meaning

name of object “object interface” Find factories that create objects supporting

interface the named interface.

name of equivalent| “implementation Find factories that create objects with

implementations equivalence class” implementations in a named equivalence
class of implementatior? .

name of object “object Find factories that create objects of a

implementation implementation” particular implementation.

name of factory “factory interface” Find factories supporting the named factory

interface interface.

1. An example of an implementation equivalenless is a set of objeiotplementationshat have compatible extemalized
forms.

6.2.3 The GenericFactory Interface

In many environments, management of a set of resources that are allocated to objects
at creation time is required. This needs to be done in a coordinated fashion for all types
of objects. The Life Cycle Service provides a framework for this which is intended to
be usable in a variety of administrative environmentsvéle@r,the differing

environments will administer a variety of resources and lieipond the scope this
framework to ientify all the possible types of resource.

While there is no standard interface for a factorGenericFactor interface is

defined. The GenericFactor interface defines a generic creation operation,
create_object . By defining a generic interface for creation, a creation service can
be implemented. This is particularly useful in environmertiene administering a set

of resources is important.

Such i generic factcy can implement resourceolicies andrepresenmultiple
locations. In administered environments,ject specific factorie,isuch as the
document factory described in sectionay delegate the creation process to the
generic factcy. This is escribed irdetail insection 6.3.2.

The job ofthe generic factory is tmatch the creation criteriapecified by clients of
the GenericFactor interface with offers made on behalf of implementatioecsx
factorie:.

3.See the naming service specification.

CORBAservices November 1996

Figure 6-10 illustrates the structurf a creation ervice.

GenericFactory

creation service

GenericFactory GenericFactory
implementation

T | implementation
specific code specific code

4 4

resources resources

Figure 6-10 The Life Cycle service provides a generic creation cédipabUltimately,
implementation specific creation code is invoked ke creation ervice. The
implementation specific code also supportsGenericFactor interface.

The client of theGenericFactor interface invokes thcreate_object operation
and can exprs criteria for creation.

Ultimately, this request will bpassed to aimplementation specific factory which
supports theGenericFactory interface. To get there, the request may travel through a
number of generic factories. Howevall, of this is transparent to the cliznt

create_object

Object create_object(
in Key k,
in Criteria the_criteria)
raises (NoFactory, InvalidCriteria,
CannotMeetCriteria);

The create_object operation is passed a key useddentify the desired object to
be createdThe key is a name, atefined by the Naming Service.

Life Cycle Servicevl.0 The CosLifeCycle Modt November 1996 6-15

6-16

The scope of the key is the genddctory. The generidactory assigns no semantics
to the key. It simply matches keys. It makes no guarantees about the interface or
implementation of the created object.

It is beyond the scope tiis specification to standardize they space. The space of
keys is established kconventiol in particular environments. Tlkind field* of the key
is useful for partitioning the kegpace Suggeste values for thed andkind fields
are given inTable 6-2.

Table 6-2 Suggested conventions for generic factory keys.

id field kind field meaning

name of object “object interface” Create an object that supports the named

interface interface.

name of equivalent| “implementation Create an object whose implementation is|in

implementations equivalence class” a named equivalence class of
implementationg.

name of object “object Create objects of a particular

implementation implementation” implementation.

1.An example of an implementation equivale nless is a set of objeiotplementationshat have compatible extemalized
forms

The secongarameterthe_criteria , allows for a number of optional parameters
to be passed. Criteria are explained in detail in seéidrt

If the generic factory cannot create ajext specified by thkey, thenrNoFactory is
raised.

If the target does not understand tnieria, thelnvalidCriteria exception is
raised. If the target understands the criteria but casatdfy the criteria, the
CannotMeetCriteria exception is raised.

supports

boolean supports(in Key k);

The supports operation returntrue if the generic factory can create an object,
given the key. Otherwisfalse is returned.

4.See the naming service specification.

CORBAservices November 1996

6.2.4 Criteria

The create_object operation of th«GenericFactoryinterface expects a parameter
specifying the creation criteria. TImove andcopy operations of thiLifeCycleObject
interface also expects thisameter; typically they passttirough to a factory. This
sectiondocuments thiparameter.

The crteria parameter is expressed as an IDL sequence of name-value pairs. In
particular, it is described by the following data structure given irCosLifeCycl 3
module:

typedef struct NVP {
Naming::Istring name;
any value;
} NameValuePair;
typedef sequence <NameValuePair> Criteria;

The parameter is given as a sequence of name-value pairs in order to be extensible and
support “pass-through”; that is, new name-value pairs can be defined in the future and
objects can bevritten that do not interpret the name-value pairs, but just pass them on
to other objects.

Note —It is beyond the scope of thiseggfication to standardize particulariteria.
Supportingcriteria is optional. Furthermore, supporting different criteria is acceptable.
The crteria given here arsuggestior.s

Table 6-3 suggests criteria to be supported bygeneric factory. Detailed descriptions
follow.

Table 6-3 Suggested criteria.

criterion name type of criterion value interpretation

“initialization” sequence<NameValuePair> initialization parameters, given as ja
sequence of name-value pairs.

“filter” string allows clients of the generic factory
to express a constraint on the
created object.

“logical location” | sequence<NameValuePair> allows clients of the generic factory
to express a connection for the
object, for example a PCTE
relationship.

“preferences” string a way for clients to influence the
policies that a generic factory may
use when creating an object

Life Cycle Servicevl.0 The CosLifeCycle Modt November 1996 6-17

“initializatio n”

The “initialization” criterion s a sequence of name-value paithich is intended to
contain application specific initializan values Typically, tre generic factory ill pay
no attentiono the initialization criterion nd simply passs it cn to application specific
factory codu

“filter”

The filter criterior is a constraint expresn which provides he cliert with g powerful
way of expressing its requirements on creatiore generic factory ill use tte
constraint expression to make decisions about the allocatipartifular resourct. s
For example, a client could give a constraint “operating system” = ‘avisaht”.

These constraints are expressed in somesaintLanguage. A costraint laiguage is
suggested irAppendix B.

Filters ere potentially complex aninvalid Criteria will be raised if tle filter is
too complex for the factory or is syntactically incor.ect

“logical location”

The “logicallocation” criterion allows a client texpress where a
created/copied/migrated object is logically created. For example, in PCTE an object is
always in arelationship with another object. In such an environment, the logical
location would specify another object and a relationship.

“preferences”

The “preferences” criterionllows the client to influence the policies which the generic
factoly useso make decisior. For example, a generic factory might arbitrarily choose
a machine from a set of machines. Using the preferesritesion, a client cald
expresdts preference for a particular machine. Policesl preferences are described
in more detail irAppendix E.

6.3 Implementing Factories

6-18

As defined undeClient's Model of Creation on page 4, any object that creates another
object in response to some requegtabed afactory. Clients depend only on the
definitions in that section.

The cilent’'s modelof object life cycle has intentionally been defined abstractly. This
allows a wide variety of implementation strategies.

Factories arnot special objects. They have well-defined Ibiterfacesand
implementations in programmingniguages. Defining factory interfaces and
implementing them are a normal part of application development.

Ultimately, the creation process requires implementadiependent code that
assembles resources for the storage and execution of an dleect of creating an
object requires assembling aimitializing all of the resources requiredgopport the
execution and storage of the objethe resourcegypically include:

CORBAservices November 1996

® the allocation of one or more BOA object references, and
® resources related to persistence storage.

6.3.1 Minimal Factories

Figure 6-11 illustrates a inimal implementation of a factorthatassembles resources
in a single factory obje. t

« Object specific factory interface

factory
specific code

4/

resources

Figure 6-11 Factories assemble resources for the execution of astoBjeninimal
implementation achieves this with a single factory implemeniation

6.3.2 Administered Factories

Factories can delegate the creation process to a generic factory that administers a set of
resources. The generic facttmay apyly policies to all creation requests.

Eventually such a generic creation service, needs to communiithtenplementation
specificcode that actually assembles the resources for the object. Figure 6-12
illustrates n object specificactory, such as the document factoryFigure 6-5that
delegates the creati problem to the generic creation service. The object-specific
factory effectivelyadds astaticallytyped wrapper around the generic factory.

Life Cycle Servicevl.0 Implementing Factoric November 1996 6-19

6-20

Factory client

« Object specific factory interface

factory
specific code

GenericFactory

life cycle service

GenericFactory GenericFactory

implementation implementation
specific factory specific factory

N4 1)

resources resources

Figure 6-12 In an administered environment, factimplementatior can delegate the creation

problem to a generic faatp. The generic factory can apply resource allocation
policies. Utimately the creation service communicates with implementation
specific code that assembles resources for the wbject

CORBAservices November 1996

6.4 Target's Use oFactories aid Factory Finders

FactoryFinder

Document

Private

Factory

HERE THERE

Figure 6-13 The copy and move operations are pd aFactoryFinde to represent “the.”
The implementation of the target usee FactoryFinde to find a factory object
for creation over there. The protocol between the object and the factory is private.
They can communicate and transfer state according to any implementation-defined
protocol.

A client passs a factory finders a parameter to @py or move request.

Clients do not generally understand implementatio constraints of the object being
copied. Clients cannot express what the tar@@at needs in order to coptgelf to
the new location.

Target object implementations, on the other hand, put constraints on factories based on
implementation concer. It is urlikely that target implementation code nterested in
further constraining location.

To find an appropriate factory,e target object implementatiimay use thdactory

finder with itsminimal interface defined in section 6.2.2 or it matyempt tonarrcw

the factory finder to a more sophisticated finding service with more expressive power.
The targebbject implementation can always depend on the existence of thmathini
interface.

Once the target object implementation finds a factory, it communicateshe
factory using eprivate, implementation-defined, interface.

6.5 Summary of Life Cycle Service

The problem of distributed object life cycle is the problem of
» Creating an object
» Deleting an object

Life Cycle Servicevl.0 Target’'s Use of Factories and Factory Find November 1996-21

* Moving and copying an object
» Operating on a graph dfistributed objects.

The client'smodel of object life cycle is based factories and target objects
supporting theLifeCycleObjec interface. Factories are objects that create other
objects. TheLifeCycleObjec interface defines operations to delete an object, to move
an object and to copy an object.

A GenericFactor interface is defined. The generic factory interface is sufficient to
create objects of different types. By defininiGenericFactor interface,
implementations that administer resources are enabled.

6.5.1 Summary of Life Cycle Service Structure

The Life Cycle Service specification consists of these interfaces:
* LifeCycleObject
» FactoryFinde
» GenericFactory
* Interfaces described Appendix A, an addendum to the Life Cycle Service

6-22 CORBAservices November 1996

Appendix A Addendumto Lif€ycle ServiceCompound Life Cycle
Specification

This appendix contains the specification for the compoif@dycle component of the

Life Cycle Service .The compound life cydpecificationdepends on the Life Cycle
Service for the definition of the clientew of Life Cycle operations. Moreover, it
extends the Life Cycle Service to support compound life cycle operations on graphs of
related objects. In addition, the comymd Ife cycle specificatiordepends on the
Relationship Service for the definition of object graphs.

The Life Cycle Service specification describes a cliemnt&sv of objectlife cycle. It
describes how a client cicreatt, copy, move andremove objects in a distributed
object system. To create objects, clients ffactory object: and issue create requests
on factories. To goy, move and remove objectdients issue requests on target
objects supporting thLifeCycleObjec interface.

If the target object represents a simple object, that is an object that is not part of a
graph of relate objects, the target provides an implementation for each of the
operations in thdLifeCycleObjec interface.

If, on the other hand, the target object uses the Relationship Service for representing
relationships with other objects, additional services are availaltepiement the
compound life cycle operationhe specification in thisappendix describes those
services.

A.l Key Features

The compound life cyclspecification:

» Addresses the issues of copying, moving and removing objects that are related to
other objects. Depending on the semantics of¢fetionships, these life cycle
operations are applied to:

* the object, to the relationship and to the related objects

* the object and to theelationship

* the object

» Coordinates compoundfd cycle operations on graphs of related objects, thus
relieving object developers from implementing compounerafions.

* lllustrates a general model fapplying compound operations to graphs of related
objects. TheExternalization Service also illustrates the model.

A.2 Service Structure

The spedication in this appendix defines a service that applies a compdarg/cle
operation to a graph oélated objects, givenstarting node. @mpound operations
traverse a graph of related objects and apply the operation to the relevant nodes, roles
and relationships of the graph. The service supports the
CosCompoudLifeCycle::Operation interface. Implementations of the serviaepend

on theCosCompoundLifeycle::Nod¢, CosCompoundLifeCycle::Rcand
CosCompoudLifeCycle::Relationshijinterfaces which are subtypes of Node, Role

Life Cycle Servicevd.0 Summary of Life Cycle Serv. November 1996 6-23

6-24

A.3

andRelationshi| interfaces defined in the Relationship Servitke
CosCompoudLifeCycle::Nod , CosCompoundLifgycle::Rol¢ and
CosCompoudLifeCycle::Relationshi interfaces add aggrations tocopy, remove and
move nodes, roles amdlationships.

The Relatimship Service defines interfaces for containment and reference relationships
andtheir roles. This appendix defines interfaces that inherit thiegacesand the
compound life cycle interfaces.

Interface Overview

Table 6-4 and Table 6-8ummarize the interfaces defined in the
CosCompoudLifeCycl¢ module. TheCosCompoundLifeCycle module is described in
detail in sectioSection A.4.2.

Table 6-4 Interfaces defined in ttCosCompoundLifeCyc module for initiating compound life
cycle operations.

Interface Purpose

Operations Defines compound life cycle operations on graphs of related
objects.

OperationsFactory Defines an operation to create an object that supports the

Operation: interface.

Table 6-5 Interfaces defined in thCosCompoundLifeCyc module that are used by
implementations of compound life cycle operations

Interface Inherits Purpose

Node CosGraphs::Node Defines life cycle
operations on nodes in
graphs of related objects.

Relationship CosRelationships::Relationship Defines life cycle
operations on
relationships.

Role CosGraphs::Role Defines life cycle
operations on roles.

PropagationCriteriaFactory Creates an object that
supports the
CosGraphs::TraversalCrit
eria interface that uses
relationship propagation
values.

CORBAservices November 1996

Table 6-6 and Table 6-3ummarize the interfaces that combine the specific
relationships defined by theeRationshipService and théfe cycle interfaces defined

in this appendix.

Table 6-6 Interfaces defined in thCosLifeCycleContainme module.

Interface

Inherits

Purpose

Relationship

ContainsRole

ContainedInRole

CosContainment::Containment
and
CosCompoundLifeCycle::Relationship

CosContainment::ContainsRole
and
CosCompoundLifeCycle::Role

CosContainment::ContainedInRole
and
CosCompoundLifeCycle::Role

Combines both
interfaces.

No additional
operations are defined.

Combines both
interfaces.

No additional
operations are defined.

Combines both
interfaces.

No additional
operations are defined.

Table 6-7 Interfaces defined in thCosLifeCycleReferen module.

Interface Inherits Purpose

Relationship CosContainment::Reference Combines both
and interfaces.
CosCompoundLifeCycle::Relationship No additional

ReferencesRole

ReferencedByRole

CosContainment::ReferencesRole
and
CosCompoundLifeCycle::Role

CosContainment::ReferencedByRole
and
CosCompoundLifeCycle::Role

operations are defined.

Combines both
interfaces.

No additional
operations are defined.

Combines both
interfaces.

No additional
operations are defined.

A.4 Compound.ife Cycle Operations

The Life Cycle specification describes a clientigw of object life cycle. It describes
how a client caicreate, copy, move andremove objects in a distributed object system.
To create objects, clients firffactory object: and issue create requests on factories. To
copy, move and remove objectdients issue requests on target objects supporting the
LifeCycleObijec interface.

If the target object represents a simple object, that is an object that is not part of a
graph of relate objects, the target provides smplementation foeach of the
operations in thdifeCycleObjec interface.

Life Cycle Servicevd.0 Summary of Life Cycle Serv. November 1996 6-25

6-26

If the target participates asnade in a graph of related objects, the target can delegate
the life cycle opration to a service that implements twnpound life cycle operation.

In particular, the target simply creates an object that supports the
CosCompoudLifeCycle::Operation interface and issues the correspondifegcycle
request on it. The compound life cycle operations expCompoundLifeCycle::Notle
object reference as a starting node. The target simply pigsses
CompoundLifeCycle::Not object referace as the starting node.

When the life cycle object has completed issuing camgdife cycle requests, it
simply issues thdestroy request to destroy the compoundceogtion.

Figure 6-14 illustrates the target’'s delegation of the life cycle requestipound
operation.

compound operations

CompoundLifeCycle::Node

CosCompoundLifeCycle::Operations

target

CosLifeCycle::LifeCycleObject

Figure 6-14 A life cycle object that is part of a graph of related objects delegates the orderly
operation on the graph to an object that implements the compound life cycle
operation.

A.4.1 Applying the Copy Operation to the Example

We now use the example in the Relationship Service Sgegtdifin (Fgure 9-3) to
illustrate applying theopy operation to a graph. Figure 6-1Gstrates the gph and the
compound operation prior to applyitige copy operation. Reci#hat the foldecontain::
the document; the documentcontained il the folder. The documeicontain: the
figure; the figure iscontained il the document. The documecontain: the logo and
the logo iscontained il the document. On the other hand, the docuireference the
book; the book iseferenced b the document. Finally, the figureference the logo;
the logo isreferenced b the figure.

CORBAservices November 1996

compouny
operation
@ shallow
- deep shallow

shallow

shallow &
)
none shallob one

Figure 6-15 Prior to applying copy to the graph.

In this example, theopy isperformed in two passe$he frst pass creates a list
representation of the relevant edges of the graph. The second pass takes the list as
input, copies the relevant nodes and roles, then creates all the necessary links by
copying the relevant relationships.

A compound copy request is initiated by issuirLifeCycleObjet::copy request on
the folder. Since the folder participates in a graph of related objects, it creates an
object supporting thCosCompandLifeCycle::Operatior interface (theOperation:;
object). Then the folder issuesCosCompoundLifegle::Operatiois:.copy request

on theOperation: object, passing in its ownCosCompoundLifeCycle::No object
reference as the starting nodéhe copy @eration will copy the graph of related
objects and return arbgect reference for theopy of the folder object.

The renainder of this section provides a description of howOperation: object
might implement the apy operation.

First Pass of the Compound Copy Operation

The first pass consists of creatingist fepresentation of the relevant edges of the
graph. TheOperation: object uses an object supporting CosGraphs::Traversl
interface to do most of the work.

The Operation: object creates an object supporting CosGraphs::TraversalCriteria
interface by callincCosCompoundLifeCycle::ProgationCriteriaFactory::.create

Life Cycle Servicevd.0 Summary of Life Cycle Serv. November 1996 6-27

The Operation: object then createsCosGraphs::Traversi object by calling
CosQ@aphs:TraversalFactor::create_traversal_on , passing in the object
supporting theCosGaphs::TraversalCriterii interface. Calls on the
CosQ@aphs:Traverse object yield an unorderdist of
CosQ@aphs:Traverse::ScopedEdgt containing the following information.
(folder, ContainsRole, Containment, ContainedinRole, document)
(document, ReferencesRole, Reference, RefeealByRole, book)
(document, ContainedInRole, Containment, ContainsRole, folder)
(document, ContainsRole, Containment, ContatlaRole, figure)
(document, ContainsRole, Containment, ContatleRole, logo)
(figure, ReferencesRole, Reference, ReferencedByRole, logo)
(figure, ContainedinRole, Containment, ContainsRole, document)
(logo, ContainedInRole, Containment, ContainsRole, document)

This list will be referred to as tl OriginalEdgeLis:t

Since the propagation value for copy from the document todbk is shallow, the
traversal did not it the mok. As such, the edge:

(book, ReferencedByRole, Reference, References, document)

is not included. Although the travaal did visit thelogo, the edge

(logo, ReferencedByRole, Reference, ReferencesRiare)

is not included because the propagation value for copy from the logo to the figure is
none.

For more detailed information regarding the output ofCosGraphs::Traversil
object with respect to the use of propagation semantics, see s@dtidrof the
Relationship Service.

Second Pass of the Compound Copy Operation

The second pass copies thie relevant nodes and thezlates them by quying the
relevantrelationships.

First, the set ohodes to be copied must be determined. This consists of alistiect
nodes in théeft column of theOriginalEdgeLis . Since a node may be involved in
multiple edges, it may appeamwltiple times in the list; it shdd only be copied once.
Each node irthis set is copied by issuing a
CosCompoudLifeCycle::Nod::copy_node request. This request will cause the node
and all of its role to be copied; the new node and its roles will be returned.

» For each returned role of the copied node, an entry is made in a table of new
roles. Eachentry consists of:

* The role object is the data and

* The node’s CosGraphs:Traversal::TraversalScopedld and the role’s
CORBA::InterfaceDef together serve as a key.

6-28 CORBAservices November 1996

6

The finalstep is to create all the relationships for the copied graph. All of the distinct
relationships in the center column of OriginalEdgeLis need to be copied. Although

a relatimship may appeanultiple times in the list, ishould only be copied once.

Each relationship is copied by issuing a
CosCompoudLifeCycle::Relationshi::copy_relationship request. The

arguments tcCosCompoundLifegle::Relationshi::copy_relationship include
thelist of roles to be included in the nesglationship. Some of these roles will be
copies that were created as a result of proceskiepg propagation values; others will
be roles in the original graph.

Thus, copy each unique relationship in OriginalEdgeLis, using NamedRoles as
follows:

For each role in an entry in tlOriginalEdgeLis, make a role key using the node’s
TraversalScopedld and the role’s CORBnterfaceDef to search the table of new
roles.

a. If the role was copied, the key will find the role’s cofifrerole’s RoleNam is
obtained from the entry in ttOriginalEdgelLis. The role’s copy and the
RoleNam are combined to form CosGraphs::NimedRole which will then be
included in thdist of CosGraphs::NamedRcs passed to the
CosCompoundLifeCycle::Relationsh::copy_relationship method.

b. If no copy is found, the@riginal CosGraghs::NanedRol¢ is used instead.

Once all theRelationship have been copied, the
CosCompoudLifeCycle::Operation::copy method is done.

Figure 6-16 illustrates the result of applying copy to the graph, starting at the folder.

\ /
>,

Figure 6-16 The result of applying copy to the graph, starting at the folder.

When the copy operation propagates to a node because of a deep propagation value,
other shallow propagation values to that nodepromotec. That is, they are processed
as if they were deep; relationships are formed with the copied node, not with the

Life Cycle Servicevd.0 Summary of Life Cycle Serv. November 1996 6-29

original. This happened in the example; the shallow propagation value from the figure
to the logo was promoted to deep because the logo was copied. As sumw tligure
references the new lognot the original logo.

A.4.2 The CosCompoundieCycle Module

The CosCompoudLifeCycle moduledefines

» The Operation: interface forinitiating compaindlife cycle operations ographs
of related objects,

» OperationsFactor interface for creating conqund operations,

» TheNod¢, Role, Relationshij and PropagationCriteriaFactor interfaces for use
by implementations of compound life cycle operations.

The CosCompoudLifeCycle module is given in Figure 6-1Detailed descriptions of
the interfaces follow.

#include <LifeCycle.idl>
#include <Relationships.idl>
#include <Graphs.idl>

module CosCompoundLifeCycle {
interface OperationsFactory;
interface Operations;
interface Node;
interface Role;
interface Relationship;
interface PropagationCriteriaFactory;

enum Operation {copy, move, remove},

struct RelationshipHandle {
Relationship the_relationship;
::CosObjectldentity::Objectldentifier constant_random_id;

b

interface OperationsFactory {
Operations create_compound_operations();

h

Figure 6-17 The CosCompoundLifeCycle Module

6-30 CORBAservices November 1996

interface Operations {
Node copy (
in Node starting_node,
in ::CosLifeCycle::FactoryFinder there,
in ::CosLifeCycle::Criteria the_criteria)
raises (::CosLifeCycle::NoFactory,
::CoslLifeCycle::NotCopyable,
::CosLifeCycle::InvalidCriteria,
::CosLifeCycle::CannotMeetCriteria);
void move (
in Node starting_node,
in ::CosLifeCycle::FactoryFinder there,
in ::CosLifeCycle::Criteria the_criteria)
raises (::CosLifeCycle::NoFactory,
::CosLifeCycle::NotMovable,
::CosLifeCycle::InvalidCriteria,
::CosLifeCycle::CannotMeetCriteria);
void remove (in Node starting_node)
raises (::CosLifeCycle::NotRemovable);
void destroy();

h

interface Node : ::CosGraphs::Node {
exception NotLifeCycleObiject {};
void copy_node (in ::CosLifeCycle::FactoryFinder there,
in ::CosLifeCycle::Criteria the_criteria,
out Node new_node,
out Roles roles_of_new_node)
raises (::CosLifeCycle::NoFactory,
::CosLifeCycle::NotCopyable,
::CosLifeCycle::InvalidCriteria,
::CoslLifeCycle::CannotMeetCriteria);
void move_node (in ::CosLifeCycle::FactoryFinder there,
in ::CosLifeCycle::Criteria the_criteria)
raises (::CosLifeCycle::NoFactory,
::CosLifeCycle::NotMovable,
::CosLifeCycle::InvalidCriteria,
::CoslLifeCycle::CannotMeetCriteria);
void remove_node ()
raises (::CosLifeCycle::NotRemovable);
::CoslLifeCycle::LifeCycleObject get_life_cycle_object()
raises (NotLifeCycleObiject);
|3

Figure 6-17 The CosCompoundLifeCycle Modu(Continued)

Life Cycle Servicevd.0 Summary of Life Cycle Serv. November 1996

6-31

6-32

interface Role : ::CosGraphs::Role {
Role copy_role (in ::CosLifeCycle::FactoryFinder there,
in ::CosLifeCycle::Criteria the_criteria)
raises (::CosLifeCycle::NoFactory,
::CoslLifeCycle::NotCopyable,
::CosLifeCycle::InvalidCriteria,
::CosLifeCycle::CannotMeetCriteria);
void move_role (in ::CosLifeCycle::FactoryFinder there,
in ::CosLifeCycle::Criteria the_criteria)
raises (::CosLifeCycle::NoFactory,
::CoslLifeCycle::NotMovable,
::CoslLifeCycle::InvalidCriteria,
::CosLifeCycle::CannotMeetCriteria);
::CosGraphs::PropagationValue life_cycle_propagation (
in Operation op,
in RelationshipHandle rel,
in ::CosRelationships::RoleName to_role_name,
out boolean same_for_all);

b

interface Relationship :
::CosRelationships::Relationship {
Relationship copy_relationship (
in ::CosLifeCycle::FactoryFinder there,
in ::CosLifeCycle::Criteria the_criteria,
in ::CosGraphs::NamedRoles new_roles)
raises (::CosLifeCycle::NoFactory,
::CosLifeCycle::NotCopyable,
::CosLifeCycle::InvalidCriteria,
::CoslLifeCycle::CannotMeetCriteria);
void move_relationship (
in ::CosLifeCycle::FactoryFinder there,
in ::CosLifeCycle::Criteria the_criteria)
raises (::CosLifeCycle::NoFactory,
::CoslLifeCycle::NotMovable,
::CosLifeCycle::InvalidCriteria,
::CosLifeCycle::CannotMeetCriteria);
::CosGraphs::PropagationValue life_cycle_propagation (
in Operation op,
in ::CosRelationships::RoleName from_role_name,
in ::CosRelationships::RoleName to_role_name,
out boolean same_for_all);

b

interface PropagationCriteriaFactory {
::CosGraphs::TraversalCriteria create(in Operation op);

h
h

Figure 6-17 The CosCompoundLifeCycle Modu(Continued)

CORBAservices November 1996

A.4.3 The OperationsFactory Interface

Creating a Compound Life Cycle Operation

Operations create_compound_operations();

The create_compound_operations operation creates an object that implements
the compoundife cycle operations, that is, the factory creaad returns an object
that supports thCosCompoundLifgéycyle::Operation interface.

The Operations Interface

The Operation: interfacedefines compountife cycle operations to copy, mowand
remove objects, given a starting node in a graph.

Applying the ©py Operation to a Graph of Related Objects

Node copy (

in Node starting_node,

in ::CosLifeCycle::FactoryFinder there,

in ::CosLifeCycle::Criteria the_criteria)

raises (::CosLifeCycle::NoFactory,

::CosLifeCycle::NotCopyable,
::CosLifeCycle::InvalidCriteria,
::CosLifeCycle::CannotMeetCriteria);

The copy operation applies the copy operation to a graph of related objects. The
starting node is provided as tstarting_node parameter. The copy should be
collocated with the factory finder given by tthere parameterThe finalparameter,
the_criteria , allows unspecified values to be passed. This is explained in the Life
Cycle specification in detail.

If a node, role or relationship in the graph refuses to be copieiNotCopyable
exception is raised with the node, rolerelationship object reference returned as a
parameter to the exception.

If appropriate factories to create a copies of the nodes and roles cannahbetlfee
NoFactory exception is raised. The exception value indicates the key used to find
the factory.

In addition to theNoFactory —andNotCopyable exceptions, implementations may
raise standard CORBA exceptions. For example, if resources cannot be acquired for
the copied graptNO_RESOURCI will be raised.

Life Cycle Servicevd.0 Summary of Life Cycle Serv. November 1996 6-33

6-34

It is implementation dependent whether thigigiion isatomic.

Applying theMoveOperation to a Graph of Related Objects

void move (
in Node starting_node,
in ::CosLifeCycle::FactoryFinder there,
in ::CosLifeCycle::Criteria the_criteria)

raises (::CosLifeCycle::NoFactory,

::CoslLifeCycle::NotMovable,
::CoslLifeCycle::InvalidCriteria,
::CosLifeCycle::CannotMeetCriteria);

The move operation applies the move operation to a graph of related objdets.
starting node is provided as tstarting_node parameter. The migrategtaph

should be collocated with the factory finder given bythere parameter. The final
parameterthe_criteria , allows unspecified values to be passed. This is explained
in the Life Cycle specification idetail.

If a node, role or relationship in the graph refuses to be moveNotMovable
exception is raised with the node, rolerelationship object reference returned as a
parameter to the exception.

If appropriate factories to migrate the nodes and rcd@siot be found, the
NoFactory exception is raised. The exception value indicates the key used to find
the factory.

In addition to theNoFactory andNotMovable exceptions, implementations may
raise standard CORBA exceptions. For example, if resources cannot be acquired for
the migratedgraph,NO_RESOURCI will be raised.

It is implementatio-dependent whether this operatioratomic.

Applying theRemove Operation to a Graph of Related Objects

void remove (in Node starting_node)
raises (::CosLifeCycle::NotRemovable);

Theremove operation applies the remove operation to a graph of related ofjbets.
starting node is provided as tstarting_node parameter.

If a node, role or relationship in the graph refuses to be removeNotRemovable
exception is raised with the node, rolerelationship object reference returned as a
parameter to the exception.

CORBAservices November 1996

It is implementation dependent whether thigigiion isatomic.

Destroying the Compound Operation

void destroy();

The destroy operation indicates to the compd qeration that the client has
completed operating on the graph. The compaonmeration object is destroy::d.

The Node Interface

The Nod¢ interface defines operations ¢opy, move and remove a node.

Copying a Node

void copy_node (in::CosLifeCycle::FactoryFinder there,

in ::CosLifeCycle::Criteria the_criteria,
out Node new_node,
out Roles roles_of _new_node)

raises (::CosLifeCycle::NoFactory,
::CosLifeCycle::NotCopyable,
::CoslLifeCycle::InvalidCriteria,
::CosLifeCycle::CannotMeetCriteria);

The copy operation makes a copy of the node and its roles. The new node and roles
should be collocated with the factory finder given bythere parameter. The final
input parameterithe_criteria , allows unspecified values to be passed. This is
explained in the Life Cycle specification in detail.

The result of acopy operation is a:
® Node¢ object reference for the new node and

® Sequence of roles

Life Cycle Servicevd.0 Summary of Life Cycle Serv. November 1996 6-35

Figure 6-18 illustrates the result of a copy. A node, when it is born, is not in any
relationships with other object$hat is, the roles in the new node are “disconnected”.
It is the compound copy operation’s job to correctly establish nedationships.

original / ‘§ new
documenty—~ ™ document ‘
HERE THERE

X o]

Figure 6-18 Copying a node returns the new object and the corresponding roles.

If the node or one of its roles refuses todopied, theNotCopyable exception is
raised with the node or role object reference returnedp@sameter to the exception.

If an appropriate factory to create epy cannot be found, ttNoFactory exception
is raised. The exception value indicates the key used to finththay.

In addition to theNoFactory andNotCopyable exceptionsimplementabns may
raise standard CORBA exceptions. For example, if resources cannot be acquired for
the copied nodeNO_RESOURCI will be raised.

Moving a Node

void move_node (in ::CosLifeCycle::FactoryFinder there,
in ::CosLifeCycle::Criteria the_criteria)
raises (::CosLifeCycle::NoFactory,
::CoslLifeCycle::NotMovable,
::CosLifeCycle::InvalidCriteria,
::CosLifeCycle::CannotMeetCriteria);

The move operation transfers some or all of the node’s resources from “here” to
“there”. Themove operation migrates a the node atsdroles. The migrated nodead
roles should be collocated with the factory finder given bythere parameter. The
final parameterthe_criteria , allows unspecified values to be passed. This is
explained in the Life Cycle specification in detail.

If the node or one of its roles refuses torbaved, theNotMovable exception is
raised with the node or role object reference returnedpesameter to the exception.

If an appropriate factory teupport migration “over there” cannot beufa, the
NoFactory exception is raised. The exception value indicates the key used to find
the factory.

6-36 CORBAservices November 1996

6

In addition to theNoFactory andNotMovable exceptions, implementations may
raise standard CORBA exceptions. For example, if resources cannot be acquired for
the migratechode,NO_RESOURCI will be raised.

Removing a Node

void remove_node ()
raises (::CosLifeCycle::NotRemovable);

Theremove operation removes the node and its roles.

If the node or one of its roles refuses to be removecNotRemovable exception is
raised with the node or role object reference returnedpesameter to the exception.

Getting the Node’s Life Cycle Object

::CoslLifeCycle::LifeCycleObject get_life_cycle_object()
raises (NotLifeCycleObject);

Some nodes not onlyarticipate in the life cycle protocols for graphs of related objects
but they also support the client's view @&lcycle services. That is, the node also
supports the:CosLifeCycle::LifeCycleObje interface described in the Life Cycle
Service specificationThe get_life_cycle _object operation returns the
::CosLifeCycle:LifeCycleObje object referace for the node.

If the node does not support t::CosLifeCycle::LifeCycleObje interface, the
NotLifeCycleObject exception is raise 1.

The Role Interface

The Role interfacedefines operations to copy and move a role. (destroy

operation is defined by the baselRiorship Service. As such, there is no need to
define aremove operation.) TheRole interface also defines an operation to return the
propagation values for the copy, move and remowraions.

The mplementation of iCompoundLifeCycle::No« operationcan call these
operations on roles. For example, an implementaticcopy on a node canall the
copy operation on thRole.

Life Cycle Servicevd.0 Summary of Life Cycle Serv. November 1996 6-37

6-38

Copying a Role

Role copy_role (in ::CosLifeCycle::FactoryFinder there,
in ::CosLifeCycle::Criteria the_criteria)
raises (::CosLifeCycle::NoFactory,
::CosLifeCycle::NotCopyable,
::CoslLifeCycle::InvalidCriteria,
::CosLifeCycle::CannotMeetCriteria);

Thecopy operation makes a copy of the role. The new role should be collocated with
the factory finder given by ththere parameter. The final parameter,

the_criteria , allows unspecified values to be passed. This is explained in the Life
Cycle specification in detail.

Theresult of acopy operation is an object reference for the new object supporting the
Role interface.

If the role refuses to be copied, iINotCopyable exception is raised with the role
object reference returned as a parameter to the exception.

If an appropriate factory to create apy cannot be found, ttNoFactory exception
is raised. The exception value indicates the key used to finfhcitay.

In addition to theNoFactory andNotCopyable exceptionsimplementabns may
raise standard CORBA exceptions. For example, if resources cannot be acquired for
the copied roleNO_RESOURCI will be raised.

Moving a Role

void move_role (in ::CosLifeCycle::FactoryFinder there,
in ::CosLifeCycle::Criteria the_criteria)
raises (::CosLifeCycle::NoFactory,
::CosLifeCycle::NotMovable,
::CoslLifeCycle::InvalidCriteria,
::CosLifeCycle::CannotMeetCriteria);

The move operation transfers some or all of the role’s resourcesmove operation
migrates the role. The migrated role should be collocated with the factory finder given
by thethere parameter. The final parametthe_criteria , allows unspecified
values to be passed. This ispé&ined in the Life Cycle specification in detail.

If the role refuses to be moved, tNotMovable exception is raised with the role
object reference returned as a parameter to the exception.

If an appropriate factory teupport migration cannot be found, iINoFactory
exception is raised. The exception value indicates the key used to find the factory.

CORBAservices November 1996

6

In addition to theNoFactory andNotMovable exceptions, implementations may
raise standard CORBA exceptions. For example, if resources cannot be acquired for
the migrated roleNO_RESOURCI will be raised.

Getting a Propagation Value

::CosGraphs::PropagationValue life_cycle_propagation (
in Operation op,
in RelationshipHandle rel,
in ::CosRelationships::RoleName to_role_name,
out boolean same_for_all);

Thelife_cycle_propagation operation returns the propagation value to the role
to_role_name for the life cycle operatioop and the relatioshiprel . If the role

can guarantee that the propagation value is the sanadl f@lationships in which it
participatessame_for_all is true.

The Relabnship Interface

The Relationshi| interfacedefines operations to copy and move a relationship. (The
destroy operation is defined by the Relationship Service. As such, there is no need
to define eremove operation.) TheRelationshi| interface also defines an operation to
return the propagation values for tb@py, move and remove operations.

Copying the Relationship

Relationship copy_relationship (
in ::CosLifeCycle::FactoryFinder there,
in ::CosLifeCycle::Criteria the_criteria,
in ::CosGraphs::NamedRoles new_roles)

raises (::CosLifeCycle::NoFactory,

::CosLifeCycle::NotCopyable,
::CosLifeCycle::InvalidCriteria,
::CosLifeCycle::CannotMeetCriteria);

The copy operation creates a nawlatiorship. The new relationship should be
collocated with the factory finder given by tthere parameter. The second
parameterthe_criteria , allows unspecified values to be passed. This is explained
in the Life Cycle specification idetail.

Life Cycle Servicevd.0 Summary of Life Cycle Serv. November 1996 6-39

6-40

The values othe newly created relationshipédtributesare defined by the
implementation of this operation. However, named_roles attribute of the newly
created relatinship must match new_roles. That is, the newly creakedionship
relates objects representednew_roles parameter, not the by the original
relationship’s named roles.

Theresult of acopy operation is an object reference for the new object supporting the
Relationshiginterface.

If the relationship refuses to be copied, NotCopyable exception is raised with the
relationship object reference returned as a parameter to the exception.

If an appropriate factory to create apy cannot be found, ttNoFactory exception
is raised. The exception value indicates the key used to finfhthay.

In addition to theNoFactory andNotCopyable exceptionsimplementabns may
raise standard CORBA exceptions. For example, if resources cannot be acquired for
the copied roleNO_RESOURCI will be raised.

Moving the Relationship

void move_relationship (
in ::CosLifeCycle::Criteria the_criteria)
raises (::CosLifeCycle::NoFactory,
::CosLifeCycle::NotMovable,
::CosLifeCycle::InvalidCriteria,
::CosLifeCycle::CannotMeetCriteria);

The move operation transfers some or all of the relationshipsources. Thmove
operation migrates the relationship. The migrated relationship should be collocated
with the factory finder given by ththere parameter. The final parameter,

the_criteria , allows unspecified values to be passed. This is explained in the Life
Cycle specification in detail.

If the relationship refuses to be moved, tNotMovable exception is raised with the
relationship object reference returned as a parameter to the exception.

If an appropriate factory teupport migration cannot be found, iINoFactory
exception is raised. The exception value indicates the key used to find the factory.

In addition to theNoFactory andNotMovable exceptions, implementations may
raise standard CORBA exceptions. For example, if resources cannot be acquired for
the migrated relatioship, NO_RESOURCI will be raised.

CORBAservices November 1996

Getting a Propagation Value

::CosGraphs::PropagationValue life_cycle_propagation (
in Operation op,
in ::CosRelationships::RoleName from_role_name,
in ::CosRelationships::RoleName to_role_name,
out boolean same_for_all);

The life_cycle_propagation operation returns the relationship’s propagation
value from the rolefrom_role to the roleto_role_name for the life cycle
operationop. If the role named bfrom_role_name can guarantee that the
propagation value is the same for all relationships in which it participates,
same_for_all is true.

The PropagationCriteriaFactory Interface

The CosGaphs module in the Relationship Service defines a general service for
traversing agraph of related object3he service accepts a “call-back” object
supporting th ::CosGraphs::TraversalCriteri interface. Given a node, this object
defines which edges ®mitand which nodes to visit next.

The PropgationCriteriaFactor creates TraversalCriteric object that determines
which edges to emit and which nodes to visit based on propagation values for the
compound life cycle operations.

Create a Traversal Criteria Based on Life Cycle Propagation Values

::CosGraphs::TraversalCriteria create(in Operation op);

The create operation returns a TraversalCriteria object for an operation op that
determinesvhich edges to emit and which nodesvisit based on prmagation values
for op. For a moreletailed discussion see sectioA ofthis appendix andection
9.4.2 of theRelationship specification.

A.4.4 Specific Life Cycle Relationships

The Relationshiservice defines two important relationshicontainmer and

referenc. Containment is a one-to-many relationship. A contaga@r contain many
containees; a containee is contained by one contd®eéerence, on the other hand, is

a many-to-many relationship. An object can reference many objects; an object can be
referenced by many bjects.

Life Cycle Servicevd.0 Summary of Life Cycle Serv. November 1996 6-41

6-42

Containment is represented by a relationship with two role<ContainsRol, and the
ContainedInRoleSimilarly, reference isepresented by a relationship withio roles:
ReferencesRole and ReferencedBy.0le

The compound life cyclepecification addsife cycle semantics to these specific
relationships. That is, it defines propagation values for containamhteference.

A.4.5 The CosLifeCycleContainment Module

The CosLifeCycleContainmeimodule defines three interfaces
* the Relationshi interface
 the ContainsRol interface and
» the ContainedInRol interface.

h

#include <Containment.idl>
#include <CompoundLifeCycle.idl>

module CosLifeCycleContainment {

interface Relationship :
::CosCompoundLifeCycle::Relationship,
::CosContainment::Relationship {};

interface ContainsRole :
::CosCompoundLifeCycle::Role,
::CosContainment::ContainsRole {};

interface ContainedIinRole :
::CosCompoundLifeCycle::Role,
::CosContainment::ContainedInRole {};

Figure 6-19 The CosLifeCycleContainment module

The CosLifeCycleContainme module does not define newperatians. It merely
“mixes in” interfaces from thCosCompandLifeCyclk andCosGntainmer modules.
Although it does not add any newaeratins, itrefinesthe semantics of these

attributes and operations:

RelationshipFactory
attribute

value

relationship_type

CosLifeCycleContainment::Relationship

degree

2

named_role_types

“ContainsRole”,CosLifeCycleContainment::ContainsR
ole;

“ContainedInRole”,CosLife Cycle Containment::Contai
nedinRole

CORBAservices

November 1996

The CosRlationships::RelatioshipFacton::create operation will raise
DegreeError if the number of roles passed as arguments is not 2. It will raise
RoleTypeError if the roles are ncCosLifeCycleCntainmen::ContainsRol and
CosLifeCycleCnotainmen::ContairedInRol. It will raise

MaxCardinalityExceeded if the CosLifeCycleContainmer:ContainedinRol is
already paticipating in a relationship.

RoleFactory attribute for

ContainsRole value

role_type CosLifeCycleContainment::ContainsRole
maximum_cardinality unbounded

minimum_cardinality 0

related_object_types CosCompoundLifeCycle::Node

The CosRelationships::RoleFactoy::create_role operation will raise the
RelatedObjectTypeError if the related object passed as a paranues not
support theCosCompoundLifgycle::Nod¢interface. The
CosRelationships::RoleFactoy::link operation will raise
RelationshipTypeError if therel parameter does not clmmm to the
CosLifeCycleCntainment::Relationsh interface.

RoleFactory attribute for

ContainedInRole value

role_type CoslLifeCycleContainment::ContainedInRole
maximum_cardinality 1

minimum_cardinality 1

related_object_types CosCompoundLifeCycle::Node

The CosRelationships::RoleFactoy::create_role operation will raise the
RelatedObjectTypeError if the related object passed as a paranues not
support theCosCompoundifeCycle::Nod: interface. The
CosRelationships::RoleFactoy::link operation will raise
RelationshipTypeError if therel parameter does not clmmm to the
CosLifeCycleCotainment::Relationsh interface. The
CosRelationships::RoleFactoy::link operation will raise
MaxCardinalityExceeded if it is already participating in a containment
relationship.

Life Cycle Servicevd.0 Summary of Life Cycle Serv. November 1996 6-43

The CosLifeGcleContainmer:: ContainsRol::life_cycle propagation
operation returns the following:

operation ContainsRole to ContainedInRole
copy deep
move deep
remove deep

The CosLifeGcleContainmer:: ContainedInRol::life_cycle propagation
operation returns the following::

operation ContainedInRole to ContainsRole
copy shallow
move shallow
remove shallow

A.4.6 The CosLifeCycleReference Module

The CosLifeG/cleReferencmodule defines three interfaces
* the Relationshi interface,
* the ReferencesRc interface and
 the ReferencedByRc interface.

#include <Reference.idl>
#include <CompoundLifeCycle.idl>

module CosLifeCycleReference {

interface Relationship :
::CosCompoundLifeCycle::Relationship,
::CosReference::Relationship {};

interface ReferencesRole :
::CosCompoundLifeCycle::Role,
::CosReference::ReferencesRole {};

interface ReferencedByRole :
::CosCompoundLifeCycle::Role,
::CosReference::ReferencedByRole {};

h

Figure 6-20 The CosLifeCycleReference module

6-44 CORBAservices November 1996

6

The CosLifeG/cleReferenc module does not defingew operations. It merely “mixes
in” interfaces from the«CosCompoundLifeCyc andCosReferenc modules. Although
it does not add any new operations, it refinessirmantics of thesattributesand
operations:

RelationshipFactory

attribute value

relationship_type CosLifeCycleReference::Relationship

degree 2

named_role_types “ReferencesRole”,CosLifeCycleReference::Reference
sRole;
“ReferencedByRole”,CosLifeCycleReference::Referen
cedByRole

The CosRlationships::RelatioshipFacton::create operation will raise
DegreeError if the number of roles passed as arguments is not 2. It will raise
RoleTypeError if the roles are ncCosReference::ReferencesR and
CosReferenc::ReferenceByRole.

RoleFactory attribute for

ReferencesRole value

role_type CosLifeCycleReference::ReferencesRole
maximum_cardinality unbounded

minimum_cardinality 0

related_object_types CosCompoundLifeCycle::Node

The CosRelationships::RoleFactoy::create_role operation will raise the
RelatedObjectTypeError if the related object passed as a paranues not
support theCosCompoundLiféycle::Nodt interface. The
CosRelationships::RoleFactoy::link operation will raise
RelationshipTypeError if therel parameter does not clmmm to the
CosLifeG/cleReference::Relationst interface.

RoleFactory attribute for

ReferencedByRole value

role_type CosLifeCycleReference::ReferencedByRole
maximum__cardinality unbounded

minimum_cardinality 0

related_object_types CosCompoundLifeCycle::Node

The CosRelationships::RoleFactoy::create_role operation will raise the
RelatedObjectTypeError if the related object passed as a paranues not
support theCosCompoundLifgycle::Nod¢ interface. The

Life Cycle Servicevd.0 Summary of Life Cycle Serv. November 1996 6-45

6-46

CosRelationships::RoleFactoy::link operation will raise
RelationshipTypeError if therel parameter does not clmmm to the
CosLifeG/cleRelationship::Relationsh interface.

The CosLifeCycleReferen:: ReferencesRc::life_cycle propagation
operation returns the following:

operation ReferencesRole to ReferencedByRole
copy shallow
move shallow
remove shallow

The CosLifeCycleReferen:: ReferenceByRole:life_cycle propagation
operation returns the following::

operation ReferencedByRole to ReferencesRole
copy none

move shallow

remove shallow

The CosRelationships::RoleFactoy::create_role operation will raise the
RelatedObjectTypeError if the related object passed as a parantes not
support theCosCompoundLifgycle::Nod¢ interface.

The CosRlationships::RelatioshipFacton::.create operation will raise
DegreeError if the number of roles passed as arguments is not 2. It will raise
RoleTypeError if the roles are ncCosLifeG/cleReferenc:ReferencesRc and
CoslLifeG/cleReferenc:ReferencedByRcle

A.5 References

1. James Rumbaugh, “Controlling Propagation ok€ions using Attributes on
Relations.”OOPSLA 1988 Proceedin, pg. 285-296

2. James Rumbaugh, Michael Blaha,INMdim Premerlani, Frederick Eddy and Wam
Lorensen, “Object-oriented Modeling and Design.” Prentice Hall, 1991.

CORBAservices November 1996

Appendix B

Filters

Note —Appendix B is not part of the Life Cycle Services specification. It sketches a
mechanism for expressing filters. Thippendix is included to provided an example of
how a filter might beprovided.

A factory represents a scope of resource allocation, which is the set of resources
available to the factory. Whenever it receives a creation request, a factory will allocate
resources according to any policies which are in operation.

Clearly, by choosing a particular factory upon which to issue a create request, a client
is exerting some control over the allocation of resources. Therefore, acaetmit

the scope of resource allocation, by issuing the request on a different factory which
represents a smaller set of resources.

However, there are two problems with thig:sBy, the granularity of resources may be
muchsmaller than the granularity represented by the factories in a sy=tem.
example, there are unlikely to be factorielsioh represent individual disk segments.

Secondly, the client may wish to rule out the use of particular resources within a scope,
but avoid having a general nection inscope. For example, the client might not be
concerned with which machine within a LAN an object is creatgdproviding it is

not on machine X.

Both of these needs can be addressed by providiftgra i the first case, the filter is
relatively simple; it will simply iimit the scope of resource allocation. In theoset
case, the fier will need to be more sophisticated.

This appendix dscribesone way ofproviding filters usincpropertie: and constraint
expressior. These concepts appear in the development of Trading in the
ISO/IEC/CCITT OperDistributed Processing standards. Service providers register
their service with th@rader and use pperties to describe the service offer. Potential
clients may then use a constraint expressions to describe the requirements which
service offers must satisfy.

Similarly, the life cycle service may define a number of properties to represent the
differentkinds of resources available within in a system and clients may use constraint
expressions to place the restrictiaron the use of those resources.

Note —The Object Services Architecture identifies an Object Propergesc® which
enables an object to have a seadjitrary named values associateithwt. These are
very similar to theconcept of properties as used in Trading and in this appendix.

Filters Summary of Life Cycle Serv. November 1996 6-47

B.1 Resources as Properties

Resource prperties are application and generic factory implementatependent and

it is beyond the scope difis specification to identify standard properties which all
generic factory implementations will recognize. The properties described in this
appendix are given as examples only. Table 6-8 gives some examples of properties that
might be supported by a generic factory.

Table 6-8 Examples of properties supported by a generic factory

Property Name Meaning

Host Host name of the machine

Architecture Machine architectureg.g. “intel”, “sparc”
OSArchitecture Operating system architectueeg. “solaris”, “hpux”

B.2 Constraint Expressions

Constraints are expressed in anGwaint Language which provides a set of operators
which allow arbitrarilycomplex expressions involving properti@sd potetial values

to be specified. A property lissatisfie: a constraint if the constraint expression is true
when evaluated with respect to the propeisy. |

Constraint expressions are very flexible. For example, if a client has an object
executing on a machine called ‘Hostl’ and wishes to create another object wnoth is
on the same machine, the client can specify the constraint “Host != ‘Host1™.

The constraint expression describleere works withproperties for which the value can
be a string, a number, or a set of values.

The constraint language consists of:

comparative functions==, 1=, >, >=, <, <=, 1in
constructorsand, or , not

property names

numeric and string constants

mathematical operator+, -, *, /

grouping operators(,), [,]

The following precedenceelations hold in thabsence of parentheses, in the order of
lowest to highest:

+ and-
* and/
or

and
not

The comparative operatdn checks for the inclusion of a particular string constant in
thelist which is the value of a property.

6-48 CORBAservices November 1996

B.3 BNF for Constraint Expressions

<ConstraintExpr>

<Expr>

<NumOp>
<StrOp>

<SetOp>

<NumExpr>

<NumTerm>

<NumFactor>

<StrExpr>

<StrTerm>

<SetExpr>

<SetTerm>

<Identifier>

Filters Summary of Life Cycle Serv

[<Expr>]
<Expr> "or" <Expr>
<Expr> "and” <Expr>

"not” <Expr>

(" <Expr>)"

<SetExpr> <SetOp> <SetExpr>
<StrExpr> <StrOp> <StrExpr>
<NumExpr> <NumOp> <NumExpr>

<NumExpr> "in” <SetExpr>
<StrExpr> "in” <SetExpr>
“::" | "!:" I "<" I "<:” | ">” ”>:”
“::" I "!:”
n_:n I n'_ ”
<NumTerm>
<NumExpr> "+” <NumTerm>
<NumExpr> "-" <NumTerm>
<NumFactor>
<NumTerm> "*" <NumFactor>
<NumTerm> "/ <NumFactor>
<Identifier>
<Number>
"(" <NumExpr> ")"
"-" <NumFactor>
<StrTerm>
<StrExpr> "+” <StrTerm>
<Identifier>
<String>
"(" <StrExpr>)"
<SetTerm>
<SetExpr> "+ <SetTerm>
<Identifier>
<Set>
"(" <SetExpr>)"
<Word>

November 1996 6-49

6-50

<Number>

<Integer>
<Float>

<Mantissa>

<Sign>

<Exponent>

<Word>

<AlphaNum>

<String>

<Char>

<Set>

<Elements>

<Element>

<lLetter>

<Digit>

<Other>

<Sp>

CORBAservices

<Integer>
<Float>

{ <Digit> 1+

<Mantissa> [<Sign>] [<Exponent>]

<Integer> [" [<Integer> 1]
""" <Integer>

nn

"e"” <lInteger>

"E” <Integer>

<Letter> { <AlphaNum> }
<Letter>

<Digit>

» o

mn { <Chal’> }* mn
<Letter>

<Digit>

<Other>

u{n <E|ementS> n}n

[<Element> { <Sp> + <Element> }*]

<Number>

<Word>

<String>

alblc |d]e |f g |h [|i [] |Kk
F'fmln o |[p g lr [s |t [u]v
wlx |y lz]|A|B|C|DI|E|F]|G
HIl |J |K|L|IM|IN]JO|P|Q]IR
S| T|J]U|JV | W|X]|]Y |Z

O|]1]2 3|4 |5 |6 1]7 18129
<Sp> |~ | J@# [$ %™ [&[* |(
YI- 1 1=1+10 111 1Y 15 I:
S R A A P B [> |/ |7

» oy

November 1996

Appendix C Administration

Note —Appendix C is not part of the Life Cycle Services specification. This
description is included as a suggested way of administering generic factories.

The specification for the life cycle service includes GenericFactor interface.
There will be at least two styles of objeghich supporthat interface:

®* implementation specific factories that actually assemble the resources for a new
object, and

® generic factories which pass requests on to eithptementation specific factories
or other generic factories.

By configuring generic factorieandimplementation specific factories into a graph, a
creation service can be built which administers the allocation of a large number of
resources and can use them to creatéda wariety of objects.

To ensure that the creation service is scalable, it is essential that the principle of
federatior is adopted — each component retains its autonomy rather than becoming
subordinate to another.

Whenever the creation service receives a creation request, the request will need to
traverse the graph until it reaches an implementatiecip factory which can satisfy
the request. As the request traverses thpltgraach nomerminalnode in the graph

(i.e. the generic factories) will decide which link the request will traverse next.
Decisions will be based upon informatiabout each available link, aipolicies in

force at that node and, of course, the actual request.

Clearly, the configuration and policies of such a creation service will need to be
administered. However, the specification does not include the specification of an
administration interface. This is because the principle oérfgtibn is not only

important to the life cycle service. It will be essential to a number of other services,
notably trading, and the OMG plans to address the issue of federatiall object
services, rather than making a premature specification addressing the needsrd just
service.

The renainder of thisappendix describes the principle of federation in nuetail,
outlines the use of policies and preferences to support federation, and then concludes
with a suggestion for how an adrstration interface might look.

C.1 Federation

Federation is essential in large-scale distributed systems where the existence of
centralized ownership and universal control cannot be assumed. In these systems the
only way to achieve cooperation between autonomousrsgswithout creating a
hierarchical structure is to use federation. Federation is also benefisiabieer

systems which can exploit the high degredl@fibility which federation provides.

Administration ~ Summary of Life Cycle Serv. November 1996 6-51

Federation differs from the more conventional approach of adoptatigcty

hierarchical organization in a numberwéys. Firstly, components can provide their
service to any number of others, not just the single component which is its “parent” in
the hierarchy. Secondly, components can estapksi-to-peer relationships,

eliminating the need for a single component at the top of the hierarchy. Fthély,
approach avoids the necessity of maintaining a global namespace. Instead, all names
are relative to the context in whithey are used.

Federation enables previoudystinct systems to be unified wiht requiring global
changes to their naming structures and system management hierafbkies.
administration functions must ensure the systems are configured appropriately,
e.g. avoiding circular references in those graphs wiriakt be kept acyclic.

C.1.1 Federatonin Object Services

In addition to the use of federation in configuring generic factories, federation is also
applicable to a number of other services.

Trading is a notable example. A global offer space is neither practical nor desirable.
Consequently, there will be multiple traders, each representing a different portion of
the offer space. Offers held by one trader can be made available to the clients of
another trader through federation.

The naming service specification also demonstrates attributes of federation. Naming
contexts can be bound to other naming contexts and redaestme resolution can

be passed across the linksowewer, it is entirely theconcern of the naming context
how it resolves the name withits domain, i.e. it is autonomous.

C.1.2 Federaton Issues

There are a number of issues which need to be addressed for federation to be used in a
cohesive fashion acrosdl object services.

Visibility of the Federation Graph

The naming service makes the configuration of naming contexts igtagh very
visible to the clients. This is essentibgcause the naming service must provide clients
with a structured namespace.

On the other hand, it is not clear that a client should ever be able to see the internal
structure of a life cycle creation service built with genand implementation ggific
factories.

The tradingservice falls inbetween the two extremes. It may be useful for a client to
be able to navigate the structure of a trading service graph in order to have more
control over the visility of offers. Hovever,this may make client®o dependent

upon the organization of the tradiegrvice andimit the flexbility of the system
administrator in reorganizing the trading service to provide the most effective service.

6-52 CORBAservices November 1996

Service Interface vs. Adnistration Inteface

In general, it is desirable to federate using the service interface for the links and
reserve the administration interface for the administratdiss dpproach ensures that
autonomy is retained. d¥vever, this precludes the use of compound names in the
administration functions because the administration functengsot traverse the
graph; only simple names can be useddministration only functions.

However,this is inappropriate for servicashere graph manipulation is &ssential

part of the service. For example, the naming service specification dodstirguish
betweenadministration functions for manipulating theagh and service functions.
This is clearly correct; the clienteed to be able to manipulate the grapttimating,
binding and destroying contexts.

Multiple Service Interfaces

A node in a federation graph may be asmracy and offer multiple service interfaces,
perhaps one for each point it is bound into the graphveder, forservices where the
administration is kept distinct from the service, it is likely thatdbespiracy will
support only on@administration interface.

In these situations, it becomes necessary for an administrator to be able to match
service interfaces to conspiracies, i.e. to match one or more service interfaces to an
administrative interface. The example in Section C.3 providesuwion to this which,

in theory, will scale, but there may better vays of doing this.

Cycles and Peer-to-Peer Relationships

Theintroduction of cycles into a federation graph is a contentious issue. Since peer-to-
peerrelationships are a degenerate form of cycle, any service which supports peer-to-
peerrelationships must be capable of handling cycles. The major impact of this is to
provide loop detection on operations which would otherwise go out of control. Both
trading andnaming services are examples of this kind of service.

However,some services may not be able to handle cycles effectively and will wish to
proscibe them. This probably covers peer-to-pektionships, altheghthat might be

an acceptable special case. An example of this might be the life cycle creation service,
where information about the current usage of the available resources must percolate up
the graph in order to make informed decisions, but the introduction of cycles would
make this information unclear @ven meaningless.

C.2 Policies

It is frequently necessary to configure the way in which operations are performed in
order to tune the performance, e.g how long a search operation may take, how many
matches can be returned, or how much memory to use for a cache.

Administration ~ Summary of Life Cycle Serv. November 1996 6-53

6-54

The sameproblems exist in distrited systems except that such courfagion

parameters must be explicitly passed around. Where diffataninistrative domains

are connected, such configuratioargmeters carot be enforced by one domain on the
other. Similarly,users may want to control the configuration but must be prevented
from hogging resources, e.g memory, disk space, etc. Some configuration elements
must beenforced, e.g disk quotas, some elements may specify defaults which can be
changed and some elements may be requests which may or may not clash with hard
limits e.g max memory per process.

Policies are used as a generic solution to this problem — wherever some kind of choice
needs to be made, policies may be used to guide the decision making process.

Table 6-9 provides some examples of policies. which a federated service might
support.

Table 6-9 Example policies

Policy Name Meaning

search_algorithm determines whether the federation graph should be
traversed in a depth first or breadth first fashion.

cross_ boundaries determines whether administrative boundaries should be
crossed.

maximum_distance how far to traverse a graph before failing a request.

When invoking @eratians, clients can specify preferences farticular policies.
Providing the service has no value set for that policy, the preference will be simply
added to the policyidt for the duration of the requestowever, if a service policy is
already specified then the preference will either be ignored opdiaries such as
“maximum_distane”, the more constraining value will be adopted.

As a request traverses a graph, each node will pass its current policy set as preferences.
In this way, the autonomy of glividual administrative domains is preserved.

When an object doesritnplement all choices of a policy, it should not allow its policy
to be modified to an unsupported value. This meansiEementationimitations
are handled as Admstrative hardiimits which provides the correct semantics.

Where no policy is specified by either administrator or clientjrtidementation
determines its owbehavior. However, thisetision would not b@ropagated through
the graph (as a preference), leaving it to each node in the graph to make its own
decision.

CORBAservices November 1996

C.3 An Example LifeCycleService Module

Administrators access the administration functions vieLifeCycleServic module,

which defines thiLifeCycleServiceAdm interface. This example is intended to work
with the GenericFactory interface in the specification. As a result, the administration

functions cannot make use of compound names.

h

#include “LifeCycle.idl”

module LifeCycleService {

typedef sequence <Lifecycle::NameValuePair> PolicyList;
typedef sequence <Lifecycle::Key> Keys;
typedef sequence <Lifecycle::NameValuePair> PropertyList;

typedef sequence <Naming::NameComponent> NameComponents;

interface LifeCycleServiceAdmin {

attribute PolicyList policies;

void bind_generic_factory(
in Lifecycle::GenericFactory df,
in Naming::NameComponent name,
in Keys key_set,
in PropertyList other_properties)
raises (Naming::AlreadBound, Naming::InvalidName);

void unbind_generic_factory(
in Naming::NameComponent name)
raises (Naming::NotFound, Naming::InvalidName);

Lifecycle::GenericFactory resolve_generic_factory(
in Naming::NameComponent name)
raises (Naming::NotFound, Naming::InvalidName);

NameComponents list_generic_factories();
boolean match_service (in Lifecycle::GenericFactory f);
string get_hint();
void get_link_properties(
in Naming::NameComponent name,
out Keys key_set,

out PropertyList other_properties)
raises (Naming::NotFound, Naming::InvalidName);

Figure 6-20 The LifeCycleService Module

Administration ~ Summary of Life Cycle Serv. November 1996

6-55

6-56

C.3.1 The LifeCycleServidgdmin Interface

The LifeCycleServiceAdm interface provides the basic administration operations
required to enable the lifecycle service to be administered by a set of tools or an
administration servicelThe operations enable configuration of factories supporting the
GenericFactor interface into a graph and settingpaflicies for those factories.

bind_generic_factory

void bind_generic_factory(
in Lifecycle::GenericFactory df,
in Naming::NameComponent name,
in Keys key_set,
in PropertyList other_properties)
raises (Naming::AlreadBound, Naming::InvalidName);

This operation binds tactory supporting theGenericFactor interface into a graph.
The name must be unique within the context of the target of the operation. From then
on, that factory can bigentified by that name.

In order to make a good decision about which link to choose for a request, the node
needs to be provided with additioriaformation about those factories. This

information may be fairly dynamic, e.g. the current usage of the resources available
through the link, or more static, e.g. tkeys for which the link can provide support.

The key _set parameter is &ist of the keys for which the factory can provide
support. In the case of an implementation specific factory, this list will often only have
one member.

The other_properties parameter can be used to provide other statipgyties
associated with the factory. For example, an “Architectures” property would indicate
the type(s) of machine which the factory could create objects on.

Changes to the static information aslihas more dynamic informatiocen be
monitored through the Events serviceach factory would generate events whenever
the informationchangedsignificantly (e.g. a nevGenericFactor interface with new
keys is bound to the factory, or there is a change in the usage of resourtzddat@i
the factory) and these can then be passed to those factories which need to know.

unbind_generic_factory

void unbind_generic_factory(
in Naming::NameComponent name)
raises (Naming::NotFound, Naming::InvalidName);

This operation unbinds the generic factagntified by the name.

CORBAservices November 1996

resolve_generic_factory

Lifecycle::GenericFactory resolve_generic_factory(
in Naming::NameComponent name)
raises (Naming::NotFound, Naming::InvalidName);

This operation tkes the name supplied and returns the reference GenericFactor

object.

list_generic_factories

NameComponents list_generic_factories();

This operation returns lest of the names of all the bound factories.

match_service

boolean match_service (in Lifecycle::GenericFactory f);

This operation returntrue if the generic factory interface is supported by the target.

get_hint

string get_hint();

This operation returns a hint associated with the targeBuilding a Map of a Gragh

below.

get_link_properties

void get_link_properties(
in Naming::NameComponent name,
out Keys key_set,
out PropertyList other_properties)
raises (Naming::NotFound, Naming::InvalidName);

This operation returns ttkey set andother_properties
name.

Administration ~ Summary of Life Cycle Serv. November 1996

associated with the

6-57

6-58

Building a Map of a Graph

Administration tools may wish to build a map of a federagjoaph fromscratchand
some of the operations above are provided for that purpose.

First of all, the tool must obtain the set of administration interfaces for all the factories
to be administered. These might be obtairredhfa number of sources, e.g. a well-
knowntrading context.

For each interface, ttlist_generic_factories operation obtains a list of all
the links for each node. Usirresolve_generic_factory , & service interface
can be obtained for each link. These can then be matched to amstichtion interface
usingmatch_service

Clearly, this does not scale well if there are mangles involved because of the
average number of ineations ofmatch_service required. This problem can be
solved if one of thother_properties associated with each service interface is a
hint and a hint is available for eaelministration interface. If the hints are the same,
there may be a match amatch_service is called to check. If the hints could be
guaranteed to be unambiguous, the invocation could be avoided altogether, but this
requires a global namespace for the hiiitee best that can reasonably be achieved is
to reduce the chance of a clash tmiaimum.

Theget_hint andget_link_properties can be used for this purpose.

CORBAservices November 1996

Appendix D

Support for PCTE ObjeCs

Note —Appendix D is not part of the Life Cycle Services specification. This appendix
defines a set of critet® suitable for supporting PCTE objects.

It is intended that objects in a PCTE repository be among those objects that can be
managed thoughhis lifecycle interface. It is reasonable to expect that applications
written for PCTE will use the PCTE APIs to manage the life-cycle of PCTE objects. It
is also reasonable to expect that clients not specifically writterefationship-

oriented objects will not be able to manipulate the life-cycles of PCTE objects.
However, betweethese two, one can envision clients which desire to be flexible,
working on objects which may or may not be stored in the PCTE repository. One can
also envision object factories, constructed to make use of PCTE which provide
services to clients that are not PCTE applications because they do not have the
appropriate working schemas, etc.

Supportfor these clients employs a seriescofiventional interpretations of the
lifecycle operations. This appendix provides one ssethof conventions to
demonstrate the feidity of the use of tiese interfaces in a context supporting PCTE.

Object references appear innstraint expressions in the form of character strings. Any
implementation of PCTE as a CORBA Object Adapter has to estabiislateonship
between these and the corresponding CORBA types, and be able to convert between
them.

D.1 Overview

A PCTE repositorycan be viewed as a generic factory. Using whateasning or

trading services are appropriate, a client wishing to use the PCTE factory obtains an
object reference to it. To support the simple applications intending to operate within
the context of a single PCTE repository, the PCTE factory supports the operations
defined by both thGenericFactor andFactoryFinde interfaces. The client can then
invoke the PCTE factory’create_object operation, or pass the factory as the
“factory finder” when invoking the move or copyperations to move aropy within

the same PCTE repository. These clients include the seémplsmenting themove
andcopy operations for various PCTE objects as well.

5.PCTE details used here are from the PCTE Abs8petification, StandafilCMA-149available from
the European Computer Manufacturers Association.

6.As defined in section 6.2.4 of the life cycle specification.

Supportfor PCTE Objects Summary of Life Cycle Serv November 1996 6-59

6-60

Lifecycle creation, copy, and move operations are influenced by a sequerderd.
Criteria are specified as a sequence of namefvalue pairs. Geitaiia are of interest
to the PCTE factories:

“logical location”

Thelogical location is used to express the logicahnectionnformation that must be
specified vhen creating or copying a PCTE object. Logical location is a sequence of
name/value pairs expressing a connection for the object. The PCTE factory supports
and requires two:

ORIGIN A string representation of the reference to the object to which the
newly created object is to be connected.

ORIGINLINK The name othe origin object’s link which is to hold the link
from the origin object to the newly created object.

“filter”

The fiter isused to express the fact that an object being created, copied, or moved
should reside on the same volume as some other, nearby, obfétar & an

expression as describedB.3. For PCTE, théerm “NEAR=" followed by anobject
reference to the designated nearby object indicates that the new object is to be located
at least as near as the same volume to the specified object. “authorizationighltho
omitted from table 1-4 because no proposal on authorization has yet been accepted by
OMG, this lifecycle criterion isequired to create PCTE objects.

D.2 Object Creation

The LifeCycle::GenericFactory::create_object operation in this
specification is borne by factory objects. It has two parameters:

1. a key used tadentify the desired object to be created and
2. a set of criteria expressed in an NVP-list.

The corresponding PCTE operatiorcaled OBJECT_CREATEThe parameters to
OBJECT_CREATE are obtained from the
LifeCycle::GenericFactory::create_object parameters.

The PCTEoperation OBJECT_CREATE has six paraengt

1. the type of object to be created This is the “key” froifleCycle
create_object

2. the origin object of the relation anchoring the new object This is the object
identified as the named “ORIGIN” of the logical location criterion.

3. the name of the link from that origin object to the new object This is the string
identified as the named “ORIGINLINK” of the logical location criterion.

4. an optional key for that link This is the string idiéietl as the nametLINKKEY”
of theinitialization criteria.

CORBAservices November 1996

6

5. an object near whose location the object is to be created Thiss#rithgevalue of
a required filter expression value by the qualifier “NEA

6. an access mask This is thing identified ashe named “ACCESS” of the
authorization criteria Ris string is a simple mapping of the grangel denied
access rights.

Exceptionsraised by PCTE armapped tosuitableLifeCycle exceptions.

D.3 Object Deletion

The LifeCycle::LifeCycleObject::remove operation in this specification is
borne byall life-cycle objects. Ihas no parameters.

The corresponding PCTE operatiorceled OBJECT DELETE. The parameters to
OBJECT_DELETE are obtained from the object to be deleted using infornaduoari
that object defined in PCTE’s schema information about the object.

The PCTEoperation OBJECT_DELETE has two parameters:
1. the origin object of a relation anchoring the object to be deleted and
2. the name of the link from that origin object to the object to be deleted.

To both ensure that the controlling object is actually delatedmaintain the PCTE
referential integrity constraints the following steps are performeddoh reversible
link emanating from the controlling object:

1. Determine the object, o, that the link refers to.
2. Determine the nameg&prime., of the reverse link backom o.
3. Perform PCTE OBJECT_DELH:=(o, r&prime.)

The objective is accomplished when all outgoing, reversible links have been dealt with
thus, or before that if one of the OBJECT_DELEGddlls fails kecause the object has
already been deleted.

Exceptionsraised by PCTE armapped tosuitableLifeCycle exceptions.

D.4 Object Copying

The LifeCycle::LifeCycleObject::copy operation in this specification is
borne byall life-cycle objects. Ihas two parameters:

1. a factory-finder to assist in locating a factory that provides resources for the copied
object

2. a set of criteria expressed in an NVP-list

Supportfor PCTE Objects Summary of Life Cycle Serv November 1996 6-61

6-62

The corresponding PCTEperation is called OBJECT_COPY. Some of the parameters
to OBJECT_COPYcan be obtainedirectly from theLifeCycle copy parameters.

Other requirednformation is obtained from the constraint expression parameter of the
LifeCycle copy.

The PCTEoperation OBJECT_COPY has six parameters:
1. the object to be copied This is the bearer object of LifeCycle copy operation.

2. the origin object of the relation anchoring the new object This is the object
identified as the named “ORIGIN” of the logical location criterion.

3. the name of the link from that origin object to the new object This is the string
identified as the named “ORIGINLINK” of the logical location criterion.

4. an optional key for that link This is the string idiéietl as the nametLINKKEY”
of theinitialization criteria.

5. an object near whose location the object is to be created This stritngevalue of
a required filter expression value by the qualifier “NEA

6. an access mask This is thing identified ashe named “ACCESS” of the
authorization criteria fis string is a simple mapping of the granéed denied
access rights.

The semaits of the copy operation corresponds to the PCEHETCT_COPY
semantics. They are based upon details of the object types involved, incitdaig
attributes, links and destination objects are “duplicable”.

Exceptionsraised by PCTE armapped tosuitable CORBA standard exceptions.

D.5 Object Moving

The LifeCycle::LifeCycleObject::move operation in this specification is
borne byall life-cycle objects. Ihas two parameters:

1. a factory-finder to assist in locating a factory that provide resources for the moved
object

2. a set of criteria expressed in an NVP-list

The corresponding PCTE operatiorcaled OBJEQ_MOVE. Theparameters to
OBJECT_MOVE can be obtainatirectly from the LifeCycle copy parameters or from
defaults.

The PCTEoperation OBJECTMOVE has three paraaters:
1. the object to be copied This is the bearer object of LifeCycle move operation.

2. an object near whose location the object is to be created Thissgrithgvalue of
a required filter expression value by the qualifier “NEA

3. scope - whether to move the object itself or the objectadints components

This will be defaulted to ADMIC.

CORBAservices November 1996

Concurrency Control Service 4

7.1 Service Description

The purpose of the Concurrency Control Service im¢gliate concurrent access to an
object such that the consistency of the object is not compromised when accessed by
concurrently executing computations.

The Concurrency Control Service consists of multiple interfaces that support both
transactional and non-transactional modes of operation. The user odrilear@ncy
Control Service can choose to acquocks in one of two ways:
» On behalf of transaction (transactional modeThe Transaction Serviadrives
the release of locks as the transaction camor aborts.

» By acquiring locks on behalf of the current thread (that must be executing outside
the scope of a transaction). In this non-transactional mode, the responsibility for
dropping locks at the appropriate time lieghathe user of the Concurrency
Control Service.

The Concurrency Control Service ensures that transactowihon-transactional

clients are serialized. Hence a non-transactional client that attempts to acquire a lock
(in a conflicting mode) on an object that isked by a transactionalient will block

until the transactional client drops the lock.

7.1.1 Basic Concepts of ConcurrenGontrol

Clients and Resources

The Concurrency Control Service enahiesltiple clients to coordinate their access to
sharedresource. Coordinating access to a resource means thahmultiple,
concurrent clients access a single resousiog, conflicting actions by the clients are
reconciled so that the resource remains in a consistent state.

The Concurrency ContriService does not define what a resource is. It is up to the clients

CORBAservices March 1995 7-1

7-2

of the Concurrency ContrService to define resources and to properly identify poten-
tially conflicting uses of those resources. In a typical use, an object would be a resource,
and the objectiplementation wouldise the concurrency control service to coordinate
concurrent access to the object by multiplerds.

Transactions as Clients

The Concurrency Control Service diffatiates beveen two types of @nt: a transac-
tional clientand a non-transactional client. Conflicting access ieyntd of differentytpes
is managed by the Concurrency Control Service, thereby ensuringeimds elwaysee
the resource in a consistent state.

The Concurrency Control Service does not define what a transaction is. Transactions are
defined by the Transaction Service. The Concurrency Control Service is designed to be
used with the Transaction Service to coordinate the activities of concurrent transactions.

The TranactionService supports two modes of operation: implicit and explicit. When
operating in the implicit mode, a transaction is implicitly associated with the current

thread of control. When eeting in the explicimode, a transaction is specified explicitly

by the reference to the coordinator that manages the curremtctiamsTo simplify the

model of locking supported by the Concurrency Control Service when a transactional cli-
entis operating in the implicit transaction mode, transactional clients are limited to a sin-
gle thread per transaction (nested transactions can be used when parallelism is necessary)
and that thread can be executing on behalf of at most onadriansat a time.

Locks

The Concurrency Control service cdiorates concurrent use of a resource usiogd. A

lock represents the ability of a specific client to access a specific resource in a particular
way. Each lock is associated with a single resource and a single client.natordis
achieved by preventing multiple@hts from simultaneously possessing locks for the
same resource if the activitiestbbse clients might conflict. To achieve cooatbn, a

client must obtain amppropriate lock before accessing a shared resource.

Lock Modes

The Concurrency Control Service definegesallock mode, which correspond to differ-
ent categories of access. Having defy of lock modes allows moréekible conflict res-
olution. For example, providing dérent modes for readirend writing allows a resource
to support multiple concurrent clients that are only reading the data of theceeshug
Concurrency Control Service also defilintention lock that support locking at multiple
levels of granularity.

Lock Granularity

The Concurrency Control Service does not define the gratyubf the resurces that are
locked. It defines lock se, which is a collection oblcks asstiated with a single
resource. Itis up to clients of th@fcurrency Control Service to associate a lock set with

CORBAservices March 1995

7

each resource. Typically, if an object is a resource, the object wouldbihterreateand
retain alock set. However, theapping between objects and resources (and lock sets) is
up to the object implementation; theypping could be one to one, but it could also be one
to many, many to many, or many to one.

Conflict Resolution

A client obtains a lock on a resource using the Concurrency Conixit&elhe service

will grant a lock to a client only if no otheri@htholds a lock on the resource that would
conflict with the intended access to the resource. The decision to grant a lock depends
upon the modes of the locks held or requested. For example, a read lock conflicts with a
write lock. If awrite lock is held on a resource by one client, a aekdwill not be

granted to another client.

Conflict Resolution for Transactions

The decision to grant a lock also depends upon thgomedhips among the traastions
that hold or request a lock. In particular, if the tratieas are related byesting (nested
transactions), a lock may be granted that would otherwise be denied.

Lock Duration

Typically, a tranaction will retain all of itdocks until the traresction is completed (either
committed or aborted). This policy supports seradility of transactional operations.
Using the two phase commit protocol, locks held by a &etimare aubmatically
dropped when thednsaction completes.

There are alsotsiatons where levels of isolation that are weaker than serializability are
acceptabl, such awhen an application does not want other aygpibns to change an
object while reading it and does not refer to the object again within thadtansIn

these circumstances, it is acceptable to release locks before the containing transaction
complees, hence the duration will be shorter than theaioinig transaction.

To manage the release of the locks held by a transaction, the Concurrency Control service
defines a lock coordinator. Lock sets that are related (fangbea bybeing created by a
resource manager for resources of the same typeéhangiould drop their locks together

when a transaction commits or aborts may share a locKioator. Itis up to clients of

the concurrency control service to associate lock sets together and to release the locks
when a transaction commits or aborts.

7.2 Locking Model

This section covers a number of imgaot issues that relate tloe locking model sup-
ported by the Concurrency Control Service. For a complete discussion of these issues the
reader is directed to one of the standard texts on the <. bject

The Lock Modesection applies to clients thaperate in both traastonal and non-trans-
action modes. The Miiple Possession Semargj Two-Phase Transactional Locking, and
Nested Transaction sections are relevant only to clients that operate in transactional mode.

Concurrency Controlv1.0 Locking Mode March 1995 7-3

7.2.1 Lock Modes

Read, Write, antlpgrade Locks

The Concurrency Control séce definesreac (R) andwrite (W) lock modes that support
the conventional multiple readers, one writer policy. Read locks conflict with write locks,
and write locks conflict with other write locks.

In addition, the Concurrency Control service defineupgradt (U) mode. An upgrade

mode lock is a read lock that conflicts with itself. It is useful for avoidiognamon form

of deadlockhat occurs when two or more clients attempt to eeatithen update ttsame
resource. If more than one client holds a read lock on the resource, a deadlock will occur
as soon as one of the clients requests a write lock on the resource. If each client requests a
single upgrade lock falved by a write lockhis deadlock will not occur.

Intention Read and Intention Write Locks

The granularity of the resources locked by an apfibn deternmes the concurrency

within the apgtaion. Coarse granularity locks incur low overhead (since there are fewer
locks to manage) but reduce concurrency since conflicts are more likely to occur. Fine
granularity locksmprove concurrency but rel in a higherdcking overhead since more
locks are requested. 8eting asuitable lock granularity is a balance between the lock
overhead and the degree of concurrency required. Using the Concurrency @ovite) s

an application can be developed to use coarse or fine granularity locks by defining the
associated resources appropriately.

In addition, the Concurrency Control service supports variable gndiydbcking using
two additional lock modeintentionreac (IR) andintention write (IW). These additional
lock modes are used to exploit the natural hierarchatafionshipbetween locks of dif-
ferent granularity.

For example, consider the hierarchiaghtionship inherent in a databaseladabase con-
sists of a collection of files, with each file holding multiple records. To access a record, a
coarse grain lock may be set on the database, but at the cost of restricting other clients
from accessing the databasee&ly, this level of locking is unsuitable olever, only

setting a lock on the record is also inappropriate, because another client might set a lock
on the file holding the record and delete or modify the file.

Using \ariable granularitydcking, a client first obtains intention locks on the arooés}

of the required resource. To read a record in the database, figplexthe client obtains
an intention read lock (IR) on the database and the file (in this order) befanaraithe
read lock (R) on the record. Intention read locks (IR) conflict with write locks (W), and
intention write locks (IW) conflict with read (R) and write (W) locks.

1.SeeConcurrency Control and Recovery in Database Sy<by P.A. Bernstein, V. Hadzilacos, and N.
Goodman, oTransaction Processing: Concepts anafigique: by J.N. Gray and AReuter.

CORBAservices March 1995

Lock Mode Compatibility

Table 1, “Lock Corpatibility,” on page defines the compatibility beeen the various

Table 1: Lock Compatibility

Granted Requested Mode
Mode R | R 0 liw | w

Intention *
Read (IR)
Read (R) * *
Upgrade * * *
V)
Intention * * *
Write
(W)
Write (W) | * * * * *

locking modes (the symbol * is used to indicate when locks conflict). When a client
requests a lock on a resource that cannot be granted because aruthieolds a lock on

the resource in a conflicting mode, the clisntst wait until theholding clent releases its
lock. The Conarrency Control Service enforces a queueing policy such thatealisc|
waiting for a new lock are serviced in a first in, first out order, and subsequerstsajge
blocked by the first request waiting to be granted the lock, unless the requestihgs @
transaction that is a member of the same transaction family as an existing holder of the
lock.

7.2.2 Multiple Possession Semantics

The Concurrency Control Service interface supports a locking model multiple pos-
session semantics. In this model, a cleant hold mulple locks onthe same resource
simultaneously. The locks can be of different modes. In addition, a client can hold multi-
ple locks of the same mode on the same resouffeetigély, acount is kept of the num-

ber of locks of a given mode that have been granted toiéme. g/hen a dent holds

locks on a resource in more than one mode, otretslwill not be granted a lock on the
resource unless the requested lock mode is canpatith all of themodes of the exist-

ing locks.

In contrast, using the conventional locking mc2 when a dent holding dock on a

resource requests a lock on the same resource in a stronger mode, the existing lock is pro-
moted from thaveaker mode to the stronger mode (once the stronger lock can be granted
without causing a conflict). Since lock modes form only a partial order, there will not

Concurrency Controlv1.0 Locking Mode March 1995 7-5

always be a stronger mode; in cases where neither mode is stronger, the lock will be pro-
moted to the weakest mode that is at least as strong as either of the two modes.

7.3 Two-Phase Transactional Locking

The Concurrency Control Service provides primitives to sugtransactin-duration

locking. Transaction duration locking is a special case of strict two-phase locking. In the
first phase (the growing phase), a transaction obtains locks that are kept until the second
phase (the shrinking phase), at which point they are released. A transaction must not
release locks during the first phase, and must not obtain new locks during the second
phase, otherwise concurrent computations may be able to vieméutate results of the
transaction.

Two-phase locking is suffient to guarantee serializability, hence this technique is used
by transactins. Duing the normal execution of a transaction, no locks will be automati-
cally dropped before the end of the traet®n. When the transaction completes, the Con-
currency Control Service must be informed so that the locks that¢tamholds may be
released. While releasing locks, no new locks may bermutdiy the trarssction.

When a transaction holds a lock that is no longer needed to ensure the transacidn’s se
izability, or if aweaker level ofsolation is accepble, it is permissible to release the lock.
The Concurrency Control Service ta&re provides an operation that releases individual
locks. This operation should be used with caution to ensure that the isolation level is
appropriate for the apphtion.

7.4 Nested Transactions

Lock conflicts within a trarection family are treatesomewhat differently than conflicts
between unrelated transiacts. Theunderlying principle is the same for both: transactions
must not be able to observe the effects of otherdcdines that might later abort. Unre-

lated transaabins can abort independently; therefore, one transaction must not be permit-
ted to acquire a lock that conflicts with a lock on the same resource held by an unrelated
transaction.

Nesting imposes abort dependencies among related transactions. A parent transaction can-
not abort without causing all of its children to abort. A child transaction that ends success-
fully cannot abort without causing its parent to abort. A transaction that cannot abort
without causing anotheelated transaction @bort (according to these deiines and

logical deductions) is said to be committed relative to that otheatrtois.

These dependencies make it possible to relax the rule that two transactions cannot acquire
locks of conflicting modes on the same resource, without breaking the underlyicig pr
ple. No partial effectsan be observed andromitted if all tansactions that have done

2.SeeNotes On Data Base @pating Systerrin Operating Systems: Ahdvanced Cour¢(ed. Bayer,
Graham, and Seegmuller) by J.N. Gray for further information.

CORBAservices March 1995

7

work cannot abort without the observer being aborted. This property tesnisieo a sim-
ple rule for nested locking: if all transactions holding locks on a resource are committed
with respect to a transaction trying to acquire a lock on the resourcenfiotexists.

The muliple possession model (see poas section) facilitates the use of locks with

nested transactions. In this model, multiple related tréiosaanay hold locks of conflict-

ing modes on a resource at the same time. When a nested transaction requests a lock, it is
granted if all of the transactions holding locks on the resource are commiétbaerto

the requestor. Both the requestor and previous holders are thetecet$o hold locks on

the resource.

A child transaction can acquire a lock on a resource locked by its parent and thigratirop
lock without causing its parent to lose its lock. A transaction cannot drop a lock that it did
not acquire itself. The lock possession aatits also require thatich transaction acquire
locks on its own behalf. It is improper to take locks on behalf of another transaction or to
depend on locks held by other transactions.

Other approaches to nested tert®ns treat a resource as beimgked by a single trans-
action at a time. When a nested transaction requests a lock on a resource tlaalyis alre
locked by an ancestor tratdon, the nested transaction becomes the new owner of the
lock. When a nested transaction commits, awhip of all of its locks is transferred to its
parent. When a nested transaction aborts, ownership of its locks reverts to the previous
owners. The Concurrency Control service performs these lock transtemsadictly.

The muliple possession semantics model is functionally equivalent to this model, but it
supports simpler interfaces

7.5 CosConcurrencyControl Module

The Concurrency Control Service is defined by CosConcurrencyControl module,
which provides intdaces that support both tragsonal and non-transactional modes of
operation. This section defines timéeirfaces and describes the operations they support.
» The interfaces provide two modes of operation that correspond to those supported
by the Transaction Service; in both modeskiare identified by the lock set
they are associated with and the mode of the lock.
e A client of the Concurrency Control Service may operate immgaticit mode
such that locks are acquired on behalf of the current transaction (for transactional
clients) or current thread (for non-transactional clients).
» For transactional clients, a sea alternative is possible that involves the client
identifying the transaction by means of a reference to the transaction’s
coordinator object (the explicihode of operation).

Locks are acquired on lock sets. Two sets of operations are providedLockSetFac-
tory interface to create lock sets, one creates a lock set that can be used by clients operat-

3.SeeNested Transactions: An Approach To Reliable Distrib@erhputing by J.E.B. Moss for further
information.

Concurrency Controlv1.0 CosConcurrencyControl ModL March 1995 7-7

ing in the implicit mode (thLockSe interface), the other creates a lock set for explicit
mode transactional clients (tTransactionalLockS interface). In addition, thLockCo-
ordinatot interface is provided to allow a client to release all locks held by a specific
transaction.

The followingsections define the types and exceptions common toyqudh ofinterface,
the interfaces themselves, andclibes theesponmilities of auser for managing trans-
action-duration locks.

OMG IDL for the CosConcurrencyControl ndolle shown onthe following page.

#include <CosTransactions.idl>
module CosConcurrencyControl {

enum lock_mode {
read,
write,
upgrade,
intention_read,
intention_write

k
exception LockNotHeld{};
interface LockCoordinator

void drop_locks();
h

interface LockSet

{
void lock(in lock_mode mode);
boolean try_lock(in lock_mode mode);

void unlock(in lock_mode mode)
raises(LockNotHeld);
void change_mode(in lock_mode held_mode,
in lock_mode new_mode)
raises(LockNotHeld);
LockCoordinator get_coordinator(
in CosTransactions::Coordinator which);

h

interface TransactionalLockSet
{
void lock(in CosTransactions::Coordinator current,
in lock_mode mode);
boolean try_lock(in CosTransactions::Coordinator current,
in lock_mode mode);
void unlock(in CosTransactions::Coordinator current,
in lock_mode mode)
raises(LockNotHeld);
void change_mode(in CosTransactions::Coordinator current,
in lock_mode held_mode,

CORBAservices March 1995

in lock_mode new_maode)
raises(LockNotHeld);
LockCoordinator get_coordinator(
in CosTransactions::Coordinator which);

h

interface LockSetFactory

{

LockSet create();

LockSet create_related(in LockSet which);

TransactionalLockSet create_transactional();

TransactionalLockSet create_transactional_related(in
TransactionalLockSet which);

7.5.1 Types and Exceptions

The types and excepns deschied in thissection apply to both thLockse and
TransctionalLockse interfaces

TABLE 2.

module CosConcurrencyControl {
enum lock_mode {
read,
write,
upgrade,
intention_read,

intention_write

exception LockNotHeld{};

lock_mode
Thelock_mode type represents the types of lock that can be acquired on a resource.

LockNotHeld

TheLockNotHeld exception is raised when an operation to unlock or change the mode
of a lock is called and the specified lock is not .aeld

7.5.2 LockCoordinator Interface

TheLockCoordinato interface enables a transaction service to drop all locks held by a
transactn. TheLockSe andTransctionalLockSe interfaces create instances of the

Concurrency Controlv1.0 CosConcurrencyControl ModL March 1995 7-9

LockCoordinato for each trarection. TheLockCoordinato interface provides a single
operation:

TABLE 3.

interface LockCoordinator {
void drop_locks();

h

drop_locks

Releases all locks held by the tracton. This call is designed to be used by transactional
clientswhen a transaction commits or aborts. For nested transactions, this operation must
be called when the nested transaction aborts, but the call need only be made once for a
transaction family when that family commits (recall that nested transaction commits are
handled implicitly by the Concurrency Control service).

7.5.3 LockSet Interfac 2

For clients operating in the implicit mode, locks are acquémedi released on lock sets
which are defined by means of tLockSe interface.The LockSe interface only
provides operations tacquire and release locks on behalf of the calling thread or
transaction. The interface doest provide support for transactional clients that use the
explicit Transaction Service intedes.

TABLE 4.

interface LockSet {
void lock(in lock_mode mode);

boolean try_lock(in lock_mode mode);

void unlock(in lock_mode mode)
raises(LockNotHeld);

void change_mode(in lock_mode held_mode,
in lock_mode new_mode)
raises(LockNotHeld);

LockCoordinator get_coordinator(in
CosTransactions::Coordinator which);

h

When calls to acquire or release locks are made outside the scope aictivamen it is
assumed that the client is operating innon-transaction: mode (the concurrency con-
trol implementation must use thppropriate TrargtionService operation to determine

7-10 CORBAservices March 1995

whether the current thread is executing on behalf of aaicins).

lock

Acquires a lock on the specified lock set in the specified mode. If a lock is held on the
same lock setin an incompatible mode by another client then the operation will block the
calling thread of control until the lock is acquired. If a call that is on behalf of a transac-
tional client is blocked and the trawsion is abortechen the call will ratrn with the
Transactions:: TransactionRolledBack exception.

try_lock

Attempts to acquire a lock on the specified lock set. If the lock adireeld in an incom-
patible mode by another client then the operation returns a FAS## to indicate that
the lock could not be acquired.

unlock

Drops a single lock on the specified lock set in theiéipd mode (recall that a lock can
be held multiple times in the same mode). Calls to drop a lock that is not held result in the
LockNotHeld exceptiorbeing raised

change_mode

Changes the mode otmgle lock (recall that multipletks may be held on the same lock
set). If thenew mode conflicts with an existing mode held by an unrelaientcthenthe
change_mode operation blocks the calling thread of control until the newdercan be
granted. Like thdock call, if the client is a transaction and it aborts while theatirof
control if blocked then thTransactions: :TransactionRolledBack exception

will be raised. Similarly, when a call is made to change the mode of a lock, but the lock is
not held in the specified mode, tLockNotHeld exception will be raised.

get_coordinator
Returns the lock coordinator associated with the specified transaction.

7.5.4 TransactionalLockSet Interfa :e

The TransctionalLockSe¢ interface provides operations to acquire and release locks on a
lock set on behalf of a spiéic transaction. The operations that make ugTransction-

Concurrency Controlv1.0 CosConcurrencyControl ModL March 1995 7-11

alLockSe interface are:

TABLE 5.

interface TransactionalLockSet {
void lock(in CosTransactions::Coordinator which,
in lock_mode mode);

booleantry_lock(in CosTransactions::Coordinatorwhich,
in lock_mode mode);

void unlock(in CosTransactions::Coordinator which,
in lock_mode mode)
raises(LockNotHeld);

void change_mode(in CosTransactions::Coordinator which,
in lock_mode held_mode,
in lock_mode new_mode)
raises(LockNotHeld);

LockCoordinator get_coordinator(in
CosTransactions::Coordinator which);

h

The operations provided by tTransactionalLockS interface operate in an identical
manner to the equivalent operations provided byLockSe interface. The interfaces dif-
fer in that for theTransactionalLockS interface the id&ity of the tansaction is passed
explicitly as a refeance to the coordinator for the transactitstead of implicitly through
an association with the calling thread.

7-12 CORBAservices March 1995

7.5.5 LockSetFactory Interface
Lock sets are created using LockSetFactol interfece.

TABLE 6.

interface LockSetFactory {
LockSet create();
LockSet create_related(in LockSet which);

TransactionalLockSet create_transactional();
TransactionalLockSet
create_transactional_related(in
TransactionalLockSet which);

h

This interface provides two sets of operations tharmenewLockSe andTransactional-
LockSe instances.

create
Creates a new lock set and lock coordinator.

create_related

Creates a new lock set thatédated to an existingptk set. Related lock sets drop their
locks together.

create_transactional

Creates a new transactional lock set and lock coordinator for explicit mode transactional
clients.

create_transactional_related

Creates a new transactional lock set that is relatedewistng lock setRelated lock sets
drop their locks together.

Concurrency Controlv1.0 CosConcurrencyControl ModL March 1995 7-13

7-14 CORBAservices March 1995

Externalization Service Specification 8

8.1 Service Description

The Externalization Service specification defines protoanlt conventions for
externalizing and internalizing objects. To externalize an object is to record the
object’s state in a stream of data. Objects which support the appropriate interfaces and
whoseimplementations adhere to the progenventions can be externalized to a

stream (in memory, on a disk file, across tre¢work, etc.) and subsequently be
internalized into anew object in the same or a different process. The externalized

form of the object can exist for arbitrary amounts of time, be transported by means
outside of the ORB, and can beernalized in a different, disconnected ORB.

Many different externalized data formeaaad storage mediums can be supported by
service implementatits. But, for portability, clients can request that externalized data
be stored in a file using a standardized format that is defined as part of this
Externalization Service specification.

Externalizing and internalizing an object is Banto cquying the object. The copy
operation creates a new object that is initialized from an existing object. The new
object is then available to provide service. Furthermore, with the copy operation, there
is an assumption that it is possible to communicate via the ORB between the “here”
and “there”. Externalization, on the other hand, does not create an object that is
initialized from an existing object. Externalization “stops along tAg’w New

objects are not created until the stream is internalized. Furthermore, there is no
assumption that is possible to communicate via the O&®Reen “here” and “there.”

The Externalization Service is related to theld®ionship Service. It also parallels the
Life Cycle Service in defining externalization protocols for simple objects, for
arbitrarily related objectsand for graphs of related objects that support compound
operations. (For more information, refer to the Service Dependencies section in
Chapter 2.)

The Externalization Service defines protocols in these areas:

CORBAservices August 1997 8-1

» Client’'s view of externalization, composed of the interfaces used by a client to
externalize and internalize objects. The client’s viewxtémalization is defined
by theStrean interface.

» Object's view of externalization, composed of the interfaces used by an
externalizable object to record and retrieve their olgeaie toand fom the
stream’s external fornThe objet’s view is defined by thStreamIC interface.

» Stream’s view okxternalization, composed of the interfaces used by the stream
to direct an externalizable object or graph of objects to record or retrieve their
state from the stream’s external form. The stream’s view of externalization is
given by theStreamabl, Node, Role and Relationshi interfaces.

8.2 Service Structure

This section explains the model of externalization for cla@rd stream. It also
describes the model of externalizatiandinternalization for objects.

8.2.1 Client’s Model of Object Externalization

A client has a simpleiew of the externalization service. A client that wishes to
externalize an object first must have an object referenceStreamobject. AStrean;
object owns and provides access to the externalized form of one or more objects.
Streams may be provided that hold externalized data on various mediums such as in
memory or on disk. All Externalization Service implementors proviStrean object

that saves the externalized data in a file. A client may creStrean object using the
create() operation on StreamFactor object, or may specify that a file be used to
store the externalized data using create() operation of éFileStreamFactory

object.

The client can create Strean object that supports a standardized externalization data
format. Externalization data that follows this format will be internalizable on all
CORBA-compliant ORBs that can locate compatible objegtiementabns. By
including support for a specific external representatiomé&rin the Externalization
Service, portability of object state is pided across different CORBcompliant
implementationsand hardwararchitectures.

Once a client has Streamobject, the client may externalize an object by issuing an
externalize() request on thiStreamobject, providing the object reference to the
object that should be externalized. In general, the cliamasare of whether
externalizing an object causes any other related objects to be externalized. An
externalizable object may represent a simple object, a set of objects, or a graph of
related objects. The client uses the same interface in all cases.

If a client wishes to externalize multiple objects (or related sets of objects) to the same
stream, the client issuesbegin_context() request before thiérst externalize

request and then issuesend_context() following the last externalize request for
that same stream.

CORBAservices August 1997

8

The externalized form of the object can exist in the stream object for arbitrary amounts
of time, be transported by means outside of the ORB, and can be internalized in a
different, disconnected ORB.

A client that wishes to internalize an object issueinternalize() request on

the appropriate Stream object, providinfactory finder. The Stream object interacts
with the specified factory finder, or uses other implementatiependent mechanisms,
to create an implementation of the object that matches the externalized data. The
client is returned an object reference to the newly internalized object.

8.2.2 Stream’s Model of Object Externalization

A stream object provides ttStreaminterface for use by client3.he stream object is
also responsible for providing an object that suppoStreamlC interface for actually
reading and writing data to the externalized data form. Trearstobject may support
the StreamIQinterfaces itself, or may create another object $pports the StreamlO
interfaces. This is considered an implemenation detail.

Note —When the behavior describedtims section may be implemented in either the
Stream or StreamlO objects (or other internal objects they may use), thestreant
service” is used.

When a seam object receives an externalize request from a client, it also gets an
object referace to the object to be externalized. The streaoperates with the
externalizable object to accomplish externalization and internalization, using the
object’s Streamale interfaces.

Thestream service uses treadonly Key attribute ofthe externalizable object to
decide what information to put into the external data in order to be able to find the
correct factory andniplementation withwhich to subsegently internalize an

equivalent object. The stream service then issuexternalize_to_stream()

request to the externalizable object, providing an object reference to a StreamlO object
that is to be used by the externalizable object to record its state in the stream service’s
external data.

When a seam object receives an internalize request from a client, it also gets a
factory finder. The stream service holds the external form of the object, or set of
objects, to be internalized. The stream service reads the key from its externalized data.
It may then pass the key to the factory finder to locate a factory that can create an
object with an implementation that matches the recorded ofiigtet The stream

service implementation may use other implementation specific ways of creating an
appropriate object. The stream service then issues an

internalize_from_stream() request to the newly created object, providing an
object referace to aStreamlOobject that is used by the externalizable object to

initialize its stateaccording to the stream service’s externalized data.

When a stream objececeives egin_context() request, the stream service sets
up a context during which the stream service ensures that externalizitiglenul
objects that may have overlapping object references and/or objatonships

Externalization Service: v1.CService Structur August 1997 8-3

8-4

produces single instances of those objects on internalizatiorend_context()
request causes the stream service to remove the previous internal cordext,
externalize subsequent objects without regard to whether they have already been
externalized in thi:Stream’: data.

8.2.3 Object’s Model of Externalization

Every object that wishes to be externalizable must suppoStreamabl interface,
and follow conventions on use of tStreamlC interfaces to record and retrietheir
object state from Strean’'s data.

When anStreamabl object receives aexternalize_to_stream request from

the stream service, it must write all of its state necessary for internalization to the
StreamlC object provided by the stream servicStreamlC provides

write_<type>() operations for writinggach of the CORBA basic data types, plus
string types. If an object has object references that are part of its steStreamIC)
write_object() operation may be used to cause the object specified by an object
reference to also be externalized to the stream’s data.

Externalization ContrdfFlow (streamable object is not a node

Client calls Stream::externalize (Streamable object)

Stream writes a key for this object to the external representation.

Stream calls the Streamable::write_to_stream (StreamlO this_sio) so that the
object can write out whatever internal state it needs to save.

If Streamable objectis anode ina graph of related objects, flow is giv-
en in Figure 8-2

Streamable object writes out its non-object data using the primitive
StreamlO::write_... (data) functions

Streamable object writes out other objects using the Stream-
|O::write_object (Streamable object) function

Figure 8-1 Externalization control flow when streamable object is not in a graph of related
objects

CORBAservices August 1997

8

A streamable object may be a node in a graph of related objects, that is, it may use the
Relationship Service to connect to other objects and support the
CosCompoundg&ernalization::Nod interface. Such atreamable object simply

delegates thStreamabl::externalize_to_stream() request back to the stream
service, using thStreamIC:write_graph() operation.

The stream service then coordinates the externalization of the gndlalls the
object back using the objeciCosCompound&ernalization::Nod interface.

Externalization ContrdFlow (streamable is a node)

Streamable object, recognizing that it is a node in a graph of related
objects, delegates the externalization of the graph to the stream ser-
vice using StreamlO::wri te_graph (this_node) operation.

StreamlO::write_graph ,coordinates the externalization of the
graph using Node::externalize _node (this_sio) operation.

Node writes out its non-object data using the primitive
StreamlO::write_... (data) functions

Node writes out other objects using the
StreamlO::write_object (Streamable object) function

Node writes out its role objects using the
Role::externalize_role (this_sio) operation.

StreamlO::write_graph uses propagation value to de-
termine next nodes and writes a key for next node

StreamlO object externalizes the involved relationships using Rela-
tionship::externalize(). StreamlO writes traversal scoped ids for the
externalized roles and relationships to the Stream’s data.

Figure 8-2 Externalization control flow when streamable object is a node in a graph of related
objects

8.2.4 Object’s Model of Internalization

When a streamablebect receives ainternalize_from_stream() request
from astrean, it must read data from ttStreamIC object provided by the stream
service, and initialize itst@te to match the externalized stafEhe externalizable
object requests data from the stream service usinStreamlICread_<type>()

Externalization Service: v1.CService Structur August 1997 8-5

8-6

operations for basic datand string types. If the object being internalized includes a
reference to another object as part of its stateStheamIOread_object()
operation may beised to have thatbject also internalized from the stream’s data.

Internalization ControFlow (streamhle object is not a node)

Client calls Streamable = Stream::internalize (FactoryFinder f)

Stream reads key from the external representation, and uses this and the facto-
ry finder to create an object of the correct interface and implementation. The
stream may use the StreamableFactoryinterface.

Stream calls the Streamable::read_from_stream (StreamlO this_sio) so that
the object can read the data in its external representation and reset or calculate
its internal state

If Streamable objectis anodein a graph of related objects, flow is given
in Figure 8-4

Streamable object reads in its non-object data using the primitive
StreamlO::read_... (data) functions

Streamable objectinternalizes other objects using the
Streamable = StreamlO::read_object() function

Figure 8-3 Internalization control flow when object is not in a graph of related objects

A streamable object may be a node in a graph of related objects, that is, it may use the
Relationship Service to connect to other objects and support the
CosCompoundg&ernalization::Nodeinterface. Such atreamable object simply

delegates th&treamableinternalize_from_stream() request back to the

stream service, using ti&treamlQO:write_graph() operation.

CORBAservices August 1997

The stream service then coordinates the externalization of the andlalls the
object back using the objeciCosCompound&ernalization::Nod interface.

Internalization Control Flow (etamable is aode)

Streamable object, recognizing that itis a node in a graph of related
objects, delegates the internalization of the graph to the stream ser-
vice using StreamlO::read_graph (this_node) operation.

StreamlO::rea d_graph ,coordinates the internalization of the
graph using Node::internalize _node (this_sio) operation.

Node reads its non-object data using the primitive
StreamlO::read_... (data) functions

Node read other objects using the
StreamlO::rea d_object (Streamable object) function

Node reads its role objects using the
Role:internal ize_role (this_sio) operation.

StreamlO::rea d graph reads the key for next node and
uses the StreamableFactory interface to create the next
node.

Streaml|O objectinternalizes the traversal scoped identifiers for the
externalized roles and relationships and internalizes the relationships
using Relationship::internalize().

Figure 8-4 Internalization control flow when object is in a graph of related objects

8.3 Objectand Inerface Hierarchies

This section identifies the objects required for the Externalization Service and
important inheritance and use relationships that ddstveen their interfaces.

The Object Externalization Service can only externalizeiatednalize objects that
inherit theStreamabl interface. Streamabl does not iherit any other interfaces.
However, it must have an associaStreamableFactol that the Externalization
Serviceimplemenéation can find and useheninternalizing the object.

Externalization Service: v1.CObject and Interface Hierarchi ~ August 1997 8-7

8-8

Streaminherits theLifeCycleObjecinterface because clients of the Externalization
Service need to remove these objects. $treamFactoryor File StreamFactory
interfaces may be used to create stream objects.

In addition to the inheritance relationships described above, the class diagram in Figure

1 alsoshowsthe usage relationships between the service obj&trgam

externalize() andinternalize() operations invoke th8treamable
externalize_to_stream() andinternalize_from_stream() operations
to write and read the appropriate object internal stat&tréamlOobject is passed as
an argument to these operationEhe externated object determines how much of its
state must be put in the external representation, and can minimize saved state by
recreating some statgon internalization. Th&8treamable

externalize_to_stream() andinternalize_from_stream() use
StreamlOoperations to actually put various data typed contained object references
in the external representation. This alldBiseamIOto put appropriate headers in the
external representation so that the object can be recreated correctly during
internalization. The Streamis responsible for providing an object that supports the
StreamlOinterface. TheStreamobject maysupport theStreamlOinterface itself, or
create another object that supports $tieeamlOinterface. Thestreamand StreamlO
implementations decide on the storage medamu data type representation
conversion for different hardware, without requiring different implementation of the
objects being externalized.

CORBAservices August 1997

StreamableFactory

StreamFactory

LifeCycleObject

IdentifiableObject

Streamable

external_form_id
externalize_to_stream()
internalize_from_streasr

write_object()
read_object()
write_graph()
read_graph()
write_...

read ...

Relationship

LEGEND
A<@— B Binherits fromA
A@——B AhasB
AQ——— B AusesB

Figure 8-5 Object Externalization Service Booch Cldstterface) Diagram

Externalization Service: v1.CObject and Interface Hierarchi ~ August 1997

8.4 Interfacé&Summary

The Externalization Service defines interfaces (using OMG IDL) to support the

functionality described in the previous sections. Tdilwing tables give high level
descriptions of the Externalization Service interfacefsgquent sectionsdcribe the
interfaces in more detail.

8-10

Table 8-1 Client Functional Interfaces support client’'s model of externalization

data in a file.

Interface Purpose Primary Client
Stream Holds external form of objects. | Clients that need to externalize
and internalize objects.
StreamFactory Creates and initializes stream Clients that need to create stream
objects. objects.
FileStreamFactory | Creates and initializes stream Clients that need to create stream
objects that stores data in a file.| objects, and want the externalized

Table 8-2 Service Construction Interfaces support service implementation’s model of
externalization

Interface

Purpose

Primary Client

Streamable

Provides its state to a stream fq
externalization, and gets its
state from the stream on
internalization.

The stream service
implementation of
externalization and
internalization.

StreamableFactory

Creates and initializes
streamable objects

The stream service
internalization implementation.

=

StreamlO Part of stream implemenation | The externalizable objects that
that writes and reads object need to record and retrieve the
state to appropriately converte(state from a stream.
external form.

CORBAservices August 1997

Table 8-3 Compound Externalization Interfaces support service implementation’s model of

graph externalization

Interface Purpose Primary Client
Node Defines externalization and The stream service
internalization operations on implementation of
nodes in graphs of related externalization and
objects. internalization.
Relationship Defines externalization and The stream service
internalization operations on | implementation of
relationships. externlization and
internalization.
Role Defines externalization and The stream service
internalization operations on implementation of
roles. externalization and
internalization.

Externalization Service Architeater Audience/Bearer Mapping

Stream and $¢amFactory are solely functional intexés. Their audience is the client
of the Externalization Service.

Streamable, StreamableFactory, and StreamlO are sole$graotion interfaces. The
audience foiStreamableis both the Stream and StreamlO objects. To be
“externalizable,” objects must inherit tiStreamabl interface and provide
implementations of its operations. Taedience foStreamlC interface is the
externalizable Streamable and StreamableNode objects. The StreamlO objects are par
of the Externalization Service implementation.

The Stream, StreamFactory, and StreamlO objects are specific objects because their
purpose is to provide a part of the Externalization Service. However, there may be
many Strean and StreamlC instances in a system, since each represepistular
external representation of an object or group of objects.

Streamable and StreamableFactory objects are generic objects bbesupemary
purpose is unrelated to the Externalization Service. Any definiemglementor of an
object may choose tioherit the Streamable interface in order to support
externalization/internalization of that object.

In summary:

- Streamand StreamFactry are specific functional interfaces

- Streamatke and ‘treamableFactor are generic construction interfaces
- StreamlICis a specific construction interface

Externalization Service: v1.Cinterface Summa August 1997 8-11

8.5 CosExternalization Module

The client-functional interfaces defined by the the CosExternalization module are:
e StreamFactcy interface, which creates a stream.
 FileStreamFactor interface, which has an operation that lets clients cause
externalized data be stored in a file or internalize objects from a file they have
been given.
 Strean interface, whichcan externalize one object or a group of objects; finalize
the externalization, and internalize an object.

#include <LifeCycle.idI>
#include <Stream.idl>
module CosExternalization {
exception InvalidFileNameError{};
exception ContextAlreadyRegistered{};
interface Stream: CosLifeCycle::LifeCycleObject{
void externalize(
in CosStream::Streamable theObject);
CosStream:Streamable internalize(
in CosLifeCycle::FactoryFinder there)
raises(CosLifeCycle::NoFactory,
CosStream::StreamDataFormatError);
void begin_context()
raises(ContextAlreadyRegistered);
void end_context();
void flush();
3
interface StreamFactory {
Stream create();
I3
interface FileStreamFactory {
Stream create(
in string theFileName)
raises(InvalidFileNameError);

8.5.1 StreamFactory Interface

Creating a Stream Object

Stream create();

Clients of the Object Externalization Service must crecStrean object before they
can externalize or internalize any objects. Two factory interfaces are suppdréed.
first, the StreamFactor interface has create() =~ operation that creates a stream
without specifying any special characstigs of the implementation.

8-12 CORBAservices August 1997

8.5.2 FileStreamFactory Interface

Creating a Stream Object Associated with a File

Stream create(
in string theFileName)
raises(InvalidFileNameError);

For clients that want to cause the externalized data stored in a file, or that need to
internalize objects from a file they have beenegivtheFile StreamFactor interface

has acreate() operation that takes a string input parametée clientsets this
string to the filename of the file that will hesed by the stream service to hold the
extermal representation of the objects externalized, or that contains the external
representation of objects that the client wishes to internalize.

Strean::externalize() requests will append to amxisting data in the file
associated with a stream.

8.5.3 Stream Interface

Externalizing an Object

void externalize(in CosStream::Streamable theObject);

Clients of the Object Externalization Service invexternalize() on aStream
object passing the object reference (CosStream::Streamat object, theObject

to be externalized. Only objects that are of tCosStream::Streamak can be
externalized. Subsequently, clients invoke tinternalize() operation on the
Strean containing the external representation, Streaninternalize()

operation creates a nesbject withstate identical to Wat was externalized and returns
the new object reference.

The implementation cexternalize() writes implementation specific header
information to the external representation it is maintaining, so that the correct object
can be recreated at internalization time. This could be the fdagrihat was used to
create theCosStram::Streamabl object, or could include the interface type,
implemenation repository, or factory object names. The factory key may be obtained

by from theexternal _form_id attribute oftheObject . Theexternalize()
implementation must then invoke tCosStream::Streamat le
externalize_to_stream() operation ortheObject to cause the object's

internal state to be written to the external respresentafitie.Strean is responsible
for providing an object that supports tStreamIC interfaces for the externalizable
object to use in writing data to the stream service.

Externalization Service: vl.CCosExternalization Modu August 1997 8-13

8-14

Externalizing Groups of Objects

void begin_context()
raises(ContextAlreadyRegistered);
void end_context();

If a client wishes to externalize a set of objects with overlapping references and/or
object relationships, the client invokbegin_context() on theStrean. This

must be called before externaliziagy of theset of objectsandend_context()

must be called on thStrean after the entire set of objects has been externalized and
before theStrean is used with another set of objects.

The Strean implementation establishes an association with the spe Strean object

and a logical “context”. ThStrean ensures that all objects externalized to this stream
while this association lasts will be externalized in such a way that internalization will
not create any duplicate objects. That is, the implementatiStrean checks for

“context”, and for objects externalized in the same context handles overlapping or
circular references and/or relaighips between those objects. Tlssaxiation lasts

until end_context() is called. The Strean raises the ContextAlreadyRegistered
exception ifbegin_context() is called and a context is already established,

perhaps through some other implementation dependent mechanism or perhaps becaus
end_context() has not been called following a previt begin_context()

Completing Externalization

void flush();

Clients invokeflush() to request that the external representation is committed to its
final storage medium, whatever that may be. The implementatiflush() should
attempt to ensure that the external respresentation is completely up-to-date in its final
storage (e.g. memory buffer, file, tape, ...).

Internalizing an Object

CosStream::Streamable internalize(
in CosLifeCycle::FactoryFinder there)
raises(CosLifeCycle::NoFactory,
CosStream::StreamDataFormatError);

The implementation cinternalize() must create an object with the correct
interface and implementation to match the externalized represenaatibreturn a
pointer to the nevCosStreamStreamabli object. Theinternalize()
implementation must then invoke tinternalize_from_stream() operation
on the new object. ThCosStrear::StreamDataFormatError exceptionshould
be raised if an error is detected in the data format of the obgacteh. The

CORBAservices August 1997

8

CoslLifeCycl::NoFactory exception should be raised if the object cannot be created
because an appropriate factory cannot be found. If the object cannot be created due tc
other reasons, an ObjectCreationError exception should be raised. Additional
CosStrear::StreamDataFormat Exceptions may be raised byead_<type>

operations invoked binternalize_from_stream() operation due to errors in

the externalized data format.

8.6 CosStream Module

The service construction interfaces defined by the CosStream module are:
» Streamabl interface
e StreamableFactol interface
» StreamlCinterface

#include <LifeCycle.idl>

#include <Objectldentity.idl>

#include <CompoundExternalization.idl>

module CosStream {
exception ObjectCreationError{};
exception StreamDataFormatError{};
interface Stream|O;

interface Streamable:
CosObjectldentity::IdentifiableObject {
readonly attribute CosLifeCycle::Key external_form_id;
void externalize_to_stream(
in StreamlO targetStreamlO);
void intemnalize_from_stream(
in StreamlO sourceStreamlO,
in FactoryFinder there);
raises(CosLifeCycle::NoFactory,
ObjectCreationError,
StreamDataFormatError);

h

interface StreamableFactory {
Streamable create_uninitialized();

b

interface StreamlO {
void write_string(in string aString);
void write_char(in char aChar);
void write_octet(in octet anOctet);
void write_unsigned_long(
in unsigned long anUnsignedLong);
void write_unsigned_short(
in unsigned short anUnsignedShort);
void write_long(in long aLong);
void write_short(in short aShort);

Figure 8-6 The CosStream module

Externalization Service: v1.CCosStream Modu August 1997 8-15

void write_float(in float aFloat);
void write_double(in double aDouble);
void write_boolean(in boolean aBoolean);
void write_object(in Streamable aStreamable);
void write_graph(in CosCompoundExternalization::Node);
void write_long_long(in long long val);
voidwrite_unsigned_long_long(inunsignedlong long val);
void write_long_double(in long double val);
void write_wchar(in wchar val);
void write_wstring(in wstring val);
void write_fixed(in any val, in short s);
string read_string()
raises(StreamDataFormatError);
char read_char()
raises(StreamDataFormatError);
octet read_octet()
raises(StreamDataFormatError);
unsigned long read_unsigned_long()
raises(StreamDataFormatError);
unsigned short read_unsigned_short()
raises(StreamDataFormatError);
long read_long()
raises(StreamDataFormatError);
short read_short()
raises(StreamDataFormatError);
float read_float()
raises(StreamDataFormatError);
double read_double()
raises(StreamDataFormatError);
boolean read_boolean()
raises(StreamDataFormatError);
Streamable read_object(
in FactoryFinder there,
in Streamable aStreamable)
raises(StreamDataFormatError);
void read_graph(
in CosCompoundExternalization::Node
starting_node,
in FactoryFinder there)
raises(StreamDataFormatError);
long long read_long_long()raises(StreamDataFormatError);
unsigned long long read_unsigned_long_long()
raises(StreamDataFormatError);
long double read_long_double()
raises(StreamDataFormatError)
wchar read_wchar() raises (StreamDataFormatError);
wstring read_wstring() raises (StreamDataFormatError);
any read_fixed() raises (StreamDataFormatError)

b

Figure 8-6 The CosStream module

8-16 CORBAservices August 1997

8

Since IDL only supports templatestantiations rather than templates themselves, the
fixed-point decimal template typ=annot be used directly for tiwrite_fixed and
read_fixed operations. Instead, tlfixed type instances must be passed to and
from these routines @any s with TypeCode s oftk_fixed

8.6.1 Standard Stream Data Format

The standard streaformat foreach new IDL type is shown in thable below. Also
shown are the standard formats for tychar anc string , which have been
extended to state expliti that data issncoded as defined by ISO 8859-1.

Tag CORBA Type Data Format

xX'F1’ char one byte, encoded as defined by 188591

X'FA’ string null-terminated sequence of bytes, encoded as
defined by 1ISC8859-1

X'EL char an unsigned longode set tag, followed taone byte

data value, encoded as defined by code set tag

X'E2’ string an unsigned longode set tag, followed by a null-te
minated sequence of characters, encoded as defined
by code set tag

X'E3’ fixed<d,s> an unsigned short byte count (d+2)/2), followed by
(d+2)/2 bytes in CDR format.
X'FE’ wchar an unsigned long ode set tag, followed bydata

value, encoded as defined by code set tag

X'FF wstring an unsigned longode set tag, followed by a null-te
minated sequence of wchar, encoded as defined by
code set tag

X'FB’ long long eight bytes, big-endian format
X'FC’ unsigned long long| eight bytes, big-endian format
X'FD’ long double sixteen bytes, IEEE 754 format, sign bit in fiogte

The first two entries in the table describe the current formatchar andstring
modified only to state explicitly, rather thamplicitly, that theencoding used is
defined by 1ISO 8859-1. Hse existing formats atenchanged fobackward
compatibility purposes.

The next two entries (X’Eland x’E2’) define taggeébrmats forchar andstring

which consist of a code set tag (from the OSF CharacteéCode Set Redgig)

followed by an actual data value. The mation for these tagged formats is to prevent
information losswhich may occur for some native code sets when converted to ISO
8859-1 (i.e., when such data is externalized infoheats described in the first two
entries). However, if character astting data isxternalized in a form other than 1ISO
8859-1, some ORBs may not be able to internalize it successfigly lfecause an
appropriate converter is not available), thus reducing the portability of the externalized
data. So, if maximum portability is desired, charaeted string data should be
externalized in ISO 8859-1 form.

Externalization Service: v1.CCosStream Modu August 1997 8-17

The remaining entries in the table describe the formats for the new IDL typts. N

that the previous discussion about the tradeoff between portability and information loss
for externalized character and string data also appliesd® character and wide string
data. If maximum portability is desiredjde character and wle string data should be
externalized in Unicodérm, while if using this form would result in an unacceptable
loss of information, then #orm otherthan Unicode should be used.

Data values of typwchar andwstring are represented as one or more octets, or
an unsigned integer, depending on the code set used. Thislag sonthe onthe-wire
representation cwchar andwstring data.

8.6.2 The StreamlO Interface

Thewrite_<type>() andread_<type>() operations orStreamlIC are used by
Streamabl iexternalize_to_stream() and

internalize_from_stream() operations to cause internal object state to be
written to or read from the external representation. The
externalize_to_stream() decomposes the internal state of an objectdarées
of primitive data type values that can be written and read with these operations.
StreamlC supportswriting and readingll the CORBAbasic data types.

The implementation of thwrite_... andread_... operations are responsible

for any desired conversion of the data and transfering the datdrmothe desired
external representation. Actual transfer of the representation to the final storage
medium may be deferred until tiflush() operation. All details of the external
representatiorfiormat, storage medium, and buffering are specific to the
implementation. Different implementationgy support buffering of the external
representation data in memory, converting data values to a canonical foimarfor
exchange across bigtle endian CPU hardware, conversion of data to a canonical text
form for readability or to facilitatenailing objects across networks, use of various
storage mediums such as memory, filesystem, tape or other differences. See “Standard
Stream Data Format” on page 8-17 fofoirmation on a portable external
representation. /StreamDataFormatError exception shold be raised if errors

are detected in the data format of the external representation.

In support of integrating the Externalization Service with Transaction and

Persistent Objec$ervices, th read_object operation supports the internalization

to existing objectsThe semantics of the operation are that if the streamable parameter
is Null, then the FactoryFinder parameter is used to create an instarictefoalize.

If the streamable parameter is not Null, then the StreamlO implementation will
internalize to a streamable object. This semantic allows the Externalization Service to
be used as a Persistent Object Service protocol and to support the restore operation or
existing objects in the case of an aborted transaction.

8.6.3 The Streamable Interface

Object implementors must inherit from tStreamabl interface if they want an object
to be externalizable. Three operations must be implemented.

8-18 CORBAservices August 1997

Comparing Streamable Objects

boolean CosObijectldentity::ldentifiableObject::is_identical(
in CosObjectldentity::IdentifiableObject anObject);

readonly unsigned long constant_random_id;

A Streamableobject inherits fronCosObjectldentity::IdentifiableObje, and therefore
must support iconstant_random_id attributeand anis_identical()

operation. The stream service uses these to compare obfesdetecting cycles or
overlapping references in objects being externalized to the same stream in the same
context or within the same graph. The constant_randoattiiBute value does not

have to be unique, but a unique value may substantially speed up the externalization
process.

Creation Key for a Streamable Object

readonly attribute CosLifeCycle::Key extenal_form_id;

An Streamabl object must support a readonly attribiexternal_form_id ,

which is a key that can be given to a factory finder in order to find a factory that could
have created this object. The stream service may use this attribute during
internalization to create an object that can reinitiaiigelf from the externalized data.

Writing the Object’s State to a Stream

void externalize_to_stream(
in StreamlO targetStreamlO);

Theexternalize_to_stream() operation is responsible for decomposing an
externalizable object’s internal state into a seriegrohitive data type values and
object referaces. Theexternalize to_stream() function must write out all
the neccessary pnitive data valuesising thewrite <type>() operations on the
targetStreami(for non-object data types. If this object has other object references,
then, normally, those objects should also be written out usinwrite_object()
operation on thitargetStreamlI(. However, it is up to thStreamabl implementor to
decide which referenced objects should be externalized with this objecprifiigve
data values must all be written before any of the exided objects references are
written.

If the Streamabl is a node in a graph, then it should delegate the
externalize_to_stream() to the StreamlC by invoking write_graph()
The object would subsegutly receive alexternalize_node_to_stream()

Externalization Service: v1.CCosStream Modu August 1997 8-19

and write out its internal state as described abode¢ objects should not call
write_object() for other nodes itheir graph, but may cawrite_object()
for object references that are not for nodes in their graph.

Reinitializing the Object’s State from a Stream

void intermalize_from_stream(
in StreamlO sourceStreamlO,
in FactoryFinder there);

Theinternalize_from_stream() operation is responsible for reinitializing the
object’s internal state from the seriespsfmitive data type values arabject
references that are written/flattened durexternalize_to_stream() . The
internalize_from_stream() operation should read in all the neccessary
internal state of the object using tread_<type>() operations on the
sourceStreaml for non-object data types. If this object has other object references
that were externalized usiwrite_object() , then those objects should be
recreated using ttread_obiject() operation orthe sourceStreaml with the same
FactoryFinde argument as ththere parameter passed in to the

internalize_from_stream() operation. Thaead_<type>() and

read_object() operations for the various portions of the object’s internal state
must be invoked in the same order in which they are written by the
externalize_to_stream() implementabn. The

internalize_from_stream() must also initialize anydditional state thavas

not externalized because it can be derived from other state information. Therefore, the
externalize_to_stream() andinternalize_from_stream() operations

must be designed to complement each other.

If the Streamabl is a node in a graph, then it should delegate the
internalize_to_stream() to thesourceStreaml by invoking

read_graph() with the samdractoryFinde argument as ththere parameter passed
in to the internalize_from_stream() operation. "Streamabl (alsoNode) object
would subsequently receive internalize_node_to_stream() and read in
its internal state as describatlove. Node objects should not caread_object()

for other nodes itheir graph, but may caread_object() for object references
that are not for nodes in their graph..

The ObjectCreationError and StreamDataFormatError exceptions orifjioateghe
read_object() andread_<type> operations on thsourceStreaml, and are
not explicitly raised by thinternalize_from_stream() code.

8-20 CORBAservices August 1997

8.6.4 The StreamableFactory Interface

Creating a Streamable Object

Streamable create_uninitialized();

The stream service must be able to cre:Streamabl object in order to internalize an
object from the strean’'externalized data. For any externalizable object, a
StreamableFactol object must exist that supports creation of that object. This factory
must be findable using tlreadonly external_form_id Key attribute of the
streamabl:object. The stream service implementation could store this key during
externalization and use it during internalization to find the factorydaatcreate the
externalized object. However, a stream implementation may use other means to create
the object during internalizatioithe create_uninitialized() operation on the
StreamableFactol should create the associated streamable object. This streamable
object does not have to Itialized, since that can be done on the subsequent
internalize_from_stream() operation on the newly created streamable object.

8.7 CosCompound Externalization Module

If a Streamabl object participates asreode in a graph of related objects, the

Streamabl object can delegate the externalization operation to the stream service. In
particular, theStreamabl object simply uses thwrite_graph() operation. Th -
write_graph() operation expects a streamable object reference as a starting node.
The stream service narrows the streamable object refete
CosCompoundi&ernalization::Nod. Thewrite_graph() then coordinates the

orderly externalization of the graph of related objects. For more details on compound
operatios, see the Relationship Service specification and the GamapLife Cycle

section in the Life Cycle Servicpecification.

The CosCompoundExternalizati moduledefines theNode, Role, Relationshij and
PropagationCriteriaFactor interfaces for use by thwrite_graph() operation.

The CosCompoundExternalizati module is shown in Figure 8-Detailed
descriptions of the interfaces follow.

#include <Graphs.idl>
#include <Stream.idl>

module CosCompoundExternalization {
interface Node;
interface Role;
interface Relationship;
interface PropagationCriteriaFactory;

Figure 8-7 The CosCompoundExternalization Module

Externalization Service: v1.CCosCompound Externalization Mod August 1997 8-21

struct RelationshipHandle {
Relationship theRelationship;
::CosObijectldentity::Objectldentifier constantRandomld;

h

interface Node : ::CosGraphs::Node, ::CosStream::Streamable{
void extemnalize_node (in ::CosStream::StreamIO sio);
void intemalize_node (in ::CosStream::StreamlO sio,
in ::CosLifeCycle::FactoryFinder there,
out Roles rolesOfNode)
raises (::CosLifeCycle::NoFactory);

h

interface Role : ::CosGraphs::Role {
void externalize_role (in ::CosStream::StreamlO sio);
void internalize_role (in ::CosStream::Streaml|O sio);
::CosGraphs::PropagationValue externalize_propagation (
in RelationshipHandle rel,
in ::CosRelationships::RoleName toRoleName,
out boolean sameForAll);

h

interface Relationship :
::CosRelationships::Relationship {

void externalize_relationship (
in ::CosStream::StreamIO sio);

void intemalize_relationship(
in ::CosStream::StreamIO sio,
in ::CosGraphs::NamedRoles newRoles);

::CosGraphs::PropagationValue externalize_propagation (
in ::CosRelationships::RoleName fromRoleName,
in ::CosRelationships::RoleName toRoleName,
out boolean sameForAll);

h

interface PropagationCriteriaFactory {
::CosGraphs::TraversalCriteria create_for_externalize();

k
b

Figure 8-7 The CosCompoundExternalization Modi(Continued)

8.7.1 The Node Interface

The Node interface defines operations to internalize and externalizmede.

8-22 CORBAservices August 1997

Externalizing a Node

void externalize_node (in ::CosStream::Stream|O sio);

The externalize_node() operation transfers the node’s state to the stream given
by thesic parameter. Thaode is responsible txternalize it's roles as welllhe node

can accomplish this by writing the role’s key to the stream and using the

Role:: externalize_role() operation.

Internalizing a Node

void intemalize_node (in ::CosStream::StreamIO sio,
in ::CosLifeCycle::FactoryFinder there,
out Roles rolesOfNode)
raises (::CoslLifeCycle::NoFactory);

Theinternalize_node() operation causes a node atglroles to be internalized
from the streansic.

It is the node’s responsitiy to create and internalize its roles.cn do this by
reading the key for a role from the stream and using the
CosStream::StreamableFact interface to create the uninitialized role and the
CosCompoundigernalizatior:: internalize_role() operation to internalize the
role. The newoles should be collocated with the factory finder given bythere
parameter.

The result of énternalize_node() operation is a sequence of roles.

Figure 8-8 illustrates the result of an internalize. A node, when iris, lis not in any
relationships with other objects. That is, the roles in the new node are “disconnected”.
It is theread_graph() operation’s job to correctly establish neglationships.

internalizey
document

Figure 8-8 Internalizing a node returns the new object and the corresponding roles.

If an appropriate factory tmternalize the rolesannot be found, thNoFactory
exception is raisedThe exceptiorvalue indicates the key used to find the factory.

In addition to theNoFactory exception, implementations may raise standard
CORBA exceptions. For example, if resources cannot be acquired for the internalized
node,NO_RESOURCI will be raised.

Externalization Service: v1.CCosCompound Externalization Mod August 1997 8-23

8.7.2 The Role Interface

TheRole interfacedefines operations to externalize and internalize a role Role:
interface also defines an operation to return the propagation value for the externalize
operation.

The implementation of CompoundExternalization::No operation can call these
operations on rolegzor example, an implementation externalize on a node can
call theexternalize operation on thiRole.

Externalizing a Role

void externalize_role (in ::CosStream::StreamIO sio);

The externalize_role() operation transfers the role’s state to the strsion

Internalizing a Role

void intenalize_role (in ::CosStream::StreamIO sio);

Theinternalize_role() operation causes a role to read its state from the stream
given bysio.

Getting a Propagation Value

::CosGraphs::PropagationValue externalize_propagation (
in RelationshipHandle rel,
in::CosRelationships::RoleName toRoleName,
out boolean sameForAll);

Theexternalize_propagation() operation returnthe propagation value to the
role toRoleName for the externalization operation and the relationsel . If the
role can guarantee that the propagation value is the sara felationships in which
it participatessamefForAll is true.

8.7.3 The Relationship Interface

The Relationshi| interfacedefines operations to externalize and internalize a
relationship.The Relationshi interface also defines an operation to return the
propagation values for the exteranlize operations.

8-24 CORBAservices August 1997

Externalizing the Relationship

void externalize_relationship (
in ::CosStream::Streaml|O sio);

The externalize_role() operation transfers the role’s state to the strsion

Internalizing the Relationship

void intemnalize_relationship(
in ::CosStream::Streaml|O sio,
in::CosGraphs::NamedRoles newRoles);

Theinternalize_relationship() operation internalizes the state of a
relationship from the stream given sio.

The values of the internalized relationshiptributes are defined by the
implementation of this operation. Mever, thenamed_roles attribute of the newly
created relationship must matnewPRbles. That is, the internalized relationship relates
objects represented InewRole parameter, not the by the origirralationship’s

named roles.

Getting a Propagation Value

::CosGraphs::PropagationValue externalize_propagation (
in::CosRelationshps::RoleName fromRoleName,
in::CosRelationship::RoleName toRoleName,
out boolean sameForAll);

The propagation_for() operation returns the relationship’s propagation value
from the rolefromRoleName to the roletoRoleName for the externalization
operation. If the role named lfromRoleNam can guarantee that the propagation
value is the same for all relationships in which it participesameForAll s true.

8.7.4 The PropagationCriteriaFactory Interface

The CosGraph module in the Relationship Service defines a general service for
traversing a graph oklated objects. The service accept«call-back” object
supporting th ::CosGraphs::TraversalCriteri interface. Given a nod#his object
defines which edges to emit and which nodes to visit next.

The PropgationCriteriaFactor creates iTraversalCriteric object that determines
which edges to emit and which nodesrisit based on propagation values for the
compoundexternalization operations.

Externalization Service: v1.CCosCompound Externalization Mod August 1997 8-25

Create a Traversal Criteria Based on Externalizationpagation

::CosGraphs::TraversalCriteria create_for_externalize();

Thecreate operation returns a TraversalCriteria object for an operation op that
determines which edges émit and which nodes tuisit based on propagation values
for op. For amore detailed discussion see the Relationship Sechiapter.

8.8 Specific Externalization Relahships

8-26

The Relationship Service defines two importrelationshipscontainmer and

referenc. Containment is a one-to-many relationship. A container can contain many
containees; a containee is containetbg container. Reference, on the other hand, is
a many-to-many relationship. An objexn reference many objects; an object can be
referenced by many objects.

Containment is represented by a relasioip with two roles: thContainsRol, and the
ContainedInRoleSimilarly, reference is represented byedationship with two roles:
ReferencesRole and ReferenBgRole.

Compound externalization adds externalization semantics to these specific
relationships. That is, it defines propagation values for containment and reference.

CORBAservices August 1997

8.9 The CosExternalizationContainment Module

The CosExternalization@ntainmer imodule defines the following interfaces:
 Relationshi| interface
» ContainsRol interface
» ContainedInRol:interface

#include <Containment.idl>
#include <CompoundExternalization.idl>

module CosExternalizationContainment {

interface Relationship :
::CosCompoundExternalization::Relationship,
::CosContainment::Relationship {};

interface ContainsRole :
::CosCompoundExternalization::Role,
::CosContainment::ContainsRole {};

interface ContainedinRole :
::CosCompoundExternalization::Role,
::CosContainment::ContainedinRole {};

Figure 8-9 The CosExternalizationContainment module

The CosExternalizationContainme module does not define new operations. It merely
“mixes in” interfaces from thCosCompondExternalizatio andCosContainmeiit
modules. Although it does not add any ngetions, it refines the semantics of these
operations:

The CosExternalizationContainment .. ContainsRole :propagation_for
operation returns the following:

operation ContainsRole to ContainedInRole
externalize deep
The CosExternalizationContainment . ContainedInRole
propagation_for() operation returns the following::
operation ContainedInRole to ContainsRole
externalize none
The CosRelationships::RoleFactory:: create_role() operation will
raise theRelatedObjectTypeError if the related object passed as a parameter

does not support trCosCompoundi&ernalization::Nod interface.

Externalization Service: v1.CThe CosExternalizationContainment Moc ~ August 1997 8-27

The CosRelationships::RelationshipFactory ;0 create() operation

will raise DegreeError if the number of roles passed as arguments is not 2. It will

raiseRoleTypeError if the roles are not
CosExternalizationContainme::ContainsRol and
CosExternalizationContainme::ContainedInRol. It will raise
MaxCardinalityExceeded if the
CosExternalizationContainme::ContainedInRol is already participating in a
relationship.

8.10 The CosExtern@&ationReference Module

8-28

The CosExternalizationReferer module defines these interfaces:
» Relationshi| interface
» ReferencesRc interface
» ReferencedByRc interface

#include <Reference.idl>
#include <CompoundExternalization.idl>

module CosExternalizationReference {

interface Relationship :
::CosCompoundExternalization::Relationship,
::CosReference::Relationship {};

interface ReferencesRole :
::CosCompoundExternalization::Role,
::CosReference::ReferencesRole {};

interface ReferencedByRole :
::CosCompoundExternalization::Role,
::CosReference::ReferencedByRole {};

Figure 8-10 The CosExternalizationReference module

The CosExternalizationReferer module does not define new erations. It merely
“mixes in” interfaces from thCosCompondExternalizatio andCosReference

modules. Although it does not add any ngverations, it refines the semantics of these

operations:

The CosExternalizationReference::References::propagation_for() operation
returns the followng:

operation ReferencesRole to ReferencedByRole

externalize none

CORBAservices August 1997

The CosExtenalizationReference::RefereedByRol::propagation_for()
operation returns the following::

operation ReferencedByRole to ReferencesRole

externalize none
The CosRelationships::RoleFactc:: create_role() operation will raise the
RelatedObjectTypeError if the related object passed as a parameter does not

support theCosCompoundEernalization::Nod interface.

The CosRelationships::RelationshipFact:: create() operation will raise
DegreeError if the number of roles passed as arguments is not 2. It will raise
RoleTypeError if the roles are ncCosExternalizationReferer::ReferencesRcle
andCosExternalizationReferen::ReferencedByRcle

8.11 Standard Stream Data Format

An externalization client may create a stream tugiports sspecific external
representation data format that is imded to be portable acrogdgferent CORBA
implementations and on different CPidrdware. A client creates suclsaeam object
using a factory found by specifying a Key whose cNameCompone has an
NameCompone:id whose value is thstring literal
“StandardEternalizationFormat”.

That format is described in this section.

8.11.1 OMG Externalized Object Data

1 byte
tag byte = xX’FO’ Key info Object info
A leading “tag” byte with a value of x”"FO” marks the beginning of an object’s
externalized data. FolMaing this is data associated with a Key that can be used to
internalize the object. The key information is tHfetlowed bythe data written to the
StreamlC for the object's state.
Key Info
1 byte
length =i 1stid string 2nd id string ce i’th id string

The key information consists of a byte containing an integer value, “i”, that indicates
how manyNaming::NameCompone's make up the associated Key.

Externalization Service: vl1.CStandard Stream Data Forn August 1997 8-29

This byte is followed by “i” null-terminated sequences of char values that represent the
Naming::NameCompone::id values for the Key. These values cepend to the C
mapping of a CORBA string typ&he NameComponeritind values are not stored in

this external data format.

Object Info
1 byte 1 byte

tag byte data value tag byte data value

The object information is the sequence of bytes generated for one or more
write_ <type> operation. For eacwrite_<type> operation, a single “tag” byte
identifying the type of the@rimitive data is followed by the data. The tag byte gives
the internalization implementatioanoughinformation to skip past object state for
objects that cannot be created, for exampbenvacompatible implementatiocannot
be found on the internalizing ORB.

The tag byte values, and ddtamats foreach type are as indicated below for basic
CORBA data types:

Table 8-4 CORBA Tag Byte Values and Data Formats

tag CORBA type data format

x'F1’ Char one hyte

x'F2’ Octet one byte

xX'F3’ Unsigned Long | four bytes, big-endian format

xX'F4’ Unsigned Short | two bytes, big-endian format

x'F5’ Long four bytes, big-endian format

xX'F6’ Short two bytes, big-endiafiormat

X' F7’ Float four bytes, IEEE 754 single precisiémrmat, sign bit
in first byte

x'F8’ Double eight bytes, IEEE 754 double precision format, sign bit
first byte

x'F9’ Boolean TRUE=>o0ne byte==1, FALSE=>0ne byte==

xX'FA’ String null-terminatedsequence of bytes

8-30 CORBAservices August 1997

8.11.2 Externalized Repeated Reference Data

1 4 (bytes)

x'04" | Object number

This format is used only menmultiple objects reference the same object. Instead of
storing the referenced object multiple times, the duplicate reference objects are stored
in this format. Note that the object is represented by a long object number which
indicates that the object has been stored already.

8.11.3 Externalized NIL Data

1 (byte)
x'05’

This is a special formatsed to indicate that there is no object stored irstream.

8.12 References

1. James Rumbaugh, “Cantling Propagation of Operations using Attributes on
Relations."OOPSLA 1988 Proceedir, pg. 285-296

2. James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy and William
Lorensen, “Mject-oriented Modeling and Design.téhticeHall, 1991.

3. Grady Booch, “Object Oriented Design with Afaltions.” The
Benjamin/Cummings Publishing Componay, IM991.

Externalization Service: vl.CReference August1997 8-31

8-32 CORBAservices August 1997

RelationshiBervice Specification 9

9.1 Service Description

Distributed objects are frequently used to modeitiestin the real world. As s,
distributed objects do not exist in isolatiofihey are related to other objects.

Consider some examples of real world entities @atationships:
» A personowns cars; a car iowned b' one or more persons.

¢ A companyemploy:;one or more persons; a persoremployed b one or more
companies.

» A documenicontains figures; a figure iccontained ir a document.
» A documenireference a book; a book ireferenced b one or more documents.

» A personchecksiout books from libraries. A librarchecks oulbooks to people.
A book ischecked ot by a person from a library.

These examples demstrate severeelationship:
» Ownershij relationships between people and cars
» Employmen relationships between companies and people
» Containmer relationships between documents and figures
» Referenc relationships between books and documents
» Check ou relationships between people, books #hrhries.

Such relatimships can be characterized along a number of dimensions:

Type
Related entitiegnd the relationships themselves are typed. In the examples,
employmenis an relatioship defined betweepeople andcompanie. The type of
the relationship constrains the types of entities in the relationskipmnpany
cannot employ a monkey since a monkey is not a person. Furthermore, employment
is distinct from other relatisships between people and companies.

CORBAservices March 1995 9-1

9-2

The roles of entities in relationships
A relationship is defined by a set rolesthat entities have. In an employment
relationship, a company plays employe role and a person plays employe 2
role.

A single entity canhave different roles in diinct relatioships. Notice that a person
can play the owner role in an ownership relationship and the employee role in an
employment relationship.

Degree
Degree refers to the number of required roles lielatiorship. The check out
relationship is d#ernary relationship; it has three roles: therrower role, the lender
role and the matial role. A person plays thaorrower role, a library plays the
lender role and a book plays the material role. Ownership, employment,
containment and reference, on the other hand, are of degrebinary
relationships.

Cardinality
For each role in a relationship type, heximum cardinality specifies the
maximum number of relaticships that may involve that role.

The containment relationship is a many-to-one relationshigig@ment contains

many figures; a figure is contained inagtly one document. A many-to-many
relationship is between tweets of entitiesThe ownershigxample is a many-to-

many relationship; a person can own multiple cars; a car can have multiple owners.
The check out relationship ismaany-to-one-to-many relationship. A person can
check out many bookisom many libraries. A book is checked out by one person
from one library and a library can loan many books to many people.

Relationship Semantics
Relationships often have relationship-spec$iganantics; that is they define
operations and attributes. For examjjob title is an attribute ofhe employment
relationship, while it is not an attribute of an ownership relationshipil&ly, due
date is an attribute of the check oglatiorship.

For more discussion on object-oriented modeéing design withrelationships, see

[2.].

9.1.1 Key Features of the RelationsHjervice

* The Relationship Service allovestities and relatieships to be explicitly
represented. iities are represented as CORBA objects. The service ddfites
new kinds of objectsrelationship: androles. A role represent a CORBA object
in an relationship. A relationship is created by passing a set of roles to a
relationship factory.

» Relationships of arbitrargegree can be defined.

» Type and cardinality constraints can be expressedchecked. Exceptions are
raised when cardini&f and type constraints are violated. Thel&ionship
Service does nadefine a new type system. Instead, the IDL type system is used
to represent relationship and role types. This allows the service to leverage
CORBA solutions for type federation.

CORBAservices March 1995

9

The Relationshi| interface can be extended to add relationship spetifibutes

and operations. Similarly, trRole interface can be extended to add reecific
attributesand operations.

The Relationship Service defines three levels of service: base, graph, affid.speci
The base level defineglationshipsand roles.

When objects are related, thiyrm graphs of related objer. The graph level

extends the base level service with nodes and traversal objects. Traversal objects
iterate thragh the edges of a graph. Traseds are useful in implementing
compound operations on graphs, among other things.

Specific relationships are defined by the third level.

4. A conforming Relationship Service implementation must implement level 1 or
levels 1 and 2 or levels 1, 2 and 3.

The Relationship Service requires a notion of object identifysued, it defines

a simple, efficient mechanism for supporting object identity in a hggerous,
CORBA-based environment. We believe the mechanism to be of general utility
for other services.

Distributed implementations of theeRitionship Service can have navigation
performance and availability similar to CORBA object references; role objects
can be collocated ih their objects ansghieed not depend on a centralized
repository of relationship information. Asich, navigating a relationship can be a
local operation.

The Relationship Service allows so-calimmutable objects to be related. There
are no required interfaces that objects being related must suppauchs

objects whose state and implementation were defined prior to the definition of the
Relationship Service can be related objects.

The Relationship Service allows graphs of related objects to be traversed without
activating related objects.

The Relationship Service is extensible. Programmers can define additional
relationships.

9.1.2 The Relationship Service vs. CORBA Object References

CORBA: Common Object Request Broker Architecture pediSicationdefines object
references that clients use to issue requests on objects. @figgenhcesan be stored
persistently. When is gippropriate to use object references and when is it appropriate
to use the Rationship Service?

The Relationship Service is appropriate to use when an application needs any of the
following capabilities that are not availabletitvCORBA object references:

Relationships that Are Multidirectional

When djects are relatedsing the Relationship Service, the relationship can be
navigated from any role to any other roldhe service maiins the relationship
betweenrelated objects. CORBA object refares, on the other hand, are

Externalization Service: v1.CService Descriptic March 1995 9-3

unidirectional. Objects that posses CORBA objet¢érences t@ach other can only
do so in an ad hoc fashion; there is no wayntintainand manipulate the
relationship between the objects.

Relationships that Allow Third Party Manipulation

Since roles and relationships are themselves CORBA objects, they can be exported
to third parties. This allows third parties to manipulate the relationBbipexample

a third party could create, destroy or navigater#iatiorship. Third parties cannot
manipulate object references.

Traversals that Are Siported for Graphs of Related Objects

When objects are related using the Relationskiwvi€e, they form graphs of related
objects. Interfaces are defined by thdd®ienship Service to support traversing the
graph.

Relationships and Roles that Can Be Extended with Attributes and
Behavior

Relationships haveslationship-specific semanticBor example, the employment
relationship has a job title attribute. Since relationships and roles are objectsalith w
defined OMG IDL interfaces, they can be extended through OMGitDeritance to
add suchrelationship-specific attributes and operations.

9.1.3 Resolution of Technical Issues

Modeling and Relationship Semantics

An application designer models a problem as a set of objects and the relationships
between those objects. Using OMG IDL, tgplication designer directly represents
the objects of the model. Using the Relations®dguvice, the application designer
directly represents the roles and relationships of the model.

The Relatilnshipanc Role interfaces can be extended using OMG IDheritance to
add relatimship and role specifiattributesand @erations. For example, a designer
might define the employment relatiship to have an operation returning a job title.

Managing Relationships

TheRelatiorshipFacton interface defines an operation to create a relationship, given a
set of roles. ThiRole andRelationshi| interfaces define operations to delete and
navigate relationshipsetween objects.

CORBAservices March 1995

Constraining Relationships

Type, cardinalityand degree corrsiints on relationships are expressed in the
interfaces.

The RoleFactory::create_role operationcan raise a

RelatedObjectTypeError exception. This allows implementations of iRole

interface to place further constraints on the type of the related objects. For example, an
EmployedByRo can ensure related objects are people. An attempt to have it represent
a monkey wouldaise aRelatedObjectTypeError exception.

Similarly, the RelationshipFactory::create operationcan raise a
RoleTypeError exception. This allows implementations of ‘Relationshi|)
interface to put constraints on the type of the roles. For example an Employment
relationship can ensure there isEmployerRol and anEmployeeRo e

The RelationshipFactory::create operationcan also raise DegreeError
exception. This ensures that there are the correct number of roles.

Maximum cardinality constraints are enforced by the role objects themselves. A role
can raise iMaxCardinalityExceeded exception and refuse to patrticipate in a
relationship if its maximum cardinality would beameded. Roledefine an operation

to ask if their minimum cardinality constraint is being met.

Referential Integrity

If the Relationship Service is used in an environment supporting transactiats, str
referential integrity is achieved. That is, if an related object refers to another (via a
relationship), then the other related object will also refer to it. Without transactions,
strict referential integrity cannot befieved since &ilure duing execution of the
relationship construction protocol could causdaagling reference.

Relationships and Roles as First Class Objects

Our design defines bottelatiorships and roles as first class objects. This is extremely
important because it encapsulates andrabts the state to represent the relatigash
allows third party manipulation of the relatiship and allows the roles and
relationships themselves to support operatiamd attributes.

Different Models for Navigating and Constructing Relationships

The Relationship Service defines interfaces for constructing and navigating
relationships component-by-component. These building block operationise used
by a higher-level servicesuch as a query service.

Externalization Service: v1.CService Descriptic March 1995 9-5

9-6

Efficiency @nsiderations

Our design has severf@atures that allow for highly optimizéchplementabns.
Performance optimizations aaehieved byclusterin¢ and/orcaching of connection
information.

Clients carcluste related objects anttheir roles by their selection of factories.

Our design defines the containment relationship logicallgoés noimply physical
clustering of state oexecution, Fbwewer, it serves as a godunt to implementations
for clusterin. An environment can choose to cluster containers and contained objects.

The get_other_related_object operation can be implementedcach¢ remote
related objects. The cachedormation is immutablepnce arelationship is
established, the roles and related objects willahainge.

CORBAservices March 1995

9.2 Service Structure

This section provides information about the levels of service; the specification is
organized around these levels. It also describes the hierarchglatioRship Service
interfaces and explains the main purpose of each interface.

9.2.1 Levels of Service

The Relationship Service defines three levels of service:fedastionships, graphs of
related objectsand specific relationship3.he specification is organized around these
levels.

Level One: BasRelationships

The Relationshiganc Role interfaces define the base Relationship Service.
Figure 9-1 illustrate$wo instances of the containmeetationship. Thelocument
plays the container role; the figure and tbgo play the catainee role.

The diamond is an objedupporting theRelationshi| interface.The smallcircles

are objects supporting ttRole interface.

Rolesrepreser objects in relatiaships. Roles have a maximum cardinality. As
illustrated, the container role can be involved in many instances of a relationship.
The containeeoles can only be involved in a single instance of a relationship.

Figure 9-1 Base relationships.

Externalization Service: v1.CService Structur March 1995 9-7

Figure 9-2 illustrates the navigatidunctionality of relationships; for example the
arrow between a role and another role indicates ib&siple to navigate from one
role to another. The arrow does not, however,catdi that the object reference to
the other role is necessarily stored by the role.

\

Figure 9-2 Navigation functionality of base relationships

0—»

Table 9-1 lists the interfaces to support relationships and roles.

Level TwoGraphs of Related Objects

Distributed objects do not exist in isolatiofhey are connected together. Objects
connected together forgraphs of related objec The Relatimship Service defines
the Traversal interface. TheTraversa interface defines an operation to traverse a
graph. Theraversal object cooperates with extended relggporting the
Cos@aphs::Rol¢ interfaceand objects supporting ttNode interface.

Figure 9-3illustrates agraph of related objects. The folder, the figure, the logo and
the bookall support theNode interface. The small circles are rokspporting the
Cos@aphs:Rol¢ interface.

CORBAservices March 1995

€ @ containment
< 0 reference
00 check_out

Figure 9-3 An example graph of related objects.

Table 9-3 lists the interfaces to support graphs of related objects.

Level ThreeSpecific Relationships

Containment and reference are two important reiatigps. The RlationshipService
defines these two binary relationships. Table 9-4 and Tablef2-thé¢ interfaces
defining specific relationships.

Externalization Service:v1.0 Service Structure March 1995 9-9

9.2.2 Hierarchy of Relationship Interface

The relationship interfaces are arranged into the interface hierarchy illustrated in

Figure 9-4.
Relationship CosRelatinships module
‘ (Base level)
Containment Reference specific relationships

Figure 9-4 Relationship interface hierarchy

9.2.3 Hierarchy of Role Interface

The role interfaces are arranged into ithterface hierarchyllustrated inFigure 9-5.

CosRelationships::Role CosRelationships module
(Base level)
CosGraphs::Role CosGraphs module
/‘ (graph level)
ContainsRole /\ ReferencesRole specific relationships
ContainedInRole ReferencedByRole

Figure 9-5 Role interface hierarchy

TheRole interface defines operations to efficiently navigagkationships between
related objects.

The CosGraphs::Rol interface defines an operation to return the edges that involve
the role. This is used by the traversal service defined at the graph level.

Finally, ContainsRol, ContainedInRol,:ReferencesRc and ReferencedByRc are
specific roles for two important relationships: containment and reference.

9-10 CORBAservices March 1995

9.2.4 Interface Summary

The Relationship Service defines interfaces to support the functionality described in
section 9.2.

Table 9-1 thraigh Table 9-5 give high level descriptions of the Relationship Service
interfaces.

Table 9-1 Interfaces defined in theosObjectldentitynodule

Interface Purpose IPrimary Clients
CosObjectldentity::
IdentifiableObject To determine if two objectsThere are many clients. The
are identical. graph level of the

Relationship Service is one.

Table 9-2 Interfaces defined in thEosRelationshipsodule

Interface Purpose Primary Clients

CosRelationships::

Relationship Represents an instance of aClients that navigate
relationship type. between related objects.

RelationshipFactory Supports the creation of Clients establishing
relationships. relationships.

Role Defines navigation operationsClients that navigate
for relationships. between related obgts.
Implements type and Relationship factories.
cardinality constraints.

RoleFactory Supports the creation of Objects participating in
roles. relationships.

Relationshiplterator Iterates the relationships in Clients that navigate

which a particular role object relationships.
participates.

Externalization Service:v1.0 Service Structure March 1995 9-11

Table 9-3 Interfaces defined

in thCosGraph module

Interface

Purpose

Primary Client(s)

CosGraphs::

Traversal

TraversalFactory

TraversalCriteria

Role

Edgelterator

Node

NodeFactory

Defines an operation to
traverse a gnah, given a
starting node and traversal
criteria.

Supports the creation of a
traversal object.

Clients that want a standard
service to traverse graphs.

Clients that want a standard
service to traverse graphs.

Provides navigation behavior Traversal implementations.

between nodes.

Extends the
CosRelationships::Role
interface to return edges

Returns additional edges
from a role.

Defines operations for a
related object to reveal its
roles.

Supports the creation of
nodes.

Clients that traverse graphs
of related objects.

Clients that traverse graphs
of related objects.

Clients that traverse graphs
of related objects.

Clients that create nodes in
graphs.

Table 9-4 Interfaces defined

in thCosContainmel module

Interface

Purpose

Primary Client(s)

CosContainment::

Relationship

ContainsRole

ContainedInRole

one-to-many relationship

Represents an object that
contains other objects.

Represents an object that is
contained in other objects.

Clients that depend on
Containment relationship

type.

Clients that navigate
containment relationships
between objects.

Clients that navigate
containment relationships
between objects.

9-12 CORBAservices

March 1995

Table 9-5 Interfaces defined in thCosReferenc module

Interface Purpose Primary Clients
CosReference::
Relationship many-to-many relationship Clients that depend on the
reference relationship type.
ReferencesRole Represents an object that Clients that navigate
references other objects. reference relationships

between objects.

ReferencedByRole Represents an object that is Clients that navigate
referenced by other objects. reference relationships
between objects.

9.3 The Base Relationshiodel

The base level of the Relationship Service defines interfaces that stglpbanships
between two or more CORBA objects. Objects that participate in a relationship are
called related objects. Relationships that share the same semanticelationship
types. A relationship is an instance of a relationship tgpe has an identity.

Each related object is connected with the relationship via a role. Roles are objects
which characterize a related object's participation in a relationship type. Role types are
used for expressing the role’s characteristics by an IDL interface. Cardinality
represents the number of relationship instances connected to Degre« represents

the number of roles in i elationship. All characteristics aexpressed by

corresponding IDL interfaces. Relationship and role typeduaiteby subtyping the
Relationshij and Role interfaces.

Figure 9-6 gives a graphical representation of a simple relationship type. It illustrates
thatdocument referenc book:. Documents are in ttReferencesRc and books are in

the ReferencedByRc. Documents, reference, the roles dabks areall types; there

are interfaces (written in OMG IDL) for all five.

Externalization Service: v1.CThe Base Relationship Mo March 1995 9-13

@ ReferencesRole

Reference Relationship
attribute date_of _reference

RefermcedByRole

Figure 9-6 Simple relationship type: documents reference books

Figure 9-7, on the other hand, gives a graphical representation of an instance of a
relationship type. It illustrates that “my document”, an instanc@amfument,
references “War and Peace”, an instance @fkB Most of the figures in this
specification represent instances of related objects, anle@gelationships. Figures
describing object and relationshiype are clearly magd.

@ ReferencesRole

Reference Relationship
May 30, 1994

RefermcedByRole
\War and Peacg

Figure 9-7 Simple relationship instance: my document references the book “War and Peace”

9.3.1 Relationship Attributes and Operations

Relationships may hawtributes and peratilns. For example, the reference
relationship of Figure 9-6 has an attribute indicating the date the reference from the
document to the boowas estalithed.

9-14 CORBAservices March 1995

Rationale

If relationships are not alwed to deihe attributes and operations, they will have to be
assigned to one of the related objects. This approach is prone to misunderstandings
inconsistencies. Thapproach to define aartificial relatedobject, which then carries
the attributes, is equally unsatisfactory.

The date attribute of the example of Figure 9-7 is clearlgttiibute ofthe

relationship, not one of related objects. It cannot bataibute of‘my document”

since “my document” can reference many books on different daitadarly, it cannot

be an attribute of “War and Peace” since “War and Peace” can be referenced by many
books on different dates.

9.3.2 Higher Degree Relationships

The Reference relationship in Figure 9-6 ibinary relationship; that is, it is defined

by two roles. The Relationship Service can also supptationships with more than

two roles. The fact that three or more related objects may be part of a relationship can
be expressed directly by means of the same concept as in the binaryheadegres:
represents the number of roles in a relationshife Relationship Service supports

higher degree relationships, thatréationships with dgree greater than two.

Figure 9-8 shows a ternary “check out” relationship between bdibkaries and
persons. The semantics of this relationship is that a person bordoeak rom a
library. The relationship also defines atiributethat indicates the datehenthe book
is due to be returned by the person to the library.

check_out relationship
attribute due_date

() borrower role

Figure 9-8 A ternary check-out relationship type between books, libraries andnzers

Rationale

The Relationship Service represents higher deggikeionships directly. liclearly

defines the number of expected related objects as well as other integrity constraints. It
is more readable, more understandable and easier to enforce consistency constraints fo
related objects with a direct representation than with alternative representations that
simulate higher degree relationships using a set of birdagiorships. When

Externalization Service: v1.CThe Base Relationship Mo March 1995 9-15

9-16

simulatinghigher degree relationships, the relationship information is spread over
multiple object and relationshiype definitions, as are the corresponding iritggr
constraints.

Figure 9-9 shows an alternative representation of the teretionship from

Figure 9-8 using binary relationships. Note that the first representation is not
equivalent to that of Figure 9-8 since cardinalities and other integrity constraints
cannot be expressed correctlytinis alternative representation.

Figure 9-9 An unsatisfactory representation of the ternary check-out relationship using binary
relationships.

Figure 9-10 illustrates a second alternative representation of the ternary relationship of
Figure 9-8. It uses an addition@rtificial) related object tge. This representation is
equivalent to Figure 9-8 Check-oL is constrained to participate in exactly one

instance of each of the three binaeyationship typs. However, this alternative needs
three relationship types and one additional related object(Check-out instead of

only one relationship type, and therefore is much more complex and harder to capture
when compared to the representation using one relationship type with degree 3.

U
° <,
Figure 9-10 Another unsatisfactory representation

CORBAservices March 1995

9

Since the Relationship Service supports higher arelationships directly, the user of
the service need not resort to the unsatisfactory representations using binary
relationships of Figure 9-9 and Figure 9-10.

9.3.3 Operations

The base level of the Relationship Service provides operations to:
» Create role and relationshigjects
» Navigate relationships
» Destroy roles and relationships
* Iterateover the relationships in which a rgdarticipates

Creation

Roles are constructed independently using a role factory. Roles represent an existing
related object that is passed as a parameter iRoleFactory::create

operation. When creating a new role object, the type of the related ocaiebe

checked by the factory. Thrinimum and maximum cardinality, elhe minimal and

the maximal number of relatiship instances to which the new role object may be
connected, are indicated by attributes on the factory.

Figure 9-11 illustrates a newly created role.

Figure 9-11 Creating a role for an object

A newrelationship is created Ipassing a sequence of named roles to a factory for the
relationship. The expected degree and role types for the new relationship are indicated
by attributes on the factory. During the creation of the r&atiorship, the role types

and the maximum cardinality can be checked. Duplicate role names are not allowed
since the names are used to distinguish the roles in the scope of the relationship.

When creating a relationship, the factory creates “links” between the roles and the
relationship using thlink operation on the role.

Figure 9-12 illustrates a fully established binagyatiorship. Figure 9-12 represents
navigation functionalit; it does not necessarily represent stored object references. A
variety of implementation strategies are described in sec3i@rb.

Externalization Service: v1.CThe Base Relationship Mo March 1995 9-17

\

Figure 9-12 A fully established binary relationship

Navigation

Figure 9-12 illustrates the navigationahtttionality of a relationship. In particular,

® a relationship defines an attribute that indicates a read-only attribute that indicates
the named roles of thelationship,

® arole defines a read-only attribute that indicates the related object that the role

represents,

e A role supports thget_other_role operation, that given a relationship
object and a role name, returns the other role object,

» A role supports thget_other_related_object operation, that given a

relationship object and a roteame, returns theelated object that theamed role
represents in the relationship and

» A role supports thget_relationships operation which returns the
relationships in Wich the role participates.

Destruction

For both roles and relationshifpjects, the Relationshifervices introduces a
destroy operation.The destroy operatiofor relationship objects also destroys the
links between theelationship and all of the role objects.

9.3.4 Consistency Constraints

For each roléwo cardinalities are defined: minimum and maximum.

® The minimum cardinality indicates the minimum number of relationship instances
in which a role must participate.

® Themaximum cardinality indicates the maximum number of relationship instances
in which a role can participate.

Maximum cardinality constraint can béecked whermrelationships are created. Note
that the relationship mechanism cannotjtbglf, enforce the minimum cardinality
constraint. However, a role can be asked explicitly if it magstsinimum cardinality
constraint using theheck _minimum_cardinality operation.

9-18 CORBAservices March 1995

9

Type integrity is preserved by CORBA mechanisms because related objects, roles and
relationships are instances of CORBA object typsgelcmstraints can be checked
when roles and relationships are created.

9.3.5 Implemaetation Strategies

Figure 9-12 illustrates the navigational functionality of a fully established binary
relationship. There are a variety afiplementation strategigmssible. The
get_other_role and theget_other_related_object operations can be:

* Implemented by &ching object references to other roles and related objects, or
» Computed when needed using the relationship object.

The appropriate implementation strategy typicalépends owlistributionboundaries.

If the roles and relationship objects are clustered, then only storing the values at the
relationship object optimizespace. If, on the other hand, the roles and the related
objects are clustered, caching object references to other roles and related objects at the
roles allows the relationship to be efficiently navigated without involving a remote
relationship object.

Role implementations that cache object references to otheranderelated bjects
need not worry about updating the cache. Once the related objects and relationships are
established, they cannot be changed.

9.3.6 The CosObjectldentity Module

CORBA: Common Object Request Broker Architectum@ Specificationdoes not

define a notion of object identity for objects. The Relationship Service requires object
identity for the objects it defines. As such, thel®iorship Service assumes the
CosObjectldentity module specified in Figure 9-13 . This is defined in a separate
module; other Object Services may find this module to be generally useful.

module CosObjectldentity {
typedef unsigned long Objectldentifier;

interface ldentifiableObject {
readonly attribute Objectldentifier constant_random _id;
boolean is_identical (
in ldentifiableObject other_object);

Figure 9-13 The CosObjectldentity Module

Externalization Service:v1.0 The Base Relationship Model = March 1995 9-19

The ldentifiableObject Interface

Objects that support trldentifiableObjec interface implement an attribute of type
Objectldentifie and theis_identical operation. This mechanism provides an
efficient andconvenient method of supporting object idgnin a heterogeeous
CORBA-based environment.

constant_random_id

readonly attribute Objectldentifier constant_random_id;

Objects supporting thidentifiableObjec interface define an attribute of type
Objectldentifie. The value of the atbute must not change during thilime ofthe
object.

A typical client use of this attribute is as a key in a hash table. As such, the more
randomly distributed the valuese, the better.

The value of this attribute isot guaranteed to be unique; that is, another identifiable
object can return the same value. However, if objects return diffietemtifiers,
clients can determine thawo identifiable objects arnot identical.

To determine if two identifiable objecare identical, theis_identical operation
must be used.

is_identical

boolean is_identical (
in IdentifiableObject other_object);

Theis_identical operation returntrue if the object and thother_object are
identical. Otherwise, the operation returfalse.

9.3.7 The CosRelationships Module

The CosRelationshif moduledefines the interfaces of the base level Relationship
Service. In particular, it defines

» Relationshi| andRole interfaces to represent relationships and roles,
» RelationshipFactor andRoleFactor interfaces to create relationships antes

» Relationshiplteratc interface to enumerate the relatihips in which a role
participates

9-20 CORBAservices March 1995

The CosRelationshig module isshown inFigure 9-1-

#include <Objectldentity.idl>

module CosRelationships {

interface RoleFactory;
interface RelationshipFactory;
interface Relationship;
interface Role;

interface Relationshiplterator;

typedef Object RelatedObject;

typedef sequence<Role> Roles;

typedef string RoleName;

typedef sequence<RoleName> RoleNames;

struct NamedRole {RoleName name; Role aRole;};
typedef sequence<NamedRole> NamedRoles;

struct RelationshipHandle {

h

Relationship the_relationship;
CosObjectldentity::Objectldentifier constant_random_id;

typedef sequence<RelationshipHandle> RelationshipHandles;

interface RelationshipFactory {

struct NamedRoleType {

RoleName name;

::CORBA::InterfaceDef named_role_type;
h
typedef sequence<NamedRoleType> NamedRoleTypes;
readonly attribute ::CORBA::InterfaceDef relationship_type;
readonly attribute unsigned short degree;
readonly attribute NamedRoleTypes named_role_types;
exception RoleTypeError {NamedRoles culprits;};
exception MaxCardinalityExceeded {

NamedRoles culprits;};
exception DegreeError {unsigned short required_degree;};
exception DuplicateRoleName {NamedRoles culprits;};
exception UnknownRoleName {NamedRoles culprits;};

Relationship create (in NamedRoles named_roles)
raises (RoleTypeError,
MaxCardinalityExceeded,
DegreeError,
DuplicateRoleName,
UnknownRoleName);

Figure 9-14 The CosRelationships Module

Externalization Service: v1.CThe Base Relationship Mo March 1995

9-21

9-22

interface Relationship :

k

CosObjectldentity::IdentifiableObject {
exception CannotUnlink {

Roles offending_roles;
3
readonly attribute NamedRoles named_roles;
void destroy () raises(CannotUnlink);

interface Role {

b

exception UnknownRoleName {};
exception UnknownRelationship {};
exception RelationshipTypeError {};
exception CannotDestroyRelationship {
RelationshipHandles offenders;
b
exception ParticipatinginRelationship {
RelationshipHandles the_relationships;
h
readonly attribute RelatedObject related_object;
RelatedObject get_other_related_object (
in RelationshipHandle rel,
in RoleName target_name)
raises (UnknownRoleName,
UnknownRelationship);
Role get_other_role (in RelationshipHandle rel,
in RoleName target_name)
raises (UnknownRoleName, UnknownRelationship);
void get_relationships (
in unsigned long how_many,
out RelationshipHandles rels,
out Relationshiplterator iterator);
void destroy_relationships()
raises(CannotDestroyRelationship);
void destroy() raises(ParticipatingInRelationship);
boolean check_minimum_cardinality ();
void link (in RelationshipHandle rel,
in NamedRoles named_roles)
raises(RelationshipFactory::MaxCardinalityExceeded,
RelationshipTypeError);
void unlink (in RelationshipHandle rel)
raises (UnknownRelationship);

interface RoleFactory {

exception NilRelatedObject {};
exception RelatedObjectTypeError {};
readonly attribute :: CORBA::InterfaceDef role_type;

Figure 9-14 The CosRelationships Modu(Continued)

CORBAservices March 1995

b

interface Relationshiplterator {

readonly attribute unsigned long max_cardinality;
readonly attribute unsigned long min_cardinality;
readonly attribute sequence
<::CORBA:InterfaceDef> related_object_types;
Role create_role (in RelatedObject related_object)
raises (NilRelatedObject, RelatedObjectTypeError);

boolean next_one (out RelationshipHandle rel);

boolean next_n (in unsigned long how_many,
out RelationshipHandles rels);

void destroy ();

Figure 9-14 The CosRelationships Modu(Continued)

Example of Containment Relationships

The example of Figure 9-15 is referred to throughout the following sections to describe
roles and relationships. The figure represents two binamgst@-many containment
relationships between a document and a figure and a logo.

’ContainedlnRoIe A

relationship B

@ ContainsRole C

relationship D

ContainedInRole E

Figure 9-15 Two binary one-to-many containment relationships.

The RelationshipFactory Interface

The RelationshipFacton interfacedefines an operation for creating an instance of a
relationship among a set of related obje€tse factory also defines two attributes that
specify the degreand role types of the relationships it creates.

Externalization Service: v1.CThe Base Relationship Mo March 1995 9-23

9-24

Creating a Relatimship

Relationship create (in NamedRoles named_roles)
raises (RoleTypeError,

MaxCardinalityExceeded,

DegreeError,

DuplicateRoleName,

UnknownRoleName);

Thecreate operation creates a new instance of a relationship. The factpagsed

a sequence of named roles that represent the related objects in the newly created
relationship.The factory, in turn, informs theles about the newelationshipusing
thelink operation described in section

Roles implement maximum cardinality constraints. A role may refuse to participate in
a new relationshipdcause it would violate a cardinality constraintsiich a case, the
MaxCardinalityExceeded exception is raised and the offending roles are
returned in the exception.

The number of roles passed to create operation must be the same as the value of
the degree attribute. If rot, theDegreeError exception is raised.

Role names are used to associate each actual role object with ondarfrtakroles
expected by theelationship to be created.

The set of role names passed tocreate operation must be the same as the set of
role names in the factorynamed_role_types attribute. If not, the
UnknowRoleName exception is raised, and the unrecognized names are returned in
the exceptionThe sequence order tife named_roles parameter and the sequence
order of thenamed_role_types need not correspond.

The type of each role passed to create operation must be of the same type as the
type indicated for the corresponding role name innamed_role_types attribute.

If not, theRoleTypeError is raised and the offending roles are returned in the
exception.

The names of the roles passed tocreate operation must be unique within the
scope ofthis relationship type. If not, ttDuplicateRoleName exception is raised.

Example of Figure 9-15

The document and the figure were related, that is relationship B was created, by
passing roles Aand C to thecreate operation of theelationship factory.Similarly,
the document and the logo were related by passing roee®dE to the relationship
factory for relationship D.

CORBAservices March 1995

Determining the Created Relationship’s Type

readonly attribute :: CORBA::InterfaceDef relationship_type;

The relationship created by a factory may be a subtype (Relationshi| interface.
The rrelationship_type attribute indicates the actual types of the relationships
created by the factory.

Determining theDegree of eRelationship Type

readonly attribute unsigned short degree;

Thedegree attribute indicates the number of roles for the relationships created by the
factory.

Example of Figure 9-15
The relationship factory for containment has a degree attribute whose value is 2

because astainment is a binary relationship.

Determining Names and Types of the Res of a Relatbnship Type

readonly attribute NamedRoleTypes named_role_types;

Thenamed_role_types attribute indicates the required names and types of roles
for the relationships created by the factory. NamedRoleTypes are defisgd@ares
where the role type is given by tCORBA::InterfaceDef for the role objects.

Example of Figure 9-15

The relatimship factory for containment has an attributeoge value is a sequence of
two CORBA::Interfacel®fs: one for CatainsRole and one for GrainedInRole.

The Relationship Interface

The Relationshi| interfacedefines an attribute whose value is the named roles of the
relationship and an operation to destroy ral@tionship.

Externalization Service: v1.CThe Base Relationship Mo March 1995 9-25

Determining theRoles of a Relationship and ®ir Names

readonly attribute NamedRoles named_roles;

Thenamed_roles attribute returns the roles of the relationship. The roles have the
names that were dicated in thecreate operation defined by the
RelationshipFactor: interface.

Example of Figure 9-15

Relationship B has an attribute whose value is a sequence <"A”,InterfaceDef for
ContainedInRole; “C”, InterfaceDef for @tainsRole>. Similarly, relationship D has
an attribute whosealue is a sequence <'E”, InterfaceDef for ContainedleR'C”,
InterfaceDef for ContainsRole>.

Destroying a Relationship

void destroy () raises(CannotUnlink);

Thedestroy operation destroys the relationstoptween the object3heroles are
unlinked by therelationshipimplementaibn before it is destroyed. If roles cannot be
unlinked, theCannotUnlink exception is raised and the roles that could not be
unlinked are returned in the exception.

Example of Figure 9-15

If destroy is requested of relatiship B, theunlink operation is requested of both
roles A and C and theelationship B is destyed.

The Role Interface

TheRole interfacedefines operations to:
* navigat: the relationship from one role to another,
e enumerat the relationships in which the role participates,
« destro all relationships in which the role participates,
* link a role to a newly created relationship and
« unlink a role in the destruction process of a relationship and
« destro! the role itself,

9-26 CORBAservices March 1995

Determining the Related Olejct That a Role Represents

readonly attribute RelatedObject related_object;

Therelated_object attribute indicates the related object that the role represents.
The related object that the role represents is specified as a parametecreate
operation defined by thRoleFactor interface.

Getting Another Related Object

RelatedObject get_other_related_object (
in RelationshipHandle rel,
in RoleName target_name)

raises (UnknownRoleName,
UnknownRelationship);

Theget_other_related_object operation navigates the relationsrel to the
related object represented by the role natarget_name

If the role does notnow alout a role nametarget_name , the
UnknownRoleName exception is raised. If the role does not know about the
relationship rel, thidnknownRelationship exception is raised.

Example of Figure 9-15
Assuming role A is named “A”, requesting

get_other_related_object(B,"A") of role C returns the figure. On the other
hand, requestinget_other_related_object(D,"E") of role C returns the
logo.

Getting AnotherRole

Role get_other_role (in RelationshipHandle rel,
in RoleName target_name)
raises (UnknownRoleName, UnknownRelationship);

Theget_other_role operation navigates the relationsirel to the role named
target_name . Therole is returned.

If the role does nokknow alout a role nametarget name for the relationshipel
the UnknownRoleName exception is raised. If the role does not know about the
relationship rel, thidnknownRelationship exception is raised.

Externalization Service: v1.CThe Base Relationship Mo March 1995 9-27

9-28

Example of Figure 9-15

Assuming role A is named “A”, requestiiget_other_role(B,”A”) of role C
returns role A. On the other hand, requesget_other_role(D,’E”") of role C
returns role E.

Getting AllRelationships in Which a Role Partigates

void get_relationships (
in unsigned long how_many,
out RelationshipHandles rels,
out Relationshiplterator iterator);

Theget_relationships operation returns threlationships in which the role
participates.

The size of thdist is detemined by thehow_many argument. If there are more
relationships than specified by thow_many argumer, an iterator is created and
returned with the additional relatiships. If there are no more relationships, a nil
object referace is returned for the iterat((The Relationshiplteratc interface is a
standardterator described in the next sectio).

Example of Figure 9-15
Requestin¢get_relationships on role C would return the relationships B and D.

DestroyingAll Relationships in Which a RoleParticipates

void destroy_relationships()
raises(CannotDestroyRelationship);

Thedestroy_relationships operation destroys all relationships in which the role
participates.

Thedestroy_relationships operation is semantically equivalent to requesting
destroy of each relationship in which the role participates. The operation is not required
to be implemented in that fashion.

If the destroy_relationships operation cannot destroy one of the relationships,
then theCannotDestroyRelationship exception is raised and the relationships
that could not be destroyed are returned in the exception.

Example of Figure 9-15

Requestincdestroy_relationships of role A causes relationship B to be
destroyed. On the other hand, requesdestroy_relationships of role C
causegelationships B and D to be destroyed.

CORBAservices March 1995

Destroying a Role

void destroy() raises(ParticipatingInRelationship);

Thedestroy operation destroys the rol€he role must not be paipating in any
relationships. If it is, the ParticipatinglnRelationship exception is raised and the
relationships in which the rolearticipates are returned in the exception.

Example of Figure 9-15
Requestincdestroy_role of role A destroys relationship B and role A.

Checking Minimum Cardinality of a Role

boolean check_minimum_cardinality ();

The check_minimum_cardinality operation returntrue if a role satisfies its
minimum cardinality constraints. Otherwise, the operation reffalse.

Example of Figure 9-15
Requestinccheck_minimum_cardinality of role A would return true since it is

participating in relationship B.

Linking a Role in a Newly Created Refianship

void link (in RelationshipHandle rel,
in NamedRoles named_roles)
raises(RelationshipFactory::MaxCardinalityExceeded,
RelationshipTypeError);

Note —Thelink operation is not intended for general purpose clients that create,
navigate and destraglationships. Instead, it is an operation intended for
implementations of the relationship factccreate operation.

Thelink operation informs the role that a new relationship is being credtedole
is passed a relationship and a set of named roles that represent related objects in the
relationship.

A role can have anaximum cardinality, that is it mayniit the number of relationships

in which it participates. If thlink request would cause the maximum to be exceeded,
the MaxCardinalityExceeded exception is raised. If the type of theationship
does not agree with threlationshiptype that the role expects, the
RelationshipTypeError exception is raised.

Externalization Service: v1.CThe Base Relationship Mo March 1995 9-29

Example of Figure 9-15

When creating relationship B, thiactory for B requested the lin(B, A,C) operation
on roles A and C. This allows roles A and C to support thegationand
administration operations for relationship B.

Removing a Rolerbm a Relationship

void unlink (in RelationshipHandle rel)
raises (UnknownRelationship);

Note —Theunlink operation is not intended for general purpose clients that create,
navigate and destraglationships. Instead, it is an operation intended for
implementations of the relationshdestroy operation.

Theunlink operation causes the role to delete its record of the relationship.
If the relationship passed as an argumeniisnown to theole, the
UnknownRelationship exception is raised.

Example of Figure 9-15

The implementation of thdestroy operation on relationship B requests
unlink(B) of roles A and C. This causes roles A and C to fottgeir participation
in relationship B.

The RoleFactory Interface

The RoleFactor interfacedefinesattributesdescribing the roles that it creates and a
single operation to create a role.

Creating a Role

Role create_role (in RelatedObject related_object)
raises (NilRelatedObject, RelatedObjectTypeError);

Thecreate_role operation creates a role for the related object passed as a
parameter.

A role must represent a related object. If a nil object reference is passed to the factory
for the related object, thNilRelatedObject exception is raised.

Role factoriescanrestrict thetype of objects the roles they create will represent. If the
interface of the related object domast conform, theRelatedObjectTypeError
exception is raised.

9-30 CORBAservices March 1995

Example of Figure 9-15

Clients that created roles A, &hd E used thcreate operation of factories that
support theRoleFactor interface.

Determining the Created Role’s Type

readonly attribute :: CORBA::InterfaceDef role_type;

The role created by a factory may bsubtype of theRole interface. Theole_type
attribute indicates the actual types of the roles created by the factory.

Determining the Maximum Cardinality of a Role

readonly attribute unsigned long max_cardinality;

The max_cardinality attributeindicates the maximum number of relationships in
which a role (created by the factory) participates.

Example of Figure 9-15

The factory for role A returns 1, sinceContainedli role can be in no more than one
relationship. Attempts to add role A to more than oglationship result in
MaxCardinalityExceeded exceptions. (See ttcreate operation of the
RelationshipFactor interfaceand thelink operation of theRole interface.)

Determining the Minimum Cardnality of aRole

readonly attribute unsigned long min_cardinality;

The min_cardinality attribute indicates the minimum number of relationships in
which a role (created by the factory) participates.

Note, that unlike maximum cardinality, minimum cardinatgnnot be enforced since
roles will bebelow their minimum diring relationship construction. Roles do support
the check_minimum_cardinality operation to report if they are beldiveir
minimum.

Example of Figure 9-15

The factory for role A returns 1, sinceContainedli role should be in one
relationshi.

Externalization Service: v1.CThe Base Relationship Mo March 1995 9-31

9-32

Determining the Related Okjct Types for a Role

readonly attribute sequence
<::CORBA::InterfaceDef> related_object_types;

The factory creates roles that represent related objects in relationships. The related
objects must support at least one of the interfaces indicated by the
related_object_type attribute.

Example of Figure 9-15
The factory for role C returns the CORBA::InterfaceDef for a document.

The Relationshiplterator Interface

The Relationshiplterato interfaceis returned by thget_relationships
operation defined by thRole interface. It allows clients to iterate through any
additional relationships in which the role patrticipates.

next_one

boolean next_one (out RelationshipHandle rel);

Thenext_one operation returns the next relationship; if no more relationships exist,
it returnsfalse.

next_n

boolean next_n (in unsigned long how_many,
out RelationshipHandles rels);

Thenext_n operation returns at most the requested number of relationships; if no
more relationships exist, it returfalse.

destroy

void destroy ();

Thedestroy operation destroys the iterator.

CORBAservices March 1995

9.4 Graphs of Relate@bjects

When objects are related using the Relationship Sergraphs of related olegt: are
formed. This section focuses on how thel®ionship Service supports graphs of
related objects. We first describe theygh architecture supported by the service,
describesupport for traversing the graph and implementing camgaperationsand
then specify theCosGaphs module in detail.

Graphs are important fafistributed, object-oriented applications. A few examples of
graphs are:

Distributed Desktops

Folders and objects are connected together. Folders contain some aijects
reference others. Folders may contain or reference other folders. The objects are
distributed; theyspan mitiple machinesThe dstributed desktop is a distributed
graph.

Composed Applications

Applications are built out of existing objects that ao&nected together. An
example of such a composed application shared white boarThe composed
application is a graph.

User Interface Hierarchies

Presentation objects visualize semantic objects for users. Presentations contain othel
presentation objects. For example, a window might contain a button. The user
interface hierarchy is a graph.

Compound Documents

A compound document architecture allows graphacsmation,sound, video, etc.
to be connected together to give the user the impression of a single doctineent.
compound document is a graph.

9.4.1 Graph Architecture

A graph is a set of nodes and a set of edges, involving those nodes. Nodes are relatec
objects that support trNode interfaceand edges are represented by reationships
that relate nodes.

Figure 9-3 on page 9-flustrates an example ofgraph.

Externalization Service: v1.CGraphs of Related Objec March 1995 9-33

9-34

€ @ containment

< o reference
00 check_out

Figure 9-16 An example graph of related objects.

The folder, book, document, figure, library, person and logo are nodes in the graph.
The edges of the graph are represented byetla¢gionships:

containment: the folder and document,
containment: the document and the figure
containment: the document and the logo
reference: the figure and the logo

reference: the document and the book,
check_out: the book, the library and the person

The graph architecture supports multiple kindsedatiorships. For example, in

Figure 9-16, there aicontainmer, referenc andcheck_ot relationships. Thesmall

circles depict roles for a reference relationship, the solid circles depict roles for a
containment relationship and the shaded circles represent the roles of the check_out
relationship.

A node carparticipate in more thaane kind of relationship and thus have more than
one role. In the example the document has three kinds of roles:

» The ContainsRole

* The ContairedInRole

* The ReferencesRole

CORBAservices March 1995

Nodes

Nodes are identifiable objects that supportNode interface. Nodes collect roles of a
related object and the related object itself. A node enables standard traversals of graphs
of related objects because it supports the following:

* A readonly attribute defining all of its roles
* An operation allowing roles of a particular type to be returned
» Operations to addnd removeoles

The Node interface can be erited by related objects or an object implementing the
Node interface can be instantiated and interposed in front of related objects.
Interposition is particularly useful in these cases:
* When connecting immutable objectshish are objectshat are not aware of the
Relationship Service

* In order to traverse graphs @flated objects withut activating the related objects

As such, theNode interface defines an attribute whose value is the related object it
represents.

9.4.2 Traversing Graphs of Relatgdbjects

The Relationship Service definedraverse object that, given a starting node,
produces a sequence of directed edges of the graph. A directed edge corresponds to :
relationship. In particular, it consists of:
e An instance of a relationship,
» A startingnode and atarting named role of the edge to indicdirectior and
» A sequence containing the remaining nodes and named rolebinary
relatiorships, there is a single remaining node and rolen-ary relationships,
there aren-1 remaining nodeand roles.

The traversal objeatorks like aniterator, where directed edges are the itemedng
returned.

The traversal object, the nodes and the roles cooperate in traversing the graph. Through
the operations of thNode interface, the node reveals its roles to the traversal object.
Through the oprations of theCosGraphs::Rol interface, a role reveals its directed

edges to other nodes. (TCosGraphs::Rol interface defines an operation alimg a

role to reveal directed edges.)

In traversing agraph, the traversal object must detaatl represent cycles, and
determine the relevamtodes and edges.
Detecting and Representing Cycles

In order to terminate, a traversal must be able to detect a cycle in the graph. In the
example of Figure 9-3, the document, the figure, and the flogo acycle.

Externalization Service: v1.CGraphs of Related Objec March 1995 9-35

9-36

To detec cycles in the graph, the traversal objeepends on th&ct thatnodes are
identifiable objects, that is they support ldentifiableObjec interface defined in
section 9.3.6.

Torepreser cycles in the graph, the traversal object defines a scope offiigiesntor

the nodes and relationships in the graph. That is, a given traassign identifiers to

the nodes and relationships that are guaranteed to be unique within the scope of the
traversal.

Determining the Relevant Nodes and Edges

A traversal begins at the starting node, emits directed edgemay continue to other
related nodesThetraversal object is programmable in the criteria it uses for
determining the edges to emit and the nodassit The traversabbject depends on a
“call-back” object supporting thTraversalCriterie interface.

Given a node, the traversal criteria computes a sequence of directed edges to include ir
the traversalFor each edge, the traversaiteria can indicate whether the traversal

should continue to an adjacent node. Based on the results of the travieesal, the
traversal object emits edgand visits othernodes. The process continues untdrt

are no more edges mitand no more nodes tosit.

Three standard traversal modes are defined to allow clients flexibility in controlling the
search orderdepth first, breadtliirst, andbest firs. In order to understand the
differences between the modes, consider that the traversal maintains an bstlefed

the edges which have been producedisiting nodes. Thidist initially contains the
edges which result fromisiting the root node. leachiterationthe firstedge is

removed from théist to bereturned and its destination nodes are visited. Depending
upon the tragrsal male, these edgewe: inserted in the beginning of thst (depth

first), appended to the end of thst (breadth first), or inserted into tHest which is

sorted by the edge’s weight (béisst).

9.4.3 Compound Operations

Traversal objects are especially important in implementing comgboperations on

graphs of related objects. By compound operations, we mean operations that apply to
some subset of the nodes and edges in the graph. Examples of coropetatibns
include operations, such as copy, move, remove, externalize, print, and so forth.

Note —The Relationship Service defines a framework for compound operations but
does not define specific compound operations. The Life Gyulkethe Kternalization
Service specifications define cooynd operations that depend on thed@onship
Service.

A compound operation may be implemented either in one or two passes. A compound
operation implemented ione pass traverses the grapdelif and applies the operation
as it proceeds.

CORBAservices March 1995

9

A compound operation implemented in two passes uses the traversal object defined by
the Relationship Service to determine the relevant nodes and detect and represent
cycles. The second pass simply applies the operation teeslodts of thdirst pass.

A compound opration implemented itwo passes providesTraversalCriteric object
for the traversal service.

9.4.4 An Example Traveal Criteria

Consider a traversal of a graph with a traversal criteria object thapropagation
value: defined by the relationships to determimkether to emit an edge and whether
to proceed to another node. The traversé&tida is given anode by the traversarhe
traversal criterighen requests propagation values from each of the node’s roles.

Figure 9-17 illustrates a traversal of a graph using a traverisatia for acompound
copy operation. Using thpropagation_for operation defined by
CompoundLifeCycle::Ra interface, the traversal criteria obtains the propagation value
for the copy operatiofrom each of the node’s roles.

: TraversalCrieria

copy=deep copy=shallow

Figure 9-17 A traversal of a graph for compound copy operation.

Propagation

Compound operations may propagate from one node to another depending on the
semantics of the relationshijgtween the nodes. The propagation semantics of a
relationship depend on tidirection the relationship is being traversed. A propagation
value is eithedee|, shallow, inhibit or none.

Deefr means that the operation is applied totoele, to the relationship and to the
related objects. In the example of Figure 9-17, the propagation value for the copy
operation isdeep from the document to the logo; the copy propadeaiesthe
document to the logo across the containmel#tiorship. The traversairiteria for
copy that encounters a deep propagation value wostdict the traversal object to
emit the edge and visit the logo.

Shallowmeans that the operation is applied to the relationship but not to the related
objects. In the example of Figure 9-17, the propagation value fardine operation

from the logo to the document is shallow. The travecsiétria for copy that

encounters a shallow propagation value would instruct the traversal object to emit the
edge but the document is nasited.

Externalization Service: v1.CGraphs of Related Objec March 1995 9-37

9-38

Nonemeans that the @pationhas no effect on the relationship and no effect on the
related objects. A traversal criteria that encounters a none propagation value would not
return any edges and related nodes are not visited.

Figure 9-18 summarizes how deaallow andnode propgation values affectodes,
roles and relationships.

RN

[B ¢ O’Q

shallow

deep

Figure 9-18 How deep, shallow and none propagation values affects)adles and
relationships.

Inhibit means that the operation should not propagate to the node via any of the node’s
roles. Inhibit is particularly meaningful for the remove operatioprtvide so-called
“existence-ensuring relationships”.

For more discussion of propagation values, see [1.].

9.4.5 The CosGraphs Module

The CosGraphs module defines the support for graphs of related objects. It defines the
following interfaces:

» TravesalFactoryinterface for creating traversal objects
e Travesal interface for enumerating directed edges of a graph,

» TravesalCriteria “call-back” interface to allow programmaityl of the traversal
object

» Nodeinterface for collecting the roles of a related object
* NodeFactoryinterface for creating raes
» Roleinterface to support traversals

CORBAservices March 1995

The CosGraphs module ghown in Figure 9-19.

#include <Relationships.idl>
#include <Objectldentity.idl>

module CosGraphs {

interface TraversalFactory;
interface Traversal,
interface TraversalCriteria;
interface Node;

interface NodeFactory;
interface Role;

interface Edgelterator;

struct NodeHandle {

Node the_node;
::CosObjectldentity::Objectldentifier constant_random_id;

typedef sequence<NodeHandle> NodeHandles;

struct NamedRole {

Role the_role;
::CosRelationships::RoleName the_name;

typedef sequence<NamedRole> NamedRoles;

struct EndPoint {
NodeHandle the_node;
NamedRole the_role;
k

typedef sequence<EndPoint> EndPoints;

struct Edge {
EndPoint from;
::CosRelationships::RelationshipHandle the_relationship;
EndPaints relatives;

b

typedef sequence<Edge> Edges;

enum PropagationValue {deep, shallow, none, inhibit};
enum Mode {depthFirst, breadthFirst, bestFirst};

interface TraversalFactory {

Traversal create_traversal_on (
in NodeHandle root_node,
in TraversalCriteria the_criteria,
in Mode how);

Figure 9-19 The CosGraphs Module

Externalization Service:v1.0 Graphs of Related Objects

March 1995

9-39

interface Traversal {
typedef unsigned long TraversalScopedid;
struct ScopedEndPoint {
EndPoint point;
TraversalScopedld id;
|3
typedef sequence<ScopedEndPoint> ScopedEndPoints;
struct ScopedRelationship {
::CosRelationships::RelationshipHandle
scoped_relationship;
TraversalScopedld id;
|3
struct ScopedEdge {
ScopedEndPoint from;
ScopedRelationship the_relationship;
ScopedEndPoints relatives;
|3
typedef sequence<ScopedEdge> ScopedEdges;
boolean next_one (out ScopedEdge the_edge);
boolean next_n (in short how_many,
out ScopedEdges the_edges);
void destroy ();
|3

interface TraversalCriteria {
struct WeightedEdge {
Edge the_edge;
unsigned long weight;
sequence<NodeHandle> next_nodes;
|3
typedef sequence<WeightedEdge> WeightedEdges;
void visit_node(in NodeHandle a_node,
in Mode search_mode);
boolean next_one (out WeightedEdge the_edge);
boolean next_n (in short how_many,
out WeightedEdges the_edges);
void destroy();

Figure 9-19 The CosGraphs Modu(Continued)

9-40 CORBAservices March 1995

interface Node: ::CosObjectldentity::IdentifiableObject {
typedef sequence<Role> Roles;
exception NoSuchRole {};
exception DuplicateRoleType {};

readonly attribute ::CosRelationships::RelatedObject
related_object;
readonly attribute Roles roles_of_node;
Roles roles_of type (
in ::CORBA::InterfaceDef role_type);
void add_role (in Role a_role)
raises (DuplicateRoleType);
void remove_role (in ::CORBA::InterfaceDef of _type)
raises (NoSuchRole);

h

interface NodeFactory {
Node create_node (in Object related_object);

b

interface Role : ::CosRelationships::Role {
void get_edges (in long how_many,

out Edges the_edges,
out Edgelterator the_rest);

b

interface Edgelterator {
boolean next_one (out Edge the_edge);
boolean next_n (in unsigned long how_many,
out Edges the_edges);
void destroy ();

Figure 9-19 The CosGraphs Modu(Continued)

The TraversalFactory Interface

The TraversalFactor interface creates traversal objects. Traversa interfaceis
used by clients that want to traverse graphs of related objects according to some
traversal criteria.

Externalization Service: v1.CGraphs of Related Objec March 1995 9-41

9-42

create_traversal_on

Traversal create_traversal_on (
in NodeHandle root_node,
in TraversalCriteria the_criteria,
in Mode how);

Thecreate_traversal_on operatiol creates a traversal object starting at the
root node . The created traversal object uses TraversalQiteria object to
determine which directed edges to eamt which nodes taisit. Themode parameter
indicates whether the traversal will proceed in a depth first, bréastlor bestfirst
fashion.

The Traversal Interface

Traversal objects iterate throuScopedEdges of the graph according to the
traversal criterieand the mode established when the traversal was created. The
traversal also defines a scope for tleles and edges it returns; that is, it assigns

identifiers to the nodes and edges it returns. The identifiers are unique within the scope

of a given traversaScopedEdges are given by théollowing structure

struct ScopedEdge {

ScopedEndPoint from;

ScopedRelationship the_relationship;
ScopedEndPoints relatives;

3

typedef sequence<ScopedEdge> ScopedEdges;

A ScopedEdge consists of a distinguished scopaad point, a scopeetlationship

and a sequence of scoped end points. The distinguished scoped end point indicates the

direction of the edgeThe scoped end poigbnsists of a node, a role, and aantifier
for the node that is unique within the scope of the traversal.

next_one

boolean next_one (out ScopedEdge the_edge);

Thenext_one operatiol returns the next scoped edge; if no more scoped edges exist,

it returnsfalse.

CORBAservices March 1995

next_n

boolean next_n (in short how_many,
out ScopedEdges the_edges);

Thenext_n operatiol returns at most the requested number of scoped edges.

destroy

void destroy ();

Thedestroy operatiol destroys the traversal.

The TraversalCriteria Interface

The TraversalCriteric interface is used by the traversal object to determine which
edges temitand which nodes twisit from agiven node. The traversatiteria

behaves like an iterator of weighted edges. Weighted edges are given by the following
structure

struct WeightedEdge {

Edge the_edge;

unsigned long weight;

sequence<NodeHandle> next_nodes;

b

typedef sequence<WeightedEdge> WeightedEdges;

A WeightedEdge consists of an edge, a weight and a sequence of nodes indicating if
the traversal should continue to the nodes. The weight is only meaningful for the best
first traversal.

next_one

boolean next_one (out WeightedEdge the_edge);

Thenext_one operatiol returns the next weighted edge; if no more weighted edges
exist, it returnsfalse.

Externalization Service: v1.CGraphs of Related Objec March 1995 9-43

9-44

next_n

boolean next_n (in short how_many,
out WeightedEdges the_edges);

Thenext_n operatiol returns at most the requested number of weighted directed
edges.

destroy

void destroy();

Thedestroy operatiol destroys the traversal criteria.

visit_node

void visit_node(in NodeHandle a_node,
in Mode search_mode);

Thevisit_node operation establishes the node for which theetrsal criteria will
iterate and indicates the current search mode. As the traversal object traverses the
graph, it visitsnodes by requesting tlvisit_node operation of the traversal

criteria, followed bynext_one/next n requests to obtain the outgoing edfresn

the node.

For depthFirst and breadthBi modes, the weigtiteld in the weighted edges is
ignored. In the bestFirst mode, the weight valuetikized toorder the traversal's
edgedist which issorted by this value in ascending order.

If weighted edges from a previous node remalremvisit_node is requested, the
traversal criteria discards the previous edges.

The Node Irgrface

The Node interfacedefines operations that are useful in navigating graphelated
objects. In particular, it defines:

» Areadonly attribute giving all of theode’s roles
» An operation allowing roles conforming to a particular type to be returned
e Operations to addnd removeoles

Roles are distinguished in nodes in the OMG IDL of their interfaces.

A node cannot posses two roles where one role is a subtype of the other. This is
precluded by theadd role operation.

CORBAservices March 1995

9

A node can posses two or more roles that have a common supertypset Dfieoles
can be obtained by passing the common supertype roles_of type operation.

related_object

readonly attribute ::CosRelationships::RelatedObject
related_object;

Therelated_object attribute gives the related object that tlale represents.
This is useful when relating imumable objects.

roles_of node

readonly attribute Roles roles_of_node;

Theroles_of node attribute gives all of the node’s roles.

roles_of type

Roles roles_of _type (
in ::CORBA::InterfaceDef role_type);

Theroles_of _type operation returns the node’s roles that conform to the
role_type parameter. A role conforms role_type if it's interface is the same
or is a subtype crole_type

add_role

void add_role (in Role a_role)
raises (DuplicateRoleType);

Theadd role operation adds a role to thede. If the node posses a role of the same
type, a supertype or a subtypea_role , the DuplicateRoleType exception is
raised.

Externalization Service: v1.CGraphs of Related Objec March 1995 9-45

remove_role

void remove_role (in ::CORBA::InterfaceDef of_type)
raises (NoSuchRole);

Theremove_role operation removes all the roles that conform toof_type
parameter. If no roles conform to the of type parameteiNoSuchRole exception
is raised.

The NodeFactory Interface

The NodeRactory interfacedefines a single operation for creating nodes.

create_node

Node create_node (in Object related_object);

Thecreate_node operatiol creates a node whorelated_object attribute is
initialized totherelated_object parameter.

The Role Interface

The CosGraphs::Rol interfaceextends theCosRelationships::Rol interface with a
single operation to return a role’s view of it's relationshipise role’s view of a
relationship is given by the followit Edge structure:

struct Edge {

EndPoint from;

::CosRelationships::RelationshipHandle the_relationship;
EndPoints relatives;

b

typedef sequence<Edge> Edges;

The edge structure is defined by an end poimglationship and the other end points.
The from end point is the rokndits related object.

9-46 CORBAservices March 1995

get_edges

void get_edges (in long how_many,
out Edges the_edges,
out Edgelterator the_rest);

Theget _edges operatiol returrs theedges in which the rolearticipates.

The size of thdist is detemined by thehow_many argument. If there are more edges
than specified by thhow_many argumer, an iterator is createahd returned. If there
are no more edges, a nil object reference is returned fatetiagor

The Edgelterator Interface

The Edgelterato interfaceis returned by thiget_edges operation defined by the
CosGraphs::Rol interface. It allows clients to iterate throughy alditional
relationships in which the rolearticipates.

next_one

boolean next_one (out Edge the_edge);

Thenext_one operation returns the next edge; if no more edges exist, it returns
false.

next_n

boolean next_n (in unsigned long how_many,
out Edges the_edges);

Thenext_n operation returns at most the requested number of edges.

destroy

void destroy ();

Thedestroy operation destroys the iterator.

9.5 Specific Relationships

The Relationship Service defines two important relationsicontainmer and
referenci as part of its specificatiomhe example used throughout this specification
has been iterms ofthese two relationships.

Externalization Service: v1.CSpecific Relationshiy March 1995 9-47

9-48

9.5.1 Containment and Reference

Containmer is a one-to-many relationship. A contairoan contain many containees;
a containee is contained lope ®ntainer.Referenc, on the other hand, israany-to-
many relationship. An object can reference many objects; an algjedie referenced
by many objects.

Containment andeference areexample of relationships. However, since containment
and reference are very common relationships, the Relationship Service defines them as
standard.

Containment is defined by interfaces for a relationship androles: the
CosContainment::Relationshi interface, th«cCosGntainment::ContainsRa interface,
and theCosContainrent::ContainedInRolinterface.Relationshi| is a subtype of
CosRelationships::Relationst and ContainedIinRol andContainsRol are subtypes
of CosGaphs::Role

Similarly, reference is defined by interfaces for a refalop and two ras: the
CosReference::Relationsl interface, theCosReference::ReferencesR interface,
and theCosReference::ReferencedByRinterface.Relationshi| is a subtype of
CosRelationships::Relationst andReferencesRc and ReferencedByRc are
subtypes oCosQGaphs::Role.

9.5.2 The CosContainment Module

The CosContainmel module is shown in Figure 9-14

#include <Graphs.idl>
module CosContainment {

interface Relationship :
::CosRelationships::Relationship {};

interface ContainsRole : ::CosGraphs::Role {};

interface ContainedinRole : ::CosGraphs::Role {};

h

Figure 9-20 The CosContainment Module

CORBAservices March 1995

9

The CosContainmel module does not define new operations. It introduces new IDL
types to represent containment. Although it does not add any renatioms, it refines
the semantics of thesdtributes and operations:

RelationshipFactory

attribute value

relationship_type CosContainment::Relationship

degree 2

named_role_types “ContainsRole”,CosContainment::ContainsRole;
“ContainedInRole”,CosContainment::ContainedinRole

The CosRelationships::RelationshipFact::create operation will raise
DegreeError if the number of roles passed as arguments is not 2. It will raise
RoleTypeError if the roles are ncCosContainmer::ContainsRol and
CosContainmer:ContainedInRol. It will raise MaxCardinalityExceeded if the
CosContainmer:ContainedInRol is already participating in a relationship.

RoleFactory attribute for

ContainsRole value

role_type CosContainment::ContainsRole
maximum_cardinality unbounded
minimum__cardinality 0

related_object_types CosGraphs::Node

The CosRelationships::RoleFactorcreate_role operation will raise the
RelatedObjectTypeError if the related object passed as a parameter does not
support theCosGraphs::Nod interface. TheCosRelationships::RoleFactorlink
operation will raiseRelationshipTypeError if therel parameter does not
conform to theCosContainment::Relationst interface.

RoleFactory attribute for

ContainedInRole value

role_type CosContainment::ContainedinRole
maximum_cardinality 1

minimum__cardinality 1

related_object_types CosGraphs::Node

The CosRelationships::RoleFactorcreate_role operation will raise the
RelatedObjectTypeError if the related object passed as a parameter does not
support theCosGraphs::Nod interface. TheCosRelationships::RoleFactorlink
operation will raiseRelationshipTypeError if therel parameter does not
conform to theCosContainment::Relationst interface. The

Externalization Service: v1.CSpecific Relationshiy March 1995 9-49

CosRelationships::RoleFactorlink operation will raise
MaxCardinalityExceeded if it is already participating in a containment
relationship.

9.5.3 The CosReference Module

The CosReferenc module is given in Figure 9-.21

#include <Graphs.idl>
module CosReference {

interface Relationship :
::CosRelationships::Relationship {};

interface ReferencesRole : CosGraphs::Role {};

interface ReferencedByRole : ::CosGraphs::Role {};

b

Figure 9-21 The CosReference Module

TheCosReferenc module does not define new operations. It introduces new IDL types
to represent reference. Although it does not add any neratpns, it refines the
semantics of thesattributesand operations:

RelationshipFactory

attribute value

relationship_type CosReference::Relationship

degree 2

named_role_types “ReferencesRole”,CosReference::ReferencesRole;
“ReferencedByRole”,CoReference::ReferencedByRole

The CosRelationships::RelationshipFact::create operation will raise
DegreeError if the number of roles passed as arguments is not 2. It will raise
RoleTypeError if the roles are ncCosReference::ReferencesF and
CosReferenc:ReferencedByRcle

9-50 CORBAservices March 1995

9.6 References

RoleFactory attribute for

ReferencesRole value

role_type CosReference::ReferencesRole
maximum_cardinality unbounded
minimum__cardinality 0

related_object_types CosGraphs::Node

The CosRelationships::RoleFactorcreate_role operation will raise the
RelatedObjectTypeError if the related object passed as a parameter does not
support theCosGraphs::Nod interface. TheCosRelationships::RoleFactorlink
operation will raiseRelationshipTypeError if therel parameter does not
conform to theCosReference: ®ationshiy interface.

RoleFactory attribute for

ReferencedByRole value

role_type CosReference::ReferencedByRole
maximum__cardinality unbounded

minimum_cardinality 0

related_object_types CosGraphs::Node

The CosRelationships::RoleFactorcreate_role operation will raise the
RelatedObjectTypeError if the related object passed as a parameter does not
support theCosGraphs::Nod interface. TheCosRelationships::RoleFactorlink
operation will raiseRelationshipTypeError if therel parameter does not
conform to theCosRelationship::RelationsF interface.

1. James Rumbaugh, “Cantling Propagation of Operations using Attributes on
Relations."OOPSLA 1988 Proceedir, pg. 285-296.

2. James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy and William
Lorensen, “Mject-oriented Modeling and Design.téhticeHall, 1991.

Externalization Service: vl.CReference = March 1995 9-51

9-52 CORBAservices March 1995

Transaction Service Specification 10

This chapter provides the following information about the Transaction Service:

» A description of the service, which explains the functional, desigd,
performance requirements that are satisfied by this specification.

» An overview of the Transaction Service tlatroduces the concepts used
throughout his chapter.

» A description of the Transaction Service's architecture and a detailedtidefiof
the Transaction Service, including definitionsitsfinterfacesand operations.

» A user’s view of the Tragaction Service as seen by the application programmer,
including clientand object implementer.

» An implementer’'sview of the Transaction Service, which wiititerest
Transaction Service and ORB providers.

This chapter also contains anpagndix that explains theelationship between the
Transaction Service and TP standards, andppendix that contains transaction terms.

Contents

This chapter contains thfellowing sections.

Section Title Page
“Service Desdption 10-2

“Service Archiecture 10-12
“Transaction Service Interfaces 10-17
“The User'sView 10-34
“The Implementers’ View 10-48

CORBAservices November 1997 101

10

Section Title Page
‘The CosTrasactions Module 10-69
Appendix A “Relationship of Tragaction Service to TP |10-74
Standards

Appendix B “Transaction Service Glossary 10-85

10.1 Service Description

The concept of transactions is an important programming paradigm for simplifying the
construction of reliabland available applications, especially those that require
concurrent access to shared data. The transaction concept was firgedeplo
commercial operational applications where it was used to protect data in centralized
databases. More recently, the transaction concepbdes extended to the broader
context of distributed computation. Today it is widely accepted that transactions are
the key to constructingeliable distributed applications.

The Transaction Service described in this specification brings the transaction
paradigm, essential to developing reliable distributed applitgtiand the object
paradigm, key to produetty and quality in application development, together to
address the business problems of commercial transaction processing.

10.1.1 Oveniew of Transactions

The Transaction Service supports the concepttransactio. A transaction is a unit
of work that has the following (ACID) characteristics:

® A transaction isatomic; if interrupted by failure, all effects are done (rolled
back).

® A transaction produceconsisten results; the effects of a transaction preserve
invariant properties.

® A transaction idisolatec; its intermediate states amet visible to other transactions.
Transactions appear to execsatgially, even if they are performed concurrently.

® A transaction idurable; the effects of a completed transaction are persistent; they
are never lost (except in a catastrophic failure).

A transaction can be terminated in two ways: the transaction is either committed or
rolled back. When a transactiondemmitted, all cahnges made by the associated
requests are made permanent. When a transaction is rolledalachanges made by
the associated requests are undone.

The Transaction Service defines interfaces that allow multiple, distributed objects to
cooperate to provide atomicity. These interfaces enable the objects to either commit all
changes together or to rollback all changes together, even in the presence of
(noncatastrophicailure. Norequirements are placed on the objects other than those
defined by the Transaction Service interfaces.

10-2 CORBAservices November 1997

10

Transaction semantics can be defined as part of any object that provides ACID
properties. Examples are ODBM&sd persistent objects. The value of a separate
transaction service is that it allows:

® Transactions to include multiplegparately defined, ACID objects.

® The possibility of transactions which include objeatsd resources from the non-
object world.

10.1.2 Transactional Applications

The Trarsaction Service provides transaction synchronization across the elements of a
distributed client/server application.

A transaction can involve multiple objects performing multiple requests. The scope of
a transaction is defined bytransaction conte that is shared by the participating
objects. The Transaction Service places no constraints on the number of objects
involved, the topology of the application or the way in which the application is
distributed across a network.

In a typical scenario, a client first begins a transaction (by issuing a request to an
object defined by the Transaction Servicehick establishes a transaction context
associated with the clienttread. The client then issues requests. These requests are
implicitly associated witlihe client's transaction; they share the client’s transaction
context. Eventually, the client decides to end the transaction (by issuing another
request). If there were no failures, the changes produced as a consequence of the
client’s requests would then lmemmitted;otherwise, the changes would tmdled

back.

In this scenario, the transaction context is transmittealicitly to the objects, without

direct client intervention—See “Application Programming Models” on page 10-34.

The Transaction Service also supports scenarios where the client directly controls the
propagation of the transaction context. For example, a client can pass the transaction
context to an object as an explicit parameter in a request. An implementation of the
Transaction Service mighmiit the client’s ability to explicitly propagate the

transaction context, in order to guarantee transaction int€gety “Application
Programming Models” on padi-34, Subsection "Direct Context Management:

Explicit Propagation™).

The Transaction Service does not require #hlatequests be performed within the
scope of a tragaction. A request issued outside the scope of a transaetiono
associated transactimontext. It is up to each object to determitsebehavior vinen
invoked outside the scope of a tsation; an object that requires a transaction context
can raise a standard exception.

10.1.3 Definitions

Applications supported by the Treaction Service consist of the followimgtities:
» Transactional Client (TC)
e Transactional Objects (TO)

Transaction Service/l.1 Service Descriptic November 1997 10-3

10

» Recoverable Objects
* Transactional Servers
* Recoverable Servers

The following figure shows a simple application which includes these basic elements.

Distributed
! Client/Server Application !

Transactional Recoverable
Server Server

i Transactional
Client

Recoverap

Transactiona
Object

Transactional

Transactional
Operation a

begin or not involyed in registers resource in
end transactipn completion, transaction completion,
transaction may force rollback may force rollback

y Y

transaction

Transaction Service context

Figure 10-1 Application Including Basic Elements

Transactional Client

A transactional client is an arbitrary program tbam invoke oprations of many
transactional objects in a single transaction.

The program that begins a transactiocatied the transaction origina.or

Transactional Object

We use the terrtransactional objec to refer to an object whose behavior is affected
by being invoked within the scope ofransaction. A transactional object typically
contains or indirectly refers to persistent data that can be modified by requests.

10-4 CORBAservices November 1997

10

The Trarsaction Serviceloes not require that all requests have transactional behavior,
even when issued within the scope of a transaction. An object can choose to not
support transactional behavior, or to support transactional behavior for some requests
but not others.

We use the terrnontransactional obje to refer to an object none of whose operations
are affected by being invoked within the scope of a transaction.

If an object does not support transactional behavior for a request, then the changes
produced by the request might not survive a failure and the changes will not be undone
if the transaction associated with the request is rolled back.

An object can also choose to support transactional behavior for some requests but not
others. This choice can be exercised by both the client and the server of the request.

The Transaction Service permits an interfachaee both transactional and
nontransactionadimplemenations. No IDL extensions are introduced to specify
whether or not an operation has transactional behavior. Transactional befaewios
a quality of service that differs in different implementations.

Transactional objects are used to implement two types of application servers:
» Transactional Server
» Recoverable Server

Recoverable Objects and Resource Objects

To implement transactiondkehavior, an object musgtrticipate in certain protocols
defined by the Transaction Service. These protocols are used to ensure that all
participants in the transaction agree on the outcome (commit or rollaadkp
recover fromfailures.

To be more precise, an object is required to participate in these protocols only if it
directly manages data whose state is subject to change within a transaction. An object
whose data is affected mpmmitting or rollingback a transaction isalled a

recoverable obje.t

A recoverable object is by definition a transactional object. However, an object can be
transactional but not recoverable by implementtegstateusing some other

(recoverable) object. A client is concerned only that an object is transactional; a client
cannottell whether a transactional object is onist a recoverable object.

A recoverable object must participate in the Transaction Service protocols. It does so
by registering an object callecResourc with the Transaction Service. The

Transaction Service drives the caib protocol by issuing requests to the resources
registered for a transaction.

A recoverable object typically involves itself in a transachienause it is required to
retain in stable storage certain informatiorcitical times in itsprocessing. When a
recoverable object restarts after a failure, it participates in a recovery protocol based on
the contents (or lack of contents) of its stable storage.

Transaction Service/l.1 Service Descriptic November 1997 10-5

10

A transaction can be used to coordinate non-durattieities which do not require
permanent changes to storage.

Transactional Server

A transactional server is a collection of one or more objects whose behavior is affected
by the transaction, but which have no recoverable states of their owradiniste
implements transactionahanges using other recoverable objects. A transactional
server does nqgiarticipate in the completion of the transaction, but it can force the
transaction to be rolled back.

Recoverable Server
A recoverable server is a collection of objects, at least one of which is recoverable.

A recoverable server participates in the protocols by registeriegor moreResource
objectiwith the Transaction Service. The Teattion Service drives trmmmit
protocol by issuing requests to the resources registered for a transaction.

10.1.4 Transaction Service Functionality

The Transaction Service provides operations to:

Control the scope andudation of a transaction

Allow multiple objects to be involved in a single, atomic transaction
Allow objects to associate changes in their integtate vith a transaction
Coordinate the completion of transactions

Transaction Models

The Transaction Service supports tdistributed transaction models: flat transactions
and nested transactions. An implementation of the Transaction Service is not required
to support nested transactions.

Flat Transactions

The Transaction Service defines support for a flat transaction middetiefinition of
the function provided, and thmmitment protocolsised, is modelled on the X/Open
DTP transaction model definitich.

A flat transaction is considered to be a top-level transaction—see the next
section—that cannot havechild transaction.

1. SeeDistributedTransadion Processing: The XA Sgiéication X/Open Document C193. X/Open Comparg.,
ReadinglU.K.,ISBN 1-85912-03-1.

10-6 CORBAservices November 1997

10

Nested Transactions

The Transaction Service also defines a nested transaction model. Nestadtinais
provide for a finer granularity of recovery than flat transactions. The effdailofes

that require rolllack can be limited so that unaffected parts of the transaction need not
rollback.

Nested transactions allow an application to create a transaction #émabéxided in an
existing transaction. The existing transaction is calle(pareni of the subtransaction;
the subtransaction is callecchild of the parent transaction.

Multiple subtransactions can be embedded in the same parent transaction. The children
of one parent are callesiblings.

Subtransactions can be embedded in other subtransactions to any leestirnf. The
ancestor of a transaction are the parent of the subtransaatidn(recursively) the
parents of its ancestors. Tdescendant of a transaction are the children of the
transaction and (recursively) tlohildren of itsdescendants.

A top-leve transaction is one with no parent. A top-level transaction and all of its
descendants alealled atransactionfamily.

A subtransaction is similar to a top-level transaction in that theggsamade on
behalf of a subtransaction are either committed in their entirety or rodiekl
However,when a sulsansaction is committed, thehanges remain contingent upon
commitment ofall of the transaction’s ancestors.

Subtransactions aréristly nested. A transaction cannot cmih unless all of its
children have completed. When a transaction is rolled bedckf its children are
rolled back.

Objects that participate in transactions must support isnlaf transactions. The
concept of isolation applies to subtransactions as well as to top level transactions.
When a transaction hasultiple childrenthe children appear to other transactions to
executeserially,even if they are performed concurrently.

Subtransactions can be used to isolate failures. If an operation performed within a
subtransaction fails,rmy the subtransaction is rolled back. The parent transaction has
the opportunity to correct or compensate for the problem and conifslefgeration.
Subtransactions can also be used to perform suboperations ofactran in parallel,
without the risk of inconsistent results.

Transaction Termination

A transaction igernminated by issuing a request to commit or rollback the transaction.
Typically, a transaction is terminated by the client that originated the transaction—the
transaction originator. Some implementations of the Transaction Service may allow
transactions to bterminated byTransaction Service clients other than ¢me which
created the transaction.

Transaction Service/l.1 Service Descriptic November 1997 10-7

10

Any participant in a transaction can force the transaction to be rolled back (eventually).
If a transaction is rollethack, allparticipants rollback theichanges. Tpically, a
participant may request the rollback of the current transaction after encountering a
failure. It is implementation-specific whether the Transaction Seride#f monitors

the participants in a transaction for failures or inactivity.

Transaction Integrity

Some implementations of the Transaction Service impose constraints usetloé the
Transaction Service interfaces in order to guarantee integrity equivalent to that
provided by the interfaces which support the X/Open DTP transaction model. This is
called checke transaction behavior.

For example, allowing a transactiondommitbefore all computations acting on
behalf of the transaction have completed can lead to a loss oihteedaity. Checked
implementations of the Transaction Service will prevent premamemitment of a
transaction.

Other implementé&ins of the Transaction Service may rely completely on the
application to provide transaction integrity. This is caunchecke transaction
behavior.

Transaction Context

As part of the environment of each BRware thread, the ORB maintains a
transaction context. The transaction context associated with a thread is either null
(indicating that the thread has no associated transaction) or it refers to a specific
transaction. It is permitted for multiple threads to be associated with the same
transaction at the same time, in the same execution environmenmaitiple
execution environments.

The transaction context can be implicitly transmitted to transactional objects as part of
a transactional operation invation. The TransactioBervice also allows pgrammers
to pass a transaction context as an explicit parameter of a request.

Synchronization

The Transaction Service defines support for a synchronization interface. This provides
a protocol by which an object may be notified prior to the start of the two-phase
commit protocol within the coordinator with which it is registered. Wplementation

of the Trarsaction Service is not required to suppmymchraization.

10.1.5 Principles of Function, Design, and Performance

The Transaction Service defined in this specificafidfills a number offunctional,
design, and performance requirements.

10-8 CORBAservices November 1997

10

Functional Requirements

The Transaction Service defined in this specification addresses the following
functional requirements:

Support for multiple transaction models. The flat transaction model, which is widely
supported in the industry today, is a mandatory component of this specification. The
nested transaction modelhich providediner granularity isolation anthcilitates

object reuse in a transactional environment, is an optional component of this
specification.

Evolutionary Deployment. An important property of object technology is the ability

to “wrapper” existing programs (coarse grain objects) to allow these functions to serve
as building blocks for new business applications. This technique has been successfully
used to marry object-oriented end-user interfaces @dgthmercial business logic
implemented using classical procedural techeg

It cansimilarly be used to encapsulate the labgely ofexisting business software on
legacy environments and leverage that in building new business applicatoss:ill
allow customers to gradually deploy object technology into their existing
environments, without having t@implement all existing business functions.

Model Interoperability. Customers desire the capabilityadd object
implementations to existing procedural applications and to augment object
implementationsvith code that uses the procedural paradigm. To do so in a transaction
environment requires that a single transaction be shared by both theastject
procedural code. This includes the following:
* A single transaction which includes ORB anohrORBapplicationsand
resources.
* Interoperability between the object transaction service model and the X/Open
Distributed Transaction Pressing (DTP) model.
» Access to existing (non-object) programs and resource managers by objects.
» Access to objects by existing programs and resource managers.
e Coordination by a single transaction service of the activitidsotf objectand
non-object resource managers.

» The network case: A single transactiaiistributedbetween an object and non-
object system, each of which has its own Transaction Service.

The Transaction Service accommodates this requirement for implementations where
interoperability with X/GQoen DTRcompliant transactional applications is necessary.

Network Interoperability . Customers require the ability to interoperétween
systems offered by multipkeendors:

 Single transaction service, single ORB - It must be possible for a single
transaction service to interoperate wiihelf using a single ORB.

» Multiple transadbn services, single ORB - It must be possible for one transaction
service to interoperate with a cooperating transaction service using a single ORB.

 Single transaction servicmultiple ORBs - It must be possible for a single
transaction service to interoperate wielf using different ORBSs.

Transaction Service/l.1 Service Descriptic November 1997 10-9

10

10-10

» Multiple transaction servicesultiple ORBs - It mist be possible for one
transaction service to interoperate with a cooperating transaction service using
different ORBs.

The Transaction Service specifies all required interactimween coperating
Transaction Service implementations necessary to support a single ORB. The
Transaction Servicdepends on ORB interoperabil(as defined by the CORBA
specification) to provide cooperatiigansaction Services acrodiéferent ORBs.

Flexible transaction propagation control. Both client and objectplementations
can control transaction propagation:
A client controls whether or not its transaction is propagated with an operation.

» A client can invoke operations on objectdéhwtransactional behavior and objects
without transactional behavior within the scope of a singlesaation.

» An object can specify transactional behavior for its interfaces.

The Transaction Service supports both igip(system-managedjropagationand
explicit (application-managed) propagation. With impljgibpagation, transactional
behavior is not specified in the operation’s signature. Withiekgropagation,
applications define their own mechanisms for sharing a common transaction.

Support for TP Monitors. Customers need object technology to buildsion-critical
applications. These applications are deployed on commercial transaction processing
systems where a TP Monitor provides both efficient schedalimythesharing of
resources by a large number of users. It must be possible to impkhmdansaction
Service in a TP monitor environment. This includes:

» The ability toexecute multiple transactions concurrently.

e The ability toexecute clients, servers, and transaction services in separate
processes.

The Transaction Service is usable in a TP Monitor environment.

Design Requirements
The Transaction Service supports the following design requirements:

Exploitation of OO Technology. This specification permits a wide variety of ORB
and Transaction Service implementations and uses objects to enable ORB-based,
secure implementation¥he Transaction Service provides fm@grammer with easy
to use interfaces that hide some of the complexity inherent in general-use
specifications. Meaningful user applicatiocen be constructed usinmgterfaces that
are as simple or simpler than thphocedural equivalents.

Low Implementation Cost. The Transaction Service esgification considers cost from
the perspective of three users of the service - clients, ORB implementers, and
Transaction Service providers.

CORBAservices November 1997

10

 For clients, it allows a range ohplementaibns which are compliant with the
proposed architecture. Many ORB implementations will exist in client
workstations which have no requirement to understand transactions within
themselves, but will find it highly desirable to interoperate with server platforms
that implement transactions.

» The specification provides for minimal impact to the ORB. Where feasible,
function is assigned to an object service implementation to permit the ORB to
continue to provide high performance object access when transactions are not
used.

» Since this Transaction Service will be supported by existing (procedural)
transaction managers, the specification allows implementations that reuse existing
procedural Transaction Managers.

Portability . The Transaction Service specification provides for portability of
applications. It also defines an interfdmetween the ORB and thednsaction Service
that enables individual Transaction Service implementations to be ported between
different ORB implementations.

Avoidance of OMG IDL interface variants. The Traasaction Service allows a single
interface to be supported by both transactional and nosacdional implementains.
This approach avoids a potential “combinatorial explosion” of interface variants that
differ only in their transactional characteristics. For example, the existing Object
Service interfaces can support transactional behavior without change.

Support for both single-threaded andmulti-threa ded implementations.The

Transaction Service defines a flexible model that supports a variety of programming
styles. For example, a client with an active transaction can make requests for the same
transaction omultiple threads. Shilarly, an objecttan suppormultiple transactions

in parallel by using multiple threads.

A wide spectrum of implementation choice. The Transaction Service allows
implementations teahoose the degree of checking provided to guarantee legal behavior
of its users. This permits both robust implementations which provide strong assurances
for transaction integrity and lightweight implementations where such checks are not
warranted.

Performance Requirements

The Transaction Service is expected to be implemented on a wide rahgelware
and software platforms raimg from desktop computers to massively patadervers
and in networks ranging in size from a single LAN to wortievnetworks. To meet
this wide range of requirements, consideration must be given to algorithms which
scale, efficient communicans, and the number and size of accesses to permanent
storage. Much of this is implementaticand therefore notisible to the user of the
service. Nevertheless, the expected performance of the Transaction Service was
compared tats procedural equivalent, the X@n DTP model in the following areas:

* The number of network messages required.
» The number of disk accesses required.
e The amount of data logged.

Transaction Service/l.1 Service Descriptic November 1997 10-11

10

The objective of the specification was to achieve parity with thepEfOmodel for
equivalent function, where technically feasible.

10.2 Service Architecture

Figure 10-2 illustrates the major components and interfaces defined by the Transaction
Service The transaction originator is an arbitrary program that begins a transaction.
The recoverable server implements an object with recovestdtie that is moked

within the scope of the transaction, either directly by the transaction originator or
indirectly through one or more transactional objects.

The transaction originator creates a transaction usTransactionFactor; a Contro

is returned that provides access tTerminato and aCoordinatol. The transaction
originator uses thTermnator to commit or rollback the transaction. TCoordinato!

is made available to recoverable servers, either explicitignplicitly (by implicitly
propagating a transaction context with a request). A recoverable server registers a
Resourcewith the Coordinator. TheResourc implements the two-phase commit
protocol which is driven by the Transaction Service. A recoverable server msieregi
a Synchronizatiorwith theCoordinatol. The Synchronizatioimplements a dependent
object protocol driven by the Transactioervice. A recoverable server can also
register a specialized resource calleSubtransactionAwareResou to track the
completion of subtransactions.Resourc uses éRecoveryCoordinatc in certain
failure cases to determine the outcome of the transaction and to coordinate the
recovery process with the Transaction Service.

To simplify coding, most applicationsise theCurren pseudo object, which provides
access to amiplicit per-thread transaction context.

(transmitted with request)

transaction

transaction originator context recoverable server

TransactionFactory A Control
Control i
] Coordinator
Current Terminator Resource Current RecoveryCoordinator

SubtransactionAwareResourge
Synchronization

TransctionService
transaction transaction
context context
(associated with thread) (associated with thread)

Figure 10-2 Major Components and Interfaces of the Transaction Service

10-12 CORBAservices November 1997

10

10.2.1 Typical Usage

A typical transaction originator uses tCurreni object to begin a transaction, which
becomes associated with the transaction originator’s thread.

The transaction originator then issues requests. Some of these requests involve
transactional objects. When a request is issued to a transactional object, the transactior
context associated with the invoking thread is automatically propagated to the thread
executing the method of the target object. No explicit operation parameter or context
declaration is required to transmit the transaction conBnpagation of the

transaction context can extend to multiple levels if a transactional object issues a
request to a transactional object.

Using theCurren object, the transactional object canlaterally rollback the
transaction and can inquire about the current state of the transaction. UsCurrent
object, the transactional object also can obti Coordinatorfor the current
transaction. Using thCoordinatol, a transactional object can determine the
relationship between two transactionsjrmplement isolation amongultiple
transactions.

Some transactional objects are also recoverable objects. A recoverable object has
persistent data that must benaged as part of the transaction. A recoverable object
uses theCoordinatoi to register éResourc object as a participant in the transaction.
The resource represents the recoverable object’s participation in the transadton; e
resource is implicitly associated with a single transacfiéne Coordinatoruses the
resource to perform the two-phasemmit protocol on the recoverable object’s data.

After the computations involved in the transacti@mve been completed, the
transaction originator uses tCurren object to request that the changes be committed.
The Transaction Service commits the transactising a two-phaseommit protocol
wherein a series of requests are issued to the registeragaeso

10.2.2 Transaction Context

The transaction context associated with a thread is either null (indicating that the
thread has no associated transaction) or it refers to a specific transaction. It is
permitted formultiple threads to be associated with the same transaction at the same
time.

When a thread in an object server is used by an object adapter to perform a request on
a transactional object, the object adajptéializes the transaction context associated

with that thread by effectively copying the transaction context of the thread that issued
the request. An implementation of the Transaction Serviceresyict the capabilities

of the new transaction context. For example, an implementation of the Transaction
Service might not perit the object server thread to request commitment of the
transaction.

The object adapter is not requiredindtialize the transaction context of every request
handler. It is required to initialize the transaction context only if the interface
supported by the target object is derived fromTransactionalObjer interface.
Otherwise, thenitial transaction context of the thread is undefined.

Transaction Servicezl.1 Service Architectur November 1997 10-13

10

10-14

When a threadetrievesthe response to a deferred synchronous request, an exception
may be raised if the thread is no longer associated with the transaction that it was
associated with ven the deferred synchronous request was issued. (See “Exceptions”
on page 10-16, subsection “WRONG_TRANSACTION Exception” for a more precise
definition.)

When nested trazactions are used, the transaction contextembers the stack of

nested transactions started within a particular execution environment (e.g., process) so
that when a subtransaction ends, thedaation context of the thread is restored to the
context in effect when the subtransaction wasube§Vhen the context is tnaferred
between execution environments, the received context refers only twacticilar
transaction, not a stack of transactions.

10.2.3 Context Management

The Transaction Service supports management and propagation of transaction context
using objects provided by the TeattionService. Using this approach, the transaction
originator issues a request t(TransactiorFactory to begin a new top-level

transactionThe factory returns i«Control object specific to the new transaction that
allows an application to terminate the transaction orettoine a participant in the
transaction (by registeringResourc). An application can propagate a tsaction

context by passing trControl as an explicit request parameter.

The Control does not directly support management of the transaction. Instead, it
supports oprations that return two other objectsTerminator and aCoordinatol. The
Terminato is used tacommit or rollback the transaction. TCoordinato! is used to
enable transactional objects to participate in the transaditmse two objects can be
propagated independently, allowirigdr granularity control over propagation.

An implementation of the Transaction Service mestrict the ability for some or all
of these objects to be transmitted to or used in other execution environments, to enable
it to guarantee transaction integrity.

An application can also use tCurreni object operationget _control , suspend ,
andresume to obtain or change theplicit transaction ontext associated with its
thread.

When nested trssactions are used.Control can include a stack of nested transactions
begun in the same execution environment. WhControl is transferred between
execution environments, the recei\Control refers only to one particular transaction,
not a stack of transactions.

CORBAservices November 1997

10

10.2.4 Datatypes

The CosTransactions

module defines th&llowing datatypes:

enum Status {
StatusActive,

StatusPrepared,
StatusCommitted,
StatusRolledBack,
StatusUnknown,

StatusPreparing,
StatusCommitting,
StatusRollingBack

k

enum Vote {
VoteCommit,
VoteRollback,
VoteReadOnly

k

StatusMarkedRollback,

StatusNoTransaction,

10.2.5 Structures

The CosTransactions

module defines the following structures:

struct otid_t {

b

struct Transldentity {

Terminator term;
otid_t otid;
k

Coordinator coord;

long formatlID; /*format identifier. 0 is OSI TP */
long bqual _length;
sequence <octet> tid;

struct PropagationContext {
unsigned long timeout;
Transldentity current;
sequence <Transldentity> parents;
any implementation_specific_data;

Transaction Servicazl.1 Service Architectul

November 1997

10-15

10

10-16

10.2.6 Exceptions

Standard Exceptions

The CosTransactions module adds new standard exceptions to CORBA for
TRANSACTION_REQUIRE, TRANSACTION_ROLLEDBAC and
INVALID_TRANSACTION. These exceptions are definedGhapter 3, Sen 3.15 of
the Common Object Request Broker: Architecture and Specification.

Heuristic Exceptions

A heuristic decision is a unilateral decision made by one or more participants in a
transaction to commit or rollback updatghout first obtaining theconsensus

outcome determined by the TrattionService. Heuristic decisions are normally made
only in unusual circumstances, such as communication failures, that prevent normal
processing. When a heuristic decision is taken, there is a risk that the decision will
differ from the consensus outcome, resulting in a loss of data integrity.

The CosTransactions module defines the following exceptions for reporting
incorrect heuristic decisions or the possibility of incorrect heuristic decisions:

exception HeuristicRollback &
exception HeuristicCommit &
exception HeuristicMixed &
exception HeuristicHazard {&;

HeuristicRollback Excepion

Thecommit operation orResourc raises theHeuristicRollback exception to
report that a heuristic decisiavas made and that all relevant updates have tmkeal
back.

HeuristicCommit Excefion

Therollback operation orResourc raises theHeuristicCommit ~ exception to
report that a heuristic decision was made anddhatlevant updatesave been
committed.

HeuristicMixed Exception

A request raises tfHeuristicMixed exception to report that a heuristic decision was
made and that some relevant updates have beemittt andothers have been rolled
back.

CORBAservices November 1997

10

HeuristicHazard Exception

A request raises thHeuristicHazard exception to report that a heuristic decision
may have been made, the disposition of all relevant updates knowh, andfor
those updates whosksposition is known, either aflave beertommitted or alhave
been rolled back. (In other words, tHeuristicMixed exception takes priority over
the HeuristicHazard exception.)

WRONG_TRANSACTION Exception

The CosTransactior module adds the WRONG_TRANSACTION exception that can

be raised by the ORB when returning the response to a deferred synchronous request.
This exception is defined i@hapter 4 othe Common ObjecRequest Broker:

Architecture and Specification.

Other Exceptions

The CosTransactions module defines fibl®wing additional exceptior:s

exception SubtransactionsUnavailable {};
exception NotSubtransaction {};
exception Inactive {};

exception NotPrepared {};

exception NoTransaction {};

exception InvalidControl {};

exception Unavailable {};

exception SynchronizationUnavailable {};

These exceptions ¢ described below along with the operatidhat raise them.

10.3 Transaction Service Interfaces

The interfaces defined by tligansaction Serviceeside inthe CosTransactions
module. (OMG IDL for theCosTransactions module is shown in “The
CosTransactions Module” on page 10-69.) Thterfaces for the Transaction Service
are as follows:

e Current

» TransactionFactory

» Terminator

» Coordinator

» RecoveryCoordinator

* Resource

e Synchronization

» Subtransaction Aware Resource

» Transactional Object

Transaction Servicerl.1 Transaction Service Interfac = November 1997 10-17

10

10-18

No operations are defined in these interfaces for destroying objects. No application
actions are required to destroy objects that support the Transaction Service because the
Transaction Service destroys its own objext®nthey are no longer needed.

10.3.1 Current Interface

The Curreni interface defines operations that allow a client of the Transaction Service
to explicitly manage the associatibetween threads and transactions. Current

interface also defines operations that simplify the use of the Transaction Service for
most applicationsThese operations can be used to begin and end transactions and to
obtain informationabout the current transaction.

The Curreni interface is designed to be supported by a pseudo object whose behavior
depends upon and maytalthe transaction context associated with thekimg

thread. It may be shared with other object services (e.g., seaniyijs obtained by

using a resolvénitial references(“TransactionCurrent”) operation on CORBA::ORE
interface.Curren supports the following operatisn

interface Current : CORBA::Current {
void begin()
raises(SubtransactionsUnavailable);
void commit(in boolean report_heuristics)
raises(
NoTransaction,
HeuristicMixed,
HeuristicHazard
);
void rollback()
raises(NoTransaction);
void rollback_only()
raises(NoTransaction);

Status get_status();
string get_transaction_name();
void set_timeout(in unsigned long seconds);

Control get_control();

Control suspend();

void resume(in Control which)
raises(InvalidControl);

Note —In order to pass the transaction from one thread to another, a program should
not use the Current object. It should pass the Control object to the other thread.

CORBAservices November 1997

10

begin

A new transaction is created. The transaction context of the client thread is modified so
that the thread is associated with the new transaction. If the client thread is currently
associated with a transaction, the new transaction is a subtransaction of that
transaction. Otherwise, the new transaction tispalevel transaction.

The SubtransactionsUnavailable exception is raised if the client thread already
has an associated transactand the Transaction Servigaplementationdoes not
support nested transactions.

commit

If there is no transaction associated with the client threactNoTransaction
exception is raised. If the client thread does not hmarenission to commit the
transaction, the standard exceptNO_PERMISSIOI is raised. (Th«commit operation
may be restricted to the transaction originator in some implementations.)

Otherwise, the transaction associated with the client thread is completed. The effect of
this request is equivalent to performing commit operation on the corresponding
Terminato object (see “Terminator Interface” on page 10-23); “Terminator

Interface and “Exceptions” on page 10-16 for a description of theepkons that may

be raised.

The client thread transaction context is modified as follows: If the transaction was
begun by a thread (invokirbegin) in the same execution environment, then the
thread’s transaction context is restored to its state prior thegin request.
Otherwise, the thread’s transaction context is set to null.

rollback

If there is no transaction associated with the client threactNoTransaction

exception is raised. If the client thread does not hparenission to rollback the
transaction, the standard exceptNO_PERMISSIOI is raised. (Therollback

operation may be restricted to the transaction originator in some implementations;
however, therollback_only operation, described below, igalable to all
transaction participants.)

Otherwise, the transaction associated with the client thread is rolled back. The effect of
this request is equivalent to performing rollback operation on the corresponding
Terminato object (see “Terminator Interface” on page 10-23).

The client thread transaction context is modified as follows: If the transaction was
begun by a thread (invokirbegin) in the same execution environment, then the
thread’s transaction context is restored to its state prior thegin request.
Otherwise, the thread’s transaction context is set to null.

Transaction Servicerl.1 Transaction Service Interfac = November 1997 10-19

10

10-20

rollback_only

If there is no transaction associated with the client threactNoTransaction
exception is raised. Otherwise, the transaction associated withehetbtead is
modified so that the only possible outcome is to rollback the transattiereffect of
this request is equivalent to performing rollback_only operation on the
correspondin¢Coordinatol object (se€¢Coordinator Inteface” on page 10-24).

get_status

If there is no transaction associated with the client threa(StatusNoTransaction

value is returned. Otherwisthis operation returns thstatus ofthe transaction
associated with the clietiiread. The effect of this request is equivalent to performing
theget_status operation on the correspding Coordinatoi object (see “Coordinator
Interface” on page 10-24).

get_transaction_name

If there is no transaction associated with the client thread, an empty string is returned.
Otherwise, this operation returns a printable string describing the transaction. The
returned string is intended to support debugging. The effetifequest is

equivalent to performing thget_transaction_name operation on the corresponding
Coordinatol object (see “Coordinator Interface” on page 10-24).

set_timeout

This operation modifies a state variable associated with the target object that affects
the time-out period associated with top-level transactions created by subsequent
invocations of thebegin operation. If the parameter has a nonzero vn, then top-

level transactions created by subsequent invocatiobegin will be subject to being
rolled back if they do not complete befin seconds after their creation. If the
parameter is zero, then no application specified time-out is established.

get_control

If the client thread is not associated with a transaction, a null object reference is
returned. Otherwise, Control object is returned that represents the transaction context
currently associated with the client thread. This object can be given resume

operation to reestablish this context in the same thread or a different thread. The scope
within which this object is valid is implementatiadlependent; at minimum, it must

be usable by the client thread. This operation is not dependent on the state of the
transaction; in particular, it does not raise TRANSACTION_ROLLEDBA(exception.

suspend

If the client thread is not associated with a transaction, a null object reference is
returned. Otherwise, an object is returned that represents the transaction context
currently associated with the client thread. This object can be given resume

CORBAservices November 1997

10

operation to reestablish this context in the same thread or a different thread. The scope
within which this object is valid is implementatidlependent; at mminimum, it must

be usable by the client thread. In addition, the client thread becomes associated with no
transaction. This operation is not dependent on the state of tlsadtam; in

particular, it does not raise tiITRANSACTION_ROLLEDBA! exception.

resume

If the parameter is a null object refece, the client thread becomes associated with no
transaction. Otherwise, if the @ameter is valid in the current execution environment,
the client thread becomes associated with that transaction (in place of any previous
transaction). Otherwise, ttinvalidControl exception is raised. See “Control
Interface” on page 10-22 for a discussion of restrictions on the scogControl. This
operation is not épendent on the state of the transaction; in particular, it does not raise
the TRANSACTION_ROLLEDBAI exception.

10.3.2 TransactionFactory Interface

The TransactionFactor interface is provided to allow the transaction originator to
begin a transaction. This interface defines two opearsfcreate andrecreate
which create a new representation of a top-level transactiTransactionFactor is
located using thiFactoryFinde interface of the life cycle serviand not by the
resolve_initial_reference operation on thiORE interface defined in “Example
Object Adapters” in Chapter 2 of tiCommon ObjecRequest Broker: kehitecture
and Specificatiol.

interface TransactionFactory {
Control create(in unsigned long time_out);
Control recreate(in PropagationContext ctx);

create

A new top-level transaction is created anControl object is returnedThe Contro
object can be used to manage or to contrdi@pation in the new transaction. An
implementation of the Transaction Service mestrict the ability for th«Control
object to be transmitted to or used in otheeaition environments; at a minimum, it
can be used by the client thread.

Transaction Servicerl.1 Transaction Service Interfac = November 1997 10-21

10

10-22

If the parameter has a nonzero vén, then the new transaction will be subject to being
rolled back if itdoes not complete befin seconds have elapsed. If the parameter is zero,
then no application specified time-out is established.

recreate

A new representation is created for an existing transaction defined by the
PropagationConte: and aControl object is returad. TheControl object can be used
to manage or to contrglarticipation in the transaction. An implementation of the
Transaction Service whickupports interposition (see “ORB/TS Implementation
Considerations” on page 10-60) urecreate to create a new representation of the
transaction being imported, subordinate to the representatctx . Therecreate
operationcan also be used to import a transaction which originated outside of the
Transaction Service.

10.3.3 Control Interface

TheControl interface allows a program to explicitly manage or propagate a transaction
context. An object supporting tiControl interface ismplicitly associated with one
specific transaction.

interface Control {
Terminator get_terminator()
raises(Unavailable);
Coordinator get_coordinator()
raises(Unavailable);

The Control interface defines two operatiorget_terminator and

get_coordinator . The get_terminator operation returns Terminator object,

which supports operations to end the s@ction. Theget coordinator operation

returns eCoordinatol object, which supportsperationsneeded by resources to
participate in the transaction. The two objesupport operations that are typically
performed by different parties. Providing two objects allows each set of operations to
be made available only to the parties that require those operations.

A Control object for a transaction is obtained using the operations defined by the
TransactionFactonjinterface or thecreate_subtransaction operation defined by
the Coordinatol interface. It is possible to obtairControl object for the current
transaction (associatedttv a thread) using thget_control or suspend operations
defined by theCurrent interface (see “Current Interface” gage 10-18). (These two
operations return a null object reference if there is no current transaction.)

An implementation of the Transaction Service mastrict the ability for th«Control
object to be transmitted to or used in othge@ition environments; at a minimum, it
can be used within a single thread.

CORBAservices November 1997

10

get_terminator

An object is returned that supports Terminato interface. Theobject can be used to
rollback or commit the transaction associated withControl. The Unavailable
exception may be raised if tiControl cannot provide the requested object. An
implementation of the Transaction Service mestrict the ability for th{Terminator
object to be transmitted to or used in othge@ution environments; at a minimum, it
can be used within the client thread.

get_coordinator

An object is returned that supports ‘Coordinatol interface.The object can be used
to register resources for the transaction associated wiControl. The Unavailable
exception may be raised if tiControl cannot provide the requested object. An
implementation of the Transaction Service megtrict the ability for the«Coordinatol
object to be transmitted to or used in othee@ition environments; at a minimum, it
can be used within the client thread.

10.3.4 Terminator Interface

The Terminato interface supports operations to commitaliback atransaction.
Typically, these operations are used by the transaction originator.

interface Terminator {
void commit(in boolean report_heuristics)
raises(
HeuristicMixed,
HeuristicHazard
);

void rollback();

An implementation of the Transaction Service mestrict thescope in which a
Terminato can be used; at a minimum, it can be used within a single thread.

commit

If the transaction has ndeen markedollback only, and all of thearticipants in the
transaction agree tbommit, the transaction is committed and the operation terminates
normally. Otherwise, the transactionraled back (as éscribecbelow) and the
TRANSACTION_ROLLEDBA! standard exception is raised.

If the report_heuristics parameter is true, the Transaction Service will report
inconsistent or possibly inconsistent outcomes usin¢HeuristicMixed and
HeuristicHazard exceptions (defined in “Exceptions” on page 10-16). A
Transaction Service implementation may optionally useEent Service to report
heuristic decisions.

Transaction Servicerl.1 Transaction Service Interfac = November 1997 10-23

10

Thecommit operation may rollback the transaction if there are subtransactions of the
transaction that have nttemselveveencommitted or rolledback or if there are
existing or potential activities associated with the transactiorhthag not completed.

The nature and extent of such error checking is implementation-dependent.

When a top-level trasaction is comitted, all cranges to recoverable objects made in

the scope of this transaction are made permaarghtvisible to othetransactions or

clients. When a subtransactioncemmitted, thechanges are madasible to other

related transactions as appropriate to the degree of isolation enforced by the resources

rollback
The transaction is rolled back.

When a trasaction is rolled back, all changes to recoverable objects made in the scope
of this transaction (including chges made by descendant transactions) are rolled
back. All resources locked by ttieansaction are made available to other transactions
as appropriate to the degree of isolation enforced by the resources.

10.3.5 Coordinator Interface

The Coordinatol interface provides operations that are used by participants in a
transaction. Thesparticipants are typically either recoverable objectagants of
recoverable objects, such as subordinate coordinators. Each objecttsgpthe
Coordinatol interface is implicitly associated with a single transaction.

interface Coordinator {

Status get_status();
Status get_parent_status();
Status get top_level_status();

boolean is_same_transaction(in Coordinator tc);
boolean is_related_transaction(in Coordinator tc);
boolean is_ancestor_transaction(in Coordinator tc);
boolean is_descendant_transaction(in Coordinator tc);
boolean is_top_level_transaction();

unsigned long hash_transaction();
unsigned long hash_top_level_tran();

RecoveryCoordinator register_resource(in Resource r)
raises(Inactive);

void register_synchronization (in Synchronization sync)
raises(Inactive, SynchronizationUnavailable);

10-24 CORBAservices November 1997

10

void register_subtran_aware(in SubtransactionAwareResource

r

raises(Inactive, NotSubtransaction);

void rollback_only()
raises(Inactive);

string get_transaction_name();

Control create_subtransaction()
raises(SubtransactionsUnavailable, Inactive);

PropagationContext get_txcontext ()
raises(Unavailable);

An implementation of the Transaction Service magstrict thescope in which a
Coordinatol can be used; at a minimum, it can be used within a single thread.

get_status

This operation returns the status of the transaction associated with the target object:

® StatusActive - A transaction is associated with the target object and it is in the
active state. An implementation returns this status after a transhetoneen
started and prior to a coordinator issuing any prepares unless it has been marked for
rollback.

® StatusMarkedRollback - A transaction is associated with the target object and
has been marked for rollback, perhaps as the resulrollback_only operation.

® StatusPrepared - A transaction is associated with the target object and has been
prepared (i.e., all subordinateave respondeVoteCommit) . The target object
may be waitingor a superior’s instructions as to how to proceed.

® StatusCommitted - A transaction is associated with the target object and it has
completed commitment. It is likely that heuristics existiierwise, the transaction
would have been destroyed aStatusNoTransaction returned.

® StatusRolledBack - A transaction is associated with the target object and the
outcome has been determinedraldback. It is likely that heustics exists,
otherwise the transaction wouhtéve beerdestroyed andStatusNoTransaction
returned.

® StatusUnknown - A transaction is associated with the target object, but the
Transaction Service canndétermine its current status. This is a transient
condition, and a subsequent invocation witimately return a differenstatus.

® StatusNoTransaction - No transaction is currently associated with the target
object. This will occur after a transaction has completed.

Transaction Servicerl.1 Transaction Service Interfac = November 1997 10-25

10

10-26

® StatusPreparing - A transaction is associated with the target object and it is the
process of preparing. An implementation returns this status if isthaed
preparing, but has not yet completed the process, probably becausaiiirig for
responses to prepare from one or more resources.

® StatusCommitting - A transaction is associated with the target object and is in
the process of committing. An implementation returns this status if it has decided to
commit, buthas not yet completed the process, probably because it is waiting for
responses from one or more resources.

® StatusRollingBack - A transaction is associated with the target object and it is in
the process offolling back. An implementation returtisis status if it has decided
to rollback, but has not yet completed the process, probably because it is waiting for
responses from one or more resources.

get_parent_status

If the transaction associated with the target object is a top-level transaction, then this
operation is equivalent to ttget_status operation. Otherwise, this operation returns
the status of the parent of the transaction associated with the target object.

get_top level status

This operation returns the status of the top-level ancestor of the transaction associated
with the target object. If the transaction is a top-level transaction, then this operation is
equivalent to thqget_status operation.

iIS_same_transaction

This operation returns true if, and orifythe target objecand theparameter object
both refer to the same transaction.

iIS_ancestor_transaction

This operation returns true if, and orifythe transaction associated with the target
object is an ancestor of the transaction associated with the parameter object. A
transaction T1 is an ancestor of a transaction Badf only if T1 is the same as T2 or
T1 is an ancestor of the parent of T2.

is_descendant_transaction

This operation returns true if, and orifythe transaction associated with the target
object is a descendant of the transaction associated with the parameter object. A
transaction T1 is a descendant of a transaction T2 if, and only if, T2 is an ancestor of
T1 (see above).

CORBAservices November 1997

10

is_related_transaction

This operation returns true if, and orifythe transaction associated with the target
object is related to the transaction associated with the parameter object. A transaction
T1 is related to a transaction T2 if, and only if, there exists a transaction T3 such that
T3 is an ancestor of T1 and T3 is an ancestor of T2.

is_top_level transaction

This operation returns true if, and ornfythe transaction associated with the target
object is a top-level transaction. A transaction is a top-level transaction if it has no
parent.

hash_transaction

This operation returns a hash code for the transaction associated with the target object.
Each transaction has a single hash code. Hash codes for transactions should be
uniformly distributed.

hash_top_level tran

This operation returns the hash code for the top-level ancestor trattsaction
associated with the targebject. This operation is equivalent to the

hash_transaction operation when the transaction associated with the target object
is a top-level transaction.

register_resource

This operation registers the specified resource as a participant in the transaction
associated with the target object. When the transactitarignated, the resource will
receive requests to commit or rollback the updates performed as part of the transaction.
These requests are described in the description (Resourc interface. The

Inactive exception is raised if the transaction has already been pregéed.

standard exceptioTRANSACTION_ROLLEDBA(may be raised if the transaction has

been marked rollback only.

If the resource is a subtransaction aware resqiitrseipports the
SubtransactionAwareResou interface) and the transaction associated with the target
object is a subtransaction, then this operatigisters the specified resource with the
subtransactioand indirectly with the top-level transaction when the subtransaction’s
ancestors have completed. Otherwise, the resource is registergarisipant in the
current transaction. If the current transaction is a subtransaction, the resource will not
receive prepare or commit requests until the top-level ancestomates.

This operation returns RecoveryCoordinat(that can be used by this resource during
recovery.

Transaction Servicerl.1 Transaction Service Interfac = November 1997 10-27

10

register_synchronization

This operation registers the specif Synchraizatior object such that it will be

notified to perform necessary processing prior to prepare being driven to resources
registered with thiCoordinato.. These requests are described in the description of the
Synchronizatio interface.The Inactive ~ exception is raised if the transaction has
already been prepared. TSynchronizationUnavailable exception is raised if the
Coordinatol does not support synchronization. The standard exception
TRANSACTION_ROLLEDBA(may be raised if the transaction has been marked rollback
only.

register_subtran_aware

This operation registers the specified subtransacti@yeresource such that it will be
notified when the subtransaction fasmmitted orolled back. These requests are
described in the description of tSubtransactionAwareResou interface.

Note that this operation registers the specified resocambewith the subtransaction.
This operation cannot be usedragister the resource as a participant in the
transaction.

The NotSubtransaction exception is raised if the current transaction is not a
subtransaction. Thinactive exception is raised if the subtransaction (or any
ancestor) has already been terminated. The standard exception
TRANSACTION_ROLLEDBA(may be raised if the subtransaction (or any ancestor) has
been marked rollback only.

rollback_only

The transaction associated with the target object is modified so thatlthpossible
outcome is to rollback the transaction. Tinactive ~ exception is raised if the
transaction has already been prepared.

get_transaction_name

This operation returns a printaldéring describing the transaction associated with the
target object. The returned string is intended to supebtigging.

create_subtransaction

A new subtransaction is created whose parent is the transaction associated with the
target object. Thinactive exception is raised if the target transaction has already
been prepared. An implementation of the Transaction Service is not required to support
nested transactions. If nested saations are not gported, the exception
SubtransactionsUnavailable is raised.

10-28 CORBAservices November 1997

10

The create_subtransaction operation returns Control object, which enables the
subtransaction to be terminated and allows recoverable objects to participate in the
subtransaction. An implementation of the Transaction Servicerasigct the ability

for theContro object to be transmitted to or used in other execution environments.

get_txcontext

Theget_txcontext operation returns PropagationConte: object, which is ged by

one Transaction Service domain to export the current transaction to a new Transaction
Service domain. An implementation of the Transaction Service may also use the
PropagationConte; to assist in the implementation of tis_same_transaction

operation vhen the inpuCoordinatol has been generated by a different Bestion
Serviceimplemenation.

The Unavailable exception is raised if the Transaction Service implementation
chooses to restrict the aladility of the PropagationConte:. t

10.3.6 RecoveryCoordinator Interface

A recoverable object usesRecoveryCoordinat(to drive the recovery process in
certain situationsThe dject referace for an object supporting the
RecoveryCoordinatc interface, as returned by tiregister_resource operation, is
implicitly associated with a sgie resource registration requestd may only be used
by that reource.

interface RecoveryCoordinator {
Status replay_completion(in Resource r)
raises(NotPrepared);

replay_completion

This operation can be invoked at amnye after the associated resoe has been
prepared. ThiResourc must be passed as the parameter. Performing this operation
provides a hint to thCoordinatoi that thecommit or rollback operationshave not
been performed on the resource. This hint may be required in certain failure cases.
This non-blocking opration returns the current ste of the transaction. The
NotPrepared exception is raised if the resource has lmexn prepared.

10.3.7 Resource Interface

The Transaction Service uses a two-pham@mitment protocol to complete a top-
level transaction with each registered resoufi¢te Resourc interface defines the
operations invoked by the transaction serviceach resource. Each object supporting
the Resourceinterface is implicitly associatedithr a single top-level transaction. Note

Transaction Servicerl.1 Transaction Service Interfac = November 1997 10-29

10

10-30

that in the case of failure, the completsequence will continue after the failure is
repaired. A resource should be prepared to receive duplicate requestscommit
or rollback operationand to respond consistently.

interface Resource {
Vote prepare()
raises(
HeuristicMixed,
HeuristicHazard
);
void rollback()
raises(
HeuristicCommit,
HeuristicMixed,
HeuristicHazard
);
void commit()
raises(
NotPrepared,
HeuristicRollback,
HeuristicMixed,
HeuristicHazard
);
void commit_one_phase()
raises(
HeuristicHazard
);
void forget();

prepare

This operation is invoked to begin the two-phase commit protocol on the resource. The
resource can respd in several ways, represented by Vote result.

If no persistent data associated with the resourcdéasmodified by the transaction,
the resource can retuvoteReadOnly . After receiving this response, the Transaction
Service is not required to perform aaglditional operations on this resource.
Furthermore, the resource can forget all knowledge of theardion.

If the resource is able to write (or has already writedh}he dataneeded taommit
the transaction to stable storage, as well as an indication that it has prepared the
transaction, it can retuivoteCommit . After receiving this response, the Transaction
Service is required to eventually perform eithercommit or therollback operation
on this object. To support recovery, the resource should stoRecoveryCoordinator
object referace in stable storage.

CORBAservices November 1997

10

The resource can retuVoteRollback under any circumstances, including not having

any knowledge about the trsaction (which might happeaifter a crash). If this

response is returned, the transaction must be rolled back. Furthermore, the Transactior
Service is not required to perform aaglditional operations on this resource. After
returning this response, the resource can fatiddnowledge of the transaction.

The resource reports inconsistent outcomes usinHeuristicMixed and
HeuristicHazard exceptions (described in “Exceptions” on page 10-1@urkstic
outcomes occuwhen aresource acts as a sub-coordinator and at taesbf its
resources takes a heuristic decision aftvVoteCommit return.

rollback

If necessary, the resource shouddlbackall changes made as part of the transaction.
If the resource has forgotten the transaction, it should do nothing.

The heuristic outcome exceptions (described in “Exceptiongjame 10-16) are used

to report heuristic decisions related to the resource. If a heuristic outcome exception is
raised, the resource must remember this outcome untforget operation is

performed so that it can return the same outcome inrollback is performed

again. Otherwise, the resource can immediately forget all knowledge of the transaction.

commit

If necessary, the resource should commit all changes made as part of the transaction. If
the resource has forgotten the transaction, it should do nothing.

The heuristic outcome exceptions (described in “Exceptiongjame 10-16) are used

to report heuristic decisions related to the resource. If a heuristic outcome exception is
raised, the resource must remember this outcome unfforget operation is

performed so that it can return the same outcome incommit is performed again.
Otherwise, the resource can imaigtely forget allknowledge of the transaction.

TheNotPrepared exception is raised if thcommit operation is performed without
first performing theprepare operation.

commit_one_phase

If possible, the resource showddmmit all cranges made as part of the transaction. If
it cannot, it should raise ttTRANSACTION _ROLLEDBA: standard exception.

If a failure occurs durincommit_one_phase , it must be reted when the failure is
repaired. Since their can only be a single resourceHeuristicHazard exception is
used to report heuristic decisions related to that resource. If a heexisgigtion is
raised, the resource must remember this outcome untforget operation is
performed so that it can return the same outcome incommit_one_phase is
performed again. Otherwise, the resource can imatelgiforget all knowledge of the
transaction.

Transaction Servicerl.1 Transaction Service Interfac = November 1997 10-31

10

10-32

forget

This operation is performed only if the resource raised a heuristic outcome exception
to rollback , commit , or commit_one_phase . Once the coordinator has determined
that the heuristic situation has been addressed, it shouldforget on the resourc 2.

The resource can forget all knowledge of the seantion.

10.3.8 Synchronization Interface

The Transaction Service provides a synchronization protocol which enables an object
with transient stateata that relies on an Xfi@én XA corformantResource Manager

for ensuring that data is made persistent, to be notified before the start of the two-
phasecommitmentprotocol, and after its completion. An object with transient state
data that relies on Resourc object for ensuring that data is made persistantalso

make use of this protocol, provided that both objects are registered with the same
Coordinatol. Each object supporting ttSynchronizatio interface is implicitly

associated with a single top-level transaction.

interface Synchronization : TransactionalObject {
void before_completion();
void after_completion(in Status status);

b

before_completion

This operation is invoked prior to the start of the two-phase commit protocol within the
coordinator theSynchronizatio has registered with. This operation will therefore be
invoked prior toprepare being issued tResourc objects or X/Open Resource
Managers registered with that same coordindtbe Synchronizatio object must

ensure that angtate @ta it has that needs to be made persistent is made available to
the resource.

Only standard exceptions may be raised. Unless there is a defined recovery procedure
for the exception raised, the transaction should be marked rollback only.

after_completion

This operation is invoked after all commit or rollbaelsponses have been received by
this coordinator. The current status of the transaction (as determineget_status
on theCoordinatol) is provided as input.

Only standard exceptions may tesed and thefave no effect on the outcome of the
commitmentprocess.

CORBAservices November 1997

10

10.3.9 Subtransaction Aware Resource Interface

Recoverable objects thahplement nested transaction behavior may support a
specialization of thiResourc interface called thSubtransactionAwareResou ce
interface. A recoverable object can be notified of thegletion of a subtransaction by
registering a specialized resource object that offer'SubtransactionAwareResou ce
interface with the Transaction Service. This ségition is done bysing the
register_resource or theregister_subtran_aware operation of the current
Coordinatol object. A recoverable object generally usesregister_resource

operation to register a resource that will participate in the completion of the top-level
transaction and thregister_subtran_aware operation to be notified of the
completion of a subtransaction.

Certain recoverable objects may want a finer control over thstration inthe

completion of a subtransaction. These recoverable objects will use the
register_resource operation to ensure participation in the completion of the top-
level transaction and they will use tregister_subtran_aware operation to be

notified of the completion of a particular subtransaction. For example, a recoverable
object can use thregister_subtran_aware operation to establish a “committed

with respect to” relationship between transactions; that is, the recoverable object wants
to be informed wen aparticular subtransaction is committadd then perform certain
operations on the transactions tdapend on that traaction’s completion. This

technique could be used to implement lock inheritance, for example.

The Transaction Service uses SubtransactionAwareResou interface on each
Resourc object registered with a subtransaction. Each object suppohiminterface
is implicitly associated ith a single subtransaction.

interface SubtransactionAwareResource : Resource {
void commit_subtransaction(in Coordinator parent);
void rollback_subtransaction();

commit_subtransaction

This operation is invoked only if the resource has been registered with a subtransaction
and the subtransactidras beerrommitted. TheResourc object is provided with a
Coordinatol that represents the parent transaction. This operation may raise a standard
exception such eTRANSACTION_ROLLEDBA.>K

Note that the results of a committed subtransaction are relatitie tompletion of its
ancestor transactions, that is, these results camdbene if any ancesr transaction is
rolled back.

rollback subtransaction

This operation is invoked only if the resource has been registered with a subtransaction
and notifies the resource that the subtransaction has tigd

Transaction Servicerl.1 Transaction Service Interfac = November 1997 10-33

10

10.3.10 TransactionalObject Interface

The TransactionalObjec interface isused by an object to indicate that it is

transactional. By supporting tiTransactionalObjecinterface, an object indicates that

it wants the transaction context associated with the client thread to be associated with
all operations on its interface.

interface TransactionalObject {

h

The TransactionalObje interface defines no operations. It is simply a marker.

10.4 The User’s View

10-34

The audience for thisection is object and client implementers; it describes application
use of the Transaction Service functions.

10.4.1 Application Programming Models

A client application program may udireci or indireci context management to manage
a transaction.

® With indirect context management, an application use:Curren object provided
by the Transaction Service, to associate the transaction context with the application
thread of control.

® In direct context management, an application manipulateControl object and
the other objects associated with the transaction.

Propagation is the act of associating a client’s transaction context with operations on a
target object. An object may require transactions to be either explicitly or implicitly
propagated oits operations.

Implicit propagatior means that requests aneplicitly associated with the client’s
transaction; they share the client’s transaction context. It is transmitted impliditlg to
objects, without direct client intervention. Ingt propagationdepends on indirect
context management, since it propagates the transaction context associated with the
Current object. Explicit propagation mean: thar an application propagates a

transaction context by passing objects defined byTthesaction Service as explicit
parameters.

An object that supportinplicit propagation would not typically expect to receive any
Transaction Service object as an explicit parameter.

A client may useone or both forms of context management, and ctagmunicate
with objects that use either method of transaction propagation.

This results in four ways in which client applications may communicate with
transactional objects. They are describetbw.

CORBAservices November 1997

10

Direct Context Management: Explicit Propagation

The client application directly accesses Control object, and the other objects which
describe the state of the transaction.pfopagate the transaction to an object, the
client must include thappropriate Transaction Service object as an explicit parameter
of an operation.

Indirect Context Management: Implicit Propagation

The client application uses operations onCurreni object to create and control its
transactions. When it issues requests on transactibjedts, the transaction context
associated with the current thread is implicitly pagated to the object.

Indirect Context Management: Explicit Propagation

For an implicit model application to use explipiopagation, it can get access to the
Control using theget_control operation orCurren. It can then use a Transaction
Service object as an explicit parameter to a transactional objastisTexplcit
propagation.

Direct Context Management: Implicit Propagation

A client that accesses the Teattion Service objects directtyan use thresume
operation orCurren to set themplicit transaction context associated with its thread.
This allows the client to invoke operations of an object that requirpkcit
propagation of the transaction context.

Transaction Servicarl.1 The User'sVie' November 1997 10-35

10

10-36

10.4.2 Interfaces

Table 10-1Use of Transaction Service Functionality

Context management

Function Used by Direct Indirect?
Create a transaction Transaction TransactionFactory::create begin,set_timeout
originator Control::get_terminator
Control::get_coordinator
Terminate a transaction Transaction originator-implicit Terminator::commit commit
All—explicit Terminator::rollback rollback
Rollback a transaction Server Terminator::rollback_only rollback_only
Control prgpagdion Server Declaration of method parameter TransactionalObject
of transaction to a server interface
Control by client All Request parameters get_control
of transaction suspend

propagation
to a server

Become a participant
in a transaction

Recoverable Server

Coordinator:register_resource

resume

Not applicable

Miscellaneous

All

Coordinator::get_status
Coordinator:get_transaction_name
Coordinator::is_same_transaction
Coordinator::hash_transaction

get_status
get_transaction_name
Not applicable

Not applicable

1. Al Indirect context management operations are otCurreni object interface

Note —For clarity, subtrasaction operations are nsiiown.

10.4.3 Checked TransactioBehavior

Some Trasaction Service implementations will enforcieecked behavior for the
transactions they support, to provide an extra level obaetion integrity. The
purpose of the checks is to ensure that all transactional requests made by the
applicationhave @mpleted their processing before the transaction isvtted. A
checked Transaction Service guaranteesabatmit will notsucceed unlesall
transactional objects involved in the transaction have completed tbessiog of their

transactional requests.

There are many possible implementations of checking in a Transaction Service. One
provides equivalent function to that pided by the request/response inter-process
communication models defined by X/Open.

The X/Open Transaction Service model of checking is particularly important because it
is widely implemented. It describes the transaction integrity guaranteesigadoy

many existing transaction system#$eBe transaction systems will provide the same
level of transaction integrity for object-based applications by providing a Transaction

Service interface thamplements the X/@en checks.

CORBAservices

November 1997

10

10.4.4 X/Open Checkediransactions

In X/Open, completion of the processing of a request means that the object has
completed execution of its method and replied to the request.

The level of transaction integrity provided by a Transaction Service implementing the
X/Open model of checking provides equivalent function to that provided by the

XATMI and TxRPC interfaces defined by X/Open for transactional applications.
X/Open DTP Transaction Managers are examples of transaction management functions
that implement checked transaction behavior.

This implementation of checked behavitapends ommplicit transaction propagation.
Whenimplicit propagation is used, the objects involved in a transaction at any given
time may be represented as a tree, the request tree for the tranS&wideginner of

the transaction is the root of the tree. Requestsnadés to the tree, replies remove

the replying node from the tree. Synchronous requests, or the checks deleldved

for deferredsynchronous requests, ensure that the tree collapses to a single node before
commit isissued.

If a transaction uses expligitopagation, the Transaction Serv@@not know ‘\kich

objects are or will be involved in the transaction; that is, a request tree cannot be
constructed or assured. Therefore, the use of explicit propagation is not permitted by a
Transaction Service implementation that enforces X/Open-st@ekeld behavior.

Applications that use synchronous requesiglicitly exhibit checked behavior. For
applications that use deferreginchronous requests, in a transaction whdrelients
and objects are in the domain of a checking Sa@tionService, the Transaction
Service can enforce this property bypapng a replycheck and aommitcheck.

The Transaction Service must also apply a resume check to ensure thatsaetivan
is only resumed by application programs in the correct part of the request tree.

Reply Check

Before allowing an object to reply to a transactional request, a check is made to ensure
that the object has received repliesatbits deferredsynchronous requests that
propagated the traaction in the original request. If this condition is not met, an
exception is raised and the transaction is marked as rollback-only, that is, it cannot be
successfully committed.

A Transaction Service may check that a reply is issued within the context of the
transaction associated with the request.
Commit theck

Before allowingcommit toproceed, a check is made to ensina:

1. The commit request for the transactionbising issued from the same execution
environment that created the transaction.

Transaction Servicarl.1 The User'sVie' November 1997 10-37

10

10-38

2. The clientissuing commit has received replies to all the defesygathronous
requests it made that caused the propagation of the transaction.

Resume Check

Before allowing a client or object to associate a transaction context with its thread of
control, a check is made to ensure that this transaction comdsxpreviously

associated with thexecution environment of the thread. This would be true if the
thread either created the transaction or received it in a transactional operation.

10.4.5 Implementing & ransactional Client: Heuristic Completions

Thecommit operation takes the boolereport_heuristics as input. If the
report_heuristics argument isfalse , commit can complete as soon as the root
coordinator has made its decision to commit or rollback the transaction. The
application is not required to wait for the coordinator to complete the commit protocol
by informing all the participants of the outcome of the transaction. dadris

significantly reduce the elapsed time for the commit operation, especiadisew
participantResourc objects are located on remote network nodes. However, no
heuristic conditiongan be reported to the application in this case.

Using th¢ report_heuristics option guarantees that tcommit operation will not
complete until the coordinator has completed thera@mrotocol with all resources
involved in the transaction. This guarantees that the application will be informed of
any non-atomic outcomes of the transaction vii HeuristicMixed or

HeuristicHazard exceptions, but increases the application-perceiveasedtime

for the commit operation.

10.4.6 Implementing a Recoxable Server

A Recoverable Server includeslaastone recoverable object and cResourc 2
object. The responsibilities of each of these objects gokaiexed in the following
sections.

Recoverable Object

The responsibilities of the recoverable object arenfplement the object’s operations,
and to register Resourc object with theCoordinatol so commitment of the
recoverable object’s resources, including any necessary recovery, can be completed.

TheResourc object identifies the involvement of the recoverable object in a particular
transaction. This meansResourc object may only be registered in one transaction at
a time. A differeniResourc object must be registered for each transaction in which a
recoverable object is concurrently involved.

CORBAservices November 1997

10

A recoverable object may receiweultiple requests within the scope of a single
transaction. It only needs to register its involvement in the transamtion The

is_same_transaction operation allows the recoverable object to determine if the
transaction associated with the requesinis in which the recoverable object is already
registered.

Thehash_transaction operations allow the recoverable object to reduce the number
of transaction comparisonshias to make. All coordinators for the same s$etion

return the same hash codéeis_same_transaction operation need only be done
on coordinators which have the same hash code as the coordinator of the current
request.

Resource Object

The responsibilities of Resourc object are to participate in the completion of the
transaction, to update the Recoverable Server’s resources in accordance with the
transaction outcome, and ensure termination of the transaction, including across
failures. The protocols that ttResourc object must follow are described in
“Transaction Service Protocols” on page 10-49.

Reliable Servers

A Reliable Server is a special case of a Recoverable Server. A Reliable Server can use
the same interface as @&€dverable Server to ensure application integrity for objects
that do not have recoveraldéate. Inthe case of a Reliable Server, the recoverable
object can register Resourc object that replieVoteReadOnly to prepare if its

integrity constraints are satisfied (e.g., all debits have a comdsmpcredit), or
repliesVoteRollback if there is a problem. This approach allows the server to apply
integrity constraints which apply to the transaction as a whole, rather than to individual
requests to the server.

10.4.7 Application Portability

This section considers application portability across the broadest range of Transaction
Serviceimplemenations.

Flat Transactions

There is one optional function of the Transaction Service, support for nested
transactions. For an application to be portable acrossmplementations of the
Transaction Service, it should be designed to use the flat transaction model. The
Transaction Service specification treats flat transactions as top-level nested
transactions.

Transaction Servicarl.1 The User'sVie' November 1997 10-39

10

10-40

X/Open ecked Tranactions

Transaction Service implementations may implement checked becked behavior.
The transaction integrity checks implemented by a JaationService need not be the
same as those defined by X/Open. However, neisting transaction management
systems have implemented the X/Open model of interpramamunication, and will
implement a checked Transaction Service that provides the same guarantee of
transaction integrity.

Applications written to conform to the transaction integrity constraints of X/Open will
be portable across all implementations of an pé@ checked Transaction Service, as
well as allTransaction Service implementations whistipport unchecked behavior.

10.4.8 Distributed Transactions

The Transaction Service can be implementedniitiple commnents located across a
network. Thedifferentcomponents can be based on the same or on different
implementations of the Transaction Service.

A single transaction can involve clients angexts supported by more thane
instance of the Transaction Service. The number of Transaction Service instances
involved in the transaction is not visible to the application implememtere is no
change in the function provided.

10.4.9 Applications Using Both Checked and UWecked Services

A single transaction can include objects supported by both checked and unchecked
Transaction Service implementations. Cked transaction behavior cannot be applied
to the transaction as a whole.

It is possible to provide useful, limited forms of checked behavior for those subsets of
the transaction’s resources in the domain ohacked Transaction Service.

® First, a transactional or recoverable objedipge resources are managed by a

checked Transaction Service, may be accessed by unchecked clients. The checked

Transaction Service can ensure,rbgistering itself in the transaction, that the
transaction will not comit before all the integrity constraints associataththe
request have been satisfied.

® Second, arapplication whose resources are managed by a checked Transaction
Service may act as a client of unchecked objects, and preserve its checked
semantics.

10.4.10 Examples

Note —All the examples are written in pseudo code based on Cipartitular they do
not include implicit parametersuch as thiORB::Environment , which should appear
in all requests. Also, they do not handle the exceptions that might be returned with
each request.

CORBAservices November 1997

10

A Transaction Originator: Indirect and Implicit

In the code fragments below, a transaction originator uses indirect context management
and implicittransaction propagatiotxn_crt is an example of an object supporting

the Current interface; the client uses the begin operation to start the transadtiom w
becomesmplicitly associated with the originator's thread of control:

txn_crt.begin();
/I should test the exceptions that might be raised

/I the client issues requests, some of which involve
/I transactional objects;
BankAccount1->makeDeposit(deposit);

The progranmcommit s the transaction associated with the client thré&ae.
report_heuristics argument is set tfalse so no report will be made by the
Transaction Service about possible heuristic decisions.

txn_crt.commit(false);

Transaction Originator: Direct and Explicit

In the following example, a transaction originator uses direct context management and
explicit transaction propagatioithe client uses &actory object supporting the
CosTransactions::TransactionFactory interface to create a new transaction and
uses the returneControl object to retrievehe Terminator andCoordinatol objects.

CosTransactions::Control c;
CosTransactions:: Terminator t;
CosTransactions::Coordinator co;

¢ = TFactory->create(0);
t = c->get_terminator();

The client issues requests, some of which involve transactional objects, in this case
explicit propagation of the context is used. 1Control object reference is passed as
an explicit parameter of the request; it is decl iin the OMG IDL of the interface.

transactional_object->do_operation(arg, c);

Transaction Servicarl.1 The User'sVie' November 1997 10-41

10

The transaction originator uses fTerminato object to commit the transaction; the
report_heuristics argument is set tfalse : so no report will be made by the
Transaction Service about possible heuristic decisions.

t->commit(false);

Example of a Recoverable Server

BankAccount is an object with internal resources. It inherits from both the
TransactionalObjec and theResourc interfaces:

interface BankAccount1:

CosTransactions::TransactionalObject,CosTransactions::Resource

{

void makeDeposit (in float amt);
I

class BankAccountl

{

public:

void makeDeposit(float amt);

Upon entering, the context of the transaction is implicitly associated with the object's
thread. The pseudo object gguting theCurreni interface is used teetrievethe
Coordinatoi object associated with the transaction.

void makeDeposit (float amt)

{

CosTransactions::Control c;
CosTransactions::Coordinator co;

¢ = txn_crt.get_control();
co = c->get_coordinator();

Before registering thResource the object must check whether it has alrebdgn
registered for the same transaction. This is done usinhash_transaction and
is_same_transaction operations on the curreCoordinatol to compare a list of
saved coordinators representing currently active transactiotisislaxample, the
object registers itself asResourc. This rewires the object to durably record its

10-42 CORBAservices November 1997

10

registration before issuinregister_resource to handle potential failures and
imposes the restriction that the object may onlyrvelved in one transaction at a
time.

If more parallelism is required, separResourc objects can be registered for each
transaction the object is involved in.

RecoveryCoordinator r;
r = co->register_resource (this);

/I performs some transactional activity locally
balance = balance + f;
num_transactions++;

/I end of transactional operation

h

Example of a Transactional Object

BankAccount is an object with external resources that inherits from the
TransactionalObjec interface:

interface BankAccount2: CosTransactions::TransactionalObject

{

void makeDeposit(in float amt);
3

class BankAccount2
{
public:

void makeDeposit(float amt);

Transaction Servicarl.1 The User'sVie' November 1997 10-43

10

10-44

Upon entering, the context of the transaction is implicitly associated with the object's
thread. ThemakeDeposit operation performs some transactional requests on external,
recoverable server3he dojectsresl andres2 are recoverable objectShe current
transaction context ignplicitly propagated to these objects.

void makeDeposit(float amt)

{
balance =resl->get_balance(@mt);
balance = balance + amt;
resl->set_balance(balance);

res2->increment_num_transactions();
} // end of transactional operation

10.4.11 Model Interoperability

The Transaction Service supports interopéitgbbetween Tansaction Service

applications usingmplicit context propagation and procedural applications using the
X/Open DTP model. A single transaction management component may act as both the
Transaction Servicand an X/Open Transaction Manager.

Interoperability is provided in two ways:
 Importing transactions from the X/Open domain to the Transaction Service
domain.
e Exporting transactions from the Transaction Service domain to the X/Open
domain.

Importing Transactions

X/Open applications can access transactional objects. This means that an existing
application, written to use X/@en interfaces, can be extended to invokesaational
operatims. This causes the X/Open transaction to be imported into the domain of the
Transaction Service.

CORBAservices November 1997

10

The X/Open application may be a client or a server.

Existing Application New Application (Objects)
X/Open Transactional Transt?ctional
Client Originator Object
5 ORB !
TX L iccmmmmmmmmmmmmmmmmmmmmmmmmmfem e

transactional operation

Transaction Transaction

Manager Service

Figure 10-3 X/Open Client

Existing Application New Application (Objects)
X/Open X/Open Transactional Transactional
client Server Originator jec
A I N S SR
5 ORB |
""" ¥ansactional operation T[T
\J '
Transaction Transaction
Manager Service

Figure 10-4 X/Open Server

Transaction Servicarl.1 The User'sVie' November 1997 10-45

10

10-46

Exporting Transactions

Transactional objects can use X/Open communications and resource manager
interfaces, and include the resources managed by these components in a transaction
managed by the TraactionService. This causes the Transaction Service transaction
to be exported into the domain of the X/Open transaction manager.

New Application (Objects)

X/Open
Resource
Transactional Transa}ctional
Client Object A X/Open
_—————> server
CM API
N I A ! A
. | ORB | propagation !
177777 transactional operation
, v \J
Transaction Transaction

Service

Manager

Figure 10-5 Sample Transaction Managed by the Transaction Service

Programming Rules

Model interoperability results in application programs that use both X/Open and
Transaction Service interfaces.

A transaction originator may use the X/Open TX interface or theshcion Service
interfaces to creatandterminate a transactio®@nly onestyle may be used in one
originator.

A single application may inherit a transaction with an application request either by
using the X/Open server interfaces, or by being a transactional object.

Within a single transaction, an application program can be a client of botheR/O
resource manager interfaces and transactional object interfaces.

An X/Openclient or server may invoke operations of transactional objects. The
X/Open transaction is imported into the Transaction Service domain using the
recreate operation orTransactionFactor.y

CORBAservices November 1997

10

A transactional object with Current object that associates a transaction context with
a thread of control, can call Xf@@n Resource Managers. How requests to the X/Open
Resource managers become associated with the transaction contexCurrent

object is implementation-dependent.

10.4.12 Failure Models

The Transaction Service provides atomic outcomes for transactions in the presence of
application, system or communication failures. This section describdeltia®ior of
applicationentities when failures occur. The protocols used to achthiebehavior

are described in “Transaction Service Protocols” on page 10-49.

From the viewpoint of each user object role, two typefaitire are relevant: a failure
affecting the objecitself (local failure) and a failurexternal to the object (external
failure), such as failure of another object or failure in the communication with that
object.

Transaction Originator

Local Failure

A failure of a transaction originator prior to the originator isstcommit will cause

the transaction to be rolldshck. Afailure of the originator after issuircommit and

before the outcome is reported may result in eitherncitment or rolllack of the
transaction depending on timing; in this case completion of the transaction takes place
without regard to the failure of the originator.

External Failure

Any externalfailure affectingthe transaction prior to the originator issucommit
will cause the transaction to be rolled back; the standard exception
TRANSACTION_ROLLEDBA will be raised in the originator when it isstcommit .

A failure after commitand before the outcome has been reported will mean that the
client may not be informed of the transaction outcome, depending on the nature of the
failure, and the use of ttreport_heuristics option ofcommit . For example, the
transaction outcome will not be reported to the client if communicatitween the

client and the coordinatdails.

A client may useget_status on theCoordinatol to determine the transaction
outcome. However, this is not reliable because the sNoTransaction is
ambiguous: it could mean that the transactommittedand has beeforgotten, or
that the transactiorolled back and has bednrgotten.

If an originator needs to know the transaction outcome, including in the case of
external failures, then either the originator’'s implementation must inchResourc 2
object so that it will participate in the two-phase commit proceduregayndecovery),
or the originator and coordinator must be located in the same failure domain (for
example, the same execution environment).

Transaction Servicarl.1 The User'sVie' November 1997 10-47

10

Transactional Server

Local Failure

If the Transactional Servéails thenoptional checks by a Traaction Service
implementation may cause the transaction to be rddéek; without such checks,
whether the transaction is rollééck depends on whether tbemmit decisiorhas
already been made (this would be the case where an unchecked client commit
before receiving all replies from servers).

External Failure

Any externalfailure affectingthe transaction during the execution of a Transactional
Server will cause the transaction to ioded back. If this occurs while the

transactional object’s method is executing, the failure has no effect on the execution of
this method. The method may terminate normally, returning the reply to its client.
Eventually theTRANSACTION_ROLLEDBA(exception will be returned to a client
issuingcommit .

Recoverable Server

Behavior of a recoverable server wifailures occur is determined by th&o phase
commitprotocol between the coordinator and the recoverable seResourc2
object(s). This protocol, including the locatd external failure models and the
required behavior of the Resource, is described in “Transactionic® Protocols” on
page 10-49.

10.5 The Impeémenters’ View
This section contains three major categories of information.

1. “Transaction Service Protocols” on page 10-49 defines in more detail the protocols
of the Transaction Service for ensuring atomicity of transactieves in the
presence of failure.

This section isnot a formal part of the specification but is providedassist in
building valid implementations of the specificatidrhese protocols affect
implementations of Recoverable Servers and the Transaction Service.

2. "ORBI/TS Implementation Considerations” on page 10-60 provides additional
information for implementers of ORBs and Transaction Services in those areas
where cooperation between the two is necessargatize theTransaction Service
function.

Thefollowing aspects of ORB and Transaction Servinplementation are covered:
* transaction propagation.
* interoperatiorbetween different transaction serviceplementations.

* ORB changes necessary to support pditghif transaction service
implementations.

10-48 CORBAservices November 1997

10

3. “Model Interoperability” on page 10-67 describes how mplementation achieves
interoperatiorbetween the Transaction Service and procedural transaction
managers.

10.5.1 Transaction Service Protocols

The Transaction Service requires that certain protocols be followietptement the
atomicity property.These protocols affect thmplementation of recoverable servers,
(recoverable objects that register for participation in the two-pbasenit process)

and the coordinators that are created by a transaction factoege Tesponisilities

ensure the execution of the two-phasenmit protocoland includemaintaining state
information in stable storage, so that transactions can be completed in case of failures.

General Principles

The first coordinator created for a specific transaction is responsible for driving the
two-phasecommit potocol. In the literature, this is referred to asroot Transaction
Coordinatol or simply root coordinator. Any coordinator that is subssly created

for an existing transaction (for example, as the result of interposition) becomes a
subordinate in the process. Such a coordinator is referred tsubordinate

Transaction Coordiator or simply subordinate coordinator and tegistering a

resource becomes a transaction participant. Recoverable servers are always transactiol
participants.The root coordiator initiates the two-phase commit protocol; participants
respond to the operations thahplement the protocol. The specification is based on

the following rules for commitmenénd recovery:

1. The protocol defined bthis specification is a two-phas@emmit with presumed
rollback.

This permits efficient implementations to be realized since the root coordinator does
not need to log anything before themmit decisiorand theparticipants (e.,
Resourc objects) do not need to log anything before they prepare.

2. Resourc objects—including subordinate coordinators—do not start commitment by
themselves, but wait fcprepare to be invoked.

3. The prepare operation is issued at most oncesch resource.

4. Participants must remember heuristic decisions until the coordinator or some
management application instructs thenforget that decision.

5. A coordinator knows whiclResourc objects are registered in a transaction and so
is aware of resources that have completedrneibment.

In general, the coordinator must remember this information if a transaction commits
in order to ensure proper completion of the transaction. Resources can be forgotten
early if they do not vote toommit the transaction.

6. A participant should be able to request the outcome of a transaction at any time,
including after failures occurring subsequent tcResourc object being prepared.

Transaction Service/l.1 The Implementers’ Vie November 1997 10-49

10

7. Participants should be able to report the completion of the transaction (including
any heuristic condition).

The recording of information relating to the transaction which is required for recovery
is described as if it were a log file for clarity of description; an implementation may
use anysuitable persistent storage mechanism.

Normal Transaction Completion

Transaction completion can occur in two wayspast of the normal execution of the
Current::commit or Terminator::commit operations or independent of these
operations if a failure should occur before normal execwu#@ncomplete. This section
describes the normgho failure) case. “Failures and Recovery” on page 10-57
describes the failure cases.

Coordinator Role

The root coordinatoimplements théollowing protocol:

e When the client asks icommit the transactionand no pior attempt to rollback
the transaction has been made, the coordinator issubefore_completion
request to all registered synchronizations.

* When all registered synchronizations have responded, the coordinator issues the
prepare request to all registered resources.

« If all registered resources re VoteReadOnly , then the root coordinator replies
to the client that the transaction committed (assuming that the cherstill be
reached).

Before doing so, however, first issuecafter_completion to anyregistered
synchronizations and, after all responses are received, replies to the client. There
is no requirement for the coordinator to log in this case.

« If any registered resource replivoteRollback or cannot be reached then the
coordinator will decide to rollbacknd will soinform those registered resources
which already replievoteCommit.

* Once aVoteRollback reply is received, a coordinator need not sprepare
to the remaining resourc Rollback will be subsequently sent to resources that
repliedVoteCommit .

If the report_heuristics parametewasspecified orcommit , the client will
be informed of the rollack outcome when any heuristic repdrésre been
collected (and loged if required).

» Once afeastoneregistered resource has replvoteCommit and all others have
repliedVoteCommit or VoteReadOnly , a root coordinator may decide to commit
the transaction.

» Before issuinccommit operations on those registered resources which replied
VoteCommit , the coordinator must ensure that the commit decision and the list of
registered resources—those that repVoteCommit —is stored in stable storage.

* If the coordinator receiveVoteCommit or VoteReadOnly responsefrom each
registered resource, it issues commit request to each registered resource that
respondevoteCommit .

10-50 CORBAservices November 1997

10

» After having received acommit orrollback responses, if synchronizations
exist, the root coordinator issuafter_completion to each of them passing the
transaction outcome asatusbefore responding to the client.

* The root coordinator issudorget to a resource after it receives a heuristic
exception.

» This responsibility is not affected by failure of the coordinatshen receiving
commit replies containing heuristic inforr@t, a coordinator constructs a
composite for the transaction.

» The root coordinator forgets the transaction after having logged its heuristic status
if heuristics reporting was requested by the originator.

» The root coordinator can now trigger the sending of the reply todmanit
operation if heuristic reporting is required. If no heuristic outcomes were
recorded, the coordinator can be destroyed.

One Phase Commit

If a coordinator has only a single registered resource, it can perform the
commit_one_phase operation on the resource instead of perfornprepare and
thencommit orrollback . If a synchronization existbefore_completion is issued
prior to commit_one_phase andafter_completion is issued when the response to
commit_one_phase has been received. Iffailure occurs, the coordinator will not be
informed of the transaction outcome.

Subtransactions

When completing a subtransaction, the subtransaction coordmasirnotify any
registered subtransaction aware resources of the subtransactiom’st armollback
status using thcommit_subtransaction or rollbback_subtransaction

operations of thSubtransactionAwareResou interface.

A transaction service implementation determines how it chooses to respond when a
resource responds commit_subtransaction with a system exception. The service
may choose toollback the subtragaction or it may ignore thexceptional condition.

The SubtransactionAwareResou operations are used to notify the resources of a
subtransaction ten the subtransacti@mommits in thecase where the resource needs
to keep track of theommit status of itencestors. They are not used to direct the
resources to commit aollback any state. The operationstbé Resourc interface are
used to comit or rollback subtransaction resources registered using the
register_resource operation of theCoordinatol interface.

When the subtmsaction is committedndafter all of the registered subtransaction
aware resources have been notified of the commitment, the subtransaction registers any
resources registered usiregister_resource with its parenCoordinato or it may
register a subordinate coordinator to relay any future requests to the resources.

From the application programmer pointwéw, the same rules that apply to the
completion of top-level transactions also apply to subtransactions. The
report_heuristics parameter oicommit is ignored since heuristics are not
produced when subtransactions acenmitted.

Transaction Service/l.1 The Implementers’ Vie November 1997 10-51

10

10-52

Recoverable Seer Role

A recoverable server includes at least one recoverable object alResourc object.
The recoverable object has state that destrates at least the atomicjiyoperty. The
Resourc object implements the two-phasemmit protocol as a participant on behalf
of the recoverable object. The respdilgties of each of these objects igstribed
below.

Synchronization Registration

A recoverable server may need to stgi aSynchronizatio object to ensure that
object state data which is persistently managed by a resource is returned to the
resource prior tstartingthe conmitmentprotocol.

Top-Level Registration

A recoverable object registersResourc object with theCoordinatol so commitment
of the transaction including any necessary recovery can be completed.

A recoverable object uses tis_same_transaction operation to determine whether
it is already registered in this transactioncdh also ushash_transaction to
reduce the number of comparisons. This relies ord#ifiaition of the

hash_transaction operation to return the same value forcabrdinators in the
same transaction even if they are generated H{ipteuTransaction Service
implementations.

Onceregistered, a recoverable server assumes the responsibilities of a transaction
participant.

Subtransaction Registration

A Recoverable Server registers for subtransaction completion only if it needs to take
specific actions at the time a subtransaction commits. An exantquiel Wwe to change
ownership of locks acquired by this subtransactioitstparent.

A recoverable object uses tis_same_transaction operation to determine whether
it is already registered in this subtransaction. It can alsthash_transaction to
reduce the number of comparisons.

Top Level Synchronization

Synchronizatio objects ensure that persistent state data is returned to the recoverable
object managed by a resource or to the underlying database manager. To do so they
implement a protocol which moves the data prior to the prepare phdsgoes

necessary processing after the outcome is complete.

CORBAservices November 1997

10

Top-Level Conpletion

Resourc objects implement a recoverable object’s involvement in transaction
completion. To do so, they must follow the two-phase ro@rprotocolinitiated by
their coordinatoland maintain certain elements of thgtiate in stable storage. The
responsibilities of (Resourc object with regard to a particular transactaepend on
how it will vote:

1. ReturningVoteCommit to prepare

Before aResourc object repliesvoteCommit to aprepare operation, it must
implement the following:

* make persistent the recoverable state ofet®verable object.

The nethod by which this is accomplishedimsplementaibn dependent. If a
recoverable object has only transient state, it need not be reasistent.
» ensure that its object reference is recorded in stable storage to allow it to
participate in recovery in thevent offailure.

How object references are made persiséat then regeneratedef a failure is
outside the scope of this specificatidrhe Rersistent Object Service or some
other mechanism may be used. HogrgisteniResourc objects get restarted
after a failure is alsoutside the scope of this esification.

record theRecoveryCoordinatc object reference so that it can initiate recovery of
the transaction later if necessary.

» the Resourc then waits for the coordinator to invocommit or rollback

» A Resourc with a heuristic outcome must not discard that information until it
receives dorget from its coordinator or some administratigemponent.

2. ReturningVoteRollback to prepare

A Resourc which repliesvoteRollback has no requirement to log. Once having
replied,the Resourc can return recoverable resources to their prior stadeforget
the transaction.

3. ReturningVoteReadOnly to prepare

A Resourc which repliesvVoteReadOnly has no requirement to log. Once having
replied, theResourc can release its resources and forget the transact

Subtransaction Completion

The role of the subtransaction aware resource at subtransaction completion are defined
by the subtransaction aware resource itself. The coordinator only requires that it
respond tocommit_subtransaction or rollback_subtransaction

All resources need to beotified when a transaction commits or is rolleath. But

some resources need to know when subtransactionsit am thatthey can update

local data structures and track the completion status of ancestors. The resource may
have rules that are specific to ancestry and must perform some work as all or some
ancestors complete. The nested semantics and effort required Resourc object

are defined by the object and not the Transaction Service.

Transaction Service/l.1 The Implementers’ Vie November 1997 10-53

10

10-54

Once the resource has been told to prepare, the resource's obligations are exactly the
same as a top-level resource.

For example, in the Concurrency Control Service, a resource in a nested transaction
might want to know \wen the subtrasaction commits écause another subtransaction
may be waiting for a lock held by that subtransact©nce thatsubtransaction

commits, others may be granted the lotkere is no requirement to make lock
ownership persistent untilprepare message is received.

For the Persistent ObjeBervice, it is important to keep separate upd#@mation
associated with gubtransaction. When that subtransactommits, the Persistent
Object Service may need to reorganizeirifermation (such as undo information) in
case the parent subtransaction chooses to rollback. Againetbietéht Object Service
resource need not make updates permametilta prepare message is received. At
that point, it has the same responsibilities as a top-level resource.

Subordinate Coordingéor Role

An implementaibn of the Transaction Service may interpose subordinate coordinators
to optimize the commit tree for completing the transaction. Such coordirpetbase

as transaction participants to their superiors and as coordinators to their resources or
inferior coordinators.

Synchronization

A subordinate coordinator may registeSynchronizatio object with its superior
coordinator if it needs to perform processing before its prepare phase begins.

Registration

A subordinate coordinator registersResourc with its superiorcoordinator. Once
registered, a subordinate coordinator assumes the responsibilities of a transaction
participant and implements thehavior of a recoverable server.

Subtransaction Registration

If any of the resources registered with the subordinate coordinator support the
SubtransactionAwareResou interface, the subordinate coordinator must register a
subtransaction aware resource with its parent coordinatanylof the resources
registered with the subordinate using register_resource operation, the
subordinate must registerResourc with its superior. If both types of resources were
registered with the subordinate, the subordinate only needs to register asadiioan
aware resource with its superior.

Top-level Completion
A subordinate coordinator implements the completion behavior of a recoverable server.

Subtransaction Completion

A subordinate coordinator implements the sulsteantion completion behavior of a
recoverable server.

CORBAservices November 1997

10

Subordinate Coordinator

A subordinate coordinator does not make them@trdecision but simply relays the
decision of its superior (mich may also be a subordinate coordinator) to resources
registered with it. A subordinate coordinator acts as a recoverable server as described
previously, interms ofsaving itsstate in stablstorage. A subordinate coordinator (or
indeed any resource) may log themmitdecision once it iknown (as an

optimization) but this is not essential.

® A subordinate coordinator issues before_completion operation to any
synchronizationsvhen it receiveprepare from its superior.

® Whenall responses tbefore_completion have been received, a subordinate
coordinator issues trprepare operation to its registered resources.

® |f all registered resources regVoteReadOnly , then the subordinate coordinator
will decide to replyVoteReadOnly .

Before doing so, however, fitrst issuesafter_completion to any registered
synchronizations and, aftall responses are received, repVoteReadOnly to its
superior. There is no requirement for the subordinate coordinator to log in this case;
the subordinate coordinator takes no further part in thedctionand can be
destroyed.

® |f any registered resource replivVoteRollback or cannot be reached then the
subordinate coordinator will decide tollback and will so inform thoseegistered
resources which already replivoteCommit.

Once avoteRollback reply is received, the subordinate coordinator need not send
prepare to the remaining resources. The subordinate coordinator issues
after_completion to any synchronizations andfter all responsesave been
received, repiesVoteRollback to its superior.

® Once at leasbne registered resource has repVoteCommit and all others have
replied VoteCommit or VoteReadOnly , a subordinate coordinator may decide to
reply VoteCommit.

The subordinate ardinator must record the prepared state, the referenitg of
superiorRecoveryCoordiator and itslist of resources that respondvoteCommit
in stable storage before respondingprepare

® A subordinate coordinator issues icommit operation to its registered resources
which replied VoteCommit when it receives commit request from its superior.

® If any resource reports a heuristic outcome, the subordinate coordinator must report
a heuristic outcome to its superior.

Before doing so, however, fitrst issuesafter_completion to any registered
synchronizations and, after all responses are received, reportsutligtib outcome

to its superior. The specific outcome reported depends on the othesticeuri
outcomes received. The subordinate coordinator must record the heuristic outcome
in stable storage.

® After having received acommit replies, a subordinate coordinator logs its
heuristic status (if any).

Transaction Service/l.1 The Implementers’ Vie November 1997 10-55

10

10-56

® The subordinate ardinator then replies to trcommit from its superior
coordinator.

Before doing so, it issueafter_completion to any registered synchronizations
and, after all responsésve been received, it then rigglto its superior. If no
heuristic reportvas sent theCoordinato! is destroyed.

® A subordinate coordinator performs trollback operation on its registered
resources when it receivesrollback request from its superior.

If any resource reports a heuristic outcome,sihieordinate coordinator records the
appropriate heuristic outcome in stable storage and will report this outcome to its
superior. Before doing so, however, it issafter_completion to any registered
synchronizations and, after receiving all the responses, reports th&tibeur
outcome to its superior.

® The subordinate ardinator then replies to ttrollback from its superior
coordinator.

Before doing so, it issueafter_completion to any registered synchronizations
and, after all responsésve been received, it then riggl to its superior. If no
heuristic reportvas sent theCoordinato! is destroyed.

® If a subordinate coordinator receivecommit_one_phase request, and it has a
single registered resource, it can simply performcommit_one_phase request
on its resourceBefore doing so, if a synchronization exists, it issues
before_completion to the synchronization, then, after receiving the
commit_one_phase response, issueafter_completion to the synchronization.

If it has multiple registered resources, it behaves like a superior coordinator, issuing

before_completion to any synchronizations andfter receiving the responses,
issuingprepare to each resource to determine the outcome, then iscommit

or rollback requests, followed bafter_completion requests if
synchronizations exist.

® A subordinate coordinator performs tforget operation on those registered
resources that reported a heuristic outcome when it receforget request from
its superior.

Subtransactions

A subordinate coordinator for a subtransaction recommit_subtransaction and
rollback_subtransaction requests to any subtransaction aware resources
registered with it. In addition, it performs the same roles as a top-level subordinate
coordinator when the top-level trsaction commits. It must releprepare and

commit requests to each of the resources thgistered with it using the
register_resource operation.

CORBAservices November 1997

10

Failures and Recovery

The previous descriptions dealt with the protocols associated with the Transaction
Service when a traaction completes without failure. To ensure atomiaity

durability in the presence of failure, the transaction service defines additional protocols
to ensure that transactions, once begun, alwaysplete.

Failure Processing

The unit of failure is termed the failure dom. It may consist of the coordinator and
some local resources registered with it, or the coordiraatdrthe resources may each
be in its own failure domain.

Local Failure

Any failure in the transaction during the exion of a coordinator prior to the commit
decisionbeing made will cause the transaction torbked back.

A coordinator is restarted only if it has lpgd thecommit decision.

* If the coordinator only contains heuristic informatiomthing is done.

« If the transaction is marked rollback only, a coordinator can rollback to
its resources and inferior coordinators.

« If the transaction outcome is commit, the coordinator scommit to prepared
registered resourceand the reglar commitmenprocedure istarted.

« If any registered resources exist but cannot be reached, then the coordinator must
try again later.

If registered resources no longer exist, then this means that they completed
commitmentbefore the coordinator failed and have no fsierinformation.

« If a subordinate coordinator is prepared, then it must contact its superior
coordinator to determine the transaction outcome.

« If the superior coordinator exists but cannot be reached, then the subordinate must
retry recovery later.

* If the superior coordinator no longer exists, then the outcome of the transaction
can be presumed to be rollback.

The subordinate will inform its registered resources.

External Failure

Any failure in the transaction during the exion of a coordinator prior to the commit
decisionbeing made will cause the transaction torbked back.

Transaction Completion after Failure

In general, the approach is to continue the completion protocols at the point where the
failure occurred. That means that the coordinator will usually have the responsibility
for sending thecommit decision to its registeredsmurces. €rtain failire conditions

will require that the resource initiate the recovery procedure—recall that the resource
might also be a subordinate coordinator. These are described in mordoeletail

Transaction Service/l.1 The Implementers’ Vie November 1997 10-57

10

10-58

Resources

A resource represents some collection of recoverable data associated with a
transaction. It supports ttResourc interface described in “Resourt@erface” on
page 10-29. When recovering from failure aftsrchanges have been prepared, a
resource uses ttreplay_completion operation on thiRecoveryCoordinat: to
determine the outcome of the transactiomd continue completion.

Heuristic Reporting

If the coordinator does not complete the two-phasamit in a timely manner, a
subordinate (i.e., a resource or a subordinate coordinator) in tlsadt@m may elect

to commit or rollack the resources registered with it in a prepared transaction (take a
heuristic decisiol). When the coordinator eventually sends the outcome, the outcome
may differ from that heuristic decisiofihe result iseferred to aHeuristicMixed

or HeuristicHazard. The result is reported by the root coordinator to the client only
when thereport_heuristics option oncommit is selected. In these circumstances,
the participant (subordinate) and th@ordinator must obey set of rules that define

what they report.

Coordinator Role

A root coordinator that fails prior to logging tkemmit decisiorcan unilaterally
rollback the transaction. If its resourdesve also rolled back because they were not
prepared, the transaction is returnedtsgorior state of consistew. If any resources
are prepared, they are requiredritiate the recovery process defined below.

® A root coordinator that hasa@mmittedoutcome will continue the completion
protocol by sendincommit .

® A root coordinator that has a rolled back outcome will continue the completion
protocol by sendingollback

Synchronizations

Synchronizatio objects are not persistent so they are not restarted after failure and, as
a result, their operations are rinvoked during failure processing.

Subtransactions

Subtransactions are not durable, so there is no completion after faiawewveét, once
the top-level coordinator issuprepare , a subtransaction subordinate coordinator has
the same responsibilities as a top-level subordinate coordinator.

Recoverable Seer role

The Transaction Service imposes certain requirements on the recoverable objects
participating in a transaction. These requirements include an obligation to retain
certain information at certain times in stable storage (storage not likely to be damaged
as the result of failure). When a recoverable ohjestarts after a failure, it

participates in a recovery protocol based on the contents (or lack of conteids) of
stable storage.

CORBAservices November 1997

10

Once having replieVoteCommit , the resource remains responsible for discovering the
outcome of the transaction (i.e., whether to ootror rollback). If the resource
subsequently makes a htic decision, thigloes not change its resgsibilities to
discover the outcome.

If No Heuristic Decision is Made

A resource that is prepared is responsiblerdrating recovery. It does so by issuing
replay_completion to theRecoveryCoordinat. The reply tells the resource the
outcome of the transaction. The coordinator can continue the completion protocol
allowing the resource to eitheommit orrollback. Theresource can resend
replay_completion if the completion protocol is not continued.

« If the resource having replievoteCommit initiates recovenand receives
StExcep::OBJECT_NOT_EXIST , it will know thatthe Coordinatol no longer
exists and therefore the outcomas to rolback (presumed rollback).

* If the resource having replievoteCommit initiates recovenand receives
StExcep::COMM_FAILURE , it will know only thatthe Coordinatol may or may
not exist. Inthis case, the resource retains responsibilityifidiating recovery
again at a later time.

When a Heuristic Decision is Made
Before acting on a heuristic decision, it must record the decision in stable storage.

« If the heuristic decision turns out to be consistent with the outcome, then all is
well and the transaction can be compledged theheuristic decision can be
forgotten.

« If the heuristic decision turns out to xeong, theheuristic damage is recorded in
stable storage and one of the heuristic outcome exceptions
(HeuristicCommit,HeuristicRollback,HeuristicMixed, or
HeuristicHazard) is returned wherompletion continues.

The heuristic outcome details must be retained persistently until the resource is
instructed to forget. In this case, the resource remains persistent urforget is
received.

Subordinate Coordingéor Role

The behavior of a subordinate coordinator after a failuiescfuperior coordinator is
implementatiom-depenént; however, it does follow the following protocols:

 Since it appears as a resource to its superior coordinator, the protocol defined for

recoverable servers applies to subordinate coordinators.

» Since it is also a subordinate coordinatorifsrown registered resowgs, it is
permitted tosend duplicattccommit , rollback , andforget requests to its
registered resources.

* Itis required to (eventually) perform eithrcommit orrollback on any resource
to which it has received VoteCommit response tprepare .

« It!is required to (eventually) perform tforget operation on any resource that
reported a heuristic outcome.

Transaction Service/l.1 The Implementers’ Vie November 1997 10-59

10

10-60

Since subtransactions are not durable, it has no responsibility in this area for failure
recovery.

10.5.2 ORB/TSImplemeantation Considerations

The Transaction Service and the ORB must cooperate to realtaincBransaction
Service function. This is discussed in greater detail in the following sections.

Transaction Propagation

The transaction is represented to the application b‘Control object. Within the
Transaction Service, implicit contextis maintained for all threads associated with a
transaction. Although there is somemmon information, thamplicit context isnot

the same as ttControl object defined in this specification anddsstinct from the

ORB Context defined by CORBA. It is the implicit context that must be transferred
between execution environments to supjtransaction propagati. n

The objects using a particular Transaction Service implementation in a dgstera

Transaction Service domi. Within the domain, the structure and meaning of the

implicit context informationcan be private to thienplementation. When leaving the
domain, this information must be translated to ammm form if it is to be unerstood
by the target Transaction Service domain, even across a single ORB. Whapltbi¢ i
context is transferred, it is represented {PropagationConte..t

No OMG IDL declaration is required to cause propagation ofrtidicit context with

a request. The minimum amount ofarmation thatcould serve as an implicit context
is the object reference of tiCoordinatol. However, an identifier (g., an X/Open
XID) is also required to allow efficient (local) execution of the

is_same_transaction andhash_transaction operations when interposition is
done. Implementations may choose to also includéeTerminato object reference if
they support thability for ending the transaction other execution environments than
the originator’s. Transferring the impliatbntext requires interaction between the
Transaction Servicand the ORB to add or extract timplicit context from ORB
messages. This interaction is also used to implement the checking functions described
in “X/Open Checked Traactions” on page 10-37.

When theControl object is passed as an operation argument (expfiggiagation), no
special transfer mechanism is required.

Interposition

When a transaction is propagated, ith@licit context isexported and can be used by
the importing Transaction Servicmplemenéation to create a neControl object
which refers to a new (locaCoordinatol. This techniqueinterpositior, allows a

1.or some “agent” acting onits bdhdor example a sptem managmentapplication.

CORBAservices November 1997

10

surrogate to handle the functions of a coordinator in the importing doifiaése
coordinators act esubordinate coordinatc. When interposition is performed, a single
transaction is represented by multiCoordinato! objects.

Interposition allows cooperating Transaction Services to share the resfignfabi
completing a transaction and can be used to minimize the number of network messages
sent during the completion process. Interposition is required for a Transaction Service
implementation to implement ttis_same_transaction andhash_transaction

operations as local method invocations, thus improvirgyallvsystems performance.

An interposed coordinator registers as a participant in the transaction with the
Coordinatol identified in thePropagationConte: of the received request. The
relationships between coordinators in the $etion form a tree. The root coordinator
is responsible for completing the transaction.

Many implementaons of the Transaction Service will want to perform inbsifion

and thus creatContro! objects and subsequenCoordinatoil objects for each
execution environment participating in the transaction. To create a new Control,

an importing Transaction Service uses the information in the propagation context to
recreate a Control object using {TransactionFactor. Interposition must be

complete before tt get_control operation can complete in the target object. An
object adaptor is one possible place to implement interposition.

Subordinate Coordingor Synchronization

A subordinate coordinator may register with its superior coordinator to ensure that any
local state data maintained by the subordinate coordinator is returned to the underlying
resource prior to the subordinate coordinator’s assocResourc seeingprepare .

Subordinate Coordingor Registraion

A subordinate coordinator must register with its superior coordinator to orchestrate
transaction completion for its local resources. register_resource operation of

the Coordinatol can be used to perform this function. The subordinate coordinator can
either support thResourc interface itself oprovide anotheResourc object which

will support transaction completion. Some implementations of thes@mdion Service
may wish to perform this function as a by-product of invoking the fpstation on an
object in a new domain as is done with the pé@ model. This requires that the
information necessary to perform registration bdestto the reply message of that

first operation.

Transaction Service Interoperation

The Transaction Service can be implementedniojtiple components at different
locations. Thedifferentcomponents can be based on the same or different
implementations of the Transaction Service.séated in “Principles oFunction,
Design, and Brformance” orpage 10-8, it is a requirement that Itiple Transaction
Services interoperate across the same ORB and different ORBs.

Transaction Service/l.1 The Implementers’ Vie November 1997 10-61

10

10-62

Transaction Service interoperation is specified by defining the data structures exported
betweendifferent implementations of th€ransaction Service. When tiraplicit

context is propagated with a request, the destination uses it to locate the superior
coordinator. That coordinator may be implemented by a foreign Transaction Service.
By registering a resource with that coordinator, the destination arranges to receive two-
phasecommit requests from the (possibly foreigimtansaction Service.

The Transaction Service permits many configurations; no particular configuration is
mandated. Typically, each program will be directly associated with a single
Transaction Service. Howeverhen requests ateansmitted bet@en programs in
different Transaction Service domaitmth Transaction Services must understand the
shared data structures to interoperate.

An interfacebetween the ORB and the Transaction Service is defined that arranges for
the implicit context to be carried on messages that represent methazhtiorss made
within the scope of a transaction.

Structure of the Propagation Cotext

The PropagationContexstructure is defined in “Structures” on page 10-15. For the
functions defined within the base section of the propagation context, it is necessary
only to send it with requests. Implementations may use the vendor spexctiin for
additional functions (for example, to register an interposed coordinator with its
superior), which may require the propagation context to be returned. Whether it is
returned or not, is implementation specific.

otid_t

Theotid_t structure is a more efficient OMG IDL version of the X&h defined
transaction identifier (XID). Thotid_t can be transformed to an X/Open XID and
vice versa.

Transldentity

A structure that defines information for a single transaction. It consistcoord , an
optionalterm , and anotid

coord
The Coordinatol for this transaction in the exporting Transaction Service domain.

term

The Terminato for this transaction in the exportirfigansaction Service domain.
Transaction Services that do not alleavirination by other than the originator will set
this field to a null referenceOBJECT_NIL).

CORBAservices November 1997

10

otid

An identifier specific to the current transaction or subtransaction. This value is
intended to supposfficient (local) execution othe is_same_transaction and
hash_transaction operations when the importing Transaction Serdoes
interposition.

timeout

The timeout value associated with the transaction in the relset_timeout
operation (or the default timeout).

<Transldentity> parents

A sequence oTransldentity structures representing the parent(s) of the current
transaction. The ordering of the sequence starts at the parent of the current transaction
and includes all ancestors up to the top-level transaction. An implementation that does
not support nestetlansactions would send an empty sequence. This allows a non-
nested transaction implementationkttow when a n&ted transaction is being

imported. It also supports efficient (local) execution of Coordinatol operations

which test parentagehen the importing Transaction Service does interposition.

implementation_specific_data

This information is exported from an implementation and is required to be passed back
with the rest of the context if the transaction is re-imported into that implementation.

Appearance of the Propagation Contextinddsages

The appearance of ttPropagationConte: in messages is defined by the CORBA
interoperability specification (see the Generaétr®RB Protocol chapter of the
Common ObjecRequest Broker: Architecture ar&pecificatiol). The Transaction
Service passes the PropagationContext to the ORB viTSPortability interface
defined in “The Transaction Service Callbacks” on page 10-65.

®* When eyorting a transaction, the ORB sets the PropagationContext into the
ServiceContext::context_data field and marshals the PropagationContext as
defined by the GIOP message formmatd marshalling rules.

® When importing a transaction, the ORB demarshalls the
ServiceContext::context_data according to the GIORormatting rulesand
extracts the ProggtionContext to be presentedttoe Transaction Service.

For more information, see the General Inter-ORB Protocol chapter Common
Object Request Broker: Architecture andeSilicatior.

Transaction Service Portability

This section describes the way in which the ORB and the Transaction Service
cooperate to enable tIPropagationConte: to be passed and any X/Open-style
checking to be performed on transactional requests.

Transaction Service/l.1 The Implementers’ Vie November 1997 10-63

10

10-64

Because it is recognized that other object services and future extensions to the CORBA
specification may require similar mechanisms, this component is specified separately
from the mainbody of the Tramaction Service to allow it to be revised or replaced by

a mechanism common to several servioeependently of any future Traaction

Service revisions.

To enable a single Transaction Service to work with multiple ORBs, it is necessary to
define a specific interface between the ORB and the Transaction Service, which
conforming ORB implementations will provide, and demanding 3aation Service
implementationgan rely on. Theemainder of this section describes these interfaces.
There are two elements of the required interfaces:

1. An additional ORB interface that allows the TsactionService to identify itself to
the ORB when present in order to be involved intthasmission of transactional
requests.

2. A collection of Transaction Service @pations (thelransaction Service callbacks)
that the ORB invokes when a transactional request is sent and received.

These interfaces are defined aepdo-IDL to allow them to be implemented as
procedure calls.

Identification of the Transaction Service to the ORB

Prior to the first transactional request, the Transaction Service will identify itself to the
ORB within itsdomain to establish the transacticallbacks to be used for
transactional requests and riepl

The Transaction Service identifies itself to the ORB using the following interface.

i nterface TSldentification {// PIDL
exception NotAvailable {};
exception Alreadyldentified {};

void identify_sender(in CosTSPortability::Sender sender)
raises (NotAvailable, Alreadyldentified);
void identify_receiver(in CosTSPortability::Receiver
receiver)

raises (NotAvailable, Alreadyldentified);
i

The callback routines identified in this operation alsgays in the same addressing
domain aghe ORB. On most machine architectures, there are a unique set of callbacks
per address space. Since invocation is via a procedure cajpendent failures cannot
occur.

NotAvailable

TheNotAvailable ~ exception is raised if the ORB implementation does not support
the CosT SPortallity module.

CORBAservices November 1997

10

Alreadyldentified

The Alreadyldentified exception is raised if thidentify_sender or
identify_receiver operation had previousigentified calltacks to the ORB for
this addressing domain.

identify _sender

Theidentify_sender operation provides the interface that defines the callbacks to
be invoked by the ORB when a transactional request is sent and its reply received.

identify_receiver

Theidentify_receiver operation provides the interface that definesaakbacks
to be invoked by the ORB when a tsactional request is receivaddits reply sent.

The Transaction Service must identify itself to the ORB at leasé per Transaction
Service domain. &ding and receiving traactional requests are separately identified.
If the callback interfaces are different for different processes within a Transaction
Service domain, they are identified to the ORB on a per process basisor@nly
Transaction Service implementation per addressing docaairidentifyitself to the
ORB.

A Transaction Service implementation that only sends transactional request can
identify only the sender callbacks. A Transaction Service that only receives
transactional requests can identify only the receiver callbacks.

The Transaction Service Callbacks

The CosTSPortabilit module defines two interées. Bothinterfaces are defined as
PIDL. TheSende interface defines a pair of operatiombich are called by the ORB
sending the request before it is sent and after its reply is recfikeReceiver
interface defines a pair of operations which are called by the ORB receiving the
request when the request is received and before its reply is s¢iminBrfaces use the
PropagationConte; structure defined in “Structures” on page 10-15.

Transaction Service/l.1 The Implementers’ Vie November 1997 10-65

10

10-66

module CosTSPortability { // PIDL
typedef long Reqld;

interface Sender {
void sending_request(in Reqld id,
out CosTransactions::PropagationContext ct X);
void received_reply(in Reqld id,
in CosTransactions::PropagationContext ctx,
in CORBA::Environment env)

h

interface Receiver {
void received_request(in Reqld id,
in CosTransactions::PropagationContext ctx);
void sending_reply(in Reqld id,
out CosTransactions::PropagationContext ctx);

Reqld

TheReqld is an unique idntifier generated by the OREhich lasts for the duration of
the processing of the request and its associated reply to allow the Transaction Service
to correlate callback requests and replies.

Sender::sending_equest

A request is about to be seiithe Transaction Service returnPropagationConte: to

be delivered to the Transaction Service at the server managing the target object. The
TRANSACTION_REQUIRE standard exception is raised when invoked outside the scope
of a transaction.

Sender::received_reply

A reply has been receivetdlhe PropagationConte> from the server is passed to the
Transaction Service along with the returned environment. The Transaction Service
examines th€Environment to determine whether the request was successfully
performed. If th Environment indicates the request was unsuccessful, the
TRANSACTION_ROLLEDBA! standard exception is raised.

Receiver::received_request

A request has been received. TPropagationConte) defines the transaction making
the request. It is associated with the target object only if the target object inherits from
the Transactional®jec interface.

CORBAservices November 1997

10

Receiver::sending_reply

A reply is about to be sent. A checking transaction service determimether there

are outstanding deferred requests or subtransadiwhsaises a system exception

using the normal mechanisms. The exception data from the callback operation needs to
be re-raised by the calling ORB.

Behavior of the Callback Interfaces
The following sections describe the protocols associated withalimck interfaces:

Requirements on the ORB

The ORB will invoke the sender callbacks only when adaational operation is
issued for an object in a different process. Objects within the same pnoq@isstly
share the same transaction context. The receiver callbacks akednwben the ORB
receives a transactional request from a different process.

The ORB must generate a request identifierefach outgoing request and be able to
associate the identifier with the rephhen it is returned. Fatdeferred synchronous
invocations, this allows the Transaction Service to correlate the reply with the request
to implement checked behavior. The requesnhidier is passed on sghronous
invocations to permithe same interface to be used.

The callbacks are invoked in line with the processing of requests and replies. This
means that the callbacks will be executed on the same thread that issued or processe
the actual request or reply. When the DIl is usedreceived_reply callback must

be invoked on the same thread that will subsequently process the response.

Requirements on the Transaction Service

Within a single process, the transaction context is part of the thread specific state.
Multiple threads executing on behalf of the same transaction will share the same
transaction context since a thread can only execute on behalf of a single transaction at
a time. Since the callbacks are defined as PIDL (procedure calls), they atedrom

the client’'s thread when sending and the server’s thread when receiving. This enables
the Transaction Service to locate the proper transaction context when sending and
associate theeceived transaction context with the thread that will process the
transactional operation. The callback interfaces may only raise standeaftiersand

may not make additional object invocations using the ORB.

10.5.3 Model Interoperability

The indirect context management programming model of thes@ciion Service is
designed to be compatible with the X/Open DTP standard, and implementable by
existing Transaction Managers. In X/Open DTP, a current transaction is associated
with athread of contro. Some X/Open Transaction Managers support a single thread
of control in aproces, others allow multiple threads of control per process.

Transaction Service/l.1 The Implementers’ Vie November 1997 10-67

10

Model interoperability is possible because the Seartion Service design is
compatible with the X/Open DTP model of a Transaction Manager. X/Open associates
an implicit current transaction witkach thread of control.

This means that a single transaction management service can provide the interfaces
defined for the Transaction Service and also provide the TX and XA interfaces of
X/Open DTP. This is illustrated iRigure 10-6.

New Application (Objects) SQL Data Base

Transactional Transactional SQL DB
. Object Resource
Client Manager
_______________________________________ A
i | ORB [propagation |
""""" transactional operation XA
' v
Transaction Transaction
Service Manager

Figure 10-6 Model Interoperability Example

The transactional object making the SQL call, and the 8@$ource manager, are
both executing on the same thread of control. The transaction manager is able to
recognize the relationship between the transaction context of the abjddhe
transaction associated with the SQL DB.

The Curreni andCoordinatol interfaces of the Transaction Service implement two-
phase commit for the objects in the transaction. The Resournagdawill participate
in the two-phaseommitment process via the Xp@®n XA interface.

10-68 CORBAservices November 1997

10

10.6 The CosTransactiododule

#include <Corba.idl>

module CosTransactions {

/I DATATYPES

enum Status {
StatusActive,
StatusMarkedRollback,
StatusPrepared,
StatusCommitted,
StatusRolledBack,
StatusUnknown,
StatusNoTransaction,
StatusPreparing,
StatusCommitting,
StatusRollingBack

k

enum Vote {
VoteCommit,
VoteRollback,
VoteReadOnly

k

/I Structure definitions
struct otid_t {
long formatID; /*format identifier. 0 is OSI TP */
long bqual_length;
sequence <octet> tid;
3
struct Transldentity {
Coordinator coord;
Terminator term;
otid_t otid;
3
struct PropagationContext {
unsigned long timeout;
Transldentity current;
sequence <Transldentity> parents;
any implementation_specific_data;

b

/I Forward references for interfaces defined later in module
interface Current;

interface TransactionFactory;

interface Control,

interface Terminator;

interface Coordinator;

Transaction Servicazl.1 The CosTransactions Modi November 1997

10-69

10

10-70

interface RecoveryCoordinator;

interface Resource;

interface Synchronization;

interface SubtransactionAwareResource;
interface TransactionalObject;

/I Heuristic exceptions
exception HeuristicRollback {};
exception HeuristicCommit {};
exception HeuristicMixed {};
exception HeuristicHazard {};

/I Other transaction-specific exceptions
exception SubtransactionsUnavailable {};
exception NotSubtransaction {};
exception Inactive {};

exception NotPrepared {};

exception NoTransaction {};

exception InvalidControl {};

exception Unavailable {};

exception SynchronizationUnavailable {};

/I Current transaction
interface Current : CORBA::Current {
void begin()
raises(SubtransactionsUnavailable);
void commit(in boolean report_heuristics)
raises(
NoTransaction,
HeuristicMixed,
HeuristicHazard
);
void rollback()
raises(NoTransaction);
void rollback_only()
raises(NoTransaction);

Status get_status();

string get_transaction_name();

void set_timeout(in unsigned long seconds);

Control get_control();

Control suspend();

void resume(in Control which)
raises(InvalidControl);

CORBAservices November 1997

10

interface TransactionFactory {
Control create(in unsigned long time_out);
Control recreate(in PropagationContext ctx);

h

interface Control {
Terminator get_terminator()
raises(Unavailable);
Coordinator get_coordinator()
raises(Unavailable);

b

interface Terminator {
void commit(in boolean report_heuristics)
raises(
HeuristicMixed,
HeuristicHazard
);
void rollback();
|3

interface Coordinator {

Status get_status();
Status get_parent_status();
Status get_top_level_status();

boolean is_same_transaction(in Coordinator tc);
boolean is_related_transaction(in Coordinator tc);
boolean is_ancestor_transaction(in Coordinator tc);
boolean is_descendant_transaction(in Coordinator tc);
boolean is_top_level_transaction();

unsigned long hash_transaction();
unsigned long hash_top_level tran();

RecoveryCoordinator register_resource(in Resource r)
raises(Inactive);

void register_synchronization (in Synchronization sync)
raises(Inactive, SynchronizationUnavailable);

void register_subtran_aware(in SubtransactionAwareResource

)

raises(Inactive, NotSubtransaction);

void rollback_only()
raises(Inactive);

string get_transaction_name();
Control create_subtransaction()
raises(SubtransactionsUnavailable, Inactive);

Transaction Servicazl.1 The CosTransactions Modi November 1997

10-71

10

PropagationContext get_txcontext ()
raises(Unavailable);

h

interface RecoveryCoordinator {
Status replay_completion(in Resourcer)
raises(NotPrepared);

h

interface Resource {
Vote prepare()
raises(
HeuristicMixed,
HeuristicHazard
);
void rollback()
raises(
HeuristicCommit,
HeuristicMixed,
HeuristicHazard
);
void commit()
raises(
NotPrepared,
HeuristicRollback,
HeuristicMixed,
HeuristicHazard
);
void commit_one_phase()
raises(
HeuristicHazard
);
void forget();
k

interface TransactionalObject {

h

interface Synchronization : TransactionalObject {
void before_completion();
void after_completion(in Status status);

b

interface SubtransactionAwareResource : Resource {
void commit_subtransaction(in Coordinator parent);
void rollback_subtransaction();

b

}; /1 End of CosTransactions Module

10-72 CORBAservices November 1997

10

10.6.1 The CosTSPortability Module

module CosTSPortability { // PIDL
typedef long Reqld;

interface Sender {
void sending_request(in Reqld id,
out CosTransactions::PropagationContext ctx);
void received_reply(in Reqld id,
in CosTransactions::PropagationContext ctx,
in CORBA::Environment env);

h

interface Receiver {
void received_request(in Reqld id,
in CosTransactions::PropagationContext ctx);
void sending_reply(in Reqld id,
out CosTransactions::PropagationContext ctx);

Transaction Servicazl.1 The CosTransactions Modi November 1997 10-73

10

Appendix A Relationship of Transaction Service to TP Standards

This appendix discusses thedationshipand possiblénteractions with the following

related standards:
® X/Open TX interface
® X/Open XAinterface
® OSI TP protocol
® LU 6.2 protocol
® ODMG standard

A.1 Support of X/Open TX Interface

10-74

A.1l.1 Requirements

The X/Open DTP mod? is now widely known and implemented.

Since the Transaction Service and the X/Open DTP models are interoperable, an
application using transactional objects could use the TX interface, the X/Open-defined
interface to delineate transaci® to interact with a Transaction Manager. (The
Transaction Manager is the access point of the Transaction Service.)

A.1.2 TX Mappings

The correspondence between the TX interfacmipvies and the Transaction Service
operations Current interface) are as follows:

Table 10-2TX mappings

TX interface

Current interface

tx_open() no equivalent
tx_close() no equivalent
tx_begin() Current::begin()

tx_rollback()

Current::rollback() or
Current::rollback_only()

tx_commit()

tx_set_commit_return()

Current::commit()

report_heuristics parameter of
Current::commit()

tx_set_transaction_control()

tx_set_transaction_timeout()

no equivalent
(chained transactions not supported)

Current::set_timeout()

1. See “Distributed Transactidirocessg: The XASpecification,X/Open Documen€193.” X/Open Companiytd.,

ReadingU.K.,ISBN 1-85912-03-1.

Transaction Serviceul.1 Support of X/Open TX Interfe November 1997

10

Table 10-2TX mappings

TX interface Current interface

tx_info() - XID Coordinator::get_txcontext()
Current::get_name() 1

tx_info() - COMMIT_RETURN no equivalent

tx_info() - TRANSACTION_TIME_OUT no equivalent

tx_info() - TRANSACTION_STATE Current::get_status()

1.A printable string is output: not guaranteed to be the XID in all implementations.

tx_open

tx_open() provides a way to open, in a given execution environment, the Transaction
Manager and the set of Resource Managers that are linked to it. Such an opeegion
not exist in the Transaction Service; such processing maneitly executed when
thefirst operaion of the Transaction Service is executed in the execution environment.

This processing is also related to a future Initializat@mvice.

tx_close

tx_close() provides away to close, in @iven execution environment, the
Transaction Manager and tiset of Resource Managers that are linked t8uth an
operationdoes not exist in the Transactiorr8ice.

tx_begin

tx_begin() corresponds * Current::begin () orta

TransactionFactory::create 0.

tx_rollback

tx_rollback() corresponds * Current:rollback(),

Terminator::rollback(), Current::rollback_only() or
Coordinator::rollback_only() . In TX, when a server caltx_rollback() , the

transaction may be rolled back or setaldback only, as in the Transaction Service.

tx_commitand tx_set_commit_return

tx_commit() corresponds tCurrent::commit(. The Trarsaction Service
operationshave a parametereport_heuristics , corresponding to tl 2
commit_return parameter of TX.

Transaction Service/l.1 Support of X/Open TX Interfa November 1997 10-75

10

tXx_set_transaction_control

tx_set_transaction_control() is used, in TX, to switch between unchained and
chained mode; this function is not meel in the Transaction Service environment
because it does not support chained transactions.

tx_set_transaction_timeout

tx_set_transaction_timeout() corresponds tiCurrent:set_timeout() or
TransactionFactory::create()

tx_info

tx_info() returns information related to the current transaction. In the Transaction
Service:

» the XID may be retrieved bCoordinator::get_txcontext() ;
 the XID (in effect) may beetrieved by Current:get_transaction_name() ;
* the transaction state may betrieved byCurrent::get_status() ;

» the commit return attribute isot needed because this attribute is given in the
commit() operation;
* the timeoutattribute cannot be obtained.

A.2 Support of X/Open Resource Managers

10-76

A.2.1 Requirements

X/Open DTP-compliant Resource Managers, simply calledpg€fOResource
Managers or RMs, are Resource Managers that can be involvedistributed
transaction by allowing their two-phasemmitprotocol to be controlled via the
X/Open XA Interface. Many RDBMS suppliers currently offer (or intend to offer)
X/Open Resource Managers. Many OODBMS'’ intend also to support that&Xace
(some have already implemented it).

The Transaction Service must therefore be able to intelittdddOpen Resource
Managers. This section will illustrate how an X/Opgeesource Manager may be used
by a Transaction Service-compliant system.

The architecture of Transaction Service, based on the same concepts as the X/Open
DTP Model, allows mapping of Transaction Service operations to and from XA
interactions.

A.2.2 XA Mappings

This section gives an overall view of a possible mappietgveen XA prmnitives

offered by an X/Open Resource Manager (called RM hereafter) andte¢hnfaces of

the Transaction Service and their operations in the different phases of a transaction and
during recovery.

Transaction Serviceul.1 Support of X/Open Resource Manag November 1997

10

A.2.3 XID

The mappings are summarized in the following table:

Table 10-3XA mappings

X/Open Object Transaction Service

xa_start() Receiv er::received_r equest

ax_reg() Current::resume

xa_end() Receiver::s ending _re ply
Current::suspend

ax_unreg() no equivalent

xa_prepare() Resource::prepare

xa_commit() Resource::commit

xa_rollback() Resource::rollback

xa_recover() no equivalent

no equivalent RecoveryCoordinator::replay_completion()

xa_forget() Resource::forget()

In the X/Open DTP modaelll the interactions are made in the same X/Open thread of
control.

An XID is the Transaction Identifier. As defined by X/Open, this XID is the only
information used byResource Managers to associate logged information to the
transaction, including objects’ before images, after images, lockgdramghction state.

The contents of an XID is defined by X/Open as follows:

#define XIDDATASIZE 128 /* size in bytes ¥/
#define MAXGTRIDSIZE 64

/* maximum size in bytes of gtrid */
#define MAXBQUALSIZE 64

/* maximum size in bytes of bqual */

struct xid_t {
long formatID;/* format identifier */
long gtrid_length;
/* value not to exceed 64 */
long bqual_length;
/* value not to exceed 64 */
char data [XIDDATASIZE];
3
typedef struct xid_t XID;

The XID uniquely and unambiguously identifiesliatributed transaction (information
contained in thgtrid part of the XID) and &ansaction-branch, the work performed
by a node in the tresaction tree (information contained in ‘bqual part of the XID).

Transaction Service/l.1 Support of X/Open Resource Manag November 1997 10-77

10

10-78

To facilitate the use of distributed transaction in heteneges environments, X/Open
has adopted the structure of the Transacti@niifier used in OSI TP but allows the
use of other Transaction ldentifiers formats, which may be defined by the value of a
Format Identifier field contained in the XID structure. The OSI TP Transaction
Identifier contains informatioabout the initiator of the transaction and the superior in
the transaction tree; this information may be used, duriogvezy, to contact these
entities and obtain the outcome of the transaction.

In the Trarsaction Service, tightly-couplezbncurrency is assumed (a lock held by a
transaction may be accessed by any participant of the same transaction) and the
transaction branch part of the XID must not be given to RMs.

Interactions with an XA-compliant RM

Model

To model the relationship between the X#erfaceand the Transaction Service
operation, an X/Open Transaction Manager bemnmodeled this component is used
here as a way to describe the interactions and may be implemented in a different
manner.

Propagation of a Transaction to an RM

An RM may support two kinds of involvement interactions:
« Static registration, in which the Transaction Service invotiiesRM wherver it
is itself involved in a new transaction.

e Dynamic registration, in which the RM notifies the Tsantion Service that it has
been requested to perform some warld request the XID of the current
transaction.

An RM gets involved in a tragaction vhen it has tperform some new work for this
transaction. This happens in one of the followirtgations:

e A request carrying a transaction context hestbeen received and the RM has to
perform work for the target object of this request;

* A method performing a request that is carrying a transaction context is resumed
(by aCurrent::resume() operation).

An object may receive several requests carrying a transaction context for the same
transaction. An RM may also perform work for several objects in the same transaction.
Thus an RM may be involved several times in the same transaction; the “resgne”
the “join” concepts of XA may be used notify the RM of any multiple involvement.
When an RM has to get involved in a tsaction, it must obtain the correspling

XID from the Transaction Service through xa_start() primitive or by a return
parameter of aax_reg() primitive. This XID istransmitted to the RM as a parameter

to xa_start() orax_reg() and is used by the RM to relate any work performed or
any lock obtained to the transaction.

Transaction Serviceul.1 Support of X/Open Resource Manag November 1997

10

If the Transaction Service is called by ax_reg() while it is not aware of any
transaction, it returns a null XID to the RM. The RM is then free to start a local
transaction of its own, and no Transaction Service transaction will be accepted until
the RM issues aax_unreg()

Refer to X/Open documents for more information about propagation of a transaction to
an RM.

First phase of Commitment

When thefirst phase otommitment is started, thEransaction Service issues an
xa_prepare() primitive andprocess its results to determiite decision.

Second Phase of Commitment

When the second phase of aoitment is started, the Transaction Service issues an
xa_commit() primitive and process itesults to determine the heuristic situation.

One-phase commitment

When the Trasaction Service wants to perform a one-pl@samitment, it issues an
xa_commit() primitive and process itesults to determine the heuristic situation.

In the XA interface, there is no specific primitive fmme-phaseommitment: an RM
must consider axa_commit() without precedinixa prepare() as a request to
perform a one-phasgommitment.

Rollback

When a rollback has to be performed, the Transaction Service issues an
xa_rollback() primitive andprocess its results to determine the heuristic situation.

Recovery

In the XA interface, the recovery of an RM is triggered by the Transaction Manager
which issues axa_recover() ; the RM then gives back &t of all XIDs that are
either in the Ready state or have been heuristically completed.

In the Trarsaction Service recovery is performed by a resource that issues a
replay_completion operation to €oordinatol (see Subsection "Traaction
Completion after Failure" in “Transaction Service Protocols” on page 10-49).

Failure of an Operation

Any failure of an operation typically leads to a rollback of thedaation especially if

it is not possible to determine whether the operation kas performed or not.
However, in the decidedommit state, thcommit operation must be retried until the
reply has been received (unless a hsicrhazard condition is detected).

Transaction Service/l.1 Support of X/Open Resource Manag November 1997 10-79

10

Failure of an RM

If an RM fails, the Transaction Service detecting the failure will issue an xa_recover().
The Transaction Service will then get a list of XIDs of transactions for which the RM
is in the ready state and transactions that have been heuristically completed.

The Transaction Service will then:
* Call xa_rollback() for all transactions that knows to beneither in the
prepared state nor in the decided cairstate.

e Call xa_commit() for all transactions that knows to be irthe decideccommit
state.

» Wait for the decisions commit or rollback for the other.

Failure of Transaction Service

Upon warm restart of the Transaction Senaoel retrieval of the states of transactions
needing recovery from stable storage, the Transaction Service wxa_recover()

to get thdist of transactions for which the RM needs recovery fadere of anRM,
here above).

A.3 Interoperation with Transactional Protocols

A.3.1 Transactional Protocols

A CORBA application may sometimeged to interoperate with one or more
applications using one of the de-facto standard transactional protocol: G3IdTP
SNA LU 6.2. Inthis case, the Transaction Service must be able to import or export
transactions using one of these protocols.

Export is the ability to relate a transaction of the Transa8®@mice to a transaction

of a foreign transactional protocol. Importing means relating a Transaction Service
transaction to a transaction started on a remote application and propagated via the
foreign transactional protocol.

Since the model used by the Transaction Service isasitoithe model of OSI TAnd

the X/Open DTP model, the interactions with OSI TP are straightforward. Since OSI
TP is a compatible superset of SNA LI26a mapping to SNA communications is
easily accomplished.

To interoperate, a mapping should be defined for the two-piuamenit, rollback, and
recovery mechanisms, and for the transacti@ntifiers.

Notice that neither OSI TP nor SNA LU 6.2 supports nested transactions.

A.3.2 OSI TP Interopeability

OSI TP [ISO92] is the trsactional protocol defined by ISO. It has been selected by
X/Open to allow the distribution of transactions by one of the communication
interfaces: remote proceducell!, client-serve? or peer-to-peer (CPI-C Level-2 API
[CIW93)).

10-80 Transaction Serviceul.1 Interoperation with Transactional Protoci November 1997

10

The Transaction Service supports only unchained transactions. The use of dialogues
using the Chained Transactions functional unit is possible omgsifictive rules are
defined. These rules are not described in this document.

OSI TP Transaction Identifiers

In OSI TP, loosely-coupled transactions are supported and ewdgyof the

transaction tree possesses a transaction branch identifier which is composed of the
transaction identifier (or atomic action identifiemd a branch iehtifier (the branch
identifier being null for the root node of the hsaction tree). Both the transaction
identifier and the branch ideifier contains an AE-Title (Application Entity Title) and

a suffix that make itinique within acertainscope.

The format of the statard X/Open XID is compatible with th@SI TP idenfiers, the
gtrid corresponding to the atomic action identifeerd thebqual corresponding to
the branch identifier.

IncomingOSI TP Conmunications (Imported Transactions)

The Transaction Service is a subordinate in an OSI TP transaction tree and interacts
with its superior by regular PDUs as defined by the OSI TP protocolTfdmsaction
Service introduces the transaction identifier receivetherOSI TP dialogue using the
TransactionFactory::recreate operation.

The Transaction Service maps the OSI TP mament, rolltack and recovery
procedures to the Transaction Serwoenmitmentprocedure aollows:

* The Transaction Service, upoeception of an OSI TP Prepare message, will
enter the firsphase otcommitmentprocedure.

* When it enters the prepared state for the transaction, the Transaction Service will
trigger the sending of an OSI TP Ready message to its superior. (It may trigger a
Recover (Ready) messag#dennormal communications are broken with the
superior).

» The Transaction Service, upoaception of an OSI TP Commit message, enters
the second phase obmmitmentprocedure. (It may receive a Recover (Qoit)
when normal communications are broken with the superior.)

» The Transaction Service, upon reception of an OSI TP Rollback me$sags/
be a Recover (Umown) whennormal communications at@oken with the
superior or any other rollbackitiating condition) will enter its rollback
procedure (unless a rollback is already in progress).

» The Transaction Service, upon reception ofl#se rollback reply, will trigger the
sending of a Rollback Responsef@irm message tids superior.

1. See “Distributed TransactidrocesBg: The TXRPCSpecification,X/Open Docunent P305.”X/Open Company
Ltd., Reading, U K..

2. See “Distributed Transactidrocessg: The XATMI Specification,X/Open Document RB.” X/Open Company
Ltd., Reading, U K..

Transaction Service/l.1 Interoperation with Transactional Protoct November 1997

10

10-82

Outgoing OSI TP GQmmunications (Exported Transactions)

The Transaction Service behaves asesor in an OSI TP transaction traad
interacts with its subordinates by regular PDUs as defined by the OSI TP protocol.

The Transaction Service will map the OSI TP cotmentprocedure as follows:

e The Transaction Service, during tfiest phase otommitmentprocedure will
invoke an OSI TP Prepare message tataibubordinates.

» Upon reception of an OSI TP Ready message, the Transaction Service will
process this message as a successful reply to prepare.

e The Transaction Service, upon entering the second phase of th&tomnt
procedure will send an OSI TP Commit message (it may be a Recovem{@om
when normal communications are broken with the subordinata) to
subordinates.

» The Transaction Service, upon reception of an OSI TP Rollback me#sags/
be any other rollback-initiating condition) will enter its rollback procedure (unless
a rollback is already in progress).

» The Transaction Service, upoaception of the last Roléfltk Response/f@hfirm
message from itsubordinates, will process this message as a reply to a rollback
operation and determine the heuristic situation.

A.3.3 SNA LU 6.2 Interoperability

SNA LU 6.2 ([SNA88a], [SNA88D]) is a trasactional protocol defined by IBM. It is
widely used for transaction distribution. The standard interface to acce2LU
communications is CPI-C (Commdrogramming Interface for Communications)
defined by IBM in the context of SAA [RIC93] andcurrently being evolved by the
CPI-C Implementers' Workshop to become CPI-C level 2, a mddesriace usable
for LU 6.2 and OSI TP communications [CIW93].

LU 6.2 supports only chained transactions but, at a given node, a transastinteid

only when resources have been involved in thestation. LU 6.2Zan be used for a
portion of an “unchained” transaction tree if the BL2 canversations are endexdter

each transaction by any node that has both LU 6.2 conversations and dialogues of an
unchained transaction.

LU 6.2 Transaction Identifiers

SNA LU 6.2 also supports loosely-coupled transactions and uses a sfuoinidt for
transaction identifiers: the Logical Unit ¥fork (LUWID) corresponds to the OSI
Transaction Identifier. The LUWID is composed of:

» The Fully Qualified Logical Unit Name, which @omposed of up to 17 bytes, is
unique in an SNA network or a set of interconnected 3#vorks.

* An instance number which is unique at the LU that create thedc#on.
» The sequence number that is incremented whenever the transac@mnistted.

Transaction Serviceul.1 Interoperation with Transactional Protoci November 1997

10

The Conversation Correlator corresponds to the OSI TP Branch Identifier; it is a string
of 1 to 8 bytes which are uniqudthin the context of the LU having established the
conversation and is meaningful when combined with the Fully Qualified LU Name of
this Logical Unit.

Incoming LU 6.2 Communications

The LU 6.2 two-phaseommit protocol is different from the OSI TP protocol: the
system sending a Prepare message has to perform laguinig responsible for
recovery. LU 6.2 does also support features lst-agent opimization,read-only and
allows any node in the transactitree to request commitment.

The Transaction Service is a subordinate in an LU 6.2 transaction treetenadts

with its superior using SNA requesiad responses as defined by the LU 6.2 protocol.
The Transactio®ervice maps thelWlWID corresponding to the incoming conversation
to an OMGaotid_t and issueTransactionFactory::recreate to import the
transaction.

The Transaction Service maps the LU 6.2 natment, rolltkack and recovery
procedures to the Transaction Serwoenmitmentprocedure aollows:

» The Transaction Servicepan reception of an LU 6.2 Prepare message will enter
the first phase otommitmentprocedure.

» The Transaction Service, upon entering the prepstiae forthe transaction, the
Transaction Service will trigger the sending of a Request Commit message to is
superior.

» The Transaction Service, upoaception of an LU 6.2 Committed message (it
may be a Compare States (Guitted) whennormal communications ateoken
with the superior) will enter the second phaseaihmitmentprocedure.

» The Transaction Service, upteaving the decided commit state, will trigger the
sending of a Forget message to is superior (it may be a Resenhaimeal
communications are broken with the supgr

Due to the two-phase conit difference, the Transactiore&ice will never send the
equivalent of the Recover(Ready) unless prompted by the superior.

The last-agent and read-only features may alssulpported by the Transaction

Service.

Outgoing LU 6.2 Communications

The Transaction Service has to log when the Prepare message is sent and, in case of
communication failure orestart of thelransaction Service, a recovery is needed.
ODMG Standard

ODMG-93 is a standard defined by ODMG (Object Database Management Group)
describing portable interface to access Obpatiabase Management Systems
(ODBMS).

Transaction Service/l.1 Interoperation with Transactional Protoct November 1997

10

A.4 ODMG Model

10-84

Since it is likely that, in the future, many objects involved in transactions will be
handled by an ODBMS, this standard has a strong relationship with the Transaction
Service.

The ODMG model defines optional transactions and supports the nested transaction
concept. The ODMG model does not cover the integration of ODBMS with an external
Transaction Service, allowing other resources @rmmunications to be involved in a
transaction. No two-phasmmmit orrecovery protocol is described.

A transaction object must be creatdthe transactional operatioase:

e Begin (or start) to begin a transaction (or a subtransaction).

» Commit torequest commitment of a transaction.

» Abort to rollback a transaction.

e Checkpoint to commit the transaction tkeep the locks. This feature is not
supported by the current version of the Transaction Service.

 abort_to_top_level to request rollback of a nested transafetioily. The
Transaction Service does mditectly support this feature bdbes provide means
to perform this functionality by resuming the context of the top-level transaction
and then requesting rollback.

If the transaction object is destroyed, the transaction is roleH.b

Integration ofODMG ODBMSs with the Traaction Service

Since ODMG-93 does not defirmamy way to integrate an (GBMS into an exgting
transaction, the integration is difficult unless the BNIS supports the XA interface, in
which case the section on XA-cpirant RM is applicable.

In the future, it is anticipated that GMS will implement the Transaction Service-
defined interfaces and be considered as a recoverable server.

A possibility is touse, at a root node, an ODBMS alast resource and, after all
subordinates are prepared, to request a one-phasaitoemt tothe ODBMS. If the
outcome for the ODBMS isommit, the transactiowill be committed, if it is rollack,
the transaction will be rolledack. Themechanism may work if it is possible to
determine, after a crash, whether the ODBd&®mitted orrolled back; this may be
done at application level.

Transaction Servicerl.1 ODMG Mode November 1997

10

Appendix B Transaction Service Glossary

B.1 TransactionTeris

2PC: SeeTwo-phase commit.
Abort : Se¢Rollback
Active : The state of a transaction when processing is in progretcompletiol of the

transaction has not yebmmenced.

Atomicity : A transaction property that ensures that if work is interrupted by failure, any
partially completed results will bendone. A transaction whose work completes
is said to commit. A transaction whosenk is completely undone is said to
rollback (abort).

Begin: An operation on the Transaction Service which establishes tie Imdundary
of a transaction.

Commit : Commit hagwo definitions as follows:
An operation in theCurrent andTerminato interfaces that a program uses to
request that the current transaction terminate normally and that the effects of

that transaction be made permanent.

An operation in theResourc interface which causes the effects a transaction to
be made permanent.

Commit co ordinator : In a two-phase comit protocol, the program that collects the vote from the
participants.

Commit participan t: In a two-phase comit protocol, the program that returns a vote on the
completion of a transaction.

Committed : The property of a transaction or a transactional objelotn ithas successfully
performed the commitrotocol. See alsin-doub, active, anc rolled bacl.

Completion : The processing required (either commi or rollback) to obtain the durable
outcome of a transaction.

Glossary TransactionTeris November 1997 10-85

10

Coordinator :

Consistency :

Decided commit state

Decided rollback state

Direct ¢ ontext
management:

Durability :

Execution environment

Flat Transaction :

Forgotten "state"

Heuristic Commit or
Rollback :

Indirect context
management :

10-86

A coordinator involvesResourc objects in a transaction when they are
registered. A coordinator is responsible for driving the two-plcasemit
protocol. See alsCommit coordinatc andCommit participar.t

A property of a transaction that ensures that the transaction’s actions, taken as a
group, do noviolate any of the integrity constraints associated with the state of
its associated objects. This requires that the application program be
implemented correctly: the Transaction Service provides the functionality to
support application data consistency.

A root coordinator enters the decided eoinstate when ihas written a log-
commitrecord; a subordinate coordinator or resource is in the decwladit
state vhen it has received the camt instruction from its superior; in the latter
case, a log-comit record may be written but this is not essential.

A coordinator or resource enters the decided rollback stiagm w decides to
rollback the transaction or has received a signal to do so.

An application manipulates ttControl object and the other objects associated
with the transactionSee alscdndirect context mnagement.

A transaction property that ensures the results of a successfully completed
transaction will never be lost, except in the event of catastrophe. It ésadign
implemented by a combination of persistent storage and a logging service that
provides a backup copy of permanent changes.

An implementation-dependefactor that may determine the outcome of certain
operations on the Transaction Service. Typically the execution environment is
the scope within which shared state is agad.

A transaction that has no subtransactions—and that cannot have subtransactions.

This is not really a transacticstate at allbecause there is no memory of the
transaction: it has either completed or rolled backahoecords on permanent
storage have been deleted.

To unilaterally make the commit or rollback decision akin-doub
transactionsvhenthe coordinator fails or contact with the coordinator fails.

An application uses thCurreni object, provided by the Transaction Service, to
associate the transactioartext with the application thread of contr@ee also
Direct context mangement.

Glossary TransactionTerrs November 1997

10

In-doubt :

Interposition :

Isolation :

Lock service :

Log-ready record (and
contents):

Log-commit record (and
contents):

Log-heuristic record

Log-damage record :

Log service:

Nested transaction :

Participant :

The state of a transaction if it is controlled by a transaction manager that can not
be contacted, so the camt decision is in doubt. See alactive, committey,
rolled bacl.

Adding a sequence of one or msubordinate coordinato between oot
coordinatol and its participants.

A transaction property that allows concurrent execution, but the results will be
the same as if executiomas serialized. Isoladbn ensures that concurrently
executing transactions cannot observe inconsistencies in shared data.

Called the Concurrency ControlSiee, it isan Object Service used by
resources to control access to shared objects by concurrently executing methods.

for an intermediate coordinator a log-ready record containsifidation of the
(superior) coordinator and Resourc objects (including subordinate
coordinators) registered with the coordinator which regfVoteCommi (i.e., it
excludes registered objects whidpliedVoteReadOnl); for aResourc object
a log-ready record includes idéidation of the coordinator with which it is
registered.

A log-commit record contains identification of all registerResourc objects
which repliedvVoteCommi.

This contains a record of a heuristic decision eiHeuristicCommit or
HeuristicRollback

This contains a record of heuristic damage i.e. where it is known that a heuristic
decision conflicted with thdecided outcorr (HeuristicMixed) or where

there is a risk that a heuristic decision conflicted with the decided outcome
(HeuristicHazard).

A service used by resource managers for recording recovery information and the
Transaction Service for recording transaction state durably.

A transaction that either has subtransaction or is a subtransaction on some other
transaction.

SeeCommit participant.

Glossary TransactionTeris November 1997 10-87

10

Persistent sto rage: Generally speaking, a synonym iStable storag. In the context of the OMA,
the Persistent Object Service (POS) provides an object representation of stable
storage.

Prepared : The state that a transaction is ilmem phase one of a two-phase catrhas
completed.

Presumed rollback : An optimizaton of the two-phase commit protocol that results in more efficient

performance as throot coordinato does not need to log anything before the
commitdecision and thParticipants (i.e. Resourc objects) do not need to log
anything before they prepare. Balledbecause, atestart, if no record of the
transaction is found, it is safe to assume the transaction rolled back.

Propagation : A function of the Transaction Service that allows Transaction conte of a
client to be associated with a transactional operation on a server object. The
Transaction Serviceupports botlimplicit and explicitpropagation of
transaction context.

Recoverable Object : An object whose data is affected by auitting orrolling back a transaction.

Recoverable Server : A transactional object with recoveraldtate that registersResourc (not
necessarily itself) with Coordinatol to participate in transaction complet.on

Recovery Service : A service used by resource managersréstoringthe state of objects to a prior
state of consistency.

Resource : An object in the Transaction Service that is registered for involvement in two-
phasecommit—2PC. Corresponds to Resource Manager.

Resource Manager : An X/Open term for &omponent which manages timegrity of the state of a
set of related resources.

Rollback : Rollback (alsoknown asAbori) has two definitions, a®llows:
An operation in theCurrent anc Terminato interfaces used to indicate that the
current transaction has terminated abnormally i dffects should be

discarded.

An operation in theResourc interface which causes all stateanges in the
transaction to be undone.

10-88 Glossary TransactionTerrs November 1997

10

Rolled Back:

Root Coordinator:

Security Service :

Stable storage :

Sub-coordinator :

Subordinate Coordinator

Synchronization :

Thread:

Thread Service :

TP monitor :

Transaction :

Transactional client

Transaction Context :

Transactional operation

The property of a transaction or a transactional objden ithas discarded all
changes made in the current transaction. Seein-doub, active, and
committed

The first cardinator in a sequence of coordinators where there is interposition.
The coordinator associated with the transaction originator.

An object service which provides identifications of users (authentication),
controls access to resources (authorization), and provides auditing of resource
access.

Storage not likely to be damaged as the result of node failure.

SeeSubordinate Coordinator.

A coordinator subordinate to tiroot coordinato wheninterpositior has been
performed. A subordinate coordinator appears Resourc object to its
superior. Alsoknown as eSub-coordinatcr

An object in the Transaction Servieghich controls the@ransfer of persistent
object state data so it can be made durable by itciassdresource.

The entity that is currently in control of the processor.

A service which enables methods to be executedwoently by the same
process. Where two or more methods can execute concurrently each method is
associated with its own thread of control.

A system component that accepts input work requests and associates resources
with the programs that adpon these requests to provideua-time
environment for program execution.

A collection of operations on the physical andtedxg application state.

An arbitrary program thatan invoke operations of many transactional objects
in a single transaction. Not necessarily Transaction originator.

The transaction information associated with a specificathr&eePropagatior.
An operation on an object that participates in the propagation of the current

transaction.

Glossary TransactionTeris November 1997 10-89

10

Transaction originator

Transaction Manager :

Transactional object

Transactional server:

Transaction Service :

TSPortability :

Two-Phase commit :

10-90

An arbitrary program—typically, a transactional client, but not necessarily an
object—that begins a transaction.

A system component thanplements therotocol engine for 2-phag®mmit
protocol. See alsTransaction Service

An object whose operations are affected by beingked within the scope of a
transaction.

A collection of one or more objects whose behavior is affected by the
transaction, but has no recoverable statisodwn.

An Object Service that implements the protocols required to guarantee the
ACID (Atomicity, Consistency, Isolation, and Durkitly) properties of
transactions. See al{Transaction Manager

An interface of the Tragaction Service which allows it to track transactional
operationsand propagate transaction context to another Transaction Service
implementation.

A transaction manager protocol for ensuring thatl#inges to recoverable
resources occur atomically and furthermore, the failure of any resource to
complete will causell other resource to undo ainges. Also calle2PC.

Glossary TransactionTerrs November 1997

Query Service Specification 11

11.1 Service Description

11.1.1 Overview

TheQuery Servic provides query operations on collections of objetlge queries are
predicate-based and may return collections of objects. They can be specified using
object derivatives of SQL and/or other styles of object query languages, including
direct manipulation query languages.

The term query” has read-only coratations, but we use it denote general
manipulation operations including selection, insertion, updatimddeletion on
collections of objects. Throughout this chapter, the teobject’ is used in the general
sense to include data.

The Query Service can be used to return collections of objects that may be:

® Selected from source collectiohased on whether their member objects satisfy a
given predicate.

®* Produced by quy evaluator based on the evaluation of a given predicate. These
guely evaluator may manageniplicit collecions of objects.

The source and result collections may be typed. The scolieetion may be specified
by the client or may be the result of previous qu. ries

11.1.2 Design Principles

The QLery Service exists to allow arbitrary users and objects to ie cueries on
arbitraly collections of other objects. Suclueries are declarative statens:with
predicate, including theability to specify values of attributes; to inwe erbitraty
operations; and to invce ebitrary services withithe ONG environment, such as the
Life Cyce, Persistent Object, and [Rgonship Srvices.

CORBAservices July 1996 111

11

11-2

To support the OMG architecturee Query Service must allow queryg egainst ay
objects, with arbitrary attributes and operat.)ns

To be useful in practical situationse Query Service must allow usef performane
enhancing mechanisms, such as inde. ing

To be useful in environments with database sys—abject-oriente, relational, ad
other—and with otheisystems that storand access largellections of objects, el
Quetry Service mut map well to tlese native systemsnternal mechanisms for
specifying collectioniandusing indexing. The Query Servigaust also allow the
native systems to contribute to specifying collections and indexing.

To maximize usefulness to the community at large, the Query Service is based on
existing standards faguery and extended when necessary to accommodate other
design principles.

The Query Service also suppoftexibility in implementation and extensions.

11.1.3 Architecture

The Quelty Service esign providesn architecture for a estedand federated service
that can coordinate ritiple nested query evaluatc much as te Transaction Service
providesan architecture for a nested and federated sethat can coordinate multiple
nested resources managers

CORBAservices July 1996

11

Query EvaluatorsNesing and Federeion

Query Evaluator

Query Evaluator Query Evaluator

Object ?
Y

Native Query
\ System i
Object

Figure 11-1 Query Evaluators: Nesting and Federation

Objects may participate ine Qtery Servicein two ways The simplet involvesany
CORBA cbject as is. The Query Ealuator s then responsible fr evaluating thequery
predicate and performing ajluery operations by woking operations n that objet
through its published OMG IDL interfaces. Any non-supportpdrations triggr
exception. This mechanism provides the greatest generality, including supporl for al
CORBA chjects, but wih the least optimizatic.1

In a more involved manne¢ objects participatas membes of a llecticn, either
explicit or implicil. The collectionsupports a specific query interfe (that is,the
collection is itself aQuery Evaluato. In thiscase, te Query Evaluatorasses te
query fredicae to the collection, which then evaluates the predicateperform:;
guery operations on an appropriate member objeceives ay result, combines such
results withall other participating object rest, and returns thiso the calér. This
accomplishes the nesting, by passing the query even cn to a lowr level. Such
nesting may continue to an arbitrary number of lewsithout limit.

Query Servicev1.0 Service Descriptic July 1996 11-3

11

11-4

This second wayllows Query Evaluatorsr ary associated native querystems to
evaluate te cuery usilg the internal opthization at theidisposal. Tts is expectedo
include faster access, cachirmgd indexing. Interpretation of nas embeddedn
quely predicatess determined by thQuery Exaluatcr or its associated nativeugry
systems.

The Query Service ggification des not definevaluation,indexingor optimizatin
mechanism. These are in the province of theplementor and mayary significantly
in cifferent environments. The Query Service simply provides a mechanism for
passini the query to such systems and wilog their optimizations to take effe. it

Collections

The Query Service providetefinitions and interfaces for creating and manipulating
collections of objects. The¢(explicit) collectionsmayform both the scope to which a
query may be applied and thesult of the query, hien theresult is one or more
objects.

The collections are defined as objects, with noelth for adding and removing
members. They may be arbitrary in nature. In particular, they are not limited to type
extents, as in sce object ystems, though type extents are examples of such
collections. They may map directly to collectiomanaged y native query ystems,

for optimization,and may also include atbary CORBA chjects.

Associatedterators are defined to allow manipulation of collections, including
traversal over and retrieval of the objects within the collections. Such iterators allow a
constant interface that can be invoked anglementedfor arbitrary situations,

including mixtures of genel CORBA cbjects native query systenollections; highly
distributed collections thatould not besimultaneously accessed; collections across
multiple heterogeneous products aystems; vergmall collectionsand very large
collections that could not bmaterialized physical.y

CORBAservices July 1996

11

Quenyable Collections for Scope and Result

For collections to serve as both the result of a query and as a scope for another query,
these collections must themselves@eery Evaluator :Such collections are called
Queryable Collections.They support botlthe Query Evaluator and collection

interface, as illustrated in Figure 11-2.

Query query
Evaluator . | Collection
query
query query
Queryable e Queryable L

Collection Collection

Figure 11-2 Queryable Collections

One of the issues that arises in using Queryable Collections is scoping in a nested
environment. If the collectiobeing queried allows adding arbitrary objeasd if

objects are then added which are outside the scope of the evaluation mechanism of the
Queryable Collection, then the Queryable Collection would have to providalthe
functionality of a top-level Query Evaluator, evaluating predicatearbitrary

CORBA objects. This would defeat the purpose of nesting.

To solve this problem, we allowueryable Collection implementatios, in respons¢ot
the invocatin cf the add and replace operations, to intey decide vhether to add or
replace te specified object, and to raisan exception if they decide ntd. This allows
arbitrary Queryable Collections—which amvays supported at the top Query
Evaluator level, and sublevel implementations that scope Queryable Collections to
their own domain—to use whatever local mechanisms their (possibly pre-existing)
qguery engines use. Examples of local mechanisms include optimizatiahbilt#s

such as physical and logical indicefjstering; cachingand so forth.

QueryObjects

Since queriesan be complex and resource-demanding, there are numerous
circumstances under which one would like to:

» Use graphical means to construct a query.

Query Servicev1.0 Service Descriptic July 1996 11-5

11

11-6

» Save a query and re-executdaiter on, maybe withdifferent set ofsearch
parameters.

» Precompile a query for later execution; this may be for the purpose of symtax
semantics checking and/or query aptiation.

» Execute a query in an asynchronous manner; go do something else and come back
for the result.

» Check the status of a long-running query and decide whether to continue or abort.

The Query Service provideéke preceding cabilitiesand extensions through the use
of Query objects. A Query object is created lajlicg a Query Manager, which is a
more powerful form of Query Evaluator. Once created, a client of the Query object
can:

» Use whatever means appropriate to construct the query specification.
» Prepare the query for later execution.

» Execute the query any number of times, with the santifferent set ofsearch
parameters.

e Check thestatus ofthe query.
» Obtain the result of the query.

How the Query object does the preceding tasks is determined by the Query object and
its associated Query Manager.

11.1.4 Query Languace

By using a very general model and by using predicates to deal with quee Cuery
Service is designed to be independent of any specific query languages. Therefore, a
particularQuery Service implementation can be based variety « query languages
andtheir associated query proces:. ors

However, inorder to provide query interoperéibi among the widest variety of query
systemsand to provide object-level queiyteroperability, a Query Service provider
mustsupport one of the following two query languages: SQL Query or OQL.

(Query capability is commonly implemented database systems, hence there are
many products, tools, trained users, and experiences based on these implementations.
To leverage this, we base the query language specification on SQL Query and OQL.)

® SQL Query. Specifically, SQL-92 Query, which is defined in Chapter 7 (Entry
SQL), and ®ctions13.7, 13.8 and 13.10 (Entry SQL) of Reference 1 on page
11-27. SQL Query is used as the gen&itn to denote the evolution of SQL-92
Query. That is, itis envisioned that SQL-92 Query will evolve into SQL-9x Query,
and so forth. These will be future versions of SQL Query. SQL-92 Query is the
current version.

® OQL. Specifically, OQL-93, which is defined i@hapter 4 of Rference 4 on page
11-27. OQL is used as the gendeem to cenote the evolution of OQL-93. That is,
it is envisioned that OQL-93 will evolve into OQL-9x, and so on. These will be
future versions of OQL. OQL-93 is the current version.

CORBAservices July 1996

11

For those Query Service providers who intend to provide only basic object-level
query interoperability (for example, support the needs of the Life Cycle Service
or Property Service), thiallowing must also be syorted:

® OQL Basic. Specifically, OQL93 Basic, which iglefined in Sections 4111.2,
411.1.3,4.11.1.4, 411.1.5, 4.11.1sei only), 4.11.1.7 (exceffirst andlast) and
4.11.1.10 in Reference 4 on page 11-27.

Ideally we would like to specify a single query language, for complete query
interoperability. The nost widely used query language in currently available query
systems is SQL-92 Query, which does sopportfull object query capabilities. OQL-
93 does support full object query capdlds and contains a near- (but not exact)
subset of SQL-92 Query. Including SQL-92 Query provides the widisbperability
with the most query systems, while including OQL-93 providddlsOMG Object
Model support and full object query caglities.

X3H2 and ODMG have started working togethexdaod merging SQ Query and
OQL with the goal of specifying a single standageery language. s SQLQueryand
OQL evolve,the OMG will revise of the Query Service to conform to future che.nges

SQL Query

In the relational database world the accepted standard for database lan SQL-92;
(Reference 1 on page 11-. The ANSI X3H2 ommittee is working on a new
version, SQI3 (Reference 5 on page 11-Z, which will include objet extensions,
among other thing The committee is 8t working on the details othe modeling
constructsthe object modlunderconsideation is different fron the ONG’s Okject
Mode. It is important for the eventual SQL objecode to be fully compatible with
the OMG Object Model so that SQL Qug, the query subset of SQcan serve as the
qguerylingua francain the OMG environme. t

SQL-92 is afull database language. Functionally, it consists of the following types of
language statements: schema; data; transaction; commection; sessamjcgly

diagnostics; and embedded exception declaration. Among these, only a subset of data
statements deal directly with query. This subset is defined to be SQL-92 Query. SQL-
92 Query basically deals with query over tables (special kind of collections) of rows
(special kind of dynamic data structures). As such, it concerns with a sub-domain of
object query.

OoQL

In the object database world the leading standard is ODMG-93 (Reference 4 on page
11-27). The ODMG-93 standard includes dnjeat model, based on the OMG’s Core
Object Model, with extensions, form theproposed object database profile. Also
included is the Object €finition Language, ODL, which is strict superset of IDL,
providing a means to define objects in this profile model. All extensions, including
attributes and relationships, are visible in the object interfacesematmmsand hence
remain compatible with OMG IDland the OMG architecture.

Query Servicev1.0 Service Descriptic July 1996 11-7

11

ODMG-93 also includes OQL (that is, OQL-S OQL-93 is an adaptation of the SQL-
92 Quen capabiity to extend to all objects in the ODMG object model. It includes the
ability to include operatin invocation in queries, to query over object inheice
hierarchies,o invoke inter-objet relationships, and to query over arbitrary collect. >ns
OQL-93 is a query-only language; tha, it allows evaluation of a predicatend a
returned result, but includes no spec constructs for objet modificatior. The ability
within OQL-93 to invoke cperations provids theinser, update and delete capaty i
without violating encapsulain.

The OQL-93 syntax and semantics are not exactly compatible with SQQu@2y.
However, ODMG is working with X2H2 to addrefss issue. It is important for the
eventual OQL to béully compatible with SQL @Qery so that there is only one
standard query language. .

SQL Query = OQL

Both X3H2 and ODMG have agreed upon a vision of the evolution of SQL Query and
OQL, as illustrated in Figure 11-3.

SQL

SOL-92 OQL-93 §OL Ouery
SQL-92 Query =0QL

Figure 11-3 SQL Query = OQL

In Figure 11-3, solid lines dlicate existing, defined specifications, while dotted lines
indicate future specifications. As can be seen, 9QlQuery is the query portion of
SQL-92. OQL-93, being a query only language and having object features, overlaps
with SQL-92 and is almost exactly compatible with it.

11-8 CORBAservices July 1996

11

SQL-92will evolve toward a future SQL, which is a full databasegizage. OQL-93
will evolve toward a future OQL. The agreemdrmm X3H2 and ODMG is to make
the query subset of SQL, SQL Query, and OQL identical so that there is a single,
common query language specification.

11.1.5 Key Featurs

The following are keyeatures of the Query Service:

» Provides operations of selection, insertion, updating, and deletion on collections
of objects. Theobjects may be transient or persistent, local or remote; the objects
may have arbitrarattributesand geratians.

» Accommodates different granularity of objects accessed by queries, including
good support for high performance access to fine-grained objects.

 Allows the scope of the objects accessible in and viadfiections that are the
immediateoperands of the query operations.

» Supports querying and/or returning complex data structures.

e Supports operating on user defined collections of objects.

» Supports operating on other kinds of collections and sets.

 Allows the use ofttributes, inhetance, and procedurally-specified operations in
the query predicate and in the qmmation of results.

» Allows the use of wailable interfaces defined by OM&dopted specifications.

 Allows the use of relationships for navigation, includtegting for the existence
of a relationshigbetween objects.

» Does not require breaking the ensafation provided by the interfaces to objects.

In addition, the Query Service:

» Provides an extensibfeamework for dealing with object query.

* Is independent of the specific syntax and semantics of the query language used.
The query language can be SQL Query, OQL, a graphical quemydgagor any
other suitable object query language. In order to provide goersoperability
among the widest variety of query systeamsl object-level query
interoperability, a Query Service providmustsupport either SQL Query or
OQL (OQL Basic with basic object-level interoperability) as specified in Section
11.1.4 on page 11-6.

 Allows for associative query and navigational query.

Query Servicev1.0 Service Descriptic July 1996 11-9

11

11.2 Service Structure

11.2.1 Overview

The Query Servicedefines two types of service. The specification is organized around
these types.

Type One: Collections

The Collectior andlterator interfaces define the interfaces to createl manipulate
collections of objectsThe Collectior interface is defined ith operations for adding,
retrieving, replacing, and removing member objects. ddikections that it represents
may be arbitrary in nature. Tliterator interface is defined with operations for
traversingover andretrieving objects vithin a colection.

Type Two: Query Framework

The Query Frameworlnterfaces define a flexible and extensible framework for

dealing with object query. ThQueryLanguageTypinterface provides the scheme to

use the OMG IDL type system to classifyery language types. TIQueryEvaluator
interface defines the basic operation to evaluate a query. The result of the query, which
can serve as the scope for further queries, is represented Queryable®@llection.

The QueryManage interface defines a more powerful QueryEvaluator which can be
called upon to create arbitraQuery objects. Such objects can provide tapability

for graphical query construction, pre-compilation andmia@tion,asynchronous

query execution, and so forth.

11.2.2 Collection Interface Structure

The collection interfaces are arranged into the interface structure illustrated in
Figure 11-4. Dotted arrows represent association.

CollectionFactory L - Collecton -ll-meeeo- I Iterator

Figure 11-4 Collection interface structure

11.2.3 Query Framework Interface Hierarchy/Structure

The queryframework interfaces are arranged into the interface hierarchy/structure
illustrated n Figure 11-% Solid arrows represent inheritance and dotted aisow
represent association.

11-10 CORBAservices July 1996

11

Collection CosQuery-
Collection
A module

QueryEvaluator

" \

QueryLanguageType QueryableCollection

..... QueryManager

[[feseeres Niiss- Query

Figure 11-5 Query Framework interface hierarchy/structure

11.2.4 Interface Overview

The Query Service defines the interfaces to support the functionality described in
Section 11.1 on page 11-1.

Table 11-1 and Table 11-2 give high level snamies of the Query Service interfaces.
Collection interfaces are described in desadlrting inthe section Section 11.3 on
page 11-12. Query intaces are described in Sectibh.5 on page 11-19.

Table 11-1linterfaces defined in th€osQueryCollectioomodule

Interface Purpose
CollectionFactory To create collections
Collection To aggregate objects
Iterator To iterate over collections

Query Servicev1.0 Service Structure July 1996 11-11

11

Table 11-2Interfaces defined in thCosQuer module

Interface Purpose
QueryLanguageType and its To represent query language
subtypes types

QueryEvaluator To evaluate query predicates

and execute query operations

QueryableCollection To represent the scope and
result of queries

QueyManager To create query objec and
perform query processing

Query To represent queries

11.3 TheCollection Model

11-12

11.3.1 Common Types of Collections

The llection interface allowgou to manipldte objects in a gup. The objects that
are part of a Collection are called element. Examples of common types of
Collections are afllows:

® An Equality Collectior has elements that can be checked for equality among each
other. An example is a set.

® A Key Collectionuses keys to intify elements (&ey is part of an element). An
example is a key bag.

® An Orderec Collectior hasits elementsarranged so that there is alwaydratf
element, last element, next element, and previous element. Ordered Collections can
be further classified as one of tf@lowing types:
* A Sequenti:Collectior has sequentially ordered elements. An example is a
sequence.

» A SortedCollectior has sorted elements. An example is a sorted set (which is
also an equity Collection).

The Query Service defines only a top-lewmsic Collection interface thatipports
guery on arbitrary collections withotgstricton to any particular typeSubtyping can
be used to map this basic Collection interface into a variety of collection classes,
including the ANSI C++ Standard Template Librd§TL), ODMGs, andthers. The
OMG Collection Service, available in the future, is expected to 8irmilarly well.

11.3.2 Iterators

An lterator is a movable pointer into a Collection. An Iterator is created in association
with a Collection and can be used by a client to move through the member elements of
the Collection. When atterator is created for aordered Collection, it points to the

CORBAservices July 1996

11

beginning or thdirst element othe Collection. Aseries ofnext operations move it
through subsequent elemenistil it passes thragh thelast element and points to the
end of the Collection. For unorderedl@ctions, the elements are visited in an
arbitrary order. Bch element is visited exactly once.

The lerator interface allows traversing a Collection in a way Waks consistently

for arbitrarily large Collections. In addition to the next operation, which can be used to
move through the nexdlement, itprovides a reset operation to restart iteeation.

Multiple Iteratorscan be created to maintain state concerning traversal of the same or
different Collections.

The behavior of afterator can become undefined if elements are added teleted

from its associated Collection. This means that its behavior depends upon the type and
implementation of the Collection. In particular, an Iterator may become invalid as a
result ofsuch actions. Once an lterator becomeslid, it must be reset before it can

be used for traversal again.

Query Servicev1.0 The Collection Mod¢ July 1996 11-13

11

11.4 The CosQue@ollection Module

The CosQueryCollection moduledefines the Collection interfaces of the Query
Service. Inparticular, it defines the
® CollectionFactor interfaces, to create Collections.
® Collectior interface, to represent generic collections.
® |terator interfece, to emmerate the Collections.
The CosQueryCollection module is shown below.

module CosQueryCollection {

exception Elementinvalid {};
exception lteratorinvalid {};
exception Positioninvalid {};

enum ValueType {TypeBoolean, TypeChar, TypeOctet, TypeShort,
TypeUShort, TypeLong, TypeULong, TypeFloat, TypeDouble,
TypeString, TypeObject, TypeAny, TypeSmallint, Typelnteger,
TypeReal, TypeDoublePrecision, TypeCharacter, TypeDecimal,
TypeNumeric};
struct Decimal {long precision; long scale; sequence<octet>
value;}
union Value switch(ValueType) {
case TypeBoolean : boolean b;
case TypeChar : charc;
case TypeOctet: octet 0;
case TypeShort : short s;
case TypeUShort : unsigned short us;
case TypelLong :long;
case TypeULong : unsigned long ul;
case TypeFloat : float f;
case TypeDouble : double d;
case TypeString : string str;
case TypeObject : Object obj;
case TypeAny : any g;
case TypeSmallint : short si;
case Typelnteger : long i;
case TypeReal : float r;
case TypeDoublePrecision : double dp;
case Typ