
CORBAservices: Common Object
Services Specification

Revised Edition - March 31, 1995
Updated: March 28, 1996
Updated: July 15, 1996
Updated: November 22, 1996
Updated: March 1997
Updated: July 1997
Updated: November 1997

Copyright 1996, AT&T/Lucent Technologies, Inc.
Copyright 1995, 1996 AT&T/NCR
Copyright 1995, 1996 BNR Europe Limited
Copyright 1996, Cooperative Research Centre for Distributed Systems Technology (DSTC Pty Ltd).
Copyright 1995, 1996 Digital Equipment Corporation
Copyright 1996, Gradient Technologies, Inc.
Copyright 1995, 1996 Groupe Bull
Copyright 1995, 1996 Hewlett-Packard Company
Copyright 1995, 1996 HyperDesk Corporation
Copyright 1995, 1996 ICL plc
Copyright 1995, 1996 Ing. C. Olivetti & C.Sp
Copyright 1995, 1996 International Business Machines Corporation
Copyright 1996, International Computers Limited
Copyright 1995, 1996 Iona Technologies Ltd.
Copyright 1995, 1996 Itasca Systems, Inc.
Copyright 1996, Nortel Limited
Copyright 1995, 1996 Novell, Inc.
Copyright 1995, 1996 02 Technologies
Copyright 1995, 1996 Object Design, Inc.
Copyright 1995, 1996 Object Management Group, Inc.
Copyright 1995, 1996 Objectivity, Inc.
Copyright 1995, 1996 Ontos, Inc.
Copyright 1995, 1996 Oracle Corporation
Copyright 1995, 1996 Persistence Software
Copyright 1995, 1996 Servio, Corp.
Copyright 1995, 1996 Siemens Nixdorf Informationssysteme AG
Copyright 1995, 1996 Sun Microsystems, Inc.
Copyright 1995, 1996 SunSoft, Inc.
Copyright 1996, Sybase, Inc.
Copyright 1996, Taligent, Inc.
Copyright 1995, 1996 Tandem Computers, Inc.
Copyright 1995, 1996 Teknekron Software Systems, Inc.
Copyright 1995, 1996 Tivoli Systems, Inc.
Copyright 1995, 1996 Transarc Corporation
Copyright 1995, 1996 Versant Object Technology Corporation

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up, worldwide license to copy
and distribute this document and to modify this document and distribute copies of the modified version.

Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright, in the included material of any such
copyright holder by reason of having used the specification set forth herein or having conformed any computer software to the specification.

NOTICE

The information contained in this document is subject to change without notice.

The material in this document details an Object Management Group specification in accordance with the license and notices set forth on this page. This
document does not represent a commitment to implement any portion of this specification in any company’s products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT MANAGEMENT GROUP AND THE
COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. The Object Management Group and
the companies listed above shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing,
performance or use of this material.

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all times be the
sole entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trademarks or other special designations to
indicate compliance with these materials.

This document contains information which is protected by copyright. All Rights Reserved. No part of this work covered by copyright herein may be
reproduced or used in any form or by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and
retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Right in Technical Data and Computer Software Clause at DFARS 252.227.7013

OMG® and Object Management are registered trademarks of the Object Management Group, Inc.
Object Request Broker, OMG IDL, ORB, CORBA, CORBAfacilities, CORBAservices, and COSS are trademarks of the Object Management Group, Inc.

X/Open is a trademark of X/Open Company Ltd.

Table of Contents
0.1 About This Document .xli
0.1.1 Object Management Group. xli
0.1.2 X/Open. .xlii

0.2 Intended Audience. .xlii

0.3 Need for Object Services .xlii
0.3.1 What Is an Object Service Specification?. xliii

0.4 Associated Documents. .xliii

0.5 Structure of this Manual. .xliv

0.6 Acknowledgements .xliv

1. Overview .1-1

1.1 Summary of Key Features .1-1
1.1.1 Naming Service .1-1
1.1.2 Event Service .1-2
1.1.3 Life Cycle Service .1-2
1.1.4 Persistent Object Service 1-3
1.1.5 Transaction Service .1-3
1.1.6 Concurrency Control Service 1-3
1.1.7 Relationship Service. 1-4
1.1.8 Externalization Service. 1-4
1.1.9 Query Service. .1-5
1.1.10 Licensing Service. .1-5
1.1.11 Property Service. .1-5
1.1.12 Time Service. .1-6
1.1.13 Security Service .1-6
1.1.14 Object Trader Service. 1-7
 CORBAservices November 1997 i

Contents
1.1.15 Object Collections Service. 1-7

2. General Design Principles. .2-1

2.1 Service Design Principles. .2-1
2.1.1 Build on CORBA Concepts 2-1
2.1.2 Basic, Flexible Services 2-2
2.1.3 Generic Services. .2-2
2.1.4 Allow Local and Remote Implementations. . . . 2-2
2.1.5 Quality of Service is an Implementation

Characteristic .2-2
2.1.6 Objects Often Conspire in a Service. 2-2
2.1.7 Use of Callback Interfaces 2-4
2.1.8 Assume No Global Identifier Spaces 2-4
2.1.9 Finding a Service is Orthogonal to Using It . . . 2-4

2.2 Interface Style Consistency .2-4
2.2.1 Use of Exceptions and Return Codes 2-4
2.2.2 Explicit Versus Implicit Operations. 2-5
2.2.3 Use of Interface Inheritance. 2-5

2.3 Key Design Decisions .2-5
2.3.1 Naming Service: Distinct from Property and

Trading Services. .2-5
2.3.2 Universal Object Identity 2-5

2.4 Integration with Future Object Services. 2-5
2.4.1 Archive Service .2-6
2.4.2 Backup/Restore Service 2-6
2.4.3 Change Management Service. 2-6
2.4.4 Data Interchange Service 2-6
2.4.5 Internationalization Service 2-6
2.4.6 Implementation Repository 2-7
2.4.7 Interface Repository. 2-7
2.4.8 Logging Service. .2-7
2.4.9 Recovery Service .2-8
2.4.10 Replication Service. 2-8
2.4.11 Startup Service. .2-9
2.4.12 Data Interchange Service 2-9

2.5 Service Dependencies .2-9
2.5.1 Event Service .2-9
2.5.2 Life Cycle Service .2-9
2.5.3 Persistent Object Service 2-9
2.5.4 Relationship Service. .2-10
2.5.5 Externalization Service.2-10
ii CORBAservices November 1997

Contents
2.5.6 Transaction Service .2-10
2.5.7 Concurrency Control Service.2-11
2.5.8 Query Service. .2-11
2.5.9 Licensing Service. .2-11
2.5.10 Property Service. .2-12
2.5.11 Time Service .2-12
2.5.12 Security Service .2-12
2.5.13 Trader Service .2-12
2.5.14 Collections Service. .2-12

2.6 Relationship to CORBA .2-12
2.6.1 ORB Interoperability Considerations: Transaction

Service .2-12
2.6.2 Life Cycle Service .2-13
2.6.3 Naming Service .2-13
2.6.4 Relationship Service. .2-13
2.6.5 Persistent Object Service2-13
2.6.6 General Interoperability Requirements. 2-13

2.7 Relationship to Object Model. .2-14

2.8 Conformance to Existing Standards.2-14

3. Naming Service Specification. .3-1

3.1 Service Description .3-1
3.1.1 Overview .3-1
3.1.2 Names. .3-2
3.1.3 Names Library .3-3
3.1.4 Example Scenarios. 3-3
3.1.5 Design Principles .3-4
3.1.6 Resolution of Technical Issues. 3-5

3.2 The CosNaming Module .3-6
3.2.1 Binding Objects .3-8
3.2.2 Resolving Names .3-9
3.2.3 Unbinding Names. .3-10
3.2.4 Creating Naming Contexts.3-11
3.2.5 Deleting Contexts. .3-11
3.2.6 Listing a Naming Context.3-12
3.2.7 The BindingIterator Interface.3-12

3.3 The Names Library .3-13
3.3.1 Creating a Library Name Component. 3-14
3.3.2 Creating a Library Name3-15
3.3.3 The LNameComponent Interface. 3-15
CORBAservices November 1997 iii

Contents
3.3.4 The LName Interface .3-15
Destroying a Library Name Component
Pseudo Object . 3-16
Inserting a Name Component 3-16
Getting the ith Name Component 3-16
Deleting a Name Component 3-17
Number of Name Components 3-17
Testing for Equality 3-17
Testing for Order . 3-17
Producing an IDL form 3-18
Translating an IDL Form 3-18
Destroying a Library Name Pseudo-Object. 3-18

4. Event Service Specification. .4-1

4.1 Service Description .4-1
4.1.1 Overview .4-1
4.1.2 Event Communication 4-2
4.1.3 Example Scenario. .4-2
4.1.4 Design Principles .4-4
4.1.5 Resolution of Technical Issues. 4-4
4.1.6 Quality of Service. .4-6

4.2 Generic Event Communication . 4-6
4.2.1 Push Model. .4-6
4.2.2 Pull Model .4-7

4.3 The CosEventComm Module. .4-8
4.3.1 The PushConsumer Interface 4-8
4.3.2 The PushSupplier Interface 4-9
4.3.3 The PullSupplier Interface 4-9
4.3.4 The PullConsumer Interface.4-10

4.4 Event Channels .4-10
4.4.1 Push-Style Communication with an Event

Channel .4-10
4.4.2 Pull-Style Communication with an Event

Channel .4-11
4.4.3 Mixed Style Communication with an Event

Channel .4-11
4.4.4 Multiple Consumers and Multiple Suppliers . . 4-12
4.4.5 Event Channel Administration.4-13

4.5 The CosEventChannelAdmin Module4-15
4.5.1 The EventChannel Interface.4-16
4.5.2 The ConsumerAdmin Interface4-17
4.5.3 The SupplierAdmin Interface.4-17
4.5.4 The ProxyPushConsumer Interface 4-17
4.5.5 The ProxyPullSupplier Interface 4-18
iv CORBAservices November 1997

Contents
4.5.6 The ProxyPullConsumer Interface 4-18
4.5.7 The ProxyPushSupplier Interface. 4-19

4.6 Typed Event Communication. .4-19
4.6.1 Typed Push Model .4-19
4.6.2 Typed Pull Model. .4-20

4.7 The CosTypedEventComm Module.4-21
4.7.1 The TypedPushConsumer Interface 4-22
4.7.2 The TypedPullSupplier Interface 4-23

4.8 Typed Event Channels. .4-23

4.9 The CosTypedEventChannelAdmin Module 4-24
4.9.1 The TypedEventChannel Interface. 4-26
4.9.2 The TypedConsumerAdmin Interface 4-26
4.9.3 The TypedSupplierAdmin Interface. 4-27
4.9.4 The TypedProxyPushConsumer Interface 4-28
4.9.5 The TypedProxyPullSupplier Interface 4-28

4.10 Composing Event Channels and Filtering4-28

4.11 Policies for Finding Event Channels4-29

5. Persistent Object Service Specification. 5-1

5.1 Introduction .5-1

5.2 Goals and Properties .5-3
5.2.1 Basic Capabilities. .5-3
5.2.2 Object-oriented Storage 5-3

Interfaces to Data . 5-4
Self-description . 5-4
Abstraction . 5-4

5.2.3 Open Architecture .5-4
5.2.4 Views of Service .5-5

Client . 5-5
Object Implementation 5-6
Persistent Data Service 5-6
Datastore . 5-6

5.3 Service Structure .5-7

5.4 The CosPersistencePID Module. 5-8
5.4.1 PID Interface .5-9
5.4.2 Example PIDFactory Interface.5-11

5.5 The CosPersistencePO Module .5-11
5.5.1 The PO Interface .5-12
5.5.2 The POFactory Interface5-14
5.5.3 The SD Interface .5-14

5.6 The CosPersistencePOM Module.5-15
CORBAservices November 1997 v

Contents
5.7 Persistent Data Service (PDS) Overview.5-18

5.8 The CosPersistencePDS Module .5-19

5.9 The Direct Access (PDS_DA) Protocol.5-21

5.10 The CosPersistencePDS_DA Module5-21
5.10.1 The PID_DA Interface5-23
5.10.2 The Generic DAObject Interface 5-24
5.10.3 The DAObjectFactory Interface. 5-24
5.10.4 The DAObjectFactoryFinder Interface. 5-25
5.10.5 The PDS_DA Interface.5-25
5.10.6 Defining and Using DA Data Objects 5-26
5.10.7 The DynamicAttributeAccess Interface 5-28
5.10.8 The PDS_ClusteredDA Interface 5-29

5.11 The ODMG-93 Protocol. .5-30

5.12 The Dynamic Data Object (DDO) Protocol. 5-30

5.13 The CosPersistenceDDO Module.5-31

5.14 Other Protocols .5-33

5.15 Datastores: CosPersistenceDS_CLI Module 5-34
5.15.1 The UserEnvironment Interface5-36
5.15.2 The Connection Interface.5-37
5.15.3 The ConnectionFactory Interface. 5-37
5.15.4 The Cursor Interface. .5-38
5.15.5 The CursorFactory Interface.5-38
5.15.6 The PID_CLI Interface.5-38
5.15.7 The Datastore_CLI Interface5-40

5.16 Other Datastores. .5-43

5.17 Standards Conformance .5-43

5.18 References .5-43

6. Life Cycle Service Specification. .6-1

6.1 Service Description .6-1
6.1.1 Overview .6-1
6.1.2 Organization of this Chapter. 6-3
6.1.3 Client’s Model of Object Life Cycle 6-4

Client’s Model of Creation 6-4
Client’s Model of Deleting an Object 6-6
Client’s Model of Copying or Moving an
Object . 6-6

6.1.4 Factory Finders. .6-7
Multiple Factory Finders 6-8

6.1.5 Design Principles .6-8
6.1.6 Resolution of Technical Issues. 6-9
vi CORBAservices November 1997

Contents
6.2 The CosLifeCycle Module. .6-10
6.2.1 The LifeCycleObject Interface.6-11

copy . 6-11
move . 6-12
remove . 6-13

6.2.2 The FactoryFinder Interface.6-13
find_factories . 6-13

6.2.3 The GenericFactory Interface.6-14
create_object . 6-15
supports . 6-16

6.2.4 Criteria .6-17

6.3 Implementing Factories .6-18
6.3.1 Minimal Factories. .6-19
6.3.2 Administered Factories.6-19

6.4 Target’s Use of Factories and Factory Finders. 6-21

6.5 Summary of Life Cycle Service. .6-21
6.5.1 Summary of Life Cycle Service Structure 6-22

Creating a Compound Life Cycle Operation 6-33
Applying the Copy Operation to a Graph of
Related Objects . 6-33
Applying the Move Operation to a Graph of
Related Objects . 6-34
Applying the Remove Operation to a Graph of
Related Objects . 6-34
Destroying the Compound Operation 6-35
Copying a Node . 6-35
Moving a Node . 6-36
Removing a Node . 6-37
Getting the Node’s Life Cycle Object 6-37
Copying a Role . 6-38
Moving a Role . 6-38
Getting a Propagation Value 6-39
Copying the Relationship 6-39
Moving the Relationship 6-40
Getting a Propagation Value 6-41
Create a Traversal Criteria Based on Life Cycle
Propagation Values 6-41
Visibility of the Federation Graph 6-52
Service Interface vs. Administration Interface 6-53
Multiple Service Interfaces 6-53
Cycles and Peer-to-Peer Relationships 6-53
bind_generic_factory. 6-56
unbind_generic_factory 6-56
resolve_generic_factory 6-57
list_generic_factories 6-57
match_service . 6-57
get_hint . 6-57
get_link_properties 6-57
CORBAservices November 1997 vii

Contents
7. Concurrency Control Service. .7-1

7.1 Service Description .7-1
7.1.1 Basic Concepts of Concurrency Control. 7-1

Clients and Resources 7-1
Transactions as Clients 7-2
Locks . 7-2
Lock Modes . 7-2
Lock Granularity . 7-2
Conflict Resolution 7-3
Conflict Resolution for Transactions 7-3
Lock Duration . 7-3

7.2 Locking Model. .7-3
7.2.1 Lock Modes .7-4

Read, Write, and Upgrade Locks 7-4
Intention Read and Intention Write Locks . 7-4
Lock Mode Compatibility 7-5

7.2.2 Multiple Possession Semantics. 7-5

7.3 Two-Phase Transactional Locking. 7-6

7.4 Nested Transactions. .7-6

7.5 CosConcurrencyControl Module . 7-7
7.5.1 Types and Exceptions. 7-9
7.5.2 LockCoordinator Interface. 7-9
7.5.3 LockSet Interface. .7-10
7.5.4 TransactionalLockSet Interface7-11
7.5.5 LockSetFactory Interface.7-13

8. Externalization Service Specification 8-1

8.1 Service Description .8-1

8.2 Service Structure .8-2
8.2.1 Client’s Model of Object Externalization. 8-2
8.2.2 Stream’s Model of Object Externalization 8-3
8.2.3 Object’s Model of Externalization 8-4
8.2.4 Object’s Model of Internalization. 8-5

8.3 Object and Interface Hierarchies . 8-7

8.4 Interface Summary. .8-10
Externalization Service Architecture: Audi-
ence/Bearer Mapping 8-11

8.5 CosExternalization Module .8-12
8.5.1 StreamFactory Interface.8-12

Creating a Stream Object 8-12

8.5.2 FileStreamFactory Interface.8-13
Creating a Stream Object Associated with a
File . 8-13

8.5.3 Stream Interface. .8-13
viii CORBAservices November 1997

Contents
Externalizing an Object 8-13
Externalizing Groups of Objects 8-14
Internalizing an Object 8-14

8.6 CosStream Module. .8-15
8.6.1 Standard Stream Data Format.8-17
8.6.2 The StreamIO Interface8-18
8.6.3 The Streamable Interface8-18

Writing the Object’s State to a Stream 8-19
Reinitializing the Object’s State from a
Stream . 8-20

8.6.4 The StreamableFactory Interface 8-21
Creating a Streamable Object 8-21

8.7 CosCompound Externalization Module.8-21
8.7.1 The Node Interface. .8-22

Externalizing a Node 8-23
Internalizing a Node 8-23

8.7.2 The Role Interface .8-24
Externalizing a Role 8-24
Internalizing a Role 8-24
Getting a Propagation Value 8-24

8.7.3 The Relationship Interface8-24
Externalizing the Relationship 8-25
Internalizing the Relationship 8-25
Getting a Propagation Value 8-25

8.7.4 The PropagationCriteriaFactory Interface 8-25
Create a Traversal Criteria Based on Externaliza-
tion Propagation . 8-26

8.8 Specific Externalization Relationships.8-26

8.9 The CosExternalizationContainment Module 8-27

8.10 The CosExternalizationReference Module.8-28

8.11 Standard Stream Data Format .8-29
8.11.1 OMG Externalized Object Data8-29
8.11.2 Externalized Repeated Reference Data. 8-31
8.11.3 Externalized NIL Data8-31

8.12 References .8-31

9. Relationship Service Specification. 9-1

9.1 Service Description .9-1
9.1.1 Key Features of the Relationship Service. 9-2
9.1.2 The Relationship Service vs. CORBA Object

References .9-3
Relationships that Are Multidirectional. . . . 9-3
Relationships that Allow Third Party
Manipulation . 9-4
Traversals that Are Supported for Graphs
of Related Objects . 9-4
CORBAservices November 1997 ix

Contents
Relationships and Roles that Can Be Extended with
Attributes and Behavior. 9-4

9.1.3 Resolution of Technical Issues. 9-4
Modeling and Relationship Semantics 9-4
Managing Relationships 9-4
Constraining Relationships 9-5
Referential Integrity. 9-5
Relationships and Roles as First Class Objects 9-5
Different Models for Navigating and
Constructing Relationships 9-5
Efficiency Considerations 9-6

9.2 Service Structure .9-7
9.2.1 Levels of Service .9-7

Level One: Base Relationships 9-7
Level Two: Graphs of Related Objects . . . 9-8
Level Three: Specific Relationships 9-9

9.2.2 Hierarchy of Relationship Interface 9-10
9.2.3 Hierarchy of Role Interface9-10
9.2.4 Interface Summary. .9-11

9.3 The Base Relationship Model .9-13
9.3.1 Relationship Attributes and Operations 9-14

Rationale . 9-15

9.3.2 Higher Degree Relationships9-15
Rationale . 9-15

9.3.3 Operations .9-17
Creation . 9-17
Navigation . 9-18
Destruction . 9-18

9.3.4 Consistency Constraints.9-18
9.3.5 Implementation Strategies9-19
9.3.6 The CosObjectIdentity Module9-19

The IdentifiableObject Interface 9-19
constant_random_id. 9-20
is_identical . 9-20

9.3.7 The CosRelationships Module9-20
Example of Containment Relationships . . . 9-23
The RelationshipFactory Interface 9-23
The Relationship Interface 9-25
Destroying a Relationship 9-26
The Role Interface 9-26
The RoleFactory Interface 9-30
The RelationshipIterator Interface 9-32

9.4 Graphs of Related Objects .9-33
9.4.1 Graph Architecture. .9-33

Nodes . 9-35

9.4.2 Traversing Graphs of Related Objects 9-35
Detecting and Representing Cycles 9-35
Determining the Relevant Nodes and Edges 9-36
x CORBAservices November 1997

Contents
9.4.3 Compound Operations9-36
9.4.4 An Example Traversal Criteria.9-37

Propagation . 9-37

9.4.5 The CosGraphs Module9-38
The TraversalFactory Interface 9-41
The Traversal Interface 9-42
The TraversalCriteria Interface 9-43
The Node Interface 9-44
The NodeFactory Interface 9-46
The Role Interface 9-46
The EdgeIterator Interface 9-47

9.5 Specific Relationships .9-47
9.5.1 Containment and Reference9-48
9.5.2 The CosContainment Module.9-48
9.5.3 The CosReference Module.9-50

9.6 References .9-51

10. Transaction Service Specification .10-1

10.1 Service Description .10-2
10.1.1 Overview of Transactions.10-2
10.1.2 Transactional Applications.10-3
10.1.3 Definitions .10-3

Transactional Client 10-4
Transactional Object 10-4
Recoverable Objects and Resource Objects 10-5
Transactional Server 10-6
Recoverable Server 10-6

10.1.4 Transaction Service Functionality 10-6
Transaction Models 10-6
Transaction Termination 10-7
Transaction Integrity 10-8
Transaction Context 10-8
Synchronization . 10-8

10.1.5 Principles of Function, Design, and Performance10-8
Functional Requirements 10-9
Design Requirements 10-10
Performance Requirements 10-11

10.2 Service Architecture. .10-12
10.2.1 Typical Usage. .10-13
10.2.2 Transaction Context .10-13
10.2.3 Context Management .10-14
10.2.4 Datatypes .10-15
10.2.5 Structures .10-15
10.2.6 Exceptions .10-16

Standard Exceptions 10-16
Heuristic Exceptions 10-16
WRONG_TRANSACTION Exception . . . 10-17
CORBAservices November 1997 xi

Contents
Other Exceptions . 10-17

10.3 Transaction Service Interfaces. .10-17
10.3.1 Current Interface. .10-18

begin . 10-19
commit . 10-19
rollback . 10-19
rollback_only . 10-20
get_status . 10-20
get_transaction_name 10-20
set_timeout . 10-20
get_control . 10-20
suspend . 10-20
resume . 10-21

10.3.2 TransactionFactory Interface10-21
create . 10-21
recreate . 10-22

10.3.3 Control Interface. .10-22
get_terminator . 10-23
get_coordinator . 10-23

10.3.4 Terminator Interface. .10-23
commit . 10-23
rollback . 10-24

10.3.5 Coordinator Interface .10-24
get_status . 10-25
get_parent_status. 10-26
get_top_level_status 10-26
is_same_transaction 10-26
is_ancestor_transaction 10-26
is_descendant_transaction 10-26
is_related_transaction 10-27
is_top_level_transaction 10-27
hash_transaction . 10-27
hash_top_level_tran. 10-27
register_resource . 10-27
register_synchronization 10-28
register_subtran_aware 10-28
rollback_only. 10-28
get_transaction_name 10-28
create_subtransaction 10-28
get_txcontext . 10-29

10.3.6 Recovery Coordinator Interface.10-29
replay_completion 10-29

10.3.7 Resource Interface .10-29
prepare . 10-30
rollback . 10-31
commit . 10-31
commit_one_phase 10-31
forget . 10-32

10.3.8 Synchronization Interface.10-32
before_completion 10-32
after_completion . 10-32
xii CORBAservices November 1997

Contents
10.3.9 Subtransaction Aware Resource Interface10-33
commit_subtransaction 10-33
rollback_subtransaction 10-33

10.3.10TransactionalObject Interface.10-34

10.4 The User’s View .10-34
10.4.1 Application Programming Models10-34

Direct Context Management: Explicit
Propagation . 10-35
Indirect Context Management: Implicit
Propagation . 10-35
Indirect Context Management: Explicit
Propagation . 10-35
Direct Context Management: Implicit
Propagation . 10-35

10.4.2 Interfaces .10-36
10.4.3 Checked Transaction Behavior.10-36
10.4.4 X/Open Checked Transactions.10-37

Reply Check . 10-37
Commit Check . 10-37
Resume Check . 10-38

10.4.5 Implementing a Transactional Client: Heuristic
Completions. .10-38

10.4.6 Implementing a Recoverable Server.10-38
Recoverable Object 10-38
Resource Object . 10-39
Reliable Servers. 10-39

10.4.7 Application Portability.10-39
Flat Transactions . 10-39
X/Open Checked Transactions 10-40

10.4.8 Distributed Transactions.10-40
10.4.9 Applications Using Both Checked and Unchecked

Services .10-40
10.4.10Examples .10-40

A Transaction Originator: Indirect and
Implicit . 10-41
Transaction Originator: Direct and Explicit 10-41
Example of a Recoverable Server 10-42
Example of a Transactional Object 10-43

10.4.11Model Interoperability10-44
Importing Transactions 10-44
Exporting Transactions 10-46
Programming Rules 10-46

10.4.12Failure Models .10-47
Transaction Originator 10-47
Transactional Server 10-48
Recoverable Server 10-48

10.5 The Implementers’ View .10-48
10.5.1 Transaction Service Protocols10-49
CORBAservices November 1997 xiii

Contents
General Principles . 10-49
Normal Transaction Completion 10-50
Failures and Recovery 10-57
Transaction Completion after Failure 10-57

10.5.2 ORB/TS Implementation Considerations.10-60
Transaction Propagation 10-60
Transaction Service Interoperation 10-61
Transaction Service Portability 10-63

10.5.3 Model Interoperability10-67

10.6 The CosTransactions Module. .10-69
10.6.1 The CosTSPortability Module10-73

tx_open . 10-75
tx_close . 10-75
tx_begin . 10-75
tx_rollback . 10-75
tx_commit and tx_set_commit_return. 10-75
tx_set_transaction_control 10-76
tx_set_transaction_timeout 10-76
tx_info . 10-76
OSI TP Transaction Identifiers 10-81
Incoming OSI TP Communications (Imported
Transactions) . 10-81
Outgoing OSI TP Communications (Exported
Transactions) . 10-82
LU 6.2 Transaction Identifiers 10-82
Incoming LU 6.2 Communications 10-83
Outgoing LU 6.2 Communications 10-83
ODMG Standard . 10-83
Integration of ODMG ODBMSs with the
Transaction Service 10-84

11. Query Service Specification .11-1

11.1 Service Description .11-1
11.1.1 Overview .11-1
11.1.2 Design Principles .11-1
11.1.3 Architecture .11-2

Query Evaluators: Nesting and Federation . 11-3
Collections . 11-4
Queryable Collections for Scope and Result 11-5
Query Objects . 11-5

11.1.4 Query Languages .11-6
SQL Query . 11-7
OQL . 11-7
SQL Query = OQL 11-8

11.1.5 Key Features. .11-9

11.2 Service Structure .11-10
11.2.1 Overview .11-10

Type One: Collections 11-10
Type Two: Query Framework 11-10

11.2.2 Collection Interface Structure.11-10
xiv CORBAservices November 1997

Contents
11.2.3 Query Framework Interface Hierarchy/
Structure. .11-10

11.2.4 Interface Overview. .11-11

11.3 The Collection Model .11-12
11.3.1 Common Types of Collections.11-12
11.3.2 Iterators .11-12

11.4 The CosQueryCollection Module.11-14
11.4.1 The CollectionFactory Interface.11-15

Creating a Collection 11-16

11.4.2 The Collection Interface.11-16
Determining the Cardinality 11-16
Adding an Element 11-16
Adding Elements from a Collection 11-17
Inserting an Element 11-17
Replacing an Element 11-17
Removing an Element 11-17
Removing all Elements 11-18
Retrieving an Element 11-18
Creating an Iterator 11-18

11.4.3 The Iterator Interface .11-18
Accessing the Current Element 11-18
Resetting the Iteration 11-19
Testing for Completion of an Iteration 11-19

11.5 The Query Framework Model .11-19
11.5.1 Query Evaluators .11-19
11.5.2 Queryable Collections11-20
11.5.3 Query Managers. .11-21
11.5.4 Query Objects. .11-21

11.6 The CosQuery Module. .11-23
11.6.1 The QueryLanguageType Interfaces.11-24
11.6.2 The QueryEvaluator Interface11-25

Determining the Supported Query
Language Types . 11-25
Determining the Default Query Language
Type . 11-25
Evaluating a Query 11-25

11.6.3 The QueryableCollection Interface.11-25
11.6.4 The QueryManager Interface11-25

Creating a Query Object 11-26

11.6.5 The Query Interface .11-26
Determining the Associated Query Manager 11-26
Preparing the Query for Execution 11-26
Executing the Query 11-26
Determining the Query Status 11-27
Obtaining the Query Result 11-27

11.7 References .11-27
CORBAservices November 1997 xv

Contents
12. Licensing Service Specification .12-1

12.1 Existing License Management Products.12-1
12.1.1 Business Policy. .12-2
12.1.2 License Types. .12-2
12.1.3 A History of License Types12-3
12.1.4 Asset Management. .12-3
12.1.5 License Usage Practices.12-4
12.1.6 Scalability. .12-4
12.1.7 Reliability. .12-4
12.1.8 Legacy Applications. .12-5
12.1.9 Security .12-6
12.1.10 Client/Server Authentication.12-6
12.1.11Example: Application Acquiring and Releasing a

Concurrent License. .12-6

12.2 Service Description .12-7
12.2.1 Overview. .12-7
12.2.2 Key Components of a Licensing System 12-8

License Attributes . 12-8
Licensing Policy . 12-8
Interfaces Isolated From Business Policies 12-10

12.2.3 Licensing in the CORBA Environment12-11
12.2.4 Design Principles .12-12
12.2.5 Licensing Service Interfaces.12-13

Interfaces are Mandatory 12-13
Constraints on Object Behavior 12-14

12.2.6 Licensing Event Trace Diagram.12-15

12.3 The CosLicensing Module. .12-17
12.3.1 LicenseServiceManager Interface.12-19
12.3.2 ProducerSpecificLicenseService Interface. . . .12-20

12.4 References .12-22

13. Property Service. .13-1

13.1 Overview .13-1
13.1.1 Service Description .13-1

Client’s Model of Properties 13-2
Object’s Model of Properties 13-2

13.1.2 OMG IDL Interface Summary13-3
13.1.3 Summary of Key Features13-3

13.2 Service Interfaces. .13-4
13.2.1 CosPropertyService Module.13-4

Data Types . 13-5
Exceptions . 13-7

13.2.2 PropertySet Interface .13-9
xvi CORBAservices November 1997

Contents
Defining and Modifying Properties 13-9
define_properties. 13-10
Listing and Getting Properties 13-11
get_all_property_names. 13-11
get_property_value 13-11
get_properties . 13-11
get_all_properties . 13-12
Deleting Properties 13-12
delete_property . 13-12
delete_properties . 13-13
delete_all_properties 13-13
Determining If a Property Is Already
Defined . 13-14

13.2.3 PropertySetDef Interface13-14
Retrieval of PropertySet Constraints 13-15
get_allowed_properties 13-15
Defining and Modifying Properties with
Modes . 13-15
define_properties_with_modes 13-16
Getting and Setting Property Modes 13-17
get_property_modes 13-18
set_property_mode 13-18
set_property_modes 13-19

13.2.4 PropertiesIterator Interface.13-19
next_one, next_n . 13-19
Destroying the Iterator 13-20

13.2.5 PropertyNamesIterator Interface13-20
Resetting the Position in an Iterator 13-20
next_one, next_n . 13-20
Destroying the Iterator 13-21

13.2.6 PropertySetFactory Interface13-21
13.2.7 PropertySetDefFactory Interface13-22

14. Time Service Specification. .14-1

14.1 Introduction .14-1
14.1.1 Time Service Requirements14-1
14.1.2 Representation of Time14-1
14.1.3 Source of Time. .14-2
14.1.4 General Object Model14-3
14.1.5 Conformance Points. .14-4

14.2 Basic Time Service .14-4
14.2.1 Object Model .14-4
14.2.2 Data Types .14-5

Type TimeT . 14-6
Type InaccuracyT . 14-6
Type TdfT . 14-6
Type UtcT . 14-6
Type IntervalT . 14-6
Enum ComparisonType 14-7
Enum TimeComparison. 14-7
CORBAservices November 1997 xvii

Contents
Enum OverlapType 14-7

14.2.3 Exceptions .14-8
TimeUnavailable . 14-8

14.2.4 Universal Time Object (UTO).14-8
Readonly attribute time 14-9
Readonly attribute inaccuracy 14-9
Readonly attribute tdf 14-9
Readonly attribute utc_time. 14-9
Operation absolute_time 14-9
Operation compare_time 14-10
Operation time_to_interval 14-10
Operation interval . 14-10

14.2.5 Time Interval Object (TIO)14-10
Readonly attribute time_interval 14-10
Operation spans. 14-11
Operation overlaps 14-11
Operation time. 14-11

14.2.6 Time Service .14-11
Operation universal_time 14-12
Operation secure_universal_time 14-12
Operation new_universal_time 14-12
Operation uto_from_utc 14-12
Operation new_interval. 14-13

14.3 Timer Event Service. .14-13
14.3.1 Object Model .14-13
14.3.2 Usage .14-14
14.3.3 Data Types .14-14

Enum TimeType . 14-14
Enum EventStatus . 14-15
Type TimerEventT 14-15

14.3.4 Exceptions .14-15
14.3.5 Timer Event Handler .14-15

Attribute status . 14-16
Operation time_set 14-16
Operation set_timer 14-16
Operation cancel_timer 14-16
Operation set_data 14-16

14.3.6 Timer Event Service. .14-16
Operation register . 14-17
Operation unregister 14-17
Operation event_time 14-17

14.4 Conformance .14-17
Administration of Time 14-19
Protection of Operations and Mandatory
Audits . 14-19
Synchronization of Time 14-19

15. Security Service Specification. .15-1

15.1 Introduction to Security .15-1
15.1.1 Why Security? .15-1
xviii CORBAservices November 1997

Contents
15.1.2 What Is Security?. .15-1
15.1.3 Threats in a Distributed Object System 15-2
15.1.4 Summary of Key Security Features 15-3
15.1.5 Goals .15-3

Simplicity . 15-4
Consistency . 15-4
Scalability . 15-4
Usability for End Users. 15-4
Usability of Administrators 15-5
Usability for Implementors 15-5
Flexibility of Security Policy 15-5
Independence of Security Technology 15-5
Application Portability 15-6
Interoperability . 15-6
Performance . 15-6
Object Orientation. 15-6
Specific Security Goals 15-7
Security Architecture Goals 15-7

15.2 Introduction to the Specification .15-8
15.2.1 Conformance to CORBA Security 15-9
15.2.2 Specification Structure.15-10

Normative and Non-normative Material . . 15-10
Section Summaries 15-11
Proof of Concept . 15-12

15.3 Security Reference Model .15-12
15.3.1 Definition of a Security Reference Model15-12
15.3.2 Principals and Their Security Attributes.15-14
15.3.3 Secure Object Invocations15-15

Establishing Security Associations 15-16
Message Protection 15-17

15.3.4 Access Control Model15-19
Object Invocation Access Policy 15-19
Application Access Policy 15-20
Access Policies . 15-20

15.3.5 Auditing .15-22
15.3.6 Delegation .15-24

Privilege Delegation 15-25
Overview of Delegation Schemes 15-26
Facilities Potentially Available 15-26
Specifying Delegation Options 15-29
Technology Support for Delegation Options 15-29

15.3.7 Non-repudiation .15-30
15.3.8 Domains. .15-32

Security Policy Domains 15-33
Security Environment Domains 15-35
Security Technology Domains 15-36
Domains and Interoperability 15-37

15.3.9 Security Management and Administration. . . .15-38
Managing Security Policy Domains 15-38
CORBAservices November 1997 xix

Contents
Managing Security Environment Domains 15-39
Managing Security Technology Domains. . 15-39

15.3.10Implementing the Model15-40

15.4 Security Architecture. .15-40
15.4.1 Different Users’ View of the Security Model. . 15-40

Enterprise Management View. 15-41
End User View . 15-41
Application Developer View 15-42
Administrator’s View 15-42
Object System Implementor’s View 15-43

15.4.2 Structural Model. .15-44
Application Components 15-45
ORB Services . 15-45
Security Services . 15-48
Security Policies and Domain Objects 15-48

15.4.3 Security Technology. .15-49
15.4.4 Basic Protection and Communications.15-50

Environment Domains 15-50
Component Protection 15-50

15.4.5 Security Object Models15-52
The Model as Seen by Applications 15-52
Administrative Model 15-69
The Model as Seen by the Objects
Implementing Security 15-73
Summary of Objects in the Model 15-80

15.5 Application Developer’s Interfaces15-82
15.5.1 Introduction .15-82

Security Functionality Conformance. 15-83
Introduction to the Interfaces 15-84

15.5.2 Finding Security Features.15-90
Description of Facilities 15-90
Interfaces . 15-90
Portability Implications 15-90

15.5.3 Authentication of Principals.15-90
Description of Facilities 15-90
Interfaces . 15-91
Portability Implications 15-93

15.5.4 Credentials .15-94
Description of Facilities 15-94
Interfaces . 15-94
Portability Implications. 15-98

15.5.5 Object Reference .15-98
Description of Facilities 15-98
Interfaces . 15-99
Portability Implications.15-102

15.5.6 Security Operations on Current 15-102
Description. .15-102
Interfaces .15-103

15.5.7 Security Audit . 15-107
xx CORBAservices November 1997

Contents
Description of Facilities.15-107
Interfaces .15-107
Portability Implications.15-109

15.5.8 Administering Security Policy 15-109
15.5.9 Use of Interfaces for Access Control 15-109

Description of Facilities.15-109
Interfaces .15-110
Portability Implications.15-111

15.5.10Use of Interfaces for Delegation. 15-111
Description of Facilities.15-111
Interfaces .15-112
Portability Implications.15-112

15.5.11Non-repudiation . 15-113
Description of Facilities.15-113
Interfaces .15-114

15.6 Administrator’s Interfaces . 15-121
15.6.1 Concepts. 15-122

Administrators. .15-122
Policy Domains .15-122
Security Policies .15-123

15.6.2 Domain Management. 15-123
Policy. .15-124
Domain Manager. .15-124
Construction Policy15-125
Extensions to the Object Interface.15-125

15.6.3 Security Policies Introduction 15-126
15.6.4 Access Policies. 15-127

Rights. .15-127
AccessPolicy Interface.15-129
Specific Invocation Access Policies15-130
DomainAccessPolicy Interface15-130

15.6.5 Audit Policies. 15-136
Audit Administration Interfaces15-136

15.6.6 Secure Invocation and Delegation Policies. . 15-138
Secure Invocation Policies.15-139
Invocation Delegation Policy15-142

15.6.7 Non-repudiation Policy Management. 15-143

15.7 Implementor’s Security Interfaces. 15-145
15.7.1 Generic ORB Services and Interceptors. . . . 15-146
15.7.2 Request-Level Interceptors 15-146

Message-Level Interceptors.15-147
Selecting Interceptors15-147
Interceptor Interfaces.15-147

15.7.3 Security Interceptors. 15-147
Invocation Time Policies.15-149
Secure Invocation Interceptor15-150
Access Control Interceptor15-152

15.7.4 Implementation-Level Security Object
Interfaces . 15-152
CORBAservices November 1997 xxi

Contents
Vault .15-153
Security Context Object.15-155
Access Decision Object.15-158
Audit Objects. .15-159
Principal Authentication15-160
Non-repudiation. .15-160

15.7.5 Replaceable Security Services 15-160
Replacing Authentication and Security Association
Services .15-160
Replacing Access Decision Policies15-160
Replacing Audit Services15-161
Replacing Non-repudiation Services.15-161
Other Replaceability15-161
Linking to External Security Services.15-161

15.8 Security and Interoperability . 15-162
15.8.1 Interoperability Model 15-163

Security Information in the Object
Reference. .15-164
Establishing a Security Association.15-165
Protecting Messages15-165
Security Mechanisms for Secure
Object Invocations.15-165
Security Mechanism Types15-166
Interoperating between Underlying Security
Services .15-167
Interoperating between Security Policy
Domains. .15-167
Secure Interoperability Bridges.15-168

15.8.2 Protocol Enhancements 15-168
15.8.3 CORBA Interoperable Object Reference with

Security . 15-168
Security Components of the IOR.15-169
Operational Semantics.15-172

15.8.4 Secure Inter-ORB Protocol (SECIOP) 15-174
SECIOP Message Header15-174
SECIOP .15-175
ContextId. .15-175
ContextIdDefn. .15-175
Message Definitions15-176
SECIOP Protocol State Tables15-179

15.8.5 DCE-CIOP with Security. 15-182
Goals of Secure DCE-CIOP15-182
Secure DCE-CIOP Overview15-183
IOR Security Components for DCE-CIOP . 15-183
DCE RPC Security Services15-188
Secure DCE-CIOP Operational Semantics . 15-189
Request-Level Interceptors15-218
Message-Level Interceptors.15-219
Distributed Trusted Computing Base15-249
Protection Boundaries15-251
Controlled Communications15-252
Example Using Trusted Generation Tools and
xxii CORBAservices November 1997

Contents
ORBs .15-253
Commercial System with Limited Security
Requirements. .15-254
Higher Security System.15-254
Logging onto the System.15-256
Walkthrough of Secure Object Invocation . 15-256
Object and Object Reference Creation15-257
Authorization Policy Information15-258
Audit Policy Information and Audit Logs. . 15-258
Target Object Identities.15-259
Assumptions about Security Association
Mechanisms. .15-259
Invoking Special Objects.15-260
Integrity of the ORB and Security Service
Objects. .15-261
Safeguarding the Object Environment.15-261
Safeguarding the Dispatching Mechanism . 15-262
Safeguarding Information in Shared Vault
Objects. .15-262

16. Trading Object Service Specification16-1

16.1 Overview .16-2
16.1.1 Diversity and Scalability16-3
16.1.2 Linking Traders .16-3
16.1.3 Policy .16-3
16.1.4 Additional ObjectID. .16-4

16.2 Concepts and Data Types. .16-4
16.2.1 Exporter .16-4
16.2.2 Importer .16-4
16.2.3 Service Types. .16-4

Service Type Model 16-5

16.2.4 Properties .16-7
16.2.5 Service Offers. .16-7

Modifiable Properties 16-8
Dynamic Properties 16-8

16.2.6 Offer Identifier. .16-9
16.2.7 Offer Selection. .16-9

Standard Constraint Language 16-9
Preferences . 16-10
Links . 16-11
Policies . 16-12
Trader Policies . 16-16
Link Follow Behavior 16-16
Importer Policies . 16-17
Exporter Policies . 16-18
Link Creation Policies. 16-18

16.2.8 Interworking Mechanisms16-18
Link Traversal Control 16-18
Federated Query Example 16-19
Proxy Offers . 16-20
CORBAservices November 1997 xxiii

Contents
16.2.9 Trader Attributes .16-21

16.3 Exceptions .16-23
16.3.1 For CosTrading module16-23

Exceptions used in more than one
interface . 16-23
Additional Exceptions for Lookup
Interface . 16-24
Additional Exceptions For Register
Interface . 16-25
Additional Exceptions for Link Interface . . 16-26
Additional Exceptions for Proxy Offer
Interface . 16-27

16.3.2 For CosTradingDynamic module.16-27
16.3.3 For CosTradingRepos module16-27

16.4 Abstract Interfaces. .16-28
16.4.1 TraderComponents. .16-28
16.4.2 SupportAttributes. .16-29
16.4.3 ImportAttributes. .16-29
16.4.4 LinkAttributes .16-30

16.5 Functional Interfaces .16-30
16.5.1 Lookup. .16-30

Query Operation . 16-31

16.5.2 Offer Iterator .16-35
Signature . 16-35
Function. 16-36

16.5.3 Register .16-36
Export Operation . 16-39
Withdraw Operation 16-41
Describe Operation 16-41
Modify Operation . 16-42
Withdraw Using Constraint Operation 16-44
Resolve Operation. 16-45

16.5.4 Offer Id Iterator .16-45
Signature . 16-45
Function . 16-46

16.5.5 Admin. .16-46
Attributes and Set Operations 16-48
List Offers Operation 16-48
List Proxies Operation. 16-49

16.5.6 Link .16-49
Add_Link Operation 16-51
Remove Link Operation 16-52
Describe Link Operation 16-52
List Links Operation 16-53
Modify Link Operation 16-53

16.5.7 Proxy .16-54
Export Proxy Operation 16-56
Withdraw Proxy Operation 16-58
xxiv CORBAservices November 1997

Contents
Describe Proxy Operation 16-59

16.6 Service Type Repository .16-59
Add Type Operation 16-63
Remove Type Operation 16-64
List Types Operation 16-64
Describe Type Operation. 16-65
Fully Describe Type Operation 16-65
Mask Type Operation 16-66
Unmask Type Operation 16-66

16.7 Dynamic Property Evaluation interface.16-67

16.8 Conformance Criteria. .16-69
16.8.1 Conformance Requirements for Trading

Interfaces as Server .16-69
Lookup Interface . 16-70
Register Interface . 16-70
Admin Interface . 16-70
Link Interface. 16-71
Proxy Interface . 16-71

16.8.2 Conformance Requirements for Implementation
Conformance Classes.16-71

Query Trader . 16-72
Simple Trader . 16-72
Stand-alone Trader 16-72
Linked Trader . 16-73
Proxy Trader . 16-73
Full-service Trader 16-73

17. Object Collection Specification. .17-1

17.1 Overview .17-2

17.2 Service Structure .17-2
17.2.1 Combined Property Collections17-3

Restricted Access Collections 17-4
Collection Factories 17-5

17.2.2 Iterators .17-5
17.2.3 Function Interfaces. .17-7

Collectible Elements and Type Safety 17-7
Collectible Elements and the Operations
Interface . 17-7
Collectible Elements of Key Collections. . . 17-8

17.2.4 List of Interfaces Defined.17-8

17.3 Combined Collections .17-10
17.3.1 Combined Collections Usage Samples.17-10

Bag, SortedBag . 17-10
EqualitySequence . 17-11
Heap . 17-11
KeyBag, KeySortedBag. 17-11
KeySet, KeySortedSet. 17-12
Map, SortedMap . 17-12
Relation, SortedRelation 17-13
CORBAservices November 1997 xxv

Contents
Set, SortedSet . 17-13
Sequence . 17-13

17.4 Restricted Access Collections .17-14
17.4.1 Restricted Access Collections Usage Samples. 17-14

Deque . 17-14
PriorityQueue . 17-14
Queue . 17-15
Stack . 17-15

17.5 The CosCollection Module .17-15
17.5.1 Interface Hierarchies .17-15

Collection Interface Hierarchies 17-15
Iterator Hierarchy . 17-18

17.5.2 Exceptions and Type Definitions17-19
17.5.3 Abstract Collection Interfaces17-21

The Collection Interface 17-21
The OrderedCollection Interface 17-28
The SequentialCollection Interface. 17-31
The SortedCollection Interface 17-37
The EqualityCollection Interface 17-37
The KeyCollection Interface 17-42
The EqualityKeyCollection Interface 17-50
The KeySortedCollection Interface. 17-51
The EqualitySortedCollection Interface . . . 17-53
The EqualityKeySortedCollection Interface 17-55
The EqualitySequentialCollection Interface 17-55

17.5.4 Concrete Collections Interfaces17-57
The KeySet Interface 17-57
The KeyBag Interface 17-57
The Map Interface . 17-57
The Relation Interface 17-61
The Set Interface . 17-61
The Bag Interface . 17-62
The KeySortedSet Interface 17-62
The KeySortedBag Interface. 17-63
The SortedMap Interface 17-63
The SortedRelation Interface. 17-63
The SortedSet Interface 17-63
The SortedBag Interface 17-64
The Sequence Interface 17-64
The EqualitySequence Interface 17-64
The Heap Interface 17-64

17.5.5 Restricted Access Collection Interfaces.17-65
17.5.6 Abstract RestrictedAccessCollection Interface. 17-65

The RestrictedAccessCollection Interface . 17-65

17.5.7 Concrete Restricted Access Collection
Interfaces .17-66

The Queue Interface 17-66
The Dequeue Interface. 17-67
The Stack Interface 17-67
The PriorityQueue Interface 17-69

17.5.8 Collection Factory Interfaces17-70
xxvi CORBAservices November 1997

Contents
The CollectionFactory and CollectionFactories
Interfaces . 17-71
The RACollectionFactory and RACollection
Factories Interfaces 17-74
The KeySetFactory Interface 17-75
The KeyBagFactory Interface 17-75
The MapFactory Interface 17-76
The RelationFactory Interface 17-76
The SetFactory Interface 17-77
The BagFactory Interface 17-77
The KeySortedSetFactory Interface 17-78
The KeySortedBagFactory Interface 17-78
The SortedMapFactory Interface. 17-79
The SortedRelationFactory Interface 17-79
The SortedSetFactory Interface 17-80
The SortedBagFactory Interface 17-80
The SequenceFactory Interface. 17-81
The EqualitySequence Factory Interface . . 17-81
The HeapFactory Interface 17-82
The QueueFactory Interface 17-82
The StackFactory Interface 17-83
The DequeFactory Interface 17-83
The PriorityQueueFactory Interface 17-83

17.5.9 Iterator Interfaces. .17-84
Iterators as pointer abstraction 17-84
Iterators and support for generic
programming . 17-84
Iterators and performance 17-85
The Managed Iterator Model 17-85
The Iterator Interface 17-86
The OrderedIterator Interface 17-97
The SequentialIterator Interface17-106
The KeyIterator Interface17-108
The EqualityIterator Interface17-110
The EqualityKeyIterator Interface.17-111
The SortedIterator Interface.17-112
The KeySortedIterator Interface17-112
The EqualitySortedIterator Interface.17-114
The EqualityKeySortedIterator Interface . . 17-117
The EqualitySequentialIterator Interface. . .17-117

17.5.10Function Interfaces. 17-118
The Operations Interface.17-118
The Command and Comparator Interface. . 17-122
Identification and Justification of
Differences. .17-124
CosQueryCollection Module Detailed
Comparison .17-126
Containers .17-133
Algorithms. .17-134
Iterators .17-134
Consideration on choice17-135
CORBAservices November 1997 xxvii

Contents
xxviii CORBAservices November 1997

List of Figures
Figure 2-1 An event channel as a collection of objects
conspiring to manage multiple simultaneous
consumer clients. .2-3

Figure 3-1 A Naming Graph . 3-2

Figure 3-2 The CosNaming Module . 3-6

Figure 3-3 The Names Library Interface in PIDL 3-14

Figure 4-1 Push-style Communication Between a Supplier and
a Consumer . 4-7

Figure 4-2 Pull-style Communication Between a Supplier and a
Consumer . 4-7

Figure 4-3 The OMG IDL Module CosEventComm 4-8

Figure 4-4 Push-style Communication Between a Supplier and
an Event Channel, and a Consumer and an Event
Channel . 4-11

Figure 4-5 Pull-style communication between a supplier and
an event channel and a consumer and the event
channel . 4-11

Figure 4-6 Push-style Communication Between a Supplier and
an Event Channel, and Pull-style Communication
Between a Consumer and an Event Channel 4-12

Figure 4-7 An Event Channel with Multiple Suppliers and
Multiple Consumers . 4-12

Figure 4-8 A newly created event channel. The channel has no
 suppliers or consumers .4-13

Figure 4-9 State diagram of a proxy . 4-14
CORBAservices November 1997 xxix

Figure 4-10 The CosEventChannelAdmin Module 4-16

Figure 4-11 Typed Push-style Communication Between a
Supplier and a Consumer . 4-20

Figure 4-12 Typed Pull-style Communication Between a Supplier
and a Consumer . 4-21

Figure 4-13 The IDL Module CosTypedEventComm4-22

Figure 4-14 The CosTypedEventChannelAdmin Module 4-25

Figure 5-1 Roles in the Persistent Object Service 5-1

Figure 5-2 Major Components of the POS and their Interactions 5-8

Figure 5-3 The CosPersistencePID Module . 5-9

Figure 5-4 TheCosPersistencePO Module . 5-12

Figure 5-5 The CosPersistencePOM Module 5-15

Figure 5-6 Example to illustrate POMFunctions 5-18

Figure 5-7 The CosPersistencePDS Module 5-20

Figure 5-8 Direct Access Protocol Interfaces 5-21

Figure 5-9 The CosPersistencePDS_DA Module 5-22

Figure 5-10 Structure of a DDO . 5-31

Figure 5-11 The CosPersistenceDDO Module 5-32

Figure 5-12 The CosPersistenceDS_CLI Module 5-35

Figure 6-1 Life Cycle service defines how a client can create
an object “over there”. . 6-1

Figure 6-2 Life Cycle Service defines how a client can move
or copy an object over there. 6-2

Figure 6-3 The object life cycle problem for graphs of objects is
to determine the boundaries of a graph of objects and
operate on that graph. In the above example, a document
contains a graphic and a logo, refers to a dictionary and
is contained in a folder. 6-3

Figure 6-4 To create an object “over there” a client must
possess an object reference to a factory over there.
The client simply issues a request on the factory. 6-4

Figure 6-5 An example of a document factory interface. This
interface is defined for clients as a part of application
development. 6-5

Figure 6-6 To delete an object, a client must posses an object
reference supporting the LifeCycleObject interface
and issues a remove request on the object. 6-6
xxx CORBAservices November 1997

Figure 6-7 Life cycle services define how a client can move or
copy an object from here to there. 6-7

Figure 6-8 The FactoryFinder interface can be “mixed in” with
interfaces of more powerful finding services. 6-8

Figure 6-9 The CosLifeCycle Module . 6-10

Figure 6-10 The Life Cycle service provides a generic creation
capability. Ultimately, implementation specific
creation code is invoked by the creation service.
The implementation specific code also supports the
GenericFactory interface. . 6-15

Figure 6-11 Factories assemble resources for the execution of an
object. A minimal implementation achieves this with
a single factory implementation. 6-19

Figure 6-12 In an administered environment, factory
implementations can delegate the creation problem
to a generic factory. The generic factory can apply
resource allocation policies. Ultimatelythe creation
service communicates with implementation specific
code that assembles resources for the bject 6-20

Figure 6-13 The copy and move operations are passed a
FactoryFinder to represent "there." The implementation
of the target uses the FactoryFinder to find a
factory object for creation over there. The protocol
between the object and the factory is private. They can
commujnicate and transfer state according to any
implementation-defined protocol.. 6-21

Figure 8-1 Externalization control flow when streamable object
is not in a graph of related objects 8-4

Figure 8-2 Externalization control flow when streamable object
is a node in a graph of related objects 8-5

Figure 8-3 Internalization control flow when object is not in a
graph of related objects . 8-6

Figure 8-4 Internalization control flow when object is in a graph
of related objects . 8-7

Figure 8-5 Object Externalization Service Booch Class
(=Interface) Diagram . 8-9

Figure 8-6 Client Functional Interfaces support client’s model
of externalization . 8-10
CORBAservices November 1997 xxxi

Figure 8-7 Service Construction Interfaces support service
implementation’s model of externalization 8-10

Figure 8-8 Compound Externalization Interfaces support service
implementation’s model of graph externalization 8-11

Figure 8-9 The CosStream module . 8-15

Figure 8-10 The CosCompoundExternalization Module 8-20

Figure 8-11 Internalizing a node returns the new object and the
corresponding roles. 8-22

Figure 8-12 The CosExternalizationContainment module 8-26

Figure 8-13 The CosExternalizationReference module 8-28

Figure 9-1 Base relationships . 9-7

Figure 9-2 Navigation functionality of base relationships 9-8

Figure 9-3 An example graph of related objects 9-9

Figure 9-4 Relationship interface hierarchy . 9-10

Figure 9-5 Role interface hierarchy . 9-10

Figure 9-6 Simple relationship type: documents reference books . . . 9-14

Figure 9-7 Simple relationship instance: my document references
the book “War and Peace“ . 9-14

Figure 9-8 A ternary check-out relationship type between books,
libraries and persons. 9-15

Figure 9-9 An unsatisfactory representation of the ternary
check-out relationship using binary relationships 9-16

Figure 9-10 Another unsatisfactory representation 9-16

Figure 9-11 Creating a role for an object . 9-17

Figure 9-12 A fully established binary relationship 9-17

Figure 9-13 The CosObjectIdentity Module . 9-19

Figure 9-14 The CosRelationships Module . 9-21

Figure 9-15 Two binary one-to-many containment relationships 9-23

Figure 9-16 An example graph of related objects 9-34

Figure 9-17 A traversal of a graph for compound copy operation . . . 9-37

Figure 9-18 How deep, shallow and none propagation values
affect nodes, roles and relationships 9-38

Figure 9-19 The CosGraphs Module . 9-39

Figure 9-20 The CosContainment Module . 9-48
xxxii CORBAservices November 1997

Figure 9-21 The CosReference Module . 9-50

Figure 10-1 Application Including Basic Elements 10-4

Figure 10-2 This figure illustrates the major components and
interfaces of the Transaction Service. 10-12

Figure 10-3 X/Open client . 10-45

Figure 10-4 X/Open server . 10-45

Figure 10-5 Example . 10-46

Figure 10-6 Model interoperability example 10-68

Figure 11-1 Query Evaluators: Nesting and Federation 11-3

Figure 11-2 Queryable Collections . 11-5

Figure 11-3 SQL Query = OQL . 11-8

Figure 11-4 Collection interface structure . 11-10

Figure 11-5 Query Framework interface hierarchy/structure 11-11

Figure 11-6 CosQueryCollection Module . 11-14

Figure 11-7 Query Evaluator and Queryable Collection 11-20

Figure 11-8 Query Manager and Query Object 11-21

Figure 11-9 QueryLanguageType Interface Hierarchy 11-24

Figure 12-1 Licensing Service Relationships . 12-7

Figure 12-2 Licensing Service Instance Diagram 12-14

Figure 12-3 Licensing Event Trace Diagram 12-16

Figure 12-4 CosLicensingManager Module . 12-17

Figure 13-1 Data types . 13-5

Figure 13-2 PropertySet interface exceptions . 13-7

Figure 13-3 Operations used to define new properties or set
new values . 13-9

Figure 13-4 Operations used to retrieve property names and
values . 13-11

Figure 13-5 Operations used to delete properties 13-12

Figure 13-6 is_property_defined operation . 13-14

Figure 13-7 Operations used to retrieve information related to
constraints. 13-15

Figure 13-8 Operations used to define new properties or values. . . . 13-16

Figure 13-9 Operations used to get and set property mode. 13-18

Figure 13-10 reset operation . 13-19
CORBAservices November 1997 xxxiii

Figure 13-11 next_one and next_n operations (properties) 13-20

Figure 13-12 destroy operation . 13-20

Figure 13-13 reset operation .. 13-20

Figure 13-14 next_one, next_n operations (PropertyNames) 13-21

Figure 13-15 destroy operation . 13-21

Figure 13-16 PropetySetFactory interface . 13-21

Figure 13-17 PropertySetDefFactory interface 13-22

Figure 14-1 General Object Model for Service 14-3

Figure 14-2 Object Model for Time Service . 14-5

Figure 14-3 Illustration of Interval Overlap . 14-8

Figure 14-4 Object Model of Timer Event Service 14-13

Figure 14-5 Time Service and Proxies . 14-19

Figure 15-1 A Security model for object systems 15-13

Figure 15-2 Credential containing security attributes 15-15

Figure 15-3 Target Object via ORB . 15-15

Figure 15-4 Message protection . 15-18

Figure 15-5 Access control model . 15-19

Figure 15-6 Authorization model . 15-21

Figure 15-7 Auditing model . 15-23

Figure 15-8 Delegation model . 15-24

Figure 15-9 No delegation . 15-27

Figure 15-10 Simple delegation . 15-27

Figure 15-11 Composite delegation . 15-28

Figure 15-12 Combined privileges delegation 15-28

Figure 15-13 Traced delegation . 15-28

Figure 15-14 Proof of receipt . 15-31

Figure 15-15 Non-repudiation services . 15-31

Figure 15-16 Security policy domains . 15-33

Figure 15-17 Policy domain hierarchies . 15-34

Figure 15-18 Federated policy domains . 15-34

Figure 15-19 System- and application-enforced policies 15-35

Figure 15-20 Overlapping policy domains . 15-35
xxxiv CORBAservices November 1997

Figure 15-21 Framework of domains . 15-37

Figure 15-22 Structural model . 15-45

Figure 15-23 ORB services . 15-46

Figure 15-24 Object reference . 15-47

Figure 15-25 Domain objects . 15-48

Figure 15-26 Controlled relationship . 15-51

Figure 15-27 Object encapsulation . 15-51

Figure 15-28 Authentication . 15-53

Figure 15-29 Multiple credentials . 15-55

Figure 15-30 Changing security attributes . 15-56

Figure 15-31 Making a secure invocation . 15-57

Figure 15-32 Target object security . 15-58

Figure 15-33 Security-unaware intermediate object 15-59

Figure 15-34 Security-aware intermediate object 15-60

Figure 15-35 access_allowed application . 15-61

Figure 15-36 get_policy application . 15-62

Figure 15-37 audit_write application . 15-63

Figure 15-38 Audit decision object . 15-63

Figure 15-39 set_NR_features operation .15-64

Figure 15-40 generate_token operation . 15-65

Figure 15-41 Non-repudiation service . 15-67

Figure 15-42 verify_evidence operation . 15-68

Figure 15-43 Proof of origin message . 15-68

Figure 15-44 Managing security policies . 15-72

Figure 15-45 Securing invocations . 15-74

Figure 15-46 get_policy operation . 15-75

Figure 15-47 ORB Security Services . 15-76

Figure 15-48 Access decision object . 15-77

Figure 15-49 Target objects sharing security names 15-79

Figure 15-50 Object created by application or factory 15-80

Figure 15-51 Relationship between main objects 15-81
CORBAservices November 1997 xxxv

Figure 15-52 Security Functionality Implemented by Security
Service Objects . 15-148

Figure 15-53 Secure Interoperability Model . 15-164

Figure 15-54 New CORBA 2.0 Protocol . 15-174

Figure 15-55 Binding Model . 15-217

Figure 15-56 Normal System Interactions. 15-248

Figure 15-57 Distributed TCB . 15-250

Figure 15-58 Base Protection and Communications 15-252

Figure 15-59 Protection Boundaries . 15-253

Figure 15-60 Distribution of Security Functionality and Trust 15-260

Figure 15-61 Intended Use by AccessDecision. 15-273

Figure 15-62 Supporting Overlapping Access Policy Domains. 15-274

Figure 15-63 Hierarchical Domains. 15-274

Figure 15-64 Retrieving Granted Rights . 15-275

Figure 15-65 Mutual Authentication . 15-279

Figure 15-66 Confidential Message with Context Establishment 15-280

Figure 15-67 Fragmented GIOP Request with Context Establishment 15-281

Figure 16-1 Interactions between a trader and its clients 16-1

Figure 16-2 Property Strength . 16-5

Figure 16-3 Pipeline View of Trader Query Steps and
Cardinality Constraint Application 16-15

Figure 16-4 Flow of a query through a trader graph 16-19

Figure 17-1 Collections Interfaces Hierarchy 17-17

Figure 17-2 Restricted Access Collections Interface Hierarchy 17-17

Figure 17-3 Iterator Interface Hierarchy . 17-18

Figure 17-4 Inheritance Relationships . 17-126
xxxvi CORBAservices November 1997

List of Tables
Table 3-5 Exceptions Raised by Binding Operations. 3-9

Table 3-6 Exceptions Raised by Resolve Operation. 3-10

Table 3-7 Exceptions Raised by Unbind Operation 3-10

Table 3-8 Exceptions Raised by Creating New
Contexts . 3-11

Table 6-1 Suggested Conventions for Factory Finder
Keys . 6-14

Table 6-2 Suggested Conventions for Generic Factory
Keys . 6-16

Table 6-3 Suggested Criteria. 6-17

Table 8-1 Tag Byte Values and Data Formats for Basic
CORBA Data Types. 8-30

Table 9-1 Interfaces Defined in the CosObjectIdentity
Module . 9-11

Table 9-2 Interfaces Defined in the CosRelationships
Module . 9-11

Table 9-3 Interfaces Defined in the CosGraphs Module 9-12

Table 9-4 Interfaces Defined in the CosContainment
Module . 9-12

Table 9-5 Interfaces Defined in the CosReference
Module . 9-13

Table 10-1 Use of Transaction Service Functionality 10-36
CORBAservices November 1997 xxxvii

Table 11-1 Interfaces Defined in the CosQueryCollection
Module . 11-12

Table 12-1 Exceptions Raised by Licensing Service
Operations. 12-19

Table 13-1 Property Service Interfaces. 13-3

Table 13-2 Exceptions Raised by Define Operations. 13-10

Table 13-3 Exceptions Raised by List and Get
Properties Operations. 13-12

Table 13-4 Exceptions Raised by delete_properties
Operations. 13-13

Table 13-5 Exceptions Raised by define Operations 13-17

Table 13-6 Exceptions Raised by Get and Set Mode
Operations. 13-19

Table 15-1 DomainAccessPolicy . 15-131

Table 15-2 User Privilege Attributes (Not Defined by
This Specification) . 15-131

Table 15-3 DomainAccessPolicy (with Privilege
Attributes). 15-132

Table 15-4 DomainAccessPolicy (with Delegate
Entry) . 15-132

Table 15-5 Interface Instances . 15-133

Table 15-6 DomainAccessPolicy (with Required
Rights Mapping). 15-133

Table 15-7 RequiredRights for Interfaces c1, c2
and c3. 15-134

Table 15-8 Standard Audit Policy. 15-137

Table 15-9 Option Definitions . 15-171

Table 15-10 IOR Example . 15-172

Table 15-11 Client State Table. 15-179

Table 15-12 Target State Table . 15-181

Table 15-13 Association Option Mapping to DCE
Security. 15-186

Table 15-14 Relationship between Identifiers 15-188

Table 16-1 Preferences . 16-10

Table 16-2 Scoping Policies. 16-13
xxxviii CORBAservices November 1997

Table 16-3 Capability Supported Policies . 16-15

Table 16-4 Trader Attributes . 16-21

Table 16-5 Primary/Secondary Policy Parameters 16-56

Table 17-1 Interfaces derived from combinations of collection
properties . 17-4

Table 17-2 Iterators and Collections . 17-19

Table 17-3 Collection interfaces and the iterator interfaces
supported . 17-27

Table 17-4 Implementation Category Examples 17-72

Table 17-5 Required element and key-type specific user-defined
information for KeySetFactory. []- implied by
key_compare. 17-75

Table 17-6 Required element and key-type specific user-defined
information for KeyBagFactory. []- implied by
key_compare. 17-76

Table 17-7 Required element and key-type specific user-defined
information for MapFactory. []- implied by
key_compare. 17-76

Table 17-8 Required element and key-type specific user-defined
information for RelationFactory.[]- implied by
key_compare. 17-77

Table 17-9 Required element and key-type specific user-defined
information for SetFactory.[]- implied by compare. 17-77

Table 17-10 Required element and key-type specific user-defined
information for BagFactory.[]- implied by compare. . . . 17-78

Table 17-11 Required element and key-type specific user-defined
information for KeySortedSetFactory.[]- implied
by key_compare. 17-78

Table 17-12 Required element and key-type specific user-defined
information for KeySortedBagFactory.[]- implied
by key_compare. 17-79

Table 17-13 Required element and key-type specific user-defined
information for SortedMapFactory.[]- implied by
key_compare. 17-79

Table 17-14 Required element and key-type specific user-defined
information for SortedRelationFactory.[]- implied
by key_compare. 17-80
CORBAservices November 1997 xxxix

Table 17-15 Required element and key-type specific user-defined
information for SortedSetFactory. []- implied
by compare. 17-80

Table 17-16 Required element and key-type specific user-defined
information for SortedBagFactory. []- implied
by compare. 17-81

Table 17-17 Required element and key-type specific user-defined
information for EqualitySequenceFactory. 17-82

Table 17-18 Required element and key-type specific user-defined
information for PriorityQueueFactory. [] - implied
by key_compare. 17-83
xl CORBAservices November 1997

Preface

s at

 by
 and

 and

ide a
,
0.1 About This Document

Under the terms of the collaboration between OMG and X/Open Co Ltd, this document
is a candidate for endorsement by X/Open, initially as a Preliminary Specification and
later as a full CAE Specification. The collaboration between OMG and X/Open Co Ltd
ensures joint review and cohesive support for emerging object-based specifications.

X/Open Preliminary Specifications undergo close scrutiny through a review proces
X/Open before publication and are inherently stable specifications. Upgrade to full
CAE Specification, after a reasonable interval, takes place following further review
X/Open. This further review considers the implementation experience of members
the full implications of conformance and branding.

0.1.1 Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supported
by over 750 members, including information system vendors, software developers
users. Founded in 1989, the OMG promotes the theory and practice of object-oriented
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to prov
common framework for application development. Primary goals are the reusability
portability, and interoperability of object-based software in distributed, heterogeneous
environments. Conformance to these specifications will make it possible to develop a
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG's objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are based.
CORBAservices November 1997 xli

st of

ive

d

g,

d in

,
stem

zed

s, an

n
0.1.2 X/Open

X/Open is an independent, worldwide, open systems organization supported by mo
the world's largest information system suppliers, user organizations and software
companies. Its mission is to bring to users greater value from computing, through the
practical implementation of open systems.

0.2 Intended Audience

The specifications described in this manual are aimed at software designers and
developers who want to produce applications that comply with OMG standards for
object services; the benefits of compliance are outlined in the following section, “Need
for Object Services.”

0.3 Need for Object Services

To understand how Object Services benefit all computer vendors and users, it is
helpful to understand their context within OMG’s vision of object management. The
key to understanding the structure of the architecture is the Reference Model, which
consists of the following components:

• Object Request Broker, which enables objects to transparently make and rece
requests and responses in a distributed environment. It is the foundation for
building applications from distributed objects and for interoperability between
applications in hetero- and homogeneous environments. The architecture an
specifications of the Object Request Broker are described in CORBA: Common
Object Request Broker Architecture and Specification.

• Object Services, a collection of services (interfaces and objects) that support
basic functions for using and implementing objects. Services are necessary to
construct any distributed application and are always independent of application
domains. For example, the Life Cycle Service defines conventions for creatin
deleting, copying, and moving objects; it does not dictate how the objects are
implemented in an application. Specifications for Object Services are containe
this manual.

• Common Facilities, a collection of services that many applications may share
but which are not as fundamental as the Object Services. For instance, a sy
management or electronic mail facility could be classified as a common facility.
Information about Common Facilities is contained in CORBAfacilities: Common
Facilities Architecture.

• Application Objects, which are products of a single vendor on in-house
development group which controls their interfaces. Application Objects
correspond to the traditional notion of applications, so they are not standardi
by OMG. Instead, Application Objects constitute the uppermost layer of the
Reference Model.

The Object Request Broker, then, is the core of the Reference Model. Nevertheles
Object Request Broker alone cannot enable interoperability at the application semantic
level. An ORB is like a telephone exchange: it provides the basic mechanism for
making and receiving calls but does not ensure meaningful communication betwee
xlii CORBAservices November 1997

ct

es a

sts

subscribers. Meaningful, productive communication depends on additional interfaces,
protocols, and policies that are agreed upon outside the telephone system, such as
telephones, modems and directory services. This is equivalent to the role of Obje
Services.

0.3.1 What Is an Object Service Specification?

A specification of an Object Service usually consists of a set of interfaces and a
description of the service’s behavior. The syntax used to specify the interfaces is the
OMG Interface Definition Language (OMG IDL). The semantics that specify a
services’s behavior are, in general, expressed in terms of the OMG Object Model. The
OMG Object Model is based on objects, operations, types, and subtyping. It provid
standard, commonly understood set of terms with which to describe a service’s
behavior.

(For detailed information about the OMG Reference Model and the OMG Object
Model, refer to the Object Management Architecture Guide).

0.4 Associated Documents

The CORBA documentation set includes the following books:

• CORBA: Common Object Request Broker Architecture and Specification contains
the architecture and specifications for the Object Request Broker.

• CORBAservices: Common Object Services Specification contains specifications
for the object services.

• CORBAfacilities: Common Facilities Architecture contains information about the
design of Common Facilites; it provides the framework for Common Facility
specifications.

• Object Management Architecture Guide defines the OMG’s technical objectives
and terminology and describes the conceptual models upon which OMG standards
are based. It also provides information about the policies and procedures of
OMG, such as how standards are proposed, evaluated, and accepted.

OMG collects information for each book in the documentation set by issuing Reque
for Information, Requests for Proposals, and Requests for Comment and, with its
membership, evaluating the responses. Specifications are adopted as standards only
when representatives of the OMG membership accept them as such by vote.

To obtain books in the documentation set, or other OMG publications, refer to the
enclosed subscription card or contact the Object Management Group, Inc. at:

OMG Headquarters
492 Old Connecticut Path
Framingham, MA 01701

USA
Tel: +1-508-820-4300

pubs@omg.org
http://www.omg.org
Preface Associated Documents November 1997 xliii

in
 how

ces:
0.5 Structure of this Manual

In addition to this preface, CORBAservices: Common Object Services contains the
following chapters:

Overview provides an introduction to the CORBA object services, including a
summary of features for each service.

General Design Principles provides information about the principles that were used
designing each service; explains the dependencies among services; and explains
Object Services relate to each other, CORBA, and industry standards in general.

Chapters 3 through 16 each contain a specification for the following Object Servi

• Naming

• Event

• Persistent Object

• Life Cycle

• Concurrency Control

• Externalization

• Relationship

• Transaction

• Query

• Licensing

• Property

• Time

• Security

• Trading

• Collections

0.6 Acknowledgements

The following companies submitted parts of the specifications that were approved by
the Object Management Group to become CORBAservices:

AT&T/Lucent Technologies

AT&T/NCR

BNR Europe Limited

Cooperative Research Centre for Distributed Systems Technology (DTSC Pty Ltd.)

Digital Equipment Corporation

Expersoft Corporation

Gradient Technologies, Inc.

Groupe Bull

Hewlett-Packard Company

HyperDesk Corporation

ICL PLC

Ing. C. Olivetti & C.Sp
xliv CORBAservices November 1997

International Business Machines Corporation

International Computers Limited

Iona Technologies Ltd.

Itasca Systems, Inc.

Nortel Limited

Novell, Inc.

O2 Technologies, SA

Object Design, Inc.

Objectivity, Inc.

Odyssey Research Associates, Inc.

Ontos, Inc.

Oracle Corporation

Persistence Software, Inc.

Servio Corporation

Siemens Nixdorf Informationssysteme AG

Sun Microsystems, Inc.

SunSoft, Inc.

Sybase, Inc.

Taligent, Inc.

Tandem Computers, Inc.

Teknekron Software Systems, Inc.

Tivoli Systems, Inc.

Transarc Corporation

Versant Object Technology Corporation
Preface Acknowledgements November 1997 xlv

xlvi CORBAservices November 1997

Overview 1
 a
ngs

. The

volve
1.1 Summary of Key Features

1.1.1 Naming Service

• The Naming Service provides the ability to bind a name to an object relative to
naming context. A naming context is an object that contains a set of name bindi
in which each name is unique. To resolve a name is to determine the object
associated with the name in a given context.

• Through the use of a very general model and dealing with names in their structural
form, naming service implementations can be application specific or be based on a
variety of naming systems currently available on system platforms.

• Graphs of naming contexts can be supported in a distributed, federated fashion
scalable design allows the distributed, heterogeneous implementation and
administration of names and name contexts.

• Because name component attribute values are not assigned or interpreted by the
naming service, higher levels of software are not constrained in terms of policies
about the use and management of attribute values.

• Through the use of a “names library,” name manipulation is simplified and names
can be made representation-independent thus allowing their representation to e
without requiring client changes.

• Application localization is facilitated by name syntax-independence and the
provision of a name “kind” attribute.
CORBAservices November 1997 1-1

1

.

ng

n

els

and

r
1.1.2 Event Service
• The Event Service provides basic capabilities that can be configured together in a

very flexible and powerful manner. Asynchronous events (decoupled event
suppliers and consumers), event “fan-in,” notification “fan-out,” and (through
appropriate event channel implementations) reliable event delivery are supported

• The Event Service design is scalable and is suitable for distributed environments.
There is no requirement for a centralized server or dependency on any global
service.

• The Event Service interfaces allow implementations that provide different qualities
of service to satisfy different application requirements. In addition, the event
service does not impose higher level policies (e.g., specific event types) allowi
great flexibility on how it is used in a given application environment.

• Both push and pull event delivery models are supported: that is, consumers ca
either request events or be notified of events, whichever is needed to satisfy
application requirements. There can be multiple consumers and multiple suppliers
events.

• Suppliers can generate events without knowing the identities of the consumers.
Conversely, consumers can receive events without knowing the identities of the
suppliers.

• The event channel interface can be subtyped to support extended capabilities. The
event consumer-supplier interfaces are symmetric, allowing the chaining of event
channels (for example, to support various event filtering models). Event chann
can be chained by third-parties.

• Typed event channels extend basic event channels to support typed interaction.

• Because event suppliers, consumers and channels are objects, advantage can be
taken of performance optimizations provided by ORB implementations for local
remote objects. No extension is required to CORBA.

1.1.3 Life Cycle Service

• The Life Cycle Service defines conventions for creating, deleting, copying and
moving objects. Because CORBA-based environments support distributed objects,
life cycle services define services and conventions that allow clients to perform life
cycle operations on objects in different locations.

• The client’s model of creation is defined in terms of factory objects. A factory is an
object that creates another object. Factories are not special objects. As with any
object, factories have well-defined OMG IDL interfaces and implementations in
some programming language.

• The Life Cycle Service defines an interface for a generic factory. This allows fo
the definition of standard creation services.

• The Life Cycle Service defines a LifeCycleObject interface. This interface defines
remove, copy and move operations.
1-2 CORBAservices November 1997

1

) rely

e

r

e a

ases,
es.

g a

ts are
• The Life Cycle Service has been extended to support compound life cycle
operations on graphs of related objects. Compound objects (graphs of objects
on the Relationship Service for the definition of object graphs.

1.1.4 Persistent Object Service

• The Persistent Object Service (POS) provides a set of common interfaces to th
mechanisms used for retaining and managing the persistent state of objects.

• The object ultimately has the responsibility of managing its state, but can use o
delegate to the Persistent Object Service for the actual work. A major feature of the
Persistent Object Service is its openness. In this case, that means that there can b
variety of different clients and implementations of the Persistent Object Service,
and they can work together. This is particularly important for storage, where
mechanisms useful for documents may not be appropriate for employee datab
or the mechanisms appropriate for mobile computers do not apply to mainfram

1.1.5 Transaction Service

• The Transaction Service supports multiple transaction models, including the flat
(mandatory in the specification) and nested (optional) models.

• The Object Transaction Service supports interoperability between different
programming models. For instance, some users want to add object implementations
to existing procedural applications and to augment object implementations with
code that uses the procedural paradigm. To do so in a transaction environment
requires the object and procedural code to share a single transaction.

• Network interoperability is also supported, since users need communication
between different systems, including the ability to have one transaction service
interoperate with a cooperating transaction service using different ORBs.

• The Transaction Service supports both implicit (system-managed transaction)
propagation and explicit (application-managed) propagation. With implicit
propagation, transactional behavior is not specified in the operation’s signature.
With explicit propagation, applications define their own mechanisms for sharin
common transaction.

• The Transaction Service can be implemented in a TP monitor environment, so it
supports the ability to execute multiple transactions concurrently, and to execute
clients, servers, and transaction services in separate processes.

1.1.6 Concurrency Control Service
• The Concurrency Control Service enables multiple clients to coordinate their access

to shared resources. Coordinating access to a resource means that when multiple,
concurrent clients access a single resource, any conflicting actions by the clien
reconciled so that the resource remains in a consistent state.
Overview Summary of Key Features November 1997 1-3

1

ith a
tiple
t’s

l lock

es
-
 that

o
in

of
to be

eam

 of

 the
• Concurrent use of a resource is regulated with locks. Each lock is associated w
single resource and a single client. Coordination is achieved by preventing mul
clients from simultaneously possessing locks for the same resource if the clien
activities might conflict. Hence, a client must obtain an appropriate lock before
accessing a shared resource. The Concurrency Control Service defines severa
modes, which correspond to different categories of access. This variety of lock
modes provides flexible conflict resolution. For example, providing different mod
for reading and writing lets a resource support multiple concurrent clients on a read
only transaction. The Concurrency Control Service also defines Intention Locks
support locking at multiple levels of granularity.

1.1.7 Relationship Service
• The Relationship Service allows entities and relationships to be explicitly

represented. Entities are represented as CORBA objects. The service defines tw
new kinds of objects: relationships and roles. A role represents a CORBA object
a relationship. The Relationship interface can be extended to add relationship-
specific attributes and operations. In addition, relationships of arbitrary degree can
be defined. Similarly, the Role interface can be extended to add role-specific
attributes and operations.

• Type and cardinality constraints can be expressed and checked: exceptions are
raised when the constraints are violated.

• The Life Cycle Service defines operations to copy, move, and remove graphs
related objects, while the Relationship Service allows graphs of related objects
traversed without activating the related objects.

• Distributed implementations of the Relationship Service can have navigation
performance and availability similar to CORBA object references: role objects can
be located with their objects and need not depend on a centralized repository of
relationship information. As such, navigating a relationship can be a local
operation.

• The Relationship Service supports the compound life cycle component of the Life
Cycle Service by defining object graphs.

1.1.8 Externalization Service

• The Externalization Service defines protocols and conventions for externalizing and
internalizing objects. Externalizing an object is to record the object state in a str
of data (in memory, on a disk file, across the network, and so forth) and then be
internalized into a new object in the same or a different process. The externalized
object can exist for arbitrary amounts of time, be transported by means outside
the ORB, and be internalized in a different, disconnected ORB. For portability,
clients can request that externalized data be stored in a file whose format is defined
with the Externalization Service Specification.

• The Externalization Service is related to the Relationship Service and parallels
Life Cycle Service in defining externalization protocols for simple objects, for
arbitrarily related objects, and for facilities, directory services, and file services.
1-4 CORBAservices November 1997

1

es

f

at

f

cers

t use
s

ve

s

he

-

-

1.1.9 Query Service
• The purpose of the Query Service is to allow users and objects to invoke queries on

collections of other objects. The queries are declarative statements with predicat
and include the ability to specify values of attributes; to invoke arbitrary operations;
and to invoke other Object Services.

• The Query Service allows indexing; maps well to the query mechanisms used in
database systems and other systems that store and access large collections o
objects; and is based on existing standards for query, including SQL-92, OQL-93,
and OQL-93 Basic.

• The Query Service provides an architecture for a nested and federated service th
can coordinate multiple, nested query evaluators.

1.1.10 Licensing Service
• The Licensing Service provides a mechanism for producers to control the use o

their intellectual property. Producers can implement the Licensing Service
according to their own needs, and the needs of their customers, because the
Licensing Service does not impose it own business policies or practices.

• A license in the Licensing Service has three types of attributes that allow produ
to apply controls flexibly: time; value mapping, and consumer. Time allows licenses
to have start/duration and expiration dates. Value mapping allows producers to
implement a licensing scheme according to units, allocation (through concurren
licensing), or consumption (for example, metering or allowance of grace period
through “overflow licenses.”) Consumer attributes allow a license to be reserved or
assigned for specific entities; for example, a license could be assigned to a
particular machine. The Licensing Service allows producers to combine and deri
from license attributes.

• The Licensing Service consists of a LicenseServiceManager interface and a
ProducerSpecificLicenseService interface: these interfaces do not impose busines
policies upon implementors.

1.1.11 Property Service
• Provides the ability to dynamically associate named values with objects outside t

static IDL-type system.

• Defines operations to create and manipulate sets of name-value pairs or name
value-mode tuples. The names are simple OMG IDL strings. The values are OMG
IDL anys. The use of type any is significant in that it allows a property service
implementation to deal with any value that can be represented in the OMG IDL
type system. The modes are similar to those defined in the Interface Repository
AttributeDef interface.

• Designed to be a basic building block, yet robust enough to be applicable for a
broad set of applications.
Overview Summary of Key Features November 1997 1-5

1

 of

r

n

d by

pal
et

t is
ould
• Provides “batch” operations to deal with sets of properties as a whole. The use
“batch” operations is significant in that the systems and network management
(SNMP, CMIP, ...) communities have proven such a need when dealing with
“attribute” manipulation in a distributed environment.

• Provides exceptions such that PropertySet implementors may exercise control of (o
apply constraints to) the names and types of properties associated with an object,
similar in nature to the control one would have with CORBA attributes.

• Allows PropertySet implementors to restrict modification, addition and/or deletio
of properties (readonly, fixed) similar in nature to the restrictions one would have
with CORBA attributes.

• Provides client access and control of constraints and property modes.

• Does not rely on any other object services.

1.1.12 Time Service

• Enables the user to obtain current time together with an error estimate associated
with it.

• Ascertains the order in which “events” occurred.

• Generates time-based events based on timers and alarms.

• Computes the interval between two events.

• Consists of two services, hence defines two service interfaces:

• Time Service manages Universal Time Objects (UTOs) and Time Interval Objects
(TIOs), and is represented by the TimeService interface.

• Timer Event Service manages Timer Event Handler objects, and is represente
the TimerEventService interface.

1.1.13 Security Service

The security functionality defined by this specification comprises:

• Identification and authentication of principals (human users and objects which
need to operate under their own rights) to verify they are who they claim to be.

• Authorization and access control - deciding whether a principal can access an
object, normally using the identity and/or other privilege attributes of the princi
(such as role, groups, security clearance) and the control attributes of the targ
object (stating which principals, or principals with which attributes) can access it.

• Security auditing to make users accountable for their security related actions. I
normally the human user who should be accountable. Auditing mechanisms sh
be able to identify the user correctly, even after a chain of calls through many
objects.
1-6 CORBAservices November 1997

1

 and

 of
t

ice.
e
vice
ter

e.

s an

ader

s

ice

n to

t,
• Security of communication between objects, which is often over insecure lower
layer communications. This requires trust to be established between the client
target, which may require authentication of clients to targets and authentication
of targets to clients. It also requires integrity protection and (optionally)
confidentiality protection of messages in transit between objects.

• Non-repudiation provides irrefutable evidence of actions such as proof of origin
data to the recipient, or proof of receipt of data to the sender to protect agains
subsequent attempts to falsely deny the receiving or sending of the data.

• Administration of security information (for example, security policy) is also
needed.

1.1.14 Object Trader Service

The Object Trader Service provides a matchmaking service for objects.

The Service Provider registers the availability of the service by invoking an export
operation on the trader, passing as parameters information about the offered serv
The export operation carries an object reference that can be used by a client to invok
operations on the advertised services, a description of the type of the offered ser
(i.e., the names of the operations to which it will respond, along with their parame
and result types), information on the distinguishing attributes of the offered servic

The offer space managed by traders may be partitioned to ease administration and
navigation. This information is stored persistently by the Trader. Whenever a potential
client wishes to obtain a reference to a service that does a particular job, it invoke
import operation, passing as parameters a description of the service required. Given
this import request, the Trader checks appropriate offers for acceptability. To be
acceptable, an offer must have a type that conforms to that requested and have
properties consistent with the constraints specified by an imported.

Trading service in a single trading domain may be distributed over a number of tr
objects. Traders in different domains may be federated. Federation enables systems in
different domains to negotiate the sharing of services without losing control of their
own policies and services. A domain can thus share information with other domain
with which it has been federated, and it can now be searched for appropriate serv
offers.

1.1.15 Object Collections Service

Collections are groups of objects which, as a group, support some operations and
exhibit specific behaviors that are related to the nature of the collection rather tha
the type of object they contain. Examples of collections are sets, queues, stacks, lists,
binary, and trees. The purpose of the Collection Object Service is to provide a uniform
way to create and manipulate the most common collections generically.

Examples of collections are sets, queues, stacks, lists, binary, and trees. For example,
sets might support the following operations: insert new element, membership tes
union, intersection, cardinality, equality test, emptiness test, etc. One of the defining
Overview Summary of Key Features July 1997 1-7

1

into S
semantics of a set is that, if an object O is a member of a set S, then inserting O
results in the set being unchanged. This property would not hold for another collection
type called a bag.
1-8 CORBAservices November 1997

General Design Principles 2
rvices

 of

P-
This chapter discusses the principles that were considered in designing Object Se
and their interfaces. It also addresses dependencies between Object Services, their
relationship to CORBA, and their conformance to existing standards.

2.1 Service Design Principles

2.1.1 Build on CORBA Concepts

The design of each Object Service uses and builds on CORBA concepts:

• Separation of interface and implementation

• Object references are typed by interfaces

• Clients depend on interfaces, not implementations

• Use of multiple inheritance of interfaces

• Use of subtyping to extend, evolve and specialize functionality

Other related principles that the designs adhere to include:

• Assume good ORB and Object Services implementations. Specifically, it is
assumed that CORBA-compliant ORB implementations are being built that
support efficient local and remote access to “fine-grain” objects and have
performance characteristics that place no major barriers to the pervasive use
distributed objects for virtually all service and application elements.

• Do not build non-type properties into interfaces

A discussion and rationale for the design of object services was included in the H
SunSoft response to the OMG Object Services RFI (OMG TC Document 92.2.10).
CORBAservices November 1997 2-1

2

may
 real

 client
vent

r
tion

ts.

rent
2.1.2 Basic, Flexible Services

The services are designed to do one thing well and are only as complicated as they
need to be. Individual services are by themselves relatively simple yet they can, by
virtue of their structuring as objects, be combined together in interesting and powerful
ways.

For example, the event and life cycle services, plus a future relationship service,
play together to support graphs of objects. Object graphs commonly occur in the
world and must be supported in many applications. A functionally-rich Folder
compound object, for example, may be constructed using the life cycle, naming,
events, and future relationship services as “building blocks.”

2.1.3 Generic Services

Services are designed to be generic in that they do not depend on the type of the
object nor, in general, on the type of data passed in requests. For example, the e
channel interfaces accept event data of any type. Clients of the service can dynamically
determine the actual data type and handle it appropriately.

2.1.4 Allow Local and Remote Implementations

In general the services are structured as CORBA objects with OMG IDL interfaces that
can be accessed locally or remotely and which can have local library or remote serve
styles of implementations. This allows considerable flexibility as regards the loca
of participating objects. So, for example, if the performance requirements of a
particular application dictate it, objects can be implemented to work with a Library
Object Adapter that enables their execution in the same process as the client.

2.1.5 Quality of Service is an Implementation Characteristic

Service interfaces are designed to allow a wide range of implementation approaches
depending on the quality of service required in a particular environment. For example,
in the Event Service, an event channel can be implemented to provide fast but
unreliable delivery of events or slower but guaranteed delivery. However, the
interfaces to the event channel are the same for all implementations and all clien
Because rules are not wired into a complex type hierarchy, developers can select
particular implementations as building blocks and easily combine them with other
components.

2.1.6 Objects Often Conspire in a Service

Services are typically decomposed into several distinct interfaces that provide diffe
views for different kinds of clients of the service. For example, the Event Service is
composed of PushConsumer, PullSupplier and EventChannel interfaces. This
simplifies the way in which a particular client uses a service.
2-2 CORBAservices November 1997

2

ects

ents

ing
ith an

at the
A particular service implementation can support the constituent interfaces as a single
CORBA object or as a collection of distinct objects. This allows considerable
implementation flexibility. A client of a service may use a different object reference to
communicate with each distinct service function. Conceptually, these “internal” obj
conspire to provide the complete service.

As an example, in the Event Service an event channel can provide both PushConsumer
and EventChannel interfaces for use by different kinds of client. A particular client
sends a request not to a single “event channel” object but to an object that implem
either the PushConsumer and EventChannel interface. Hidden to all the clients, these
objects interact to support the service.

The service designs also use distinct objects that implement specific service interfaces
as the means to distinguish and coordinate different clients without relying on the
existence of an object equality test or some special way of identifying clients. Us
the event service again as an example, when an event consumer is connected w
event channel, a new object is created that supports the PullSupplier interface. An
object reference to this object is returned to the event consumer which can then request
events by invoking the appropriate operation on the new “supplier” object. Because
each client uses a different object reference to interact with the event channel, the
event channel can keep track of and manage multiple simultaneous clients. This is
shown graphically in Figure 2-1.

Figure 2-1 An event channel as a collection of objects conspiring to manage multiple
simultaneous consumer clients.

The graphical notation shown in Figure 2-1 is used throughout this document and in
the full service specifications. An arrow with a vertical bar is used to show that the
target object supports the interface named below the arrow and that clients holding an
object reference to it of this type can invoke operations. In shorthand, one says th
object reference (held by the client) supports the interface. The arrow points from the
client to the target (server) object.

event channel

consumer

PullConsumer

PullSupplier

consumer

PullConsumer

PullSupplier

supplier

PushSupplier

PushConsumer
General Design Principles Service Design Principles November 1997 2-3

2

r
re

tiple

a

text.

 within

rvices

as

 to be

t
n
A blob (misshapen circle) delineates a conspiracy of one or more objects. In othe
words, it corresponds to a conceptual object that may be composed of one or mo
CORBA objects that together provide some coordinated service to potentially mul
clients making requests using different object references.

2.1.7 Use of Callback Interfaces

Services often employ callback interfaces. Callback interfaces are interfaces that a
client object is required to support to enable a service to call back to it to invoke some
operation. The callback may be, for example, to pass back data asynchronously to
client.

Callback interfaces have two major benefits:

• They clearly define how a client object participates in a service

• They allow the use of the standard interface definition (OMG IDL) and operation
invocation (object reference) mechanisms

2.1.8 Assume No Global Identifier Spaces

Several services employ identifiers to label and distinguish various elements. The
service designs do not assume or rely on any global identifier service or global id
spaces in order to function. The scope of identifiers is always limited to some con
For example, in the naming service, the scope of names is the particular naming
context object.

In the case where a service generates ids, clients can assume that an id is unique
its scope but should not make any other assumption.

2.1.9 Finding a Service is Orthogonal to Using It

Finding a service is at a higher level and orthogonal to using a service. These se
do not dictate a particular approach. They do not, for example, mandate that all
services must be found via the naming service. Because services are structured
objects there does not need to be a special way of finding objects associated with
services - general purpose finding services can be used. Solutions are anticipated
application and policy specific.

2.2 Interface Style Consistency

2.2.1 Use of Exceptions and Return Codes

Throughout the services, exceptions are used exclusively for handling exceptional
conditions such as error returns. Normal return codes are passed back via outpu
parameters. An example of this is the use of a DONE return code to indicate iteratio
completion.
2-4 CORBAservices November 1997

2

meter
tion

e

l as

ure
2.2.2 Explicit Versus Implicit Operations

Operations are always explicit rather than implied e.g. by a flag passed as a para
value to some “umbrella” operation. In other words, there is always a distinct opera
corresponding to each distinct function of a service.

2.2.3 Use of Interface Inheritance

Interface inheritance (subtyping) is used whenever one can imagine that client cod
should depend on less functionality than the full interface. Services are often
partitioned into several unrelated interfaces when it is possible to partition the clients
into different roles. For example, an administrative interface is often unrelated and
distinct in the type system from the interface used by “normal” clients.

2.3 Key Design Decisions

2.3.1 Naming Service: Distinct from Property and Trading Services

The Naming Service is addressed separately from property and trading services.

Naming contexts have some similarity to property lists (that is, lists of values
associated with objects though not necessarily part of the object’s state). The Naming
Service in general also has elements in common with a trading service. However,
following the “Bauhaus” principle of keeping services as simple and as orthogona
possible, these services have been kept distinct and are being addressed separately.

2.3.2 Universal Object Identity

The services described in this manual do not require the concept of object identity.

2.4 Integration with Future Object Services

This section discusses how the Object Services could evolve to integrate with fut
services, such as:

• Archive

• Backup/Restore

• Change Management (Versioning)

• Data Interchange

• Implementation Repository

• Internationalization

• Logging

• Recovery

• Replication

• Startup
General Design Principles Key Design Decisions July 1997 2-5

2

ble to

n

 the

rvice
t.

e as

ntee
are
hould

n

nge
2.4.1 Archive Service

Persistent Object Service. The Archive Service copies objects from an
active/persistent store to a backup store and vice versa. This service should be a
archive objects stored with the Persistent Object Service.

Externalization Service. The Archive Service copies objects from an active/persistent
store to a backup store and vice versa. This service could use the Externalizatio
Service to get the internal state of objects for saving and to subsequently recreate
objects with this stored state. If only persistent objects need to be archived, then
Object Persistence Service could be used instead.

2.4.2 Backup/Restore Service

Externalization Service. The Backup/Restore Service provides recovery after a
system failure or a user error. This service could use the Object Externalization Se
as an underlying mechanism for objects regardless of whether they are persisten

Persistent Object Service. The Backup/Restore Service provides recovery after a
system failure or a user error. This service could use the Persistent Object Servic
an underlying mechanism for persistent objects.

Transaction Service. The permanence of effect property of a transaction implies that
the state established by the commitment of a transaction will not be lost. To guara
this property, the storage media on which the objects updated by the transaction
stored must be backed-up to secondary storage to ensure that they are not lost s
the primary storage media fail. Similarly, the storage media used by the logging
service must be restorable should the media fail. Since there are multiple components
which require backup services, a single interface would be advantageous.

2.4.3 Change Management Service

Persistent Object Service. The Change Management Service supports the
identification and consistent evolution of objects including version and configuratio
management. This service should work with the Persistent Object Service to allow
persistent objects to evolve from the old to new versions.

2.4.4 Data Interchange Service

Persistent Object Service. The Data Interchange Service enables objects to excha
some or all of their associated state. This service should work with Persistent Object
Service to allow state to be exchanged when one or more of the objects are persistent.

2.4.5 Internationalization Service

Naming Service. Naming Service interfaces may also need to be extended (for
example, the structure of names extended, additional name resolution operations
added) to better support representing and resolving names for some languages and
cultures.
2-6 CORBAservices November 1997

2

nt

ly

ritten

e

 of a

ction

em
tially

e of

ry
ld
2.4.6 Implementation Repository

Persistent Object Service. The Implementation Repository supports the manageme
of object implementations. The Persistent Object Service may depend on this to
determine what persistent data an object contains. This dependency is at the
implementation level.

2.4.7 Interface Repository

Persistent Object Service. The Interface Repository supports runtime access to OMG
IDL-specified definitions such as object interfaces and type definitions. The Persistent
Object Service depends on this to determine if a persistent object supports certain
interfaces.

2.4.8 Logging Service

Transaction Service. A logging service implements the abstract notion of an infinite
long, sequentially-accessible, append-only file. It typically supports multiple log files,
where each log file consists of a sequence of log records. New log records are w
to the end of a log file, old log records can be read from any position in the file. To
stop log files from growing too large for the underlying storage medium, a log servic
must provide an operation to archive old log records to allow the log file to be
truncated.

Various components of a transaction processing system may require the services
log service:

• Transaction Service: during the two-phase commit protocol the Transaction
Service must log its state to ensure that the outcome of the committing transa
can be determined should there be a failure.

• Recoverable (transactional) objects: a log can be used to record old and new
versions of a recoverable object for the purposes of supporting recovery.

• Locking service: a log can be used to record the locks held on an object at prepare
time to facilitate recovery.

Since there are multiple components within a distributed transaction processing syst
that require the services of a log service, a single log service interface (and poten
server) that is shared between the components is clearly advantageous.

The correctness of a transaction service depends upon the services of a log service, for
this reason, the log service must meet the following requirements:

1. Restart.

A restart facility allows rapid recovery from the cold start of an application. The
recovery service used by the application (indirectly through the application’s us
recoverable objects) would use the restart facility to establish a checkpoint: a
consistent point in the execution state of the application from which the recove
process can proceed. In the absence of a checkpoint the recovery service wou
have to scan the entire log to ensure restart recovery occurs correctly.
General Design Principles Integration with Future Object Services July 1997 2-7

2

nce

in
ols
sting

out

 (as
ient to

 to the

s.
2. Buffering and forcing operations.

A log service should provide two classes of operation for writing log records:

a. An operation to buffer a log record (the record is not written directly to the
underlying storage medium). Used during the execution of a transaction. Si
the log record is buffered the write is inexpensive.

b. An operation to force a log record to the underlying storage medium. Used
during the two-phase commit protocol to guarantee the correctness of the
transaction. Forcing a log record also flushes all previously written, but
buffered, log records.

3. Robustness.

The log service should ensure the consistency of the underlying storage medium
which log files are stored. This usually involves the log service employing protoc
that update the storage in a manner that would not result in the loss of any exi
data (i.e. careful updates), along with support for mirroring the storage media to
tolerate media failures.

4. Archival.

A log service should provide support for archiving log records. Archival is
necessary to allow the log to be truncated to ensure that it does not grow with
bounds.

5. Efficiency.

Since the log service may be written to by multiple components within a
transaction, the addition of log records must be efficient to avoid the bandwidth of
log from becoming a bottleneck in the system.

2.4.9 Recovery Service

Transaction Service. As recoverable objects are updated during a transaction, they
resource managers) keep a record of the changes made to their state that is suffic
undo the updates should the transaction rollback. The component responsible for this
task is termed the recovery service. Various different forms of recovery are possible,
however the most common form is called value logging and involves the recoverable
object recording both the old and new values of the object. When a transaction is
recovered due to failure, the old value of an object is used to undo changes made
object during the transaction. Most recovery services employ the services of a logging
service (described in this section) to maintain the “undo” information. The definition
of a standard recovery service interface is one possible additional CORBA-compliant
object service.

2.4.10 Replication Service

Persistent Object Service. The Replication Service provides explicit replication of
objects in a distributed environment and manages the consistency of replicated copies.
This service could use the Persistent Object Service to manage persistent replica
2-8 CORBAservices November 1997

2

e
ation

ch
ased
o

etail.

 of

,
2.4.11 Startup Service

Persistent Object Service. The Startup Service supports bootstrapping and
termination of the Persistent Object Service.

2.4.12 Data Interchange Service

Externalization Service. The Data Interchange Service enables objects to exchang
some or all of their associated state. This service could use the Object Externaliz
Service to allow state to be exchanged regardless of whether the objects are persistent.

2.5 Service Dependencies

The interface designs of all the services are general in nature and do not presume or
require the existence of specific supporting software in order to implement them. An
implementation of the Name Service, for instance, could use naming or directory
services provided in a general-purpose networking environment. For example, an
implementation may be based on the naming services provided by ONC or DCE. Su
an implementation could provide enterprise-wide naming services to both object-b
and non-object-based clients. Object-based software would see such services thrugh
the use of NamingContext objects.

Although the Object Services do not depend upon specific software, some
dependencies and relationships do exist between services.

2.5.1 Event Service

The Event Service does not depend upon other services.

2.5.2 Life Cycle Service

Interfaces for the Life Cycle Service depend on the Naming Service.

The Life Cycle Service also defines compound operations that depend on the
Relationship Service for the definition of object graphs. Appendix A describes the
topic of compound life cycle, and its dependence on the Relationship Service, in d

2.5.3 Persistent Object Service

The Externalization Service provides functions that provide for the transformation
an object into a form suitable for storage on an external media or for transfer between
systems. The Persistent Object Service uses this service as a POS protocol.

The Life Cycle Service provides operations for managing object creation, deletion
copy and equivalence. The Persistent Object Service depends on this service for
creating and deleting all required objects.
General Design Principles Service Dependencies July 1997 2-9

2

d

ects.

tent
The Naming Service provides mappings between user-comprehensible names an
CORBA object references. The Persistent Object Service depends on this service to
obtain the object reference of, say, a PDS from its name or id.

2.5.4 Relationship Service

The Relationship Service does not depend on other services. Note especially that the
Relationship Service does not depend on any common storage service.

For guidelines about when to use the Relationship Service and when to use CORBA
object references, refer to the section “The Relationship Service vs CORBA Object
References,” in Chapter 9.

2.5.5 Externalization Service

The Externalization Service works with the Life Cycle Service in defining
externalization protocols for simple objects, for arbitrarily related objects, and for
graphs of related objects that support compound operations. Specifically, this service
uses the Life Cycle Service to create and remove Stream and StreamFactory obj
ORB services may be used in Stream implementations to identify InterfaceDef and
ImplementationDef objects corresponding to an externalized object, and to support
finding an appropriate factory for recreating that object at internalization time.

The Externalization Service can also work with the Relationship Service.
Implementations of Stream and StreamIO operations could use the Relationship
Service to ensure that multiple references to the same object or circular references
don’t result in duplication of objects at internalization time or in the external
representation.

In addition, the Externalization Service adds compound externalization semantics to
the containment and reference relationships in the Relationship Service. Detailed
information is provided in “Specific Externalization Relationships” on page 8-26.

2.5.6 Transaction Service

As concurrent requests are processed by an object a mechanism is required to mediate
access. This is necessary to provide the transaction property of isolation. The
Concurrency Control Service is one possible implementation of a locking service.

The Transaction Service depends upon the Concurrency Control Service in the
following ways:

• Concurrency Control Service must support transaction duration locks, which
provide isolation of concurrent requests by different transactions.

• Concurrency Control Service must record transaction duration locks on persis
media, such as a log, as part of the prepare phase of commitment.

• If nested transactions are supported by the Transaction Service then the
Concurrency Control Service must also support locks that provide isolation
between siblings in a transaction family and provide inheritance of locks owned
by a subransaction to its parent when the subtransaction commits.
2-10 CORBAservices November 1997

2

by

tion

OS to

)
of a

se

,
d

p-
• Transactional clients of the Concurrency Control Service are responsible for
ensuring that all locks held by a transaction are dropped after all recovery or
commitment operations have taken place. The drop-licks operation is provided
the LockCoordinator interface for this purpose.

The Transaction Service supports atomicity and durability properties through the
Persistent Object Service (POS). The Transaction Service can work with the POS to
support atomic execution of operations on persistent objects. Transactions and
persistence are not provided by the same service. When coordination of multiple state
changes are required to persistent data, a persistence service requires a transac
service. The POS can provide persistence, but its implementation needs to be changed
to support transactional behavior. There are no changes to the interfaces of the P
support transactions. The following discussion applies to support of persistence when a
transaction service is required.

Support for persistence can be built from other specialized services that can also be
shared by other object services. Examples include:

• Recovery service: this supports the atomicity and durability properties.

• Logging service: this is used by the recovery service to assist in supporting the
atomicity and durability properties. It is also used by the Transaction Service to
support the two-phase commit protocol.

• Backup and restore service: this supports the isolation property.

This view is consistent with the X/Open DTP (Distributed Transaction Processing
model which separates the transaction manager service (i.e. the implementation
generalized two-phase commit protocol) from a resource manager that provides
services for data with a life beyond process execution. This permits both transactions
on transient objects and on persistent objects without transactions.

2.5.7 Concurrency Control Service

The Concurrency Control Service does not depend on any other service per se.
Nevertheless, it is designed to work with the Transaction Service.

2.5.8 Query Service

The Query Service does not depend on other service but is closely related to the
Object Services: Life Cycle; Persistent Object; Relationship; Concurrency Control;
Transaction; Property; and Collection.

2.5.9 Licensing Service

The Licensing Service depends on the Event Service. It may depend on the Relationship
Property, and Query Services for some implementations. This dependency is determine
by an implementation’s policy definition and entry capability. The Licensing Service also
depends on the Security Service, because the Licensing Service interface can use unforge-
able and secure events. The Licensing Service will use Security Service interfaces to su
port the requirements addressed by the challenge mechanism.
General Design Principles Service Dependencies July 1997 2-11

2

the
e

oss
fines

 of
2.5.10 Property Service

The Property Service does not depend upon other services; however, it is closely
related to Collection Service.

2.5.11 Time Service

The Time Service does not depend upon other services.

2.5.12 Security Service

The Security Service does not depend upon other services.

2.5.13 Trader Service

The Trader Service does not depend upon other services.

2.5.14 Collections Service

The Collections Service does not depend upon other services; however, it is closely
related to these services: Concurrency, Naming, Persistent Object, Property, and
Query.

2.6 Relationship to CORBA

This section provides information about the relationship of other services to the
CORBA specification.

2.6.1 ORB Interoperability Considerations: Transaction Service

Some implementations of the Transaction Service will support:

• The ability of a single application to use both object and procedural interfaces to
Transaction Service. This is described as part of the specification, particularly in th
sections “The User’s View” and ‘The Implementor’s View.”

• The ability for different Transaction Service implementations to interoperate acr
a single ORB. This is provided as a consequence of this specification, which de
IDL interfaces for all interactions between Transaction Service implementations.

• The ability for the same Transaction Service to interoperate with another instance
itself across different ORBs. (This ability is supported by the Interoperability
specification of CORBA 2.0.)

• The ability for different Transaction Services implementations to interoperate
across different ORBs. (This ability is supported by the Interoperability
specification of CORBA 2.0.)
2-12 CORBAservices November 1997

2

Bs

e

d on
• A critical dependency for Transaction Service interoperation across different OR
is the handling of the propagation_context between ORBs. This includes the
following:
• Efficient transformation between different ORB representations of the

propagation_context .
• The ability to carry the ID information (typically an X/Open XID) between

interoperating ORBs.
• The ability to do interposition to ensure efficient local execution of the

is_same_transaction operation.

2.6.2 Life Cycle Service

The Life Cycle Service assumes CORBA implementations support object relocation.

2.6.3 Naming Service

Entities that are not CORBA objects - that is to say, not objects accessed via an Object
Request Broker - are used for names (in the guise of pseudo objects). In both cases th
interfaces to these entities conform as closely as possible to OMG IDL while satisfying
the specific service design requirements, in order to enable maximum flexibility in the
future. Specifically, in the Naming Service, name objects are pseudo objects with
interfaces defined in pseudo IDL (PIDL). These objects look like CORBA objects but
are specifically designed to be accessed using a programming language binding. This
is done for reasons based on the expected use of these objects.

2.6.4 Relationship Service

The Relationship Service requires CORBA Interface Repositories to support the ability
to dynamically determine if an InterfaceDef conforms to another InterfaceDef, that is,
if it is a subtype. This is needed to implement type constraints for particular
relationships.

2.6.5 Persistent Object Service

The Persistent Object Service requires CORBA Interface Repositories.

2.6.6 General Interoperability Requirements

Interoperability between Object Services and users of Object Services implemente
different ORBs requires common RepositoryIDs be used to identify types in both
systems. The types identified by these RepositoryIDs must also be consistently
defined. As described in Common Object Request Broker: Architecture and
Specification, Pragma Directives for Repository Id section, all CORBAservice IDL
presented in this specification is implicitly preceded at file scope by the following
directive:

 #pragma prefix “omg.org”
General Design Principles Relationship to CORBA November 1997 2-13

2

 are
Object Service Implementations that choose to extend the standard interfaces must do
so by deriving new interfaces rather than by modifying the standard interfaces.

2.7 Relationship to Object Model

All specifications contained in this manual conform to the OMG Object Model. No
additional components or profiles are required by any service.

2.8 Conformance to Existing Standards

In general, existing relevant standards do not have object-oriented interfaces nor
they structured in a form that is easily mapped to objects. These specifications have
been influenced by existing standards, and services have been designed which
minimize the difficulty of encapsulating supporting software. The naming service
specification is believed to be compatible with X.500, DCE CDS and ONC NIS and
NIS+.

These specifications are broadly conformant to emerging ISO/IEC/CCITT ODP
standards:

• CCITT Draft Recommendations X.900, ISO/IEC 10746 Basic Reference Model
for Open Distributed Computing

• ISO/IEC JTC1 SC21 WG7 N743 Working Document on Topic 9.1 - ODP Trader
2-14 CORBAservices November 1997

Naming Service Specification 3
et

ess
3.1 Service Description

3.1.1 Overview

A name-to-object association is called a name binding. A name binding is always
defined relative to a naming context. A naming context is an object that contains a s
of name bindings in which each name is unique. Different names can be bound to an
object in the same or different contexts at the same time. There is no requirement,
however, that all objects must be named.

To resolve a name is to determine the object associated with the name in a given
context. To bind a name is to create a name binding in a given context. A name is
always resolved relative to a context — there are no absolute names.

Because a context is like any other object, it can also be bound to a name in a naming
context. Binding contexts in other contexts creates a naming graph — a directed graph
with nodes and labeled edges where the nodes are contexts. A naming graph allows
more complex names to reference an object. Given a context in a naming graph, a
sequence of names can reference an object. This sequence of names (called a
compound name) defines a path in the naming graph to navigate the resolution proc.
Figure 3-1 shows an example of a naming graph.
CORBAservices March 1995 3-1

3

Figure 3-1 A Naming Graph

3.1.2 Names

Many of the operations defined on a naming context take names as parameters. Names
have structure. A name is an ordered sequence of components.

A name with a single component is called a simple name; a name with multiple
components is called a compound name. Each component except the last is used to
name a context; the last component denotes the bound object. The notation:

< component1 ; component2 ; component3 >

indicates the sequences of components.

Note – The semicolon (;) characters are simply the notation used in this document and
are not intended to imply that names are sequences of characters separated by
semicolon.

A name component consists of two attributes: the identifier attribute and the kind
attribute. Both the identifier attribute and the kind attribute are represented as
IDL strings.

The kind attribute adds descriptive power to names in a syntax-independent way.
Examples of the value of the kind attribute include c_source, object_code,
executable, postscript, or “ ” . The naming system does not interpret, assign, or manage

user
sys

bin lib
u1

u2

u3

bill alden

l1 l2

home

c1
c2
3-2 CORBAservices March 1995

3

s not

mes
eta
mes
em.

ould

by

of the

 are

y
 a

e-
arge,
these values in any way. Higher levels of software may make policies about the use
and management of these values. This feature addresses the needs of applications that
use syntactic naming conventions to distinguish related objects. For example Unix uses
suffixes such as .c and .o . Applications (such as the C compiler) depend on these
syntactic convention to make name transformations (for example, to transform foo.c
to foo.o).

The lack of name syntax is especially important when considering internationalization
issues. Software that does not depend on the syntactic conventions for names doe
have to be changed when it is localized for a natural language that has different
syntactic conventions — unlike software that does depend on the syntactic conventions
(which must be changed to adopt to new conventions).

To avoid issues of differing name syntax, the Naming Service always deals with na
in their structural form (that is, there are no canonical syntaxes or distinguished m
characters). It is assumed that various programs and system services will map na
from the representation into the structural form in a manner that is convenient to th

3.1.3 Names Library

To allow the representation of names to evolve without affecting existing clients, it is
desirable to hide the representation from client code. Ideally, names themselves w
be OMG IDL objects; however, names must be lightweight entities that can be very
efficiently created and manipulated in memory and passed as parameters in requests
value. In order to simplify name manipulation and provide representation
independence, names can be presented to programs through the names library. Note,
however, it is not necessary to use the names library to use the basic operations
naming service.

The names library implements names as pseudo-objects. A client makes calls on a
pseudo-object in the same way it makes calls on an ordinary object. Library names
described in pseudo-IDL. The names library supports two pseudo-IDL interfaces: the
LNameComponent interface and the LName interface. The LNameComponent interface
defines the get and set operations associated with name component identifier and
the kind attributes.The LName Interface includes operations for manipulating librar
name and library name component pseudo objects and producing and translating
structure that can be passed as a parameter to a normal object request.

3.1.4 Example Scenarios

This section provides two short scenarios that illustrate how the naming service
specification can be used by two fairly different kinds of systems -- systems that differ
in the kind of implementations used to build the Naming Service and that differ in
models of how clients might use the Naming Service with other object services to
locate objects.

In one system, the Naming Service is implemented using an underlying enterpris
wide naming server such as DCE CDS. The Naming Service is used to construct l
enterprise-wide naming graphs where NamingContexts model "directories" or "folders"
and other names identify "document" or "file" kinds of objects. In other words, the
Naming Service: v1.0 Service Description March 1995 3-3

3

ce as
might

f
Given
mes
k

lly
nd so

roups

d to
.,

ent

 as
is

d to

cs
naming service is used as the backbone of an enterprise-wide filing system. In such a
system, non-object-based access to the naming service may well be as commonpla
object-based access to the naming service. For example, the name of an object
be presented to the DCE directory service as a null-terminated ASCII string such as
“/.../DME/nls/moa-1/ID-1”.

The Naming Service provides the principal mechanism through which most clients o
an ORB-based system locate objects that they intend to use (make requests of).
an initial naming context, clients navigate naming contexts retrieving lists of the na
bound to that context. In conjunction with properties and security services, clients loo
for objects with certain "externally visible" characteristics, for example, for objects
with recognized names or objects with a certain time-last-modified (all subject to
security considerations). All objects used in such a scheme register their externa
visible characteristics with other services (a name service, a properties service, a
on).

Conventions are employed in such a scheme that meaningfully partition the name
space. For example, individuals are assigned naming contexts for personal use, g
of individuals may be assigned shared naming contexts while other contexts are
organized in a public section of the naming graph. Similarly, conventions are use
identify contexts that list the names of services that are available in the system (e.g
that locate a translation or printing service).

In an alternative system, the Naming Service can be used in a more limited role and
can have a less sophisticated implementation. In this model, naming contexts repres
the types and locations of services that are available in the system and a much
shallower naming graph is employed. For example, the Naming Service is used to
register the object references of a mail service, an information service, a filing service.

Given a handful of references to "root objects" obtained from the Naming Service, a
client uses the Relationship and Query Services to locate objects contained in or
managed by the services registered with the Naming Service. In such a system, the
Naming Service is used sparingly and instead clients rely on other services such
query services to navigate through large collections of objects. Also, objects in th
scheme rarely register "external characteristics" with another service - instead they
support the interfaces of Query or Relationship Services.

Of course, nothing precludes the Naming Service presented here from being use
provide both models of use at the same time. These two scenarios demonstrate how
this specification is suitable for use in two fairly different kinds of systems with
potentially quite different kinds of implementations. The service provides a basic
building block on which higher-level services impose the conventions and semanti
which determine how frameworks of application and facilities objects locate other
objects.

3.1.5 Design Principles

Several principles have driven the design of the Naming Service:
3-4 CORBAservices March 1995

3

is is

 kind

other

e

curity

y the
1. The design imparts no semantics or interpretation of the names themselves; th
up to higher-level software. The naming service provides only a structural
convention for names, e.g. compound names.

2. The design supports distributed, heterogeneous implementation and administration
of names and name contexts.

3. Names are structures, not just character strings. A struct is necessary to avoid
encoding information syntactically in the name string (e.g., separating the human-
meaningful name and its type with a “.”, and the type and version with a “!”), which
is a bad idea with respect to the generality, extensibility, and internationalization of
the name service. The structure define includes a human-chosen string plus a
field.

4. Naming service clients need not be aware of the physical site of name servers in a
distributed environment, or which server interprets what portion of a compound
name, or of the way that servers are implemented.

5. The Naming Service is a fundamental object service, with no dependencies on
interfaces.

6. Name contexts of arbitrary and unknown implementation may be utilized together
as nested graphs of nodes that cooperate in resolving names for a client. No
“universal” root is needed for a name hierarchy.

7. Existing name and directory services employed in different network computing
environments can be transparently encapsulated using name contexts. All of th
above features contribute to making this possible.

8. The design does not address name security since there is currently no OMG se
model. The Naming Service can be evolved to provide name security when an
object security service is standardized.

9. The design does not address namespace administration. It is the responsibility of
higher-level software to administer the namespace.

3.1.6 Resolution of Technical Issues

This specification addresses the issues identified for a name service in the OMG
Object Services Architecture document1 as follows:

• Naming standards: Encapsulation of existing naming standards and protocols is
allowed using naming contexts. Transparent encapsulation is made possible b
design features outlined above.

1.Object Services Architecture, Document Number 92-8-4, Object Managment Group, Framingham, MA,
1992.
Naming Service: v1.0 Service Description March 1995 3-5

3

ext,

in a

ntext,

e we

g
• Federation of namespaces: The specification supports distributed federation of
namespaces; no assumptions are made about centralized or universal functions.
Namespaces may be nested in a graph in any fashion, independent of the
implementation of each namespace. There need be no distinguished root cont
and existing graphs may be joined at any point.

• Scope of names: Name contexts define name scope. Names must be unique with
context. Objects may have multiple names, and may exist in multiple name
contexts. Name contexts may be named objects nested within another name co
and cycles are permitted. The name itself is not a full-fledged ORB object, but does
support structure, so it may have multiple components. No requirements are placed
on naming conventions, in order to support a wide variety of conventions and
existing standards.

• Operations: The specification supports bind, unbind, lookup, and sequence
operations on a name context. It does not support a rename operation, becaus
do not see how to implement this correctly in a distributed environment without
transactions.

3.2 The CosNaming Module

The CosNaming Module is a collection of interfaces that together define the namin
service. This module contains two interfaces:

• The NamingContext interface
• The BindingIterator interface

This section describes these interfaces and their operations in detail.

The CosNaming Module is shown in Figure 3-2. Note that Istring is a placeholder
for a future IDL internationalized string data type.

module CosNaming
{

typedef string Istring;
struct Name Component {

Istring i d;
I string kind;

} ;

typedef sequence <NameComponent> Name;

enum BindingType { nobject, ncontext};

struct Binding {
Name binding_name;
BindingType binding_type;

Figure 3-2 The CosNaming Module
3-6 CORBAservices March 1995

3

};

typedef sequence <Binding> BindingList;

interface BindingIterator;

interface NamingContext {

enum NotFoundReason { missing_node, not_context, not_object};

exception NotFound {
NotFoundReason why;
Name rest_of_name;

};

exception CannotProceed {
NamingContext cxt;
Name rest_of_name;

};

exception InvalidName{};
exception AlreadyBound {};
exception NotEmpty{};

void bind(in Name n, in Object obj)
 raises(NotFound, CannotProceed, InvalidName, AlreadyBound) ;

void rebind(in Name n, in Object obj)
 raises(NotFound, CannotProceed, InvalidName);

void bind_context(in Nam e n , in NamingContext nc)
 raises(NotFound, CannotProceed, InvalidName, AlreadyBound);

void rebind _context (in Name n, i n NamingContext nc)
 raises(NotFound, CannotProceed, InvalidName);

Object resolve (in Name n)
 raises(NotFound, CannotProceed, InvalidName) ;

void u nbind(in Name n)
 raises(NotFound, CannotProceed, InvalidName);

NamingContext new_context() ;
NamingContext bind_new_context(in Na me n)
 raises(NotFound, AlreadyBound, CannotProceed, InvalidName);
void destroy()
 raises(NotEmpty);
void l ist (i n unsigned long h ow_many,

out BindingList bl, out BindingIterator bi) ;
} ;

interface BindingIterator {
boolean next_one(out Binding b);
boolean next_n(i n unsigned long h ow_many,

Figure 3-2 The CosNaming Module (Continued)
Naming Service: v1.0 The CosNaming Module March 1995 3-7

3

The following sections describe the operations of the NamingContext interface:

• binding objects
• name resolution
• unbinding
• creating naming contexts
• deleting contexts
• listing a naming context

3.2.1 Binding Objects

The binding operations name an object in a naming context. Once an object is bound,
it can be found with the resolve operation. The Naming Service supports four
operations to create bindings: bind, rebind, bind_context and rebind_context.

bind
Creates a binding of a name and an object in the naming context. Naming
contexts that are bound using bind do not participate in name resolution when
compound names are passed to be resolved.

A bind operation that is passed a compound name is defined as follows:

ctx->bind(< c1 ; c2 ; ... ; cn >, obj) ≡
(ctx->resolve(< c1 ; c2 ; ... ; cn-1 >))->bind(< cn >, obj)

rebind
Creates a binding of a name and an object in the naming context even if the
name is already bound in the context. Naming contexts that are bound using
rebind do not participate in name resolution when compound names are
passed to be resolved.

out BindingList bl);
void destroy();

};
};

void bind(in Name n, in Object obj)
raises(NotFound, CannotProceed, InvalidName, AlreadyBound);

void rebind(in Name n, in Object obj)
raises(NotFound, CannotProceed, InvalidName);

void bind_context(in Nam e n , in NamingContext nc)
raises(NotFound, CannotProceed, InvalidName, AlreadyBound) ;

void rebind_context(in Name n, in NamingContext nc)
raises(NotFound, CannotProceed, InvalidName);

Figure 3-2 The CosNaming Module (Continued)
3-8 CORBAservices March 1995

3

sing

ing”
ct
bind_context
Names an object that is a naming context. Naming contexts that are bound using
bind_context () participate in name resolution when compound names are
passed to be resolved.

A bind_context operation that is passed a compound name is defined as
follows:

ctx->bind_context(< c1 ; c2 ; ... ; cn >, nc) ≡
(ctx->resolve(< c1 ; c2 ; ... ; cn-1 >))->bind_context(< cn >, nc)

rebind_context
Creates a binding of a name and a naming context in the naming context even if
the name is already bound in the context. Naming contexts that are bound u
rebind_context () participate in name resolution when compound names are
passed to be resolved.

Table 3-1 describes the exceptions raised by the binding operations.

3.2.2 Resolving Names

The resolve operation is the process of retrieving an object bound to a name in a
given context. The given name must exactly match the bound name. The naming
service does not return the type of the object. Clients are responsible for “narrow
the object to the appropriate type. That is, clients typically cast the returned obje
from Object to a more specialized interface. The OMG IDL definition of the resolv e
operation is:

Table 3-1 Exceptions Raised by Binding Operations

Exception Raised Description

NotFound Indicates the name does not identify a binding.

CannotProceed Indicates that the implementation has given up for some reason. The
client, however, may be able to continue the operation at the returned
naming context.

InvalidName Indicates the name is invalid. (A name of length 0 is invalid;
implementations may place other restrictions on names.)

AlreadyBound Indicates an object is already bound to the specified name. Only one
object can be bound to a particular name in a context. The bind and
the bind_context operations raise the AlreadyBound
exception if the name is bound in the context; the rebind and
rebind_context operations unbind the name and rebind the name to
the object passed as an argument.

Object resolve (in Name n)
 raises (NotFound, CannotProceed, InvalidName);
Naming Service: v1.0 The CosNaming Module March 1995 3-9

3

Names can have multiple components; therefore, name resolution can traverse multiple
contexts. A compound resolve is defined as follows:

ctx->resolve(< c1 ; c2 ; ... ; cn >) ≡
ctx->resolve(< c1 ; c2 ; ... ; cn-1 >)->resolve(< cn >)

Table 3-2 describes the exceptions raised by the resolve operation.

3.2.3 Unbinding Names

The unbind operation removes a name binding from a context. The definition of the
unbind operation is:

A unbind operation that is passed a compound name is defined as follows:

ctx->unbind(< c1 ; c2 ; ... ; cn >) ≡
(ctx->resolve(< c1 ; c2 ; ... ; cn-1 >))->unbind(< cn >)

Table 3-3 describes the exceptions raised by the unbind operation.

Table 3-2 Exceptions Raised by Resolve Operation

Exception Raised Description

NotFound Indicates the name does not identify a binding.

CannotProceed Indicates that the implementation has given up for some reason. The
client, however, may be able to continue the operation at the returned
naming context.

InvalidName Indicates the name is invalid. (A name of length 0 is invalid;
implementations may place other restrictions on names.)

void u nbind(in Name n)
 raises (NotFound, CannotProceed, InvalidName);

Table 3-3 Exceptions Raised by Unbind Operation

Exception Raised Description

NotFound Indicates the name does not identify a binding.

CannotProceed Indicates that the implementation has given up for some reason. The
client, however, may be able to continue the operation at the returned
naming context.

InvalidName Indicates the name is invalid. (A name of length 0 is invalid;
implementations may place other restrictions on names.)
3-10 CORBAservices March 1995

3

rver

ver
s

:

3.2.4 Creating Naming Contexts

The Naming Service supports two operations to create new contexts: new_context and
bind_new_context.

new_context
This operation returns a naming context implemented by the same naming se
as the context on which the operation was invoked. The new context is not
bound to any name.

bind_new_context
This operation creates a new context and binds it to the name supplied as an
argument. The newly-created context is implemented by the same naming ser
as the context in which it was bound (that is, the naming server that implement
the context denoted by the name argument excluding the last component).

A bind_new_context that is passed a compound name is defined as follows

ctx->bind_new_context(< c1 ; c2 ; ... ; cn >) ≡
(ctx->resolve(< c1 ; c2 ; ... ; cn-1 >))->bind_new_context(< cn >)

Table 3-4 describes the exceptions raised when new contexts are being created.

3.2.5 Deleting Contexts

The destroy operation deletes a naming context:.

NamingContext new_context();

NamingContext bind_new_context(in Nam e n)
raises(NotFound, AlreadyBound, CannotProceed, InvalidName);

Table 3-4 Exceptions Raised by Creating New Contexts

Exception Raised Description

NotFound Indicates the name does not identify a binding.

CannotProceed Indicates that the implementation has given up for some reason. The
client, however, may be able to continue the operation at the returned
naming context.

InvalidName Indicates the name is invalid. (A name of length 0 is invalid;
implementations may place other restrictions on names.)

AlreadyBound Indicates an object is already bound to the specified name. Only one
object can be bound to a particular name in a context.

void destroy()
raises(NotEmpty);
Naming Service: v1.0 The CosNaming Module March 1995 3-11

3

e
If the naming context contains bindings, the NotEmpty exception is raised.

3.2.6 Listing a Naming Context

The list operation allows a client to iterate through a set of bindings in a naming
context.

The list operation returns at most the requested number of bindings in
BindingList bl .

• If the naming context contains additional bindings, the list operation returns a
BindingIterator with the additional bindings.

• If the naming context does not contain additional bindings, the binding iterator is a
nil object reference.

3.2.7 The BindingIterator Interface

The BindingIterator interface allows a client to iterate through the bindings using th
next_one or next_n operations:

next_one
This operation returns the next binding. If there are no more bindings, false is
returned.

next_n
This operation returns at most the requested number of bindings.

enum BindingType {object, ncontext};

struct Binding {
Name binding_name ;
BindingType binding_type;

};

typedef sequence <Binding> BindingList;

void l ist (i n unsigned long h ow_many,
out BindingList bl, out BindingIterator bi);

};

interface BindingIterator {
boolean next_one(out Binding b);
boolean next_n(i n unsigned long h ow_many,

out BindingList bl);
void destroy();

};
3-12 CORBAservices March 1995

3

destroy
This operation destroys the iterator.

3.3 The Names Library

To allow the representation of names to evolve without affecting existing clients, it is
desirable to hide the representation of names from client code. Ideally, names
themselves would be objects; however, names must be lightweight entities that are
efficient to create, manipulate, and transmit. As such, names are presented to programs
through the names library.

The names library implements names as pseudo-objects. A client makes calls on a
pseudo-object in the same way it makes calls on an ordinary object. Library names are
described in pseudo-IDL (to suggest the appropriate language binding). C and C++
clients2 use the same client language bindings for pseudo-IDL (PIDL) as they use for
IDL.

Pseudo-object references cannot be passed across OMG IDL interfaces. As described
in Section 3.2, “The CosNaming Module,” the naming service supports the
NamingContext OMG IDL interface. The names library supports an operation to
convert a library name into a value that can be passed to the name service through the
NamingContext interface.

Note – It is not a requirement to use the names library in order to use the Naming
Service.

The names library consists of two pseudo-IDL interfaces: the LNameComponent
interface and the LName interface, as shown in Figure 3-3.

2.As anticipated
Naming Service: v1.0 The Names Library March 1995 3-13

3

e 3-3.
Figure 3-3 The Names Library Interface in PIDL

3.3.1 Creating a Library Name Component

To create a library name component pseudo-object, use the following C/C++ function:

The returned pseudo-object can then be operated on using the operations in Figur

interface LNameComponent { // PIDL
exception NotSet{};
string get_id()

raises(NotSet);
void set_id(in string i);
string get_kind()

raises(NotSet);
void set_kind(in string k);
void destroy();

};

i nterface LName { // PIDL
exception NoComponent{};
exception OverFlow{} ;
exception InvalidName{};
LName insert_component(i n unsigned long i ,

in LNameComponent n)
raises(NoComponent, OverFlow) ;

LNameComponent g et_component(i n unsigned long i)
 raises(NoComponent);

LNameComponent d elete_component(i n unsigned long i)
 raises(NoComponent);

unsigned long n um_components();
boolean equal(in LName ln);
boolean less_than(in LName ln);
Name to_idl_form()

raises(InvalidName);
void from_idl_form(in Name n);
void destroy();

};

LName create_lname(); // C /C+ +
LNameComponent create_lname_component(); // C/C++

LNameComponent create_lname _component(); // C/C++
3-14 CORBAservices March 1995

3

 i
3.3.2 Creating a Library Name

To create a library name pseudo-object, use the following C/C++ function.

The returned pseudo-object reference can then be operated on using the operationsn
Figure 3-3.

3.3.3 The LNameComponent Interface

A name component consists of two attributes: the identifier attribute and the
kind attribute. The LNameComponent interface defines the operations associated with
these attributes.

get_id
The get_id operation returns the identifier attribute’s value. If the
attribute has not been set, the NotSet exception is raised.

set_id
The set_id operation sets the identifier attribute to the string argument.

get_kind
The get_kind operation returns the kind attribute’s value. If the attribute has
not been set, the NotSet exception is raised.

set_kind
The set_kind operation sets the kind attribute to the string argument.

3.3.4 The LName Interface

The following operations are described in this section:

• destroying a library name component pseudo object

• creating a library name

• inserting a name component

• getting the ith name component

• deleting a name component

• number of name components

LName create_lname(); // C/C++

string get_id()
raises(NotSet);

void set_id(in string k);
string get_kind()

raises(NotSet);
void set_kind(in string k);
Naming Service: v1.0 The Names Library March 1995 3-15

3

• testing for equality

• testing for order

• producing an idl form

• translating an idl form

• destroying a library name pseudo object

Destroying a Library Name Component Pseudo Object

The destroy operation destroys library name component pseudo-objects.

Inserting a Name Component

A name has one or more components. Each component except the last is used to
identify names of subcontexts. (The last component denotes the bound object.) The
insert_component operation inserts a component after position i.

If component i-1 is undefined and component i is greater than 1, the
insert_component operation raises the NoComponent exception.

If the library cannot allocate resources for the inserted component, the Overflow
exception is raised.

Getting the ith Name Component

The get_component operation returns the ith component. The first component is
numbered 1.

If the component does not exist, the NoComponent exception is raised.

void destroy();

LName insert_component(i n unsigned long i , i n LNameComponent lnc)
raises(NoComponent, OverFlow);

LNameComponent g et_component(i n unsigned long i)
raises(NoComponent);
3-16 CORBAservices March 1995

3

Deleting a Name Component

The delete_component operation removes and returns the ith component.

If the component does not exist, the NoComponent exception is raised.

After a delete_component operation has been performed, the compound name has
one fewer component and components previously identified as i+1...n are now
identified as i...n-1.

Number of Name Components

The num_components operation returns the number of components in a library
name.

Testing for Equality

The equal operation tests for equality with library name ln.

Testing for Order

The less_than operation tests for the order of a library name in relation to library
name ln.

This operation returns true if the library name is less than the library name ln passed as
an argument. The library implementation defines the ordering on names.

LNameComponent d elete_component(i n unsigned long i)
raises(NoComponent);

unsigned long n um_components();

boolean equal(in LName ln);

boolean less_than(in LName ln);
Naming Service: v1.0 The Names Library March 1995 3-17

3

a
ing

is a
ing

f

Producing an IDL form

Pseudo-objects cannot be passed across OMG IDL interfaces. The library name is
pseudo object; therefore, it cannot be passed across the IDL interface for the nam
service. Several operations in the NamingContext interface have arguments of an IDL-
defined structure, Name. The following PIDL operation on library names produces a
structure that can be passed across the IDL request.

If the name is of length 0, the InvalidName exception is returned.

Translating an IDL Form

Pseudo-objects cannot be passed across OMG IDL interfaces. The library name
pseudo object; therefore, it cannot be passed across the IDL interface for the nam
service. The NamingContext interface defines operations that return an IDL struct o
type Name. The following PIDL operation on library names sets the components and
kind attribute for a library name from a returned IDL defined structure, Name.

Destroying a Library Name Pseudo-Object

The destroy operation destroys library name pseudo-objects

Name to_idl_form()
raises(InvalidName);

void from_idl_form(in Name n);

void destroy();
3-18 CORBAservices March 1995

Event Service Specification 4
y an
d
r the

t is

to
4.1 Service Description

4.1.1 Overview

A standard CORBA request results in the synchronous execution of an operation b
object. If the operation defines parameters or return values, data is communicate
between the client and the server. A request is directed to a particular object. Fo
request to be successful, both the client and the server must be available. If a request
fails because the server is unavailable, the client receives an exception and must take
some appropriate action.

In some scenarios, a more decoupled communication model between objects is
required. For example:

• A system administration tool is interested in knowing if a disk runs out of space.
The software managing a disk is unaware of the existence of the system
administration tool. The software simply reports that the disk is full. When a disk
runs out of space, the system administration tool opens a window to inform the user
which disk has run out of space.

• A property list object is associated with an application object. The property list
object is physically separate from the application object. The application objec
interested in the changes made to its properties by a user. The properties can be
changed without involving the application object. That is, in order to have
reasonable response time for the user, changing a property does not activate the
application object. However, when the application object is activated, it needs
know about the changes to its properties.

• A CASE tool is interested in being notified when a source program has been
modified. The source program simply reports when it is modified. It is unaware of
the existence of the CASE tool. In response to the notification, the CASE tool
invokes a compiler.
CORBAservices March 1995 4-1

4

 in

e

d

of
st the

via
rs,

 and

all

• Several documents are linked to a spreadsheet. The documents are interested
knowing when the value of certain cells have changed. When the cell value
changes, the documents update their presentations based on the spreadsheet.
Furthermore, if a document is unavailable because of a failure, it is still interested
in any changes to the cells and wants to be notified of those changes when it
recovers.

4.1.2 Event Communication

The Event Service decouples the communication between objects. The Event Servic
defines two roles for objects: the supplier role and the consumer role. Suppliers
produce event data and consumers process event data. Event data are communicate
between suppliers and consumers by issuing standard CORBA requests.

There are two approaches to initiating event communication between suppliers and
consumers, and two orthogonal approaches to the form that the communication can
take.

The two approaches to initiating event communication are called the push model and
the pull model. The push model allows a supplier of events to initiate the transfer
the event data to consumers. The pull model allows a consumer of events to reque
event data from a supplier. In the push model, the supplier is taking the initiative; in
the pull model, the consumer is taking the initiative.

The communication itself can be either generic or typed. In the generic case, all
communication is by means of generic push or pull operations that take a single
parameter that packages all the event data. In the typed case, communication is
operations defined in OMG IDL. Event data is passed by means of the paramete
which can be defined in any manner desired. Section 4.2 through section 4.5 discuss
generic event communication in detail; section 4.6 through section 4.9 discuss typed
event communication in detail.

An event channel is an intervening object that allows multiple suppliers to
communicate with multiple consumers asynchronously. An event channel is both a
consumer and a supplier of events. Event channels are standard CORBA objects
communication with an event channel is accomplished using standard CORBA
requests.

4.1.3 Example Scenario

This section provides a general scenario that illustrates how the Event Service can be
used.

The Event Service can be used to provide “change notification”. When an object is
changed (its state is modified), an event can be generated that is propagated to
interested parties. For example, when a spreadsheet cell object is modified, all
compound documents which contain a reference (link) to that cell can be notified (so
the document can redisplay the referenced cell, or recalculate values that depend on
4-2 CORBAservices March 1995

4

rs

t

f

ome

bjects

t

 them
they
col

e

l

ring
the cell). Similarly, when an engineering specification object is modified, all enginee
who have registered an interest in the specification can be notified that the
specification has changed.

In this scenario, objects that can be “changed” act as suppliers, parties interested in
receiving notifications of changes act as consumers, and one or more event channel
objects are used as intermediaries between consumers and suppliers. Either the push or
the pull model can be used at either end.

If the push model is used by suppliers, objects that can be changed support the
PushSupplier interface so that event communication can be discontinued, use the
EventChannel, the SupplierAdmin and the ProxyPushConsumer interfaces to register as
suppliers of events, and use the ProxyPushConsumer interface to push events to even
channels.

When a change occurs to an object, a changeable object invokes a push operation on
the channel. It provides as an argument to the push operation information that
describes the event. This information is of data type any - it can be as simple or as
complex as is necessary. For example, the event information might identify the object
reference of the object that has been changed, it might identify the kind of change that
has occurred, it might provide a new displayable image of the changed object or it
might identify one or more additional objects that describe the change that has been
made.

If the pull model is used by consumers, all client objects that want to be notified o
changes support the PullConsumer interface so communication can be discontinued,
using the EventChannel, ConsumerAdmin and ProxyPullSupplier interfaces to register
as consumers of events, and using the ProxyPullSupplier interface to pull events from
event channels.

The consumer may use either a blocking or non-blocking mechanism for receiving
notification of changes. Using the try_pull operation, the consumer can periodically
poll the channel for events. Alternatively, the consumer can use the pull operation
which will block the consumer’s execution thread until an event is generated by s
supplier.

Event channels act as the intermediaries between the objects being changed and o
interested in knowing about changes. The channels that provide change notification
can be general purpose, well-known objects (e.g., “persistent server-based objects” tha
are run as part of a workgroup-wide framework of objects that provide “desktop
services”) or specific-to-task objects (e.g., temporary objects that are created when
needed). Objects that use event channels may locate the channels by looking for
in a persistently available server (e.g., by looking for them in a naming service) or
may be given references to these objects as part of a specific-to-task object proto
(e.g., when an “open” operation is invoked on an object, the object may return th
reference to an event channel which the caller should use until the object is closed).

Event channels determine how changes are propagated between suppliers and
consumers, i.e., the qualities of service (Section 4.1.6). For example, an event channe
determines the persistence of an event. The channel may keep an event for a specified
period of time, passing it along to any consumer who registers with the channel du
Event Service: v1.0 Service Description March 1995 4-3

4

c

 been

iers.

ore

o

the

 as

that period of time (e.g., it may keep event notifications about changes to engineering
specifications for a week). Alternatively, the channel may only pass on events to
consumers who are currently waiting for notification of changes (e.g., notifications of
changes to a spreadsheet cell may only be sent to consumers who are currently
displaying that cell).

This scenario exemplifies one way the event service described here forms a basi
building block used in providing higher-level services specific to an application or
common facilities framework of objects.

Instead of using the generic event channel, a typed event channel could also have
used.

4.1.4 Design Principles

The Event Service design satisfies the following principles:

• Events work in a distributed environment. The design does not depend on any
global, critical, or centralized service.

• Event services allow multiple consumers of an event and multiple event suppl

• Consumers can either request events or be notified of events, whichever is m
appropriate for application design and performance.

• Consumers and suppliers of events support standard OMG IDL interfaces; n
extensions to CORBA are necessary to define these interfaces.

• A supplier can issue a single standard request to communicate event data toall
consumers at once.

• Suppliers can generate events without knowing the identities of the consumers.
Conversely, consumers can receive events without knowing the identities of
suppliers.

• The Event Service interfaces allow multiple qualities of service, for example, for
different levels of reliability. It also allows for future interface extensions, such
for additional functionality.

• The Event Service interfaces are capable of being implemented and used in
different operating environments, for example, in environments that support
threading and those that do not.

4.1.5 Resolution of Technical Issues

This specification addresses the issues identified for event services in the OMG Object
Services Architecture1 document as follows:

1.Object Services Architecture, Document Number 92-8-4, Object Managment Group, Framingham, MA,
1992.
4-4 CORBAservices March 1995

4

t be

ered

 a

dicate

at is,

t
n that

RB

a
the
• Distributed environment: The interfaces are designed to allow consumers and
suppliers of events to be disconnected from time to time, and do not require
centralized event identification, processing, routing, or other services that migh
a bottleneck or a single point of failure.

Events themselves are not objects because the CORBA distributed object model
does not support passing objects by value.

Event generation: The specification describes how events are generated and deliv
in a very general fashion, with event channels as intermediate routing points. It does
not require (or preclude) polling, nor does it require that an event supplier directly
notify every interested party.

Events involving multiple objects: Complex events may be handled by constructing
notification tree of event consumer/suppliers checking for successively more specific
event predicates. The specification does not require a general or global event pre
evaluation service as this may not be sufficiently reliable, efficient, or secure in a
distributed, heterogeneous (potentially decoupled) environment.

Scoping, grouping, and filtering events: The specification takes advantage of
CORBA’s distributed scoping and grouping mechanisms for the identifier and type of
events. Event filtering is easily achieved through event channels that selectively
deliver events from suppliers to consumers. Event channels can be composed; th
one event channel can consumer events supplied by another.

Typed event channels can provide filtering based on event type.

Registration and generation of events: Consumers and suppliers register with even
channels themselves. Event channels are objects and they are found by any fashio
objects can be found. A global registration service is not required; any object that
conforms to the IDL interface may consume an event.

Event parameters: The specification supports a parameter of type any that can be
delivered with an event, used for application-specific data.

Forgery and secure events: Because event suppliers are objects, the specification
leverages any ORB work on security for object references and communication.

Performance: The design is a minimalist one, and requires only one ORB call per
event received. It supports both push-style and pull-style notification to avoid
inefficient event polling. Since event suppliers, consumers, and channels are all ORB
objects, the service directly benefits from a Library Object Adapter or any other O
optimizations.

Formalized Event Information: For specific application environments and
frameworks it may be beneficial to formalize the data associated with an event
(defined in this specification as type any). This can be accomplished by defining
typed structure for this information. Depending on the needs of the environment,
kinds of information included might be a priority, timestamp, origin string, and
confirmation indicator. This information might be solely for the benefit of the event
consumer or might also be interpreted by particular event channel implementations.
Event Service: v1.0 Service Description March 1995 4-5

4

s.

 that

e
l
Confirmation of Reception: Some applications may require that consumers of an
event provide an explicit confirmation of reception back to the supplier. This can be
supported effectively using a “reverse” event channel through which consumers send
back confirmations as normal events. This obviates the need for any special
confirmation mechanism. However, strict atomic delivery between all suppliers and all
consumers requires additional interfaces.

4.1.6 Quality of Service

Application domains requiring event-style communication have diverse reliability
requirements, from “at-most-once” semantics (best effort) to guaranteed “exactly-
once” semantics, availability requirements, throughput requirements, performance
requirements (i.e., how fast events are disseminated), and scalability requirements.

Clearly no single implementation of the Event Service can optimize such a diverse
range of technical requirements. Hence, multiple implementations of event services are
to be expected, with different services targeted toward different environments. As
such, the event interfaces do not dictate qualities of service. Different implementations
of the Event Service interfaces can support different qualities of service to meet
different application needs.

For example, an implementation that trades at most once delivery to a single consumer
in favor of performance is useful for some applications; an implementation that favors
performance but cannot preclude duplicate delivery is useful for other application
Both are acceptable implementations of the interfaces described in this chapter.

Clearly, an implementation of an event channel that discards all events is not a useful
implementation. Useful implementations will at least support “best-effort” delivery of
events.

Note that the interfaces defined in this chapter are incomplete for implementations
support strict notions of atomicity. That is, additional interfaces are needed by an
implementation to guarantee that either all consumers receive an event or none of th
consumers receive an event; and that all events are received in the same order by al
consumers.

4.2 Generic Event Communication

There are two basic models for communicating event data between suppliers and
consumers: the push model and the pull model.

4.2.1 Push Model

In the push model, suppliers “push” event data to consumers; that is, suppliers
communicate event data by invoking push operations on the PushConsumer interface.

To set up a push-style communication, consumers and suppliers exchange
PushConsumer and PushSupplier object references. Event communication can be
broken by invoking a disconnect_push_consumer operation on the
4-6 CORBAservices March 1995

4

en
PushConsumer interface or by invoking a disconnect_push_supplier operation
on the PushSupplier interface. If the PushSupplier object reference is nil, the
connection cannot be broken via the supplier.

Figure 4-1 illustrates push-style communication between a supplier and a consumer.

Figure 4-1 Push-style Communication Between a Supplier and a Consumer

4.2.2 Pull Model

In the pull model, consumers “pull” event data from suppliers; that is, consumers
request event data by invoking pull operations on the PullSupplier interface.

To set up a pull-style communication, consumers and suppliers must exchange
PullConsumer and PullSupplier object references. Event communication can be brok
by invoking a disconnect_pull_consumer operation on the PullConsumer
interface or by invoking a disconnect_pull_supplier operation on the
PullSupplier interface. If the PullConsumer object reference is nil, the connection
cannot be broken via the consumer.

Figure 4-2 illustrates pull-style communication between a supplier and a consumer.

Figure 4-2 Pull-style Communication Between a Supplier and a Consumer

PushSupplier

PushConsumer

supplierconsumer

PullConsumer

PullSupplier

supplierconsumer
Event Service: v1.0 Generic Event Communication March 1995 4-7

4

n
4.3 The CosEventComm Module

The communication styles shown in Figure 4-1 and Figure 4-2 are both supported by
four simple interfaces: PushConsumer, PushSupplier, and PullSupplier and
PullConsumer. These interfaces are defined in an OMG IDL module named
CosEventComm, as shown in Figure 4-3.

Figure 4-3 The OMG IDL Module CosEventComm

4.3.1 The PushConsumer Interface

A push-style consumer supports the PushConsumer interface to receive event data.

A supplier communicates event data to the consumer by invoking the push operation
and passing the event data as a parameter. If the event communication has already bee
disconnected, the Disconnected exception is raised.

module CosEventComm {

exception Disconnected{};

i nterface PushConsumer {
void push (in any data) raises(Disconnected);
void disconnect_push_consumer();

} ;

 interface PushSupplier {
void disconnect_push_supplier();

} ;

i nterface PullSupplier {
any pull () raises(Disconnected);
any try_pull (out boolean has_event)

raises(Disconnected);
void disconnect_pull_supplier() ;

} ;

i nterface PullConsumer {
void disconnect_pull_consumer();

} ;

};

interface PushConsumer {
void push (in any data) raises(Disconnected);
void disconnect_push_consumer();

};
4-8 CORBAservices March 1995

4

;

;

s

The disconnect_push_consumer operation terminates the event communication
it releases resources used at the consumer to support the event communication. The
PushConsumer object reference is disposed.

4.3.2 The PushSupplier Interface

A push-style supplier supports the PushSupplier interface.

The disconnect_push_supplier operation terminates the event communication
it releases resources used at the supplier to support the event communication. The
PushSupplier object reference is disposed.

4.3.3 The PullSupplier Interface

A pull-style supplier supports the PullSupplier interface to transmit event data.

A consumer requests event data from the supplier by invoking either the pull
operation or the try_pull operation on the supplier.

• The pull operation blocks until the event data is available or an exception is
raised.2 It returns the event data to the consumer. If the event communication has
already been disconnected, the Disconnected exception is raised.

• The try_pull operation does not block: if the event data is available, it return
the event data and sets the has_event parameter to true; if the event is not
available, it sets the has_event parameter to false and the event data is returned
as long with an undefined value. If the event communication has already been
disconnected, the Disconnected exception is raised.

2.This, of course, may be a standard CORBA exception.

interface PushSupplier {
void disconnect_push _supplie r();

};

interface PullSupplier {
any pull () raises(Disconnected);
any try_pull (out boolean has_event)

raises(Disconnected);
void disconnect_pull_supplier() ;

};
Event Service: v1.0 The CosEventComm Module March 1995 4-9

4

;

;

en

 to

shes
The disconnect_pull_supplier operation terminates the event communication
it releases resources used at the supplier to support the event communication. The
PullSupplier object reference is disposed.

4.3.4 The PullConsumer Interface

A pull-style consumer supports the PullConsumer interface.

The disconnect_pull_consumer operation terminates the event communication
it releases resources used at the consumer to support the event communication. The
PullConsumer object reference is disposed.

4.4 Event Channels

The event channel is a service that decouples the communication between suppliers
and consumers. The event channel is itself both a consumer and a supplier of the event
data.

An event channel can provide asynchronous communication of event data betwe
suppliers and consumers. Although consumers and suppliers communicate with the
event channel using standard CORBA requests, the event channel does not need
supply the event data to its consumer at the same time it consumes the data from its
supplier.

4.4.1 Push-Style Communication with an Event Channel

The supplier pushes event data to the event channel; the event channel, in turn, pu
event data to the consumer. Figure 4-4 illustrates a push-style communication between
a supplier and the event channel, and a consumer and the event channel.

interface PullConsumer {
void disconnect_p ull_ consumer();

};
4-10 CORBAservices March 1995

4

een

umer

l.
el.

Figure 4-4 Push-style Communication Between a Supplier and an Event Channel, and a
Consumer and an Event Channel

4.4.2 Pull-Style Communication with an Event Channel

The consumer pulls event data from the event channel; the event channel, in turn, pulls
event data from the supplier. Figure 4-5 illustrates a pull-style communication betw
a supplier and the event channel, and a consumer and the event channel.

Figure 4-5 Pull-style communication between a supplier and an event channel and a cons
and the event channel

4.4.3 Mixed Style Communication with an Event Channel

An event channel can communicate with a supplier using one style of communication,
and communicate with a consumer using a different style of communication.

Figure 4-6 illustrates a push-style communication between a supplier and an event
channel, and a pull-style communication between a consumer and the event channe
The consumer pulls the event data that the supplier has pushed to the event chann

event channel

supplierconsumer

PushConsumerPushConsumer

PushSupplier PushSupplier

event channel

supplierconsumer

PullConsumerPullConsumer

PullSupplier PullSupplier
Event Service: v1.0 Event Channels March 1995 4-11

4

ll-
Figure 4-6 Push-style Communication Between a Supplier and an Event Channel, and Pu
style Communication Between a Consumer and an Event Channel

4.4.4 Multiple Consumers and Multiple Suppliers

Figure 4-4, Figure 4-5, and Figure 4-6 illustrate event channels with a single supplier
and a single consumer. An event channel can also provide many-to-many
communication. The channel consumes events from one or more suppliers, and
supplies events to one or more consumers. Subject to the quality of service of a
particular implementation, an event channel provides an event to all consumers.

 Figure 4-7 illustrates an event channel with multiple push-style consumers and
multiple push-style suppliers.

Figure 4-7 An Event Channel with Multiple Suppliers and Multiple Consumers

An event channel can support consumers and suppliers using different communication
models.

event channel

supplierconsumer

PushSupplier

PushConsumer

PullConsumer

PullSupplier

event channel

supplier

consumer

PushSupplier

PushConsumer

PushSupplier

PushConsumer

consumer

PushSupplier

PushConsumer

supplier

PushSupplier

PushConsumer
4-12 CORBAservices March 1995

4

ers, it

If an event channel has at least one push-style consumer or at least one pending pull
request, the event channel requires an event. If the event channel has pull suppli
will issue a request on a pull supplier to satisfy its requirement.

4.4.5 Event Channel Administration

The event channel is built up incrementally. When an event channel is created, no
suppliers or consumers are connected to the event channel. Upon creation of the
channel, the factory returns an object reference that supports the EventChannel
interface, as illustrated in Figure 4-8.

Figure 4-8 A newly created event channel. The channel has no suppliers or consumers.

The EventChannel interface defines three administrative operations: an operation
returning a ConsumerAdmin object for adding consumers, an operation returning a
SupplierAdmin object for adding suppliers, and an operation for destroying the
channel.

The operations for adding consumers return proxy suppliers. A proxy supplier is
similar to a normal supplier (in fact, it inherits the interface of a supplier), but includes
an additional method for connecting a consumer to the proxy supplier.

The operations for adding suppliers return proxy consumers. A proxy consumer is
similar to a normal consumer (in fact, it inherits the interface of a consumer), but
includes an additional method for connecting a supplier to the proxy consumer.

Registration of a producer or consumer is a two step process. An event-generating
application first obtains a proxy consumer from a channel, then “connects” to the
proxy consumer by providing it with a supplier. Similarly, an event-receiving
application first obtains a proxy supplier from a channel, then “connects” to the proxy
supplier by providing it with a consumer.

event channel

EventChannel
Event Service: v1.0 Event Channels March 1995 4-13

4

ing
The reason for the two-step registration process is to support composing event
channels by an external agent. Such an agent would compose two channels by
obtaining a proxy supplier from one and a proxy consumer from the other, and pass
each of them a reference to the other as part of their connect operation.

Proxies are in one of three states: disconnected, connected or destroyed. Figure 4-9
gives a state diagram for a proxy. The nodes of the diagram are the states and the
edges are labelled with the operations that change the state of the proxy. Push/pull
operations are only valid in the connected state.

Figure 4-9 State diagram of a proxy.

disconnected connected destroyed
obtain connect disconnect

event
communication
4-14 CORBAservices March 1995

4

4.5 The CosEventChannelAdmin Module

The CosEventChannelAdmin module defines the interfaces for making
connections between suppliers and consumers. The CosEventChannelAdmin
module is defined in Figure 4-10.

#include “CosEventComm.idl”

module CosEventChannelAdmin {

 exception AlreadyConnected {};
exception TypeError {};

interface ProxyPushConsumer: CosEventComm::PushConsumer {
void connect_push_supplier(

in CosEventComm::PushSupplier push_supplier)
raises(AlreadyConnected);

};

interface ProxyPullSupplier: CosEventComm::PullSupplier {
void connect_pull_consumer(

in CosEventComm::PullConsumer pull_consumer)
raises(AlreadyConnected);

};

interface ProxyPullConsumer: CosEventComm::PullConsumer {
void connect_pull_supplier(

in CosEventComm::PullSupplier pull_supplier)
raises(AlreadyConnected,TypeError);

};

interface ProxyPushSupplier: CosEventComm::PushSupplier {
void connect_push_consumer(

in CosEventComm::PushConsumer push_consumer)
raises(AlreadyConnected, TypeError);

};
Event Service: v1.0 The CosEventChannelAdmin Module March 1995 4-15

4

ers,

rts
Figure 4-10 The CosEventChannelAdmin Module

4.5.1 The EventChannel Interface

The EventChannel interface defines three administrative operations: adding consum
adding suppliers, and destroying the channel.

Any object that possesses an object reference that supports the EventChannel interface
can perform these operations:

• The ConsumerAdmin interface allows consumers to be connected to the event
channel. The for_consumers operation returns an object reference that suppo
the ConsumerAdmin interface.

• The SupplierAdmin interface allows suppliers to be connected to the event channel.
The for_suppliers operation returns an object reference that supports the
SupplierAdmin interface.

• The destroy operation destroys the event channel.

Consumer administration and supplier administration are defined as separate objects so
that the creator of the channel can control the addition of suppliers and consumers. For
example, a creator might wish to be the sole supplier of event data but allow many
consumers to be connected to the channel. In such a case, the creator would simply
export the ConsumerAdmin object.

interface ConsumerAdmin {
ProxyPushSupplier obtain_push_supplier();
ProxyPullSupplier obtain_pull_supplier();

} ;

interface SupplierAdmin {
ProxyPushConsumer obtain_push_consumer();
ProxyPullConsumer obtain_pull_consumer();

} ;

interface EventChannel {
ConsumerAdmin for_consumers();
SupplierAdmin for_suppliers();
void destroy();

};

};

interface EventChannel {
ConsumerAdmin for_consumers();
SupplierAdmin for_suppliers();
void destroy();

};
4-16 CORBAservices March 1995

4

4.5.2 The ConsumerAdmin Interface

The ConsumerAdmin interface defines the first step for connecting consumers to the
event channel; clients use it to obtain proxy suppliers.

The obtain_push_supplier operation returns a ProxyPushSupplier object. The
ProxyPushSupplier object is then used to connect a push-style consumer.

The obtain_pull_supplier operation returns a ProxyPullSupplier object. The
ProxyPullSupplier object is then used to connect a pull-style consumer.

4.5.3 The SupplierAdmin Interface

The SupplierAdmin interface defines the first step for connecting suppliers to the event
channel; clients use it to obtain proxy consumers.

The obtain_push_consumer operation returns a ProxyPushConsumer object. The
ProxyPushConsumer object is then used to connect a push-style supplier.

The obtain_pull_consumer operation returns a ProxyPullConsumer object. The
ProxyPullConsumer object is then used to connect a pull-style supplier.

4.5.4 The ProxyPushConsumer Interface

The ProxyPushConsumer interface defines the second step for connecting push
suppliers to the event channel.

interface ConsumerAdmin {
ProxyPushSupplier obtain_push_supplier();
ProxyPullSupplier obtain_pull_supplier();

};

interface SupplierAdmin {
ProxyPushConsumer obtain_push_consumer();
ProxyPullConsumer obtain_pull_consumer();

};

interface ProxyPushConsumer: CosEventComm::PushConsumer {
void connect_push_supplier (

in CosEventComm::PushSupplier push_supplier)
r aises(AlreadyConnected);

} ;
Event Service: v1.0 The CosEventChannelAdmin Module March 1995 4-17

4

d

ers

il
A nil object reference may be passed to the connect_push_supplier operation;
if so a channel cannot invoke the disconnect_push_supplier operation on the
supplier; the supplier may be disconnected from the channel without being informe.

If the ProxyPushConsumer is already connected to a PushSupplier, then the
AlreadyConnected exception is raised.

4.5.5 The ProxyPullSupplier Interface

The ProxyPullSupplier interface defines the second step for connecting pull consum
to the event channel.

A nil object reference may be passed to the connect_pull_consumer operation; if
so a channel cannot invoke a disconnect _pull_consumer operation on the
consumer; the consumer may be disconnected from the channel without being
informed.

If the ProxyPullSupplier is already connected to a PullConsumer, then the
AlreadyConnected exception is raised.

4.5.6 The ProxyPullConsumer Interface

The ProxyPullConsumer interface defines the second step for connecting pull suppliers
to the event channel.

Implementations should raise the CORBA standard BAD_PARAM exception if a n
object reference is passed to the connect_pull_supplier operation.

If the ProxyPullConsumer is already connected to a PullSupplier, then the
AlreadyConnected exception is raised.

An implementation of a ProxyPullConsumer may put additional requirements on the
interface supported by the pull supplier. If the pull supplier does not meet those
requirements the ProxyPullConsumer raises the TypeError exception. (See section
4.7.2 for an example.)

interface ProxyPullSupplier: CosEventComm::PullSupplier {
void connect_pull_consumer (

in CosEventComm::PullConsumer pull_consumer)
r aises(AlreadyConnecte d) ;

} ;

interface ProxyPullConsumer: CosEventComm::PullConsumer {
void connect_pull_supplier (

in CosEventComm::PullSupplier pull_supplier)
r aises(AlreadyConnected , TypeError);

} ;
4-18 CORBAservices March 1995

4

il

those

G

y

e
4.5.7 The ProxyPushSupplier Interface

The ProxyPushSupplier interface defines the second step for connecting push
consumers to the event channel.

Implementations should raise the CORBA standard BAD_PARAM exception if a n
object reference is passed to the connect_push_consumer operation.

If the ProxyPushSupplier is already connected to a PushConsumer, then the
AlreadyConnected exception is raised.

An implementation of a ProxyPushSupplier may put additional requirements on the
interface supported by the push consumer. If the push consumer does not meet
requirements the ProxyPushSupplier raises the TypeError exception. (See section
4.7.1 for an example.)

4.6 Typed Event Communication

 Section 4.2 discusses generic event communication using push and pull operations.
The next few sections describe how event communication can be described in OM
IDL and how typed event channels can support such typed event communication.

4.6.1 Typed Push Model

In the typed push model, suppliers call operations on consumers using some mutuall
agreed interface I. The interface I is defined in IDL, and may contain any operations
subject to the following restrictions:

• All parameters must be in parameters only.
• No return values are permitted

These are the same restrictions as CORBA imposes on oneway operations, and for
similar reasons: event communication is unidirectional, and does not directly support
responses. The operations can be declared oneway , but need not be.

To set up typed push-style communication, consumers and suppliers exchange
TypedPushConsumer and PushSupplier object references. (Note that the supplier
interface is the same as the untyped case.) The supplier then invokes the
get_typed_consumer operation of the TypedPushConsumer interface, which
returns an object reference supporting the typed interface, I, referred to as an I-
reference. The particular interface, I, that the reference supports is dependent on th

interface ProxyPushSupplier: CosEventComm::PushSupplier {
void connect_push_consumer (

in CosEventComm::PushConsumer push_consumer)
r aises(AlreadyConnected , TypeError);

} ;
Event Service: v1.0 Typed Event Communication March 1995 4-19

4

particular TypedPushConsumer, and must be mutually agreed by supplier and
consumer. Once the supplier has obtained the I-reference, it can call operations in
interface I on the consumer.

As in the case of the generic push-style, event communication can be broken by
invoking a disconnect_push_consumer operation on the TypedPushConsumer
interface or by invoking a disconnect_push_supplier operation on the
PushSupplier interface. If the PushSupplier object reference is nil, the connection
cannot be broken via the supplier.

Figure 4-11 illustrates typed push-style communication between supplier and
consumer.

Figure 4-11 Typed Push-style Communication Between a Supplier and a Consumer

4.6.2 Typed Pull Model

In the typed pull model, consumers call operations on suppliers, requesting event
information, using some mutually agreed interface Pull<I> 3. For every interface I
having the properties described in section 4.6.1, an interface Pull<I> is defined as
follows:

• For every operation o in I, Pull<I> contains two operations:

• pull_o , with all in parameters changed to out parameters. When called, this
operation will return with the event data in the out parameters. If no o-event is
currently available, it will block.

• boolean try_o , with all in parameters changed to out parameters. When
called, this operation will check whether an o-event is currently available. If so,
it will return true , with the event data in the out parameters. If not, it will
return false , with the out parameters undefined

3.Pull<I> is used as notation for a computed interface from interface I. Thus, if I is an interface
DocumentEvents, Pull<I> is an interface PullDocumentEvents.

PushSupplier

TypedPushConsumer

supplierconsumer

I

4-20 CORBAservices March 1995

4

an

mer.
The interface Pull<I> is designed to allow pulling of exactly the same events that c
be pushed using interface I.

To set up typed pull-style communication, consumers and suppliers exchange
PullConsumer and TypedPullSupplier object references. (Note that the consumer
interface is the same as the untyped case.) The consumer then invokes the
get_typed_supplier operation of the TypedPullSupplier, which returns an object
reference supporting the typed interface, Pull<I> , referred to as a Pull<I>-reference.
The particular interface, Pull<I> , that the reference supports is dependent on the
particular TypedPullSupplier, and must be mutually agreed by supplier and consumer.
Once the consumer has obtained the Pull<I>- reference, it can call operations in
interface Pull<I> on the supplier.

Figure 4-12 illustrates typed pull-style communication between supplier and consu

Figure 4-12 Typed Pull-style Communication Between a Supplier and a Consumer

4.7 The CosTypedEventComm Module

The typed communication styles shown in Figure 4-11 and Figure 4-12 are both
supported by two new interfaces, TypedPushConsumer and TypedPullSupplier and two
existing interfaces, PushSupplier and PullConsumer. The first two interfaces are

PullConsumer

TypedPullSupplier

supplierconsumer

Pull<I>
Event Service: v1.0 The CosTypedEventComm Module March 1995 4-21

4

e

l
he

not
defined in an OMG IDL module named CosTypedEventComm, as shown in
Figure 4-13. The last two are the same as for untyped event communication, and were
defined in the CosEventComm module in Figure 4-3.

Figure 4-13 The IDL Module CosTypedEventComm

4.7.1 The TypedPushConsumer Interface

A typed push-style consumer supports the TypedPushConsumer interface both to
receive event data in the generic manner, and to supply a specific typed interface
through which to receive it in typed form.

The TypedPushConsumer can behave just like an untyped PushConsumer, described in
section 4.3.1. In addition, if the supplier wishes to communicate event data to the
consumer in typed rather than generic form, it first invokes the
get_typed_consumer operation. This returns an I-reference supporting an
interface I. The particular interface, I, that the reference supports is dependent on th
particular TypedPushConsumer. The return type of the operation is Object, because
different TypedPushConsumers will return references of different types, so the actua
type cannot be specified in a general definition. Once the supplier has obtained tI-
reference, it can narrow it to I, and then call operations in interface I on the consumer.
Mutual agreement about I is needed between the supplier and consumer. If they do
agree, the narrow operation will fail.

As noted above, a TypedPushConsumer must support the push operation, inherited
from CosEventComm::PushConsumer. Implementing push fully is an unnecessary
burden if the consumer is intended for typed use only. It is therefore permissible to
implement a TypedPushConsumer with a null implementation of push that merely
raises the standard CORBA exception NO_IMPLEMENT. Clearly, suppliers must know
this and confine themselves to typed communication with such consumers.

#include “CosEventComm.idl”

module CosTypedEventComm {

interface TypedPushConsumer : CosEventComm::PushConsumer {
Object get_typed_consumer();

};

interface TypedPullSupplier : CosEventComm::PullSupplier {
Object get_typed_supplier();

};

};

interface TypedPushConsumer : CosEventComm::PushConsumer {
Object get_typed_consumer();

};
4-22 CORBAservices March 1995

4

d

lar

ot

only.

gle
4.7.2 The TypedPullSupplier Interface

A typed pull-style supplier supports the TypedPullSupplier interface both to allow
consumers to pull event data in the generic manner, and to supply a specific type
interface through which they can pull it in typed form.

The TypedPullSupplier can behave just like an untyped PullSupplier, described in
section 4.3.3. In addition, if the consumer wishes to pull event data from the supplier
in typed rather than generic form, it first invokes the get_typed_supplier
operation. This returns a Pull<I>-reference supporting an interface Pull<I> . The
particular interface, Pull<I> , that the reference supports is dependent on the particu
TypedPullSupplier. The return type of the operation is Object, because different
TypedPullSuppliers will return references of different types, so the actual type cann
be specified in a general definition. Once the consumer has obtained the Pull<I>-
reference, it can narrow it to Pull<I> , and then call operations in interface Pull<I> on
the supplier. Mutual agreement about Pull<I> is needed between the supplier and
consumer. If they do not agree, the narrow operation will fail.

As noted above, a TypedPullSupplier must support the pull and try_pull
operations, inherited from CosEventComm::PullSupplier. Implementing these
operations fully is an unnecessary burden if the supplier is intended for typed use
It is therefore permissible to implement a TypedPullSupplier with null implementations
of pull and try_pull that merely raise the standard CORBA exception
NO_IMPLEMENT. Clearly, consumers must know this and confine themselves to typed
communication with such suppliers.

4.8 Typed Event Channels

Typed event channels are analogous to generic event channels, but they support both
typed and generic event communication. These forms can be mixed at will. A sin
channel can handle events supplied and consumed in any combination of the forms
defined earlier (push/pull, generic/typed). An event supplied in typed form can be
consumed in generic form, or vice versa.4

4.Doing this does require an understanding on the part of the generic suppliers and consumers of how the
channel packages parameters of typed calls when converting them to generic form. Details of this
packaging are dependent on the implementation of the channel.

interface TypedPullSupplier : CosEventComm::PullSupplier {
Object get_typed_supplier();

};
Event Service: v1.0 Typed Event Channels March 1995 4-23

4

ns
4.9 The CosTypedEventChannelAdmin Module

The CosTypedEventChannelAdmin module defines the interfaces for making
connections between suppliers and consumers that use either generic or typed
communication. It is defined in Figure 4-14. Most of its interfaces are specializatio
of the corresponding interfaces in the CosEventChannel module defined in
Figure 4-10.
4-24 CORBAservices March 1995

4

Figure 4-14 The CosTypedEventChannelAdmin Module

#include “ CosEventChannel.idl”
#include “CosTypedEventComm.idl”

module CosTypedEventChannelAdmin {

exception InterfaceNotSupported {};
exception NoSuchImplementation {};
typedef string Key;

interface TypedProxyPushConsumer :
CosEventChannelAdmin::ProxyPushConsumer,
CosTypedEventComm::TypedPushConsumer { };

interface TypedProxyPullSupplier :
 CosEventChannelAdmin::ProxyPullSupplier,

CosTypedEventComm::TypedPullSupplier { };

interface TypedSupplierAdmin :
CosEventChannelAdmin::SupplierAdmin {

TypedProxyPushConsumer obtain_typed_push_consumer(
 in Key supported_interface)

raises(InterfaceNotSupported);
ProxyPullConsumer obtain_typed_pull_consumer (

in Key uses_interface)
 raises(NoSuchImplementation);

};

interface TypedConsumerAdmin :
CosEventChannelAdmin::ConsumerAdmin {

TypedProxyPullSupplier obtain_typed_pull_supplier(
in Key supported_interface)

raises (InterfaceNotSupported);
ProxyPushSupplier obtain_typed_push_supplier(

in Key uses_interface)
raises(NoSuchImplementation);

};

interface TypedEventChannel {
TypedConsumerAdmin for_consumers();
TypedSupplierAdmin for_suppliers();
void destroy ();

};
};
Event Service: v1.0 The CosTypedEventChannelAdmin Module March 1995 4-25

4

 to

 a
4.9.1 The TypedEventChannel Interface

This interface is analogous to CosEventChannelAdmin::EventChannel .
However, it returns typed versions of the consumer and supplier administration
interfaces, which are capable of providing proxies for either generic or typed
communication.

4.9.2 The TypedConsumerAdmin Interface

The TypedConsumerAdmin interface defines the first step for connecting consumers
typed event channel; clients use it to obtain proxy suppliers.

The obtain_typed_pull_supplier operation takes a Key parameter that
identifies an interface, Pull<I> . The scope of the key is the typed event channel. It
returns a TypedProxyPullSupplier for interface Pull<I> . The TypedProxyPullSupplier
will allow an attached pull consumer to pull events either in generic form or using
operations in interface Pull<I> . It is up to the implementation of
obtain_typed_pull_supplier to create or find an appropriate
TypedProxyPullSupplier. If it cannot, it raises the exception
InterfaceNotSupported .

The obtain_typed_push_supplier operation takes a Key parameter that
identifies an interface, I. The scope of the key is the typed event channel. It returns
ProxyPushSupplier that calls operations in interface I, rather than push operations. It
is up to the implementation of obtain_typed_push_supplier to create or find
an appropriate ProxyPushSupplier5. If it cannot, it raises the exception
NoSuchImplementation .

interface TypedEventChannel {
TypedConsumerAdmin for_consumers();
TypedSupplierAdmin for_suppliers();
void destroy ();

};

interface TypedConsumerAdmin :
CosEventChannelAdmin::ConsumerAdmin {

TypedProxyPullSupplier obtain_typed_pull_supplier(
in Key supported_interface)

raises (InterfaceNotSupported);
ProxyPushSupplier obtain_typed_push_supplier(

in Key uses_interface)
raises(NoSuchImplementation);

};
4-26 CORBAservices March 1995

4

ce

he

 a

Such a ProxyPushSupplier is guaranteed only to invoke operations defined in interfa
I. Any event on the channel that does not correspond to an operation defined in
interface I is not passed on to the consumer. Such a ProxyPushSupplier is therefore an
event filter based on type.

4.9.3 The TypedSupplierAdmin Interface

The TypedSupplierAdmin interface defines the first step for connecting suppliers to t
typed event channel; clients use it to obtain proxy consumers.

The obtain_typed_push_consumer operation takes a Key parameter that
identifies an interface, I. The scope of the key is the typed event channel. It returns
TypedProxyPushConsumer for I. An attached supplier can provide events by using
operations in interface I. It is up to the implementation of
obtain_typed_push_consumer to create or find an appropriate
TypedProxyPushConsumer. If it cannot, it raises the exception
InterfaceNotSupported .

The obtain_typed_pull_consumer operation takes a Key parameter that
identifies an interface, Pull<I>. The scope of the key is the typed event channel. It
returns a ProxyPullConsumer that calls operations in interface Pull<I> , rather than
pull operations. It is up to the implementation of
obtain_typed_pull_consumer to create or find an appropriate
ProxyPullConsumer. If it cannot, it raises the exception NoSuchImplementation .

Such a ProxyPullConsumer is guaranteed only to invoke operations defined in
interface Pull<I> . Any event request that does not correspond to an operation defined
in interface Pull<I> is not pulled from the supplier. Such a ProxyPullConsumer is
therefore an event filter based on type.

5.see Appendix A for implementation considerations.

interface TypedSupplierAdmin :
CosEventChannelAdmin::SupplierAdmin {

TypedProxyPushConsumer obtain_typed_push_consumer(
 in Key supported_interface)

raises(InterfaceNotSupported);
ProxyPullConsumer obtain_typed_pull_consumer (

in Key uses_interface)
 raises(NoSuchImplementation);

};
Event Service: v1.0 The CosTypedEventChannelAdmin Module March 1995 4-27

4

ent
4.9.4 The TypedProxyPushConsumer Interface

The TypedProxyPushConsumer interface defines the second step for connecting push
suppliers to the typed event channel.

• By inheriting from both CosEventChannelAdmin::ProxyPushConsumer
and CosTypedEventComm::TypedPushConsumer , this interface supports:

• Connection and disconnection of push suppliers, exactly as in the generic ev
channel,

• Generic push operation and

• Obtaining the typed view, so that the supplier can use typed push
communication. The reference returned by get_typed_consumer has the
interface identified by the Key used when this TypedProxyPushConsumer was
obtained. (See section 4.9.3)

4.9.5 The TypedProxyPullSupplier Interface

The TypedProxyPullSupplier interface defines the second step for connecting pull
consumers to the typed event channel.

By inheriting from both CosEventChannelAdmin::ProxyPullSupplier and
CosTypedEventComm::TypedPullSupplier , this interface supports:

• Connection and disconnection of pull consumers, exactly as in the generic event
channel,

• Generic pull and try_pull operations and

• Obtaining the typed view, so that the consumer can use typed pull
communication. The reference returned by get_typed_supplier supports
the interface identified by the Key used when this TypedProxyPullSupplier was
obtained. (See section 4.9.2).

4.10 Composing Event Channels and Filtering

The event channel administration operations defined in section 4.5 support the
composition of event channels. That is, one event channel can consume events
supplied by another. This architecture allows the implementation of an event channel
that filters the events supplied by another.

interface TypedProxyPushConsumer :
CosEventChannelAdmin::ProxyPushConsumer,
CosTypedEventComm::TypedPushConsumer { };

interface TypedProxyPullSupplier :
 CosEventChannelAdmin::ProxyPullSupplier,

CosTypedEventComm::TypedPullSupplier { };
4-28 CORBAservices March 1995

4

l
are

be
Since the ProxyPushSupplier for interface I of a typed event channel only pushes
events that correspond to I, it acts as a filter based on type. Similarly, the
ProxyPullConsumer for interface Pull<I> of a typed event channel only pulls events
that correspond to Pull<I> , it also acts as a filter based on type.

4.11 Policies for Finding Event Channels

The Event Service does not establish a policy for finding event channels. Finding a
service is orthogonal to using the service. Higher levels of software (such as the
desktop) can make policies for using the event channel. That is, higher layers wil
dictate when an event channel is created and how references to the event channel
obtained. By representing the event channel as an object, it has all of the properties
that apply to objects, including support by finding mechanisms.

For example, when a user performs a drag-and-drop or cut-and-paste
operation, an event channel could be created and identified to suppliers and consumers.
Alternatively, the event channel could be named in a naming context, or it could
exported through an operation on an object.
Event Service: v1.0 Policies for Finding Event Channels March 1995 4-29

4

ld
 be

els

his

e,

ll

e
 Appendix A Implementing Typed Event Channels

Note – Implementation details do not form part of an OMG specification, and shou
not be standardized. On the other hand, it is not obvious that typed channels can
implemented without extensions to CORBA. This section indicates one strategy for
implementing typed event channels. It is included to show that typed event chann
can be implemented; it is not intended in any way to constrain implementations.
Optimized implementations are certainly possible.

Figure 4-15 demonstrates a possible implementation of a typed event channel. T
appendix concentrates on push style communication. The implementation of pull-style
communication is analogous.

The implementation interposes an encoder between typed-style suppliers and the
channel and a decoder between the channel and typed-style consumers.

Figure 4-15 A possible implementation of a typed event channel.

At the supplier end, an encoder converts operation calls to push calls.

At the consumer end, a decoder converts push calls back to operation calls.

The effect of such a communication is thus that the original operation is eventually
called on the consumer, but the communication is routed via the channel. Of cours
there can be multiple suppliers and multiple consumers on the same channel.
Whenever one of the suppliers calls an operation, it is delivered by the channel to a
consumers.

The encoder must package the operation identification and the parameters in a manner
that the decoder can unpack them correctly.

Given the OMG IDL definition of an interface, I, an encoder generator could generat
an implementation that supports the interface I and converts all calls on this interface
to push calls on an event channel.

Similarly, it is possible to generate an I-decoder from the OMG IDL definition of I.

event

typedtyped
supplierconsumer

I
channel

PCPCI

PC = PushConsumer

encoderdecoder

 I = interface I
4-30 CORBAservices March 1995

4

he
er

ting
 the
The typed event channel is responsible for finding, creating or implementing the
appropriate encoders. An appropriate encoder is found or created in response to t
obtain_typed_push_consumer request on the typed event channel. The encod
is returned in response to the get_typed_consumer request.

Similarly, the typed event channel is responsible for finding, creating or implemen
the appropriate decoders. An appropriate decoder is found or created in response to
connect_push_consumer request on the typed event channel.

Implementing Typed Event Channels Policies for Finding Event Channels March 1995 4-31

4

en
te

 Appendix B An Event Channel Use Example

This section illustrates an example use of the event channel, including the following:

• Creating an event channel

• Consumers and/or suppliers finding the channel

• Suppliers using the event channel

• In this example, the document object creates event channels and defines
operations in its interface to allow consumers to be added.

• The Document interface defines two operations to return event channels:

The title_changed operation causes the document to generate an event wh
its title is changed; the new_section operation causes the document to genera
an event when a new section is added. Both operations return ConsumerAdmin
object references. This allows consumers to be added to the event channel.

• The title_changed implementation contains instance variables for using and
administering the event channels.

interface Document {

ConsumerAdmin title_changed();

ConsumerAdmin new_section();

:

};

/* Factory for creating event channels. */
EventChannelFactoryRef ecf;

/* For title changed event channel */
EventChannelRef event_channel;

ConsumerAdminRef consum_admin;
SupplierAdminRef supplier_admin;

ProxyPushConsumerRef proxy_push_consumer;
PushSupplierRef doc_side_connection;
4-32 CORBAservices March 1995

4

l
• At some point, the document implementation creates the event channel, gets
supplier and consumer administrative references, and adds itself as a supplier6.

• The title_changed operation returns the ConsumerAdmin object reference.

Clients of this operation can add consumers.

• When the title changes, the document implementation pushes the event to the
channel.

The document implementation similarly initializes, exports, and uses the event channe
for reporting new sections.

6.For readability, exception handling is omitted from these code fragments.

event_channel = ecf->create_eventchannel(env);

supplier_admin = event_channel->for_suppliers(env);
consumer_admin = event_channel->for_consumers(env);
proxy_push_consumer = supplier_admin->obtain_push_consumer(env);

proxy_push_consumer->connect_push _supplie r(env,
doc_side_connection)

return consumer_admin;

proxy_push_consumer->push(env,data);
Event Channel Use Example Policies for Finding Event Channels March 1995 4-33

4

4-34 CORBAservices March 1995

Persistent Object Service Specification 5

5.1 Introduction

The goal of the Persistent Object Service (POS) is to provide common interfaces to the
mechanisms used for retaining and managing the persistent state of objects. The
Persistent Object Service will be used in conjunction with other object services, for
example, naming, relationships, transactions, life cycle, and so forth. The Persistent
Object Service has the primary responsibility for storing the persistent state of objects,
with other services providing other capabilities.

Figure 5-1 Roles in the Persistent Object Service

Client

Object

Persistent Object Service

Dynamic state

Persistent state

Object Reference
CORBAservices March 1995 5-1

5

t

ment

the
,

o

no

ill in

.

to the

ols
Figure 5-1 shows the participants in the Persistent Object Service. The state of the
object can be considered in two parts, the dynamic state, which is typically in memory
and is not likely to exist for the whole lifetime of the object (for example, it would not
be preserved in the event of a system failure), and the persistent state, which the object
could use to reconstruct the dynamic state.

Although the ORB provides the ability for an object reference to be persistent, it
cannot ensure that the state of the object will be available just because the objec
reference is still valid.

The object ultimately has the responsibility of managing its state, but can use or
delegate to the Persistent Object Service for the actual work. There is no require
that any object use any particular persistence mechanism. For example, it may write its
data to files using non-CORBA interfaces, or a single-level-store mechanism may be
used. However, the Persistent Object Service provides capabilities that should be
useful to a wide variety of objects.

Whether or not the client of an object is aware of the persistent state is a choice
object has. CORBA already provides a persistent reference handling interface (i.e.
object_to_string, string_to_object, release, etc.). We expect that this will be sufficient
for most clients to manage persistence of their referenced objects. But, because certain
kinds of flexibility require the client to manage reference objects’ persistence, the
Persistent Object Service defines object interfaces for doing so. If this flexibility is not
required, then these interfaces need not be supported or used.

The size, structure, access patterns and other properties of the dynamic and persistent
state of the object varies tremendously. For many objects, their primary semantics are
the efficient storage and access of its state for particular purposes. It is critical that the
Persistent Object Service be able to support greatly different styles of usage and
implementation in order to be useful to as many objects as possible.

As usual for object services, the primary task of this persistence specification is t
define the interfaces that are needed to use the Persistent Object Service, and the
conventions for how objects can work together using it.

The architecture of the Persistent Object Service defines multiple components and
interfaces. In a particular situation, different parts of the service may be used. In
case does this specification assume the use of a particular implementation of a
component, and it is expected that different implementations of the components w
fact work together.

Section 5.2 describes the overall goals and properties of the Persistent Object Service
 Section 5.3 defines the components which compose it. Section 5.4 presents the
CosPersistencePID module which defines the Persistence Identifier (PID). Section 5.5
presents the CosPersistencePO module with interfaces borne by Persistent Objects, and
Section 5.6 presents the interface to the Persistent Object Manager (POM). Section 5.7
presents an overview of the Persistent Data Service (PDS) which interfaces both
Protocol which communicates between PO and PDS, and to the Datastore which
actually stores the data; following this, Section 5.8 defines the CosPersistencePDS
Module which defines base functionality inherited by every protocol. Three protoc
are presented in this specification although more are possible; the Direct Access
5-2 CORBAservices March 1995

5

ata

ides

.

ake

t

bject

ot

r of
Protocol (PDS_DA) is described in Section 5.9 and its IDL module is presented in
Section 5.10. The ODMG-93 Protocol is described in Section 5.11. The Dynamic D
Object (DDO) Protocol is described in Section 5.12, and its IDL module is presented
in Section 5.13. Other possible protocols are discussed briefly in Section 5.14. One
possible datastore, implementable using a number of database and file mechanisms, is
described in Section 5.15; other possible datastores are discussed in Section 5.16.
Finally, Section 5.18 lists outside works referenced in this chapter.

5.2 Goals and Properties

The Persistent Object Service plays a key role in structuring the object system. The
model of how many objects work is critically dependent on consistent and integrated
use of persistence. Like other object services, the Persistent Object Service prov
interfaces that can support different implementations in order to obtain different
qualities of service. Those interfaces allow different components to work together

The overall persistence architecture has multiple components. Each will be introduced
in turn in this section, following presentation of some basic capabilities and properties
provided by the overall architecture.

5.2.1 Basic Capabilities

The principle requirement to be supported is the need for an object to be able to m
all or part of its state be persistent. Although the CORBA system defines object
references as persistent (that is, they are usable until they are released regardless of the
life time of their containing address space), it defined no particular way for the objec
to make its state persistent. The Persistent Object Service is intended ultimately to be
the most common way to implement this. Therefore, there must be a way for the o
to decide what state needs to be made persistent, and ways to store and retrieve that
state.

It is often necessary to expose the persistent state from an object, so that the client can
control the object’s persistence to achieve certain types of flexibility. The Persistent
Object Service defines a convention for doing this. Clients of objects sometimes need
ways to refer to the persistent state, and request various operations on it. It is often n
necessary to expose the persistent state from an object, so that the object
implementation itself determines its persistence. In these cases, no persistence-specific
object interfaces need be supported.

5.2.2 Object-oriented Storage

In existing non-object-oriented systems, persistence is accomplished by a numbe
data storage mechanisms. Generally, such mechanisms do not provide the key
properties that object systems provide—uniform interfaces, self-description, and
abstraction. The Persistent Object Service brings these properties to storage by
applying object technology and principles.
Persistent Object Service: v1.0 Goals and Properties March 1995 5-3

5

efined

ng

t

ntation

te

rove
ire

t the

 in a

is is
Interfaces to Data

To manage object persistence, the POS defines an architecture with interfaces d
using the CORBA IDL type system. Whether detailing the particular data to be stored,
describing the protocol for accessing the state, or defining the convention for maki
state visible for client control, the same “language” is used. This makes persistence a
natural part of the software environment. These interfaces are designed to be used in a
wide variety of situations, creating uniformity by encouraging most objects to suppor
them, while allowing optimization and evolution.

By accessing data through an interface, many problems of data manipulation and
exchange can be avoided. For example, programs always see data in the represe
that is appropriate for the machine, programming language, etc., of the application.
Data can be translated as needed to facilitate use in different object types and
implementations and for different storage formats or underlying persistent storage
mechanisms (e.g. stream files, record files, or various databases) when it is accessed
through the interface.

Self-description

A powerful characteristic of object-oriented systems is that the elements are self-
describing. It is possible to determine from an object what kind of object it is and what
interfaces it supports. In the persistence architecture this means, for example, that a
client can determine whether or not an object wishes to make its persistent state visible
by checking to see if the object supports the interface for doing so.

It also means that the data can be manipulated to some degree independently of the
objects whose state they represent. This can allow generic facilities such as backup,
migration, storage accounting, etc., to be done independent of the objects whose sta
is being stored.

Abstraction

In order to support a wide and evolving set of uses, a service must be able to imp
and replace its implementations without affecting the clients of that service. The des
for reuse of objects requires that those objects not depend too strictly on other objects
and services, but rather be willing to work with any other components that suppor
required interface.

A variety of value-added products are also possible assuming that the objects depend
only on the defined interfaces. By interposing unexpected implementations, for
example, it may be possible to support features such as replication or versioning
transparent way.

5.2.3 Open Architecture

A major feature of the Persistent Object Service (and the OMG architecture) is its
openness. In this case, that means that there can be a variety of different clients and
implementations of the Persistent Object Service, and they can work together. Th
5-4 CORBAservices March 1995

5

ts
for

l,
ture

r
 Name
y

g and

ment

s to be

t yet

 only

particularly important for storage, where the mechanisms that are useful for documen
may not be appropriate for employee databases, or the mechanisms appropriate
mobile computers may not be appropriate for mainframes.

Implementations can be lightweight, consisting of mostly library code, or powerfu
leveraging decades of experience with database systems. Of course, the architec
specifies several interfaces, but also shows how new interfaces can be introduced when
needed while still exploiting the rest of the architecture.

As with other object services, the Persistent Object Service is intended to be part of a
collection of services. As a result, it does not attempt to solve all problems that might
relate to storage. Rather, it assumes other services will provide the solutions. Fo
example, the Persistent Object Service does not do naming, but assumes that the
Service will perform that function; it does not do transactions, but assumes that the
will be added as appropriate; it does not handle issues of general compound objects,
but assumes that there will be a scheme that spans persistence, lifecycle, printin
other services.

A key idea in object systems that is critical for persistence is the ability for new and
existing storage services to be able to integrate into the architecture. The require
for such components to “plug and play” together is paramount, since one cannot expect
all data to be maintained in a particular kind of file or database system. Thus, the
architecture has features to allow existing databases or other storage mechanism
used for persistence, and for new storage mechanisms to be developed that can support
both Persistent Object Service clients and other kinds of clients.

The POS architecture is open with respect to PersistentDataService, Datastore,
Protocol, and PID interfaces. Although we define some minimum requirements for
these in some cases, many alternatives are allowed, including ones that have no
been defined.

5.2.4 Views of Service

There are multiple views of the service, and each participant may need to consider
a part of the architecture.

Client

It is common for clients of objects to need to control or to assist in managing
persistence. In particular, the timing of when the persistent state is preserved or
restored, and the identification of which persistent state is to be used for an object, are
two aspects often of interest to clients. The ability of a client to see the object and its
data separately allows different object implementations to be used with the same data
and allows different files or databases and formats to be used with the same object
implementation.

However, the client need only deal with such complexity when this type of
functionality is necessary. The client of the object can be completely ignorant of the
persistence mechanism, if the object chooses to hide it.
Persistent Object Service: v1.0 Goals and Properties March 1995 5-5

5

t

t is

n

 of

e

data
y
re.

f a

een
The Persistent Object Service provides an interface for objects to use when they want
to expose their persistence to their clients. The interface does not completely abandon
encapsulation, but gives the client visibility to those functions it needs. In fact, the
client is generally unaware of how or if the object uses other parts of the Persisten
Object Service.

Object Implementation

The object has the most involvement with the persistence, and the most options in
deciding how to use it. Defining and manipulating the persistent state of the objec
often the most crucial part of its implementation. The first decision the object makes is
what interface to its data it needs. The Persistent Object Service captures that choice i
the selection of the Protocol used by the object. Some Protocols provide simple
interfaces and limited functionality, others may provide more control and more
powerful operations.

The object also has the choice of delegating the management of its persistent data to
other services, or maintaining fine-grained control over it. The Persistent Object
Service defines a Persistent Object Manager that handles much of the complexity
establishing connections between objects and storage, allowing new components to be
introduced without affecting the objects or their clients.

The object may also provide the ability for its clients to manipulate its persistent stat
in various ways. This is important for creating a uniform view of persistence in the
system.

Persistent Data Service

The Persistent Data Service (PDS) actually implements the mechanism for making
persistent and manipulating it. A particular PDS supports a Protocol defining the wa
data is moved in and out of the object, and an interface to an underlying Datasto

The PDS has the responsibility of translating from the object world above it to the
storage world below it. It plays critical roles in identifying the storage as well as
providing convenient and efficient access to it.

We define multiple kinds of PDSs, each tuned to a particular protocol and data storage
mechanism, since the range of requirements for performance, cost, and qualitative
features is so large. Multiple PDSs must work together to create the impression o
uniform persistence mechanism. The Persistent Object Manager provides the
framework for PDSs to cooperate this way.

Datastore

The lowest-level interface we define is a Datastore. Although Datastore interfaces are
the least visible part of the persistence architecture, it may be the most valuable, since
there are so many different Datastores offering a wide spectrum of tradeoffs betw
availability, data integrity, resource consumption, performance and cost, and it is
5-6 CORBAservices March 1995

5

e
t

h

y

e

an

ta
expected that more will be created. By having an interface that is hidden from objects
and their clients, a Datastore can provide service to any and all objects that indirectly
use the Datastore interface.

The Datastore plays a key role in interoperating with other storage services. It is th
manifestation in the object world of the various means of storing data that are no
objects. Generally, standards for Datastore interfaces have already been defined for
different kinds of data repositories - relational, object-oriented, and file systems.

5.3 Service Structure

This section presents an overview of each of the major components and how they
interrelate. Subsequent sections present the OMG IDL as divided into modules whic
correspond closely (but not exactly) to these components, as noted below.

The major components of the Persistent Object Service are illustrated in Figure5-1 on
page 1. They are:

• Persistent Identifier (PID) - This describes the location of an object’s persistent data
in some Datastore and generates a string identifier for that data.

• Persistent Object (PO) - This is an object whose persistence is controlled externall
by its clients.

• Persistent Object Manager (POM) - This component provides a uniform interface
for the implementation of an object’s persistence operations. An object has a single
POM to which it routes its high-level persistence operations to achieve plug and
play.

• Persistent Data Service (PDS) - This component provides a uniform interface for
any combination of Datastore and Protocol, and coordinates the basic persistenc
operations for a single object.

• Protocol - This component provides one of several ways to get data in and out of
object.

• Datastore - This component provides one of several ways to store an object’s da
independently of the address space containing the object.
Persistent Object Service: v1.0 Service Structure March 1995 5-7

5

y
Figure 5-2 Major Components of the POS and their Interactions

The term “persistent object” is used to refer both to objects whose persistence is
controlled internally or externally. Either kind of persistent object can be supported b
the Persistent Object Service’s POM, PDS, Protocol and Datastore interfaces. The PO
interface supports externally controlled persistence.

5.4 The CosPersistencePID Module

The CosPersistencePID module contains the basic interface for retrieving a PID:

• The PID Interface

This section describes this interface, plus an example factory interface, and their
operations in detail.

Client

PersistentObjectManager

PersistentDataService

Datastore

Protocol

Persistent Object PO

PDS

POM

PID Persistent Identifier
5-8 CORBAservices March 1995

5

same
The CosPersistencePID Module is shown in Figure 5-3: .

The PID identifies one or more locations within a Datastore that represent the
persistent data of an object and generates a string identifier for that data. An object
must have a PID in order to store its data persistently. The client can create a PID,
initialize its attributes, and connect it to the object. A persistent object’s
implementation uses the POM interface by passing the object and the PID as
parameters.

The PID should not be confused with the CORBA object reference (OID). They are
similar in that both have an operation that produces a string form that can be stored or
communicated in whatever ways strings may be manipulated and later used to get the
original PID or OID. They differ in that the PID identifies data while the OID
identifies a CORBA object.

For example, assume mySpreadSheet object is referenced by both myDoc and yourDoc
objects. If mySpreadSheet’s OID is stored persistently with myDoc and yourDoc and
then all three are brought into memory, then both documents will always see the
spreadsheet object. If mySpreadSheet’s PID is stored persistently with myDoc and
yourDoc and then all three object are brought into memory, each document will see a
different spreadsheet object whose states will be the same initially but will diverge
over time.

5.4.1 PID Interface

The OMG IDL definition for the PID is as follows

The PID contains at least one attribute:

module CosPersistencePID {

interface PID {
attribute string datastore_type;
string get_PIDString();

};

};

Figure 5-3 The CosPersistencePID Module

interface PID {
 attribute string datastore_type;

string get_PIDString();
 };
Persistent Object Service: v1.0 The CosPersistencePID Module March 1995 5-9

5

a
tes
tores.

a
attribute string datastore_type;
This identifies the interface of a Datastore. Example datastore_types
might be “DB2”, “ PosixFS ” and “ObjectStore ”. The PDS hides the
Datastore’s interface from the client, the ppersistent object and the POM, but
PDS implementations are dependent on the Datastore’s interface.

Other attributes can be added via subtyping the PID base type to reflect more
specialized PIDs. Unless the datastore_type contains only a single object’s
persistent data, there is a need for more specific location information in the PID. The
following example PID subtypes illustrate this:

The PID provides a single operation:

string get_PIDString();
This operation returns a string version of the PID called the PIDString. A client
should only obtain the PIDString using the get_PIDString operation. This
allows the PID implementation to decide the form of the PIDString.

Some implementations may simply concatenate the PID attributes. Others may return a
more compact form specialized for specific Datastores or even databases within
Datastore. Still others may return a universally unique identifier (UUID) that facilita
movement of its persistent data either within a single Datastore or between Datas
A UUID-based PID might be implemented by overriding the get and set attribute
operations and the get_PIDString operation to bind and lookup the mapping between
UUID and location information in a special context in the Name Service. Using such
UUID-based PID, when an object is moved, the new location would be changed by
setting the attributes to indicate the new location, and the PID would make the
modification in the Name Service. The PIDString would contain the UUID that does
not change when an object’s data is moved, so that references remain intact.

Some applications need to be able to restore an object given a PID but without
knowing which type or implementation to use. The PID can be subtyped to
accommodate this by adding the type or implementation as a PID attribute.

#include "CosPersistencePID.idl"

interface PID_DB : CosPersistencePID::P ID {
attribute string database_name; // name of a database

};

interface PID_SQLDB : PID_DB {
attribute string sql_statement; // SQL statement

};

interface PID_O ODB : PID_DB {
attribute string segment_name;// segment within database
attribute unsigned long oid; // object id w ithin a segment

} ;
5-10 CORBAservices March 1995

5

y
5.4.2 Example PIDFactory Interface

The OMG IDL definition for an example PIDFactory is as follows (others are also
possible):

This example PIDFactory provides three ways of creating a PID:

CosPersistencePID::PID create_PID_from_key(in string key);
This creates an instance of a PID given a key that identifies a particular PID
implementation.

CosPersistencePID::PID create_PID_from_string(in string pid_string);
This creates an instance of a PID given a PIDString. The PIDString must include
some way to identify a particular PID implementation (the PID’s key) in some
way that allows this operation to extract the PID’s key from the PIDString. This
key identifies the PID implementation for the newly created PID.

CosPersistencePID::PID create_PID_from_string_and_key(in string pid_string, in
string key);

This creates an instance of a PID whose implementation is identified by the ke
in the input parameter instead of the key in the PIDString, and whose value is
determined by the PIDString. This is useful for when persistent data is moved
between Datastores that require different PID interfaces.

5.5 The CosPersistencePO Module

The CosPersistencePO Module collects the interfaces which are borne by a persistent
object to allow its clients and the POM to control the PO’s relationship with its
persistent data. This module includes two interfaces:

• The PO Interface

• The SD Interface

plus an example factory interface.

The PO interface is borne by the PO and used by the client. The SD interface is borne
by the PO and used by the POM.

This section describes these interfaces and their operations in detail.

interface PIDFactory {
CosPersistencePID:: PID create_PID_from_key(in string key);
CosPersistencePID:: PID create_PID_from_string (

i n string pid_string);
CosPersistencePID:: PID create_PID_from_string_and_key(

in string pid_string, in string key);
};
Persistent Object Service: v1.0 The CosPersistencePO Module March 1995 5-11

5

trol

nd its

O and

 its

tions

The CosPersistencePO Module is shown in Figure 5-4::

5.5.1 The PO Interface

The PO interface provides two mechanisms for allowing a client to externally con
the PO’s relationship with its persistent data:

• Connection: This mechanism establishes a close relationship between the PO a
Datastore where the two data representations can be viewed as one for the duration
of the connection. When the connection is ended, the data is the same in the P
the Datastore, and the relationship between them no longer exists. An object can
have only one connection at a time.

• Store/restore: These operations allow the client to move data between the PO and
Datastore in each direction separately, with each movement in each direction
explicitly initiated by the client.

The PO interface operations allow client control of a single PO’s persistent data. When
one of these operations is performed on a PO, what data is included in these opera
is up to that PO’s implementation. For example, only part of the PO’s private data may
be included. Other POs may be included based on any criteria. If other POs are
included, the target PO’s implementation becomes their client and is responsible for
controlling their persistence.

A PO client is responsible for the following:

• Creating a PID for the PO and initializing the PID. For storage, whatever location
information is not specified will be determined by the Datastore. For a retrieval or
delete operation, the location information must be complete.

#include "CosPersistencePDS.idl"
// CosPersistencePDS.idl #includes CosPersistencePID.idl

module CosPersistencePO {

interface PO {
attribute CosPersistencePID::PID p;
CosPersistencePDS:: PDS connect (

in CosPersistencePID::PID p);
void disconnect (in CosPersistencePID::PID p);
void store (in CosPersistencePID::PID p);
void restore (in CosPersistencePID::PID p);
void delete (in CosPersistencePID::PID p);

};

interface SD {
void pre_store();
void post_restore();

};
};

Figure 5-4 TheCosPersistencePO Module
5-12 CORBAservices March 1995

5

is

tion
ot

 by

e

• Controlling the relationship between the data in the PO and the Datastore. This
done by asking the PO to connect(), disconnect(), store(), restore() or delete() itself.

The OMG IDL definition for a PO is as follows:

The PO interface has the following operations:

CosPersistencePDS::PDS connect (in CosPersistencePID::PID p);
This begins a connection between the data in the PO and the Datastore location
indicated by the PID. The persistent state may be updated as operations are
performed on the object. This operation returns the PDS that handles persistence
for use by those Protocols that require the PO to call the PDS.

void disconnect (in CosPersistencePID::PID p);
This ends a connection between the data in the PO and the Datastore loca
indicated by the PID. It is undefined whether or not the object is usable if n
connected to persistent state. The PID can be nil.

void store (in CosPersistencePID::PID p);
This copies the persistent data out of the object in memory and puts it in the
Datastore location indicated by the PID. The PID can be nil.

void restore (in CosPersistencePID::PID p);
This copies the object’s persistent data from the Datastore location indicated
the PID and inserts it into the object in memory. The PID can be nil.

void delete (in CosPersistencePID::PID p) ;
This deletes the object’s persistent data from the Datastore location indicated by
the PID. The PID can be nil.

To adhere to the plug and play philosophy, objects pass these requests through to the
POM, so that the interface for PO parallels that of the POM. This delegation to th
POM allows objects to change PDSs (combination of Datastore and Protocol) without
changing their implementation.

interface PO {
attribute CosPersistencePID::P ID p;
CosPersistencePDS:: PDS connect (

i n CosPersistencePID:: PID p) ;
void disconnect (in CosPersistencePID:: PID p) ;
void store (in CosPersistencePID:: PID p) ;
void restore (in CosPersistencePID:: PID p) ;
void delete (in CosPersistencePID:: PID p) ;

};
Persistent Object Service: v1.0 The CosPersistencePO Module March 1995 5-13

5

a.
5.5.2 The POFactory Interface

The OMG IDL definition for an example POFactory is as follows (others are also
possible):

The example POFactory provides the following operation:

CosPersistencePO::PO create_PO(in CosPersistencePID::PID p, in string pom_id);
This creates an instance of a PO that knows which POM to use and with its pid
attribute already assigned.

5.5.3 The SD Interface

Some objects may be implemented knowing they are going to be persistent. Many such
objects have both transient and persistent data. The Synchronized Data (SD) Interface
is provided to allow such objects to synchronize their transient and persistent dat
Operations on the SD are invoked only by the POM. Persistent objects whose
persistence is controlled either internally or externally (PO) can support the SD
interface.

The OMG IDL definition for SD is as follows:

The interface for SD provides two operations:

void pre_store();
This ensures that the persistent data are synchronized with the transient data.

void post_restore();
This ensures that the transient data are synchronized with the persistent data.

A word processing document provides a good example of how these operations might
be implemented. Suppose the document type is implemented with the following data:

• text buffer (persistent)

#include "CosPersistencePO.idl"
// CosPersistencePO.idl #includes CosPersistencePDS.idl
// CosPersistencePDS.idl #includes CosPersistencePID.idl

interface POFactory {
CosPersistencePO::PO create_PO (

in CosPersistencePID::PID p,
in string pom_id);

};

interface SD {
void pre_store();
void post_restore();

};
5-14 CORBAservices March 1995

5

en
a that

and
• attributes (persistent)

• text cache (transient)

• cursor location (transient)

The document could be implemented such that all work is done in the text cache. Th
at store time, the text buffer needs to be updated, since it contains the actual dat
will be stored. As such, the pre_store operation should be implemented such that any
updates in the text cache are propagated to the text buffer. The post_restore
operation should be implemented such that the text cache is inititialized with a state
consistent with the text buffer.

5.6 The CosPersistencePOM Module

The CosPersistencePOM module contains the interface which is borne by the POM
used by the PO. It contains a single interface:

• The POM Interface

This section describes this interface and its operations in detail.

The CosPersistencePOM Module is shown in Figure 5-5:

Figure 5-5 The CosPersistencePOM Module

#include "CosPersistencePDS.idl"
// CosPersistencePDS.idl #includes CosPersistencePID.idl

module CosPersistencePOM {

interface Object;
interface POM {

CosPersistencePDS::PDS connect (
in Object obj,
in CosPersistencePID::PID p);

void disconnect (
in Object obj,
in CosPersistencePID::PID p);

void store (
in Object obj,
in CosPersistencePID::PID p);

void restore (
in Object obj,
in CosPersistencePID::PID p);

void delete (
in Object obj,
in CosPersistencePID::PID p);

};
};
Persistent Object Service: v1.0 The CosPersistencePOM Module March 1995 5-15

5

ally

l)

tion

.

ation
ot

by
Clients of a PO will see the operations of the POM interface indirectly through the PO
interface. The implementation of a persistent object with either externally or intern
controlled persistence can use the POM interface. The POM provides a uniform
interface across all PDSs, so different PDSs (combination of Datastore and Protoco
can be used without changing the object’s implementation.

The OMG IDL definition of the POM is as follows:

The POM interface has the following operations:

CosPersistencePDS::PDS connect (in Object obj, in CosPersistencePID::PID p);
This begins a connection between data in the object and the Datastore loca
indicated by the PID. The persistent state may be updated as operations are
performed on the object. This operation returns the PDS that is assigned the
object’s PID for use by those Protocols that require the PO to call the PDS

void disconnect (in Object obj, in CosPersistencePID::PID p);
This ends a connection between the data in the object and the Datastore loc
indicated by the PID. It is undefined whether or not the object is usable if n
connected to persistent state. The PID can be nil.

void store (in Object obj, in CosPersistencePID::PID p);
This gets the persistent data out of the object in memory and puts it in the
Datastore location indicated by the PID. The PID can be nil.

void restore (in Object obj, in CosPersistencePID::PID p);
This gets the object’s persistent data from the Datastore location indicated
the PID and inserts it into the object in memory. The PID can be nil.

void delete (in Object obj, in CosPersistencePID::PID p);
This deletes the object’s persistent data from the Datastore location indicated by
the PID. The PID can be nil.

interface POM {
CosPersistencePDS:: PDS connect (

in Object obj,
in CosPersistencePID::PID p);

void disconnect (
in Object obj,
in CosPersistencePID::PID p);

void store (
in Object obj,
in CosPersistencePID::PID p);

void restore (
in Object obj,
in CosPersistencePID::PID p);

void delete (
in Object obj,
in CosPersistencePID::PID p);

};
5-16 CORBAservices March 1995

5

s, the

 set
ted

)
ion
 to

 POM

e

e

a
,

B2
The major function of the POM is to route requests to a PDS that can support the
combination of Protocol and Datastore needed by the persistent object. To do thi
POM must know which PDSs are available and which Protocol and Datastore
combinations they support. There are several possible ways that this information can
be made available to a POM:

• How a Protocol is associated with an object. One possibility is for the client to
the Protocol for that object. Another possibility is for the Protocol to be associa
with the object’s type or implementation.

• How a POM finds out the set of available PDSs and which Protocol (or object type
and Datastores they support. One possibility is for the POM to find the informat
in a configuration file or a registry. Another possibility is to provide an interface
the POM for registering the information. The best or most natural technique may
depend on the environment.

Because there are multiple ways to accomplish the above and more experience is
needed to better understand whether there is a best way and what that might be, a
interface for registering this information in the POM is not specified at this time.

When the POM is asked to store an object, the following steps logically occur:

1. From the PID, the POM gets the datastore_type attribute.

2. Regardless of how the Protocol is associated with the object, the POM uses th
combination of Protocol and datastore_type to determine the PDS.

3. The POM passes the store request through to the PDS.

4. The PDS gets data from the object using a Protocol and stores the data in the
Datastore.

The routing function of the POM serves to shield the client from having to know th
details of how actual data storage/retrieval takes place. A client can change the
repository of an object by changing the PID. The change will result in routing the next
store/restore request to whatever the appropriate PDS is for the new Datastore.

Figure 5-6 illustrates an example of the routing logic for the storage of myDoc in
DB2 database. This figure and the following example steps assume that, for this POM
the Protocol is associated with object type:

1. The POM is asked to perform a store on myDoc with pid1.

2. The POM finds the datastore_type associated with pid1 (e.g., DB2).

3. The POM finds the object type of myDoc (e.g., document).

4. The POM determines that myDoc will use a particular PDS (e.g., pds1).

5. The POM routes the store/restore to pds1.

6. The PDS gets the persistent data using protocol1 and stores the data in the D
Datastore at pid1.
Persistent Object Service: v1.0 The CosPersistencePOM Module March 1995 5-17

5

e

ata

Figure 5-6 Example to illustrate POMFunctions

5.7 Persistent Data Service (PDS) Overview

The PDS implementation is responsible for the following:

• Interacting with the object to get data in and out of the object using a protocol.
Protocols are introduced in this section; three example protocols and a discussion of
additional protocols are presented in Section 5.9 through Section 5.14.

• Interacting with the Datastore to get data in and out of the object. Datastores ar
introduced in this section, and an example datastore plus a discussion of
implementing additional datastores are presented in Section 5.15 and Section 5.16.

A PDS performs the work for moving data into and out of an object and moving d
into and out of a Datastore. There can be a wide variety of implementations of PDSs
which provide different performance, robustness, storage efficiency, storage format, or
other characteristics, and which are tuned to the size, structure, granularity, or other
properties of the object’s state.

Because the range of storage requirements is so large, there may be different ways in
which the object can best access its persistent data, and there may be different ways in
which the PDS can store that data. The way in which the object interacts with the PDS

POM

mySpreadSheetmyDoc

datastore_type=DB2
...

datastore_type=ObjectStore
...

pid1 pid2

pds2pds1

DB2 ObjectStore

protocol1
protocol2

pds3

FS

yourDoc

datastore_type=FS
...

pid1

protocol2

document,DB2 pds1
spreadSheet,ObjectStore pds2

document,FS pds3

PDS Registry
object_type,datastore_type PDS
5-18 CORBAservices March 1995

5

t to
nt

r
d”
l,

 can

ase
dule
is called the Protocol. A Protocol may consist of calls from the object to the PDS, calls
from the PDS to the object, implicit operations implemented with hidden interfaces, or
some combination. The interaction might be explicit, for example, asking the objec
stream out its data, or implicit, for example, the object might be mapped into persiste
virtual memory. The Protocol is initiated when an object’s persistent state is stored,
restored, or connected; this may be initiated by a POM or by the object itself. What
happens after that depends on the particular Protocol. An object that uses a particula
Protocol can work with any PDS that supports that Protocol. There is no “standar
protocol. This specification defines three Protocols: the Direct Attribute (DA) Protoco
the ODMG Protocol, and the Dynamic Data Object (DDO) Protocol. A PDS might also
use a programming language-specific or runtime environment-specific or other
Protocol.

A PDS may use either a standard or a proprietary interface to its Datastore. A
Datastore might be a file, virtual memory, some kind of database, or anything that
store information. This specification defines one Datastore interface that can be
implemented by a variety of databases (Section 5.15).

The PDS component interface is specified here as one module containing only the b
PDS interface, plus one additional module per protocol. Each protocol-specific mo
inherits from the base module, augmenting the base functionality as needed.

5.8 The CosPersistencePDS Module

The CosPersistencePDS Module contains the base interface upon which protocol-
specific interfaces are built. It contains a single interface: the PDS Interface.

This section describes this interface and its operations in detail.
Persistent Object Service: v1.0 The CosPersistencePDS Module March 1995 5-19

5

nd on

d

ified
The CosPersistencePDS module is shown in Figure 5-7. Some Protocols may require
specialization of the PDS interface. However, no matter what Protocol or Datastore is
used, a PDS always supports at least the following interface:

The exact semantics of the connect, disconnect, store, and restore operations depe
the Protocol, since there may be other steps involved in the Protocol. In all four
operations, the persistent state is determined by the PID of the object.

PDS connect (in Object obj, in CosPersistencePID::PID p);
This connects the object to its persistent state, after disconnecting any previous
persistent state. The persistent state may be updated as operations are performe
on the object.

void disconnect (in Object obj, in CosPersistencePID::PID p);
This disconnects the object from the persistent state. It is undefined whether or
not the object is usable if not connected to persistent state.

void store (in Object obj, in CosPersistencePID::PID p);
This saves the object’s persistent state.

void restore (in Object obj, in CosPersistencePID::PID p);
This loads the object’s persistent state. The persistent state will not be mod
unless a store or other mutating operation is performed on the persistent state.

void delete (in Object obj, in CosPersistencePID::PID p);
This disconnects the object from its persistent state and deletes the object’s
persistent data from the Datastore location indicated by the PID.

#include "CosPersistencePID.idl"

module CosPersistencePDS {

interface Object;
interface PDS {

PDS connect (in Object obj,
i n CosPersistencePID:: PID p) ;

void disconnect (in Object obj,
i n CosPersistencePID:: PID p) ;

void store (in Object obj,
i n CosPersistencePID:: PID p) ;

void restore (in Object obj,
i n CosPersistencePID:: PID p) ;

void delete (in Object obj,
i n CosPersistencePID:: PID p) ;

};
} ;

Figure 5-7 The CosPersistencePDS Module
5-20 CORBAservices March 1995

5

graph

ct

ied in

using
ate

ting

. The

5.9 The Direct Access (PDS_DA) Protocol

The first protocol to be described here is the PDS_DA or Direct Access Protocol. The
Direct Access Protocol supports direct access to persistent data through typed
attributes organized in data objects that are defined in a Data Definition Language
(DDL). An object using this Protocol would represent its persistent data as one or more
interconnected data objects. For uniformity, the persistent data of an object is
described as a single data object; however, that data object might be the root of a
of data objects interconnected by stored data object references. If an object uses
multiple data objects, the object traverses the graph by following stored data obje
references.

An object must define the types of the data objects it uses. Those types are specif
DDL, which is a subset of the OMG Interface Definition Language (OMG IDL) in
which objects consist solely of attributes. The state of the data object is accessed
the attribute access operations defined in CORBA in conjunction with the appropri
programming language mapping.

Figure 5-8 Direct Access Protocol Interfaces

The PDS_DA Protocol has two parts, as shown in Figure 5-8. When connected to a
PDS, the object (which is effectively the client of the PDS) has an object represen
the PDS which supports the PDS_DA interface. The object performs operations
defined in the PDS_DA interface to get references to the data objects in the PDS
persistent data is manipulated by performing operations using the data object
references to get and set attributes on the collection of data objects in the PDS.

5.10 The CosPersistencePDS_DA Module

The CosPersistencePDS_DA Module is a collection of interfaces which together define
the protocol. This module contains the following interfaces:

• The PID_DA Interface

Object (Client of PDS)

PDS_DA

data objects

i=1
j=4

i=3 x=1
A B x=5

x=0
y=7
z=9

Data Object References PDS Object Reference
Persistent Object Service: v1.0 The Direct Access (PDS_DA) Protocol March 1995 5-21

5

• The DAObject Interface

• The DAObjectFactory Interface

• The DAObjectFactoryFinder Interface

• The PDS_DA Interface

• The DynamicAttributeAccess Interface

• The PDSClustered_DA Interface

This section describes these interfaces and their operations in detail.

The CosPersistencePDS_DA Module is shown in Figure 5-9: :

#include "CosPersistencePDS.idl"
// CosPersistencePDS.idl #includes CosPersistencePID.idl

module CosPersistencePDS_DA {

typedef string DAObjectID;

interface PID_DA : CosPersistencePID::PID {
attribute DAObjectID oid;

};

interface DAObject {
boolean dado_same(in DAObject d);
DAObjectID dado_oid();
PID_DA dado_pid();
void dado_remove();
void dado_free();

};

interface DAObjectFactory {
DAObject create();

};

interface DAObjectFactoryFinder {
DAObjectFactory find_factory(in string key);

};

interface PDS_DA : CosPersistencePDS::P DS {
DAObject get_data();
void set_data(in DAObject new_data);
DAObject lookup(in DAObjectID id);
PID_DA g et_pid();
PID_DA g et_object_pid(in DAObject dao);
DAObjectFactoryFinder data_factories();

} ;

Figure 5-9 The CosPersistencePDS_DA Module
5-22 CORBAservices March 1995

5

sion

ce
5.10.1 The PID_DA Interface

The Persistent Identifiers (PIDs) used by the PDS_DA contain an object identifier that
is local to the particular PDS. This value may be accessed with the following exten
to the CosPersistencePID interface:

The DAObjectID has the following attribute:

attribute DAObjectID oid();
This returns the data object identifier used by this PDS for the data object
specified by the PID.The DAObjectID type is defined as an unbounded sequen
of bytes that may be vendor-dependent.

typedef sequence<string> AttributeNames;
interface DynamicAttributeAccess {

AttributeNames attribute_names();
any attribute_get(in string name);
void attribute_set(in string name, in any value);

};

t ypedef string ClusterID;
typedef sequence<ClusterID> ClusterIDs;
interface PDS_ClusteredDA : PDS_DA{

ClusterID cluster_id();
string cluster_kind();
ClusterIDs clusters_of();
PDS_ClusteredDA c reate_cluster(in string kind);
PDS_ClusteredDA o pen_cluster(in ClusterID cluster);
PDS_ClusteredDA c opy_cluster(

in PDS_DA s ource);
};

};

interface PID_DA : CosPersistencePID::P ID {
attribute DAObjectID oid;

} ;

Figure 5-9 The CosPersistencePDS_DA Module
Persistent Object Service: v1.0 The CosPersistencePDS_DA Module March 1995 5-23

5

ace.

and
erved

ry
5.10.2 The Generic DAObject Interface

The DAObject interface defined below provides operations that many data object
clients need. A Datastore implementation may provide support for these operations
automatically for its data objects. A data object is not required to support this interf
A client can obtain access to these operations by narrowing a data object reference to
the DAObject interface:

The DAObject has the following operations:

boolean dado_same(in DAObject d);
This returns true if the target data object and the parameter data object are the
same data object. This operation can be used to test data object references for
identity.

DataObjectID dado_oid();
This returns the object identifier for the data object. The scope of data object
identifiers is implementation-specific, but is not guaranteed to be global.

PID_DA dado_pid();
This returns a PID_DA for the data object.

void dado_remove();
This deletes the object from the persistent store and deletes the in-memory data
object.

void dado_free();
This informs the PDS that the data object is not required for the time being,
the PDS may move it back to persistent store. The data object must be pres
and must be brought back the next time it is referenced. This operation is only a
hint and is provided to improve performance and resource usage.

5.10.3 The DAObjectFactory Interface

The scheme for factories is consistent with that of the Life Cycle Service. The facto
supports the following interface:

interface DAObject {
boolean dado_same(in DAObject d);
DAObjectID dado_oid();
PID_DA d ado_pid();
void dado_remove();
void dado_free();

};

interface DAObjectFactory {
DAObject create();

} ;
5-24 CORBAservices March 1995

5

S.

ust
The DAObjectFactory has the following operation:

DAObjectFactory create();
creates a new data object in the PDS.

5.10.4 The DAObjectFactoryFinder Interface

This scheme for factories follows the Life Cycle Services specification. The factory
finder supports the following interface:

The DAObjectFactoryFinder has the following operation:

DAObjectFactoryFinder find_factory(in string key);
This finds a factory for data objects as specified by the key.

5.10.5 The PDS_DA Interface

The DA Protocol uses an extended PDS interface called PDS_DA:

The PDS_DA provides the following operations:

DAObject get_data();
This returns the single root data object of the PDS.

void set_data(in DAObject new_data);
This sets the single root data object

DAObject lookup(in DAObjectID id);
This finds a data object by object id.

PID_DA get_pid();
This constructs a PID that corresponds to the single root data object of this PD

PID_DA get_object_pid(in DAObject dao);
This constructs a PID that corresponds to the specified data object, which m
be in this PDS.

interface DAObjectFactoryFinder {
DAObjectFactory find_factory(in string key);

} ;

interface PDS_DA : CosPersistencePDS::PDS {
DAObject get_data();
void set_data(in DAObject new_data);
DAObject lookup(in DAObjectID id);
PID_DA get_pid();
PID_DA get_object_pid(in DAObject dao);
DAObjectFactoryFinder data_factories();

};
Persistent Object Service: v1.0 The CosPersistencePDS_DA Module March 1995 5-25

5

g

ces.

de
one
DAObjectFactoryFinder data_factories();
This returns a factory finder. The factory finder will provide factories for the
creation of new data objects within the PDS.

5.10.6 Defining and Using DA Data Objects

A PDS_DA implements data objects that have a set of attributes defined in a Data
Definition Language (DDL). DDL is a subset of OMG IDL . In DDL, all interfaces
consist only of attributes; that is, there are no operations. The programming interface
for accessing the persistent state is the CORBA-defined attribute access operations as
specified in the particular programming language mapping. A PDS_DA implements
those accessor operations and transfers the persistent state between the Datastore and
data objects as necessary.

DA data objects are used like normal CORBA objects. They are manipulated usin
object references, sometimes called “data object references”. Language mappings to
data object interfaces are generated just like language mappings for other interfa

To define a DA data object (DADO), the developer decides what state must be ma
persistent. For example, suppose the object’s persistent data consists of two values,
integer and one floating point number. The developer would define a data object
interface MyDataObject describing this data:

The DDL definition must be compiled, installed and linked with the object
implementation as necessary for the particular PDS and CORBA environment.
Mechanisms similar to those for creating stubs for IDL interfaces are used to provide
the callable routines and create the runtime information necessary for the PDS
implementation. The precise mechanisms are not defined in this specification.

interface MyDataObject {
attribute short my_short;
attribute float my_float;

} ;
5-26 CORBAservices March 1995

5

ct to

g a
Once the object has been connected to the PDS, the factory operations described above
are used to create the data object and set it as the root object in the PDS. The object
gets or sets values for the attributes using the CORBA accessor operations, for
example:

The DA Protocol allows developers to build simple object implementations that just
read and write attribute values whenever they need to. There is no need for an obje
cache persistent data in its transient store or to explicitly request it to be read or
written.

Attributes can be defined using the full flexibility of the DDL type system. A
particular PDS may restrict the attribute types it supports.

A data object may contain object references to other data objects and to ordinary
CORBA objects. Here is an example that extends the previous example by addin
data object reference attribute and an ordinary CORBA object reference:

// PDS_DA Examples
// C++ code
// Include IDL compiler output from CosPersistencePDS_DA.idl
#include "CosPersistencePDS_DA.xh"
// CosPersistencePDS_DA.idl #includes CosPersistencePDS.idl
// CosPersistencePDS.idl #includes CosPersistencePID.idl
// connect to PDS
CosPersistencePDS_DA::PDS_DA m y_pds =

pom->connect(my_object ,my_PID) ;
// get factory finder
DAObjectFactoryFinder daoff = my_pds->data_factories();
// get factory for MyDataObject
DAObjectFactory my_factory =

daoff->find_factory(“MyDataObject”);
// create an instance of MyDataObject
MyDataObjectRef my_obj = my_factory->create();
// set the object to be the root object
my_pds->set_data(my_obj);
// put persistent state in attributes
my_obj->my_short(42);
my_obj->my_float(3.14159);
// use persistent state
my_obj->my_short(my_obj->my_short()+12);

interface MyDataObject {
attribute short my_short;
attribute float my_float;
attribute MyDataObject next_data;
attribute SomeOtherObject my_object_ref;

};
Persistent Object Service: v1.0 The CosPersistencePDS_DA Module March 1995 5-27

5

 In
nce

e of

d
 this
ons

This example allows an instance of MyDataObject to refer to another instance. A
Datastore implementation might restrict the scope of stored data object references. For
example, it might permit only references to data objects in the same Datastore.

DDL interfaces support inheritance with semantics identical to IDL. In the following
example, a new type of data object is defined that has all the attributes of
MyDataObject, plus an additional integer:

Like other CORBA objects, data objects support operations on object references.
particular, the get_interface operation, which returns an interface repository refere
to the object’s most derived interface, is useful for dynamically determining the typ
a data object.

5.10.7 The DynamicAttributeAccess Interface

Because data objects are CORBA objects, the CORBA Dynamic Invocation Interface
can be used to get and set data object attributes dynamically, using strings to identify
attributes at run time. However, to simplify dynamic access to data object attributes,
the DynamicAttributeAccess interface is defined. This interface defines operations that
allow determination of the names of the attributes of a data object and getting an
setting individual attribute values by name. A data object is not required to support
interface. It can be determined whether or not a data object supports these operati
by narrowing a data object reference to the DynamicAttributeAccess interface.

AttributeNames attribute_names();
This returns a sequence containing the names of the object’s attributes.

any attribute_get(in string name);
This returns the value of the specified attribute.

void attribute_set(in string name, in any value);
This sets the value of the named attribute to the value specified by the any
parameter.

interface DerivedObject : MyDataObject {
attribute short my_extra;

};

typedef sequence<string> AttributeNames;
interface DynamicAttributeAccess {

AttributeNames attribute_names();
any attribute_get(in string name);
void attribute_set(in string name, in any value);

} ;
5-28 CORBAservices March 1995

5

lude

.

s a

y be
5.10.8 The PDS_ClusteredDA Interface

It is often useful to group data objects together within a PDS. Common reasons inc
locking, sharing, performance, etc. The PDS_ClusteredDA is an extension to the
PDS_DA. A non-clustered PDS_DA is effectively a single cluster.

Each cluster is represented as a distinct instance of the PDS_ClusteredDA interface,
although they will typically all be implemented by the same service using the same
Datastore.

In addition to supporting the normal PDS_DA interface, a Clustered PDS_DA has the
following interface:

ClusterID cluster_id();
This returns the id of this cluster.

string cluster_kind();
This returns the kind of this cluster.

ClusterIDs clusters_of();
This returns a sequence of ClusterIDs listing all of the clusters in this Datastore

PDS_ClusteredDA create_cluster(in string kind);
This creates a new cluster of the specified kind in this Datastore and return
PDS_ClusteredDA instance to represent it.

PDS_ClusteredDA open_cluster(in ClusterID cluster);
This opens an existing cluster that has the specified ClusterID.

PDS_ClusteredDA copy_cluster(in PDS_DA source);
creates a new cluster, loading its state from the specified cluster, which ma
implemented in a different Datastore.

typedef string ClusterID;
typedef sequence<ClusterID> ClusterIDs;
interface PDS_ClusteredDA : PDS_DA {

ClusterID cluster_id();
string cluster_kind();
ClusterIDs clusters_of();
PDS_ClusteredDA c reate_cluster(in string kind);
PDS_ClusteredDA o pen_cluster(in ClusterID cluster);
PDS_ClusteredDA c opy_cluster(

in PDS_DA source);
};
Persistent Object Service: v1.0 The CosPersistencePDS_DA Module March 1995 5-29

5

s

-93.

S.

ose

e and

 it
5.11 The ODMG-93 Protocol

A group of Object-Oriented Database Management System (ODBMS) vendors ha
recently endorsed and published a common ODBMS specification called ODMG-93.
That specification defines an extended version of IDL for defining ODBMS object
types as well as programming language interfaces for object manipulation.

The ODMG-93 Protocol is similar to the DA Protocol, in that the object accesses
attributes organized as data objects. The primary difference is that the ODMG-93
Protocol uses the Object Definition Language (ODL) defined in ODMG-93 instead of
DDL, and it uses the programming language mapping defined for data objects
specified in ODMG-93, rather than the CORBA IDL attribute operations.

If the ODMG-93 database object inherits the PDS_DA interface, then the database
object can be used with the rest of this specification. Objects using the ODMG-93
Protocol would manipulate persistent data using the interfaces specified in ODMG

Note that in addition to using the ODMG-93 interface as another protocol, it would be
straightforward to implement the DA Protocol using an ODMG-93 ODBMS as a PD
Since the DA Protocol is a subset of the functionality in ODMG-93, in most
programming languages the language mapping for the DDL attributes would be a
trivial layer on the ODMG-93 mapping. Using the ODMG-93 Protocol would fully
exploit the capabilities of ODMG-93; using an ODMG-93 ODBMS to implement the
DA Protocol captures those objects that use DA Protocol.

5.12 The Dynamic Data Object (DDO) Protocol

The DDO is a Datastore-neutral representation of an object’s persistent data. Its
purpose is to contain all of the data for a single object. Figure 5-1 illustrates an
example of a DDO. A DDO has a single PID, object_type and set of data items wh
cardinality is data_count. Each piece of data has a data_name, data_value and a set of
properties whose cardinality is property_count. Each property has a property_nam
a property value.

Although any data can be stored in a DDO, the following example illustrates how
might map onto a row in a table:

• a DDO = a row

• data_count = number of rows

• data_item = column

• data_name = column name

• data_value = column value

• property_count = number of column properties

• property_name = e.g., type or size

• property_value = e.g., character or 255
5-30 CORBAservices March 1995

5

t. It

ta in

l.
Figure 5-10 Structure of a DDO

A DDO provides a Protocol when the persistent object supports the DDO interface. In
this case, the DDO interface is used to get data in and out of the persistent objec
may even provide the way that the persistent object stores its internal data, in which
case a copy and reformat step is avoided.

To facilitate fast and simple storage and retrieval in specialized types of Datastore,
DDOs can be used with particular conventions that are more suitable to different types
of Datastore. If the DDO is used for both a Protocol and as a direct way to get da
and out of a Datastore, then copy and format costs are greatly reduced.

5.13 The CosPersistenceDDO Module

The CosPersistenceDDO module contains the OMG IDL to support the DDO protoco
The module contains oneinterface, the DDO interface.

This section describes the CosPersistenceDDO module in detail.

The CosPersistenceDDO Module is shown in Figure 5-11.

PID object_typedata_count=2

data_id=1

property_count=2

a data item

property_id=1

property_value=any

a property

data_name=”” data_value=any

property_name=””

property_id=2

property_value=any

a property

property_name=””

data_id=2

property_count=1

a data item

property_id=1

property_value=any

a property

data_name=”” data_value=any

property_name=””

a DDO
Persistent Object Service: v1.0 The CosPersistenceDDO Module March 1995 5-31

5

ess

data
A DDO has two attributes:

attribute string object_type;
This identify the object_type that this DDO is associated with.

attribute CosPersistencePID::PID p;
This identify the PID of the DDO.

A DDO has the following operations for getting data in and out of the DDO:

short add_data();
This adds a new data item and returns a new data_id that can be used to acc
it.

short add_data_property (in short data_id);
This adds a new property within the data item identified by data_id and returns
the new property_id that can be used to access it within the context of the
item.

short get_data_count();
This gets the number of data items in the DDO.

#include "CosPersistencePID.idl"

module CosPersistenceDDO {

interface DDO {
attribute string object_type;
attribute CosPersistencePID:: PID p;
short add_data();
short add_data_property (in short data_id);
short get_data_count();
short get_data_property_count (in short data_id);
void get_data_property (in short data_id,

in short property_id,
out string property_name,
out any property_value);

void set_data_property (in short data_id,
in short property_id,
in string property_name,
in any property_value);

void get_data (in short data_id,
out string data_name,
out any data_value);

void set_data (in short data_id,
in string data_name,
in any data_value);

};
};

Figure 5-11 The CosPersistenceDDO Module
5-32 CORBAservices March 1995

5

by

 the

r
short get_data_property_count (in short data_id);
This gets the number of properties associated with the data item identified
data_id.

void get_data_property (in short data_id,
in short property_id,
out string property_name,
out any property_value);

This gets the name and value of the property identified by property_id within
data item identified by data_id.

void set_data_property (in short data_id,
in short property_id,
in string property_name,
in any property_value);

This sets the name and value of the property identified by property_id within the
data item identified by data_id.

void get_data (in short data_id,
out string data_name,
out any data_value);

This gets the name and value of the data item identified by data_id.

void set_data (in short data_id,
in string data_name,
in any data_value);

This sets the name and value of the data item identified by data_id.

5.14 Other Protocols

This specification includes three protocols, but other protocols can be supported in this
architecture. The proliferation of protocols would reduce the commonality of different
objects, so it is desirable to use an existing protocol if that is possible. However, when
a new protocol is required, it is still possible to use other parts of the Persistent Object
Service with it. In general, the protocol should be independent of the Datastore
interface, although some Datastore interfaces will be better suited to some protocols.

Some protocols are already defined and are not specified here. Such standard interfaces
as POSIX files are already in wide use, and there is no need to respecify them. In this
case, the PID would include the file name, and the protocol would consist of reads and
writes.

Other protocols are intended to be value-added and non-standard. For example, a
LISP-specific PDS might take advantage of knowledge of the LISP runtime
environment to create the appearance of a single-level store of LISP objects. Although
such a PDS would not be usable from other programming languages, it could provide
significant value to LISP programmers. Of course, it is also possible for a particula
value-added protocol to be implemented as a layer on a standard Protocol.

This specification allows such protocols to be integrated in the overall POS
architecture without changing that architecture.
Persistent Object Service: v1.0 Other Protocols March 1995 5-33

5

a

es,

-

es

s

n any

ter to

 the
5.15 Datastores: CosPersistenceDS_CLI Module

The last major component in the architecture is a DataStore, which provides operations
on a data repository underneath the Protocols just discussed. As with Protocols,
variety of DataStore interfaces may be defined. There is no “standard” DataStore
interface. Only one kind of DataStore is defined here, for record-oriented databas
because other standard interfaces already exist at this level and many customers may
choose to omit this level of the architecture altogether for performance in an object
oriented database by using the DA or ODMG Protocol directly on the DBMS.

Datastore_CLI provides a uniform interface for accessing many different Datastor
either individually or simultaneously. The acronym CLI refers to the X/Open Data
Management Call Level Interface on which the module is based. Datastore_CLI i
especially suited for record database and file systems (e.g., relational, IMS,
hierarchical databases, and VSAM file systems) that support user sessions,
connections, transactions, and scanning through data items using cursors.

The specification of this framework, where appropriate, is consistent with the X/Open
CLI, IDAPI, and ODBC standards. These are industry standards which specify
procedure-oriented application programming interfaces for accessing data stored i
type of Datastore.

More detailed explanations and enumeration of the options in the Datastore_CLI
operations can be found in the X/Open CLI Specification.

DDOs are used as the way data are passed into the Datastore_CLI interface. If DDO is
also being used as the Protocol, the PDS can use this DDO directly as a parame
calls to the Datastore_CLI. When a different Protocol is being used, the PDS must
create a new DO and populate it with data prior to calling the Datastore_CLI.

The CosPersistenceDS_CLI module contains the interfaces derived from ODBC and
IDAPI, providing cursors into relational and other databases. The module contains
following interfaces:

• The UserEnvironment Interface

• The Connection Interface

• The ConnectionFactory Interface

• The Cursor Interface

• The CursorFactory Interface

• The PID_CLI Interface

• The Datastore_CLI Interface

This section describes these interfaces and their operations in detail.
5-34 CORBAservices March 1995

5

The CosPersistenceDS_CLI Module is shown in Figure 5-12:

#include "CosPersistenceDDO.idl"
// CosPersistenceDDO.idl #includes CosPersistencePID.idl

module CosPersistenceDS_CLI {
interface UserEnvironment {

void set_option (in long option,in any value);
void get_option (in long option,out any value);
void release();

};

interface Connection {
void set_option (in long option, in any value);
void get_option (in long option,out any value);

};

interface ConnectionFactory {
Connection create_object (

in UserEnvironment user_envir);
};

interface Cursor {
void set_position (in long position,in any value);
CosPersistenceDDO::DDO fetch_object();

};

interface CursorFactory {
Cursor create_object (

in Connection connection);
};

 interface PID_CLI : CosPersistencePID::PID {
attribute string datastore_id;
attribute string id;

};

Figure 5-12 The CosPersistenceDS_CLI Module
Persistent Object Service: v1.0 Datastores: CosPersistenceDS_CLI Module March 1995 5-35

5

5.15.1 The UserEnvironment Interface

The UserEnvironment OMG IDL is as follows:

interface Datastore_CLI {
void connect (in Connection connection,

in string datastore_id,
in string user_name,
in string authentication);

void disconnect (in Connection connection);
Connection get_connection (

in string datastore_id,
in string user_name);

void add_object (in Connection connection,
in CosPersistenceDDO::DDO data_obj);

void delete_object (
in Connection connection,
in CosPersistenceDDO::DDO data_obj);

void update_object (
in Connection connection,
in CosPersistenceDDO::DDO data_obj);

void retrieve_object(
in Connection connection,
in CosPersistenceDDO::DDO data_obj);

Cursor select_object(
in Connection connection,
in string key);

void transact (in UserEnvironment user_envir,
in short completion_type);

void assign_PID (in PID_CLI p);
void assign_PID_relative (

in PID_CLI source_pid,
in PID_CLI target_pid);

boolean is_identical_PID (
in PID_CLI pid_1,
in PID_CLI pid_2);

string get_object_type (in PID_CLI p);
void register_mapping_schema (in string schema_file);
Cursor execute (in Connection connection,

in string command);
};

};

interface UserEnvironment {
void set_option (in long option,in any value);
void get_option (in long option,out any value);
void release();

};

Figure 5-12 The CosPersistenceDS_CLI Module
5-36 CORBAservices March 1995

5

t

t
The UserEnvironment has the following operations:

void set_option (in long option, in any value);
This sets the option to the desired value. The list of settable options is specified
in the X/Open CLI Specification and the IDAPI Specification.

void get_option (in long option, out any value);
This gets the value of the option. The list of gettable options is the same as tha
for set_option().

void release();
This releases all resources associated with the UserEnvironment.

5.15.2 The Connection Interface

The Connection OMG IDL is as follows:

The Connection interface contains the following operations:

void set_option (in long option,in any value);
This sets the option to the desired value. The list of settable options is specified
in the IDAPI Specification.

void get_option (in long option, out any value);
This gets the value of the option. The list of gettable options is the same as tha
for set_option.

5.15.3 The ConnectionFactory Interface

The ConnectionFactory OMG IDL is as follows:

The ConnectionFactory has the following operation:

 Connection create_object (
 in UserEnvironment user_envir);

This creates an instance of Connection. A Connection is created within the
context of a single UserEnvironment.

interface Connection {
void set_option (in long option, in any value);
void get_option (in long option,out any value);

};

interface ConnectionF actory {
Connection c reate_object (

in UserEnvironment user_envir);
};
Persistent Object Service: v1.0 Datastores: CosPersistenceDS_CLI Module March 1995 5-37

5

 a
5.15.4 The Cursor Interface

The Cursor OMG IDL is as follows:

A cursor is a movable pointer into a list of DDOs, through which a client can move
about the list or fetch a DDO from the list. The Cursor has the following operations:

void set_position (in long position, in any value);
This sets the Cursor position to the desired value. The list of settable positions is
specified in the IDAPI Specification.

CosPersistenceDDO::DDO fetch_object();
This fetches the next DDO from the list, based on the current position of the
Cursor.

5.15.5 The CursorFactory Interface

The CursorFactory OMG IDL is as follows:

The CursorFactory has the following operations:

Cursor create_object (in Connection connection);
This create an instance of Cursor. A Cursor is created within the context of
single Connection. See the X/Open CLI Specification and IDAPI Specification
for more information.

5.15.6 The PID_CLI Interface

The PID_CLI IDL is as follows:

interface Cursor {
void set_position (in long position,in any value);
CosPersistenceDDO::D DO fetch_object();

};

interface CursorFactory {
Cursor create_object (

in Connection c onnection);
};

interface PID_CLI : CosPersistencePID::PID {
attribute string datastore_id;
attribute string id;

};
5-38 CORBAservices March 1995

5

PID_CLI subtypes the PID base type (see Section 5.4.1), adding attributes required for
the Datatstore_CLI interface. The PID_CLI interface has the following attributes:

attribute string datastore_id;
This identifies the specific datastore in use. Most datastore products support
multiple datastores. For a relational database, this might be the name of a
particular database containing multiple tables. For a Posix file system, this
might be the pathname of a file.

attribute string id;
This identifies a particular data element within a datastore. For a relational
database, this might be a table name and primary key indicating a particular row
in a table. For a Posix file system, this might be a logical offset within the file
indicating where the data starts.
Persistent Object Service: v1.0 Datastores: CosPersistenceDS_CLI Module March 1995 5-39

5

ues.
5.15.7 The Datastore_CLI Interface

The Datastore_CLI OMG IDL is as follows:

In general, a client goes through the following steps to store, restore or delete DDOs:

1. Create a UserEnvironment and set the appropriate options to their desired val

2. Create a Connection and set the appropriate options to their desired values. Open a
connection to the Datastore, via connect().

3. To store a DDO, call add_object() or update_object(). To restore a DDO, call
retrieve_object(). To delete a DDO, call delete_object().

4. If necessary, call transact() to commit or abort a Datastore transaction.

interface Datastore_CLI {
void connect (in Connection c onnection,

in string datastore_id,
in string user_name,
in string authentication);

void disconnect (in Connection c onnection);
Connection g et_connection (

in string datastore_id,
in string user_name) ;

void add_object (in Connection connection,
in CosPersistenceDDO::DDO data_obj);

void delete_object (
in Connection connection,
in CosPersistenceDDO::DDO data_obj);

void update_object (
in Connection connection,
in CosPersistenceDDO::DDO data_obj);

void retrieve_object(
in Connection connection,
in CosPersistenceDDO::DDO data_obj);

Cursor select_object(
in Connection connection,
in string key);

void transact (in UserEnvironment user_envir,
in short completion_type);

void assign_PID (in PID_CLI p);
void assign_PID_relative (

in PID_CLI source_pid,
in PID_CLI target_pid);

boolean is_identical_PID (
in PID_CLI pid_1,
in PID_CLI pid_2);

string get_object_type (in PID_CLI p);
void register_mapping_schema (in string schema_file);
Cursor execute (in Connection c onnection,

in string command);
};
5-40 CORBAservices March 1995

5

t at a
n.

egins

ema

a
5. Repeat steps 3 and 4 as necessary.

6. Close the connection to the Datastore, via disconnect(). Delete the corresponding
Connection.

7. Delete the UserEnvironment.

The Datastore_CLI connection operations are:

 void connect (in Connection connection,
 in string datastore_id,
 in string user_name,
 in string authentication);

This opens a connection to the Datastore using the Connection. A client can
establish more than one connection, but only one connection can be curren
time. The connection that connect() establishes becomes the current connectio

void disconnect (in Connection connection);
This closes the Connection.

Connection get_connection (
in string datastore_id,
in string user_name);

This returns the Connection associated with the datastore_id.

When any of the data manipulation operations is called, a datastore transaction b
implicitly if the Connection involved is not already active. A Connection becomes
active once the transaction begins and remains active until transact() is called.

The Datastore_CLI data manipulation operations are:

 void add_object (in Connection connection,
in CosPersistenceDDO::DDO data_obj);

This adds the DDO to the Datastore. If necessary, get the mapping schema
information for the DDO first.

 void delete_object (in Connection connection,
 in CosPersistenceDDO::DDO data_obj);

This deletes the DDO from the Datastore. If necessary, get the mapping sch
information for the DDO first.

void update_object (in Connection connection,
 in CosPersistenceDDO::DDO data_obj);

This updates the DDO in the Datastore. If necessary, get the mapping schem
information for the DDO first.

void retrieve_object (in Connection connection,
 in CosPersistenceDDO::DDO data_obj);

This retrieves the DDO from the Datastore. If necessary, get the mapping
schema information for the DDO first. To improve performance, the
DBDatastore_CLI may obtain access to more than one DDO at a time and cache
these.

Cursor select_object (in Connection connection,
Persistent Object Service: v1.0 Datastores: CosPersistenceDS_CLI Module March 1995 5-41

5

. As

 Its id
ith

in string key);
This selects and retrieve the DDO(s) which match the key from the Datastore.
The DDO(s) are returned through the Cursor. If necessary, get the mapping
schema information for the key first. This operation is provided to support the
Query Service. In addition, the Datastore_CLI will support any other operation
required by the Object Query Service.

The Datastore_CLI functions as a resource manager for the DDOs that it manages
such, it will support all resource manager operations specified by the Transaction
Service. When the Transaction Service is not being used, a transaction is initiated
implicitly by either a Connection or a transact(), and ended with a transact():

void transact (in UserEnvironment user_envir,
 in short completion_type);

This completes (commit or rollback) a Datastore transaction. Transaction
completion enacts or undoes any add_object(), update_object() or
delete_object() operations performed on any Connection within the
UserEnvironment since the connection was established or since a previous call
to transact() for the same UserEnvironment. The values of completion_type are
specified in the X/Open CLI Specification.

The Datastore_CLI PID Operations are:

void assign_PID (in PID_CLI p);
This assign a value for the id attribute of the pid. The first attribute,
datastore_type, must be filled in before calling this operation. If only the first
attribute is filled in, then this operation will fill in the second attribute,
datastore_id, as well.

void assign_PID_relative (in PID_CLI source_pid,
in PID_CLI target_pid);

This assigns values for the attributes of the target_pid based on the values of the
source_pid. The target_pid’s first two attributes, datastore_type and
datastore_id, will be assigned the same values as those of the source_pid.
attribute will be assigned a new value which is based on some relationship w
that of the source_pid. The algorithm defining that relationship is up to the
implementation.

boolean is_identical_PID (in PID_CLI pid_1, in PID_CLI pid_2);
This tests to see if the two pids are identical. In order for the two pids to be
identical, the following conditions must be true:

1. Both pids must be managed by this PDS

2. all three attributes of the pids must be identical individually.

string get_object_type (in PID_CLI p);
This gets the object_type of the pid.

Other Datastore_CLI operations are:
5-42 CORBAservices March 1995

5

_file

ed

 the

e

void register_mapping_schema (in string schema_file);
This registers the mapping schema information contained within the schema
with the Datastore_CLI. The mapping schema generally consist of individual
mappings each of which is applicable to a given pair of object_type and
datastore_type.

Cursor execute (in Connection connection,
 in string command);

This executes a command on the Datastore. If there are any DDOs to be return
as a result, this is done through the Cursor.

5.16 Other Datastores

There are other Datastore interfaces that can be used by PDSs. Some of these
interfaces are not CORBA object interfaces, in that they are not defined in IDL and
Datastores are not objects.

Some Datastores are simple, such as POSIX files. Others may be databases, and may
use generic interfaces for databases and record files such as SQL, the X/Open CLI
API, IDAPI or ODBC. Some Datastores are tuned to support nested documents or
other specific kinds of objects such as Bento.

Because the Datastore interface is not exposed to object implementations or clients, th
choice of Datastore interface is up to the PDS. So long as the PDS can support its
Protocol using the particular Datastore interface, any implementation of the Datastore
can be used by that PDS. The identification of data within different types of Datastores
is facilitated by the PID, which can be specialized to each Datastore type.

5.17 Standards Conformance

This service is specified in standard OMG IDL.

The Datastore_CLI portion of the Persistent Object Service is consistent with the
X/Open CLI draft standard.

The ODMG-93 PDS Object Protocol incorporates the ODMG-93 specificiation.

5.18 References

The X/Open CLI standard is documented in X/Open Data Management Call Level
Interface (CLI) Draft Preliminary Specification. Reading, UK: X/Open Ltd., 1993.

The IDAPI standard is documented in IDAPI Working Draft. Scotts Valley, CA:
Borland International, August 1993.

The term “ODBC” refers to Microsoft Open Database Connectivity Software
Development Kit, Programmer Reference, Version 1.0. Redmond, WA: Microsoft
Corp., 1992.
Persistent Object Service: v1.0 Other Datastores March 1995 5-43

5

The term “Bento” refers to Jed Harris and Ira Rubin, The Bento Specification, Revision
1.0d5. Cupertino, CA: Apple Computer, Inc., July 15, 1993,

The term “ODMG-93” refers to R.G.G.Cattell, T.Atwood, J.Duhl, G.Ferran,
M.Loomis, and D.Wade, The Object Database Standard: ODMG-93. San Mateo, CA:
Morgan Kaufmann, 1993.
5-44 CORBAservices March 1995

Life Cycle Service Specification 6

6.1 Service Description

6.1.1 Overview

Life Cycle Service defines services and conventions for creating, deleting, copying and
moving objects. Because CORBA-based environments support distributed objects, the
Life Cycle Service defines conventions that allow clients to perform life cycle
operations on objects in different locations.

This overview describes the life cycle problem for distributed object systems.

The problem of creation

Figure 6-1 illustrates the problem of a client in one location creating an object in
another.

Figure 6-1 Life Cycle service defines how a client can create an object “over there”.

To create an object in a different location, the following questions must be answered:

• Can the client control the location for the new object?

THERE

Client

HERE
CORBAservices November 1996 6-1

6

e

.

• On the other hand, can the location be determined according to some administered
policy?

• What entity does the client communicate with in order that a new object is created?

• How does the client find that entity?

• How much control does the client have over deciding the implementation of th
created object?

• Can the client influence the initial values of the newly created object?

• Can the client create an object in an implementation specific fashion?

The problem of moving or copying an object

Figure 6-2 illustrates the problem of moving or copying an object in a distributed
object system.

Figure 6-2 Life Cycle Service defines how a client can move or copy an object over there

To support moving or copying an object, the following questions must be answered:

• Can the client control the location for the copied or migrated object?

• On the other hand, can the location be determined according to some administered
policy?

• What entity does the client communicate with to copy or migrate the object?

• How does the client find that entity?

• What happens to the implementation code of a copied or migrated object?

THEREHERE

DocumentClient

SOMEWHERE
6-2 CORBAservices November 1996

6

ts.

ries

er.

ent,

o

 of
The problem of operating on a graph of distributed objects

Distributed objects do not float in space; they are connected to one another. The
connections are called relationships. Relationships allow semantics to be added to
references between objects. For example, relationships allow one object to contain
another. Life Cycle services must work in the presence of graphs of related objec

Figure 6-3 The object life cycle problem for graphs of objects is to determine the bounda
of a graph of objects and operate on that graph. In the above example, a document
contains a graphic and a logo, refers to a dictionary and is contained in a fold

Figure 6-3 illustrates the object life cycle problem for graphs of objects. In the
example, the folder contains a document, the document contains a graphic and a logo
and references a dictionary. The graphic references the logo that is contained in the
document. For graphs of objects, life cycle services must answer the following
questions:

• What are the boundaries of the graph? For example, if a client copies the docum
which objects are affected?

• If multiple objects are affected, how is the life cycle operation actually applied t
those objects?

• Are cycles in the graph preserved? For example, if copying the document results in
copying the graphic and the logo, is the cycle preserved in the copy?

6.1.2 Organization of this Chapter

This specification defines services and conventions to answer these life cycle issues.

Section 6.1.3 specifies a client’s model of object life cycle. It describe the model a
client has of factories and life cycle operations. A wide variety of implementations
this model are possible.

Section 6.1.4 discusses factory finders in detail.

THEREHERE

Document

graphic

logo

Folder

Dictionary

SOMEWHERE

Client
Life Cycle Service: v1.0 Service Description November 1996 6-3

6

Section 6.2 defines the CosLifeCycle module. This module defines the service
interfaces and the interface supported by objects that participate in the service.

Section 6.3 discusses factory implementation strategies.

Section 6.4 discusses how objects can use factories and factory finders to support the
copy and move operations.

Section 6.5 summarizes the object life cycle framework.

Appendix A contains an addendum to the Life Cycle Service; the addendum
provides a specification for compound life cycle operations.

This chapter also includes additional appendices that are not part of the Life Cycle
Service specification: they are included as background material. Appendix B suggests
a filtering language for the filter criteria. Appendix C discusses administration of
generic factories. Appendix D discusses support for PCTE objects.

6.1.3 Client’s Model of Object Life Cycle

A client is any piece of code that initiates a life cycle operation for some object. A
client has a simple view of the life cycle operations.

Client’s Model of Creation

The client’s model of creation is defined in terms of factory objects. A factory is an
object that creates another object. Factories are not special objects. As with any object,
factories have well-defined IDL interfaces and implementations in some programming
language.

Figure 6-4 To create an object “over there” a client must posses an object reference to a
factory over there. The client simply issues a request on the factory.

There is no standard interface for a factory. Factories provide the client with
specialized operations to create and initialize new instances in a natural way for the
implementation. Figure 6-5 illustrates a factory for a document.

interface DocFactor y {

Document create();

Document create_with_title(in string title);

THERE

Client

HERE

DocFactory
6-4 CORBAservices November 1996

6

 as

rd

 may

t

ates.
 of
s

ader,

pports.
Document create_for(in natural_language nl);

};

Figure 6-5 An example of a document factory interface. This interface is defined for clients
a part of application development.

Factories are object implementation dependent. A different implementation of the
document could define a different factory interface.

While there is no standard interface for a factory, a generic factory interface is defined
by the life cycle service in section 6.2.3. A generic factory is a creation service. It
provides a generic operation for creation. Instead of invoking an object specific
operation on a factory with statically defined parameters, the client invokes a standa
operation whose parameters can include information about resource filters, state
initialization, policy preferences, etc.

To create an object, a client must possess an object reference for a factory, which
be either a generic factory or an object-specific factory, and issue an appropriate
request on the factory. As a result, a new object is created and typically an objec
reference is returned.

There is nothing special about this interaction.

A factory assembles the resources necessary for the existence of an object it cre
Therefore, the factory represents a scope of resource allocation, which is the set
resources available to the factory. A factory may support an interface that enableits
clients to constrain the scope.

Clients find factory objects in the same fashion they find any object. Two common
scenarios for clients to find factories are:

• Clients use a finding mechanism, such a naming context, drag-and-drop, or a tr
to find factories.

• Clients are passed factory objects as a parameter to an operation the client su

Various implementation strategies for factories are discussed in detail in section 6.3.
Life Cycle Service: v1.0 Service Description November 1996 6-5

6

Client’s Model of Deleting an Object

A client that wishes to delete an object issues a remove 1 request on an object
supporting the LifeCycleObject interface. (The LifeCycleObject interface is defined in
section 6.2.) The object receiving the request is called the target.

Figure 6-6 To delete an object, a client must posses an object reference supporting the
LifeCycleObject interface and issues a remove request on the object.

Figure 6-6 illustrates a client deleting the document.

Client’s Model of Copying or Moving an Object

A client that wishes to move or copy an object issues a move or copy request on an
object supporting the LifeCycleObject interface. The object receiving the request is
called the target.

The move and copy operations expect an object reference supporting the
FactoryFinder interface. The factory finder represents the “THERE” in Figure 6-7.
The client is indicating to move or copy the target using a factory within the scope of
the factory finder. Section 6.1.4 describes factory finders in more detail.

1.The operation is named remove, rather than delete, because delete collides with the delete operator in
C++.

HERE

DocumentClient

SOMEWHERE

LifeCycleObject
6-6 CORBAservices November 1996

6

te

to

.

ith
ture

 of
 a
up of

in

The implementations of move and copy can use the factory finder to find appropria
factories “over there”. Section 6.4 describes how objects can implement move and
copy using the factory finder. This is invisible to the client.

Figure 6-7 Life cycle services define how a client can move or copy an object from here
there.

In the example of Figure 6-7, client code would simply issue a copy request on the
document and pass it an object supporting the FactoryFinder interface as an argument

When a client issues a copy request on a target, it is assumed that the target, the
factory finder, and the newly created object can all communicate via the ORB. W
externalization/internalization there is no such assumption. In the presence of a fu
externalization service, the externalized form of the object can exist outside of the
ORB for arbitrary amounts of time, be transported by means outside of the ORB and
can be internalized in a different, disconnected ORB.

Note – In general, a client is unaware of how a target and a factory finder are
implemented. The target may represent a simple object or it may represent a graph
objects. Similarly, a factory finder may represent a very concrete location, such as
specific storage device, or it may represent a more abstract location, such as a gro
machines. The client uses the same interface in all of these cases.

6.1.4 Factory Finders

Factory finders support an operation, find_factories , which returns a sequence of
factories. Clients pass factory finders to the move and copy operations, which typically
invoke this operation to find a factory to interact with. (This is described in detail
section 6.4.) The new copy or the migrated object will then be within the scope of the
factory finder.

Some examples of locations that a factory finder might represent are:

• somewhere on a work group’s local area network

• storage device A on machine X

• Susan’s notebook computer

THEREHERE

DocumentClient

SOMEWHERE

Factory
Finder

LifeCycleObject
Life Cycle Service: v1.0 Service Description November 1996 6-7

6

 is
hat

 of a
,

that

s

bject
Multiple Factory Finders

The factory finder interface given in section 6.2 represents the minimal functionality
supported by all factory finders. Target implementations can depend on this operation
being available. More sophisticated factory finding facilities can be provided by
extended finding services.

Currently, the only finding service being considered for standardization by the OMG
the naming service. Others are likely to be standardized in the future. It is likely t
there will always be multiple finding services, of different expressive powers, in
distributed object systems.

As demonstrated in Figure 6-8, the FactoryFinder interface can be mixed-in with
interfaces for finding services, allowing multiple finding services. Many clients simply
pass factory finders on to target objects. However, objects that need the services
more powerful finding mechanism can narrow the factory finder to an appropriate
more specific interface.

Figure 6-8 The FactoryFinder interface can be “mixed in” with interfaces of more powerful
finding services.

The power of a factory finder is determined by the power of the finding service.

6.1.5 Design Principles

Several principles have driven the design of the Life Cycle Service:

1. A factory object registered at a factory finder represents an implementation at
location. Thus, a factory finder allows clients to query a location for an
implementation.

2. Object implementations can embody knowledge of finding a factory, relative to a
location. Object implementations usually do not embody knowledge of location.

3. The desired result for life cycle operations such as copy and move depends on
relationships between the target object and other objects. The design given in
Appendix A has built-in support for the two most basic kinds of relationships,
containment and reference, and supports the definition of new kinds of relationship
and propagation semantics.

4. The Life Cycle Service is not dependent on any particular model of persistence and
is suitable for distributed, heterogeneous environments.

5. The design does not include an object equivalence service nor rely on global o
identifiers.

FactoryFinder

NamingBasedFactoryFinder

FactoryFinder

TradingBasedFactoryFinder

NamingContext Trading
6-8 CORBAservices November 1996

6

bject

m

age

ject

6.1.6 Resolution of Technical Issues

This specification addresses the following issues that were identified for the Life Cycle
Service in the OMG Object Services Architecture2 :

• Creation: Many of the parameters supplied to an object create operator will be
implementation-dependent, so that a standardized universal IDL signature for o
creation is not possible. IDL signatures for object creation will be defined for
various kinds of object factories, but the signatures will be specific to type,
implementation, and persistent storage mechanism of the object to be created.

• Deletion: A remove operator is defined on any object supporting the
LifeCycleObject interface. This model for deletion supports any desired paradig
for referential integrity. Appendix A describes support for the two most common
paradigms, based on reference and containment relationships. Only one type of
deletion is supported; a different operation should be used for archiving an object.
This interface can support many paradigms for storage management, e.g. garb
collection and reference counts. Since storage management is implementation-
dependent, its interface does not belong in the generalized life cycle interfaces.

• Copying: Appendix A describes support for shallow and deep copy, and referential
integrity. A scheme based on reference and containment relationships defines
scopes for operations such as copy. The concept of an factory finder is used for
object location. This paradigm for copying, deleting, and moving objects works
regardless of an object’s ORB, persistent storage mechanism, and implementation.
This design is extensible because objects participate in the traversal algorithm, and
the relationship service presented in the appendix supports the definition of new
kinds of relationships with different behavior.

• Equivalence: There was no need for an object equivalence service or global ob
identifiers in the design of the Life Cycle Service to support real world applications
or other object services.

2.Object Services Architecture, Document Number 92-8-4, Object Managment Group, Framingham, MA,
1992.
Life Cycle Service: v1.0 Service Description November 1996 6-9

6

6.2 The CosLifeCycle Module

Client code accesses the basic life cycle functionality via the CosLifeCycle module.
This module defines the FactoryFinder, LifeCycleObject and GenericFactory
interfaces and describes the operations of these interfaces in detail.

#include “Naming.idl”

module CosLifeCycle {

typedef Naming::Name Key;
typedef Object Factory;
typedef sequence <Factory> Factories;
typedef struc t NVP {

Naming::Is tring name;
any value;

} NameValuePair ;
typedef sequence <NameValuePair> Criteria;

exception NoFactory {
Key search_key;

};
exception NotCopyable { string reason; } ;
exception NotMovable { string reason; } ;
exception NotRemovable { string reason; };
exception Invali dCriteria{

Criteria invalid_criteria;
};
exception CannotMeet Criteria {

Criteria unmet_criteria;
};

Figure 6-9 The CosLifeCycle Module
6-10 CORBAservices November 1996

6

6.2.1 The LifeCycleObject Interface

The LifeCycleObject interface defines copy , m ov e and remove operations. Objects
participate in the life cycle service by supporting this interface.

copy

The copy operation makes a copy of the object. The copy is located in the scope of
the factory finder passed as the first parameter. The copy operation returns an object
reference to the new object. The new object is initialized from the existing object.

The first parameter, t her e, may be a nil object reference. If passed a nil object
reference, the target object can determine the location or fail with the NoFactory
exception.

interface FactoryFinder {
Factories find_factories(in Key factory_key)

raises(NoFactor y);
};

interface LifeCycleObject {
LifeCycleObject copy(in FactoryFinder there,

in Criteria the_criteria)
raises(NoFactory, NotCopyable, InvalidCriteria,

 CannotMeetCriteria);
void move(in FactoryFinder there,

in Criteria the_criteria)
raises(NoFactory, NotMovable, InvalidCriteria,

 CannotMeetCriteria);
void remove()

raises(NotRemovable);
};

interface GenericFactor y {
boolean supports(in Key k) ;
Object create_object(

in Key k,
i n Criteria the_criteria)

raises (N oFactory, Invalid Criteria,
Cannot MeetCriteria);

};
};

LifeCycleObject copy(in FactoryFinder there,
in Criteria the_criteria)

raises(NoFactory, NotCopyable, InvalidCriteria,
CannotMeetCriteria);

Figure 6-9 The CosLifeCycle Module
Life Cycle Service: v1.0 The CosLifeCycle Module November 1996 6-11

6

e

ver
e
The second parameter, the_criteria , allows for a number of optional parameters
to be passed. Typically, the target simply passes this parameter to the factory used in
creating the new object. The criteria parameter is explained in detail in section 6.2.4

If the target cannot find an appropriate factory to create a copy “over there”, the
NoFactory exception is raised. An implementation that refuses to copy itself should
raise the NotCopyable exception. If the target does not understand the criteria, th
InvalidCriteria exception is raised. If the target understands the criteria but
cannot satisfy the criteria, the CannotMeetCriteria exception is raised.

In addition to these exceptions, implementations may raise standard CORBA
exceptions. For example, if resources cannot be acquired for the copied object,
NO_RESOURCES will be raised. Similarly, if a target does not implement the copy
operation, the NO_IMPLEMENT exception will be raised.

It is implementation dependent whether this operation is atomic.

move

The move operation on the target moves the object to the scope of the factory finder
passed as the first parameter. The object reference for the target object remains valid
after move has successfully executed.

The first parameter, there , may be a nil object reference. If passed a nil object
reference, the target object can determine the location or fail with the NoFactory
exception.

The second parameter, the_criteria , allows for a number of optional parameters
to be passed. Typically, the target simply passes this parameter to the factory used in
migrating the new object. The criteria parameter is explained in detail in section 6.2.4

If the target cannot find an appropriate factory to support migration of the object “o
there”, the NoFactory exception is raised. An implementation that refuses to mov
itself should raise the NotMovable exception. If the target does not understand the
criteria, the InvalidCriteria exception is raised. If the target understands the
criteria but cannot satisfy the criteria, the CannotMeetCriteria exception is
raised.

In addition to these exceptions, implementations may raise standard CORBA
exceptions. For example, if resources cannot be acquired for migrating the object,
NO_RESOURCES will be raised. Similarly, if a target does not implement the move
operation, the NO_IMPLEMENT exception will be raised.

It is implementation dependent whether this operation is atomic.

void move(in FactoryFinder there,
in Criteria the_criteria)

raises(NoFactory, NotMovable, InvalidCriteria,
CannotMeetCriteria);
6-12 CORBAservices November 1996

6

o

e

in

e are

remove

Remove instructs the object to cease to exist. The object reference for the target is n
longer valid after remove successfully completes. The client is not responsible for
cleaning up any resources the object uses. An implementation that refuses to remov
itself should raise the NotRemovable exception. In addition to this exception,
implementations may raise standard CORBA exceptions.

6.2.2 The FactoryFinder Interface

Factory finders support an operation, find_factories , which returns a sequence of
factories. Clients pass factory finders to the move and copy operations, which typically
invoke this operation to find a factory to interact with. (This is described in detail
section 6.4.)

The factory finder interface represents the minimal functionality supported by all
factory finders.

find_factories

The find_factories operation is passed a key used to identify the desired factory.
The key is a name, as defined by the naming service. More than one factory may
match the key. As such, the factory finder returns a sequence of factories. If ther
no matches, the NoFactory exception is raised.

The scope of the key is the factory finder. The factory finder assigns no semantics to
the key. It simply matches keys. It makes no guarantees about the interface or
implementation of the returned factories or objects they create.

void remove()
raises(NotRemovable);

Factories find_factories(in Key factory_key)
raises(NoFactory);
Life Cycle Service: v1.0 The CosLifeCycle Module November 1996 6-13

6

jects
types
 to

an

It is beyond the scope of this specification to standardize the key space. The space of
keys is established by convention in particular environments. The kind field3 of the key
is useful for partitioning the key space. Suggested values for the id and kind fields
are given in Table 6-1.

6.2.3 The GenericFactory Interface

In many environments, management of a set of resources that are allocated to ob
at creation time is required. This needs to be done in a coordinated fashion for all
of objects. The Life Cycle Service provides a framework for this which is intended
be usable in a variety of administrative environments. However, the differing
environments will administer a variety of resources and it is beyond the scope of this
framework to identify all the possible types of resource.

While there is no standard interface for a factory, a GenericFactory interface is
defined. The GenericFactory interface defines a generic creation operation,
create_object . By defining a generic interface for creation, a creation service c
be implemented. This is particularly useful in environments where administering a set
of resources is important.

Such a generic factory can implement resource policies and represent multiple
locations. In administered environments, object specific factories, such as the
document factory described in section , may delegate the creation process to the
generic factory. This is described in detail in section 6.3.2.

The job of the generic factory is to match the creation criteria specified by clients of
the GenericFactory interface with offers made on behalf of implementation specific
factories.

3.See the naming service specification.

1. An example of an implementation equivalence class is a set of object implementations that have compatible externalized
forms.

Table 6-1 Suggested conventions for factory finder keys.

id field kind field meaning

name of object
interface

“object interface” Find factories that create objects supporting
the named interface.

name of equivalent
implementations

“implementation
equivalence class”

Find factories that create objects with
implementations in a named equivalence
class of implementations.1

name of object
implementation

“object
implementation”

Find factories that create objects of a
particular implementation.

name of factory
interface

“factory interface” Find factories supporting the named factory
interface.
6-14 CORBAservices November 1996

6

 a
Figure 6-10 illustrates the structure of a creation service.

Figure 6-10 The Life Cycle service provides a generic creation capability. Ultimately,
implementation specific creation code is invoked by the creation service. The
implementation specific code also supports the GenericFactory interface.

The client of the GenericFactory interface invokes the create_object operation
and can express criteria for creation.

Ultimately, this request will be passed to an implementation specific factory which
supports the GenericFactory interface. To get there, the request may travel through
number of generic factories. However, all of this is transparent to the client.

create_object

The create_object operation is passed a key used to identify the desired object to
be created. The key is a name, as defined by the Naming Service.

Object create_object(
in Key k,
in Criteria the_criteria)

raises (NoFactory, InvalidCriteria,
CannotMeetCriteria);

GenericFactory

GenericFactory

creation service

implementation
specific code

resources

GenericFactory

implementation
specific code

resources
Life Cycle Service: v1.0 The CosLifeCycle Module November 1996 6-15

6

The scope of the key is the generic factory. The generic factory assigns no semantics
to the key. It simply matches keys. It makes no guarantees about the interface or
implementation of the created object.

It is beyond the scope of this specification to standardize the key space. The space of
keys is established by convention in particular environments. The kind field4 of the key
is useful for partitioning the key space. Suggested values for the id and kind fields
are given in Table 6-2.

The second parameter, the_criteria , allows for a number of optional parameters
to be passed. Criteria are explained in detail in section 6.2.4

If the generic factory cannot create an object specified by the key, then NoFactory is
raised.

If the target does not understand the criteria, the InvalidCriteria exception is
raised. If the target understands the criteria but cannot satisfy the criteria, the
CannotMeetCriteria exception is raised.

supports

The supports operation returns true if the generic factory can create an object,
given the key. Otherwise false is returned.

4.See the naming service specification.

1. An example of an implementation equivalence class is a set of object implementations that have compatible externalized
forms

Table 6-2 Suggested conventions for generic factory keys.

id field kind field meaning

name of object
interface

“object interface” Create an object that supports the named
interface.

name of equivalent
implementations

“implementation
equivalence class”

Create an object whose implementation is in
a named equivalence class of
implementations.1

name of object
implementation

“object
implementation”

Create objects of a particular
implementation.

boolean supports(in Key k);
6-16 CORBAservices November 1996

6

le and
 and
 on

le.

6.2.4 Criteria

The create_object operation of the GenericFactory interface expects a parameter
specifying the creation criteria. The move and copy operations of the LifeCycleObject
interface also expects this parameter; typically they pass it through to a factory. This
section documents this parameter.

The criteria parameter is expressed as an IDL sequence of name-value pairs. In
particular, it is described by the following data structure given in the CosLifeCycle
module:

The parameter is given as a sequence of name-value pairs in order to be extensib
support “pass-through”; that is, new name-value pairs can be defined in the future
objects can be written that do not interpret the name-value pairs, but just pass them
to other objects.

Note – It is beyond the scope of this specification to standardize particular criteria.
Supporting criteria is optional. Furthermore, supporting different criteria is acceptab
The criteria given here are suggestions.

Table 6-3 suggests criteria to be supported by the generic factory. Detailed descriptions
follow.

typedef struct NVP {
Naming::Istring name;
any value;

} NameValuePair;
typedef sequence <NameValuePair> Criteria;

Table 6-3 Suggested criteria.

criterion name type of criterion value interpretation

“initialization” sequence<NameValuePair> initialization parameters, given as a
sequence of name-value pairs.

“filter” string allows clients of the generic factory
to express a constraint on the
created object.

“logical location” sequence<NameValuePair> allows clients of the generic factory
to express a connection for the
object, for example a PCTE
relationship.

“preferences” string a way for clients to influence the
policies that a generic factory may
use when creating an object
Life Cycle Service: v1.0 The CosLifeCycle Module November 1996 6-17

6

ct is

ic
e

her

s
“initializatio n”

The “initialization” criterion is a sequence of name-value pairs which is intended to
contain application specific initialization values. Typically, the generic factory will pay
no attention to the initialization criterion and simply passes it on to application specific
factory code.

“filter”

The filter criterion is a constraint expression which provides the client with a powerful
way of expressing its requirements on creation. The generic factory will use the
constraint expression to make decisions about the allocation of particular resources.
For example, a client could give a constraint “operating system” != “windows nt”.

These constraints are expressed in some Constraint Language. A constraint language is
suggested in Appendix B.

Filters are potentially complex and Invalid Criteria will be raised if the filter is
too complex for the factory or is syntactically incorrect.

“logical location”

The “logical location” criterion allows a client to express where a
created/copied/migrated object is logically created. For example, in PCTE an obje
always in a relationship with another object. In such an environment, the logical
location would specify another object and a relationship.

“preferences”

The “preferences” criterion allows the client to influence the policies which the gener
factory uses to make decisions. For example, a generic factory might arbitrarily choos
a machine from a set of machines. Using the preferences criterion, a client could
express its preference for a particular machine. Policies and preferences are described
in more detail in Appendix B.

6.3 Implementing Factories

As defined under Client’s Model of Creation on page 4, any object that creates anot
object in response to some request is called a factory. Clients depend only on the
definitions in that section.

The client’s model of object life cycle has intentionally been defined abstractly. Thi
allows a wide variety of implementation strategies.

Factories are not special objects. They have well-defined IDL interfaces and
implementations in programming languages. Defining factory interfaces and
implementing them are a normal part of application development.

Ultimately, the creation process requires implementation dependent code that
assembles resources for the storage and execution of an object. The act of creating an
object requires assembling and initializing all of the resources required to support the
execution and storage of the object. The resources typically include:
6-18 CORBAservices November 1996

6

 set of
• the allocation of one or more BOA object references, and
• resources related to persistence storage.

6.3.1 Minimal Factories

Figure 6-11 illustrates a minimal implementation of a factory that assembles resources
in a single factory object.

Figure 6-11 Factories assemble resources for the execution of an object. A minimal
implementation achieves this with a single factory implementation.

6.3.2 Administered Factories

Factories can delegate the creation process to a generic factory that administers a
resources. The generic factory may apply policies to all creation requests.

Eventually such a generic creation service, needs to communicate with implementation
specific code that actually assembles the resources for the object. Figure 6-12
illustrates an object specific factory, such as the document factory of Figure 6-5 that
delegates the creation problem to the generic creation service. The object-specific
factory effectively adds a statically typed wrapper around the generic factory.

Object specific factory interface

factory

resources

specific code
Life Cycle Service: v1.0 Implementing Factories November 1996 6-19

6

.

Figure 6-12 In an administered environment, factory implementations can delegate the creation
problem to a generic factory. The generic factory can apply resource allocation
policies. Ultimately the creation service communicates with implementation
specific code that assembles resources for the object.

Object specific factory interface

GenericFactory

GenericFactory

life cycle service

factory
specific code

implementation
specific factory

Factory client

resources

GenericFactory

implementation
specific factory

resources
6-20 CORBAservices November 1996

6

ate.
fined

ed on

er.
6.4 Target’s Use of Factories and Factory Finders

Figure 6-13 The copy and move operations are passed a FactoryFinder to represent “there.”
The implementation of the target uses the FactoryFinder to find a factory object
for creation over there. The protocol between the object and the factory is priv
They can communicate and transfer state according to any implementation-de
protocol.

A client passes a factory finder as a parameter to a copy or move request.

Clients do not generally understand the implementation constraints of the object being
copied. Clients cannot express what the target object needs in order to copy itself to
the new location.

Target object implementations, on the other hand, put constraints on factories bas
implementation concerns. It is unlikely that target implementation code is interested in
further constraining location.

To find an appropriate factory, the target object implementation may use the factory
finder with its minimal interface defined in section 6.2.2 or it may attempt to narrow
the factory finder to a more sophisticated finding service with more expressive pow
The target object implementation can always depend on the existence of the minimal
interface.

Once the target object implementation finds a factory, it communicates with the
factory using a private, implementation-defined, interface.

6.5 Summary of Life Cycle Service

The problem of distributed object life cycle is the problem of

• Creating an object

• Deleting an object

Document

A
A

AAA
AA
AA

FactoryFinder

Private

THEREHERE

Factory
Life Cycle Service: v1.0 Target’s Use of Factories and Factory Finders November 19966-21

6

ve

• Moving and copying an object

• Operating on a graph of distributed objects.

The client’s model of object life cycle is based on factories and target objects
supporting the LifeCycleObject interface. Factories are objects that create other
objects. The LifeCycleObject interface defines operations to delete an object, to mo
an object and to copy an object.

A GenericFactory interface is defined. The generic factory interface is sufficient to
create objects of different types. By defining a GenericFactory interface,
implementations that administer resources are enabled.

6.5.1 Summary of Life Cycle Service Structure

The Life Cycle Service specification consists of these interfaces:

• LifeCycleObject

• FactoryFinder

• GenericFactory

• Interfaces described in Appendix A, an addendum to the Life Cycle Service
6-22 CORBAservices November 1996

6

s of

a

ting

ed to

d

 roles
 Appendix A Addendum to Life Cycle Service: Compound Life Cycle
Specification

This appendix contains the specification for the compound life cycle component of the
Life Cycle Service .The compound life cycle specification depends on the Life Cycle
Service for the definition of the client view of Life Cycle operations. Moreover, it
extends the Life Cycle Service to support compound life cycle operations on graph
related objects. In addition, the compound life cycle specification depends on the
Relationship Service for the definition of object graphs.

The Life Cycle Service specification describes a client’s view of object life cycle. It
describes how a client can create, copy, move and remove objects in a distributed
object system. To create objects, clients find factory objects and issue create requests
on factories. To copy, move and remove objects, clients issue requests on target
objects supporting the LifeCycleObject interface.

If the target object represents a simple object, that is an object that is not part of
graph of related objects, the target provides an implementation for each of the
operations in the LifeCycleObject interface.

If, on the other hand, the target object uses the Relationship Service for represen
relationships with other objects, additional services are available to implement the
compound life cycle operations. The specification in this appendix describes those
services.

 A.1 Key Features

The compound life cycle specification:

• Addresses the issues of copying, moving and removing objects that are relat
other objects. Depending on the semantics of the relationships, these life cycle
operations are applied to:

• the object, to the relationship and to the related objects

• the object and to the relationship

• the object

• Coordinates compound life cycle operations on graphs of related objects, thus
relieving object developers from implementing compound operations.

• Illustrates a general model for applying compound operations to graphs of relate
objects. The Externalization Service also illustrates the model.

 A.2 Service Structure

The specification in this appendix defines a service that applies a compound life cycle
operation to a graph of related objects, given a starting node. Compound operations
traverse a graph of related objects and apply the operation to the relevant nodes,
and relationships of the graph. The service supports the
CosCompoundLifeCycle::Operations interface. Implementations of the service depend
on the CosCompoundLifeCycle::Node , CosCompoundLifeCycle::Role and
CosCompoundLifeCycle::Relationship interfaces which are subtypes of the Node , Role
Life Cycle Service: v1.0 Summary of Life Cycle Service November 1996 6-23

6

hips

.

t

and Relationship interfaces defined in the Relationship Service. The
CosCompoundLifeCycle::Node , CosCompoundLifeCycle::Role and
CosCompoundLifeCycle::Relationship interfaces add operations to copy, remove and
move nodes, roles and relationships.

The Relationship Service defines interfaces for containment and reference relations
and their roles. This appendix defines interfaces that inherit those interfaces and the
compound life cycle interfaces.

 A.3 Interface Overview

Table 6-4 and Table 6-5 summarize the interfaces defined in the
CosCompoundLifeCycle module. The CosCompoundLifeCycle module is described in
detail in sectionSection A.4.2.

Table 6-4 Interfaces defined in the CosCompoundLifeCycle module for initiating compound life
cycle operations.

Interface Purpose

Operations Defines compound life cycle operations on graphs of related
objects.

OperationsFactory Defines an operation to create an object that supports the
Operations interface.

Table 6-5 Interfaces defined in the CosCompoundLifeCycle module that are used by
implementations of compound life cycle operations

Interface Inherits Purpose

Node CosGraphs::Node Defines life cycle
operations on nodes in
graphs of related objects

Relationship CosRelationships::Relationship Defines life cycle
operations on
relationships.

Role CosGraphs::Role Defines life cycle
operations on roles.

PropagationCriteriaFactory Creates an object that
supports the
CosGraphs::TraversalCri
eria interface that uses
relationship propagation
values.
6-24 CORBAservices November 1996

6

.
o
he

a
Table 6-6 and Table 6-7 summarize the interfaces that combine the specific
relationships defined by the Relationship Service and the life cycle interfaces defined
in this appendix.

 A.4 Compound Life Cycle Operations

The Life Cycle specification describes a client’s view of object life cycle. It describes
how a client can create, copy, move and remove objects in a distributed object system
To create objects, clients find factory objects and issue create requests on factories. T
copy, move and remove objects, clients issue requests on target objects supporting t
LifeCycleObject interface.

If the target object represents a simple object, that is an object that is not part of
graph of related objects, the target provides an implementation for each of the
operations in the LifeCycleObject interface.

Table 6-6 Interfaces defined in the CosLifeCycleContainment module.

Interface Inherits Purpose

Relationship CosContainment::Containment
and
CosCompoundLifeCycle::Relationship

Combines both
interfaces.
No additional
operations are defined.

ContainsRole CosContainment::ContainsRole
and
CosCompoundLifeCycle::Role

Combines both
interfaces.
No additional
operations are defined.

ContainedInRole CosContainment::ContainedInRole
and
CosCompoundLifeCycle::Role

Combines both
interfaces.
No additional
operations are defined.

Table 6-7 Interfaces defined in the CosLifeCycleReference module.

Interface Inherits Purpose

Relationship CosContainment::Reference
and
CosCompoundLifeCycle::Relationship

Combines both
interfaces.
No additional
operations are defined.

ReferencesRole CosContainment::ReferencesRole
and
CosCompoundLifeCycle::Role

Combines both
interfaces.
No additional
operations are defined.

ReferencedByRole CosContainment::ReferencedByRole
and
CosCompoundLifeCycle::Role

Combines both
interfaces.
No additional
operations are defined.
Life Cycle Service: v1.0 Summary of Life Cycle Service November 1996 6-25

6

ate

rly
If the target participates as a node in a graph of related objects, the target can deleg
the life cycle operation to a service that implements the compound life cycle operation.
In particular, the target simply creates an object that supports the
CosCompoundLifeCycle::Operations interface and issues the corresponding life cycle
request on it. The compound life cycle operations expect a CompoundLifeCycle::Node
object reference as a starting node. The target simply passes its
CompoundLifeCycle::Node object reference as the starting node.

When the life cycle object has completed issuing compound life cycle requests, it
simply issues the destroy request to destroy the compound operation.

Figure 6-14 illustrates the target’s delegation of the life cycle request to compound
operation.

Figure 6-14 A life cycle object that is part of a graph of related objects delegates the orde
operation on the graph to an object that implements the compound life cycle
operation.

 A.4.1 Applying the Copy Operation to the Example

We now use the example in the Relationship Service Specification (Figure 9-3) to
illustrate applying the copy operation to a graph. Figure 6-15 illustrates the graph and the
compound operation prior to applying the copy operation. Recall that the folder contains
the document; the document is contained in the folder. The document contains the
figure; the figure is contained in the document. The document contains the logo and
the logo is contained in the document. On the other hand, the document references the
book; the book is referenced by the document. Finally, the figure references the logo;
the logo is referenced by the figure.

CompoundLifeCycle::Node
compound operations

target

CosCompoundLifeCycle::Operations

CosLifeCycle::LifeCycleObject
6-26 CORBAservices November 1996

6

 as
y

Figure 6-15 Prior to applying copy to the graph.

In this example, the copy is performed in two passes. The first pass creates a list
representation of the relevant edges of the graph. The second pass takes the list
input, copies the relevant nodes and roles, then creates all the necessary links b
copying the relevant relationships.

A compound copy request is initiated by issuing a LifeCycleObject::copy request on
the folder. Since the folder participates in a graph of related objects, it creates an
object supporting the CosCompoundLifeCycle::Operations interface (the Operations
object). Then the folder issues a CosCompoundLifeCycle::Operations::copy request
on the Operations object, passing in its own CosCompoundLifeCycle::Node object
reference as the starting node. The copy operation will copy the graph of related
objects and return an object reference for the copy of the folder object.

The remainder of this section provides a description of how the Operations object
might implement the copy operation.

First Pass of the Compound Copy Operation

The first pass consists of creating a list representation of the relevant edges of the
graph. The Operations object uses an object supporting the CosGraphs::Traversal
interface to do most of the work.

The Operations object creates an object supporting the CosGraphs::TraversalCriteria
interface by calling CosCompoundLifeCycle::PropagationCriteriaFactory::create .

compound
operation

figure

logo

folder

book

document

deep

shallow

deep
shallow

none

shallow

noneshallow

shallow
Life Cycle Service: v1.0 Summary of Life Cycle Service November 1996 6-27

6

 is

e

The Operations object then creates a CosGraphs::Traversal object by calling
CosGraphs::TraversalFactory::create_traversal_on , passing in the object
supporting the CosGraphs::TraversalCriteria interface. Calls on the
CosGraphs::Traversal object yield an unordered list of
CosGraphs::Traversal::ScopedEdges containing the following information.

(folder, ContainsRole, Containment, ContainedInRole, document)

(document, ReferencesRole, Reference, ReferencedByRole, book)

(document, ContainedInRole, Containment, ContainsRole, folder)

(document, ContainsRole, Containment, ContainedInRole, figure)

(document, ContainsRole, Containment, ContainedInRole, logo)
(figure, ReferencesRole, Reference, ReferencedByRole, logo)

(figure, ContainedInRole, Containment, ContainsRole, document)

(logo, ContainedInRole, Containment, ContainsRole, document)

This list will be referred to as the OriginalEdgeList.

Since the propagation value for copy from the document to the book is shallow, the
traversal did not visit the book. As such, the edge:

(book, ReferencedByRole, Reference, References, document)

is not included. Although the traversal did visit the logo, the edge

(logo, ReferencedByRole, Reference, ReferencesRole, figure)

is not included because the propagation value for copy from the logo to the figure
none.

For more detailed information regarding the output of the CosGraphs::Traversal
object with respect to the use of propagation semantics, see section 9.4.3 of the
Relationship Service.

Second Pass of the Compound Copy Operation

The second pass copies all the relevant nodes and then relates them by copying the
relevant relationships.

First, the set of nodes to be copied must be determined. This consists of all the distinct
nodes in the left column of the OriginalEdgeList . Since a node may be involved in
multiple edges, it may appear multiple times in the list; it should only be copied once.
Each node in this set is copied by issuing a
CosCompoundLifeCycle::Node::copy_node request. This request will cause the nod
and all of its roles to be copied; the new node and its roles will be returned.

• For each returned role of the copied node, an entry is made in a table of new
roles. Each entry consists of:

• The role object is the data and

• The node’s CosGraphs::Traversal::TraversalScopedId and the role’s
CORBA::InterfaceDef together serve as a key.
6-28 CORBAservices November 1996

6

nct

l

er.

alue,

The final step is to create all the relationships for the copied graph. All of the disti
relationships in the center column of the OriginalEdgeList need to be copied. Although
a relationship may appear multiple times in the list, it should only be copied once.
Each relationship is copied by issuing a
CosCompoundLifeCycle::Relationship::copy_relationship request. The
arguments to CosCompoundLifeCycle::Relationship::copy_relationship include
the list of roles to be included in the new relationship. Some of these roles will be
copies that were created as a result of processing deep propagation values; others wil
be roles in the original graph.

Thus, copy each unique relationship in the OriginalEdgeList, using NamedRoles as
follows:

For each role in an entry in the OriginalEdgeList, make a role key using the node’s
TraversalScopedId and the role’s CORBA::InterfaceDef to search the table of new
roles.

a. If the role was copied, the key will find the role’s copy. The role’s RoleName is
obtained from the entry in the OriginalEdgeList. The role’s copy and the
RoleName are combined to form a CosGraphs::NamedRole which will then be
included in the list of CosGraphs::NamedRoles passed to the
CosCompoundLifeCycle::Relationship::copy_relationship method.

b. If no copy is found, the original CosGraphs::NamedRole is used instead.

Once all the Relationships have been copied, the
CosCompoundLifeCycle::Operations::copy method is done.

Figure 6-16 illustrates the result of applying copy to the graph, starting at the fold

Figure 6-16 The result of applying copy to the graph, starting at the folder.

When the copy operation propagates to a node because of a deep propagation v
other shallow propagation values to that node are promoted. That is, they are processed
as if they were deep; relationships are formed with the copied node, not with the

figure

logo

folder

document

new

new

new

new

book

figure

logo

document

folder
Life Cycle Service: v1.0 Summary of Life Cycle Service November 1996 6-29

6

ure
original. This happened in the example; the shallow propagation value from the fig
to the logo was promoted to deep because the logo was copied. As such, the new figure
references the new logo, not the original logo.

 A.4.2 The CosCompoundLifeCycle Module

The CosCompoundLifeCycle module defines

• The Operations interface for initiating compound life cycle operations on graphs
of related objects,

• OperationsFactory interface for creating compound operations,

• The Node, Role, Relationship and PropagationCriteriaFactory interfaces for use
by implementations of compound life cycle operations.

The CosCompoundLifeCycle module is given in Figure 6-17. Detailed descriptions of
the interfaces follow.

#include <LifeCycle.idl>
#include <Relationships.idl>
#include <Graphs.idl>

module CosCompoundLifeCycle {
interface OperationsFactory;
interface Operations;
interface Node;
interface Role;
interface Relationship;
interface PropagationCriteriaFactory;

enum Operation {copy, move, remove};

struct RelationshipHandle {
Relationship the_relationship;
::CosObjectIdentity::ObjectIdentifier constant_random_id;

};

interface OperationsFactory {
Operations create_compound_operations();

};

Figure 6-17 The CosCompoundLifeCycle Module
6-30 CORBAservices November 1996

6

interface Operations {
Node copy (

in Node starting_node,
in ::CosLifeCycle::FactoryFinder there,
in ::CosLifeCycle::Criteria the_criteria)

raises (::CosLifeCycle::NoFactory,
::CosLifeCycle::NotCopyable,
::CosLifeCycle::InvalidCriteria,
::CosLifeCycle::CannotMeetCriteria);

void move (
in Node starting_node,
in ::CosLifeCycle::FactoryFinder there,
in ::CosLifeCycle::Criteria the_criteria)

raises (::CosLifeCycle::NoFactory,
::CosLifeCycle::NotMovable,
::CosLifeCycle::InvalidCriteria,
::CosLifeCycle::CannotMeetCriteria);

void remove (in Node starting_node)
raises (::CosLifeCycle::NotRemovable);

void destroy();
};

interface Node : ::CosGraphs::Node {
exception NotLifeCycleObject {};
void copy_node (in ::CosLifeCycle::FactoryFinder there,

in ::CosLifeCycle::Criteria the_criteria,
out Node new_node,
out Roles roles_of_new_node)

raises (::CosLifeCycle::NoFactory,
::CosLifeCycle::NotCopyable,
::CosLifeCycle::InvalidCriteria,
::CosLifeCycle::CannotMeetCriteria);

void move_node (in ::CosLifeCycle::FactoryFinder there,
in ::CosLifeCycle::Criteria the_criteria)

raises (::CosLifeCycle::NoFactory,
::CosLifeCycle::NotMovable,
::CosLifeCycle::InvalidCriteria,
::CosLifeCycle::CannotMeetCriteria);

void remove_node ()
raises (::CosLifeCycle::NotRemovable);

::CosLifeCycle::LifeCycleObject get_life_cycle_object()
raises (NotLifeCycleObject);

};

Figure 6-17 The CosCompoundLifeCycle Module (Continued)
Life Cycle Service: v1.0 Summary of Life Cycle Service November 1996 6-31

6

interface Role : ::CosGraphs::Role {
Role copy_role (in ::CosLifeCycle::FactoryFinder there,

in ::CosLifeCycle::Criteria the_criteria)
raises (::CosLifeCycle::NoFactory,

::CosLifeCycle::NotCopyable,
::CosLifeCycle::InvalidCriteria,
::CosLifeCycle::CannotMeetCriteria);

void move_role (in ::CosLifeCycle::FactoryFinder there,
in ::CosLifeCycle::Criteria the_criteria)

raises (::CosLifeCycle::NoFactory,
::CosLifeCycle::NotMovable,
::CosLifeCycle::InvalidCriteria,
::CosLifeCycle::CannotMeetCriteria);

::CosGraphs::PropagationValue life_cycle_propagation (
in Operation op,
in RelationshipHandle rel,
in ::CosRelationships::RoleName to_role_name,
out boolean same_for_all);

};

interface Relationship :
::CosRelationships::Relationship {

Relationship copy_relationship (
in ::CosLifeCycle::FactoryFinder there,
in ::CosLifeCycle::Criteria the_criteria,
in ::CosGraphs::NamedRoles new_roles)

raises (::CosLifeCycle::NoFactory,
::CosLifeCycle::NotCopyable,
::CosLifeCycle::InvalidCriteria,
::CosLifeCycle::CannotMeetCriteria);

void move_relationship (
in ::CosLifeCycle::FactoryFinder there,
in ::CosLifeCycle::Criteria the_criteria)

raises (::CosLifeCycle::NoFactory,
::CosLifeCycle::NotMovable,
::CosLifeCycle::InvalidCriteria,
::CosLifeCycle::CannotMeetCriteria);

::CosGraphs::PropagationValue life_cycle_propagation (
in Operation op,
in ::CosRelationships::RoleName from_role_name,
in ::CosRelationships::RoleName to_role_name,
out boolean same_for_all);

};

interface PropagationCriteriaFactory {
::CosGraphs::TraversalCriteria create(in Operation op);

};

};

Figure 6-17 The CosCompoundLifeCycle Module (Continued)
6-32 CORBAservices November 1996

6

ts

ife

d

 for
 A.4.3 The OperationsFactory Interface

Creating a Compound Life Cycle Operation

The create_compound_operations operation creates an object that implemen
the compound life cycle operations, that is, the factory creates and returns an object
that supports the CosCompoundLifeCycyle::Operations interface.

The Operations Interface

The Operations interface defines compound life cycle operations to copy, move and
remove objects, given a starting node in a graph.

Applying the Copy Operation to a Graph of Related Objects

The copy operation applies the copy operation to a graph of related objects. The
starting node is provided as the starting_node parameter. The copy should be
collocated with the factory finder given by the there parameter. The final parameter,
the_criteria , allows unspecified values to be passed. This is explained in the L
Cycle specification in detail.

If a node, role or relationship in the graph refuses to be copied, the NotCopyable
exception is raised with the node, role or relationship object reference returned as a
parameter to the exception.

If appropriate factories to create a copies of the nodes and roles cannot be found, the
NoFactory exception is raised. The exception value indicates the key used to fin
the factory.

In addition to the NoFactory and NotCopyable exceptions, implementations may
raise standard CORBA exceptions. For example, if resources cannot be acquired
the copied graph, NO_RESOURCES will be raised.

Operations create_compound_operations();

Node copy (
in Node starting_node,
in ::CosLifeCycle::FactoryFinder there,
in ::CosLifeCycle::Criteria the_criteria)

raises (::CosLifeCycle::NoFactory,
::CosLifeCycle::NotCopyable,
::CosLifeCycle::InvalidCriteria,
::CosLifeCycle::CannotMeetCriteria);
Life Cycle Service: v1.0 Summary of Life Cycle Service November 1996 6-33

6

ed

d

 for
It is implementation dependent whether this operation is atomic.

Applying the Move Operation to a Graph of Related Objects

The move operation applies the move operation to a graph of related objects. The
starting node is provided as the starting_node parameter. The migrated graph
should be collocated with the factory finder given by the there parameter. The final
parameter, the_criteria , allows unspecified values to be passed. This is explain
in the Life Cycle specification in detail.

If a node, role or relationship in the graph refuses to be moved, the NotMovable
exception is raised with the node, role or relationship object reference returned as a
parameter to the exception.

If appropriate factories to migrate the nodes and roles cannot be found, the
NoFactory exception is raised. The exception value indicates the key used to fin
the factory.

In addition to the NoFactory and NotMovable exceptions, implementations may
raise standard CORBA exceptions. For example, if resources cannot be acquired
the migrated graph, NO_RESOURCES will be raised.

It is implementation-dependent whether this operation is atomic.

Applying the Remove Operation to a Graph of Related Objects

The remove operation applies the remove operation to a graph of related objects. The
starting node is provided as the starting_node parameter.

If a node, role or relationship in the graph refuses to be removed, the NotRemovable
exception is raised with the node, role or relationship object reference returned as a
parameter to the exception.

void move (
in Node starting_node,
in ::CosLifeCycle::FactoryFinder there,
in ::CosLifeCycle::Criteria the_criteria)

raises (::CosLifeCycle::NoFactory,
::CosLifeCycle::NotMovable,
::CosLifeCycle::InvalidCriteria,
::CosLifeCycle::CannotMeetCriteria);

void remove (in Node starting_node)
raises (::CosLifeCycle::NotRemovable);
6-34 CORBAservices November 1996

6

oles
It is implementation dependent whether this operation is atomic.

Destroying the Compound Operation

The destroy operation indicates to the compound operation that the client has
completed operating on the graph. The compound operation object is destroyed.

The Node Interface

The Node interface defines operations to copy, move and remove a node.

Copying a Node

The copy operation makes a copy of the node and its roles. The new node and r
should be collocated with the factory finder given by the there parameter. The final
input parameter, the_criteria , allows unspecified values to be passed. This is
explained in the Life Cycle specification in detail.

The result of a copy operation is a:

• Node object reference for the new node and

• Sequence of roles

void destroy();

void copy_node (in ::CosLifeCycle::FactoryFinder there,
in ::CosLifeCycle::Criteria the_criteria,
out Node new_node,
out Roles roles_of_new_node)

raises (::CosLifeCycle::NoFactory,
::CosLifeCycle::NotCopyable,
::CosLifeCycle::InvalidCriteria,
::CosLifeCycle::CannotMeetCriteria);
Life Cycle Service: v1.0 Summary of Life Cycle Service November 1996 6-35

6

”.

 for

d
Figure 6-18 illustrates the result of a copy. A node, when it is born, is not in any
relationships with other objects. That is, the roles in the new node are “disconnected
It is the compound copy operation’s job to correctly establish new relationships.

Figure 6-18 Copying a node returns the new object and the corresponding roles.

If the node or one of its roles refuses to be copied, the NotCopyable exception is
raised with the node or role object reference returned as a parameter to the exception.

If an appropriate factory to create a copy cannot be found, the NoFactory exception
is raised. The exception value indicates the key used to find the factory.

In addition to the NoFactory and NotCopyable exceptions, implementations may
raise standard CORBA exceptions. For example, if resources cannot be acquired
the copied node, NO_RESOURCES will be raised.

Moving a Node

The move operation transfers some or all of the node’s resources from “here” to
“there”. The move operation migrates a the node and its roles. The migrated node and
roles should be collocated with the factory finder given by the there parameter. The
final parameter, the_criteria , allows unspecified values to be passed. This is
explained in the Life Cycle specification in detail.

If the node or one of its roles refuses to be moved, the NotMovable exception is
raised with the node or role object reference returned as a parameter to the exception.

If an appropriate factory to support migration “over there” cannot be found, the
NoFactory exception is raised. The exception value indicates the key used to fin
the factory.

void move_node (in ::CosLifeCycle::FactoryFinder there,
in ::CosLifeCycle::Criteria the_criteria)

raises (::CosLifeCycle::NoFactory,
::CosLifeCycle::NotMovable,
::CosLifeCycle::InvalidCriteria,
::CosLifeCycle::CannotMeetCriteria);

THEREHERE

original
document

new
document
6-36 CORBAservices November 1996

6

 for

ts

e
In addition to the NoFactory and NotMovable exceptions, implementations may
raise standard CORBA exceptions. For example, if resources cannot be acquired
the migrated node, NO_RESOURCES will be raised.

Removing a Node

The remove operation removes the node and its roles.

If the node or one of its roles refuses to be removed, the NotRemovable exception is
raised with the node or role object reference returned as a parameter to the exception.

Getting the Node’s Life Cycle Object

Some nodes not only participate in the life cycle protocols for graphs of related objec
but they also support the client’s view of life cycle services. That is, the node also
supports the ::CosLifeCycle::LifeCycleObject interface described in the Life Cycle
Service specification. The get_life_cycle_object operation returns the
::CosLifeCycle::LifeCycleObject object reference for the node.

If the node does not support the ::CosLifeCycle::LifeCycleObject interface, the
NotLifeCycleObject exception is raised.

The Role Interface

The Role interface defines operations to copy and move a role. (The destroy
operation is defined by the base Relationship Service. As such, there is no need to
define a remove operation.) The Role interface also defines an operation to return th
propagation values for the copy, move and remove operations.

The implementation of a CompoundLifeCycle::Node operation can call these
operations on roles. For example, an implementation of copy on a node can call the
copy operation on the Role.

void remove_node ()
raises (::CosLifeCycle::NotRemovable);

::CosLifeCycle::LifeCycleObject get_life_cycle_object()
raises (NotLifeCycleObject);
Life Cycle Service: v1.0 Summary of Life Cycle Service November 1996 6-37

6

with

ife

the

 for

iven

.
Copying a Role

The copy operation makes a copy of the role. The new role should be collocated
the factory finder given by the there parameter. The final parameter,
the_criteria , allows unspecified values to be passed. This is explained in the L
Cycle specification in detail.

The result of a copy operation is an object reference for the new object supporting
Role interface.

If the role refuses to be copied, the NotCopyable exception is raised with the role
object reference returned as a parameter to the exception.

If an appropriate factory to create a copy cannot be found, the NoFactory exception
is raised. The exception value indicates the key used to find the factory.

In addition to the NoFactory and NotCopyable exceptions, implementations may
raise standard CORBA exceptions. For example, if resources cannot be acquired
the copied role, NO_RESOURCES will be raised.

Moving a Role

The move operation transfers some or all of the role’s resources. The move operation
migrates the role. The migrated role should be collocated with the factory finder g
by the there parameter. The final parameter, the_criteria , allows unspecified
values to be passed. This is explained in the Life Cycle specification in detail.

If the role refuses to be moved, the NotMovable exception is raised with the role
object reference returned as a parameter to the exception.

If an appropriate factory to support migration cannot be found, the NoFactory
exception is raised. The exception value indicates the key used to find the factory

Role copy_role (in ::CosLifeCycle::FactoryFinder there,
in ::CosLifeCycle::Criteria the_criteria)

raises (::CosLifeCycle::NoFactory,
::CosLifeCycle::NotCopyable,
::CosLifeCycle::InvalidCriteria,
::CosLifeCycle::CannotMeetCriteria);

void move_role (in ::CosLifeCycle::FactoryFinder there,
in ::CosLifeCycle::Criteria the_criteria)

raises (::CosLifeCycle::NoFactory,
::CosLifeCycle::NotMovable,
::CosLifeCycle::InvalidCriteria,
::CosLifeCycle::CannotMeetCriteria);
6-38 CORBAservices November 1996

6

 for

le

eed

ed
In addition to the NoFactory and NotMovable exceptions, implementations may
raise standard CORBA exceptions. For example, if resources cannot be acquired
the migrated role, NO_RESOURCES will be raised.

Getting a Propagation Value

The life_cycle_propagation operation returns the propagation value to the ro
to_role_name for the life cycle operation op and the relationship rel . If the role
can guarantee that the propagation value is the same for all relationships in which it
participates, same_for_all is true.

The Relationship Interface

The Relationship interface defines operations to copy and move a relationship. (The
destroy operation is defined by the Relationship Service. As such, there is no n
to define a remove operation.) The Relationship interface also defines an operation to
return the propagation values for the copy, move and remove operations.

Copying the Relationship

The copy operation creates a new relationship. The new relationship should be
collocated with the factory finder given by the there parameter. The second
parameter, the_criteria , allows unspecified values to be passed. This is explain
in the Life Cycle specification in detail.

::CosGraphs::PropagationValue life_cycle_propagation (
in Operation op,
in RelationshipHandle rel,
in ::CosRelationships::RoleName to_role_name,
out boolean same_for_all);

Relationship copy_relationship (
in ::CosLifeCycle::FactoryFinder there,
in ::CosLifeCycle::Criteria the_criteria,
in ::CosGraphs::NamedRoles new_roles)

raises (::CosLifeCycle::NoFactory,
::CosLifeCycle::NotCopyable,
::CosLifeCycle::InvalidCriteria,
::CosLifeCycle::CannotMeetCriteria);
Life Cycle Service: v1.0 Summary of Life Cycle Service November 1996 6-39

6

the

 for

d

ife

.

 for
The values of the newly created relationship’s attributes are defined by the
implementation of this operation. However, the named_roles attribute of the newly
created relationship must match new_roles. That is, the newly created relationship
relates objects represented by new_roles parameter, not the by the original
relationship’s named roles.

The result of a copy operation is an object reference for the new object supporting
Relationship interface.

If the relationship refuses to be copied, the NotCopyable exception is raised with the
relationship object reference returned as a parameter to the exception.

If an appropriate factory to create a copy cannot be found, the NoFactory exception
is raised. The exception value indicates the key used to find the factory.

In addition to the NoFactory and NotCopyable exceptions, implementations may
raise standard CORBA exceptions. For example, if resources cannot be acquired
the copied role, NO_RESOURCES will be raised.

Moving the Relationship

The move operation transfers some or all of the relationship’s resources. The move
operation migrates the relationship. The migrated relationship should be collocate
with the factory finder given by the there parameter. The final parameter,
the_criteria , allows unspecified values to be passed. This is explained in the L
Cycle specification in detail.

If the relationship refuses to be moved, the NotMovable exception is raised with the
relationship object reference returned as a parameter to the exception.

If an appropriate factory to support migration cannot be found, the NoFactory
exception is raised. The exception value indicates the key used to find the factory

In addition to the NoFactory and NotMovable exceptions, implementations may
raise standard CORBA exceptions. For example, if resources cannot be acquired
the migrated relationship, NO_RESOURCES will be raised.

void move_relationship (
in ::CosLifeCycle::Criteria the_criteria)

raises (::CosLifeCycle::NoFactory,
::CosLifeCycle::NotMovable,
::CosLifeCycle::InvalidCriteria,
::CosLifeCycle::CannotMeetCriteria);
6-40 CORBAservices November 1996

6

e

es

n be
Getting a Propagation Value

The life_cycle_propagation operation returns the relationship’s propagation
value from the role from_role to the role to_role_name for the life cycle
operation op . If the role named by from_role_name can guarantee that the
propagation value is the same for all relationships in which it participates,
same_for_all is true.

The PropagationCriteriaFactory Interface

The CosGraphs module in the Relationship Service defines a general service for
traversing a graph of related objects. The service accepts a “call-back” object
supporting the ::CosGraphs::TraversalCriteria interface. Given a node, this object
defines which edges to emit and which nodes to visit next.

The PropgationCriteriaFactory creates a TraversalCriteria object that determines
which edges to emit and which nodes to visit based on propagation values for th
compound life cycle operations.

Create a Traversal Criteria Based on Life Cycle Propagation Valu

The create operation returns a TraversalCriteria object for an operation op that
determines which edges to emit and which nodes to visit based on propagation values
for op. For a more detailed discussion see section A.4.1 of this appendix and section
9.4.2 of the Relationship specification.

 A.4.4 Specific Life Cycle Relationships

The Relationship service defines two important relationships, containment and
reference. Containment is a one-to-many relationship. A container can contain many
containees; a containee is contained by one container. Reference, on the other hand, is
a many-to-many relationship. An object can reference many objects; an object ca
referenced by many objects.

::CosGraphs::PropagationValue life_cycle_propagation (
in Operation op,
in ::CosRelationships::RoleName from_role_name,
in ::CosRelationships::RoleName to_role_name,
out boolean same_for_all);

::CosGraphs::TraversalCriteria create(in Operation op);
Life Cycle Service: v1.0 Summary of Life Cycle Service November 1996 6-41

6

Containment is represented by a relationship with two roles: the ContainsRole, and the
ContainedInRole. Similarly, reference is represented by a relationship with two roles:
ReferencesRole and ReferencedByRole.

The compound life cycle specification adds life cycle semantics to these specific
relationships. That is, it defines propagation values for containment and reference.

 A.4.5 The CosLifeCycleContainment Module

The CosLifeCycleContainment module defines three interfaces
• the Relationship interface
• the ContainsRole interface and
• the ContainedInRole interface.

The CosLifeCycleContainment module does not define new operations. It merely
“mixes in” interfaces from the CosCompoundLifeCycle and CosContainment modules.
Although it does not add any new operations, it refines the semantics of these
attributes and operations:

#include <Containment.idl>
#include <CompoundLifeCycle.idl>

module CosLifeCycleContainment {

interface Relationship :
::CosCompoundLifeCycle::Relationship,
::CosContainment::Relationship {};

interface ContainsRole :
::CosCompoundLifeCycle::Role,
::CosContainment::ContainsRole {};

interface ContainedInRole :
::CosCompoundLifeCycle::Role,
::CosContainment::ContainedInRole {};

};

Figure 6-19 The CosLifeCycleContainment module

RelationshipFactory
attribute value

relationship_type CosLifeCycleContainment::Relationship

degree 2

named_role_types “ContainsRole”,CosLifeCycleContainment::ContainsR
ole;
“ContainedInRole”,CosLifeCycleContainment::Contai
nedInRole
6-42 CORBAservices November 1996

6

The CosRelationships::RelationshipFactory::create operation will raise
DegreeError if the number of roles passed as arguments is not 2. It will raise
RoleTypeError if the roles are not CosLifeCycleContainment::ContainsRole and
CosLifeCycleContainment::ContainedInRole. It will raise
MaxCardinalityExceeded if the CosLifeCycleContainment::ContainedInRole is
already participating in a relationship.

The CosRelationships::RoleFactory::create_role operation will raise the
RelatedObjectTypeError if the related object passed as a parameter does not
support the CosCompoundLifeCycle::Node interface. The
CosRelationships::RoleFactory::link operation will raise
RelationshipTypeError if the rel parameter does not conform to the
CosLifeCycleContainment::Relationship interface.

The CosRelationships::RoleFactory::create_role operation will raise the
RelatedObjectTypeError if the related object passed as a parameter does not
support the CosCompoundLIfeCycle::Node interface. The
CosRelationships::RoleFactory::link operation will raise
RelationshipTypeError if the rel parameter does not conform to the
CosLifeCycleContainment::Relationship interface. The
CosRelationships::RoleFactory::link operation will raise
MaxCardinalityExceeded if it is already participating in a containment
relationship.

RoleFactory attribute for
ContainsRole value

role_type CosLifeCycleContainment::ContainsRole

maximum_cardinality unbounded

minimum_cardinality 0

related_object_types CosCompoundLifeCycle::Node

RoleFactory attribute for
ContainedInRole value

role_type CosLifeCycleContainment::ContainedInRole

maximum_cardinality 1

minimum_cardinality 1

related_object_types CosCompoundLifeCycle::Node
Life Cycle Service: v1.0 Summary of Life Cycle Service November 1996 6-43

6

The CosLifeCycleContainment:: ContainsRole::life_cycle_propagation
operation returns the following:

The CosLifeCycleContainment:: ContainedInRole::life_cycle_propagation
operation returns the following::

 A.4.6 The CosLifeCycleReference Module

The CosLifeCycleReference module defines three interfaces
• the Relationship interface,
• the ReferencesRole interface and
• the ReferencedByRole interface.

operation ContainsRole to ContainedInRole

copy deep

move deep

remove deep

operation ContainedInRole to ContainsRole

copy shallow

move shallow

remove shallow

#include <Reference.idl>
#include <CompoundLifeCycle.idl>

module CosLifeCycleReference {

interface Relationship :
::CosCompoundLifeCycle::Relationship,
::CosReference::Relationship {};

interface ReferencesRole :
::CosCompoundLifeCycle::Role,
::CosReference::ReferencesRole {};

interface ReferencedByRole :
::CosCompoundLifeCycle::Role,
::CosReference::ReferencedByRole {};

};

Figure 6-20 The CosLifeCycleReference module
6-44 CORBAservices November 1996

6

The CosLifeCycleReference module does not define new operations. It merely “mixes
in” interfaces from the CosCompoundLifeCycle and CosReference modules. Although
it does not add any new operations, it refines the semantics of these attributes and
operations:

The CosRelationships::RelationshipFactory::create operation will raise
DegreeError if the number of roles passed as arguments is not 2. It will raise
RoleTypeError if the roles are not CosReference::ReferencesRole and
CosReference::ReferencedByRole.

The CosRelationships::RoleFactory::create_role operation will raise the
RelatedObjectTypeError if the related object passed as a parameter does not
support the CosCompoundLifeCycle::Node interface. The
CosRelationships::RoleFactory::link operation will raise
RelationshipTypeError if the rel parameter does not conform to the
CosLifeCycleReference::Relationship interface.

The CosRelationships::RoleFactory::create_role operation will raise the
RelatedObjectTypeError if the related object passed as a parameter does not
support the CosCompoundLifeCycle::Node interface. The

RelationshipFactory
attribute value

relationship_type CosLifeCycleReference::Relationship

degree 2

named_role_types “ReferencesRole”,CosLifeCycleReference::Reference
sRole;
“ReferencedByRole”,CosLifeCycleReference::Referen
cedByRole

RoleFactory attribute for
ReferencesRole value

role_type CosLifeCycleReference::ReferencesRole

maximum_cardinality unbounded

minimum_cardinality 0

related_object_types CosCompoundLifeCycle::Node

RoleFactory attribute for
ReferencedByRole value

role_type CosLifeCycleReference::ReferencedByRole

maximum_cardinality unbounded

minimum_cardinality 0

related_object_types CosCompoundLifeCycle::Node
Life Cycle Service: v1.0 Summary of Life Cycle Service November 1996 6-45

6

CosRelationships::RoleFactory::link operation will raise
RelationshipTypeError if the rel parameter does not conform to the
CosLifeCycleRelationship::Relationship interface.

The CosLifeCycleReference:: ReferencesRole::life_cycle_propagation
operation returns the following:

The CosLifeCycleReference:: ReferencedByRole::life_cycle_propagation
operation returns the following::

The CosRelationships::RoleFactory::create_role operation will raise the
RelatedObjectTypeError if the related object passed as a parameter does not
support the CosCompoundLifeCycle::Node interface.
The CosRelationships::RelationshipFactory::create operation will raise
DegreeError if the number of roles passed as arguments is not 2. It will raise
RoleTypeError if the roles are not CosLifeCycleReference::ReferencesRole and
CosLifeCycleReference::ReferencedByRole.

 A.5 References

1. James Rumbaugh, “Controlling Propagation of Operations using Attributes on
Relations.” OOPSLA 1988 Proceedings, pg. 285-296

2. James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy and William
Lorensen, “Object-oriented Modeling and Design.” Prentice Hall, 1991.

operation ReferencesRole to ReferencedByRole

copy shallow

move shallow

remove shallow

operation ReferencedByRole to ReferencesRole

copy none

move shallow

remove shallow
6-46 CORBAservices November 1996

6

 a
f

cate

lient

ch

ope,

l

raint
 Appendix B Filters

Note – Appendix B is not part of the Life Cycle Services specification. It sketches
mechanism for expressing filters. This appendix is included to provided an example o
how a filter might be provided.

A factory represents a scope of resource allocation, which is the set of resources
available to the factory. Whenever it receives a creation request, a factory will allo
resources according to any policies which are in operation.

Clearly, by choosing a particular factory upon which to issue a create request, a c
is exerting some control over the allocation of resources. Therefore, a client can limit
the scope of resource allocation, by issuing the request on a different factory whi
represents a smaller set of resources.

However, there are two problems with this. Firstly, the granularity of resources may be
much smaller than the granularity represented by the factories in a system. For
example, there are unlikely to be factories which represent individual disk segments.

Secondly, the client may wish to rule out the use of particular resources within a sc
but avoid having a general reduction in scope. For example, the client might not be
concerned with which machine within a LAN an object is created on, providing it is
not on machine X.

Both of these needs can be addressed by providing a filter. In the first case, the filter is
relatively simple; it will simply limit the scope of resource allocation. In the second
case, the filter will need to be more sophisticated.

This appendix describes one way of providing filters using properties and constraint
expressions. These concepts appear in the development of Trading in the
ISO/IEC/CCITT Open Distributed Processing standards. Service providers register
their service with the Trader and use properties to describe the service offer. Potentia
clients may then use a constraint expressions to describe the requirements which
service offers must satisfy.

Similarly, the life cycle service may define a number of properties to represent the
different kinds of resources available within in a system and clients may use const
expressions to place the restrictions upon the use of those resources.

Note – The Object Services Architecture identifies an Object Properties Service which
enables an object to have a set of arbitrary named values associated with it. These are
very similar to the concept of properties as used in Trading and in this appendix.
Filters Summary of Life Cycle Service November 1996 6-47

6

s that

s

e

s

f

in
 B.1 Resources as Properties

Resource properties are application and generic factory implementation dependent and
it is beyond the scope of this specification to identify standard properties which all
generic factory implementations will recognize. The properties described in this
appendix are given as examples only. Table 6-8 gives some examples of propertie
might be supported by a generic factory.

 B.2 Constraint Expressions

Constraints are expressed in a Constraint Language which provides a set of operator
which allow arbitrarily complex expressions involving properties and potential values
to be specified. A property lists satisfies a constraint if the constraint expression is tru
when evaluated with respect to the property list.

Constraint expressions are very flexible. For example, if a client has an object
executing on a machine called ‘Host1’ and wishes to create another object which inot
on the same machine, the client can specify the constraint “Host != ‘Host1’”.

The constraint expression described here works with properties for which the value can
be a string, a number, or a set of values.

The constraint language consists of:

• comparative functions: ==, != , >, >=, <, <=, in
• constructors: and , or , not
• property names
• numeric and string constants
• mathematical operators: +, - , * , /
• grouping operators: (,) , [,]

The following precedence relations hold in the absence of parentheses, in the order o
lowest to highest:

• + and -
• * and /
• or
• and
• not

The comparative operator in checks for the inclusion of a particular string constant
the list which is the value of a property.

Table 6-8 Examples of properties supported by a generic factory

Property Name Meaning

Host Host name of the machine

Architecture Machine architecture, e.g. “intel”, “sparc”

OSArchitecture Operating system architecture e.g. “solaris”, “hpux”
6-48 CORBAservices November 1996

6

 B.3 BNF for Constraint Expressions

<ConstraintExpr> := [<Expr>]

<Expr> := <Expr> ”or” <Expr>

| <Expr> ”and” <Expr>

| ”not” <Expr>

| ”(” <Expr> ”)”

| <SetExpr> <SetOp> <SetExpr>

| <StrExpr> <StrOp> <StrExpr>

| <NumExpr> <NumOp> <NumExpr>

| <NumExpr> ”in” <SetExpr>

| <StrExpr> ”in” <SetExpr>

<NumOp> := ”==” | ”!=” | ”<” | ”<=” | ”>” | ”>=”

<StrOp> := ”==” | ”!=”

<SetOp> := ”==” | ”!= ”

<NumExpr> := <NumTerm>

| <NumExpr> ”+” <NumTerm>

| <NumExpr> ”-” <NumTerm>

<NumTerm> := <NumFactor>

| <NumTerm> ”*” <NumFactor>

| <NumTerm> ”/” <NumFactor>

<NumFactor> := <Identifier>

| <Number>

| ”(” <NumExpr> ”)”

| ”-” <NumFactor>

<StrExpr> := <StrTerm>

| <StrExpr> ”+” <StrTerm>

<StrTerm> := <Identifier>

| <String>

| ”(” <StrExpr> ”)”

<SetExpr> := <SetTerm>

| <SetExpr> ”+” <SetTerm>

<SetTerm> := <Identifier>

| <Set>

| ”(” <SetExpr> ”)”

<Identifier> := <Word>
Filters Summary of Life Cycle Service November 1996 6-49

6

<Number> := <Integer>

| <Float>

<Integer> := { <Digit> }+

<Float> := <Mantissa> [<Sign>] [<Exponent>]

<Mantissa> := <Integer> [”.” [<Integer>]]

| ”.” <Integer>

<Sign> := ”-”

| ”+”

<Exponent> := ”e” <Integer>

| ”E” <Integer>

<Word> := <Letter> { <AlphaNum> }*

<AlphaNum> := <Letter>

| <Digit>

| ”_”

<String> := ”’” { <Char> }* ”’”

<Char> := <Letter>

| <Digit>

| <Other>

<Set> := ”{” <Elements> ”}”

<Elements> := [<Element> { <Sp> + <Element> }*]

<Element> := <Number>

| <Word>

| <String>

<Letter> := a | b | c | d | e | f | g | h | i | j | k

| l | m | n | o | p | q | r | s | t | u | v

| w | x | y | z | A | B | C | D | E | F | G

| H | I | J | K | L | M | N | O | P | Q | R

| S | T | U | V | W | X | Y | Z

<Digit> := 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<Other> := <Sp> | ~ | ! | @ | # | $ | % | ̂ | & | * | (

|) | - | _ | = | + | [| { |] | } | ; | :

| “ | \ | | | , | < | . | > | / | ?

<Sp> := ” ”
6-50 CORBAservices November 1996

6

w

f

g

to

s,

st

ludes

s the
 Appendix C Administration

Note – Appendix C is not part of the Life Cycle Services specification. This
description is included as a suggested way of administering generic factories.

The specification for the life cycle service includes the GenericFactory interface.
There will be at least two styles of object which support that interface:

• implementation specific factories that actually assemble the resources for a ne
object, and

• generic factories which pass requests on to either implementation specific factories
or other generic factories.

By configuring generic factories and implementation specific factories into a graph, a
creation service can be built which administers the allocation of a large number o
resources and can use them to create a wide variety of objects.

To ensure that the creation service is scalable, it is essential that the principle of
federation is adopted – each component retains its autonomy rather than becomin
subordinate to another.

Whenever the creation service receives a creation request, the request will need
traverse the graph until it reaches an implementation specific factory which can satisfy
the request. As the request traverses the graph, each non-terminal node in the graph
(i.e. the generic factories) will decide which link the request will traverse next.
Decisions will be based upon information about each available link, any policies in
force at that node and, of course, the actual request.

Clearly, the configuration and policies of such a creation service will need to be
administered. However, the specification does not include the specification of an
administration interface. This is because the principle of federation is not only
important to the life cycle service. It will be essential to a number of other service
notably trading, and the OMG plans to address the issue of federation for all object
services, rather than making a premature specification addressing the needs of juone
service.

The remainder of this appendix describes the principle of federation in more detail,
outlines the use of policies and preferences to support federation, and then conc
with a suggestion for how an administration interface might look.

 C.1 Federation

Federation is essential in large-scale distributed systems where the existence of
centralized ownership and universal control cannot be assumed. In these system
only way to achieve cooperation between autonomous systems without creating a
hierarchical structure is to use federation. Federation is also beneficial to smaller
systems which can exploit the high degree of flexibility which federation provides.
Administration Summary of Life Cycle Service November 1996 6-51

6

t” in

mes

lso

le.
 of

ng

ed in a

ts

rnal

to

ice.
Federation differs from the more conventional approach of adopting a strictly
hierarchical organization in a number of ways. Firstly, components can provide their
service to any number of others, not just the single component which is its “paren
the hierarchy. Secondly, components can establish peer-to-peer relationships,
eliminating the need for a single component at the top of the hierarchy. Finally, this
approach avoids the necessity of maintaining a global namespace. Instead, all na
are relative to the context in which they are used.

Federation enables previously distinct systems to be unified without requiring global
changes to their naming structures and system management hierarchies. The
administration functions must ensure the systems are configured appropriately,
e.g. avoiding circular references in those graphs which must be kept acyclic.

 C.1.1 Federation in Object Services

In addition to the use of federation in configuring generic factories, federation is a
applicable to a number of other services.

Trading is a notable example. A global offer space is neither practical nor desirab
Consequently, there will be multiple traders, each representing a different portion
the offer space. Offers held by one trader can be made available to the clients of
another trader through federation.

The naming service specification also demonstrates attributes of federation. Nami
contexts can be bound to other naming contexts and requests for name resolution can
be passed across the links. However, it is entirely the concern of the naming context
how it resolves the name within its domain, i.e. it is autonomous.

 C.1.2 Federation Issues

There are a number of issues which need to be addressed for federation to be us
cohesive fashion across all object services.

Visibility of the Federation Graph

The naming service makes the configuration of naming contexts into a graph very
visible to the clients. This is essential, because the naming service must provide clien
with a structured namespace.

On the other hand, it is not clear that a client should ever be able to see the inte
structure of a life cycle creation service built with generic and implementation specific
factories.

The trading service falls in between the two extremes. It may be useful for a client
be able to navigate the structure of a trading service graph in order to have more
control over the visibility of offers. However, this may make clients too dependent
upon the organization of the trading service and limit the flexibility of the system
administrator in reorganizing the trading service to provide the most effective serv
6-52 CORBAservices November 1996

6

,

 an

er-to-
r-to-
 to
th

 to

rvice,
te up
ld

 in
any
Service Interface vs. Administration Interface

In general, it is desirable to federate using the service interface for the links and
reserve the administration interface for the administrators. This approach ensures that
autonomy is retained. However, this precludes the use of compound names in the
administration functions because the administration functions cannot traverse the
graph; only simple names can be used in administration only functions.

However, this is inappropriate for services where graph manipulation is an essential
part of the service. For example, the naming service specification does not distinguish
between administration functions for manipulating the graph and service functions.
This is clearly correct; the clients need to be able to manipulate the graph by creating,
binding and destroying contexts.

Multiple Service Interfaces

A node in a federation graph may be a conspiracy and offer multiple service interfaces
perhaps one for each point it is bound into the graph. However, for services where the
administration is kept distinct from the service, it is likely that the conspiracy will
support only one administration interface.

In these situations, it becomes necessary for an administrator to be able to match
service interfaces to conspiracies, i.e. to match one or more service interfaces to
administrative interface. The example in Section C.3 provides a solution to this which,
in theory, will scale, but there may be better ways of doing this.

Cycles and Peer-to-Peer Relationships

The introduction of cycles into a federation graph is a contentious issue. Since pe
peer relationships are a degenerate form of cycle, any service which supports pee
peer relationships must be capable of handling cycles. The major impact of this is
provide loop detection on operations which would otherwise go out of control. Bo
trading and naming services are examples of this kind of service.

However, some services may not be able to handle cycles effectively and will wish
proscibe them. This probably covers peer-to-peer relationships, although that might be
an acceptable special case. An example of this might be the life cycle creation se
where information about the current usage of the available resources must percola
the graph in order to make informed decisions, but the introduction of cycles wou
make this information unclear or even meaningless.

 C.2 Policies

It is frequently necessary to configure the way in which operations are performed
order to tune the performance, e.g how long a search operation may take, how m
matches can be returned, or how much memory to use for a cache.
Administration Summary of Life Cycle Service November 1996 6-53

6

d
nts
 be

hard

hoice

ly

ences.

y

The same problems exist in distributed systems except that such configuration
parameters must be explicitly passed around. Where different administrative domains
are connected, such configuration parameters cannot be enforced by one domain on the
other. Similarly, users may want to control the configuration but must be prevente
from hogging resources, e.g memory, disk space, etc. Some configuration eleme
must be enforced, e.g disk quotas, some elements may specify defaults which can
changed and some elements may be requests which may or may not clash with
limits e.g max memory per process.

Policies are used as a generic solution to this problem – wherever some kind of c
needs to be made, policies may be used to guide the decision making process.

Table 6-9 provides some examples of policies. which a federated service might
support.

When invoking operations, clients can specify preferences for particular policies.
Providing the service has no value set for that policy, the preference will be simp
added to the policy list for the duration of the request. However, if a service policy is
already specified then the preference will either be ignored or, for policies such as
“maximum_distance”, the more constraining value will be adopted.

As a request traverses a graph, each node will pass its current policy set as prefer
In this way, the autonomy of individual administrative domains is preserved.

When an object doesn’t implement all choices of a policy, it should not allow its polic
to be modified to an unsupported value. This means that implementation limitations
are handled as Administrative hard limits which provides the correct semantics.

Where no policy is specified by either administrator or client, the implementation
determines its own behavior. However, this decision would not be propagated through
the graph (as a preference), leaving it to each node in the graph to make its own
decision.

Table 6-9 Example policies

Policy Name Meaning

search_algorithm determines whether the federation graph should be
traversed in a depth first or breadth first fashion.

cross_ boundaries determines whether administrative boundaries should be
crossed.

maximum_distance how far to traverse a graph before failing a request.
6-54 CORBAservices November 1996

6

n
 C.3 An Example LifeCycleService Module

Administrators access the administration functions via the LifeCycleService module,
which defines the LifeCycleServiceAdmin interface. This example is intended to work
with the GenericFactory interface in the specification. As a result, the administratio
functions cannot make use of compound names.

#include “LifeCycle.idl”

module LifeCycleService {

typedef sequence <Lifecycle::NameValuePair> PolicyList;
typedef sequence <Lifecycle::Key> Keys;
typedef sequence <Lifecycle::NameValuePair> PropertyList;
typedef sequence <Naming::NameComponent> NameComponents;

interface LifeCycleServiceAdmin {

attribute PolicyList policies;

void bind_generic_factory(
in Lifecycle::GenericFactory gf,
in Naming::NameComponent name,
in Keys key_set,
in PropertyList other_properties)

raises (Naming::AlreadBound, Naming::InvalidName);

void unbind_generic_factory(
in Naming::NameComponent name)

raises (Naming::NotFound, Naming::InvalidName);

Lifecycle::GenericFactory resolve_generic_factory(
in Naming::NameComponent name)

raises (Naming::NotFound, Naming::InvalidName);

NameComponents list_generic_factories();

boolean match_service (in Lifecycle::GenericFactory f);

string get_hint();

void get_link_properties(
in Naming::NameComponent name,
out Keys key_set,
out PropertyList other_properties)

raises (Naming::NotFound, Naming::InvalidName);
};

};

Figure 6-20 The LifeCycleService Module
Administration Summary of Life Cycle Service November 1996 6-55

6

e

hen

de

le

ave

te

r

.

 C.3.1 The LifeCycleServiceAdmin Interface

The LifeCycleServiceAdmin interface provides the basic administration operations
required to enable the lifecycle service to be administered by a set of tools or an
administration service. The operations enable configuration of factories supporting th
GenericFactory interface into a graph and setting of policies for those factories.

bind_generic_factory

This operation binds a factory supporting the GenericFactory interface into a graph.
The name must be unique within the context of the target of the operation. From t
on, that factory can be identified by that name.

In order to make a good decision about which link to choose for a request, the no
needs to be provided with additional information about those factories. This
information may be fairly dynamic, e.g. the current usage of the resources availab
through the link, or more static, e.g. the Keys for which the link can provide support.

The key_set parameter is a list of the keys for which the factory can provide
support. In the case of an implementation specific factory, this list will often only h
one member.

The other_properties parameter can be used to provide other static properties
associated with the factory. For example, an “Architectures” property would indica
the type(s) of machine which the factory could create objects on.

Changes to the static information as well as more dynamic information can be
monitored through the Events service. Each factory would generate events wheneve
the information changed significantly (e.g. a new GenericFactory interface with new
keys is bound to the factory, or there is a change in the usage of resources available to
the factory) and these can then be passed to those factories which need to know

unbind_generic_factory

This operation unbinds the generic factory identified by the name.

void bind_generic_factory(
in Lifecycle::GenericFactory gf,
in Naming::NameComponent name,
in Keys key_set,
in PropertyList other_properties)

raises (Naming::AlreadBound, Naming::InvalidName);

void unbind_generic_factory(
in Naming::NameComponent name)

raises (Naming::NotFound, Naming::InvalidName);
6-56 CORBAservices November 1996

6

et.
resolve_generic_factory

This operation takes the name supplied and returns the reference to the GenericFactory
object.

list_generic_factories

This operation returns a list of the names of all the bound factories.

match_service

This operation returns true if the generic factory interface is supported by the targ

get_hint

This operation returns a hint associated with the target, see Building a Map of a Graph
below.

get_link_properties

This operation returns the key_set and other_properties associated with the
name.

Lifecycle::GenericFactory resolve_generic_factory(
in Naming::NameComponent name)

raises (Naming::NotFound, Naming::InvalidName);

NameComponents list_generic_factories();

boolean match_service (in Lifecycle::GenericFactory f);

string get_hint();

void get_link_properties(
in Naming::NameComponent name,
out Keys key_set,
out PropertyList other_properties)

raises (Naming::NotFound, Naming::InvalidName);
Administration Summary of Life Cycle Service November 1996 6-57

6

ries

a
,

his
is
Building a Map of a Graph

Administration tools may wish to build a map of a federation graph from scratch and
some of the operations above are provided for that purpose.

First of all, the tool must obtain the set of administration interfaces for all the facto
to be administered. These might be obtained from a number of sources, e.g. a well-
known trading context.

For each interface, the list_generic_factories operation obtains a list of all
the links for each node. Using resolve_generic_factory , a service interface
can be obtained for each link. These can then be matched to an administration interface
using match_service .

Clearly, this does not scale well if there are many nodes involved because of the
average number of invocations of match_service required. This problem can be
solved if one of the other_properties associated with each service interface is
hint and a hint is available for each administration interface. If the hints are the same
there may be a match and match_service is called to check. If the hints could be
guaranteed to be unambiguous, the invocation could be avoided altogether, but t
requires a global namespace for the hints. The best that can reasonably be achieved
to reduce the chance of a clash to a minimum.

The get_hint and get_link_properties can be used for this purpose.
6-58 CORBAservices November 1996

6

dix

be

. It

 can

E.

y

een

 an
in

s

 Appendix D Support for PCTE Objects5

Note – Appendix D is not part of the Life Cycle Services specification. This appen
defines a set of criteria6 suitable for supporting PCTE objects.

It is intended that objects in a PCTE repository be among those objects that can
managed though this lifecycle interface. It is reasonable to expect that applications
written for PCTE will use the PCTE APIs to manage the life-cycle of PCTE objects
is also reasonable to expect that clients not specifically written for relationship-
oriented objects will not be able to manipulate the life-cycles of PCTE objects.
However, between these two, one can envision clients which desire to be flexible,
working on objects which may or may not be stored in the PCTE repository. One
also envision object factories, constructed to make use of PCTE which provide
services to clients that are not PCTE applications because they do not have the
appropriate working schemas, etc.

Support for these clients employs a series of conventional interpretations of the
lifecycle operations. This appendix provides one such set of conventions to
demonstrate the feasibility of the use of these interfaces in a context supporting PCT

Object references appear in constraint expressions in the form of character strings. An
implementation of PCTE as a CORBA Object Adapter has to establish a relationship
between these and the corresponding CORBA types, and be able to convert betw
them.

 D.1 Overview

A PCTE repository can be viewed as a generic factory. Using whatever naming or
trading services are appropriate, a client wishing to use the PCTE factory obtains
object reference to it. To support the simple applications intending to operate with
the context of a single PCTE repository, the PCTE factory supports the operation
defined by both the GenericFactory and FactoryFinder interfaces. The client can then
invoke the PCTE factory’s create_object operation, or pass the factory as the
“factory finder” when invoking the move or copy operations to move or copy within
the same PCTE repository. These clients include the servers implementing the move
and copy operations for various PCTE objects as well.

5.PCTE details used here are from the PCTE Abstract Specification, Standard ECMA-149 available from
the European Computer Manufacturers Association.

6.As defined in section 6.2.4 of the life cycle specification.
Support for PCTE Objects Summary of Life Cycle Service November 1996 6-59

6

 of
orts

the

d

cated

ed by
Lifecycle creation, copy, and move operations are influenced by a sequence of criteria.
Criteria are specified as a sequence of name/value pairs. Certain criteria are of interest
to the PCTE factories:

“logical location”

The logical location is used to express the logical connection information that must be
specified when creating or copying a PCTE object. Logical location is a sequence
name/value pairs expressing a connection for the object. The PCTE factory supp
and requires two:

ORIGIN A string representation of the reference to the object to which
newly created object is to be connected.

ORIGINLINK The name of the origin object’s link which is to hold the link
from the origin object to the newly created object.

“filter”

The filter is used to express the fact that an object being created, copied, or move
should reside on the same volume as some other, nearby, object. A filter is an
expression as described in B.3. For PCTE, the term “NEAR=” followed by an object
reference to the designated nearby object indicates that the new object is to be lo
at least as near as the same volume to the specified object. “authorization” Although
omitted from table 1-4 because no proposal on authorization has yet been accept
OMG, this lifecycle criterion is required to create PCTE objects.

 D.2 Object Creation

The LifeCycle::GenericFactory::create_object operation in this
specification is borne by factory objects. It has two parameters:

1. a key used to identify the desired object to be created and

2. a set of criteria expressed in an NVP-list.

The corresponding PCTE operation is called OBJECT_CREATE. The parameters to
OBJECT_CREATE are obtained from the
LifeCycle::GenericFactory::create_object parameters.

The PCTE operation OBJECT_CREATE has six parameters:

1. the type of object to be created This is the “key” from LifeCycle
create_object .

2. the origin object of the relation anchoring the new object This is the object
identified as the named “ORIGIN” of the logical location criterion.

3. the name of the link from that origin object to the new object This is the string
identified as the named “ORIGINLINK” of the logical location criterion.

4. an optional key for that link This is the string identified as the named “LINKKEY”
of the initialization criteria.
6-60 CORBAservices November 1996

6

with

pied
5. an object near whose location the object is to be created This is the string value of
a required filter expression value by the qualifier “NEAR”.

6. an access mask This is the string identified as the named “ACCESS” of the
authorization criteria This string is a simple mapping of the granted and denied
access rights.

Exceptions raised by PCTE are mapped to suitable LifeCycle exceptions.

 D.3 Object Deletion

The LifeCycle::LifeCycleObject::remove operation in this specification is
borne by all life-cycle objects. It has no parameters.

The corresponding PCTE operation is called OBJECT_DELETE. The parameters to
OBJECT_DELETE are obtained from the object to be deleted using information about
that object defined in PCTE’s schema information about the object.

The PCTE operation OBJECT_DELETE has two parameters:

1. the origin object of a relation anchoring the object to be deleted and

2. the name of the link from that origin object to the object to be deleted.

To both ensure that the controlling object is actually deleted and maintain the PCTE
referential integrity constraints the following steps are performed for each reversible
link emanating from the controlling object:

1. Determine the object, o, that the link refers to.

2. Determine the name, r&prime., of the reverse link back from o.

3. Perform PCTE OBJECT_DELETE(o, r&prime.)

The objective is accomplished when all outgoing, reversible links have been dealt
thus, or before that if one of the OBJECT_DELETE calls fails because the object has
already been deleted.

Exceptions raised by PCTE are mapped to suitable LifeCycle exceptions.

 D.4 Object Copying

The LifeCycle::LifeCycleObject::copy operation in this specification is
borne by all life-cycle objects. It has two parameters:

1. a factory-finder to assist in locating a factory that provides resources for the co
object

2. a set of criteria expressed in an NVP-list
Support for PCTE Objects Summary of Life Cycle Service November 1996 6-61

6

rs

the

ved

The corresponding PCTE operation is called OBJECT_COPY. Some of the paramete
to OBJECT_COPY can be obtained directly from the LifeCycle copy parameters.
Other required information is obtained from the constraint expression parameter of
LifeCycle copy.

The PCTE operation OBJECT_COPY has six parameters:

1. the object to be copied This is the bearer object of LifeCycle copy operation.

2. the origin object of the relation anchoring the new object This is the object
identified as the named “ORIGIN” of the logical location criterion.

3. the name of the link from that origin object to the new object This is the string
identified as the named “ORIGINLINK” of the logical location criterion.

4. an optional key for that link This is the string identified as the named “LINKKEY”
of the initialization criteria.

5. an object near whose location the object is to be created This is the string value of
a required filter expression value by the qualifier “NEAR”.

6. an access mask This is the string identified as the named “ACCESS” of the
authorization criteria This string is a simple mapping of the granted and denied
access rights.

The semantics of the copy operation corresponds to the PCTE OBJECT_COPY
semantics. They are based upon details of the object types involved, including which
attributes, links and destination objects are “duplicable”.

Exceptions raised by PCTE are mapped to suitable CORBA standard exceptions.

 D.5 Object Moving

The LifeCycle::LifeCycleObject::move operation in this specification is
borne by all life-cycle objects. It has two parameters:

1. a factory-finder to assist in locating a factory that provide resources for the mo
object

2. a set of criteria expressed in an NVP-list

The corresponding PCTE operation is called OBJECT_MOVE. The parameters to
OBJECT_MOVE can be obtained directly from the LifeCycle copy parameters or from
defaults.

The PCTE operation OBJECT_MOVE has three parameters:

1. the object to be copied This is the bearer object of LifeCycle move operation.

2. an object near whose location the object is to be created This is the string value of
a required filter expression value by the qualifier “NEAR”.

3. scope - whether to move the object itself or the object and all its components

This will be defaulted to ATOMIC.
6-62 CORBAservices November 1996

Concurrency Control Service 7

 by

side
 for

lock

nts
7.1 Service Description

The purpose of the Concurrency Control Service is to mediate concurrent access to an
object such that the consistency of the object is not compromised when accessed
concurrently executing computations.

The Concurrency Control Service consists of multiple interfaces that support both
transactional and non-transactional modes of operation. The user of the Concurrency
Control Service can choose to acquire locks in one of two ways:

• On behalf of a transaction (transactional mode.) The Transaction Service drives
the release of locks as the transaction commits or aborts.

• By acquiring locks on behalf of the current thread (that must be executing out
the scope of a transaction). In this non-transactional mode, the responsibility
dropping locks at the appropriate time lies with the user of the Concurrency
Control Service.

The Concurrency Control Service ensures that transactional and non-transactional
clients are serialized. Hence a non-transactional client that attempts to acquire a
(in a conflicting mode) on an object that is locked by a transactional client will block
until the transactional client drops the lock.

7.1.1 Basic Concepts of Concurrency Control

Clients and Resources

The Concurrency Control Service enables multiple clients to coordinate their access to
shared resources. Coordinating access to a resource means that when multiple,
concurrent clients access a single resource, any conflicting actions by the clients are
reconciled so that the resource remains in a consistent state.

The Concurrency Control Service does not define what a resource is. It is up to the clie
CORBAservices March 1995 7-1

7

rce,

s are
 be
ons.

l cli-
 sin-
essary)

ular

ith
of the Concurrency Control Service to define resources and to properly identify poten-
tially conflicting uses of those resources. In a typical use, an object would be a resou
and the object implementation would use the concurrency control service to coordinate
concurrent access to the object by multiple clients.

Transactions as Clients

The Concurrency Control Service differentiates between two types of client: a transac-
tional client and a non-transactional client. Conflicting access by clients of different types
is managed by the Concurrency Control Service, thereby ensuring that clients always see
the resource in a consistent state.

The Concurrency Control Service does not define what a transaction is. Transaction
defined by the Transaction Service. The Concurrency Control Service is designed to
used with the Transaction Service to coordinate the activities of concurrent transacti

The Transaction Service supports two modes of operation: implicit and explicit. When
operating in the implicit mode, a transaction is implicitly associated with the current
thread of control. When executing in the explicit mode, a transaction is specified explicitly
by the reference to the coordinator that manages the current transaction. To simplify the
model of locking supported by the Concurrency Control Service when a transactiona
ent is operating in the implicit transaction mode, transactional clients are limited to a
gle thread per transaction (nested transactions can be used when parallelism is nec
and that thread can be executing on behalf of at most one transaction at a time.

Locks

The Concurrency Control service coordinates concurrent use of a resource using locks. A
lock represents the ability of a specific client to access a specific resource in a partic
way. Each lock is associated with a single resource and a single client. Coordination is
achieved by preventing multiple clients from simultaneously possessing locks for the
same resource if the activities of those clients might conflict. To achieve coordination, a
client must obtain an appropriate lock before accessing a shared resource.

Lock Modes

The Concurrency Control Service defines several lock modes, which correspond to differ-
ent categories of access. Having a variety of lock modes allows more flexible conflict res-
olution. For example, providing different modes for reading and writing allows a resource
to support multiple concurrent clients that are only reading the data of the resource. The
Concurrency Control Service also defines intention locks that support locking at multiple
levels of granularity.

Lock Granularity

The Concurrency Control Service does not define the granularity of the resources that are
locked. It defines a lock set, which is a collection of locks associated with a single
resource. It is up to clients of the Concurrency Control Service to associate a lock set w
7-2 CORBAservices March 1995

7

 is
ne

ds
ith a

re

ion

ervice

ks

es the

d
 mode.
each resource. Typically, if an object is a resource, the object would internally create and
retain a lock set. However, the mapping between objects and resources (and lock sets)
up to the object implementation; the mapping could be one to one, but it could also be o
to many, many to many, or many to one.

Conflict Resolution

A client obtains a lock on a resource using the Concurrency Control Service. The service
will grant a lock to a client only if no other client holds a lock on the resource that would
conflict with the intended access to the resource. The decision to grant a lock depen
upon the modes of the locks held or requested. For example, a read lock conflicts w
write lock. If a write lock is held on a resource by one client, a read lock will not be
granted to another client.

Conflict Resolution for Transactions

The decision to grant a lock also depends upon the relationships among the transactions
that hold or request a lock. In particular, if the transactions are related by nesting (nested
transactions), a lock may be granted that would otherwise be denied.

Lock Duration

Typically, a transaction will retain all of its locks until the transaction is completed (either
committed or aborted). This policy supports serializability of transactional operations.
Using the two phase commit protocol, locks held by a transaction are automatically
dropped when the transaction completes.

There are also situations where levels of isolation that are weaker than serializability a
acceptable, such as when an application does not want other applications to change an
object while reading it and does not refer to the object again within the transaction. In
these circumstances, it is acceptable to release locks before the containing transact
completes, hence the duration will be shorter than the containing transaction.

To manage the release of the locks held by a transaction, the Concurrency Control s
defines a lock coordinator. Lock sets that are related (for example, by being created by a
resource manager for resources of the same type) and that should drop their locks together
when a transaction commits or aborts may share a lock coordinator. It is up to clients of
the concurrency control service to associate lock sets together and to release the loc
when a transaction commits or aborts.

7.2 Locking Model

This section covers a number of important issues that relate to the locking model sup-
ported by the Concurrency Control Service. For a complete discussion of these issu
reader is directed to one of the standard texts on the subject1.

The Lock Modes section applies to clients that operate in both transactional and non-trans-
action modes. The Multiple Possession Semantics, Two-Phase Transactional Locking, an
Nested Transaction sections are relevant only to clients that operate in transactional
Concurrency Control: v1.0 Locking Model March 1995 7-3

7

ks,

ccur
uests a

wer
e

e

d, a
nts

 lock

d
7.2.1 Lock Modes

Read, Write, and Upgrade Locks

The Concurrency Control service defines read (R) and write (W) lock modes that support
the conventional multiple readers, one writer policy. Read locks conflict with write loc
and write locks conflict with other write locks.

In addition, the Concurrency Control service defines an upgrade (U) mode. An upgrade
mode lock is a read lock that conflicts with itself. It is useful for avoiding a common form
of deadlock that occurs when two or more clients attempt to read and then update the same
resource. If more than one client holds a read lock on the resource, a deadlock will o
as soon as one of the clients requests a write lock on the resource. If each client req
single upgrade lock followed by a write lock, this deadlock will not occur.

Intention Read and Intention Write Locks

The granularity of the resources locked by an application determines the concurrency
within the application. Coarse granularity locks incur low overhead (since there are fe
locks to manage) but reduce concurrency since conflicts are more likely to occur. Fin
granularity locks improve concurrency but result in a higher locking overhead since more
locks are requested. Selecting a suitable lock granularity is a balance between the lock
overhead and the degree of concurrency required. Using the Concurrency Control service,
an application can be developed to use coarse or fine granularity locks by defining th
associated resources appropriately.

In addition, the Concurrency Control service supports variable granularity locking using
two additional lock modes, intention read (IR) and intention write (IW). These additional
lock modes are used to exploit the natural hierarchical relationship between locks of dif-
ferent granularity.

For example, consider the hierarchical relationship inherent in a database: a database con-
sists of a collection of files, with each file holding multiple records. To access a recor
coarse grain lock may be set on the database, but at the cost of restricting other clie
from accessing the database. Clearly, this level of locking is unsuitable. However, only
setting a lock on the record is also inappropriate, because another client might set a
on the file holding the record and delete or modify the file.

Using variable granularity locking, a client first obtains intention locks on the ancestor(s)
of the required resource. To read a record in the database, for example, the client obtains
an intention read lock (IR) on the database and the file (in this order) before obtaining the
read lock (R) on the record. Intention read locks (IR) conflict with write locks (W), an
intention write locks (IW) conflict with read (R) and write (W) locks.

1.See Concurrency Control and Recovery in Database Systems by P.A. Bernstein, V. Hadzilacos, and N.
Goodman, or Transaction Processing: Concepts and Techniques by J.N. Gray and A. Reuter.
7-4 CORBAservices March 1995

7

the

ulti-

 is pro-
nted
Lock Mode Compatibility

Table 1, “Lock Compatibility,” on page 5 defines the compatibility between the various

locking modes (the symbol * is used to indicate when locks conflict). When a client
requests a lock on a resource that cannot be granted because another client holds a lock on
the resource in a conflicting mode, the client must wait until the holding client releases its
lock. The Concurrency Control Service enforces a queueing policy such that all clients
waiting for a new lock are serviced in a first in, first out order, and subsequent requests are
blocked by the first request waiting to be granted the lock, unless the requesting client is a
transaction that is a member of the same transaction family as an existing holder of
lock.

7.2.2 Multiple Possession Semantics

The Concurrency Control Service interface supports a locking model called multiple pos-
session semantics. In this model, a client can hold multiple locks on the same resource
simultaneously. The locks can be of different modes. In addition, a client can hold m
ple locks of the same mode on the same resource; effectively, a count is kept of the num-
ber of locks of a given mode that have been granted to the client. When a client holds
locks on a resource in more than one mode, other clients will not be granted a lock on the
resource unless the requested lock mode is compatible with all of the modes of the exist-
ing locks.

In contrast, using the conventional locking model,2 when a client holding a lock on a
resource requests a lock on the same resource in a stronger mode, the existing lock
moted from the weaker mode to the stronger mode (once the stronger lock can be gra
without causing a conflict). Since lock modes form only a partial order, there will not

Table 1: Lock Compatibility

Granted
Mode

Requested Mode

 IR R U IW W

Intention
Read (IR)

*

Read (R) * *

Upgrade
(U)

* * *

Intention
Write
(IW)

* * *

Write (W) * * * * *
Concurrency Control: v1.0 Locking Model March 1995 7-5

7

 pro-

 the
cond
t
d

d
ti-
n-

 se
.
al

s

rmit-
ated

on can-
cess-

cquire
always be a stronger mode; in cases where neither mode is stronger, the lock will be
moted to the weakest mode that is at least as strong as either of the two modes.

7.3 Two-Phase Transactional Locking

The Concurrency Control Service provides primitives to support transaction-duration
locking. Transaction duration locking is a special case of strict two-phase locking. In
first phase (the growing phase), a transaction obtains locks that are kept until the se
phase (the shrinking phase), at which point they are released. A transaction must no
release locks during the first phase, and must not obtain new locks during the secon
phase, otherwise concurrent computations may be able to view intermediate results of the
transaction.

Two-phase locking is sufficient to guarantee serializability, hence this technique is use
by transactions. During the normal execution of a transaction, no locks will be automa
cally dropped before the end of the transaction. When the transaction completes, the Co
currency Control Service must be informed so that the locks the transaction holds may be
released. While releasing locks, no new locks may be obtained by the transaction.

When a transaction holds a lock that is no longer needed to ensure the transaction’srial-
izability, or if a weaker level of isolation is acceptable, it is permissible to release the lock
The Concurrency Control Service therefore provides an operation that releases individu
locks. This operation should be used with caution to ensure that the isolation level is
appropriate for the application.

7.4 Nested Transactions

Lock conflicts within a transaction family are treated somewhat differently than conflicts
between unrelated transactions. The underlying principle is the same for both: transaction
must not be able to observe the effects of other transactions that might later abort. Unre-
lated transactions can abort independently; therefore, one transaction must not be pe
ted to acquire a lock that conflicts with a lock on the same resource held by an unrel
transaction.

Nesting imposes abort dependencies among related transactions. A parent transacti
not abort without causing all of its children to abort. A child transaction that ends suc
fully cannot abort without causing its parent to abort. A transaction that cannot abort
without causing another related transaction to abort (according to these guidelines and
logical deductions) is said to be committed relative to that other transaction.

These dependencies make it possible to relax the rule that two transactions cannot a
locks of conflicting modes on the same resource, without breaking the underlying princi-
ple. No partial effects can be observed and committed if all transactions that have done

2.See Notes On Data Base Operating Systems in Operating Systems: An Advanced Course (ed. Bayer,
Graham, and Seegmuller) by J.N. Gray for further information.
7-6 CORBAservices March 1995

7

ted

ck, it is

p
t did

r to

e
e

ous

t it

f
t.

orted

ional

t

perat-
work cannot abort without the observer being aborted. This property translates into a sim-
ple rule for nested locking: if all transactions holding locks on a resource are commit
with respect to a transaction trying to acquire a lock on the resource, no conflict exists.

The multiple possession model (see previous section) facilitates the use of locks with
nested transactions. In this model, multiple related transactions may hold locks of conflict-
ing modes on a resource at the same time. When a nested transaction requests a lo
granted if all of the transactions holding locks on the resource are committed relative to
the requestor. Both the requestor and previous holders are then considered to hold locks on
the resource.

A child transaction can acquire a lock on a resource locked by its parent and then drothat
lock without causing its parent to lose its lock. A transaction cannot drop a lock that i
not acquire itself. The lock possession semantics also require that each transaction acquire
locks on its own behalf. It is improper to take locks on behalf of another transaction o
depend on locks held by other transactions.

Other approaches to nested transactions3 treat a resource as being locked by a single trans-
action at a time. When a nested transaction requests a lock on a resource that is alrady
locked by an ancestor transaction, the nested transaction becomes the new owner of th
lock. When a nested transaction commits, ownership of all of its locks is transferred to its
parent. When a nested transaction aborts, ownership of its locks reverts to the previ
owners. The Concurrency Control service performs these lock transfers automatically.
The multiple possession semantics model is functionally equivalent to this model, bu
supports simpler interfaces.

7.5 CosConcurrencyControl Module

The Concurrency Control Service is defined by the CosConcurrencyControl module,
which provides interfaces that support both transactional and non-transactional modes o
operation. This section defines the interfaces and describes the operations they suppor

• The interfaces provide two modes of operation that correspond to those supp
by the Transaction Service; in both modes, locks are identified by the lock set
they are associated with and the mode of the lock.

• A client of the Concurrency Control Service may operate in an implicit mode
such that locks are acquired on behalf of the current transaction (for transact
clients) or current thread (for non-transactional clients).

• For transactional clients, a second alternative is possible that involves the clien
identifying the transaction by means of a reference to the transaction’s
coordinator object (the explicit mode of operation).

Locks are acquired on lock sets. Two sets of operations are provided by the LockSetFac-
tory interface to create lock sets, one creates a lock set that can be used by clients o

3.See Nested Transactions: An Approach To Reliable Distributed Computing by J.E.B. Moss for further
information.
Concurrency Control: v1.0 CosConcurrencyControl Module March 1995 7-7

7

ing in the implicit mode (the LockSet interface), the other creates a lock set for explicit
mode transactional clients (the TransactionalLockSet interface). In addition, the LockCo-
ordinator interface is provided to allow a client to release all locks held by a specific
transaction.

The following sections define the types and exceptions common to both types of interface,
the interfaces themselves, and describes the responsibilities of a user for managing trans-
action-duration locks.

OMG IDL for the CosConcurrencyControl module shown on the following page.

 #include <CosTransactions.idl>
module CosConcurrencyControl {

 enum lock_mode {
 read,
 write,
 upgrade,
 intention_read,
 intention_write
 };

 exception LockNotHeld{};

 interface LockCoordinator
 {
 void drop_locks();
 };

 interface LockSet
 {
 void lock(in lock_mode mode);
 boolean try_lock(in lock_mode mode);

 void unlock(in lock_mode mode)
 raises(LockNotHeld);
 void change_mode(in lock_mode held_mode,
 in lock_mode new_mode)
 raises(LockNotHeld);
 LockCoordinator get_coordinator(
 in CosTransactions::Coordinator which);
 };

 interface TransactionalLockSet
 {
 void lock(in CosTransactions::Coordinator current,
 in lock_mode mode);
 boolean try_lock(in CosTransactions::Coordinator current,
 in lock_mode mode);
 void unlock(in CosTransactions::Coordinator current,
 in lock_mode mode)
 raises(LockNotHeld);
 void change_mode(in CosTransactions::Coordinator current,
 in lock_mode held_mode,
7-8 CORBAservices March 1995

7

e.

ode

a
 in lock_mode new_mode)
 raises(LockNotHeld);
 LockCoordinator get_coordinator(
 in CosTransactions::Coordinator which);
 };

 interface LockSetFactory
 {
 LockSet create();
 LockSet create_related(in LockSet which);
 TransactionalLockSet create_transactional();
 TransactionalLockSet create_transactional_related(in
 TransactionalLockSet which);
 };
};

7.5.1 Types and Exceptions

The types and exceptions described in this section apply to both the Lockset and
TransactionalLockset interfaces.

lock_mode

The lock_mode type represents the types of lock that can be acquired on a resourc

LockNotHeld

The LockNotHeld exception is raised when an operation to unlock or change the m
of a lock is called and the specified lock is not held.

7.5.2 LockCoordinator Interface

The LockCoordinator interface enables a transaction service to drop all locks held by
transaction. The LockSet and TransactionalLockSet interfaces create instances of the

TABLE 2.

module CosConcurrencyControl {

 enum lock_mode {

 read,

 write,

 upgrade,

 intention_read,

 intention_write

 };

 exception LockNotHeld{};
Concurrency Control: v1.0 CosConcurrencyControl Module March 1995 7-9

7

al
 must
or a
are

e

LockCoordinator for each transaction. The LockCoordinator interface provides a single
operation:

drop_locks

Releases all locks held by the transaction. This call is designed to be used by transaction
clients when a transaction commits or aborts. For nested transactions, this operation
be called when the nested transaction aborts, but the call need only be made once f
transaction family when that family commits (recall that nested transaction commits
handled implicitly by the Concurrency Control service).

7.5.3 LockSet Interface

For clients operating in the implicit mode, locks are acquired and released on lock sets
which are defined by means of the LockSet interface. The LockSet interface only
provides operations to acquire and release locks on behalf of the calling thread or
transaction. The interface does not provide support for transactional clients that use th
explicit Transaction Service interfaces.

When calls to acquire or release locks are made outside the scope of a transaction then it is
assumed that the client is operating in the non-transactional mode (the concurrency con-
trol implementation must use the appropriate Transaction Service operation to determine

TABLE 3.

interface LockCoordinator {

 void drop_locks();

};

TABLE 4.

interface LockSet {

 void lock(in lock_mode mode);

 boolean try_lock(in lock_mode mode);

 void unlock(in lock_mode mode)

. raises(LockNotHeld);

 void change_mode(in lock_mode held_mode,

 in lock_mode new_mode)

 raises(LockNotHeld);

 LockCoordinator get_coordinator(in

 CosTransactions::Coordinator which);

};
7-10 CORBAservices March 1995

7

e
k the
c-

n the

ck is

n a
whether the current thread is executing on behalf of a transaction).

lock

Acquires a lock on the specified lock set in the specified mode. If a lock is held on th
same lock set in an incompatible mode by another client then the operation will bloc
calling thread of control until the lock is acquired. If a call that is on behalf of a transa
tional client is blocked and the transaction is aborted then the call will return with the
Transactions::TransactionRolledBack exception.

try_lock

Attempts to acquire a lock on the specified lock set. If the lock is already held in an incom-
patible mode by another client then the operation returns a FALSE result to indicate that
the lock could not be acquired.

unlock

Drops a single lock on the specified lock set in the specified mode (recall that a lock can
be held multiple times in the same mode). Calls to drop a lock that is not held result i
LockNotHeld exception being raised

change_mode

Changes the mode of a single lock (recall that multiple locks may be held on the same lock
set). If the new mode conflicts with an existing mode held by an unrelated client, then the
change_mode operation blocks the calling thread of control until the new mode can be
granted. Like the lock call, if the client is a transaction and it aborts while the thread of
control if blocked then the Transactions: :TransactionRolledBack exception
will be raised. Similarly, when a call is made to change the mode of a lock, but the lo
not held in the specified mode, the LockNotHeld exception will be raised.

get_coordinator

Returns the lock coordinator associated with the specified transaction.

7.5.4 TransactionalLockSet Interface

The TransactionalLockSet interface provides operations to acquire and release locks o
lock set on behalf of a specific transaction. The operations that make up the Transaction-
Concurrency Control: v1.0 CosConcurrencyControl Module March 1995 7-11

7

alLockSet interface are:

The operations provided by the TransactionalLockSet interface operate in an identical
manner to the equivalent operations provided by the LockSet interface. The interfaces dif-
fer in that for the TransactionalLockSet interface the identity of the transaction is passed
explicitly as a reference to the coordinator for the transaction instead of implicitly through
an association with the calling thread.

TABLE 5.

interface TransactionalLockSet {

 void lock(in CosTransactions::Coordinator which,

 in lock_mode mode);

 boolean try_lock(in CosTransactions::Coordinator which,

 in lock_mode mode);

 void unlock(in CosTransactions::Coordinator which,

 in lock_mode mode)

 raises(LockNotHeld);

 void change_mode(in CosTransactions::Coordinator which,

 in lock_mode held_mode,

 in lock_mode new_mode)

 raises(LockNotHeld);

 LockCoordinator get_coordinator(in

 CosTransactions::Coordinator which);

};
7-12 CORBAservices March 1995

7

nal
7.5.5 LockSetFactory Interface

Lock sets are created using the LockSetFactory interface.

This interface provides two sets of operations that return new LockSet and Transactional-
LockSet instances.

create

Creates a new lock set and lock coordinator.

create_related

Creates a new lock set that is related to an existing lock set. Related lock sets drop their
locks together.

create_transactional

Creates a new transactional lock set and lock coordinator for explicit mode transactio
clients.

create_transactional_related

Creates a new transactional lock set that is related to an existing lock set. Related lock sets
drop their locks together.

TABLE 6.

interface LockSetFactory {

 LockSet create();

 LockSet create_related(in LockSet which);

 TransactionalLockSet create_transactional();

 TransactionalLockSet

 create_transactional_related(in

 TransactionalLockSet which);

};
Concurrency Control: v1.0 CosConcurrencyControl Module March 1995 7-13

7

7-14 CORBAservices March 1995

Externalization Service Specification 8
s and

s

ta

here
re”

8.1 Service Description

The Externalization Service specification defines protocols and conventions for
externalizing and internalizing objects. To externalize an object is to record the
object’s state in a stream of data. Objects which support the appropriate interface
whose implementations adhere to the proper conventions can be externalized to a
stream (in memory, on a disk file, across the network, etc.) and subsequently be
internalized into a new object in the same or a different process. The externalized
form of the object can exist for arbitrary amounts of time, be transported by mean
outside of the ORB, and can be internalized in a different, disconnected ORB.

Many different externalized data formats and storage mediums can be supported by
service implementations. But, for portability, clients can request that externalized da
be stored in a file using a standardized format that is defined as part of this
Externalization Service specification.

Externalizing and internalizing an object is similar to copying the object. The copy
operation creates a new object that is initialized from an existing object. The new
object is then available to provide service. Furthermore, with the copy operation, t
is an assumption that it is possible to communicate via the ORB between the “he
and “there”. Externalization, on the other hand, does not create an object that is
initialized from an existing object. Externalization “stops along the way”. New
objects are not created until the stream is internalized. Furthermore, there is no
assumption that is possible to communicate via the ORB between “here” and “there.”

The Externalization Service is related to the Relationship Service. It also parallels the
Life Cycle Service in defining externalization protocols for simple objects, for
arbitrarily related objects, and for graphs of related objects that support compound
operations. (For more information, refer to the Service Dependencies section in
Chapter 2.)

The Externalization Service defines protocols in these areas:
CORBAservices August 1997 8-1

8

o

am
ir

.
s in

o

ta

of

ame

• Client’s view of externalization, composed of the interfaces used by a client t
externalize and internalize objects. The client’s view of externalization is defined
by the Stream interface.

• Object’s view of externalization, composed of the interfaces used by an
externalizable object to record and retrieve their object state to and from the
stream’s external form. The object’s view is defined by the StreamIO interface.

• Stream’s view of externalization, composed of the interfaces used by the stre
to direct an externalizable object or graph of objects to record or retrieve the
state from the stream’s external form. The stream’s view of externalization is
given by the Streamable, Node, Role and Relationship interfaces.

8.2 Service Structure

This section explains the model of externalization for client and stream. It also
describes the model of externalization and internalization for objects.

8.2.1 Client’s Model of Object Externalization

A client has a simple view of the externalization service. A client that wishes to
externalize an object first must have an object reference for a Stream object. A Stream
object owns and provides access to the externalized form of one or more objects
Streams may be provided that hold externalized data on various mediums such a
memory or on disk. All Externalization Service implementors provide a Stream object
that saves the externalized data in a file. A client may create a Stream object using the
create() operation on a StreamFactory object, or may specify that a file be used t
store the externalized data using the create() operation of a FileStreamFactory
object.

The client can create a Stream object that supports a standardized externalization da
format. Externalization data that follows this format will be internalizable on all
CORBA-compliant ORBs that can locate compatible object implementations. By
including support for a specific external representation format in the Externalization
Service, portability of object state is provided across different CORBA-compliant
implementations and hardware architectures.

Once a client has a Stream object, the client may externalize an object by issuing an
externalize() request on the Stream object, providing the object reference to the
object that should be externalized. In general, the client is unaware of whether
externalizing an object causes any other related objects to be externalized. An
externalizable object may represent a simple object, a set of objects, or a graph
related objects. The client uses the same interface in all cases.

If a client wishes to externalize multiple objects (or related sets of objects) to the s
stream, the client issues a begin_context() request before the first externalize
request and then issues an end_context() following the last externalize request for
that same stream.
8-2 CORBAservices August 1997

8

unts
a

e

e

e

bject
vice’s

 data.
n

n

n

s
The externalized form of the object can exist in the stream object for arbitrary amo
of time, be transported by means outside of the ORB, and can be internalized in
different, disconnected ORB.

A client that wishes to internalize an object issues an internalize() request on
the appropriate Stream object, providing a factory finder. The Stream object interacts
with the specified factory finder, or uses other implementation dependent mechanisms,
to create an implementation of the object that matches the externalized data. Th
client is returned an object reference to the newly internalized object.

8.2.2 Stream’s Model of Object Externalization

A stream object provides the Stream interface for use by clients. The stream object is
also responsible for providing an object that supports a StreamIO interface for actually
reading and writing data to the externalized data form. The stream object may support
the StreamIO interfaces itself, or may create another object that supports the StreamIO
interfaces. This is considered an implemenation detail.

Note – When the behavior described in this section may be implemented in either th
Stream or StreamIO objects (or other internal objects they may use), the term “stream
service” is used.

When a stream object receives an externalize request from a client, it also gets an
object reference to the object to be externalized. The stream cooperates with the
externalizable object to accomplish externalization and internalization, using the
object’s Streamable interfaces.

The stream service uses the readonly Key attribute of the externalizable object to
decide what information to put into the external data in order to be able to find th
correct factory and implementation with which to subsequently internalize an
equivalent object. The stream service then issues an externalize_to_stream()
request to the externalizable object, providing an object reference to a StreamIO o
that is to be used by the externalizable object to record its state in the stream ser
external data.

When a stream object receives an internalize request from a client, it also gets a
factory finder. The stream service holds the external form of the object, or set of
objects, to be internalized. The stream service reads the key from its externalized
It may then pass the key to the factory finder to locate a factory that can create a
object with an implementation that matches the recorded object state. The stream
service implementation may use other implementation specific ways of creating a
appropriate object. The stream service then issues an
internalize_from_stream() request to the newly created object, providing a
object reference to a StreamIO object that is used by the externalizable object to
initialize its state according to the stream service’s externalized data.

When a stream object receives a begin_context() request, the stream service set
up a context during which the stream service ensures that externalizing multiple
objects that may have overlapping object references and/or object relationships
Externalization Service: v1.0 Service Structure August 1997 8-3

8

s

ject

d
produces single instances of those objects on internalization. An end_context()
request causes the stream service to remove the previous internal context, and
externalize subsequent objects without regard to whether they have already been
externalized in this Stream’s data.

8.2.3 Object’s Model of Externalization

Every object that wishes to be externalizable must support the Streamable interface,
and follow conventions on use of the StreamIO interfaces to record and retrieve their
object state from a Stream’s data.

When an Streamable object receives an externalize_to_stream request from
the stream service, it must write all of its state necessary for internalization to the
StreamIO object provided by the stream service. StreamIO provides
write_<type>() operations for writing each of the CORBA basic data types, plu
string types. If an object has object references that are part of its state, the StreamIO
write_object() operation may be used to cause the object specified by an ob
reference to also be externalized to the stream’s data.

Figure 8-1 Externalization control flow when streamable object is not in a graph of relate
objects

Client calls Stream::externalize (Streamable object)

Stream writes a key for this object to the external representation.

Stream calls the Streamable::write_to_stream (StreamIO this_sio) so that the
object can write out whatever internal state it needs to save.

If Streamable object is a node in a graph of related objects, flow is giv-
en in Figure 8-2

Streamable object writes out its non-object data using the primitive
StreamIO::write_... (data) functions

Streamable object writes out other objects using the Stream-
IO::write_object (Streamable object) function

Externalization Control Flow (streamable object is not a node)
8-4 CORBAservices August 1997

8

e the

ted
A streamable object may be a node in a graph of related objects, that is, it may us
Relationship Service to connect to other objects and support the
CosCompoundExternalization::Node interface. Such a streamable object simply
delegates the Streamable::externalize_to_stream() request back to the stream
service, using the StreamIO::write_graph() operation.

The stream service then coordinates the externalization of the graph and calls the
object back using the object’s CosCompoundExternalization::Node interface.

Figure 8-2 Externalization control flow when streamable object is a node in a graph of rela
objects

8.2.4 Object’s Model of Internalization

When a streamable object receives an internalize_from_stream() request
from a stream, it must read data from the StreamIO object provided by the stream
service, and initialize its state to match the externalized state. The externalizable
object requests data from the stream service using the StreamIO read_<type>()

Streamable object, recognizing that it is a node in a graph of related
objects, delegates the externalization of the graph to the stream ser-
vice using StreamIO::wri te_graph (this_node) operation.

Externalization Control Flow (streamable is a node)

Node writes out its non-object data using the primitive
StreamIO::write_... (data) functions

Node writes out other objects using the
StreamIO::write_object (Streamable object) function

StreamIO::write_graph ,coordinates the externalization of the
graph using Node::externalize _node (this_sio) operation.

StreamIO object externalizes the involved relationships using Rela-
tionship::externalize(). StreamIO writes traversal scoped ids for the
externalized roles and relationships to the Stream’s data.

Node writes out its role objects using the
Role::externalize_role (this_sio) operation.

StreamIO::write_graph uses propagation value to de-
termine next nodes and writes a key for next node
Externalization Service: v1.0 Service Structure August 1997 8-5

8

 a

e the
operations for basic data, and string types. If the object being internalized includes
reference to another object as part of its state, the StreamIO read_object()
operation may be used to have that object also internalized from the stream’s data.

Figure 8-3 Internalization control flow when object is not in a graph of related objects

A streamable object may be a node in a graph of related objects, that is, it may us
Relationship Service to connect to other objects and support the
CosCompoundExternalization::Node interface. Such a streamable object simply
delegates the Streamable::internalize_from_stream() request back to the
stream service, using the StreamIO::write_graph() operation.

Client calls Streamable = Stream::internalize (FactoryFinder f)

Stream reads key from the external representation, and uses this and the facto-
ry finder to create an object of the correct interface and implementation. The
stream may use the StreamableFactory interface.

Stream calls the Streamable::read_from_stream (StreamIO this_sio) so that
the object can read the data in its external representation and reset or calculate
its internal state

If Streamable object is a node in a graph of related objects, flow is given
in Figure 8-4

Streamable object reads in its non-object data using the primitive
StreamIO::read_... (data) functions

Streamable object internalizes other objects using the
Streamable = StreamIO::read_object() function

Internalization Control Flow (streamable object is not a node)
8-6 CORBAservices August 1997

8

The stream service then coordinates the externalization of the graph and calls the
object back using the object’s CosCompoundExternalization::Node interface.

Figure 8-4 Internalization control flow when object is in a graph of related objects

8.3 Object and Interface Hierarchies

This section identifies the objects required for the Externalization Service and
important inheritance and use relationships that exist between their interfaces.

The Object Externalization Service can only externalize and internalize objects that
inherit the Streamable interface. Streamable does not inherit any other interfaces.
However, it must have an associated StreamableFactory that the Externalization
Service implementation can find and use when internalizing the object.

Streamable object, recognizing that it is a node in a graph of related
objects, delegates the internalization of the graph to the stream ser-
vice using StreamIO::read_graph (this_node) operation.

Internalization Control Flow (streamable is a node)

Node reads its non-object data using the primitive
StreamIO::read_... (data) functions

Node read other objects using the
StreamIO::rea d_object (Streamable object) function

StreamIO::rea d_graph ,coordinates the internalization of the
graph using Node::internalize _node (this_sio) operation.

StreamIO object internalizes the traversal scoped identifiers for the
externalized roles and relationships and internalizes the relationships
using Relationship::internalize().

Node reads its role objects using the
Role::internal ize_role (this_sio) operation.

StreamIO::rea d_graph reads the key for next node and
uses the StreamableFactory interface to create the next
node.
Externalization Service: v1.0 Object and Interface Hierarchies August 1997 8-7

8

igure

y

e
Stream inherits the LifeCycleObject interface because clients of the Externalization
Service need to remove these objects. The StreamFactory or File StreamFactory
interfaces may be used to create stream objects.

In addition to the inheritance relationships described above, the class diagram in F
1 also shows the usage relationships between the service objects. Stream
externalize() and internalize() operations invoke the Streamable
externalize_to_stream() and internalize_from_stream() operations
to write and read the appropriate object internal state. A StreamIO object is passed as
an argument to these operations. The externalized object determines how much of its
state must be put in the external representation, and can minimize saved state b
recreating some state upon internalization. The Streamable
externalize_to_stream() and internalize_from_stream() use
StreamIO operations to actually put various data types and contained object references
in the external representation. This allows StreamIO to put appropriate headers in the
external representation so that the object can be recreated correctly during
internalization. The Stream is responsible for providing an object that supports the
StreamIO interface. The Stream object may support the StreamIO interface itself, or
create another object that supports the StreamIO interface. The Stream and StreamIO
implementations decide on the storage medium and data type representation
conversion for different hardware, without requiring different implementation of th
objects being externalized.
8-8 CORBAservices August 1997

8

Figure 8-5 Object Externalization Service Booch Class (=Interface) Diagram

write_object()
read_object()
write_graph()
read_graph()
write_...
read_...

external_form_id
externalize_to_stream()
internalize_from_stream()

StreamableFactory

LifeCycleObject

Streamable

IdentifiableObject

Stream

StreamIO

StreamFactory

B inherits from A

A B A has B

A B A uses B

A B

LEGEND

Node Relationship

Role
Externalization Service: v1.0 Object and Interface Hierarchies August 1997 8-9

8

8.4 Interface Summary

The Externalization Service defines interfaces (using OMG IDL) to support the
functionality described in the previous sections. The following tables give high level
descriptions of the Externalization Service interfaces. Subsequent sections describe the
interfaces in more detail.

Table 8-1 Client Functional Interfaces support client’s model of externalization

Interface Purpose Primary Client

Stream Holds external form of objects. Clients that need to externalize
and internalize objects.

StreamFactory Creates and initializes stream
objects.

Clients that need to create stream
objects.

FileStreamFactory Creates and initializes stream
objects that stores data in a file.

Clients that need to create stream
objects, and want the externalized
data in a file.

Table 8-2 Service Construction Interfaces support service implementation’s model of
externalization

Interface Purpose Primary Client

Streamable Provides its state to a stream for
externalization, and gets its
state from the stream on
internalization.

The stream service
implementation of
externalization and
internalization.

StreamableFactory Creates and initializes
streamable objects

The stream service
internalization implementation.

StreamIO Part of stream implemenation
that writes and reads object
state to appropriately converted
external form.

The externalizable objects that
need to record and retrieve their
state from a stream.
8-10 CORBAservices August 1997

8

re part

their
be

f
Externalization Service Architecture: Audience/Bearer Mapping

Stream and StreamFactory are solely functional interfaces. Their audience is the client
of the Externalization Service.

Streamable, StreamableFactory, and StreamIO are solely construction interfaces. The
audience for Streamable is both the Stream and StreamIO objects. To be
“externalizable,” objects must inherit the Streamable interface and provide
implementations of its operations. The audience for StreamIO interface is the
externalizable Streamable and StreamableNode objects. The StreamIO objects a
of the Externalization Service implementation.

The Stream, StreamFactory, and StreamIO objects are specific objects because
purpose is to provide a part of the Externalization Service. However, there may
many Stream and StreamIO instances in a system, since each represents a particular
external representation of an object or group of objects.

Streamable and StreamableFactory objects are generic objects because their primary
purpose is unrelated to the Externalization Service. Any definer or implementor of an
object may choose to inherit the Streamable interface in order to support
externalization/internalization of that object.

In summary:
- Stream and StreamFactory are specific functional interfaces
- Streamable and StreamableFactory are generic construction interfaces
- StreamIO is a specific construction interface

Table 8-3 Compound Externalization Interfaces support service implementation’s model o
graph externalization

Interface Purpose Primary Client

Node Defines externalization and
internalization operations on
nodes in graphs of related
objects.

The stream service
implementation of
externalization and
internalization.

Relationship Defines externalization and
internalization operations on
relationships.

The stream service
implementation of
externlization and
internalization.

Role Defines externalization and
internalization operations on
roles.

The stream service
implementation of
externalization and
internalization.
Externalization Service: v1.0 Interface Summary August 1997 8-11

8

:

e

e
8.5 CosExternalization Module

The client-functional interfaces defined by the the CosExternalization module are

• StreamFactory interface, which creates a stream.

• FileStreamFactory interface, which has an operation that lets clients cause
externalized data be stored in a file or internalize objects from a file they hav
been given.

• Stream interface, which can externalize one object or a group of objects; finaliz
the externalization, and internalize an object.

8.5.1 StreamFactory Interface

Creating a Stream Object

Clients of the Object Externalization Service must create a Stream object before they
can externalize or internalize any objects. Two factory interfaces are supported. The
first, the StreamFactory interface has a create() operation that creates a stream
without specifying any special characteristics of the implementation.

#include <LifeCycle.idl>
#include <Stream.idl>
module CosExternalization {

exception InvalidFileNameError{};
exception ContextAlreadyRegistered{};
interface Stream: CosLifeCycle::LifeCycleObject{

void externalize(
in CosStream::Streamable theObject);

CosStream::Streamable internalize(
in CosLifeCycle::FactoryFinder there)

raises(CosLifeCycle::NoFactory,
CosStream::StreamDataFormatError);

void begin_context()
raises(ContextAlreadyRegistered);

void end_context();
void flush();

};
interface StreamFactory {

Stream create();
};
interface FileStreamFactory {

Stream create(
in string theFileName)

raises(InvalidFileNameError);
};

};

Stream create();
8-12 CORBAservices August 1997

8

o

ect

ed
8.5.2 FileStreamFactory Interface

Creating a Stream Object Associated with a File

For clients that want to cause the externalized data stored in a file, or that need t
internalize objects from a file they have been given, the FileStreamFactory interface
has a create() operation that takes a string input parameter. The client sets this
string to the filename of the file that will be used by the stream service to hold the
extermal representation of the objects externalized, or that contains the external
representation of objects that the client wishes to internalize.
Stream::externalize() requests will append to any existing data in the file
associated with a stream.

8.5.3 Stream Interface

Externalizing an Object

Clients of the Object Externalization Service invoke externalize() on a Stream
object passing the object reference of a CosStream::Streamable object, theObject ,
to be externalized. Only objects that are of type CosStream::Streamable can be
externalized. Subsequently, clients invoke the internalize() operation on the
Stream containing the external representation, and Stream internalize()
operation creates a new object with state identical to what was externalized and returns
the new object reference.

The implementation of externalize() writes implementation specific header
information to the external representation it is maintaining, so that the correct obj
can be recreated at internalization time. This could be the factory key that was used to
create the CosStream::Streamable object, or could include the interface type,
implemenation repository, or factory object names. The factory key may be obtain
by from the external_form_id attribute of theObject . The externalize()
implementation must then invoke the CosStream::Streamable
externalize_to_stream() operation on theObject to cause the object’s
internal state to be written to the external respresentation. The Stream is responsible
for providing an object that supports the StreamIO interfaces for the externalizable
object to use in writing data to the stream service.

Stream create(
in string theFileName)

raises(InvalidFileNameError);

void externalize(in CosStream::Streamable theObject);
Externalization Service: v1.0 CosExternalization Module August 1997 8-13

8

r

nd

m
will

r

ecause

 its

 final
Externalizing Groups of Objects

If a client wishes to externalize a set of objects with overlapping references and/o
object relationships, the client invokes begin_context() on the Stream. This
must be called before externalizing any of the set of objects, and end_context()
must be called on the Stream after the entire set of objects has been externalized a
before the Stream is used with another set of objects.

The Stream implementation establishes an association with the specified Stream object
and a logical “context”. The Stream ensures that all objects externalized to this strea
while this association lasts will be externalized in such a way that internalization
not create any duplicate objects. That is, the implementation of Stream checks for
“context”, and for objects externalized in the same context handles overlapping o
circular references and/or relationships between those objects. The association lasts
until end_context() is called. The Stream raises the ContextAlreadyRegistered
exception if begin_context() is called and a context is already established,
perhaps through some other implementation dependent mechanism or perhaps b
end_context() has not been called following a previous begin_context() .

Completing Externalization

Clients invoke flush() to request that the external representation is committed to
final storage medium, whatever that may be. The implementation of flush() should
attempt to ensure that the external respresentation is completely up-to-date in its
storage (e.g. memory buffer, file, tape, ...).

Internalizing an Object

The implementation of internalize() must create an object with the correct
interface and implementation to match the externalized representation and return a
pointer to the new CosStream::Streamable object. The internalize()
implementation must then invoke the internalize_from_stream() operation
on the new object. The CosStream::StreamDataFormatError exception should
be raised if an error is detected in the data format of the object header. The

void begin_context()
raises(ContextAlreadyRegistered);

void end_context();

void flush();

CosStream::Streamable internalize(
in CosLifeCycle::FactoryFinder there)

raises(CosLifeCycle::NoFactory,
CosStream::StreamDataFormatError);
8-14 CORBAservices August 1997

8

ted
due to
CosLifeCycle::NoFactory exception should be raised if the object cannot be crea
because an appropriate factory cannot be found. If the object cannot be created
other reasons, an ObjectCreationError exception should be raised. Additional
CosStream::StreamDataFormat Exceptions may be raised by the read_<type>
operations invoked by internalize_from_stream() operation due to errors in
the externalized data format.

8.6 CosStream Module

The service construction interfaces defined by the CosStream module are:

• Streamable interface

• StreamableFactory interface

• StreamIO interface

#include <LifeCycle.idl>
#include <ObjectIdentity.idl>
#include <CompoundExternalization.idl>
module CosStream {

exception ObjectCreationError{};
exception StreamDataFormatError{};
interface StreamIO;

interface Streamable:
CosObjectIdentity::IdentifiableObject {

readonly attribute CosLifeCycle::Key external_form_id;
void externalize_to_stream(

in StreamIO targetStreamIO);
void internalize_from_stream(

in StreamIO sourceStreamIO,
in FactoryFinder there);

raises(CosLifeCycle::NoFactory,
ObjectCreationError,
StreamDataFormatError);

};

interface StreamableFactory {
Streamable create_uninitialized();

};

interface StreamIO {
 void write_string(in string aString);
 void write_char(in char aChar);
 void write_octet(in octet anOctet);
 void write_unsigned_long(

in unsigned long anUnsignedLong);
 void write_unsigned_short(

in unsigned short anUnsignedShort);
 void write_long(in long aLong);
 void write_short(in short aShort);

Figure 8-6 The CosStream module
Externalization Service: v1.0 CosStream Module August 1997 8-15

8

 void write_float(in float aFloat);
 void write_double(in double aDouble);
 void write_boolean(in boolean aBoolean);
 void write_object(in Streamable aStreamable);
 void write_graph(in CosCompoundExternalization::Node);

void write_long_long(in long long val);
void write_unsigned_long_long(in unsigned long long val);
void write_long_double(in long double val);
void write_wchar(in wchar val);
void write_wstring(in wstring val);
void write_fixed(in any val, in short s);

 string read_string()
raises(StreamDataFormatError);

 char read_char()
raises(StreamDataFormatError);

 octet read_octet()
raises(StreamDataFormatError);

 unsigned long read_unsigned_long()
raises(StreamDataFormatError);

 unsigned short read_unsigned_short()
raises(StreamDataFormatError);

 long read_long()
raises(StreamDataFormatError);

 short read_short()
raises(StreamDataFormatError);

 float read_float()
raises(StreamDataFormatError);

 double read_double()
raises(StreamDataFormatError);

 boolean read_boolean()
raises(StreamDataFormatError);

 Streamable read_object(
in FactoryFinder there,
in Streamable aStreamable)

raises(StreamDataFormatError);
 void read_graph(

in CosCompoundExternalization::Node
starting_node,

in FactoryFinder there)
raises(StreamDataFormatError);

long long read_long_long()raises(StreamDataFormatError);
unsigned long long read_unsigned_long_long()

raises(StreamDataFormatError);
long double read_long_double()

raises(StreamDataFormatError)
wchar read_wchar() raises (StreamDataFormatError);
wstring read_wstring() raises (StreamDataFormatError);
any read_fixed() raises (StreamDataFormatError)

};
};

Figure 8-6 The CosStream module
8-16 CORBAservices August 1997

8

e

d

t
O

ized
Since IDL only supports template instantiations rather than templates themselves, th
fixed-point decimal template type cannot be used directly for the write_fixed and
read_fixed operations. Instead, the fixed type instances must be passed to an
from these routines as any s with TypeCode s of tk_fixed .

8.6.1 Standard Stream Data Format

The standard stream format for each new IDL type is shown in the table below. Also
shown are the standard formats for types char and string , which have been
extended to state explicitly that data is encoded as defined by ISO 8859-1.

The first two entries in the table describe the current formats for char and string ,
modified only to state explicitly, rather than implicitly, that the encoding used is
defined by ISO 8859-1. These existing formats are unchanged for backward
compatibility purposes.

The next two entries (x’E1’ and x’E2’) define tagged formats for char and string ,
which consist of a code set tag (from the OSF Character and Code Set Registry)
followed by an actual data value. The motivation for these tagged formats is to preven
information loss, which may occur for some native code sets when converted to IS
8859-1 (i.e., when such data is externalized in the formats described in the first two
entries). However, if character and string data is externalized in a form other than ISO
8859-1, some ORBs may not be able to internalize it successfully (e.g., because an
appropriate converter is not available), thus reducing the portability of the external
data. So, if maximum portability is desired, character and string data should be
externalized in ISO 8859-1 form.

Tag CORBA Type Data Format

x’F1’ char one byte, encoded as defined by ISO 8859-1

x’FA’ string null-terminated sequence of bytes, encoded as
defined by ISO 8859-1

x’E1’ char an unsigned long code set tag, followed by a one byte
data value, encoded as defined by code set tag

x’E2’ string an unsigned long code set tag, followed by a null-ter-
minated sequence of characters, encoded as defined
by code set tag

x’E3’ fixed<d,s> an unsigned short byte count (d+2)/2), followed by
(d+2)/2 bytes in CDR format.

x’FE’ wchar an unsigned long code set tag, followed by a data
value, encoded as defined by code set tag

x’FF’ wstring an unsigned long code set tag, followed by a null-ter-
minated sequence of wchar, encoded as defined by
code set tag

x’FB’ long long eight bytes, big-endian format

x’FC’ unsigned long long eight bytes, big-endian format

x’FD’ long double sixteen bytes, IEEE 754 format, sign bit in first byte
Externalization Service: v1.0 CosStream Module August 1997 8-17

8

 loss

e

or

ext

ndard

eter

e to
ion on
The remaining entries in the table describe the formats for the new IDL types. Note
that the previous discussion about the tradeoff between portability and information
for externalized character and string data also applies to wide character and wide string
data. If maximum portability is desired, wide character and wide string data should be
externalized in Unicode form, while if using this form would result in an unacceptabl
loss of information, then a form other than Unicode should be used.

Data values of type wchar and wstring are represented as one or more octets,
an unsigned integer, depending on the code set used. This is similar to the on-the-wire
representation of wchar and wstring data.

8.6.2 The StreamIO Interface

The write_<type>() and read_<type>() operations on StreamIO are used by
Streamable externalize_to_stream() and
internalize_from_stream() operations to cause internal object state to be
written to or read from the external representation. The
externalize_to_stream() decomposes the internal state of an object in a series
of primitive data type values that can be written and read with these operations.
StreamIO supports writing and reading all the CORBA basic data types.

The implementation of the write_... and read_... operations are responsible
for any desired conversion of the data and transfering the data to or from the desired
external representation. Actual transfer of the representation to the final storage
medium may be deferred until the flush() operation. All details of the external
representation format, storage medium, and buffering are specific to the
implementation. Different implementations may support buffering of the external
representation data in memory, converting data values to a canonical binary form for
exchange across big/little endian CPU hardware, conversion of data to a canonical t
form for readability or to facilitate mailing objects across networks, use of various
storage mediums such as memory, filesystem, tape or other differences. See “Sta
Stream Data Format” on page 8-17 for information on a portable external
representation. A StreamDataFormatError exception should be raised if errors
are detected in the data format of the external representation.

In support of integrating the Externalization Service with the Transaction and
Persistent Object Services, the read_object operation supports the internalization
to existing objects. The semantics of the operation are that if the streamable param
is Null, then the FactoryFinder parameter is used to create an instance for internalize.
If the streamable parameter is not Null, then the StreamIO implementation will
internalize to a streamable object. This semantic allows the Externalization Servic
be used as a Persistent Object Service protocol and to support the restore operat
existing objects in the case of an aborted transaction.

8.6.3 The Streamable Interface

Object implementors must inherit from the Streamable interface if they want an object
to be externalizable. Three operations must be implemented.
8-18 CORBAservices August 1997

8

me

tion

uld

s,
Comparing Streamable Objects

A Streamable object inherits from CosObjectIdentity::IdentifiableObject, and therefore
must support a constant_random_id attribute and an is_identical()
operation. The stream service uses these to compare objects when detecting cycles or
overlapping references in objects being externalized to the same stream in the sa
context or within the same graph. The constant_random_id attribute value does not
have to be unique, but a unique value may substantially speed up the externaliza
process.

Creation Key for a Streamable Object

An Streamable object must support a readonly attribute, external_form_id ,
which is a key that can be given to a factory finder in order to find a factory that co
have created this object. The stream service may use this attribute during
internalization to create an object that can reinitialize itself from the externalized data.

Writing the Object’s State to a Stream

The externalize_to_stream() operation is responsible for decomposing an
externalizable object’s internal state into a series of primitive data type values and
object references. The externalize_to_stream() function must write out all
the neccessary primitive data values using the write_<type>() operations on the
targetStreamIO for non-object data types. If this object has other object reference
then, normally, those objects should also be written out using the write_object()
operation on the targetStreamIO. However, it is up to the Streamable implementor to
decide which referenced objects should be externalized with this object. The primitive
data values must all be written before any of the embedded objects references are
written.

If the Streamable is a node in a graph, then it should delegate the
externalize_to_stream() to the StreamIO by invoking write_graph() .
The object would subsequently receive an externalize_node_to_stream()

boolean CosObjectIdentity::IdentifiableObject::is_identical(
in CosObjectIdentity::IdentifiableObject anObject);

readonly unsigned long constant_random_id;

readonly attribute CosLifeCycle::Key external_form_id;

void externalize_to_stream(
in StreamIO targetStreamIO);
Externalization Service: v1.0 CosStream Module August 1997 8-19

8

s

, the

and write out its internal state as described above. Node objects should not call
write_object() for other nodes in their graph, but may call write_object()
for object references that are not for nodes in their graph.

Reinitializing the Object’s State from a Stream

The internalize_from_stream() operation is responsible for reinitializing the
object’s internal state from the series of primitive data type values and object
references that are written/flattened during externalize_to_stream() . The
internalize_from_stream() operation should read in all the neccessary
internal state of the object using the read_<type>() operations on the
sourceStreamIO for non-object data types. If this object has other object reference
that were externalized using write_object() , then those objects should be
recreated using the read_object() operation on the sourceStreamIO with the same
FactoryFinder argument as the there parameter passed in to the
internalize_from_stream() operation. The read_<type>() and
read_object() operations for the various portions of the object’s internal state
must be invoked in the same order in which they are written by the
externalize_to_stream() implementation. The
internalize_from_stream() must also initialize any additional state that was
not externalized because it can be derived from other state information. Therefore
externalize_to_stream() and internalize_from_stream() operations
must be designed to complement each other.

If the Streamable is a node in a graph, then it should delegate the
internalize_to_stream() to the sourceStreamIO by invoking
read_graph() with the same FactoryFinder argument as the there parameter passed
in to the internalize_from_stream() operation. The Streamable (also Node) object
would subsequently receive an internalize_node_to_stream() and read in
its internal state as described above. Node objects should not call read_object()
for other nodes in their graph, but may call read_object() for object references
that are not for nodes in their graph..

The ObjectCreationError and StreamDataFormatError exceptions originate from the
read_object() and read_<type> operations on the sourceStreamIO, and are
not explicitly raised by the internalize_from_stream() code.

void internalize_from_stream(
in StreamIO sourceStreamIO,
in FactoryFinder there);
8-20 CORBAservices August 1997

8

ry

reate

le

ct.

. In

ode.

und
8.6.4 The StreamableFactory Interface

Creating a Streamable Object

The stream service must be able to create a Streamable object in order to internalize an
object from the stream’s externalized data. For any externalizable object, a
StreamableFactory object must exist that supports creation of that object. This facto
must be findable using the readonly external_form_id Key attribute of the
streamable object. The stream service implementation could store this key during
externalization and use it during internalization to find the factory that can create the
externalized object. However, a stream implementation may use other means to c
the object during internalization. The create_uninitialized() operation on the
StreamableFactory should create the associated streamable object. This streamab
object does not have to be initiali zed, since that can be done on the subsequent
internalize_from_stream() operation on the newly created streamable obje

8.7 CosCompound Externalization Module

If a Streamable object participates as a node in a graph of related objects, the
Streamable object can delegate the externalization operation to the stream service
particular, the Streamable object simply uses the write_graph() operation. The
write_graph() operation expects a streamable object reference as a starting n
The stream service narrows the streamable object reference to
CosCompoundExternalization::Node. The write_graph() then coordinates the
orderly externalization of the graph of related objects. For more details on compo
operations, see the Relationship Service specification and the Compound Life Cycle
section in the Life Cycle Service specification.

The CosCompoundExternalization module defines the Node, Role, Relationship and
PropagationCriteriaFactory interfaces for use by the write_graph() operation.

The CosCompoundExternalization module is shown in Figure 8-7. Detailed
descriptions of the interfaces follow.

Streamable create_uninitialized();

#include <Graphs.idl>
#include <Stream.idl>

module CosCompoundExternalization {
interface Node;
interface Role;
interface Relationship;
interface PropagationCriteriaFactory;

Figure 8-7 The CosCompoundExternalization Module
Externalization Service: v1.0 CosCompound Externalization Module August 1997 8-21

8

8.7.1 The Node Interface

The Node interface defines operations to internalize and externalize a node.

struct RelationshipHandle {
Relationship theRelationship;
::CosObjectIdentity::ObjectIdentifier constantRandomId;

};

interface Node : ::CosGraphs::Node, ::CosStream::Streamable{
void externalize_node (in ::CosStream::StreamIO sio);
void internalize_node (in ::CosStream::StreamIO sio,

in ::CosLifeCycle::FactoryFinder there,
out Roles rolesOfNode)

raises (::CosLifeCycle::NoFactory);
};

interface Role : ::CosGraphs::Role {
void externalize_role (in ::CosStream::StreamIO sio);
void internalize_role (in ::CosStream::StreamIO sio);
::CosGraphs::PropagationValue externalize_propagation (

in RelationshipHandle rel,
in ::CosRelationships::RoleName toRoleName,
out boolean sameForAll);

};

interface Relationship :
::CosRelationships::Relationship {

void externalize_relationship (
in ::CosStream::StreamIO sio);

void internalize_relationship(
in ::CosStream::StreamIO sio,
in ::CosGraphs::NamedRoles newRoles);

::CosGraphs::PropagationValue externalize_propagation (
in ::CosRelationships::RoleName fromRoleName,
in ::CosRelationships::RoleName toRoleName,
out boolean sameForAll);

};

interface PropagationCriteriaFactory {
::CosGraphs::TraversalCriteria create_for_externalize();

};

};

Figure 8-7 The CosCompoundExternalization Module (Continued)
8-22 CORBAservices August 1997

8

en

ted”.

lized
Externalizing a Node

The externalize_node() operation transfers the node’s state to the stream giv
by the sio parameter. The node is responsible to externalize it’s roles as well. The node
can accomplish this by writing the role’s key to the stream and using the
Role:: externalize_role() operation.

Internalizing a Node

The internalize_node() operation causes a node and its roles to be internalized
from the stream sio.

It is the node’s responsibility to create and internalize its roles. It can do this by
reading the key for a role from the stream and using the
CosStream::StreamableFactory interface to create the uninitialized role and the
CosCompoundExternalization:: internalize_role() operation to internalize the
role. The new roles should be collocated with the factory finder given by the there
parameter.

The result of a internalize_node() operation is a sequence of roles.

Figure 8-8 illustrates the result of an internalize. A node, when it is born, is not in any
relationships with other objects. That is, the roles in the new node are “disconnec
It is the read_graph() operation’s job to correctly establish new relationships.

Figure 8-8 Internalizing a node returns the new object and the corresponding roles.

If an appropriate factory to internalize the roles cannot be found, the NoFactory
exception is raised. The exception value indicates the key used to find the factory.

In addition to the NoFactory exception, implementations may raise standard
CORBA exceptions. For example, if resources cannot be acquired for the interna
node, NO_RESOURCES will be raised.

void externalize_node (in ::CosStream::StreamIO sio);

void internalize_node (in ::CosStream::StreamIO sio,
in ::CosLifeCycle::FactoryFinder there,
out Roles rolesOfNode)

raises (::CosLifeCycle::NoFactory);

internalized
document
Externalization Service: v1.0 CosCompound Externalization Module August 1997 8-23

8

lize

am

8.7.2 The Role Interface

The Role interface defines operations to externalize and internalize a role. The Role
interface also defines an operation to return the propagation value for the externa
operation.

The implementation of a CompoundExternalization::Node operation can call these
operations on roles. For example, an implementation of externalize on a node can
call the externalize operation on the Role.

Externalizing a Role

The externalize_role() operation transfers the role’s state to the stream sio.

Internalizing a Role

The internalize_role() operation causes a role to read its state from the stre
given by sio.

Getting a Propagation Value

The externalize_propagation() operation returns the propagation value to the
role toRoleName for the externalization operation and the relationship rel . If the
role can guarantee that the propagation value is the same for all relationships in which
it participates, sameForAll is true.

8.7.3 The Relationship Interface

The Relationship interface defines operations to externalize and internalize a
relationship. The Relationship interface also defines an operation to return the
propagation values for the exteranlize operations.

void externalize_role (in ::CosStream::StreamIO sio);

void internalize_role (in ::CosStream::StreamIO sio);

::CosGraphs::PropagationValue externalize_propagation (
in RelationshipHandle rel,
in::CosRelationships::RoleName toRoleName,
out boolean sameForAll);
8-24 CORBAservices August 1997

8

s
Externalizing the Relationship

The externalize_role() operation transfers the role’s state to the stream sio.

Internalizing the Relationship

The internalize_relationship() operation internalizes the state of a
relationship from the stream given by sio.

The values of the internalized relationship’s attributes are defined by the
implementation of this operation. However, the named_roles attribute of the newly
created relationship must match newRoles. That is, the internalized relationship relate
objects represented by newRoles parameter, not the by the original relationship’s
named roles.

Getting a Propagation Value

The propagation_for() operation returns the relationship’s propagation value
from the role fromRoleName to the role toRoleName for the externalization
operation. If the role named by fromRoleName can guarantee that the propagation
value is the same for all relationships in which it participates, sameForAll is true.

8.7.4 The PropagationCriteriaFactory Interface

The CosGraphs module in the Relationship Service defines a general service for
traversing a graph of related objects. The service accepts a “call-back” object
supporting the ::CosGraphs::TraversalCriteria interface. Given a node, this object
defines which edges to emit and which nodes to visit next.

The PropgationCriteriaFactory creates a TraversalCriteria object that determines
which edges to emit and which nodes to visit based on propagation values for the
compound externalization operations.

void externalize_relationship (
in ::CosStream::StreamIO sio);

void internalize_relationship(
in ::CosStream::StreamIO sio,
in::CosGraphs::NamedRoles newRoles);

::CosGraphs::PropagationValue externalize_propagation (
in::CosRelationshps::RoleName fromRoleName,
in::CosRelationship::RoleName toRoleName,
out boolean sameForAll);
Externalization Service: v1.0 CosCompound Externalization Module August 1997 8-25

8

ny
 is
e

.

Create a Traversal Criteria Based on Externalization Propagation

The create operation returns a TraversalCriteria object for an operation op that
determines which edges to emit and which nodes to visit based on propagation values
for op. For a more detailed discussion see the Relationship Service chapter.

8.8 Specific Externalization Relationships

The Relationship Service defines two important relationships: containment and
reference. Containment is a one-to-many relationship. A container can contain ma
containees; a containee is contained by one container. Reference, on the other hand,
a many-to-many relationship. An object can reference many objects; an object can b
referenced by many objects.

Containment is represented by a relationship with two roles: the ContainsRole, and the
ContainedInRole, Similarly, reference is represented by a relationship with two roles:
ReferencesRole and ReferencedByRole.

Compound externalization adds externalization semantics to these specific
relationships. That is, it defines propagation values for containment and reference

::CosGraphs::TraversalCriteria create_for_externalize();
8-26 CORBAservices August 1997

8

ly

e

8.9 The CosExternalizationContainment Module

The CosExternalizationContainment module defines the following interfaces:

• Relationship interface
• ContainsRole interface
• ContainedInRole interface

Figure 8-9 The CosExternalizationContainment module

The CosExternalizationContainment module does not define new operations. It mere
“mixes in” interfaces from the CosCompoundExternalization and CosContainment
modules. Although it does not add any new operations, it refines the semantics of thes
operations:

The CosExternalizationContainment :: ContainsRole ::propagation_for
operation returns the following:

The CosExternalizationContainment :: ContainedInRole ::

propagation_for() operation returns the following::

The CosRelationships::RoleFactory:: create_role() operation will
raise the RelatedObjectTypeError if the related object passed as a parameter
does not support the CosCompoundExternalization::Node interface.

#include <Containment.idl>
#include <CompoundExternalization.idl>

module CosExternalizationContainment {

interface Relationship :
::CosCompoundExternalization::Relationship,
::CosContainment::Relationship {};

interface ContainsRole :
::CosCompoundExternalization::Role,
::CosContainment::ContainsRole {};

interface ContainedInRole :
::CosCompoundExternalization::Role,
::CosContainment::ContainedInRole {};

};

operation ContainsRole to ContainedInRole

externalize deep

operation ContainedInRole to ContainsRole

externalize none
Externalization Service: v1.0 The CosExternalizationContainment Module August 1997 8-27

8

ill

e
The CosRelationships::RelationshipFactory :: create() operation
will raise DegreeError if the number of roles passed as arguments is not 2. It w
raise RoleTypeError if the roles are not
CosExternalizationContainment::ContainsRole and
CosExternalizationContainment::ContainedInRole. It will raise
MaxCardinalityExceeded if the
CosExternalizationContainment::ContainedInRole is already participating in a
relationship.

8.10 The CosExternalizationReference Module

The CosExternalizationReference module defines these interfaces:
• Relationship interface
• ReferencesRole interface
• ReferencedByRole interface

Figure 8-10 The CosExternalizationReference module

The CosExternalizationReference module does not define new operations. It merely
“mixes in” interfaces from the CosCompoundExternalization and CosReference
modules. Although it does not add any new operations, it refines the semantics of thes
operations:

The CosExternalizationReference::ReferencesRole::propagation_for() operation
returns the following:

#include <Reference.idl>
#include <CompoundExternalization.idl>

module CosExternalizationReference {

interface Relationship :
::CosCompoundExternalization::Relationship,
::CosReference::Relationship {};

interface ReferencesRole :
::CosCompoundExternalization::Role,
::CosReference::ReferencesRole {};

interface ReferencedByRole :
::CosCompoundExternalization::Role,
::CosReference::ReferencedByRole {};

};

operation ReferencesRole to ReferencedByRole

externalize none
8-28 CORBAservices August 1997

8

t

tes
The CosExternalizationReference::ReferencedByRole::propagation_for()
operation returns the following::

The CosRelationships::RoleFactory:: create_role() operation will raise the
RelatedObjectTypeError if the related object passed as a parameter does no
support the CosCompoundExternalization::Node interface.

The CosRelationships::RelationshipFactory:: create() operation will raise
DegreeError if the number of roles passed as arguments is not 2. It will raise
RoleTypeError if the roles are not CosExternalizationReference::ReferencesRole
and CosExternalizationReference::ReferencedByRole.

8.11 Standard Stream Data Format

An externalization client may create a stream that supports a specific external
representation data format that is intended to be portable across different CORBA
implementations and on different CPU hardware. A client creates such a Stream object
using a factory found by specifying a Key whose only NameComponent has an
NameComponent::id whose value is the string literal
“StandardExternalizationFormat”.

That format is described in this section.

8.11.1 OMG Externalized Object Data

A leading “tag” byte with a value of x”F0” marks the beginning of an object’s
externalized data. Following this is data associated with a Key that can be used to
internalize the object. The key information is then followed by the data written to the
StreamIO for the object’s state.

Key Info

The key information consists of a byte containing an integer value, “i”, that indica
how many Naming::NameComponent’s make up the associated Key.

operation ReferencedByRole to ReferencesRole

externalize none

Key info Object infotag byte = x’F0’

1 byte

1st id string 2nd id stringlength = i

1 byte

i’th id string. . .
Externalization Service: v1.0 Standard Stream Data Format August 1997 8-29

8

t the

it
This byte is followed by “i” null-terminated sequences of char values that represen
Naming::NameComponent::id values for the Key. These values correspond to the C
mapping of a CORBA string type. The NameComponent::kind values are not stored in
this external data format.

Object Info

The object information is the sequence of bytes generated for one or more
write_<type> operation. For each write_<type> operation, a single “tag” byte
identifying the type of the primitive data is followed by the data. The tag byte gives
the internalization implementation enough information to skip past object state for
objects that cannot be created, for example when a compatible implementation cannot
be found on the internalizing ORB.

The tag byte values, and data formats for each type are as indicated below for basic
CORBA data types:

Table 8-4 CORBA Tag Byte Values and Data Formats

tag CORBA type data format

x’F1’ Char one byte

x’F2’ Octet one byte

x’F3’ Unsigned Long four bytes, big-endian format

x’F4’ Unsigned Short two bytes, big-endian format

x’F5’ Long four bytes, big-endian format

x’F6’ Short two bytes, big-endian format

x’F7’ Float four bytes, IEEE 754 single precision format, sign bit
in first byte

x’F8’ Double eight bytes, IEEE 754 double precision format, sign b
first byte

x’F9’ Boolean TRUE=>one byte==1, FALSE=>one byte==0

x’FA’ String null-terminated sequence of bytes

data valuetag byte

1 byte

tag byte data value . . .

1 byte
8-30 CORBAservices August 1997

8

f
tored

iam
8.11.2 Externalized Repeated Reference Data

This format is used only when multiple objects reference the same object. Instead o
storing the referenced object multiple times, the duplicate reference objects are s
in this format. Note that the object is represented by a long object number which
indicates that the object has been stored already.

8.11.3 Externalized NIL Data

This is a special format used to indicate that there is no object stored in the stream.

8.12 References

1. James Rumbaugh, “Controlling Propagation of Operations using Attributes on
Relations.” OOPSLA 1988 Proceedings, pg. 285-296

2. James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy and Will
Lorensen, “Object-oriented Modeling and Design.” Prentice Hall, 1991.

3. Grady Booch, “Object Oriented Design with Applications.” The
Benjamin/Cummings Publishing Componay, Inc., 1991.

x’04’

1 (bytes)4

Object number

x’05’

1 (byte)
Externalization Service: v1.0 References August 1997 8-31

8

8-32 CORBAservices August 1997

Relationship Service Specification 9
ment
9.1 Service Description

Distributed objects are frequently used to model entities in the real world. As such,
distributed objects do not exist in isolation. They are related to other objects.

Consider some examples of real world entities and relationships:

• A person owns cars; a car is owned by one or more persons.

• A company employs one or more persons; a person is employed by one or more
companies.

• A document contains figures; a figure is contained in a document.

• A document references a book; a book is referenced by one or more documents.

• A person checks out books from libraries. A library checks out books to people.
A book is checked out by a person from a library.

These examples demonstrate several relationships:

• Ownership relationships between people and cars

• Employment relationships between companies and people

• Containment relationships between documents and figures

• Reference relationships between books and documents

• Check out relationships between people, books and libraries.

Such relationships can be characterized along a number of dimensions:

Type
Related entities and the relationships themselves are typed. In the examples,
employment is an relationship defined between people and companies. The type of
the relationship constrains the types of entities in the relationship; a company
cannot employ a monkey since a monkey is not a person. Furthermore, employ
is distinct from other relationships between people and companies.
CORBAservices March 1995 9-1

9

 an

ners.

ed
The roles of entities in relationships
A relationship is defined by a set of roles that entities have. In an employment
relationship, a company plays an employer role and a person plays an employee
role.

A single entity can have different roles in distinct relationships. Notice that a person
can play the owner role in an ownership relationship and the employee role in
employment relationship.

Degree
Degree refers to the number of required roles in a relationship. The check out
relationship is a ternary relationship; it has three roles: the borrower role, the lender
role and the material role. A person plays the borrower role, a library plays the
lender role and a book plays the material role. Ownership, employment,
containment and reference, on the other hand, are of degree 2, or binary
relationships.

Cardinality
For each role in a relationship type, the maximum cardinality specifies the
maximum number of relationships that may involve that role.

The containment relationship is a many-to-one relationship; a document contains
many figures; a figure is contained in exactly one document. A many-to-many
relationship is between two sets of entities. The ownership example is a many-to-
many relationship; a person can own multiple cars; a car can have multiple ow
The check out relationship is a many-to-one-to-many relationship. A person can
check out many books from many libraries. A book is checked out by one person
from one library and a library can loan many books to many people.

Relationship Semantics
Relationships often have relationship-specific semantics; that is they define
operations and attributes. For example, job title is an attribute of the employment
relationship, while it is not an attribute of an ownership relationship. Similarly, due
date is an attribute of the check out relationship.

For more discussion on object-oriented modeling and design with relationships, see
[2.].

9.1.1 Key Features of the Relationship Service

• The Relationship Service allows entities and relationships to be explicitly
represented. Entities are represented as CORBA objects. The service defines two
new kinds of objects: relationships and roles. A role represents a CORBA object
in an relationship. A relationship is created by passing a set of roles to a
relationship factory.

• Relationships of arbitrary degree can be defined.

• Type and cardinality constraints can be expressed and checked. Exceptions are
raised when cardinality and type constraints are violated. The Relationship
Service does not define a new type system. Instead, the IDL type system is us
to represent relationship and role types. This allows the service to leverage
CORBA solutions for type federation.
9-2 CORBAservices March 1995

9

eci

bjects

ity

s

a

f the

hout

iate

 the
• The Relationship interface can be extended to add relationship specific attributes
and operations. Similarly, the Role interface can be extended to add role specific
attributes and operations.

• The Relationship Service defines three levels of service: base, graph, and spfic.

• The base level defines relationships and roles.

• When objects are related, they form graphs of related objects. The graph level
extends the base level service with nodes and traversal objects. Traversal o
iterate through the edges of a graph. Traversals are useful in implementing
compound operations on graphs, among other things.

• Specific relationships are defined by the third level.

4. A conforming Relationship Service implementation must implement level 1 or
levels 1 and 2 or levels 1, 2 and 3.

• The Relationship Service requires a notion of object identify. As such, it defines
a simple, efficient mechanism for supporting object identity in a heterogeneous,
CORBA-based environment. We believe the mechanism to be of general util
for other services.

• Distributed implementations of the Relationship Service can have navigation
performance and availability similar to CORBA object references; role object
can be collocated with their objects and need not depend on a centralized
repository of relationship information. As such, navigating a relationship can be
local operation.

• The Relationship Service allows so-called immutable objects to be related. There
are no required interfaces that objects being related must support. As such,
objects whose state and implementation were defined prior to the definition o
Relationship Service can be related objects.

• The Relationship Service allows graphs of related objects to be traversed wit
activating related objects.

• The Relationship Service is extensible. Programmers can define additional
relationships.

9.1.2 The Relationship Service vs. CORBA Object References

CORBA: Common Object Request Broker Architecture and Specification defines object
references that clients use to issue requests on objects. Object references can be stored
persistently. When is it appropriate to use object references and when is it appropr
to use the Relationship Service?

The Relationship Service is appropriate to use when an application needs any of
following capabilities that are not available with CORBA object references:

Relationships that Are Multidirectional

When objects are related using the Relationship Service, the relationship can be
navigated from any role to any other role. The service maintains the relationship
between related objects. CORBA object references, on the other hand, are
Externalization Service: v1.0 Service Description March 1995 9-3

9

orted

d

 w

ps

n a
unidirectional. Objects that posses CORBA object references to each other can only
do so in an ad hoc fashion; there is no way to maintain and manipulate the
relationship between the objects.

Relationships that Allow Third Party Manipulation

Since roles and relationships are themselves CORBA objects, they can be exp
to third parties. This allows third parties to manipulate the relationship. For example
a third party could create, destroy or navigate the relationship. Third parties cannot
manipulate object references.

Traversals that Are Supported for Graphs of Related Objects

When objects are related using the Relationship Service, they form graphs of related
objects. Interfaces are defined by the Relationship Service to support traversing the
graph.

Relationships and Roles that Can Be Extended with Attributes an
Behavior

Relationships have relationship-specific semantics. For example, the employment
relationship has a job title attribute. Since relationships and roles are objects withell-
defined OMG IDL interfaces, they can be extended through OMG IDL inheritance to
add such relationship-specific attributes and operations.

9.1.3 Resolution of Technical Issues

Modeling and Relationship Semantics

An application designer models a problem as a set of objects and the relationshi
between those objects. Using OMG IDL, the application designer directly represents
the objects of the model. Using the Relationship Service, the application designer
directly represents the roles and relationships of the model.

The Relationship and Role interfaces can be extended using OMG IDL inheritance to
add relationship and role specific attributes and operations. For example, a designer
might define the employment relationship to have an operation returning a job title.

Managing Relationships

The RelationshipFactory interface defines an operation to create a relationship, give
set of roles. The Role and Relationship interfaces define operations to delete and
navigate relationships between objects.
9-4 CORBAservices March 1995

9

le, an
sent

ole

a
s,

ly
Constraining Relationships

Type, cardinality and degree constraints on relationships are expressed in the
interfaces.

The RoleFactory::create_role operation can raise a
RelatedObjectTypeError exception. This allows implementations of the Role
interface to place further constraints on the type of the related objects. For examp
EmployedByRole can ensure related objects are people. An attempt to have it repre
a monkey would raise a RelatedObjectTypeError exception.

Similarly, the RelationshipFactory::create operation can raise a
RoleTypeError exception. This allows implementations of the Relationship
interface to put constraints on the type of the roles. For example an Employment
relationship can ensure there is an EmployerRole and an EmployeeRole.

The RelationshipFactory::create operation can also raise a DegreeError
exception. This ensures that there are the correct number of roles.

Maximum cardinality constraints are enforced by the role objects themselves. A r
can raise a MaxCardinalityExceeded exception and refuse to participate in a
relationship if its maximum cardinality would be exceeded. Roles define an operation
to ask if their minimum cardinality constraint is being met.

Referential Integrity

If the Relationship Service is used in an environment supporting transactions, strict
referential integrity is achieved. That is, if an related object refers to another (via
relationship), then the other related object will also refer to it. Without transaction
strict referential integrity cannot be achieved since a failure during execution of the
relationship construction protocol could cause a dangling reference.

Relationships and Roles as First Class Objects

Our design defines both relationships and roles as first class objects. This is extreme
important because it encapsulates and abstracts the state to represent the relationship,
allows third party manipulation of the relationship and allows the roles and
relationships themselves to support operations and attributes.

Different Models for Navigating and Constructing Relationships

The Relationship Service defines interfaces for constructing and navigating
relationships component-by-component. These building block operations can be used
by a higher-level service, such as a query service.
Externalization Service: v1.0 Service Description March 1995 9-5

9

ects.
Efficiency Considerations

Our design has several features that allow for highly optimized implementations.
Performance optimizations are achieved by clustering and/or caching of connection
information.

Clients can cluster related objects and their roles by their selection of factories.

Our design defines the containment relationship logically. It does not imply physical
clustering of state or execution, However, it serves as a good hint to implementations
for clustering. An environment can choose to cluster containers and contained obj

The get_other_related_object operation can be implemented to cache remote
related objects. The cached information is immutable; once a relationship is
established, the roles and related objects will not change.
9-6 CORBAservices March 1995

9

ip.
9.2 Service Structure

This section provides information about the levels of service; the specification is
organized around these levels. It also describes the hierarchy of Relationship Service
interfaces and explains the main purpose of each interface.

9.2.1 Levels of Service

The Relationship Service defines three levels of service: base relationships, graphs of
related objects, and specific relationships. The specification is organized around these
levels.

Level One: Base Relationships

The Relationship and Role interfaces define the base Relationship Service.
Figure 9-1 illustrates two instances of the containment relationship. The document
plays the container role; the figure and the logo play the containee role.

The diamond is an object supporting the Relationship interface. The small circles
are objects supporting the Role interface.

Figure 9-1 Base relationships.

Roles represent objects in relationships. Roles have a maximum cardinality. As
illustrated, the container role can be involved in many instances of a relationsh
The containee roles can only be involved in a single instance of a relationship.

figure

logo

document
Externalization Service: v1.0 Service Structure March 1995 9-7

9

nd
Figure 9-2 illustrates the navigation functionality of relationships; for example the
arrow between a role and another role indicates it is possible to navigate from one
role to another. The arrow does not, however, indicate that the object reference to
the other role is necessarily stored by the role.

Figure 9-2 Navigation functionality of base relationships

Table 9-1 lists the interfaces to support relationships and roles.

Level Two: Graphs of Related Objects

Distributed objects do not exist in isolation. They are connected together. Objects
connected together form graphs of related objects. The Relationship Service defines
the Traversal interface. The Traversal interface defines an operation to traverse a
graph. The traversal object cooperates with extended roles supporting the
CosGraphs::Role interface and objects supporting the Node interface.

Figure 9-3 illustrates a graph of related objects. The folder, the figure, the logo a
the book all support the Node interface. The small circles are roles supporting the
CosGraphs::Role interface.

figuredocument
9-8 CORBAservices March 1995

9

Figure 9-3 An example graph of related objects.

Table 9-3 lists the interfaces to support graphs of related objects.

Level Three: Specific Relationships

Containment and reference are two important relationships. The Relationship Service
defines these two binary relationships. Table 9-4 and Table 9-5 list the interfaces
defining specific relationships.

figure

logo

folder

person

library

document

book

containment

reference

check_out
Externalization Service: v1.0 Service Structure March 1995 9-9

9

e
9.2.2 Hierarchy of Relationship Interface

The relationship interfaces are arranged into the interface hierarchy illustrated in
Figure 9-4.

Figure 9-4 Relationship interface hierarchy

9.2.3 Hierarchy of Role Interface

The role interfaces are arranged into the interface hierarchy illustrated in Figure 9-5.

Figure 9-5 Role interface hierarchy

The Role interface defines operations to efficiently navigate relationships between
related objects.

The CosGraphs::Role interface defines an operation to return the edges that involv
the role. This is used by the traversal service defined at the graph level.

Finally, ContainsRole, ContainedInRole, ReferencesRole and ReferencedByRole are
specific roles for two important relationships: containment and reference.

Relationship

Containment Reference

CosRelationships module

specific relationships

(Base level)

CosRelationships::Role

CosGraphs::Role

ContainsRole

ContainedInRole

ReferencesRole

ReferencedByRole

CosRelationships module

CosGraphs module

specific relationships

(Base level)

(graph level)
9-10 CORBAservices March 1995

9

 in

9.2.4 Interface Summary

The Relationship Service defines interfaces to support the functionality described
section 9.2.

Table 9-1 through Table 9-5 give high level descriptions of the Relationship Service
interfaces.

Table 9-1 Interfaces defined in the CosObjectIdentity module

Interface Purpose IPrimary Clients

CosObjectIdentity::

IdentifiableObject To determine if two objects
are identical.

There are many clients. The
graph level of the
Relationship Service is one.

Table 9-2 Interfaces defined in the CosRelationships module

Interface Purpose Primary Clients

CosRelationships::

Relationship Represents an instance of a
relationship type.

Clients that navigate
between related objects.

RelationshipFactory Supports the creation of
relationships.

Clients establishing
relationships.

Role Defines navigation operations
for relationships.
Implements type and
cardinality constraints.

Clients that navigate
between related objects.
Relationship factories.

RoleFactory Supports the creation of
roles.

Objects participating in
relationships.

RelationshipIterator Iterates the relationships in
which a particular role object
participates.

Clients that navigate
relationships.
Externalization Service: v1.0 Service Structure March 1995 9-11

9

Table 9-3 Interfaces defined in the CosGraphs module

Interface Purpose Primary Client(s)

CosGraphs::

Traversal Defines an operation to
traverse a graph, given a
starting node and traversal
criteria.

Clients that want a standard
service to traverse graphs.

TraversalFactory Supports the creation of a
traversal object.

Clients that want a standard
service to traverse graphs.

TraversalCriteria Provides navigation behavior
between nodes.

Traversal implementations.

Role Extends the
CosRelationships::Role
interface to return edges

Clients that traverse graphs
of related objects.

EdgeIterator Returns additional edges
from a role.

Clients that traverse graphs
of related objects.

Node Defines operations for a
related object to reveal its
roles.

Clients that traverse graphs
of related objects.

NodeFactory Supports the creation of
nodes.

Clients that create nodes in
graphs.

Table 9-4 Interfaces defined in the CosContainment module

Interface Purpose Primary Client(s)

CosContainment::

Relationship one-to-many relationship Clients that depend on
Containment relationship
type.

ContainsRole Represents an object that
contains other objects.

Clients that navigate
containment relationships
between objects.

ContainedInRole Represents an object that is
contained in other objects.

Clients that navigate
containment relationships
between objects.
9-12 CORBAservices March 1995

9

re

ts
s are

tes
9.3 The Base Relationship Model

The base level of the Relationship Service defines interfaces that support relationships
between two or more CORBA objects. Objects that participate in a relationship a
called related objects. Relationships that share the same semantics form relationship
types. A relationship is an instance of a relationship type and has an identity.

Each related object is connected with the relationship via a role. Roles are objec
which characterize a related object‘s participation in a relationship type. Role type
used for expressing the role´s characteristics by an IDL interface. Cardinality
represents the number of relationship instances connected to a role. Degree represents
the number of roles in a relationship. All characteristics are expressed by
corresponding IDL interfaces. Relationship and role types are built by subtyping the
Relationship and Role interfaces.

Figure 9-6 gives a graphical representation of a simple relationship type. It illustra
that documents reference books. Documents are in the ReferencesRole and books are in
the ReferencedByRole. Documents, reference, the roles and books are all types; there
are interfaces (written in OMG IDL) for all five.

Table 9-5 Interfaces defined in the CosReference module

Interface Purpose Primary Clients

CosReference::

Relationship many-to-many relationship Clients that depend on the
reference relationship type.

ReferencesRole Represents an object that
references other objects.

Clients that navigate
reference relationships
between objects.

ReferencedByRole Represents an object that is
referenced by other objects.

Clients that navigate
reference relationships
between objects.
Externalization Service: v1.0 The Base Relationship Model March 1995 9-13

9

a

ce“

he
Figure 9-6 Simple relationship type: documents reference books

Figure 9-7, on the other hand, gives a graphical representation of an instance of
relationship type. It illustrates that “my document”, an instance of Document,
references “War and Peace”, an instance of Book. Most of the figures in this
specification represent instances of related objects, roles and relationships. Figures
describing object and relationship type are clearly marked.

Figure 9-7 Simple relationship instance: my document references the book “War and Pea

9.3.1 Relationship Attributes and Operations

Relationships may have attributes and operations. For example, the reference
relationship of Figure 9-6 has an attribute indicating the date the reference from t
document to the book was established.

Document
ReferencesRole

ReferencedByRole
Book

Reference Relationship
attribute date_of_reference

my doc
ReferencesRole

ReferencedByRole

War and Peace

Reference Relationship
May 30, 1994
9-14 CORBAservices March 1995

9

e
s

many

 can

ts. It
ints for
hat
Rationale

If relationships are not allowed to define attributes and operations, they will have to b
assigned to one of the related objects. This approach is prone to misunderstandingand
inconsistencies. The approach to define an artificial related object, which then carries
the attributes, is equally unsatisfactory.

The date attribute of the example of Figure 9-7 is clearly an attribute of the
relationship, not one of related objects. It cannot be an attribute of “my document”
since “my document” can reference many books on different dates. Similarly, it cannot
be an attribute of “War and Peace” since “War and Peace” can be referenced by
books on different dates.

9.3.2 Higher Degree Relationships

The Reference relationship in Figure 9-6 is a binary relationship; that is, it is defined
by two roles. The Relationship Service can also support relationships with more than
two roles. The fact that three or more related objects may be part of a relationship
be expressed directly by means of the same concept as in the binary case. The degree
represents the number of roles in a relationship. The Relationship Service supports
higher degree relationships, that is relationships with degree greater than two.

Figure 9-8 shows a ternary “check out” relationship between books, libraries and
persons. The semantics of this relationship is that a person borrows a book from a
library. The relationship also defines an attribute that indicates the date when the book
is due to be returned by the person to the library.

Figure 9-8 A ternary check-out relationship type between books, libraries and persons.

Rationale

The Relationship Service represents higher degree relationships directly. It clearly
defines the number of expected related objects as well as other integrity constrain
is more readable, more understandable and easier to enforce consistency constra
related objects with a direct representation than with alternative representations t
simulate higher degree relationships using a set of binary relationships. When

Book

Person

material role

borrower role

check_out relationship
attribute due_dateLibrary

lender role
Externalization Service: v1.0 The Base Relationship Model March 1995 9-15

9

ary

ip of

pture
simulating higher degree relationships, the relationship information is spread over
multiple object and relationship type definitions, as are the corresponding integrity
constraints.

Figure 9-9 shows an alternative representation of the ternary relationship from
Figure 9-8 using binary relationships. Note that the first representation is not
equivalent to that of Figure 9-8 since cardinalities and other integrity constraints
cannot be expressed correctly in this alternative representation.

Figure 9-9 An unsatisfactory representation of the ternary check-out relationship using bin
relationships.

Figure 9-10 illustrates a second alternative representation of the ternary relationsh
Figure 9-8. It uses an additional (artificial) related object type. This representation is
equivalent to Figure 9-8 if Check-out is constrained to participate in exactly one
instance of each of the three binary relationship types. However, this alternative needs
three relationship types and one additional related object type (Check-out) instead of
only one relationship type, and therefore is much more complex and harder to ca
when compared to the representation using one relationship type with degree 3.

Figure 9-10 Another unsatisfactory representation

Book

Library Person

Book

Library Person

Check_out
9-16 CORBAservices March 1995

9

ting

the
cated

ed
.

e

 A
Since the Relationship Service supports higher order relationships directly, the user of
the service need not resort to the unsatisfactory representations using binary
relationships of Figure 9-9 and Figure 9-10.

9.3.3 Operations

The base level of the Relationship Service provides operations to:

• Create role and relationship objects

• Navigate relationships

• Destroy roles and relationships

• Iterate over the relationships in which a role participates

Creation

Roles are constructed independently using a role factory. Roles represent an exis
related object that is passed as a parameter to the RoleFactory::create
operation. When creating a new role object, the type of the related object can be
checked by the factory. The minimum and maximum cardinality, e.g. the minimal and
the maximal number of relationship instances to which the new role object may be
connected, are indicated by attributes on the factory.

Figure 9-11 illustrates a newly created role.

Figure 9-11 Creating a role for an object

A new relationship is created by passing a sequence of named roles to a factory for
relationship. The expected degree and role types for the new relationship are indi
by attributes on the factory. During the creation of the new relationship, the role types
and the maximum cardinality can be checked. Duplicate role names are not allow
since the names are used to distinguish the roles in the scope of the relationship

When creating a relationship, the factory creates “links” between the roles and th
relationship using the link operation on the role.

Figure 9-12 illustrates a fully established binary relationship. Figure 9-12 represents
navigation functionality; it does not necessarily represent stored object references.
variety of implementation strategies are described in section 9.3.5.

Object
Externalization Service: v1.0 The Base Relationship Model March 1995 9-17

9

ates

e

es

ces
Figure 9-12 A fully established binary relationship

Navigation

Figure 9-12 illustrates the navigational functionality of a relationship. In particular,

• a relationship defines an attribute that indicates a read-only attribute that indic
the named roles of the relationship,

• a role defines a read-only attribute that indicates the related object that the rol
represents,

• A role supports the get_other_role operation, that given a relationship
object and a role name, returns the other role object,

• A role supports the get_other_related_object operation, that given a
relationship object and a role name, returns the related object that the named role
represents in the relationship and

• A role supports the get_relationships operation which returns the
relationships in which the role participates.

Destruction

For both roles and relationship objects, the Relationship Services introduces a
destroy operation. The destroy operation for relationship objects also destroys the
links between the relationship and all of the role objects.

9.3.4 Consistency Constraints

For each role two cardinalities are defined: minimum and maximum.

• The minimum cardinality indicates the minimum number of relationship instanc
in which a role must participate.

• The maximum cardinality indicates the maximum number of relationship instan
in which a role can participate.

Maximum cardinality constraint can be checked when relationships are created. Note
that the relationship mechanism cannot, by itself, enforce the minimum cardinality
constraint. However, a role can be asked explicitly if it meets its minimum cardinality
constraint using the check_minimum_cardinality operation.

figuredocument
9-18 CORBAservices March 1995

9

s and

or

the

 at the

ps are

ject
Type integrity is preserved by CORBA mechanisms because related objects, role
relationships are instances of CORBA object types. Type constraints can be checked
when roles and relationships are created.

9.3.5 Implementation Strategies

 Figure 9-12 illustrates the navigational functionality of a fully established binary
relationship. There are a variety of implementation strategies possible. The
get_other_role and the get_other_related_object operations can be:

• Implemented by caching object references to other roles and related objects,

• Computed when needed using the relationship object.

The appropriate implementation strategy typically depends on distribution boundaries.
If the roles and relationship objects are clustered, then only storing the values at
relationship object optimizes space. If, on the other hand, the roles and the related
objects are clustered, caching object references to other roles and related objects
roles allows the relationship to be efficiently navigated without involving a remote
relationship object.

Role implementations that cache object references to other roles and related objects
need not worry about updating the cache. Once the related objects and relationshi
established, they cannot be changed.

9.3.6 The CosObjectIdentity Module

CORBA: Common Object Request Broker Architecture and Specification does not
define a notion of object identity for objects. The Relationship Service requires ob
identity for the objects it defines. As such, the Relationship Service assumes the
CosObjectIdentity module specified in Figure 9-13 . This is defined in a separate
module; other Object Services may find this module to be generally useful.

module CosObjectIdentity {

typedef unsigned long ObjectIdentifier;

interface IdentifiableObject {
readonly attribute ObjectIdentifier constant_random_id;
boolean is_identical (

in IdentifiableObject other_object);
};

};

Figure 9-13 The CosObjectIdentity Module
Externalization Service: v1.0 The Base Relationship Model March 1995 9-19

9

le
The IdentifiableObject Interface

Objects that support the IdentifiableObject interface implement an attribute of type
ObjectIdentifier and the is_identical operation. This mechanism provides an
efficient and convenient method of supporting object identity in a heterogeneous
CORBA-based environment.

constant_random_id

Objects supporting the IdentifiableObject interface define an attribute of type
ObjectIdentifier. The value of the attribute must not change during the lifetime of the
object.

A typical client use of this attribute is as a key in a hash table. As such, the more
randomly distributed the values are, the better.

The value of this attribute is not guaranteed to be unique; that is, another identifiab
object can return the same value. However, if objects return different identifiers,
clients can determine that two identifiable objects are not identical.

To determine if two identifiable objects are identical, the is_identical operation
must be used.

is_identical

The is_identical operation returns true if the object and the other_object are
identical. Otherwise, the operation returns false.

9.3.7 The CosRelationships Module

The CosRelationships module defines the interfaces of the base level Relationship
Service. In particular, it defines

• Relationship and Role interfaces to represent relationships and roles,

• RelationshipFactory and RoleFactory interfaces to create relationships and roles

• RelationshipIterator interface to enumerate the relationships in which a role
participates

readonly attribute ObjectIdentifier constant_random_id;

boolean is_identical (
in IdentifiableObject other_object);
9-20 CORBAservices March 1995

9

The CosRelationships module is shown in Figure 9-14.

#include <ObjectIdentity.idl>

module CosRelationships {

interface RoleFactory;
interface RelationshipFactory;
interface Relationship;
interface Role;
interface RelationshipIterator;

typedef Object RelatedObject;
typedef sequence<Role> Roles;
typedef string RoleName;
typedef sequence<RoleName> RoleNames;

struct NamedRole {RoleName name; Role aRole;};
typedef sequence<NamedRole> NamedRoles;

struct RelationshipHandle {
Relationship the_relationship;
CosObjectIdentity::ObjectIdentifier constant_random_id;

};
typedef sequence<RelationshipHandle> RelationshipHandles;

interface RelationshipFactory {
struct NamedRoleType {

RoleName name;
::CORBA::InterfaceDef named_role_type;

};
typedef sequence<NamedRoleType> NamedRoleTypes;
readonly attribute ::CORBA::InterfaceDef relationship_type;
readonly attribute unsigned short degree;
readonly attribute NamedRoleTypes named_role_types;
exception RoleTypeError {NamedRoles culprits;};
exception MaxCardinalityExceeded {

NamedRoles culprits;};
exception DegreeError {unsigned short required_degree;};
exception DuplicateRoleName {NamedRoles culprits;};
exception UnknownRoleName {NamedRoles culprits;};

Relationship create (in NamedRoles named_roles)
raises (RoleTypeError,

MaxCardinalityExceeded,
DegreeError,
DuplicateRoleName,
UnknownRoleName);

};

Figure 9-14 The CosRelationships Module
Externalization Service: v1.0 The Base Relationship Model March 1995 9-21

9

interface Relationship :
CosObjectIdentity::IdentifiableObject {

exception CannotUnlink {
Roles offending_roles;

};
readonly attribute NamedRoles named_roles;
void destroy () raises(CannotUnlink);

};

interface Role {
exception UnknownRoleName {};
exception UnknownRelationship {};
exception RelationshipTypeError {};
exception CannotDestroyRelationship {

RelationshipHandles offenders;
};
exception ParticipatingInRelationship {

RelationshipHandles the_relationships;
};

readonly attribute RelatedObject related_object;
RelatedObject get_other_related_object (

in RelationshipHandle rel,
in RoleName target_name)

raises (UnknownRoleName,
UnknownRelationship);

Role get_other_role (in RelationshipHandle rel,
in RoleName target_name)

raises (UnknownRoleName, UnknownRelationship);
void get_relationships (

in unsigned long how_many,
out RelationshipHandles rels,
out RelationshipIterator iterator);

void destroy_relationships()
raises(CannotDestroyRelationship);

void destroy() raises(ParticipatingInRelationship);
boolean check_minimum_cardinality ();
void link (in RelationshipHandle rel,

in NamedRoles named_roles)
raises(RelationshipFactory::MaxCardinalityExceeded,

RelationshipTypeError);
void unlink (in RelationshipHandle rel)

raises (UnknownRelationship);
};

interface RoleFactory {
exception NilRelatedObject {};
exception RelatedObjectTypeError {};
readonly attribute ::CORBA::InterfaceDef role_type;

Figure 9-14 The CosRelationships Module (Continued)
9-22 CORBAservices March 1995

9

ribe

t
Example of Containment Relationships

The example of Figure 9-15 is referred to throughout the following sections to desc
roles and relationships. The figure represents two binary, one-to-many containment
relationships between a document and a figure and a logo.

Figure 9-15 Two binary one-to-many containment relationships.

The RelationshipFactory Interface

The RelationshipFactory interface defines an operation for creating an instance of a
relationship among a set of related objects. The factory also defines two attributes tha
specify the degree and role types of the relationships it creates.

readonly attribute unsigned long max_cardinality;
readonly attribute unsigned long min_cardinality;
readonly attribute sequence

<::CORBA::InterfaceDef> related_object_types;
Role create_role (in RelatedObject related_object)

raises (NilRelatedObject, RelatedObjectTypeError);
};

interface RelationshipIterator {
boolean next_one (out RelationshipHandle rel);
boolean next_n (in unsigned long how_many,

out RelationshipHandles rels);
void destroy ();

};

};

Figure 9-14 The CosRelationships Module (Continued)

figure

logo

document

relationship B

relationship D

ContainedInRole A

ContainsRole C

ContainedInRole E
Externalization Service: v1.0 The Base Relationship Model March 1995 9-23

9

d

 in

of

of

 in

e

Creating a Relationship

The create operation creates a new instance of a relationship. The factory is passed
a sequence of named roles that represent the related objects in the newly create
relationship. The factory, in turn, informs the roles about the new relationship using
the link operation described in section .

Roles implement maximum cardinality constraints. A role may refuse to participate
a new relationship because it would violate a cardinality constraint. In such a case, the
MaxCardinalityExceeded exception is raised and the offending roles are
returned in the exception.

The number of roles passed to the create operation must be the same as the value
the degree attribute. If not, the DegreeError exception is raised.

Role names are used to associate each actual role object with one of the formal roles
expected by the relationship to be created.

The set of role names passed to the create operation must be the same as the set
role names in the factory’s named_role_types attribute. If not, the
UnknowRoleName exception is raised, and the unrecognized names are returned
the exception. The sequence order of the named_roles parameter and the sequence
order of the named_role_types need not correspond.

The type of each role passed to the create operation must be of the same type as th
type indicated for the corresponding role name in the named_role_types attribute.
If not, the RoleTypeError is raised and the offending roles are returned in the
exception.

The names of the roles passed to the create operation must be unique within the
scope of this relationship type. If not, the DuplicateRoleName exception is raised.

Example of Figure 9-15

The document and the figure were related, that is relationship B was created, by
passing roles A and C to the create operation of the relationship factory. Similarly,
the document and the logo were related by passing roles C and E to the relationship
factory for relationship D.

Relationship create (in NamedRoles named_roles)
raises (RoleTypeError,

MaxCardinalityExceeded,
DegreeError,
DuplicateRoleName,
UnknownRoleName);
9-24 CORBAservices March 1995

9

s

 the

s

f

e
Determining the Created Relationship’s Type

The relationship created by a factory may be a subtype of the Relationship interface.
The rrelationship_type attribute indicates the actual types of the relationship
created by the factory.

Determining the Degree of a Relationship Type

The degree attribute indicates the number of roles for the relationships created by
factory.

Example of Figure 9-15

The relationship factory for containment has a degree attribute whose value is 2
because containment is a binary relationship.

Determining Names and Types of the Roles of a Relationship Type

The named_role_types attribute indicates the required names and types of role
for the relationships created by the factory. NamedRoleTypes are defined as structures
where the role type is given by the CORBA::InterfaceDef for the role objects.

Example of Figure 9-15

The relationship factory for containment has an attribute whose value is a sequence o
two CORBA::InterfaceDefs: one for ContainsRole and one for ContainedInRole.

The Relationship Interface

The Relationship interface defines an attribute whose value is the named roles of th
relationship and an operation to destroy the relationship.

readonly attribute ::CORBA::InterfaceDef relationship_type;

readonly attribute unsigned short degree;

readonly attribute NamedRoleTypes named_role_types;
Externalization Service: v1.0 The Base Relationship Model March 1995 9-25

9

he

Determining the Roles of a Relationship and Their Names

The named_roles attribute returns the roles of the relationship. The roles have t
names that were indicated in the create operation defined by the
RelationshipFactory interface.

Example of Figure 9-15

Relationship B has an attribute whose value is a sequence <“A”,InterfaceDef for
ContainedInRole; “C”, InterfaceDef for ContainsRole>. Similarly, relationship D has
an attribute whose value is a sequence <“E”, InterfaceDef for ContainedInRole; “C”,
InterfaceDef for ContainsRole>.

Destroying a Relationship

The destroy operation destroys the relationship between the objects. The roles are
unlinked by the relationship implementation before it is destroyed. If roles cannot be
unlinked, the CannotUnlink exception is raised and the roles that could not be
unlinked are returned in the exception.

Example of Figure 9-15

If destroy is requested of relationship B, the unlink operation is requested of both
roles A and C and the relationship B is destroyed.

The Role Interface

The Role interface defines operations to:

• navigate the relationship from one role to another,

• enumerate the relationships in which the role participates,

• destroy all relationships in which the role participates,

• link a role to a newly created relationship and

• unlink a role in the destruction process of a relationship and

• destroy the role itself,

readonly attribute NamedRoles named_roles;

void destroy () raises(CannotUnlink);
9-26 CORBAservices March 1995

9

ts.

r
Determining the Related Object That a Role Represents

The related_object attribute indicates the related object that the role represen
The related object that the role represents is specified as a parameter to the create
operation defined by the RoleFactory interface.

Getting Another Related Object

The get_other_related_object operation navigates the relationship rel to the
related object represented by the role named target_name .

If the role does not know about a role named target_name , the
UnknownRoleName exception is raised. If the role does not know about the
relationship rel, the UnknownRelationship exception is raised.

Example of Figure 9-15

Assuming role A is named “A”, requesting
get_other_related_object(B,”A”) of role C returns the figure. On the othe
hand, requesting get_other_related_object(D,”E”) of role C returns the
logo.

Getting Another Role

The get_other_role operation navigates the relationship rel to the role named
target_name . The role is returned.

If the role does not know about a role named target_name for the relationship rel ,
the UnknownRoleName exception is raised. If the role does not know about the
relationship rel, the UnknownRelationship exception is raised.

readonly attribute RelatedObject related_object;

RelatedObject get_other_related_object (
in RelationshipHandle rel,
in RoleName target_name)

raises (UnknownRoleName,
UnknownRelationship);

Role get_other_role (in RelationshipHandle rel,
in RoleName target_name)

raises (UnknownRoleName, UnknownRelationship);
Externalization Service: v1.0 The Base Relationship Model March 1995 9-27

9

.

le

ired

s,

Example of Figure 9-15

Assuming role A is named “A”, requesting get_other_role(B,”A”) of role C
returns role A. On the other hand, requesting get_other_role(D,”E”) of role C
returns role E.

Getting All Relationships in Which a Role Participates

The get_relationships operation returns the relationships in which the role
participates.

The size of the list is determined by the how_many argument. If there are more
relationships than specified by the how_many argument, an iterator is created and
returned with the additional relationships. If there are no more relationships, a nil
object reference is returned for the iterator. (The RelationshipIterator interface is a
standard iterator described in the next section.)

Example of Figure 9-15

Requesting get_relationships on role C would return the relationships B and D

Destroying All Relationships in Which a Role Participates

The destroy_relationships operation destroys all relationships in which the ro
participates.

The destroy_relationships operation is semantically equivalent to requesting
destroy of each relationship in which the role participates. The operation is not requ
to be implemented in that fashion.

If the destroy_relationships operation cannot destroy one of the relationship
then the CannotDestroyRelationship exception is raised and the relationships
that could not be destroyed are returned in the exception.

Example of Figure 9-15

Requesting destroy_relationships of role A causes relationship B to be
destroyed. On the other hand, requesting destroy_relationships of role C
causes relationships B and D to be destroyed.

void get_relationships (
in unsigned long how_many,
out RelationshipHandles rels,
out RelationshipIterator iterator);

void destroy_relationships()
raises(CannotDestroyRelationship);
9-28 CORBAservices March 1995

9

,

n the

d,
Destroying a Role

The destroy operation destroys the role. The role must not be participating in any
relationships. If it is, the ParticipatingInRelationship exception is raised and the
relationships in which the role participates are returned in the exception.

Example of Figure 9-15

Requesting destroy_role of role A destroys relationship B and role A.

Checking Minimum Cardinality of a Role

The check_minimum_cardinality operation returns true if a role satisfies its
minimum cardinality constraints. Otherwise, the operation returns false.

Example of Figure 9-15

Requesting check_minimum_cardinality of role A would return true since it is
participating in relationship B.

Linking a Role in a Newly Created Relationship

Note – The link operation is not intended for general purpose clients that create
navigate and destroy relationships. Instead, it is an operation intended for
implementations of the relationship factory create operation.

The link operation informs the role that a new relationship is being created. The role
is passed a relationship and a set of named roles that represent related objects i
relationship.

A role can have a maximum cardinality, that is it may limit the number of relationships
in which it participates. If the link request would cause the maximum to be exceede
the MaxCardinalityExceeded exception is raised. If the type of the relationship
does not agree with the relationship type that the role expects, the
RelationshipTypeError exception is raised.

void destroy() raises(ParticipatingInRelationship);

boolean check_minimum_cardinality ();

void link (in RelationshipHandle rel,
in NamedRoles named_roles)

raises(RelationshipFactory::MaxCardinalityExceeded,
RelationshipTypeError);
Externalization Service: v1.0 The Base Relationship Model March 1995 9-29

9

te,

ctory

e
Example of Figure 9-15

When creating relationship B, the factory for B requested the link (B, A,C) operation
on roles A and C. This allows roles A and C to support the navigation and
administration operations for relationship B.

Removing a Role from a Relationship

Note – The unlink operation is not intended for general purpose clients that crea
navigate and destroy relationships. Instead, it is an operation intended for
implementations of the relationship destroy operation.

The unlink operation causes the role to delete its record of the relationship.

If the relationship passed as an argument is unknown to the role, the
UnknownRelationship exception is raised.

Example of Figure 9-15

The implementation of the destroy operation on relationship B requests
unlink(B) of roles A and C. This causes roles A and C to forget their participation
in relationship B.

The RoleFactory Interface

The RoleFactory interface defines attributes describing the roles that it creates and a
single operation to create a role.

Creating a Role

The create_role operation creates a role for the related object passed as a
parameter.

A role must represent a related object. If a nil object reference is passed to the fa
for the related object, the NilRelatedObject exception is raised.

Role factories can restrict the type of objects the roles they create will represent. If th
interface of the related object does not conform, the RelatedObjectTypeError
exception is raised.

void unlink (in RelationshipHandle rel)
raises (UnknownRelationship);

Role create_role (in RelatedObject related_object)
raises (NilRelatedObject, RelatedObjectTypeError);
9-30 CORBAservices March 1995

9

n

in

Example of Figure 9-15

Clients that created roles A, C and E used the create operation of factories that
support the RoleFactory interface.

Determining the Created Role’s Type

The role created by a factory may be a subtype of the Role interface. The role_type
attribute indicates the actual types of the roles created by the factory.

Determining the Maximum Cardinality of a Role

The max_cardinality attribute indicates the maximum number of relationships i
which a role (created by the factory) participates.

Example of Figure 9-15

The factory for role A returns 1, since a ContainedIn role can be in no more than one
relationship. Attempts to add role A to more than one relationship result in
MaxCardinalityExceeded exceptions. (See the create operation of the
RelationshipFactory interface and the link operation of the Role interface.)

Determining the Minimum Cardinality of a Role

The min_cardinality attribute indicates the minimum number of relationships
which a role (created by the factory) participates.

Note, that unlike maximum cardinality, minimum cardinality cannot be enforced since
roles will be below their minimum during relationship construction. Roles do support
the check_minimum_cardinality operation to report if they are below their
minimum.

Example of Figure 9-15

The factory for role A returns 1, since a ContainedIn role should be in one
relationship.

readonly attribute ::CORBA::InterfaceDef role_type;

readonly attribute unsigned long max_cardinality;

readonly attribute unsigned long min_cardinality;
Externalization Service: v1.0 The Base Relationship Model March 1995 9-31

9

ed

ist,

o
Determining the Related Object Types for a Role

The factory creates roles that represent related objects in relationships. The relat
objects must support at least one of the interfaces indicated by the
related_object_type attribute.

Example of Figure 9-15

The factory for role C returns the CORBA::InterfaceDef for a document.

The RelationshipIterator Interface

The RelationshipIterator interface is returned by the get_relationships
operation defined by the Role interface. It allows clients to iterate through any
additional relationships in which the role participates.

next_one

The next_one operation returns the next relationship; if no more relationships ex
it returns false.

next_n

The next_n operation returns at most the requested number of relationships; if n
more relationships exist, it returns false.

destroy

The destroy operation destroys the iterator.

readonly attribute sequence
<::CORBA::InterfaceDef> related_object_types;

boolean next_one (out RelationshipHandle rel);

boolean next_n (in unsigned long how_many,
out RelationshipHandles rels);

void destroy ();
9-32 CORBAservices March 1995

9

f

are

 other

.

elated
9.4 Graphs of Related Objects

When objects are related using the Relationship Service, graphs of related objects are
formed. This section focuses on how the Relationship Service supports graphs of
related objects. We first describe the graph architecture supported by the service,
describe support for traversing the graph and implementing compound operations and
then specify the CosGraphs module in detail.

Graphs are important for distributed, object-oriented applications. A few examples o
graphs are:

Distributed Desktops

Folders and objects are connected together. Folders contain some objects and
reference others. Folders may contain or reference other folders. The objects
distributed; they span multiple machines. The distributed desktop is a distributed
graph.

Composed Applications

Applications are built out of existing objects that are connected together. An
example of such a composed application is a shared white board. The composed
application is a graph.

User Interface Hierarchies

Presentation objects visualize semantic objects for users. Presentations contain
presentation objects. For example, a window might contain a button. The user
interface hierarchy is a graph.

Compound Documents

A compound document architecture allows graphics, animation, sound, video, etc.
to be connected together to give the user the impression of a single documentThe
compound document is a graph.

9.4.1 Graph Architecture

A graph is a set of nodes and a set of edges, involving those nodes. Nodes are r
objects that support the Node interface and edges are represented by the relationships
that relate nodes.

Figure 9-3 on page 9-9 illustrates an example of a graph.
Externalization Service: v1.0 Graphs of Related Objects March 1995 9-33

9

h.

out

n
Figure 9-16 An example graph of related objects.

The folder, book, document, figure, library, person and logo are nodes in the grap
The edges of the graph are represented by the relationships:

• containment: the folder and document,

• containment: the document and the figure

• containment: the document and the logo

• reference: the figure and the logo

• reference: the document and the book,

• check_out: the book, the library and the person

The graph architecture supports multiple kinds of relationships. For example, in
Figure 9-16, there are containment, reference and check_out relationships. The small
circles depict roles for a reference relationship, the solid circles depict roles for a
containment relationship and the shaded circles represent the roles of the check_
relationship.

A node can participate in more than one kind of relationship and thus have more tha
one role. In the example the document has three kinds of roles:

• The ContainsRole
• The ContainedInRole
• The ReferencesRole

figure

logo

folder

person

library

document

book

containment

reference

check_out
9-34 CORBAservices March 1995

9

raphs

e

t

s to a

rough
ct.

he
Nodes

Nodes are identifiable objects that support the Node interface. Nodes collect roles of a
related object and the related object itself. A node enables standard traversals of g
of related objects because it supports the following:

• A readonly attribute defining all of its roles

• An operation allowing roles of a particular type to be returned

• Operations to add and remove roles

The Node interface can be inherited by related objects or an object implementing th
Node interface can be instantiated and interposed in front of related objects.
Interposition is particularly useful in these cases:

• When connecting immutable objects, which are objects that are not aware of the
Relationship Service

• In order to traverse graphs of related objects without activating the related objects

As such, the Node interface defines an attribute whose value is the related object i
represents.

9.4.2 Traversing Graphs of Related Objects

The Relationship Service defines a traversal object that, given a starting node,
produces a sequence of directed edges of the graph. A directed edge correspond
relationship. In particular, it consists of:

• An instance of a relationship,

• A starting node and a starting named role of the edge to indicate direction and

• A sequence containing the remaining nodes and named roles. For binary
relationships, there is a single remaining node and role. For n-ary relationships,
there are n-1 remaining nodes and roles.

The traversal object works like an iterator, where directed edges are the items being
returned.

The traversal object, the nodes and the roles cooperate in traversing the graph. Th
the operations of the Node interface, the node reveals its roles to the traversal obje
Through the operations of the CosGraphs::Role interface, a role reveals its directed
edges to other nodes. (The CosGraphs::Role interface defines an operation allowing a
role to reveal directed edges.)

In traversing a graph, the traversal object must detect and represent cycles, and
determine the relevant nodes and edges.

Detecting and Representing Cycles

In order to terminate, a traversal must be able to detect a cycle in the graph. In t
example of Figure 9-3, the document, the figure, and the logo form a cycle.
Externalization Service: v1.0 Graphs of Related Objects March 1995 9-35

9

 the

ude in

 the

g

ly to

ut

ound

To detect cycles in the graph, the traversal object depends on the fact that nodes are
identifiable objects, that is they support the IdentifiableObject interface defined in
section 9.3.6.

To represent cycles in the graph, the traversal object defines a scope of identifiers for
the nodes and relationships in the graph. That is, a given traversal assigns identifiers to
the nodes and relationships that are guaranteed to be unique within the scope of
traversal.

Determining the Relevant Nodes and Edges

A traversal begins at the starting node, emits directed edges and may continue to other
related nodes. The traversal object is programmable in the criteria it uses for
determining the edges to emit and the nodes to visit. The traversal object depends on a
“call-back” object supporting the TraversalCriteria interface.

Given a node, the traversal criteria computes a sequence of directed edges to incl
the traversal. For each edge, the traversal criteria can indicate whether the traversal
should continue to an adjacent node. Based on the results of the traversal criteria, the
traversal object emits edges and visits other nodes. The process continues until there
are no more edges to emit and no more nodes to visit.

Three standard traversal modes are defined to allow clients flexibility in controlling
search order: depth first, breadth first, and best first. In order to understand the
differences between the modes, consider that the traversal maintains an ordered list of
the edges which have been produced by visiting nodes. This list initially contains the
edges which result from visiting the root node. In each iteration the first edge is
removed from the list to be returned and its destination nodes are visited. Dependin
upon the traversal mode, these edges are: inserted in the beginning of the list (depth
first), appended to the end of the list (breadth first), or inserted into the list which is
sorted by the edge’s weight (best first).

9.4.3 Compound Operations

Traversal objects are especially important in implementing compound operations on
graphs of related objects. By compound operations, we mean operations that app
some subset of the nodes and edges in the graph. Examples of compound operations
include operations, such as copy, move, remove, externalize, print, and so forth.

Note – The Relationship Service defines a framework for compound operations b
does not define specific compound operations. The Life Cycle and the Externalization
Service specifications define compound operations that depend on the Relationship
Service.

A compound operation may be implemented either in one or two passes. A comp
operation implemented in one pass traverses the graph itself and applies the operation
as it proceeds.
9-36 CORBAservices March 1995

9

ed by
nt

r

lue

e

n

ed

t the
A compound operation implemented in two passes uses the traversal object defin
the Relationship Service to determine the relevant nodes and detect and represe
cycles. The second pass simply applies the operation to the results of the first pass.

A compound operation implemented in two passes provides a TraversalCriteria object
for the traversal service.

9.4.4 An Example Traversal Criteria

Consider a traversal of a graph with a traversal criteria object that uses propagation
values defined by the relationships to determine whether to emit an edge and whethe
to proceed to another node. The traversal criteria is given a node by the traversal. The
traversal criteria then requests propagation values from each of the node’s roles.

Figure 9-17 illustrates a traversal of a graph using a traversal criteria for a compound
copy operation. Using the propagation_for operation defined by
CompoundLifeCycle::Role interface, the traversal criteria obtains the propagation va
for the copy operation from each of the node’s roles.

Figure 9-17 A traversal of a graph for compound copy operation.

Propagation

Compound operations may propagate from one node to another depending on th
semantics of the relationship between the nodes. The propagation semantics of a
relationship depend on the direction the relationship is being traversed. A propagatio
value is either deep, shallow, inhibit or none.

Deep means that the operation is applied to the node, to the relationship and to the
related objects. In the example of Figure 9-17, the propagation value for the copy
operation is deep from the document to the logo; the copy propagates from the
document to the logo across the containment relationship. The traversal criteria for
copy that encounters a deep propagation value would instruct the traversal object to
emit the edge and visit the logo.

Shallow means that the operation is applied to the relationship but not to the relat
objects. In the example of Figure 9-17, the propagation value for the copy operation
from the logo to the document is shallow. The traversal criteria for copy that
encounters a shallow propagation value would instruct the traversal object to emi
edge but the document is not visited.

document logo
Node

Role

TraversalCriteria

copy=deep

Node

Role

copy=shallow
Externalization Service: v1.0 Graphs of Related Objects March 1995 9-37

9

ld not

ode’s

s the
None means that the operation has no effect on the relationship and no effect on the
related objects. A traversal criteria that encounters a none propagation value wou
return any edges and related nodes are not visited.

Figure 9-18 summarizes how deep, shallow and node propagation values affect nodes,
roles and relationships.

Figure 9-18 How deep, shallow and none propagation values affect nodes, roles and
relationships.

Inhibit means that the operation should not propagate to the node via any of the n
roles. Inhibit is particularly meaningful for the remove operation to provide so-called
“existence-ensuring relationships”.

For more discussion of propagation values, see [1.].

9.4.5 The CosGraphs Module

The CosGraphs module defines the support for graphs of related objects. It define
following interfaces:

• TraversalFactory interface for creating traversal objects

• Traversal interface for enumerating directed edges of a graph,

• TraversalCriteria “call-back” interface to allow programmability of the traversal
object

• Node interface for collecting the roles of a related object

• NodeFactory interface for creating nodes

• Role interface to support traversals

shallow

deep

none
9-38 CORBAservices March 1995

9

The CosGraphs module is shown in Figure 9-19.

#include <Relationships.idl>
#include <ObjectIdentity.idl>

module CosGraphs {

interface TraversalFactory;
interface Traversal;
interface TraversalCriteria;
interface Node;
interface NodeFactory;
interface Role;
interface EdgeIterator;

struct NodeHandle {
Node the_node;
::CosObjectIdentity::ObjectIdentifier constant_random_id;

};
typedef sequence<NodeHandle> NodeHandles;

struct NamedRole {
Role the_role;
::CosRelationships::RoleName the_name;

};
typedef sequence<NamedRole> NamedRoles;

struct EndPoint {
NodeHandle the_node;
NamedRole the_role;

};
typedef sequence<EndPoint> EndPoints;

struct Edge {
EndPoint from;
::CosRelationships::RelationshipHandle the_relationship;
EndPoints relatives;

};
typedef sequence<Edge> Edges;

enum PropagationValue {deep, shallow, none, inhibit};
enum Mode {depthFirst, breadthFirst, bestFirst};

interface TraversalFactory {
Traversal create_traversal_on (

in NodeHandle root_node,
in TraversalCriteria the_criteria,
in Mode how);

};

Figure 9-19 The CosGraphs Module
Externalization Service: v1.0 Graphs of Related Objects March 1995 9-39

9

interface Traversal {
typedef unsigned long TraversalScopedId;
struct ScopedEndPoint {

EndPoint point;
TraversalScopedId id;

};
typedef sequence<ScopedEndPoint> ScopedEndPoints;
struct ScopedRelationship {

::CosRelationships::RelationshipHandle
scoped_relationship;

TraversalScopedId id;
};
struct ScopedEdge {

ScopedEndPoint from;
ScopedRelationship the_relationship;
ScopedEndPoints relatives;

};
typedef sequence<ScopedEdge> ScopedEdges;
boolean next_one (out ScopedEdge the_edge);
boolean next_n (in short how_many,

out ScopedEdges the_edges);
void destroy ();

};

interface TraversalCriteria {
struct WeightedEdge {

Edge the_edge;
unsigned long weight;
sequence<NodeHandle> next_nodes;

};
typedef sequence<WeightedEdge> WeightedEdges;
void visit_node(in NodeHandle a_node,

in Mode search_mode);
boolean next_one (out WeightedEdge the_edge);
boolean next_n (in short how_many,

out WeightedEdges the_edges);
void destroy();

};

Figure 9-19 The CosGraphs Module (Continued)
9-40 CORBAservices March 1995

9

The TraversalFactory Interface

The TraversalFactory interface creates traversal objects. The Traversal interface is
used by clients that want to traverse graphs of related objects according to some
traversal criteria.

interface Node: ::CosObjectIdentity::IdentifiableObject {
typedef sequence<Role> Roles;
exception NoSuchRole {};
exception DuplicateRoleType {};

readonly attribute ::CosRelationships::RelatedObject
 related_object;

readonly attribute Roles roles_of_node;
Roles roles_of_type (

in ::CORBA::InterfaceDef role_type);
void add_role (in Role a_role)

raises (DuplicateRoleType);
void remove_role (in ::CORBA::InterfaceDef of_type)

raises (NoSuchRole);
};

interface NodeFactory {
Node create_node (in Object related_object);

};

interface Role : ::CosRelationships::Role {
void get_edges (in long how_many,

out Edges the_edges,
out EdgeIterator the_rest);

};

interface EdgeIterator {
boolean next_one (out Edge the_edge);
boolean next_n (in unsigned long how_many,

out Edges the_edges);
void destroy ();

};

};

Figure 9-19 The CosGraphs Module (Continued)
Externalization Service: v1.0 Graphs of Related Objects March 1995 9-41

9

cope

tes the

xist,
create_traversal_on

The create_traversal_on operation creates a traversal object starting at the
root_node . The created traversal object uses the TraversalCriteria object to
determine which directed edges to emit and which nodes to visit. The mode parameter
indicates whether the traversal will proceed in a depth first, breadth first or best first
fashion.

The Traversal Interface

Traversal objects iterate through ScopedEdges of the graph according to the
traversal criteria and the mode established when the traversal was created. The
traversal also defines a scope for the nodes and edges it returns; that is, it assigns
identifiers to the nodes and edges it returns. The identifiers are unique within the s
of a given traversal. ScopedEdges are given by the following structure:

A ScopedEdge consists of a distinguished scoped end point, a scoped relationship
and a sequence of scoped end points. The distinguished scoped end point indica
direction of the edge. The scoped end point consists of a node, a role, and an identifier
for the node that is unique within the scope of the traversal.

next_one

The next_one operation returns the next scoped edge; if no more scoped edges e
it returns false.

Traversal create_traversal_on (
in NodeHandle root_node,
in TraversalCriteria the_criteria,
in Mode how);

struct ScopedEdge {
ScopedEndPoint from;
ScopedRelationship the_relationship;
ScopedEndPoints relatives;
};
typedef sequence<ScopedEdge> ScopedEdges;

boolean next_one (out ScopedEdge the_edge);
9-42 CORBAservices March 1995

9

wing

ng if
best

es
next_n

The next_n operation returns at most the requested number of scoped edges.

destroy

The destroy operation destroys the traversal.

The TraversalCriteria Interface

The TraversalCriteria interface is used by the traversal object to determine which
edges to emit and which nodes to visit from a given node. The traversal criteria
behaves like an iterator of weighted edges. Weighted edges are given by the follo
structure:

A WeightedEdge consists of an edge, a weight and a sequence of nodes indicati
the traversal should continue to the nodes. The weight is only meaningful for the
first traversal.

next_one

The next_one operation returns the next weighted edge; if no more weighted edg
exist, it returns false.

boolean next_n (in short how_many,
out ScopedEdges the_edges);

void destroy ();

struct WeightedEdge {
Edge the_edge;
unsigned long weight;
sequence<NodeHandle> next_nodes;
};
typedef sequence<WeightedEdge> WeightedEdges;

boolean next_one (out WeightedEdge the_edge);
Externalization Service: v1.0 Graphs of Related Objects March 1995 9-43

9

e

next_n

The next_n operation returns at most the requested number of weighted directed
edges.

destroy

The destroy operation destroys the traversal criteria.

visit_node

The visit_node operation establishes the node for which the traversal criteria will
iterate and indicates the current search mode. As the traversal object traverses th
graph, it visits nodes by requesting the visit_node operation of the traversal
criteria, followed by next_one/next_n requests to obtain the outgoing edges from
the node.

For depthFirst and breadthFirst modes, the weight field in the weighted edges is
ignored. In the bestFirst mode, the weight value is utilized to order the traversal’s
edges list which is sorted by this value in ascending order.

If weighted edges from a previous node remain when visit_node is requested, the
traversal criteria discards the previous edges.

The Node Interface

The Node interface defines operations that are useful in navigating graphs of related
objects. In particular, it defines:

• Areadonly attribute giving all of the node’s roles

• An operation allowing roles conforming to a particular type to be returned

• Operations to add and remove roles

Roles are distinguished in nodes in the OMG IDL of their interfaces.

A node cannot posses two roles where one role is a subtype of the other. This is
precluded by the add_role operation.

boolean next_n (in short how_many,
out WeightedEdges the_edges);

void destroy();

void visit_node(in NodeHandle a_node,
in Mode search_mode);
9-44 CORBAservices March 1995

9

e
A node can posses two or more roles that have a common supertype. The set of roles
can be obtained by passing the common supertype to the roles_of_type operation.

related_object

The related_object attribute gives the related object that the node represents.
This is useful when relating immutable objects.

roles_of_node

The roles_of_node attribute gives all of the node’s roles.

roles_of_type

The roles_of_type operation returns the node’s roles that conform to the
role_type parameter. A role conforms to role_type if it’s interface is the same
or is a subtype of role_type .

add_role

The add_role operation adds a role to the node. If the node posses a role of the sam
type, a supertype or a subtype of a_role , the DuplicateRoleType exception is
raised.

readonly attribute ::CosRelationships::RelatedObject
 related_object;

readonly attribute Roles roles_of_node;

Roles roles_of_type (
in ::CORBA::InterfaceDef role_type);

void add_role (in Role a_role)
raises (DuplicateRoleType);
Externalization Service: v1.0 Graphs of Related Objects March 1995 9-45

9

remove_role

The remove_role operation removes all the roles that conform to the of_type
parameter. If no roles conform to the of_type parameter, the NoSuchRole exception
is raised.

The NodeFactory Interface

The NodeFactory interface defines a single operation for creating nodes.

create_node

The create_node operation creates a node whose related_object attribute is
initialized to the related_object parameter.

The Role Interface

The CosGraphs::Role interface extends the CosRelationships::Role interface with a
single operation to return a role’s view of it’s relationships. The role’s view of a
relationship is given by the following Edge structure:

The edge structure is defined by an end point, a relationship and the other end points.
The from end point is the role and its related object.

void remove_role (in ::CORBA::InterfaceDef of_type)
raises (NoSuchRole);

Node create_node (in Object related_object);

struct Edge {
EndPoint from;
::CosRelationships::RelationshipHandle the_relationship;
EndPoints relatives;
};
typedef sequence<Edge> Edges;
9-46 CORBAservices March 1995

9

s

get_edges

The get_edges operation returns the edges in which the role participates.

The size of the list is determined by the how_many argument. If there are more edge
than specified by the how_many argument, an iterator is created and returned. If there
are no more edges, a nil object reference is returned for the iterator.

The EdgeIterator Interface

The EdgeIterator interface is returned by the get_edges operation defined by the
CosGraphs::Role interface. It allows clients to iterate through any additional
relationships in which the role participates.

next_one

The next_one operation returns the next edge; if no more edges exist, it returns
false.

next_n

The next_n operation returns at most the requested number of edges.

destroy

The destroy operation destroys the iterator.

9.5 Specific Relationships

The Relationship Service defines two important relationships, containment and
reference as part of its specification. The example used throughout this specification
has been in terms of these two relationships.

void get_edges (in long how_many,
out Edges the_edges,
out EdgeIterator the_rest);

boolean next_one (out Edge the_edge);

boolean next_n (in unsigned long how_many,
out Edges the_edges);

void destroy ();
Externalization Service: v1.0 Specific Relationships March 1995 9-47

9

t
em as
9.5.1 Containment and Reference

Containment is a one-to-many relationship. A container can contain many containees;
a containee is contained by one container. Reference, on the other hand, is a many-to-
many relationship. An object can reference many objects; an object can be referenced
by many objects.

Containment and reference are examples of relationships. However, since containmen
and reference are very common relationships, the Relationship Service defines th
standard.

Containment is defined by interfaces for a relationship and two roles: the
CosContainment::Relationship interface, the CosContainment::ContainsRole interface,
and the CosContainment::ContainedInRole interface. Relationship is a subtype of
CosRelationships::Relationship and ContainedInRole and ContainsRole are subtypes
of CosGraphs::Role.

Similarly, reference is defined by interfaces for a relationship and two roles: the
CosReference::Relationship interface, the CosReference::ReferencesRole interface,
and the CosReference::ReferencedByRole interface. Relationship is a subtype of
CosRelationships::Relationship and ReferencesRole and ReferencedByRole are
subtypes of CosGraphs::Role.

9.5.2 The CosContainment Module

The CosContainment module is shown in Figure 9-14.

#include <Graphs.idl>

module CosContainment {

 interface Relationship :
 ::CosRelationships::Relationship {};

 interface ContainsRole : ::CosGraphs::Role {};

 interface ContainedInRole : ::CosGraphs::Role {};

};

Figure 9-20 The CosContainment Module
9-48 CORBAservices March 1995

9

L

t

t
The CosContainment module does not define new operations. It introduces new ID
types to represent containment. Although it does not add any new operations, it refines
the semantics of these attributes and operations:

The CosRelationships::RelationshipFactory::create operation will raise
DegreeError if the number of roles passed as arguments is not 2. It will raise
RoleTypeError if the roles are not CosContainment::ContainsRole and
CosContainment::ContainedInRole. It will raise MaxCardinalityExceeded if the
CosContainment::ContainedInRole is already participating in a relationship.

The CosRelationships::RoleFactory::create_role operation will raise the
RelatedObjectTypeError if the related object passed as a parameter does no
support the CosGraphs::Node interface. The CosRelationships::RoleFactory::link
operation will raise RelationshipTypeError if the rel parameter does not
conform to the CosContainment::Relationship interface.

The CosRelationships::RoleFactory::create_role operation will raise the
RelatedObjectTypeError if the related object passed as a parameter does no
support the CosGraphs::Node interface. The CosRelationships::RoleFactory::link
operation will raise RelationshipTypeError if the rel parameter does not
conform to the CosContainment::Relationship interface. The

RelationshipFactory
attribute value

relationship_type CosContainment::Relationship

degree 2

named_role_types “ContainsRole”,CosContainment::ContainsRole;
“ContainedInRole”,CosContainment::ContainedInRole

RoleFactory attribute for
ContainsRole value

role_type CosContainment::ContainsRole

maximum_cardinality unbounded

minimum_cardinality 0

related_object_types CosGraphs::Node

RoleFactory attribute for
ContainedInRole value

role_type CosContainment::ContainedInRole

maximum_cardinality 1

minimum_cardinality 1

related_object_types CosGraphs::Node
Externalization Service: v1.0 Specific Relationships March 1995 9-49

9

es
CosRelationships::RoleFactory::link operation will raise
MaxCardinalityExceeded if it is already participating in a containment
relationship.

9.5.3 The CosReference Module

The CosReference module is given in Figure 9-21.

The CosReference module does not define new operations. It introduces new IDL typ
to represent reference. Although it does not add any new operations, it refines the
semantics of these attributes and operations:

The CosRelationships::RelationshipFactory::create operation will raise
DegreeError if the number of roles passed as arguments is not 2. It will raise
RoleTypeError if the roles are not CosReference::ReferencesRole and
CosReference::ReferencedByRole.

#include <Graphs.idl>

module CosReference {

interface Relationship :
::CosRelationships::Relationship {};

interface ReferencesRole : CosGraphs::Role {};

interface ReferencedByRole : ::CosGraphs::Role {};

};

Figure 9-21 The CosReference Module

RelationshipFactory
attribute value

relationship_type CosReference::Relationship

degree 2

named_role_types “ReferencesRole”,CosReference::ReferencesRole;
“ReferencedByRole”,CoReference::ReferencedByRole
9-50 CORBAservices March 1995

9

t

t

iam
The CosRelationships::RoleFactory::create_role operation will raise the
RelatedObjectTypeError if the related object passed as a parameter does no
support the CosGraphs::Node interface. The CosRelationships::RoleFactory::link
operation will raise RelationshipTypeError if the rel parameter does not
conform to the CosReference::Relationship interface.

The CosRelationships::RoleFactory::create_role operation will raise the
RelatedObjectTypeError if the related object passed as a parameter does no
support the CosGraphs::Node interface. The CosRelationships::RoleFactory::link
operation will raise RelationshipTypeError if the rel parameter does not
conform to the CosRelationship::Relationship interface.

9.6 References

1. James Rumbaugh, “Controlling Propagation of Operations using Attributes on
Relations.” OOPSLA 1988 Proceedings, pg. 285-296.

2. James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy and Will
Lorensen, “Object-oriented Modeling and Design.” Prentice Hall, 1991.

RoleFactory attribute for
ReferencesRole value

role_type CosReference::ReferencesRole

maximum_cardinality unbounded

minimum_cardinality 0

related_object_types CosGraphs::Node

RoleFactory attribute for
ReferencedByRole value

role_type CosReference::ReferencedByRole

maximum_cardinality unbounded

minimum_cardinality 0

related_object_types CosGraphs::Node
Externalization Service: v1.0 References March 1995 9-51

9

9-52 CORBAservices March 1995

Transaction Service Specification 10
er,

s.
This chapter provides the following information about the Transaction Service:

• A description of the service, which explains the functional, design, and
performance requirements that are satisfied by this specification.

• An overview of the Transaction Service that introduces the concepts used
throughout this chapter.

• A description of the Transaction Service’s architecture and a detailed definition of
the Transaction Service, including definitions of its interfaces and operations.

• A user’s view of the Transaction Service as seen by the application programm
including client and object implementer.

• An implementer’s view of the Transaction Service, which will interest
Transaction Service and ORB providers.

This chapter also contains an appendix that explains the relationship between the
Transaction Service and TP standards, and an appendix that contains transaction term

Contents

This chapter contains the following sections.

Section Title Page

“Service Description 10-2

“Service Architecture 10-12

“Transaction Service Interfaces 10-17

“The User’s View 10-34

“The Implementers’ View 10-48
CORBAservices November 1997 10-1

10

 the

ed

re

ey

or

 to
it all

se
10.1 Service Description

The concept of transactions is an important programming paradigm for simplifying
construction of reliable and available applications, especially those that require
concurrent access to shared data. The transaction concept was first deployed in
commercial operational applications where it was used to protect data in centraliz
databases. More recently, the transaction concept has been extended to the broader
context of distributed computation. Today it is widely accepted that transactions a
the key to constructing reliable distributed applications.

The Transaction Service described in this specification brings the transaction
paradigm, essential to developing reliable distributed applications, and the object
paradigm, key to productivity and quality in application development, together to
address the business problems of commercial transaction processing.

10.1.1 Overview of Transactions

The Transaction Service supports the concept of a transaction. A transaction is a unit
of work that has the following (ACID) characteristics:

• A transaction is atomic; if interrupted by failure, all effects are undone (rolled
back).

• A transaction produces consistent results; the effects of a transaction preserve
invariant properties.

• A transaction is isolated; its intermediate states are not visible to other transactions.
Transactions appear to execute serially, even if they are performed concurrently.

• A transaction is durable; the effects of a completed transaction are persistent; th
are never lost (except in a catastrophic failure).

A transaction can be terminated in two ways: the transaction is either committed
rolled back. When a transaction is committed, all changes made by the associated
requests are made permanent. When a transaction is rolled back, all changes made by
the associated requests are undone.

The Transaction Service defines interfaces that allow multiple, distributed objects
cooperate to provide atomicity. These interfaces enable the objects to either comm
changes together or to rollback all changes together, even in the presence of
(noncatastrophic) failure. No requirements are placed on the objects other than tho
defined by the Transaction Service interfaces.

“The CosTransactions Module 10-69

Appendix A “Relationship of Transaction Service to TP
Standards

10-74

Appendix B “Transaction Service Glossary 10-85

Section Title Page
10-2 CORBAservices November 1997

10

 of a

e of

re

e

s the
ction
he

xt
Transaction semantics can be defined as part of any object that provides ACID
properties. Examples are ODBMSs and persistent objects. The value of a separate
transaction service is that it allows:

• Transactions to include multiple, separately defined, ACID objects.

• The possibility of transactions which include objects and resources from the non-
object world.

10.1.2 Transactional Applications

The Transaction Service provides transaction synchronization across the elements
distributed client/server application.

A transaction can involve multiple objects performing multiple requests. The scop
a transaction is defined by a transaction context that is shared by the participating
objects. The Transaction Service places no constraints on the number of objects
involved, the topology of the application or the way in which the application is
distributed across a network.

In a typical scenario, a client first begins a transaction (by issuing a request to an
object defined by the Transaction Service), which establishes a transaction context
associated with the client thread. The client then issues requests. These requests a
implicitly associated with the client’s transaction; they share the client’s transaction
context. Eventually, the client decides to end the transaction (by issuing another
request). If there were no failures, the changes produced as a consequence of th
client’s requests would then be committed; otherwise, the changes would be rolled
back.

In this scenario, the transaction context is transmitted implicitly to the objects, without
direct client intervention—See “Application Programming Models” on page 10-34.
The Transaction Service also supports scenarios where the client directly control
propagation of the transaction context. For example, a client can pass the transa
context to an object as an explicit parameter in a request. An implementation of t
Transaction Service might limit the client’s ability to explicitly propagate the
transaction context, in order to guarantee transaction integrity (See “Application
Programming Models” on page10-34, Subsection "Direct Context Management:
Explicit Propagation").

The Transaction Service does not require that all requests be performed within the
scope of a transaction. A request issued outside the scope of a transaction has no
associated transaction context. It is up to each object to determine its behavior when
invoked outside the scope of a transaction; an object that requires a transaction conte
can raise a standard exception.

10.1.3 Definitions

Applications supported by the Transaction Service consist of the following entities:

• Transactional Client (TC)

• Transactional Objects (TO)
Transaction Service: v1.1 Service Description November 1997 10-3

10

nts.

• Recoverable Objects

• Transactional Servers

• Recoverable Servers

The following figure shows a simple application which includes these basic eleme

Figure 10-1 Application Including Basic Elements

Transactional Client

A transactional client is an arbitrary program that can invoke operations of many
transactional objects in a single transaction.

The program that begins a transaction is called the transaction originator.

Transactional Object

We use the term transactional object to refer to an object whose behavior is affected
by being invoked within the scope of a transaction. A transactional object typically
contains or indirectly refers to persistent data that can be modified by requests.

transaction completion,
may force rollbackmay force rollback

transaction completion

Transaction Service

AAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AA
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Distributed

transaction
context

Client/Server Application

Participates in

Resource

Recoverable
Server

Transactional
Server

Transactional
Client

Transactional
Operation

Transactional
Operation

begin or
 end

not involved in
transaction completion,

registers resource in

transaction

Transactional
Object Object

Recoverable
10-4 CORBAservices November 1997

10

ior,

ests

s

es
done

ut not
est.

it
bject

n be

lient

s so

ed on
The Transaction Service does not require that all requests have transactional behav
even when issued within the scope of a transaction. An object can choose to not
support transactional behavior, or to support transactional behavior for some requ
but not others.

We use the term nontransactional object to refer to an object none of whose operation
are affected by being invoked within the scope of a transaction.

If an object does not support transactional behavior for a request, then the chang
produced by the request might not survive a failure and the changes will not be un
if the transaction associated with the request is rolled back.

An object can also choose to support transactional behavior for some requests b
others. This choice can be exercised by both the client and the server of the requ

The Transaction Service permits an interface to have both transactional and
nontransactional implementations. No IDL extensions are introduced to specify
whether or not an operation has transactional behavior. Transactional behavior can be
a quality of service that differs in different implementations.

Transactional objects are used to implement two types of application servers:

• Transactional Server

• Recoverable Server

Recoverable Objects and Resource Objects

To implement transactional behavior, an object must participate in certain protocols
defined by the Transaction Service. These protocols are used to ensure that all
participants in the transaction agree on the outcome (commit or rollback) and to
recover from failures.

To be more precise, an object is required to participate in these protocols only if
directly manages data whose state is subject to change within a transaction. An o
whose data is affected by committing or rolling back a transaction is called a
recoverable object.

A recoverable object is by definition a transactional object. However, an object ca
transactional but not recoverable by implementing its state using some other
(recoverable) object. A client is concerned only that an object is transactional; a c
cannot tell whether a transactional object is or is not a recoverable object.

A recoverable object must participate in the Transaction Service protocols. It doe
by registering an object called a Resource with the Transaction Service. The
Transaction Service drives the commit protocol by issuing requests to the resources
registered for a transaction.

A recoverable object typically involves itself in a transaction because it is required to
retain in stable storage certain information at critical times in its processing. When a
recoverable object restarts after a failure, it participates in a recovery protocol bas
the contents (or lack of contents) of its stable storage.
Transaction Service: v1.1 Service Description November 1997 10-5

10

cted

le.

s
uired

A transaction can be used to coordinate non-durable activities which do not require
permanent changes to storage.

Transactional Server

A transactional server is a collection of one or more objects whose behavior is affe
by the transaction, but which have no recoverable states of their own. Instead, it
implements transactional changes using other recoverable objects. A transactional
server does not participate in the completion of the transaction, but it can force the
transaction to be rolled back.

Recoverable Server

A recoverable server is a collection of objects, at least one of which is recoverab

A recoverable server participates in the protocols by registering one or more Resource
objects with the Transaction Service. The Transaction Service drives the commit
protocol by issuing requests to the resources registered for a transaction.

10.1.4 Transaction Service Functionality

The Transaction Service provides operations to:

• Control the scope and duration of a transaction

• Allow multiple objects to be involved in a single, atomic transaction

• Allow objects to associate changes in their internal state with a transaction

• Coordinate the completion of transactions

Transaction Models

The Transaction Service supports two distributed transaction models: flat transaction
and nested transactions. An implementation of the Transaction Service is not req
to support nested transactions.

Flat Transactions

The Transaction Service defines support for a flat transaction model. The definition of
the function provided, and the commitment protocols used, is modelled on the X/Open
DTP transaction model definition.1

A flat transaction is considered to be a top-level transaction—see the next
section—that cannot have a child transaction.

1. See Distributed Transaction Processing: The XA Specification, X/Open Document C193. X/Open Company Ltd.,
Reading, U.K., ISBN 1-85912-057-1.
10-6 CORBAservices November 1997

10

 not

ildren

.

a
as

n.
the

w
Nested Transactions

The Transaction Service also defines a nested transaction model. Nested transactions
provide for a finer granularity of recovery than flat transactions. The effect of failures
that require rollback can be limited so that unaffected parts of the transaction need
rollback.

Nested transactions allow an application to create a transaction that is embedded in an
existing transaction. The existing transaction is called the parent of the subtransaction;
the subtransaction is called a child of the parent transaction.

Multiple subtransactions can be embedded in the same parent transaction. The ch
of one parent are called siblings.

Subtransactions can be embedded in other subtransactions to any level of nesting. The
ancestors of a transaction are the parent of the subtransaction and (recursively) the
parents of its ancestors. The descendants of a transaction are the children of the
transaction and (recursively) the children of its descendants.

A top-level transaction is one with no parent. A top-level transaction and all of its
descendants are called a transaction family.

A subtransaction is similar to a top-level transaction in that the changes made on
behalf of a subtransaction are either committed in their entirety or rolled back.
However, when a subtransaction is committed, the changes remain contingent upon
commitment of all of the transaction’s ancestors.

Subtransactions are strictly nested. A transaction cannot commit unless all of its
children have completed. When a transaction is rolled back, all of its children are
rolled back.

Objects that participate in transactions must support isolation of transactions. The
concept of isolation applies to subtransactions as well as to top level transactions
When a transaction has multiple children, the children appear to other transactions to
execute serially, even if they are performed concurrently.

Subtransactions can be used to isolate failures. If an operation performed within
subtransaction fails, only the subtransaction is rolled back. The parent transaction h
the opportunity to correct or compensate for the problem and complete its operation.
Subtransactions can also be used to perform suboperations of a transaction in parallel,
without the risk of inconsistent results.

Transaction Termination

A transaction is terminated by issuing a request to commit or rollback the transactio
Typically, a transaction is terminated by the client that originated the transaction—
transaction originator. Some implementations of the Transaction Service may allo
transactions to be terminated by Transaction Service clients other than the one which
created the transaction.
Transaction Service: v1.1 Service Description November 1997 10-7

10

ally).

a

s is

ll

rt of

ides
Any participant in a transaction can force the transaction to be rolled back (eventu
If a transaction is rolled back, all participants rollback their changes. Typically, a
participant may request the rollback of the current transaction after encountering
failure. It is implementation-specific whether the Transaction Service itself monitors
the participants in a transaction for failures or inactivity.

Transaction Integrity

Some implementations of the Transaction Service impose constraints on the use of the
Transaction Service interfaces in order to guarantee integrity equivalent to that
provided by the interfaces which support the X/Open DTP transaction model. Thi
called checked transaction behavior.

For example, allowing a transaction to commit before all computations acting on
behalf of the transaction have completed can lead to a loss of data integrity. Checked
implementations of the Transaction Service will prevent premature commitment of a
transaction.

Other implementations of the Transaction Service may rely completely on the
application to provide transaction integrity. This is called unchecked transaction
behavior.

Transaction Context

As part of the environment of each ORB-aware thread, the ORB maintains a
transaction context. The transaction context associated with a thread is either nu
(indicating that the thread has no associated transaction) or it refers to a specific
transaction. It is permitted for multiple threads to be associated with the same
transaction at the same time, in the same execution environment or in multiple
execution environments.

The transaction context can be implicitly transmitted to transactional objects as pa
a transactional operation invocation. The Transaction Service also allows programmers
to pass a transaction context as an explicit parameter of a request.

Synchronization

The Transaction Service defines support for a synchronization interface. This prov
a protocol by which an object may be notified prior to the start of the two-phase
commit protocol within the coordinator with which it is registered. An implementation
of the Transaction Service is not required to support synchronization.

10.1.5 Principles of Function, Design, and Performance

The Transaction Service defined in this specification fulfills a number of functional,
design, and performance requirements.
10-8 CORBAservices November 1997

10

he

erve
sfully

tion

.

ere

ion
RB.
Functional Requirements

The Transaction Service defined in this specification addresses the following
functional requirements:

Support for multiple transaction models. The flat transaction model, which is widely
supported in the industry today, is a mandatory component of this specification. T
nested transaction model, which provides finer granularity isolation and facilitates
object reuse in a transactional environment, is an optional component of this
specification.

Evolutionary Deployment. An important property of object technology is the ability
to “wrapper” existing programs (coarse grain objects) to allow these functions to s
as building blocks for new business applications. This technique has been succes
used to marry object-oriented end-user interfaces with commercial business logic
implemented using classical procedural techniques.

It can similarly be used to encapsulate the large body of existing business software on
legacy environments and leverage that in building new business applications. This will
allow customers to gradually deploy object technology into their existing
environments, without having to reimplement all existing business functions.

Model Interoperability. Customers desire the capability to add object
implementations to existing procedural applications and to augment object
implementations with code that uses the procedural paradigm. To do so in a transac
environment requires that a single transaction be shared by both the object and
procedural code. This includes the following:

• A single transaction which includes ORB and non-ORB applications and
resources.

• Interoperability between the object transaction service model and the X/Open
Distributed Transaction Processing (DTP) model.

• Access to existing (non-object) programs and resource managers by objects

• Access to objects by existing programs and resource managers.

• Coordination by a single transaction service of the activities of both object and
non-object resource managers.

• The network case: A single transaction, distributed between an object and non-
object system, each of which has its own Transaction Service.

The Transaction Service accommodates this requirement for implementations wh
interoperability with X/Open DTP-compliant transactional applications is necessary.

Network Interoperability . Customers require the ability to interoperate between
systems offered by multiple vendors:

• Single transaction service, single ORB - It must be possible for a single
transaction service to interoperate with itself using a single ORB.

• Multiple transaction services, single ORB - It must be possible for one transact
service to interoperate with a cooperating transaction service using a single O

• Single transaction service, multiple ORBs - It must be possible for a single
transaction service to interoperate with itself using different ORBs.
Transaction Service: v1.1 Service Description November 1997 10-9

10

ng

n.

ing

,
• Multiple transaction services, multiple ORBs - It must be possible for one
transaction service to interoperate with a cooperating transaction service usi
different ORBs.

The Transaction Service specifies all required interactions between cooperating
Transaction Service implementations necessary to support a single ORB. The
Transaction Service depends on ORB interoperability (as defined by the CORBA
specification) to provide cooperating Transaction Services across different ORBs.

Flexible transaction propagation control. Both client and object implementations
can control transaction propagation:

• A client controls whether or not its transaction is propagated with an operatio

• A client can invoke operations on objects with transactional behavior and objects
without transactional behavior within the scope of a single transaction.

• An object can specify transactional behavior for its interfaces.

The Transaction Service supports both implicit (system-managed) propagation and
explicit (application-managed) propagation. With implicit propagation, transactional
behavior is not specified in the operation’s signature. With explicit propagation,
applications define their own mechanisms for sharing a common transaction.

Support for TP Monitors . Customers need object technology to build mission-critical
applications. These applications are deployed on commercial transaction process
systems where a TP Monitor provides both efficient scheduling and the sharing of
resources by a large number of users. It must be possible to implement the Transaction
Service in a TP monitor environment. This includes:

• The ability to execute multiple transactions concurrently.

• The ability to execute clients, servers, and transaction services in separate
processes.

The Transaction Service is usable in a TP Monitor environment.

Design Requirements

The Transaction Service supports the following design requirements:

Exploitation of OO Technology. This specification permits a wide variety of ORB
and Transaction Service implementations and uses objects to enable ORB-based
secure implementations. The Transaction Service provides the programmer with easy
to use interfaces that hide some of the complexity inherent in general-use
specifications. Meaningful user applications can be constructed using interfaces that
are as simple or simpler than their procedural equivalents.

Low Implementation Cost. The Transaction Service specification considers cost from
the perspective of three users of the service - clients, ORB implementers, and
Transaction Service providers.
10-10 CORBAservices November 1997

10

ms

o
ot

sting

n

at

ing
same

vior
nces
ot

t

:

• For clients, it allows a range of implementations which are compliant with the
proposed architecture. Many ORB implementations will exist in client
workstations which have no requirement to understand transactions within
themselves, but will find it highly desirable to interoperate with server platfor
that implement transactions.

• The specification provides for minimal impact to the ORB. Where feasible,
function is assigned to an object service implementation to permit the ORB t
continue to provide high performance object access when transactions are n
used.

• Since this Transaction Service will be supported by existing (procedural)
transaction managers, the specification allows implementations that reuse exi
procedural Transaction Managers.

Portability . The Transaction Service specification provides for portability of
applications. It also defines an interface between the ORB and the Transaction Service
that enables individual Transaction Service implementations to be ported betwee
different ORB implementations.

Avoidance of OMG IDL interface variants. The Transaction Service allows a single
interface to be supported by both transactional and non-transactional implementations.
This approach avoids a potential “combinatorial explosion” of interface variants th
differ only in their transactional characteristics. For example, the existing Object
Service interfaces can support transactional behavior without change.

Support for both single-threaded and multi-threa ded implementations. The
Transaction Service defines a flexible model that supports a variety of programm
styles. For example, a client with an active transaction can make requests for the
transaction on multiple threads. Similarly, an object can support multiple transactions
in parallel by using multiple threads.

A wide spectrum of implementation choices. The Transaction Service allows
implementations to choose the degree of checking provided to guarantee legal beha
of its users. This permits both robust implementations which provide strong assura
for transaction integrity and lightweight implementations where such checks are n
warranted.

Performance Requirements

The Transaction Service is expected to be implemented on a wide range of hardware
and software platforms ranging from desktop computers to massively parallel servers
and in networks ranging in size from a single LAN to worldwide networks. To meet
this wide range of requirements, consideration must be given to algorithms which
scale, efficient communications, and the number and size of accesses to permanen
storage. Much of this is implementation, and therefore not visible to the user of the
service. Nevertheless, the expected performance of the Transaction Service was
compared to its procedural equivalent, the X/Open DTP model in the following areas

• The number of network messages required.

• The number of disk accesses required.

• The amount of data logged.
Transaction Service: v1.1 Service Description November 1997 10-11

10

ction
n.

a

i

The objective of the specification was to achieve parity with the X/Open model for
equivalent function, where technically feasible.

10.2 Service Architecture

Figure 10-2 illustrates the major components and interfaces defined by the Transa
Service. The transaction originator is an arbitrary program that begins a transactio
The recoverable server implements an object with recoverable state that is invoked
within the scope of the transaction, either directly by the transaction originator or
indirectly through one or more transactional objects.

The transaction originator creates a transaction using a TransactionFactory; a Control
is returned that provides access to a Terminator and a Coordinator. The transaction
originator uses the Terminator to commit or rollback the transaction. The Coordinator
is made available to recoverable servers, either explicitly or implicitly (by implicitly
propagating a transaction context with a request). A recoverable server registers
Resource with the Coordinator. The Resource implements the two-phase commit
protocol which is driven by the Transaction Service. A recoverable server may regster
a Synchronization with the Coordinator. The Synchronization implements a dependent
object protocol driven by the Transaction Service. A recoverable server can also
register a specialized resource called a SubtransactionAwareResource to track the
completion of subtransactions. A Resource uses a RecoveryCoordinator in certain
failure cases to determine the outcome of the transaction and to coordinate the
recovery process with the Transaction Service.

To simplify coding, most applications use the Current pseudo object, which provides
access to an implicit per-thread transaction context.

Transaction Service

(transmitted with request)

transaction originator

SubtransactionAwareResource

transaction
context

transaction
context

(associated with thread)

transaction
context

(associated with thread)

Control

Resource

Figure 10-2 Major Components and Interfaces of the Transaction Service

TransactionFactory

Current CurrentTerminator
Coordinator

Control

recoverable server

RecoveryCoordinator

Synchronization
10-12 CORBAservices November 1997

10

action
ead
text

s
ct

e

d.

me

est on

ued

n

t
10.2.1 Typical Usage

A typical transaction originator uses the Current object to begin a transaction, which
becomes associated with the transaction originator’s thread.

The transaction originator then issues requests. Some of these requests involve
transactional objects. When a request is issued to a transactional object, the trans
context associated with the invoking thread is automatically propagated to the thr
executing the method of the target object. No explicit operation parameter or con
declaration is required to transmit the transaction context. Propagation of the
transaction context can extend to multiple levels if a transactional object issues a
request to a transactional object.

Using the Current object, the transactional object can unilaterally rollback the
transaction and can inquire about the current state of the transaction. Using the Current
object, the transactional object also can obtain a Coordinator for the current
transaction. Using the Coordinator, a transactional object can determine the
relationship between two transactions, to implement isolation among multiple
transactions.

Some transactional objects are also recoverable objects. A recoverable object ha
persistent data that must be managed as part of the transaction. A recoverable obje
uses the Coordinator to register a Resource object as a participant in the transaction.
The resource represents the recoverable object’s participation in the transaction; ach
resource is implicitly associated with a single transaction. The Coordinator uses the
resource to perform the two-phase commit protocol on the recoverable object’s data.

After the computations involved in the transaction have been completed, the
transaction originator uses the Current object to request that the changes be committe
The Transaction Service commits the transaction using a two-phase commit protocol
wherein a series of requests are issued to the registered resources.

10.2.2 Transaction Context

The transaction context associated with a thread is either null (indicating that the
thread has no associated transaction) or it refers to a specific transaction. It is
permitted for multiple threads to be associated with the same transaction at the sa
time.

When a thread in an object server is used by an object adapter to perform a requ
a transactional object, the object adapter initializes the transaction context associated
with that thread by effectively copying the transaction context of the thread that iss
the request. An implementation of the Transaction Service may restrict the capabilities
of the new transaction context. For example, an implementation of the Transactio
Service might not permit the object server thread to request commitment of the
transaction.

The object adapter is not required to initialize the transaction context of every reques
handler. It is required to initialize the transaction context only if the interface
supported by the target object is derived from the TransactionalObject interface.
Otherwise, the initial transaction context of the thread is undefined.
Transaction Service: v1.1 Service Architecture November 1997 10-13

10

tion
s
ons”
ise

s) so
e

ntext
n

nable

s

,
When a thread retrieves the response to a deferred synchronous request, an excep
may be raised if the thread is no longer associated with the transaction that it wa
associated with when the deferred synchronous request was issued. (See “Excepti
on page 10-16, subsection “WRONG_TRANSACTION Exception” for a more prec
definition.)

When nested transactions are used, the transaction context remembers the stack of
nested transactions started within a particular execution environment (e.g., proces
that when a subtransaction ends, the transaction context of the thread is restored to th
context in effect when the subtransaction was begun. When the context is transferred
between execution environments, the received context refers only to one particular
transaction, not a stack of transactions.

10.2.3 Context Management

The Transaction Service supports management and propagation of transaction co
using objects provided by the Transaction Service. Using this approach, the transactio
originator issues a request to a TransactionFactory to begin a new top-level
transaction. The factory returns a Control object specific to the new transaction that
allows an application to terminate the transaction or to become a participant in the
transaction (by registering a Resource). An application can propagate a transaction
context by passing the Control as an explicit request parameter.

The Control does not directly support management of the transaction. Instead, it
supports operations that return two other objects, a Terminator and a Coordinator. The
Terminator is used to commit or rollback the transaction. The Coordinator is used to
enable transactional objects to participate in the transaction. These two objects can be
propagated independently, allowing finer granularity control over propagation.

An implementation of the Transaction Service may restrict the ability for some or all
of these objects to be transmitted to or used in other execution environments, to e
it to guarantee transaction integrity.

An application can also use the Current object operations get_control , suspend ,
and resume to obtain or change the implicit transaction context associated with its
thread.

When nested transactions are used, a Control can include a stack of nested transaction
begun in the same execution environment. When a Control is transferred between
execution environments, the received Control refers only to one particular transaction
not a stack of transactions.
10-14 CORBAservices November 1997

10
10.2.4 Datatypes

The CosTransactions module defines the following datatypes:

10.2.5 Structures

The CosTransactions module defines the following structures:

enum Status {
StatusActive,
StatusMarkedRollback,
StatusPrepared,
StatusCommitted,
StatusRolledBack,
StatusUnknown,
StatusNoTransaction,
StatusPreparing,
StatusCommitting,
StatusRollingBack

};

enum Vote {
VoteCommit,
VoteRollback,
VoteReadOnly

};

struct otid_t {
long formatID; /*format identifier. 0 is OSI TP */
long bqual_length;
sequence <octet> tid;

};
struct TransIdentity {

Coordinator coord;
Terminator term;
otid_t otid;

};
struct PropagationContext {

unsigned long timeout;
TransIdentity current;
sequence <TransIdentity> parents;
any implementation_specific_data;

};
Transaction Service: v1.1 Service Architecture November 1997 10-15

10

al

ill

s
10.2.6 Exceptions

Standard Exceptions

The CosTransactions module adds new standard exceptions to CORBA for
TRANSACTION_REQUIRED, TRANSACTION_ROLLEDBACK, and
INVALID_TRANSACTION. These exceptions are defined in Chapter 3, Section 3.15 of
the Common Object Request Broker: Architecture and Specification.

Heuristic Exceptions

A heuristic decision is a unilateral decision made by one or more participants in a
transaction to commit or rollback updates without first obtaining the consensus
outcome determined by the Transaction Service. Heuristic decisions are normally made
only in unusual circumstances, such as communication failures, that prevent norm
processing. When a heuristic decision is taken, there is a risk that the decision w
differ from the consensus outcome, resulting in a loss of data integrity.

The CosTransactions module defines the following exceptions for reporting
incorrect heuristic decisions or the possibility of incorrect heuristic decisions:

HeuristicRollback Exception

The commit operation on Resource raises the HeuristicRollback exception to
report that a heuristic decision was made and that all relevant updates have been rolled
back.

HeuristicCommit Exception

The rollback operation on Resource raises the HeuristicCommit exception to
report that a heuristic decision was made and that all relevant updates have been
committed.

HeuristicMixed Exception

A request raises the HeuristicMixed exception to report that a heuristic decision wa
made and that some relevant updates have been committed and others have been rolled
back.

exception HeuristicRollback {};
exception HeuristicCommit {};
exception HeuristicMixed {};
exception HeuristicHazard {};
10-16 CORBAservices November 1997

10

n
quest.

HeuristicHazard Exception

A request raises the HeuristicHazard exception to report that a heuristic decision
may have been made, the disposition of all relevant updates is not known, and for
those updates whose disposition is known, either all have been committed or all have
been rolled back. (In other words, the HeuristicMixed exception takes priority over
the HeuristicHazard exception.)

WRONG_TRANSACTION Exception

The CosTransactions module adds the WRONG_TRANSACTION exception that ca
be raised by the ORB when returning the response to a deferred synchronous re
This exception is defined in Chapter 4 of the Common Object Request Broker:
Architecture and Specification.

Other Exceptions

The CosTransactions module defines the following additional exceptions:

These exceptions are described below along with the operations that raise them.

10.3 Transaction Service Interfaces

The interfaces defined by the Transaction Service reside in the CosTransactions

module. (OMG IDL for the CosTransactions module is shown in “The
CosTransactions Module” on page 10-69.) The interfaces for the Transaction Service
are as follows:

• Current

• TransactionFactory

• Terminator

• Coordinator

• RecoveryCoordinator

• Resource

• Synchronization

• Subtransaction Aware Resource

• Transactional Object

exception SubtransactionsUnavailable {};
exception NotSubtransaction {};
exception Inactive {};
exception NotPrepared {};
exception NoTransaction {};
exception InvalidControl {};
exception Unavailable {};
exception SynchronizationUnavailable {};
Transaction Service: v1.1 Transaction Service Interfaces November 1997 10-17

10

n
se the

ice

for
d to

avior

ould
No operations are defined in these interfaces for destroying objects. No applicatio
actions are required to destroy objects that support the Transaction Service becau
Transaction Service destroys its own objects when they are no longer needed.

10.3.1 Current Interface

The Current interface defines operations that allow a client of the Transaction Serv
to explicitly manage the association between threads and transactions. The Current
interface also defines operations that simplify the use of the Transaction Service
most applications. These operations can be used to begin and end transactions an
obtain information about the current transaction.

The Current interface is designed to be supported by a pseudo object whose beh
depends upon and may alter the transaction context associated with the invoking
thread. It may be shared with other object services (e.g., security) and is obtained by
using a resolve initial references(“TransactionCurrent”) operation on the CORBA::ORB
interface. Current supports the following operations:

Note – In order to pass the transaction from one thread to another, a program sh
not use the Current object. It should pass the Control object to the other thread.

interface Current : CORBA::Current {
void begin()

raises(SubtransactionsUnavailable);
void commit(in boolean report_heuristics)

raises(
NoTransaction,
HeuristicMixed,
HeuristicHazard

);
void rollback()

raises(NoTransaction);
void rollback_only()

raises(NoTransaction);

Status get_status();
string get_transaction_name();
void set_timeout(in unsigned long seconds);

Control get_control();
Control suspend();
void resume(in Control which)

raises(InvalidControl);
};
10-18 CORBAservices November 1997

10

d so
ntly

ct of

;

ct of

begin

A new transaction is created. The transaction context of the client thread is modifie
that the thread is associated with the new transaction. If the client thread is curre
associated with a transaction, the new transaction is a subtransaction of that
transaction. Otherwise, the new transaction is a top-level transaction.

The SubtransactionsUnavailable exception is raised if the client thread already
has an associated transaction and the Transaction Service implementation does not
support nested transactions.

commit

If there is no transaction associated with the client thread, the NoTransaction
exception is raised. If the client thread does not have permission to commit the
transaction, the standard exception NO_PERMISSION is raised. (The commit operation
may be restricted to the transaction originator in some implementations.)

Otherwise, the transaction associated with the client thread is completed. The effe
this request is equivalent to performing the commit operation on the corresponding
Terminator object (see “Terminator Interface” on page 10-23); see “Terminator
Interface and “Exceptions” on page 10-16 for a description of the exceptions that may
be raised.

The client thread transaction context is modified as follows: If the transaction was
begun by a thread (invoking begin) in the same execution environment, then the
thread’s transaction context is restored to its state prior to the begin request.
Otherwise, the thread’s transaction context is set to null.

rollback

If there is no transaction associated with the client thread, the NoTransaction
exception is raised. If the client thread does not have permission to rollback the
transaction, the standard exception NO_PERMISSION is raised. (The rollback
operation may be restricted to the transaction originator in some implementations
however, the rollback_only operation, described below, is available to all
transaction participants.)

Otherwise, the transaction associated with the client thread is rolled back. The effe
this request is equivalent to performing the rollback operation on the corresponding
Terminator object (see “Terminator Interface” on page 10-23).

The client thread transaction context is modified as follows: If the transaction was
begun by a thread (invoking begin) in the same execution environment, then the
thread’s transaction context is restored to its state prior to the begin request.
Otherwise, the thread’s transaction context is set to null.
Transaction Service: v1.1 Transaction Service Interfaces November 1997 10-19

10

g

rned.

cts

ext

scope

e

rollback_only

If there is no transaction associated with the client thread, the NoTransaction
exception is raised. Otherwise, the transaction associated with the client thread is
modified so that the only possible outcome is to rollback the transaction. The effect of
this request is equivalent to performing the rollback_only operation on the
corresponding Coordinator object (see “Coordinator Interface” on page 10-24).

get_status

If there is no transaction associated with the client thread, the StatusNoTransaction
value is returned. Otherwise, this operation returns the status of the transaction
associated with the client thread. The effect of this request is equivalent to performin
the get_status operation on the corresponding Coordinator object (see “Coordinator
Interface” on page 10-24).

get_transaction_name

If there is no transaction associated with the client thread, an empty string is retu
Otherwise, this operation returns a printable string describing the transaction. The
returned string is intended to support debugging. The effect of this request is
equivalent to performing the get_transaction_name operation on the corresponding
Coordinator object (see “Coordinator Interface” on page 10-24).

set_timeout

This operation modifies a state variable associated with the target object that affe
the time-out period associated with top-level transactions created by subsequent
invocations of the begin operation. If the parameter has a nonzero value n, then top-
level transactions created by subsequent invocations of begin will be subject to being
rolled back if they do not complete before n seconds after their creation. If the
parameter is zero, then no application specified time-out is established.

get_control

If the client thread is not associated with a transaction, a null object reference is
returned. Otherwise, a Control object is returned that represents the transaction cont
currently associated with the client thread. This object can be given to the resume
operation to reestablish this context in the same thread or a different thread. The
within which this object is valid is implementation dependent; at a minimum, it must
be usable by the client thread. This operation is not dependent on the state of th
transaction; in particular, it does not raise the TRANSACTION_ROLLEDBACK exception.

suspend

If the client thread is not associated with a transaction, a null object reference is
returned. Otherwise, an object is returned that represents the transaction context
currently associated with the client thread. This object can be given to the resume
10-20 CORBAservices November 1997

10

scope

ith no

no
t,
us

aise
operation to reestablish this context in the same thread or a different thread. The
within which this object is valid is implementation dependent; at a minimum, it must
be usable by the client thread. In addition, the client thread becomes associated w
transaction. This operation is not dependent on the state of the transaction; in
particular, it does not raise the TRANSACTION_ROLLEDBACK exception.

resume

If the parameter is a null object reference, the client thread becomes associated with
transaction. Otherwise, if the parameter is valid in the current execution environmen
the client thread becomes associated with that transaction (in place of any previo
transaction). Otherwise, the InvalidControl exception is raised. See “Control
Interface” on page 10-22 for a discussion of restrictions on the scope of a Control. This
operation is not dependent on the state of the transaction; in particular, it does not r
the TRANSACTION_ROLLEDBACK exception.

10.3.2 TransactionFactory Interface

The TransactionFactory interface is provided to allow the transaction originator to
begin a transaction. This interface defines two operations, create and recreate ,
which create a new representation of a top-level transaction. A TransactionFactory is
located using the FactoryFinder interface of the life cycle service and not by the
resolve_initial_reference operation on the ORB interface defined in “Example
Object Adapters” in Chapter 2 of the Common Object Request Broker: Architecture
and Specification.

create

A new top-level transaction is created and a Control object is returned. The Control
object can be used to manage or to control participation in the new transaction. An
implementation of the Transaction Service may restrict the ability for the Control
object to be transmitted to or used in other execution environments; at a minimum, it
can be used by the client thread.

interface TransactionFactory {
Control create(in unsigned long time_out);
Control recreate(in PropagationContext ctx);

};
Transaction Service: v1.1 Transaction Service Interfaces November 1997 10-21

10

ro,

tion

s to

If the parameter has a nonzero value n, then the new transaction will be subject to being
rolled back if it does not complete before n seconds have elapsed. If the parameter is ze
then no application specified time-out is established.

recreate

A new representation is created for an existing transaction defined by the
PropagationContext and a Control object is returned. The Control object can be used
to manage or to control participation in the transaction. An implementation of the
Transaction Service which supports interposition (see “ORB/TS Implementation
Considerations” on page 10-60) uses recreate to create a new representation of the
transaction being imported, subordinate to the representation in ctx . The recreate
operation can also be used to import a transaction which originated outside of the
Transaction Service.

10.3.3 Control Interface

The Control interface allows a program to explicitly manage or propagate a transac
context. An object supporting the Control interface is implicitly associated with one
specific transaction.

The Control interface defines two operations, get_terminator and
get_coordinator . The get_terminator operation returns a Terminator object,
which supports operations to end the transaction. The get_coordinator operation
returns a Coordinator object, which supports operations needed by resources to
participate in the transaction. The two objects support operations that are typically
performed by different parties. Providing two objects allows each set of operation
be made available only to the parties that require those operations.

A Control object for a transaction is obtained using the operations defined by the
TransactionFactory interface or the create_subtransaction operation defined by
the Coordinator interface. It is possible to obtain a Control object for the current
transaction (associated with a thread) using the get_control or suspend operations
defined by the Current interface (see “Current Interface” on page 10-18). (These two
operations return a null object reference if there is no current transaction.)

An implementation of the Transaction Service may restrict the ability for the Control
object to be transmitted to or used in other execution environments; at a minimum, it
can be used within a single thread.

interface Control {
Terminator get_terminator()

raises(Unavailable);
Coordinator get_coordinator()

raises(Unavailable);
};
10-22 CORBAservices November 1997

10

tes
get_terminator

An object is returned that supports the Terminator interface. The object can be used to
rollback or commit the transaction associated with the Control. The Unavailable
exception may be raised if the Control cannot provide the requested object. An
implementation of the Transaction Service may restrict the ability for the Terminator
object to be transmitted to or used in other execution environments; at a minimum, it
can be used within the client thread.

get_coordinator

An object is returned that supports the Coordinator interface. The object can be used
to register resources for the transaction associated with the Control. The Unavailable
exception may be raised if the Control cannot provide the requested object. An
implementation of the Transaction Service may restrict the ability for the Coordinator
object to be transmitted to or used in other execution environments; at a minimum, it
can be used within the client thread.

10.3.4 Terminator Interface

The Terminator interface supports operations to commit or rollback a transaction.
Typically, these operations are used by the transaction originator.

An implementation of the Transaction Service may restrict the scope in which a
Terminator can be used; at a minimum, it can be used within a single thread.

commit

If the transaction has not been marked rollback only, and all of the participants in the
transaction agree to commit, the transaction is committed and the operation termina
normally. Otherwise, the transaction is rolled back (as described below) and the
TRANSACTION_ROLLEDBACK standard exception is raised.

If the report_heuristics parameter is true, the Transaction Service will report
inconsistent or possibly inconsistent outcomes using the HeuristicMixed and
HeuristicHazard exceptions (defined in “Exceptions” on page 10-16). A
Transaction Service implementation may optionally use the Event Service to report
heuristic decisions.

interface Terminator {
void commit(in boolean report_heuristics)

raises(
HeuristicMixed,
HeuristicHazard

);
void rollback();

};
Transaction Service: v1.1 Transaction Service Interfaces November 1997 10-23

10

 the

n

urces.

cope

ns
The commit operation may rollback the transaction if there are subtransactions of
transaction that have not themselves been committed or rolled back or if there are
existing or potential activities associated with the transaction that have not completed.
The nature and extent of such error checking is implementation-dependent.

When a top-level transaction is committed, all changes to recoverable objects made i
the scope of this transaction are made permanent and visible to other transactions or
clients. When a subtransaction is committed, the changes are made visible to other
related transactions as appropriate to the degree of isolation enforced by the reso

rollback

The transaction is rolled back.

When a transaction is rolled back, all changes to recoverable objects made in the s
of this transaction (including changes made by descendant transactions) are rolled
back. All resources locked by the transaction are made available to other transactio
as appropriate to the degree of isolation enforced by the resources.

10.3.5 Coordinator Interface

The Coordinator interface provides operations that are used by participants in a
transaction. These participants are typically either recoverable objects or agents of
recoverable objects, such as subordinate coordinators. Each object supporting the
Coordinator interface is implicitly associated with a single transaction.

interface Coordinator {

Status get_status();
Status get_parent_status();
Status get_top_level_status();

boolean is_same_transaction(in Coordinator tc);
boolean is_related_transaction(in Coordinator tc);
boolean is_ancestor_transaction(in Coordinator tc);
boolean is_descendant_transaction(in Coordinator tc);
boolean is_top_level_transaction();

unsigned long hash_transaction();
unsigned long hash_top_level_tran();

RecoveryCoordinator register_resource(in Resource r)
raises(Inactive);

void register_synchronization (in Synchronization sync)
raises(Inactive, SynchronizationUnavailable);

};
10-24 CORBAservices November 1997

10

ect:

e

ed for

een

s

.

An implementation of the Transaction Service may restrict the scope in which a
Coordinator can be used; at a minimum, it can be used within a single thread.

get_status

This operation returns the status of the transaction associated with the target obj

• StatusActive - A transaction is associated with the target object and it is in th
active state. An implementation returns this status after a transaction has been
started and prior to a coordinator issuing any prepares unless it has been mark
rollback.

• StatusMarkedRollback - A transaction is associated with the target object and
has been marked for rollback, perhaps as the result of a rollback_only operation.

• StatusPrepared - A transaction is associated with the target object and has b
prepared (i.e., all subordinates have responded VoteCommit) . The target object
may be waiting for a superior’s instructions as to how to proceed.

• StatusCommitted - A transaction is associated with the target object and it ha
completed commitment. It is likely that heuristics exists; otherwise, the transaction
would have been destroyed and StatusNoTransaction returned.

• StatusRolledBack - A transaction is associated with the target object and the
outcome has been determined as rollback. It is likely that heuristics exists,
otherwise the transaction would have been destroyed and StatusNoTransaction
returned.

• StatusUnknown - A transaction is associated with the target object, but the
Transaction Service cannot determine its current status. This is a transient
condition, and a subsequent invocation will ultimately return a different status.

• StatusNoTransaction - No transaction is currently associated with the target
object. This will occur after a transaction has completed.

void register_subtran_aware(in SubtransactionAwareResource
r)

raises(Inactive, NotSubtransaction);

void rollback_only()
raises(Inactive);

string get_transaction_name();

Control create_subtransaction()
raises(SubtransactionsUnavailable, Inactive);

PropagationContext get_txcontext ()
raises(Unavailable);

};
Transaction Service: v1.1 Transaction Service Interfaces November 1997 10-25

10

he

d to

for

 in

g for

 this
s

ciated
n is

or of
• StatusPreparing - A transaction is associated with the target object and it is t
process of preparing. An implementation returns this status if it has started
preparing, but has not yet completed the process, probably because it is waiting for
responses to prepare from one or more resources.

• StatusCommitting - A transaction is associated with the target object and is in
the process of committing. An implementation returns this status if it has decide
commit, but has not yet completed the process, probably because it is waiting
responses from one or more resources.

• StatusRollingBack - A transaction is associated with the target object and it is
the process of rolling back. An implementation returns this status if it has decided
to rollback, but has not yet completed the process, probably because it is waitin
responses from one or more resources.

get_parent_status

If the transaction associated with the target object is a top-level transaction, then
operation is equivalent to the get_status operation. Otherwise, this operation return
the status of the parent of the transaction associated with the target object.

get_top_level_status

This operation returns the status of the top-level ancestor of the transaction asso
with the target object. If the transaction is a top-level transaction, then this operatio
equivalent to the get_status operation.

is_same_transaction

This operation returns true if, and only if, the target object and the parameter object
both refer to the same transaction.

is_ancestor_transaction

This operation returns true if, and only if, the transaction associated with the target
object is an ancestor of the transaction associated with the parameter object. A
transaction T1 is an ancestor of a transaction T2 if and only if T1 is the same as T2 or
T1 is an ancestor of the parent of T2.

is_descendant_transaction

This operation returns true if, and only if, the transaction associated with the target
object is a descendant of the transaction associated with the parameter object. A
transaction T1 is a descendant of a transaction T2 if, and only if, T2 is an ancest
T1 (see above).
10-26 CORBAservices November 1997

10

ction
 that

o

bject.

ect

ction.

et

’s

ll not

g
is_related_transaction

This operation returns true if, and only if, the transaction associated with the target
object is related to the transaction associated with the parameter object. A transa
T1 is related to a transaction T2 if, and only if, there exists a transaction T3 such
T3 is an ancestor of T1 and T3 is an ancestor of T2.

is_top_level_transaction

This operation returns true if, and only if, the transaction associated with the target
object is a top-level transaction. A transaction is a top-level transaction if it has n
parent.

hash_transaction

This operation returns a hash code for the transaction associated with the target o
Each transaction has a single hash code. Hash codes for transactions should be
uniformly distributed.

hash_top_level_tran

This operation returns the hash code for the top-level ancestor of the transaction
associated with the target object. This operation is equivalent to the
hash_transaction operation when the transaction associated with the target obj
is a top-level transaction.

register_resource

This operation registers the specified resource as a participant in the transaction
associated with the target object. When the transaction is terminated, the resource will
receive requests to commit or rollback the updates performed as part of the transa
These requests are described in the description of the Resource interface. The
Inactive exception is raised if the transaction has already been prepared. The
standard exception TRANSACTION_ROLLEDBACK may be raised if the transaction has
been marked rollback only.

If the resource is a subtransaction aware resource (it supports the
SubtransactionAwareResource interface) and the transaction associated with the targ
object is a subtransaction, then this operation registers the specified resource with the
subtransaction and indirectly with the top-level transaction when the subtransaction
ancestors have completed. Otherwise, the resource is registered as a participant in the
current transaction. If the current transaction is a subtransaction, the resource wi
receive prepare or commit requests until the top-level ancestor terminates.

This operation returns a RecoveryCoordinator that can be used by this resource durin
recovery.
Transaction Service: v1.1 Transaction Service Interfaces November 1997 10-27

10

es
the

ck

as

e

the
y
pport
register_synchronization

This operation registers the specified Synchronization object such that it will be
notified to perform necessary processing prior to prepare being driven to resourc
registered with this Coordinator. These requests are described in the description of
Synchronization interface. The Inactive exception is raised if the transaction has
already been prepared. The SynchronizationUnavailable exception is raised if the
Coordinator does not support synchronization. The standard exception
TRANSACTION_ROLLEDBACK may be raised if the transaction has been marked rollba
only.

register_subtran_aware

This operation registers the specified subtransaction aware resource such that it will be
notified when the subtransaction has committed or rolled back. These requests are
described in the description of the SubtransactionAwareResource interface.

Note that this operation registers the specified resource only with the subtransaction.
This operation cannot be used to register the resource as a participant in the
transaction.

The NotSubtransaction exception is raised if the current transaction is not a
subtransaction. The Inactive exception is raised if the subtransaction (or any
ancestor) has already been terminated. The standard exception
TRANSACTION_ROLLEDBACK may be raised if the subtransaction (or any ancestor) h
been marked rollback only.

rollback_only

The transaction associated with the target object is modified so that the only possible
outcome is to rollback the transaction. The Inactive exception is raised if the
transaction has already been prepared.

get_transaction_name

This operation returns a printable string describing the transaction associated with th
target object. The returned string is intended to support debugging.

create_subtransaction

A new subtransaction is created whose parent is the transaction associated with
target object. The Inactive exception is raised if the target transaction has alread
been prepared. An implementation of the Transaction Service is not required to su
nested transactions. If nested transactions are not supported, the exception
SubtransactionsUnavailable is raised.
10-28 CORBAservices November 1997

10

he

.

ction

n

s.

g

The create_subtransaction operation returns a Control object, which enables the
subtransaction to be terminated and allows recoverable objects to participate in t
subtransaction. An implementation of the Transaction Service may restrict the ability
for the Control object to be transmitted to or used in other execution environments

get_txcontext

The get_txcontext operation returns a PropagationContext object, which is used by
one Transaction Service domain to export the current transaction to a new Transa
Service domain. An implementation of the Transaction Service may also use the
PropagationContext to assist in the implementation of the is_same_transaction
operation when the input Coordinator has been generated by a different Transaction
Service implementation.

The Unavailable exception is raised if the Transaction Service implementation
chooses to restrict the availability of the PropagationContext.

10.3.6 Recovery Coordinator Interface

A recoverable object uses a RecoveryCoordinator to drive the recovery process in
certain situations. The object reference for an object supporting the
RecoveryCoordinator interface, as returned by the register_resource operation, is
implicitly associated with a single resource registration request and may only be used
by that resource.

replay_completion

This operation can be invoked at any time after the associated resource has been
prepared. The Resource must be passed as the parameter. Performing this operatio
provides a hint to the Coordinator that the commit or rollback operations have not
been performed on the resource. This hint may be required in certain failure case
This non-blocking operation returns the current status of the transaction. The
NotPrepared exception is raised if the resource has not been prepared.

10.3.7 Resource Interface

The Transaction Service uses a two-phase commitment protocol to complete a top-
level transaction with each registered resource. The Resource interface defines the
operations invoked by the transaction service on each resource. Each object supportin
the Resource interface is implicitly associated with a single top-level transaction. Note

interface RecoveryCoordinator {
Status replay_completion(in Resource r)

raises(NotPrepared);
};
Transaction Service: v1.1 Transaction Service Interfaces November 1997 10-29

10

 The

n

that in the case of failure, the completion sequence will continue after the failure is
repaired. A resource should be prepared to receive duplicate requests for the commit
or rollback operation and to respond consistently.

prepare

This operation is invoked to begin the two-phase commit protocol on the resource.
resource can respond in several ways, represented by the Vote result.

If no persistent data associated with the resource has been modified by the transaction,
the resource can return VoteReadOnly . After receiving this response, the Transactio
Service is not required to perform any additional operations on this resource.
Furthermore, the resource can forget all knowledge of the transaction.

If the resource is able to write (or has already written) all the data needed to commit
the transaction to stable storage, as well as an indication that it has prepared the
transaction, it can return VoteCommit . After receiving this response, the Transaction
Service is required to eventually perform either the commit or the rollback operation
on this object. To support recovery, the resource should store the RecoveryCoordinator
object reference in stable storage.

interface Resource {
Vote prepare()

raises(
HeuristicMixed,
HeuristicHazard

);
void rollback()

raises(
HeuristicCommit,
HeuristicMixed,
HeuristicHazard

);
void commit()

raises(
NotPrepared,
HeuristicRollback,
HeuristicMixed,
HeuristicHazard

);
void commit_one_phase()

raises(
HeuristicHazard

);
void forget();

};
10-30 CORBAservices November 1997

10

g

action

.

on is

ction.

tion. If

on is

If
The resource can return VoteRollback under any circumstances, including not havin
any knowledge about the transaction (which might happen after a crash). If this
response is returned, the transaction must be rolled back. Furthermore, the Trans
Service is not required to perform any additional operations on this resource. After
returning this response, the resource can forget all knowledge of the transaction.

The resource reports inconsistent outcomes using the HeuristicMixed and
HeuristicHazard exceptions (described in “Exceptions” on page 10-16). Heuristic
outcomes occur when a resource acts as a sub-coordinator and at least one of its
resources takes a heuristic decision after a VoteCommit return.

rollback

If necessary, the resource should rollback all changes made as part of the transaction
If the resource has forgotten the transaction, it should do nothing.

The heuristic outcome exceptions (described in “Exceptions” on page 10-16) are used
to report heuristic decisions related to the resource. If a heuristic outcome excepti
raised, the resource must remember this outcome until the forget operation is
performed so that it can return the same outcome in case rollback is performed
again. Otherwise, the resource can immediately forget all knowledge of the transa

commit

If necessary, the resource should commit all changes made as part of the transac
the resource has forgotten the transaction, it should do nothing.

The heuristic outcome exceptions (described in “Exceptions” on page 10-16) are used
to report heuristic decisions related to the resource. If a heuristic outcome excepti
raised, the resource must remember this outcome until the forget operation is
performed so that it can return the same outcome in case commit is performed again.
Otherwise, the resource can immediately forget all knowledge of the transaction.

The NotPrepared exception is raised if the commit operation is performed without
first performing the prepare operation.

commit_one_phase

If possible, the resource should commit all changes made as part of the transaction.
it cannot, it should raise the TRANSACTION_ROLLEDBACK standard exception.

If a failure occurs during commit_one_phase , it must be retried when the failure is
repaired. Since their can only be a single resource, the HeuristicHazard exception is
used to report heuristic decisions related to that resource. If a heuristic exception is
raised, the resource must remember this outcome until the forget operation is
performed so that it can return the same outcome in case commit_one_phase is
performed again. Otherwise, the resource can immediately forget all knowledge of the
transaction.
Transaction Service: v1.1 Transaction Service Interfaces November 1997 10-31

10

tion

bject

-

e

 the

 to

edure

y

forget

This operation is performed only if the resource raised a heuristic outcome excep
to rollback , commit , or commit_one_phase . Once the coordinator has determined
that the heuristic situation has been addressed, it should issue forget on the resource.
The resource can forget all knowledge of the transaction.

10.3.8 Synchronization Interface

The Transaction Service provides a synchronization protocol which enables an o
with transient state data that relies on an X/Open XA conformant Resource Manager
for ensuring that data is made persistent, to be notified before the start of the two
phase commitment protocol, and after its completion. An object with transient state
data that relies on a Resource object for ensuring that data is made persistent can also
make use of this protocol, provided that both objects are registered with the sam
Coordinator. Each object supporting the Synchronization interface is implicitly
associated with a single top-level transaction.

before_completion

This operation is invoked prior to the start of the two-phase commit protocol within
coordinator the Synchronization has registered with. This operation will therefore be
invoked prior to prepare being issued to Resource objects or X/Open Resource
Managers registered with that same coordinator. The Synchronization object must
ensure that any state data it has that needs to be made persistent is made available
the resource.

Only standard exceptions may be raised. Unless there is a defined recovery proc
for the exception raised, the transaction should be marked rollback only.

after_completion

This operation is invoked after all commit or rollback responses have been received b
this coordinator. The current status of the transaction (as determined by a get_status
on the Coordinator) is provided as input.

Only standard exceptions may be raised and they have no effect on the outcome of the
commitment process.

interface Synchronization : TransactionalObject {
void before_completion();
void after_completion(in Status status);

} ;
10-32 CORBAservices November 1997

10

vel

-

ble

ants

ction

dard

ction
10.3.9 Subtransaction Aware Resource Interface

Recoverable objects that implement nested transaction behavior may support a
specialization of the Resource interface called the SubtransactionAwareResource
interface. A recoverable object can be notified of the completion of a subtransaction by
registering a specialized resource object that offers the SubtransactionAwareResource
interface with the Transaction Service. This registration is done by using the
register_resource or the register_subtran_aware operation of the current
Coordinator object. A recoverable object generally uses the register_resource
operation to register a resource that will participate in the completion of the top-le
transaction and the register_subtran_aware operation to be notified of the
completion of a subtransaction.

Certain recoverable objects may want a finer control over the registration in the
completion of a subtransaction. These recoverable objects will use the
register_resource operation to ensure participation in the completion of the top
level transaction and they will use the register_subtran_aware operation to be
notified of the completion of a particular subtransaction. For example, a recovera
object can use the register_subtran_aware operation to establish a “committed
with respect to” relationship between transactions; that is, the recoverable object w
to be informed when a particular subtransaction is committed and then perform certain
operations on the transactions that depend on that transaction’s completion. This
technique could be used to implement lock inheritance, for example.

The Transaction Service uses the SubtransactionAwareResource interface on each
Resource object registered with a subtransaction. Each object supporting this interface
is implicitly associated with a single subtransaction.

commit_subtransaction

This operation is invoked only if the resource has been registered with a subtransa
and the subtransaction has been committed. The Resource object is provided with a
Coordinator that represents the parent transaction. This operation may raise a stan
exception such as TRANSACTION_ROLLEDBACK.

Note that the results of a committed subtransaction are relative to the completion of its
ancestor transactions, that is, these results can be undone if any ancestor transaction is
rolled back.

rollback_subtransaction

This operation is invoked only if the resource has been registered with a subtransa
and notifies the resource that the subtransaction has rolled back.

interface SubtransactionAwareResource : Resource {
void commit_subtransaction(in Coordinator parent);
void rollback_subtransaction();

};
Transaction Service: v1.1 Transaction Service Interfaces November 1997 10-33

10

t
 with

ion

ation

 on a
y

 the

y
10.3.10 TransactionalObject Interface

The TransactionalObject interface is used by an object to indicate that it is
transactional. By supporting the TransactionalObject interface, an object indicates tha
it wants the transaction context associated with the client thread to be associated
all operations on its interface.

The TransactionalObject interface defines no operations. It is simply a marker.

10.4 The User’s View

The audience for this section is object and client implementers; it describes applicat
use of the Transaction Service functions.

10.4.1 Application Programming Models

A client application program may use direct or indirect context management to manage
a transaction.

• With indirect context management, an application uses the Current object provided
by the Transaction Service, to associate the transaction context with the applic
thread of control.

• In direct context management, an application manipulates the Control object and
the other objects associated with the transaction.

Propagation is the act of associating a client’s transaction context with operations
target object. An object may require transactions to be either explicitly or implicitl
propagated on its operations.

Implicit propagation means that requests are implicitly associated with the client’s
transaction; they share the client’s transaction context. It is transmitted implicitly tothe
objects, without direct client intervention. Implicit propagation depends on indirect
context management, since it propagates the transaction context associated with
Current object. Explicit propagation means that an application propagates a
transaction context by passing objects defined by the Transaction Service as explicit
parameters.

An object that supports implicit propagation would not typically expect to receive an
Transaction Service object as an explicit parameter.

A client may use one or both forms of context management, and may communicate
with objects that use either method of transaction propagation.

This results in four ways in which client applications may communicate with
transactional objects. They are described below.

interface TransactionalObject {
};
10-34 CORBAservices November 1997

10

ter

.
Direct Context Management: Explicit Propagation

The client application directly accesses the Control object, and the other objects which
describe the state of the transaction. To propagate the transaction to an object, the
client must include the appropriate Transaction Service object as an explicit parame
of an operation.

Indirect Context Management: Implicit Propagation

The client application uses operations on the Current object to create and control its
transactions. When it issues requests on transactional objects, the transaction context
associated with the current thread is implicitly propagated to the object.

Indirect Context Management: Explicit Propagation

For an implicit model application to use explicit propagation, it can get access to the
Control using the get_control operation on Current. It can then use a Transaction
Service object as an explicit parameter to a transactional object. This is explicit
propagation.

Direct Context Management: Implicit Propagation

A client that accesses the Transaction Service objects directly can use the resume
operation on Current to set the implicit transaction context associated with its thread
This allows the client to invoke operations of an object that requires implicit
propagation of the transaction context.
Transaction Service: v1.1 The User’s View November 1997 10-35

10

ne

se it

ion
10.4.2 Interfaces

Note – For clarity, subtransaction operations are not shown.

10.4.3 Checked Transaction Behavior

Some Transaction Service implementations will enforce checked behavior for the
transactions they support, to provide an extra level of transaction integrity. The
purpose of the checks is to ensure that all transactional requests made by the
application have completed their processing before the transaction is committed. A
checked Transaction Service guarantees that commit will not succeed unless all
transactional objects involved in the transaction have completed the processing of their
transactional requests.

There are many possible implementations of checking in a Transaction Service. O
provides equivalent function to that provided by the request/response inter-process
communication models defined by X/Open.

The X/Open Transaction Service model of checking is particularly important becau
is widely implemented. It describes the transaction integrity guarantees provided by
many existing transaction systems. These transaction systems will provide the same
level of transaction integrity for object-based applications by providing a Transact
Service interface that implements the X/Open checks.

1. All Indirect context management operations are on the Current object interface

Table 10-1Use of Transaction Service Functionality

Context management

Function Used by Direct Indirect 1

Create a transaction Transaction
originator

TransactionFactory::create
Control::get_terminator
Control::get_coordinator

begin,set_timeout

Terminate a transaction Transaction originator—implicit
All— explicit

Terminator::commit
Terminator::rollback

commit
rollback

Rollback a transaction Server Terminator::rollback_only rollback_only

Control propagation
of transaction to a server

Server Declaration of method parameter TransactionalObject
interface

Control by client
of transaction
propagation
to a server

All Request parameters get_control
suspend
resume

Become a participant
in a transaction

Recoverable Server Coordinator::register_resource Not applicable

Miscellaneous All Coordinator::get_status
Coordinator::get_transaction_name
Coordinator::is_same_transaction
Coordinator::hash_transaction

get_status
get_transaction_name
Not applicable
Not applicable
10-36 CORBAservices November 1997

10

 the

tions

en

efore

 by a

nsure

ot be
10.4.4 X/Open Checked Transactions

In X/Open, completion of the processing of a request means that the object has
completed execution of its method and replied to the request.

The level of transaction integrity provided by a Transaction Service implementing
X/Open model of checking provides equivalent function to that provided by the
XATMI and TxRPC interfaces defined by X/Open for transactional applications.
X/Open DTP Transaction Managers are examples of transaction management func
that implement checked transaction behavior.

This implementation of checked behavior depends on implicit transaction propagation.
When implicit propagation is used, the objects involved in a transaction at any giv
time may be represented as a tree, the request tree for the transaction. The beginner of
the transaction is the root of the tree. Requests add nodes to the tree, replies remove
the replying node from the tree. Synchronous requests, or the checks described below
for deferred synchronous requests, ensure that the tree collapses to a single node b
commit is issued.

If a transaction uses explicit propagation, the Transaction Service cannot know which
objects are or will be involved in the transaction; that is, a request tree cannot be
constructed or assured. Therefore, the use of explicit propagation is not permitted
Transaction Service implementation that enforces X/Open-style checked behavior.

Applications that use synchronous requests implicitly exhibit checked behavior. For
applications that use deferred synchronous requests, in a transaction where all clients
and objects are in the domain of a checking Transaction Service, the Transaction
Service can enforce this property by applying a reply check and a commit check.

The Transaction Service must also apply a resume check to ensure that the transaction
is only resumed by application programs in the correct part of the request tree.

Reply Check

Before allowing an object to reply to a transactional request, a check is made to e
that the object has received replies to all its deferred synchronous requests that
propagated the transaction in the original request. If this condition is not met, an
exception is raised and the transaction is marked as rollback-only, that is, it cann
successfully committed.

A Transaction Service may check that a reply is issued within the context of the
transaction associated with the request.

Commit Check

Before allowing commit to proceed, a check is made to ensure that:

1. The commit request for the transaction is being issued from the same execution
environment that created the transaction.
Transaction Service: v1.1 The User’s View November 1997 10-37

10

 of

t

col

of

ted.

lar
at
 a
2. The client issuing commit has received replies to all the deferred synchronous
requests it made that caused the propagation of the transaction.

Resume Check

Before allowing a client or object to associate a transaction context with its thread
control, a check is made to ensure that this transaction context was previously
associated with the execution environment of the thread. This would be true if the
thread either created the transaction or received it in a transactional operation.

10.4.5 Implementing a Transactional Client: Heuristic Completions

The commit operation takes the boolean report_heuristics as input. If the
report_heuristics argument is false , commit can complete as soon as the roo
coordinator has made its decision to commit or rollback the transaction. The
application is not required to wait for the coordinator to complete the commit proto
by informing all the participants of the outcome of the transaction. This can
significantly reduce the elapsed time for the commit operation, especially where
participant Resource objects are located on remote network nodes. However, no
heuristic conditions can be reported to the application in this case.

Using the report_heuristics option guarantees that the commit operation will not
complete until the coordinator has completed the commit protocol with all resources
involved in the transaction. This guarantees that the application will be informed
any non-atomic outcomes of the transaction via the HeuristicMixed or
HeuristicHazard exceptions, but increases the application-perceived elapsed time
for the commit operation.

10.4.6 Implementing a Recoverable Server

A Recoverable Server includes at least one recoverable object and one Resource
object. The responsibilities of each of these objects are explained in the following
sections.

Recoverable Object

The responsibilities of the recoverable object are to implement the object’s operations,
and to register a Resource object with the Coordinator so commitment of the
recoverable object’s resources, including any necessary recovery, can be comple

The Resource object identifies the involvement of the recoverable object in a particu
transaction. This means a Resource object may only be registered in one transaction
a time. A different Resource object must be registered for each transaction in which
recoverable object is concurrently involved.
10-38 CORBAservices November 1997

10

y

ber

t

n use
ts

ply
dual

ction

A recoverable object may receive multiple requests within the scope of a single
transaction. It only needs to register its involvement in the transaction once. The
is_same_transaction operation allows the recoverable object to determine if the
transaction associated with the request is one in which the recoverable object is alread
registered.

The hash_transaction operations allow the recoverable object to reduce the num
of transaction comparisons it has to make. All coordinators for the same transaction
return the same hash code. The is_same_transaction operation need only be done
on coordinators which have the same hash code as the coordinator of the curren
request.

Resource Object

The responsibilities of a Resource object are to participate in the completion of the
transaction, to update the Recoverable Server’s resources in accordance with the
transaction outcome, and ensure termination of the transaction, including across
failures. The protocols that the Resource object must follow are described in
“Transaction Service Protocols” on page 10-49.

Reliable Servers

A Reliable Server is a special case of a Recoverable Server. A Reliable Server ca
the same interface as a Recoverable Server to ensure application integrity for objec
that do not have recoverable state. In the case of a Reliable Server, the recoverable
object can register a Resource object that replies VoteReadOnly to prepare if its
integrity constraints are satisfied (e.g., all debits have a corresponding credit), or
replies VoteRollback if there is a problem. This approach allows the server to ap
integrity constraints which apply to the transaction as a whole, rather than to indivi
requests to the server.

10.4.7 Application Portability

This section considers application portability across the broadest range of Transa
Service implementations.

Flat Transactions

There is one optional function of the Transaction Service, support for nested
transactions. For an application to be portable across all implementations of the
Transaction Service, it should be designed to use the flat transaction model. The
Transaction Service specification treats flat transactions as top-level nested
transactions.
Transaction Service: v1.1 The User’s View November 1997 10-39

10

ill
s

s

ed
d

ts of

cked

n

th
X/Open Checked Transactions

Transaction Service implementations may implement checked or unchecked behavior.
The transaction integrity checks implemented by a Transaction Service need not be the
same as those defined by X/Open. However, many existing transaction management
systems have implemented the X/Open model of interprocess communication, and will
implement a checked Transaction Service that provides the same guarantee of
transaction integrity.

Applications written to conform to the transaction integrity constraints of X/Open w
be portable across all implementations of an X/Open checked Transaction Service, a
well as all Transaction Service implementations which support unchecked behavior.

10.4.8 Distributed Transactions

The Transaction Service can be implemented by multiple components located across a
network. The different components can be based on the same or on different
implementations of the Transaction Service.

A single transaction can involve clients and objects supported by more than one
instance of the Transaction Service. The number of Transaction Service instance
involved in the transaction is not visible to the application implementer. There is no
change in the function provided.

10.4.9 Applications Using Both Checked and Unchecked Services

A single transaction can include objects supported by both checked and uncheck
Transaction Service implementations. Checked transaction behavior cannot be applie
to the transaction as a whole.

It is possible to provide useful, limited forms of checked behavior for those subse
the transaction’s resources in the domain of a checked Transaction Service.

• First, a transactional or recoverable object, whose resources are managed by a
checked Transaction Service, may be accessed by unchecked clients. The che
Transaction Service can ensure, by registering itself in the transaction, that the
transaction will not commit before all the integrity constraints associated with the
request have been satisfied.

• Second, an application whose resources are managed by a checked Transactio
Service may act as a client of unchecked objects, and preserve its checked
semantics.

10.4.10 Examples

Note – All the examples are written in pseudo code based on C++. In particular they do
not include implicit parameters such as the ORB::Environment , which should appear
in all requests. Also, they do not handle the exceptions that might be returned wi
each request.
10-40 CORBAservices November 1997

10

ment

t and

d

se

A Transaction Originator: Indirect and Implicit

In the code fragments below, a transaction originator uses indirect context manage
and implicit transaction propagation; txn_crt is an example of an object supporting
the Current interface; the client uses the begin operation to start the transaction which
becomes implicitly associated with the originator's thread of control:

The program commit s the transaction associated with the client thread. The
report_heuristics argument is set to false so no report will be made by the
Transaction Service about possible heuristic decisions.

Transaction Originator: Direct and Explicit

In the following example, a transaction originator uses direct context managemen
explicit transaction propagation. The client uses a factory object supporting the
CosTransactions::TransactionFactory interface to create a new transaction an
uses the returned Control object to retrieve the Terminator and Coordinator objects.

The client issues requests, some of which involve transactional objects, in this ca
explicit propagation of the context is used. The Control object reference is passed as
an explicit parameter of the request; it is declared in the OMG IDL of the interface.

...
txn_crt.begin();
// should test the exceptions that might be raised
...
// the client issues requests, some of which involve
// transactional objects;
BankAccount1->makeDeposit(deposit);
...

....
txn_crt.commit(false);
...

...
CosTransactions::Control c;
CosTransactions::Terminator t;
CosTransactions::Coordinator co;

c = TFactory->create(0);
t = c->get_terminator();
...

...
transactional_object->do_operation(arg, c);
Transaction Service: v1.1 The User’s View November 1997 10-41

10

ct's
The transaction originator uses the Terminator object to commit the transaction; the
report_heuristics argument is set to false : so no report will be made by the
Transaction Service about possible heuristic decisions.

Example of a Recoverable Server

BankAccount1 is an object with internal resources. It inherits from both the
TransactionalObject and the Resource interfaces:

Upon entering, the context of the transaction is implicitly associated with the obje
thread. The pseudo object supporting the Current interface is used to retrieve the
Coordinator object associated with the transaction.

Before registering the Resource, the object must check whether it has already been
registered for the same transaction. This is done using the hash_transaction and
is_same_transaction operations on the current Coordinator to compare a list of
saved coordinators representing currently active transactions. In this example, the
object registers itself as a Resource. This requires the object to durably record its

...
t->commit(false);

interface BankAccount1:

CosTransactions::TransactionalObject,CosTransactions::Resource
{
...
 void makeDeposit (in float amt);
...
};

class BankAccount1
{
public:
...
void makeDeposit(float amt);
...
}

void makeDeposit (float amt)
{
CosTransactions::Control c;
CosTransactions::Coordinator co;

c = txn_crt.get_control();
co = c->get_coordinator();
...
10-42 CORBAservices November 1997

10
registration before issuing register_resource to handle potential failures and
imposes the restriction that the object may only be involved in one transaction at a
time.

If more parallelism is required, separate Resource objects can be registered for each
transaction the object is involved in.

Example of a Transactional Object

BankAccount2 is an object with external resources that inherits from the
TransactionalObject interface:

RecoveryCoordinator r;
r = co->register_resource (this);

// performs some transactional activity locally
balance = balance + f;
num_transactions++;
...
// end of transactional operation
};

interface BankAccount2: CosTransactions::TransactionalObject
{
...
 void makeDeposit(in float amt);
...
};

class BankAccount2
{
public:
...
void makeDeposit(float amt);
...
}

Transaction Service: v1.1 The User’s View November 1997 10-43

10

ct's
nal,

e
h the

g

 the
Upon entering, the context of the transaction is implicitly associated with the obje
thread. The makeDeposit operation performs some transactional requests on exter
recoverable servers. The objects res1 and res2 are recoverable objects. The current
transaction context is implicitly propagated to these objects.

10.4.11 Model Interoperability

The Transaction Service supports interoperability between Transaction Service
applications using implicit context propagation and procedural applications using th
X/Open DTP model. A single transaction management component may act as bot
Transaction Service and an X/Open Transaction Manager.

Interoperability is provided in two ways:

• Importing transactions from the X/Open domain to the Transaction Service
domain.

• Exporting transactions from the Transaction Service domain to the X/Open
domain.

Importing Transactions

X/Open applications can access transactional objects. This means that an existin
application, written to use X/Open interfaces, can be extended to invoke transactional
operations. This causes the X/Open transaction to be imported into the domain of
Transaction Service.

void makeDeposit(float amt)
{

balance = res1->get_balance(amt);
balance = balance + amt;
res1->set_balance(balance);

res2->increment_num_transactions();
} // end of transactional operation
10-44 CORBAservices November 1997

10
The X/Open application may be a client or a server.

Figure 10-3 X/Open Client

Figure 10-4 X/Open Server

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AA
AA

AA
AA
AA
AA

AAAAAAAAAAAAAAAAAAAAAAA
A
A
A

Transaction

Service

Object

transactional operation

Transactional

ORB

Transaction

Manager

New Application (Objects) Existing Application

Transactional
Originator

TX

X/Open

Client

AAAAAAAAAAAAAAAAAAAAA

A
A
A
A

AAAAAAAAAAAAAAAAAAAAAA
A
A
A

Transaction

Service

Object

transactional operation

Transactional

ORB

Transaction

Manager

New Application (Objects) Existing Application

Transactional
Originator

X/Open

Server
X/Open
client
Transaction Service: v1.1 The User’s View November 1997 10-45

10

tion
on

y
Exporting Transactions

Transactional objects can use X/Open communications and resource manager
interfaces, and include the resources managed by these components in a transac
managed by the Transaction Service. This causes the Transaction Service transacti
to be exported into the domain of the X/Open transaction manager.

Figure 10-5 Sample Transaction Managed by the Transaction Service

Programming Rules

Model interoperability results in application programs that use both X/Open and
Transaction Service interfaces.

A transaction originator may use the X/Open TX interface or the Transaction Service
interfaces to create and terminate a transaction. Only one style may be used in one
originator.

A single application may inherit a transaction with an application request either b
using the X/Open server interfaces, or by being a transactional object.

Within a single transaction, an application program can be a client of both X/Open
resource manager interfaces and transactional object interfaces.

An X/Open client or server may invoke operations of transactional objects. The
X/Open transaction is imported into the Transaction Service domain using the
recreate operation on TransactionFactory.

AAAAAAAAAAAAAAAAAAAAA

A
A
A
A

AAAAAAAAAAAAAAAAAAAAAA
A
A
A

Transactional

Client

Transaction

Service

propagation

Object

transactional operation

Transactional

ORB

RM API

Transaction

Manager

New Application (Objects)

X/Open
Resource
Manager

CM API

X/Open
server
10-46 CORBAservices November 1997

10

th
en

ce of

t

lace

e
f the
A transactional object with a Current object that associates a transaction context wi
a thread of control, can call X/Open Resource Managers. How requests to the X/Op
Resource managers become associated with the transaction context of the Current
object is implementation-dependent.

10.4.12 Failure Models

The Transaction Service provides atomic outcomes for transactions in the presen
application, system or communication failures. This section describes the behavior of
application entities when failures occur. The protocols used to achieve this behavior
are described in “Transaction Service Protocols” on page 10-49.

From the viewpoint of each user object role, two types of failure are relevant: a failure
affecting the object itself (local failure) and a failure external to the object (external
failure), such as failure of another object or failure in the communication with tha
object.

Transaction Originator

Local Failure

A failure of a transaction originator prior to the originator issuing commit will cause
the transaction to be rolled back. A failure of the originator after issuing commit and
before the outcome is reported may result in either commitment or rollback of the
transaction depending on timing; in this case completion of the transaction takes p
without regard to the failure of the originator.

External Failure

Any external failure affecting the transaction prior to the originator issuing commit
will cause the transaction to be rolled back; the standard exception
TRANSACTION_ROLLEDBACK will be raised in the originator when it issues commit .

A failure after commit and before the outcome has been reported will mean that th
client may not be informed of the transaction outcome, depending on the nature o
failure, and the use of the report_heuristics option of commit . For example, the
transaction outcome will not be reported to the client if communication between the
client and the coordinator fails.

A client may use get_status on the Coordinator to determine the transaction
outcome. However, this is not reliable because the status NoTransaction is
ambiguous: it could mean that the transaction committed and has been forgotten, or
that the transaction rolled back and has been forgotten.

If an originator needs to know the transaction outcome, including in the case of
external failures, then either the originator’s implementation must include a Resource
object so that it will participate in the two-phase commit procedure (and any recovery),
or the originator and coordinator must be located in the same failure domain (for
example, the same execution environment).
Transaction Service: v1.1 The User’s View November 1997 10-47

10

l

on of

cols

:

Transactional Server

Local Failure

If the Transactional Server fails then optional checks by a Transaction Service
implementation may cause the transaction to be rolled back; without such checks,
whether the transaction is rolled back depends on whether the commit decision has
already been made (this would be the case where an unchecked client invokes commit
before receiving all replies from servers).

External Failure

Any external failure affecting the transaction during the execution of a Transactiona
Server will cause the transaction to be rolled back. If this occurs while the
transactional object’s method is executing, the failure has no effect on the executi
this method. The method may terminate normally, returning the reply to its client.
Eventually the TRANSACTION_ROLLEDBACK exception will be returned to a client
issuing commit .

Recoverable Server

Behavior of a recoverable server when failures occur is determined by the two phase
commit protocol between the coordinator and the recoverable server’s Resource
object(s). This protocol, including the local and external failure models and the
required behavior of the Resource, is described in “Transaction Service Protocols” on
page 10-49.

10.5 The Implementers’ View

This section contains three major categories of information.

1. “Transaction Service Protocols” on page 10-49 defines in more detail the proto
of the Transaction Service for ensuring atomicity of transactions, even in the
presence of failure.

This section is not a formal part of the specification but is provided to assist in
building valid implementations of the specification. These protocols affect
implementations of Recoverable Servers and the Transaction Service.

2. “ORB/TS Implementation Considerations” on page 10-60 provides additional
information for implementers of ORBs and Transaction Services in those areas
where cooperation between the two is necessary to realize the Transaction Service
function.

The following aspects of ORB and Transaction Service implementation are covered

• transaction propagation.

• interoperation between different transaction service implementations.

• ORB changes necessary to support portability of transaction service
implementations.
10-48 CORBAservices November 1997

10

ilures.

e

action
ts

oes

 by

so

mits
otten

e,
3. “Model Interoperability” on page 10-67 describes how an implementation achieves
interoperation between the Transaction Service and procedural transaction
managers.

10.5.1 Transaction Service Protocols

The Transaction Service requires that certain protocols be followed to implement the
atomicity property. These protocols affect the implementation of recoverable servers,
(recoverable objects that register for participation in the two-phase commit process)
and the coordinators that are created by a transaction factory. These responsibilities
ensure the execution of the two-phase commit protocol and include maintaining state
information in stable storage, so that transactions can be completed in case of fa

General Principles

The first coordinator created for a specific transaction is responsible for driving th
two-phase commit protocol. In the literature, this is referred to as the root Transaction
Coordinator or simply root coordinator. Any coordinator that is subsequently created
for an existing transaction (for example, as the result of interposition) becomes a
subordinate in the process. Such a coordinator is referred to as a subordinate
Transaction Coordinator or simply subordinate coordinator and by registering a
resource becomes a transaction participant. Recoverable servers are always trans
participants. The root coordinator initiates the two-phase commit protocol; participan
respond to the operations that implement the protocol. The specification is based on
the following rules for commitment and recovery:

1. The protocol defined by this specification is a two-phase commit with presumed
rollback.

This permits efficient implementations to be realized since the root coordinator d
not need to log anything before the commit decision and the participants (i.e.,
Resource objects) do not need to log anything before they prepare.

2. Resource objects—including subordinate coordinators—do not start commitment
themselves, but wait for prepare to be invoked.

3. The prepare operation is issued at most once to each resource.

4. Participants must remember heuristic decisions until the coordinator or some
management application instructs them to forget that decision.

5. A coordinator knows which Resource objects are registered in a transaction and
is aware of resources that have completed commitment.

In general, the coordinator must remember this information if a transaction com
in order to ensure proper completion of the transaction. Resources can be forg
early if they do not vote to commit the transaction.

6. A participant should be able to request the outcome of a transaction at any tim
including after failures occurring subsequent to its Resource object being prepared.
Transaction Service: v1.1 The Implementers’ View November 1997 10-49

10

g

ery
y

 the

here

t

t

t of
.

t
7. Participants should be able to report the completion of the transaction (includin
any heuristic condition).

The recording of information relating to the transaction which is required for recov
is described as if it were a log file for clarity of description; an implementation ma
use any suitable persistent storage mechanism.

Normal Transaction Completion

Transaction completion can occur in two ways; as part of the normal execution of the
Current::commit or Terminator::commit operations or independent of these
operations if a failure should occur before normal execution can complete. This section
describes the normal (no failure) case. “Failures and Recovery” on page 10-57
describes the failure cases.

Coordinator Role

The root coordinator implements the following protocol:

• When the client asks to commit the transaction, and no prior attempt to rollback
the transaction has been made, the coordinator issues the before_completion
request to all registered synchronizations.

• When all registered synchronizations have responded, the coordinator issues
prepare request to all registered resources.

• If all registered resources reply VoteReadOnly , then the root coordinator replies
to the client that the transaction committed (assuming that the client can still be
reached).

Before doing so, however, it first issues after_completion to any registered
synchronizations and, after all responses are received, replies to the client. T
is no requirement for the coordinator to log in this case.

• If any registered resource replies VoteRollback or cannot be reached then the
coordinator will decide to rollback and will so inform those registered resources
which already replied VoteCommit.

• Once a VoteRollback reply is received, a coordinator need not send prepare

to the remaining resources. Rollback will be subsequently sent to resources tha
replied VoteCommit .

If the report_heuristics parameter was specified on commit , the client will
be informed of the rollback outcome when any heuristic reports have been
collected (and logged if required).

• Once at least one registered resource has replied VoteCommit and all others have
replied VoteCommit or VoteReadOnly , a root coordinator may decide to commi
the transaction.

• Before issuing commit operations on those registered resources which replied
VoteCommit , the coordinator must ensure that the commit decision and the lis
registered resources—those that replied VoteCommit —is stored in stable storage

• If the coordinator receives VoteCommit or VoteReadOnly responses from each
registered resource, it issues the commit request to each registered resource tha
responded VoteCommit .
10-50 CORBAservices November 1997

10

tatus

 a

s

rs any
• After having received all commit or rollback responses, if synchronizations
exist, the root coordinator issues after_completion to each of them passing the
transaction outcome as status before responding to the client.

• The root coordinator issues forget to a resource after it receives a heuristic
exception.

• This responsibility is not affected by failure of the coordinator. When receiving
commit replies containing heuristic information, a coordinator constructs a
composite for the transaction.

• The root coordinator forgets the transaction after having logged its heuristic s
if heuristics reporting was requested by the originator.

• The root coordinator can now trigger the sending of the reply to the commit
operation if heuristic reporting is required. If no heuristic outcomes were
recorded, the coordinator can be destroyed.

One Phase Commit

If a coordinator has only a single registered resource, it can perform the
commit_one_phase operation on the resource instead of performing prepare and
then commit or rollback . If a synchronization exists, before_completion is issued
prior to commit_one_phase and after_completion is issued when the response to
commit_one_phase has been received. If a failure occurs, the coordinator will not be
informed of the transaction outcome.

Subtransactions

When completing a subtransaction, the subtransaction coordinator must notify any
registered subtransaction aware resources of the subtransaction’s commit or rollback
status using the commit_subtransaction or rollback_subtransaction
operations of the SubtransactionAwareResource interface.

A transaction service implementation determines how it chooses to respond when
resource responds to commit_subtransaction with a system exception. The service
may choose to rollback the subtransaction or it may ignore the exceptional condition.
The SubtransactionAwareResource operations are used to notify the resources of a
subtransaction when the subtransaction commits in the case where the resource need
to keep track of the commit status of its ancestors. They are not used to direct the
resources to commit or rollback any state. The operations of the Resource interface are
used to commit or rollback subtransaction resources registered using the
register_resource operation of the Coordinator interface.

When the subtransaction is committed and after all of the registered subtransaction
aware resources have been notified of the commitment, the subtransaction registe
resources registered using register_resource with its parent Coordinator or it may
register a subordinate coordinator to relay any future requests to the resources.

From the application programmer point of view, the same rules that apply to the
completion of top-level transactions also apply to subtransactions. The
report_heuristics parameter on commit is ignored since heuristics are not
produced when subtransactions are committed.
Transaction Service: v1.1 The Implementers’ View November 1997 10-51

10

f

n

ake

rable
they
Recoverable Server Role

A recoverable server includes at least one recoverable object and one Resource object.
The recoverable object has state that demonstrates at least the atomicity property. The
Resource object implements the two-phase commit protocol as a participant on behal
of the recoverable object. The responsibilities of each of these objects is described
below.

Synchronization Registration

A recoverable server may need to register a Synchronization object to ensure that
object state data which is persistently managed by a resource is returned to the
resource prior to starting the commitment protocol.

Top-Level Registration

A recoverable object registers a Resource object with the Coordinator so commitment
of the transaction including any necessary recovery can be completed.

A recoverable object uses the is_same_transaction operation to determine whether
it is already registered in this transaction. It can also use hash_transaction to
reduce the number of comparisons. This relies on the definition of the
hash_transaction operation to return the same value for all coordinators in the
same transaction even if they are generated by multiple Transaction Service
implementations.

Once registered, a recoverable server assumes the responsibilities of a transactio
participant.

Subtransaction Registration

A Recoverable Server registers for subtransaction completion only if it needs to t
specific actions at the time a subtransaction commits. An example would be to change
ownership of locks acquired by this subtransaction to its parent.

A recoverable object uses the is_same_transaction operation to determine whether
it is already registered in this subtransaction. It can also use hash_transaction to
reduce the number of comparisons.

Top Level Synchronization

Synchronization objects ensure that persistent state data is returned to the recove
object managed by a resource or to the underlying database manager. To do so
implement a protocol which moves the data prior to the prepare phase and does
necessary processing after the outcome is complete.
10-52 CORBAservices November 1997

10

f

efined

may
me
Top-Level Completion

Resource objects implement a recoverable object’s involvement in transaction
completion. To do so, they must follow the two-phase commit protocol initiated by
their coordinator and maintain certain elements of their state in stable storage. The
responsibilities of a Resource object with regard to a particular transaction depend on
how it will vote:

1. Returning VoteCommit to prepare

Before a Resource object replies VoteCommit to a prepare operation, it must
implement the following:

• make persistent the recoverable state of its recoverable object.

The method by which this is accomplished is implementation dependent. If a
recoverable object has only transient state, it need not be made persistent.

• ensure that its object reference is recorded in stable storage to allow it to
participate in recovery in the event of failure.

How object references are made persistent and then regenerated after a failure is
outside the scope of this specification. The Persistent Object Service or some
other mechanism may be used. How persistent Resource objects get restarted
after a failure is also outside the scope of this specification.

• record the RecoveryCoordinator object reference so that it can initiate recovery o
the transaction later if necessary.

• the Resource then waits for the coordinator to invoke commit or rollback .

• A Resource with a heuristic outcome must not discard that information until it
receives a forget from its coordinator or some administrative component.

2. Returning VoteRollback to prepare

A Resource which replies VoteRollback has no requirement to log. Once having
replied, the Resource can return recoverable resources to their prior state and forget
the transaction.

3. Returning VoteReadOnly to prepare

A Resource which replies VoteReadOnly has no requirement to log. Once having
replied, the Resource can release its resources and forget the transaction.

Subtransaction Completion

The role of the subtransaction aware resource at subtransaction completion are d
by the subtransaction aware resource itself. The coordinator only requires that it
respond to commit_subtransaction or rollback_subtransaction .

All resources need to be notified when a transaction commits or is rolled back. But
some resources need to know when subtransactions commit so that they can update
local data structures and track the completion status of ancestors. The resource
have rules that are specific to ancestry and must perform some work as all or so
ancestors complete. The nested semantics and effort required by the Resource object
are defined by the object and not the Transaction Service.
Transaction Service: v1.1 The Implementers’ View November 1997 10-53

10

ly the

tion

tors

s or

n

e

erver.
Once the resource has been told to prepare, the resource's obligations are exact
same as a top-level resource.

For example, in the Concurrency Control Service, a resource in a nested transac
might want to know when the subtransaction commits because another subtransaction
may be waiting for a lock held by that subtransaction. Once that subtransaction
commits, others may be granted the lock. There is no requirement to make lock
ownership persistent until a prepare message is received.

For the Persistent Object Service, it is important to keep separate update information
associated with a subtransaction. When that subtransaction commits, the Persistent
Object Service may need to reorganize its information (such as undo information) in
case the parent subtransaction chooses to rollback. Again, the Persistent Object Service
resource need not make updates permanent until a prepare message is received. At
that point, it has the same responsibilities as a top-level resource.

Subordinate Coordinator Role

An implementation of the Transaction Service may interpose subordinate coordina
to optimize the commit tree for completing the transaction. Such coordinators behave
as transaction participants to their superiors and as coordinators to their resource
inferior coordinators.

Synchronization

A subordinate coordinator may register a Synchronization object with its superior
coordinator if it needs to perform processing before its prepare phase begins.

Registration

A subordinate coordinator registers a Resource with its superior coordinator. Once
registered, a subordinate coordinator assumes the responsibilities of a transactio
participant and implements the behavior of a recoverable server.

Subtransaction Registration

If any of the resources registered with the subordinate coordinator support the
SubtransactionAwareResource interface, the subordinate coordinator must register a
subtransaction aware resource with its parent coordinator. If any of the resources
registered with the subordinate using the register_resource operation, the
subordinate must register a Resource with its superior. If both types of resources wer
registered with the subordinate, the subordinate only needs to register a subtransaction
aware resource with its superior.

Top-level Completion

A subordinate coordinator implements the completion behavior of a recoverable s

Subtransaction Completion

A subordinate coordinator implements the subtransaction completion behavior of a
recoverable server.
10-54 CORBAservices November 1997

10

ribed

r

ase;

nd

eport

ome
Subordinate Coordinator

A subordinate coordinator does not make the commit decision but simply relays the
decision of its superior (which may also be a subordinate coordinator) to resources
registered with it. A subordinate coordinator acts as a recoverable server as desc
previously, in terms of saving its state in stable storage. A subordinate coordinator (o
indeed any resource) may log the commit decision once it is known (as an
optimization) but this is not essential.

• A subordinate coordinator issues the before_completion operation to any
synchronizations when it receives prepare from its superior.

• When all responses to before_completion have been received, a subordinate
coordinator issues the prepare operation to its registered resources.

• If all registered resources reply VoteReadOnly , then the subordinate coordinator
will decide to reply VoteReadOnly .

Before doing so, however, it first issues after_completion to any registered
synchronizations and, after all responses are received, replies VoteReadOnly to its
superior. There is no requirement for the subordinate coordinator to log in this c
the subordinate coordinator takes no further part in the transaction and can be
destroyed.

• If any registered resource replies VoteRollback or cannot be reached then the
subordinate coordinator will decide to rollback and will so inform those registered
resources which already replied VoteCommit.

Once a VoteRollback reply is received, the subordinate coordinator need not se
prepare to the remaining resources. The subordinate coordinator issues
after_completion to any synchronizations and, after all responses have been
received, replies VoteRollback to its superior.

• Once at least one registered resource has replied VoteCommit and all others have
replied VoteCommit or VoteReadOnly , a subordinate coordinator may decide to
reply VoteCommit.

The subordinate coordinator must record the prepared state, the reference of its
superior RecoveryCoordinator and its list of resources that responded VoteCommit
in stable storage before responding to prepare .

• A subordinate coordinator issues the commit operation to its registered resources
which replied VoteCommit when it receives a commit request from its superior.

• If any resource reports a heuristic outcome, the subordinate coordinator must r
a heuristic outcome to its superior.

Before doing so, however, it first issues after_completion to any registered
synchronizations and, after all responses are received, reports the heuristic outcome
to its superior. The specific outcome reported depends on the other heuristic
outcomes received. The subordinate coordinator must record the heuristic outc
in stable storage.

• After having received all commit replies, a subordinate coordinator logs its
heuristic status (if any).
Transaction Service: v1.1 The Implementers’ View November 1997 10-55

10

 its

uing

te
• The subordinate coordinator then replies to the commit from its superior
coordinator.

Before doing so, it issues after_completion to any registered synchronizations
and, after all responses have been received, it then replies to its superior. If no
heuristic report was sent the Coordinator is destroyed.

• A subordinate coordinator performs the rollback operation on its registered
resources when it receives a rollback request from its superior.

If any resource reports a heuristic outcome, the subordinate coordinator records the
appropriate heuristic outcome in stable storage and will report this outcome to
superior. Before doing so, however, it issues after_completion to any registered
synchronizations and, after receiving all the responses, reports the heuristic
outcome to its superior.

• The subordinate coordinator then replies to the rollback from its superior
coordinator.

Before doing so, it issues after_completion to any registered synchronizations
and, after all responses have been received, it then replies to its superior. If no
heuristic report was sent the Coordinator is destroyed.

• If a subordinate coordinator receives a commit_one_phase request, and it has a
single registered resource, it can simply perform the commit_one_phase request
on its resource. Before doing so, if a synchronization exists, it issues
before_completion to the synchronization, then, after receiving the
commit_one_phase response, issues after_completion to the synchronization.

If it has multiple registered resources, it behaves like a superior coordinator, iss
before_completion to any synchronizations and, after receiving the responses,
issuing prepare to each resource to determine the outcome, then issuing commit
or rollback requests, followed by after_completion requests if
synchronizations exist.

• A subordinate coordinator performs the forget operation on those registered
resources that reported a heuristic outcome when it receives a forget request from
its superior.

Subtransactions

A subordinate coordinator for a subtransaction relays commit_subtransaction and
rollback_subtransaction requests to any subtransaction aware resources
registered with it. In addition, it performs the same roles as a top-level subordina
coordinator when the top-level transaction commits. It must relay prepare and
commit requests to each of the resources that registered with it using the
register_resource operation.
10-56 CORBAservices November 1997

10

n

cols

 must

 must

ion

e the
lity

rce
Failures and Recovery

The previous descriptions dealt with the protocols associated with the Transactio
Service when a transaction completes without failure. To ensure atomicity and
durability in the presence of failure, the transaction service defines additional proto
to ensure that transactions, once begun, always complete.

Failure Processing

The unit of failure is termed the failure domain. It may consist of the coordinator and
some local resources registered with it, or the coordinator and the resources may each
be in its own failure domain.

Local Failure

Any failure in the transaction during the execution of a coordinator prior to the commit
decision being made will cause the transaction to be rolled back.

A coordinator is restarted only if it has logged the commit decision.

• If the coordinator only contains heuristic information, nothing is done.

• If the transaction is marked rollback only, a coordinator can send rollback to
its resources and inferior coordinators.

• If the transaction outcome is commit, the coordinator sends commit to prepared
registered resources and the regular commitment procedure is started.

• If any registered resources exist but cannot be reached, then the coordinator
try again later.

If registered resources no longer exist, then this means that they completed
commitment before the coordinator failed and have no heuristic information.

• If a subordinate coordinator is prepared, then it must contact its superior
coordinator to determine the transaction outcome.

• If the superior coordinator exists but cannot be reached, then the subordinate
retry recovery later.

• If the superior coordinator no longer exists, then the outcome of the transact
can be presumed to be rollback.

The subordinate will inform its registered resources.

External Failure

Any failure in the transaction during the execution of a coordinator prior to the commit
decision being made will cause the transaction to be rolled back.

Transaction Completion after Failure

In general, the approach is to continue the completion protocols at the point wher
failure occurred. That means that the coordinator will usually have the responsibi
for sending the commit decision to its registered resources. Certain failure conditions
will require that the resource initiate the recovery procedure—recall that the resou
might also be a subordinate coordinator. These are described in more detail below.
Transaction Service: v1.1 The Implementers’ View November 1997 10-57

10

e a
me

ly
,

t

d, as

as

s

aged
Resources

A resource represents some collection of recoverable data associated with a
transaction. It supports the Resource interface described in “Resource Interface” on
page 10-29. When recovering from failure after its changes have been prepared, a
resource uses the replay_completion operation on the RecoveryCoordinator to
determine the outcome of the transaction and continue completion.

Heuristic Reporting

If the coordinator does not complete the two-phase commit in a timely manner, a
subordinate (i.e., a resource or a subordinate coordinator) in the transaction may elect
to commit or rollback the resources registered with it in a prepared transaction (tak
heuristic decision). When the coordinator eventually sends the outcome, the outco
may differ from that heuristic decision. The result is referred to as HeuristicMixed

or HeuristicHazard. The result is reported by the root coordinator to the client on
when the report_heuristics option on commit is selected. In these circumstances
the participant (subordinate) and the coordinator must obey a set of rules that define
what they report.

Coordinator Role

A root coordinator that fails prior to logging the commit decision can unilaterally
rollback the transaction. If its resources have also rolled back because they were no
prepared, the transaction is returned to its prior state of consistency. If any resources
are prepared, they are required to initiate the recovery process defined below.

• A root coordinator that has a committed outcome will continue the completion
protocol by sending commit .

• A root coordinator that has a rolled back outcome will continue the completion
protocol by sending rollback .

Synchronizations

Synchronization objects are not persistent so they are not restarted after failure an
a result, their operations are not invoked during failure processing.

Subtransactions

Subtransactions are not durable, so there is no completion after failure. However, once
the top-level coordinator issues prepare , a subtransaction subordinate coordinator h
the same responsibilities as a top-level subordinate coordinator.

Recoverable Server role

The Transaction Service imposes certain requirements on the recoverable object
participating in a transaction. These requirements include an obligation to retain
certain information at certain times in stable storage (storage not likely to be dam
as the result of failure). When a recoverable object restarts after a failure, it
participates in a recovery protocol based on the contents (or lack of contents) of its
stable storage.
10-58 CORBAservices November 1997

10

he

l

.

is

d for

t
Once having replied VoteCommit , the resource remains responsible for discovering t
outcome of the transaction (i.e., whether to commit or rollback). If the resource
subsequently makes a heuristic decision, this does not change its responsibilities to
discover the outcome.

If No Heuristic Decision is Made

A resource that is prepared is responsible for initiating recovery. It does so by issuing
replay_completion to the RecoveryCoordinator. The reply tells the resource the
outcome of the transaction. The coordinator can continue the completion protoco
allowing the resource to either commit or rollback. The resource can resend
replay_completion if the completion protocol is not continued.

• If the resource having replied VoteCommit initiates recovery and receives
StExcep::OBJECT_NOT_EXIST , it will know that the Coordinator no longer
exists and therefore the outcome was to rollback (presumed rollback).

• If the resource having replied VoteCommit initiates recovery and receives
StExcep::COMM_FAILURE , it will know only that the Coordinator may or may
not exist. In this case, the resource retains responsibility for initiating recovery
again at a later time.

When a Heuristic Decision is Made

Before acting on a heuristic decision, it must record the decision in stable storage

• If the heuristic decision turns out to be consistent with the outcome, then all
well and the transaction can be completed and the heuristic decision can be
forgotten.

• If the heuristic decision turns out to be wrong, the heuristic damage is recorded in
stable storage and one of the heuristic outcome exceptions
(HeuristicCommit,HeuristicRollback,HeuristicMixed, or
HeuristicHazard) is returned when completion continues.

The heuristic outcome details must be retained persistently until the resource is
instructed to forget. In this case, the resource remains persistent until the forget is
received.

Subordinate Coordinator Role

The behavior of a subordinate coordinator after a failure of its superior coordinator is
implementation-dependent; however, it does follow the following protocols:

• Since it appears as a resource to its superior coordinator, the protocol define
recoverable servers applies to subordinate coordinators.

• Since it is also a subordinate coordinator for its own registered resources, it is
permitted to send duplicate commit , rollback , and forget requests to its
registered resources.

• It is required to (eventually) perform either commit or rollback on any resource
to which it has received a VoteCommit response to prepare .

• It1 is required to (eventually) perform the forget operation on any resource tha
reported a heuristic outcome.
Transaction Service: v1.1 The Implementers’ View November 1997 10-59

10

re

a

d

ribed

Since subtransactions are not durable, it has no responsibility in this area for failu
recovery.

10.5.2 ORB/TS Implementation Considerations

The Transaction Service and the ORB must cooperate to realize certain Transaction
Service function. This is discussed in greater detail in the following sections.

Transaction Propagation

The transaction is represented to the application by the Control object. Within the
Transaction Service, an implicit context is maintained for all threads associated with
transaction. Although there is some common information, the implicit context is not
the same as the Control object defined in this specification and is distinct from the
ORB Context defined by CORBA. It is the implicit context that must be transferre
between execution environments to support transaction propagation.

The objects using a particular Transaction Service implementation in a system form a
Transaction Service domain. Within the domain, the structure and meaning of the
implicit context information can be private to the implementation. When leaving the
domain, this information must be translated to a common form if it is to be understood
by the target Transaction Service domain, even across a single ORB. When the implicit
context is transferred, it is represented as a PropagationContext.

No OMG IDL declaration is required to cause propagation of the implicit context with
a request. The minimum amount of information that could serve as an implicit context
is the object reference of the Coordinator. However, an identifier (e.g., an X/Open
XID) is also required to allow efficient (local) execution of the
is_same_transaction and hash_transaction operations when interposition is
done. Implementations may choose to also include the Terminator object reference if
they support the ability for ending the transaction in other execution environments than
the originator’s. Transferring the implicit context requires interaction between the
Transaction Service and the ORB to add or extract the implicit context from ORB
messages. This interaction is also used to implement the checking functions desc
in “X/Open Checked Transactions” on page 10-37.

When the Control object is passed as an operation argument (explicit propagation), no
special transfer mechanism is required.

Interposition

When a transaction is propagated, the implicit context is exported and can be used by
the importing Transaction Service implementation to create a new Control object
which refers to a new (local) Coordinator. This technique, interposition, allows a

1. or some “agent” acting on its behalf: for example a system management application.
10-60 CORBAservices November 1997

10

sages
rvice

r

 to

 any
rlying

te

can
surrogate to handle the functions of a coordinator in the importing domain. These
coordinators act as subordinate coordinators. When interposition is performed, a single
transaction is represented by multiple Coordinator objects.

Interposition allows cooperating Transaction Services to share the responsibility for
completing a transaction and can be used to minimize the number of network mes
sent during the completion process. Interposition is required for a Transaction Se
implementation to implement the is_same_transaction and hash_transaction
operations as local method invocations, thus improving overall systems performance.

An interposed coordinator registers as a participant in the transaction with the
Coordinator identified in the PropagationContext of the received request. The
relationships between coordinators in the transaction form a tree. The root coordinato
is responsible for completing the transaction.

Many implementations of the Transaction Service will want to perform interposition
and thus create Control objects and subsequently Coordinator objects for each
execution environment participating in the transaction. To create a new (local) Control,
an importing Transaction Service uses the information in the propagation context
recreate a Control object using a TransactionFactory. Interposition must be
complete before the get_control operation can complete in the target object. An
object adaptor is one possible place to implement interposition.

Subordinate Coordinator Synchronization

A subordinate coordinator may register with its superior coordinator to ensure that
local state data maintained by the subordinate coordinator is returned to the unde
resource prior to the subordinate coordinator’s associated Resource seeing prepare .

Subordinate Coordinator Registration

A subordinate coordinator must register with its superior coordinator to orchestra
transaction completion for its local resources. The register_resource operation of
the Coordinator can be used to perform this function. The subordinate coordinator
either support the Resource interface itself or provide another Resource object which
will support transaction completion. Some implementations of the Transaction Service
may wish to perform this function as a by-product of invoking the first operation on an
object in a new domain as is done with the X/Open model. This requires that the
information necessary to perform registration be added to the reply message of that
first operation.

Transaction Service Interoperation

The Transaction Service can be implemented by multiple components at different
locations. The different components can be based on the same or different
implementations of the Transaction Service. As stated in “Principles of Function,
Design, and Performance” on page 10-8, it is a requirement that multiple Transaction
Services interoperate across the same ORB and different ORBs.
Transaction Service: v1.1 The Implementers’ View November 1997 10-61

10

orted

r
ice.
 two-

 is

e

s for

ry

s

Transaction Service interoperation is specified by defining the data structures exp
between different implementations of the Transaction Service. When the implicit
context is propagated with a request, the destination uses it to locate the superio
coordinator. That coordinator may be implemented by a foreign Transaction Serv
By registering a resource with that coordinator, the destination arranges to receive
phase commit requests from the (possibly foreign) Transaction Service.

The Transaction Service permits many configurations; no particular configuration
mandated. Typically, each program will be directly associated with a single
Transaction Service. However, when requests are transmitted between programs in
different Transaction Service domains, both Transaction Services must understand th
shared data structures to interoperate.

An interface between the ORB and the Transaction Service is defined that arrange
the implicit context to be carried on messages that represent method invocations made
within the scope of a transaction.

Structure of the Propagation Context

The PropagationContext structure is defined in “Structures” on page 10-15. For the
functions defined within the base section of the propagation context, it is necessa
only to send it with requests. Implementations may use the vendor specific portion for
additional functions (for example, to register an interposed coordinator with its
superior), which may require the propagation context to be returned. Whether it i
returned or not, is implementation specific.

otid_t

The otid_t structure is a more efficient OMG IDL version of the X/Open defined
transaction identifier (XID). The otid_t can be transformed to an X/Open XID and
vice versa.

TransIdentity

A structure that defines information for a single transaction. It consists of a coord , an
optional term , and an otid .

coord

The Coordinator for this transaction in the exporting Transaction Service domain.

term

The Terminator for this transaction in the exporting Transaction Service domain.
Transaction Services that do not allow termination by other than the originator will set
this field to a null reference (OBJECT_NIL).
10-62 CORBAservices November 1997

10

action
does
-

back
on.

s
otid

An identifier specific to the current transaction or subtransaction. This value is
intended to support efficient (local) execution of the is_same_transaction and
hash_transaction operations when the importing Transaction Service does
interposition.

timeout

The timeout value associated with the transaction in the relevant set_timeout
operation (or the default timeout).

<TransIdentity> parents

A sequence of TransIdentity structures representing the parent(s) of the current
transaction. The ordering of the sequence starts at the parent of the current trans
and includes all ancestors up to the top-level transaction. An implementation that
not support nested transactions would send an empty sequence. This allows a non
nested transaction implementation to know when a nested transaction is being
imported. It also supports efficient (local) execution of the Coordinator operations
which test parentage when the importing Transaction Service does interposition.

implementation_specific_data

This information is exported from an implementation and is required to be passed
with the rest of the context if the transaction is re-imported into that implementati

Appearance of the Propagation Context in Messages

The appearance of the PropagationContext in messages is defined by the CORBA
interoperability specification (see the General Inter-ORB Protocol chapter of the
Common Object Request Broker: Architecture and Specification). The Transaction
Service passes the PropagationContext to the ORB via the TSPortability interface
defined in “The Transaction Service Callbacks” on page 10-65.

• When exporting a transaction, the ORB sets the PropagationContext into the
ServiceContext::context_data field and marshals the PropagationContext a
defined by the GIOP message format and marshalling rules.

• When importing a transaction, the ORB demarshalls the
ServiceContext::context_data according to the GIOP formatting rules and
extracts the PropagationContext to be presented to the Transaction Service.

For more information, see the General Inter-ORB Protocol chapter of the Common
Object Request Broker: Architecture and Specification.

Transaction Service Portability

This section describes the way in which the ORB and the Transaction Service
cooperate to enable the PropagationContext to be passed and any X/Open-style
checking to be performed on transactional requests.
Transaction Service: v1.1 The Implementers’ View November 1997 10-63

10

RBA
tely
y

y to

s.

 the

acks

rt
Because it is recognized that other object services and future extensions to the CO
specification may require similar mechanisms, this component is specified separa
from the main body of the Transaction Service to allow it to be revised or replaced b
a mechanism common to several services independently of any future Transaction
Service revisions.

To enable a single Transaction Service to work with multiple ORBs, it is necessar
define a specific interface between the ORB and the Transaction Service, which
conforming ORB implementations will provide, and demanding Transaction Service
implementations can rely on. The remainder of this section describes these interface
There are two elements of the required interfaces:

1. An additional ORB interface that allows the Transaction Service to identify itself to
the ORB when present in order to be involved in the transmission of transactional
requests.

2. A collection of Transaction Service operations (the Transaction Service callbacks)
that the ORB invokes when a transactional request is sent and received.

These interfaces are defined as pseudo-IDL to allow them to be implemented as
procedure calls.

Identification of the Transaction Service to the ORB

Prior to the first transactional request, the Transaction Service will identify itself to
ORB within its domain to establish the transaction callbacks to be used for
transactional requests and replies.

The Transaction Service identifies itself to the ORB using the following interface.

The callback routines identified in this operation are always in the same addressing
domain as the ORB. On most machine architectures, there are a unique set of callb
per address space. Since invocation is via a procedure call, independent failures cannot
occur.

NotAvailable

The NotAvailable exception is raised if the ORB implementation does not suppo
the CosTSPortability module.

i nterface TSIdentification { // PIDL
exception NotAvailable {};
exception AlreadyIdentified {};

void identify_sender(in CosTSPortability::Sender sender)
raises (NotAvailable, AlreadyIdentified);

void identify_receiver(in CosTSPortability::Receiver
receiver)

raises (NotAvailable, AlreadyIdentified);
} ;
10-64 CORBAservices November 1997

10

 to
d.

.
AlreadyIdentified

The AlreadyIdentified exception is raised if the identify_sender or
identify_receiver operation had previously identified callbacks to the ORB for
this addressing domain.

identify_sender

The identify_sender operation provides the interface that defines the callbacks
be invoked by the ORB when a transactional request is sent and its reply receive

identify_receiver

The identify_receiver operation provides the interface that defines the callbacks
to be invoked by the ORB when a transactional request is received and its reply sent.

The Transaction Service must identify itself to the ORB at least once per Transaction
Service domain. Sending and receiving transactional requests are separately identified
If the callback interfaces are different for different processes within a Transaction
Service domain, they are identified to the ORB on a per process basis. Only one
Transaction Service implementation per addressing domain can identify itself to the
ORB.

A Transaction Service implementation that only sends transactional request can
identify only the sender callbacks. A Transaction Service that only receives
transactional requests can identify only the receiver callbacks.

The Transaction Service Callbacks

The CosTSPortability module defines two interfaces. Both interfaces are defined as
PIDL. The Sender interface defines a pair of operations which are called by the ORB
sending the request before it is sent and after its reply is received. The Receiver
interface defines a pair of operations which are called by the ORB receiving the
request when the request is received and before its reply is sent. Both interfaces use the
PropagationContext structure defined in “Structures” on page 10-15.
Transaction Service: v1.1 The Implementers’ View November 1997 10-65

10

rvice

 The
ope

e

from
ReqId

The ReqId is an unique identifier generated by the ORB which lasts for the duration of
the processing of the request and its associated reply to allow the Transaction Se
to correlate callback requests and replies.

Sender::sending_request

A request is about to be sent. The Transaction Service returns a PropagationContext to
be delivered to the Transaction Service at the server managing the target object.
TRANSACTION_REQUIRED standard exception is raised when invoked outside the sc
of a transaction.

Sender::received_reply

A reply has been received. The PropagationContext from the server is passed to the
Transaction Service along with the returned environment. The Transaction Servic
examines the Environment to determine whether the request was successfully
performed. If the Environment indicates the request was unsuccessful, the
TRANSACTION_ROLLEDBACK standard exception is raised.

Receiver::received_request

A request has been received. The PropagationContext defines the transaction making
the request. It is associated with the target object only if the target object inherits
the TransactionalObject interface.

module CosTSPortability { // PIDL
typedef long ReqId;

interface Sender {
void sending_request(in ReqId id,

out CosTransactions::PropagationContext ct x);
void received_reply(in ReqId id,

in CosTransactions::PropagationContext ctx,
in CORBA::Environment env) ;

};

interface Receiver {
void received_request(in ReqId id,

in CosTransactions::PropagationContext ctx);
void sending_reply(in ReqId id,

out CosTransactions::PropagationContext ctx);
};

};
10-66 CORBAservices November 1997

10

ds to

uest

is
essed

.

ion at

ables
d

d
ad
Receiver::sending_reply

A reply is about to be sent. A checking transaction service determines whether there
are outstanding deferred requests or subtransactions and raises a system exception
using the normal mechanisms. The exception data from the callback operation nee
be re-raised by the calling ORB.

Behavior of the Callback Interfaces

The following sections describe the protocols associated with the callback interfaces:

Requirements on the ORB

The ORB will invoke the sender callbacks only when a transactional operation is
issued for an object in a different process. Objects within the same process implicitly
share the same transaction context. The receiver callbacks are invoked when the ORB
receives a transactional request from a different process.

The ORB must generate a request identifier for each outgoing request and be able to
associate the identifier with the reply when it is returned. For deferred synchronous
invocations, this allows the Transaction Service to correlate the reply with the req
to implement checked behavior. The request identifier is passed on synchronous
invocations to permit the same interface to be used.

The callbacks are invoked in line with the processing of requests and replies. Th
means that the callbacks will be executed on the same thread that issued or proc
the actual request or reply. When the DII is used, the received_reply callback must
be invoked on the same thread that will subsequently process the response.

Requirements on the Transaction Service

Within a single process, the transaction context is part of the thread specific state
Multiple threads executing on behalf of the same transaction will share the same
transaction context since a thread can only execute on behalf of a single transact
a time. Since the callbacks are defined as PIDL (procedure calls), they are invoked on
the client’s thread when sending and the server’s thread when receiving. This en
the Transaction Service to locate the proper transaction context when sending an
associate the received transaction context with the thread that will process the
transactional operation. The callback interfaces may only raise standard exceptions and
may not make additional object invocations using the ORB.

10.5.3 Model Interoperability

The indirect context management programming model of the Transaction Service is
designed to be compatible with the X/Open DTP standard, and implementable by
existing Transaction Managers. In X/Open DTP, a current transaction is associate
with a thread of control. Some X/Open Transaction Managers support a single thre
of control in a process, others allow multiple threads of control per process.
Transaction Service: v1.1 The Implementers’ View November 1997 10-67

10

iates

ces

Model interoperability is possible because the Transaction Service design is
compatible with the X/Open DTP model of a Transaction Manager. X/Open assoc
an implicit current transaction with each thread of control.

This means that a single transaction management service can provide the interfa
defined for the Transaction Service and also provide the TX and XA interfaces of
X/Open DTP. This is illustrated in Figure 10-6.

Figure 10-6 Model Interoperability Example

The transactional object making the SQL call, and the SQL Resource manager, are
both executing on the same thread of control. The transaction manager is able to
recognize the relationship between the transaction context of the object, and the
transaction associated with the SQL DB.

The Current and Coordinator interfaces of the Transaction Service implement two-
phase commit for the objects in the transaction. The Resource Manager will participate
in the two-phase commitment process via the X/Open XA interface.

AAAAAAAAAAAAAAAAAAAAA

A
A
A
A

AAAAAAAAAAAAAAAAAAAAAA
A
A
A

Transactional

Client

Transaction

Service

propagation

Object

transactional operation

Transactional

ORB
XA

SQL

Transaction

Manager

New Application (Objects) SQL Data Base

SQL DB
Resource
Manager
10-68 CORBAservices November 1997

10
10.6 The CosTransactions Module

#include <Corba.idl>
module CosTransactions {
// DATATYPES
enum Status {

StatusActive,
StatusMarkedRollback,
StatusPrepared,
StatusCommitted,
StatusRolledBack,
StatusUnknown,
StatusNoTransaction,
StatusPreparing,
StatusCommitting,
StatusRollingBack

};

enum Vote {
VoteCommit,
VoteRollback,
VoteReadOnly

};

// Structure definitions
struct otid_t {

long formatID; /*format identifier. 0 is OSI TP */
long bqual_length;
sequence <octet> tid;

};
struct TransIdentity {

Coordinator coord;
Terminator term;
otid_t otid;

};
struct PropagationContext {

unsigned long timeout;
TransIdentity current;
sequence <TransIdentity> parents;
any implementation_specific_data;

};

// Forward references for interfaces defined later in module
interface Current;
interface TransactionFactory;
interface Control;
interface Terminator;
interface Coordinator;
Transaction Service: v1.1 The CosTransactions Module November 1997 10-69

10
interface RecoveryCoordinator;
interface Resource;
interface Synchronization;
interface SubtransactionAwareResource;
interface TransactionalObject;

// Heuristic exceptions
exception HeuristicRollback {};
exception HeuristicCommit {};
exception HeuristicMixed {};
exception HeuristicHazard {};

// Other transaction-specific exceptions
exception SubtransactionsUnavailable {};
exception NotSubtransaction {};
exception Inactive {};
exception NotPrepared {};
exception NoTransaction {};
exception InvalidControl {};
exception Unavailable {};
exception SynchronizationUnavailable {};

// Current transaction
interface Current : CORBA::Current {

void begin()
raises(SubtransactionsUnavailable);

void commit(in boolean report_heuristics)
raises(

NoTransaction,
HeuristicMixed,
HeuristicHazard

);
void rollback()

raises(NoTransaction);
void rollback_only()

raises(NoTransaction);

Status get_status();
string get_transaction_name();
void set_timeout(in unsigned long seconds);
Control get_control();
Control suspend();
void resume(in Control which)

raises(InvalidControl);
};
10-70 CORBAservices November 1997

10
interface TransactionFactory {
Control create(in unsigned long time_out);
Control recreate(in PropagationContext ctx);

};

interface Control {
Terminator get_terminator()

raises(Unavailable);
Coordinator get_coordinator()

raises(Unavailable);
};

interface Terminator {
void commit(in boolean report_heuristics)

raises(
HeuristicMixed,
HeuristicHazard

);
void rollback();

};

interface Coordinator {

Status get_status();
Status get_parent_status();
Status get_top_level_status();

boolean is_same_transaction(in Coordinator tc);
boolean is_related_transaction(in Coordinator tc);
boolean is_ancestor_transaction(in Coordinator tc);
boolean is_descendant_transaction(in Coordinator tc);
boolean is_top_level_transaction();

unsigned long hash_transaction();
unsigned long hash_top_level_tran();

RecoveryCoordinator register_resource(in Resource r)
raises(Inactive);

void register_synchronization (in Synchronization sync)
raises(Inactive, SynchronizationUnavailable);

void register_subtran_aware(in SubtransactionAwareResource
r)

raises(Inactive, NotSubtransaction);

void rollback_only()
raises(Inactive);

string get_transaction_name();
Control create_subtransaction()

raises(SubtransactionsUnavailable, Inactive);
Transaction Service: v1.1 The CosTransactions Module November 1997 10-71

10
PropagationContext get_txcontext ()
raises(Unavailable);

};

interface RecoveryCoordinator {
Status replay_completion(in Resource r)

raises(NotPrepared);
};

interface Resource {
Vote prepare()

raises(
HeuristicMixed,
HeuristicHazard

);
void rollback()

raises(
HeuristicCommit,
HeuristicMixed,
HeuristicHazard

);
void commit()

raises(
NotPrepared,
HeuristicRollback,
HeuristicMixed,
HeuristicHazard

);
void commit_one_phase()

raises(
HeuristicHazard

);
void forget();

};

interface TransactionalObject {
};

interface Synchronization : TransactionalObject {
void before_completion();
void after_completion(in Status status);

};

interface SubtransactionAwareResource : Resource {
void commit_subtransaction(in Coordinator parent);
void rollback_subtransaction();

};

}; // End of CosTransactions Module
10-72 CORBAservices November 1997

10
10.6.1 The CosTSPortability Module

module CosTSPortability { // PIDL
typedef long ReqId;

interface Sender {
void sending_request(in ReqId id,

out CosTransactions::PropagationContext ctx);
void received_reply(in ReqId id,

in CosTransactions::PropagationContext ctx,
in CORBA::Environment env);

};

interface Receiver {
void received_request(in ReqId id,

in CosTransactions::PropagationContext ctx);
void sending_reply(in ReqId id,

out CosTransactions::PropagationContext ctx);
};

};
Transaction Service: v1.1 The CosTransactions Module November 1997 10-73

10

ined
Appendix A Relationship of Transaction Service to TP Standards

This appendix discusses the relationship and possible interactions with the following
related standards:

• X/Open TX interface

• X/Open XA interface

• OSI TP protocol

• LU 6.2 protocol

• ODMG standard

A.1 Support of X/Open TX Interface

A.1.1 Requirements

The X/Open DTP model1 is now widely known and implemented.

Since the Transaction Service and the X/Open DTP models are interoperable, an
application using transactional objects could use the TX interface, the X/Open-def
interface to delineate transactions, to interact with a Transaction Manager. (The
Transaction Manager is the access point of the Transaction Service.)

A.1.2 TX Mappings

The correspondence between the TX interface primitives and the Transaction Service
operations (Current interface) are as follows:

1. See “Distributed Transaction Processing: The XA Specification, X/Open Document C193.” X/Open Company Ltd.,
Reading, U.K., ISBN 1-85912-057-1.

Table 10-2TX mappings

TX interface Current interface

tx_open() no equivalent

tx_close() no equivalent

tx_begin() Current::begin()

tx_rollback() Current::rollback() or
Current::rollback_only()

tx_commit() Current::commit()

tx_set_commit_return() report_heuristics parameter of
Current::commit()

tx_set_transaction_control() no equivalent
(chained transactions not supported)

tx_set_transaction_timeout() Current::set_timeout()
10-74 Transaction Service: v1.1 Support of X/Open TX Interface November 1997

10

tion
n

ent.
tx_open

tx_open() provides a way to open, in a given execution environment, the Transac
Manager and the set of Resource Managers that are linked to it. Such an operatiodoes
not exist in the Transaction Service; such processing may be implicitly executed when
the first operation of the Transaction Service is executed in the execution environm

This processing is also related to a future Initialization Service.

tx_close

tx_close() provides a way to close, in a given execution environment, the
Transaction Manager and the set of Resource Managers that are linked to it. Such an
operation does not exist in the Transaction Service.

tx_begin

tx_begin() corresponds to Current::begin () or to

TransactionFactory::create ().

tx_rollback

tx_rollback() corresponds to Current::rollback(),

Terminator::rollback(), Current::rollback_only() or
Coordinator::rollback_only() . In TX, when a server calls tx_rollback() , the
transaction may be rolled back or set as rollback only, as in the Transaction Service.

tx_commit and tx_set_commit_return

tx_commit() corresponds to Current::commit(. The Transaction Service
operations have a parameter, report_heuristics , corresponding to the

commit_return parameter of TX.

1. A printable string is output: not guaranteed to be the XID in all implementations.

tx_info() - XID Coordinator::get_txcontext()
Current::get_name() 1

tx_info() - COMMIT_RETURN no equivalent

tx_info() - TRANSACTION_TIME_OUT no equivalent

tx_info() - TRANSACTION_STATE Current::get_status()

Table 10-2TX mappings

TX interface Current interface
Transaction Service: v1.1 Support of X/Open TX Interface November 1997 10-75

10

d

n

pen

n and
tx_set_transaction_control

tx_set_transaction_control() is used, in TX, to switch between unchained an
chained mode; this function is not needed in the Transaction Service environment
because it does not support chained transactions.

tx_set_transaction_timeout

tx_set_transaction_timeout() corresponds to Current::set_timeout() or
TransactionFactory::create() .

tx_info

tx_info() returns information related to the current transaction. In the Transactio
Service:

• the XID may be retrieved by Coordinator::get_txcontext() ;

• the XID (in effect) may be retrieved by Current::get_transaction_name() ;

• the transaction state may be retrieved by Current::get_status() ;

• the commit return attribute is not needed because this attribute is given in the
commit() operation;

• the timeout attribute cannot be obtained.

A.2 Support of X/Open Resource Managers

A.2.1 Requirements

X/Open DTP-compliant Resource Managers, simply called X/Open Resource
Managers or RMs, are Resource Managers that can be involved in a distributed
transaction by allowing their two-phase commit protocol to be controlled via the
X/Open XA Interface. Many RDBMS suppliers currently offer (or intend to offer)
X/Open Resource Managers. Many OODBMS’ intend also to support the XA Interface
(some have already implemented it).

The Transaction Service must therefore be able to interact with X/Open Resource
Managers. This section will illustrate how an X/Open Resource Manager may be used
by a Transaction Service-compliant system.

The architecture of Transaction Service, based on the same concepts as the X/O
DTP Model, allows mapping of Transaction Service operations to and from XA
interactions.

A.2.2 XA Mappings

This section gives an overall view of a possible mapping between XA primitives
offered by an X/Open Resource Manager (called RM hereafter) and the interfaces of
the Transaction Service and their operations in the different phases of a transactio
during recovery.
10-76 Transaction Service: v1.1 Support of X/Open Resource Managers November 1997

10

 of

The mappings are summarized in the following table:

In the X/Open DTP model all the interactions are made in the same X/Open thread
control.

A.2.3 XID

An XID is the Transaction Identifier. As defined by X/Open, this XID is the only
information used by Resource Managers to associate logged information to the
transaction, including objects’ before images, after images, locks, and transaction state.

The contents of an XID is defined by X/Open as follows:

The XID uniquely and unambiguously identifies a distributed transaction (information
contained in the gtrid part of the XID) and a transaction-branch, the work performed
by a node in the transaction tree (information contained in the bqual part of the XID).

Table 10-3XA mappings

X/Open Object Transaction Service

xa_start()
ax_reg()

Receiv er::received_r equest
Current::resume

xa_end() Receiver::s ending _re ply
Current::suspend

ax_unreg() no equivalent

xa_prepare() Resource::prepare

xa_commit() Resource::commit

xa_rollback() Resource::rollback

xa_recover() no equivalent

no equivalent RecoveryCoordinator::replay_completion()

xa_forget() Resource::forget()

#define XIDDATASIZE 128 /* size in bytes */
#define MAXGTRIDSIZE 64
 /* maximum size in bytes of gtrid */
#define MAXBQUALSIZE 64
 /* maximum size in bytes of bqual */

struct xid_t {
 long formatID;/* format identifier */
 long gtrid_length;
 /* value not to exceed 64 */
 long bqual_length;
 /* value not to exceed 64 */
 char data [XIDDATASIZE];
};
typedef struct xid_t XID;
Transaction Service: v1.1 Support of X/Open Resource Managers November 1997 10-77

10

f a

in

t

ed

e
tion.
”

r
or
To facilitate the use of distributed transaction in heterogeneous environments, X/Open
has adopted the structure of the Transaction Identifier used in OSI TP but allows the
use of other Transaction Identifiers formats, which may be defined by the value o
Format Identifier field contained in the XID structure. The OSI TP Transaction
Identifier contains information about the initiator of the transaction and the superior
the transaction tree; this information may be used, during recovery, to contact these
entities and obtain the outcome of the transaction.

In the Transaction Service, tightly-coupled concurrency is assumed (a lock held by a
transaction may be accessed by any participant of the same transaction) and the
transaction branch part of the XID must not be given to RMs.

Interactions with an XA-compliant RM

Model

To model the relationship between the XA interface and the Transaction Service
operation, an X/Open Transaction Manager has been modeled; this component is used
here as a way to describe the interactions and may be implemented in a differen
manner.

Propagation of a Transaction to an RM

An RM may support two kinds of involvement interactions:

• Static registration, in which the Transaction Service involves the RM whenever it
is itself involved in a new transaction.

• Dynamic registration, in which the RM notifies the Transaction Service that it has
been requested to perform some work and request the XID of the current
transaction.

An RM gets involved in a transaction when it has to perform some new work for this
transaction. This happens in one of the following situations:

• A request carrying a transaction context has just been received and the RM has to
perform work for the target object of this request;

• A method performing a request that is carrying a transaction context is resum
(by a Current::resume() operation).

An object may receive several requests carrying a transaction context for the sam
transaction. An RM may also perform work for several objects in the same transac
Thus an RM may be involved several times in the same transaction; the “resumeand
the “join” concepts of XA may be used to notify the RM of any multiple involvement.
When an RM has to get involved in a transaction, it must obtain the corresponding
XID from the Transaction Service through an xa_start() primitive or by a return
parameter of an ax_reg() primitive. This XID is transmitted to the RM as a paramete
to xa_start() or ax_reg() and is used by the RM to relate any work performed
any lock obtained to the transaction.
10-78 Transaction Service: v1.1 Support of X/Open Resource Managers November 1997

10

ntil

n to

n.

er

If the Transaction Service is called by an ax_reg() while it is not aware of any
transaction, it returns a null XID to the RM. The RM is then free to start a local
transaction of its own, and no Transaction Service transaction will be accepted u
the RM issues an ax_unreg() .

Refer to X/Open documents for more information about propagation of a transactio
an RM.

First phase of Commitment

When the first phase of commitment is started, the Transaction Service issues an
xa_prepare() primitive and process its results to determine its decision.

Second Phase of Commitment

When the second phase of commitment is started, the Transaction Service issues an
xa_commit() primitive and process its results to determine the heuristic situation.

One-phase commitment

When the Transaction Service wants to perform a one-phase commitment, it issues an
xa_commit() primitive and process its results to determine the heuristic situation.

In the XA interface, there is no specific primitive for one-phase commitment: an RM
must consider an xa_commit() without preceding xa_prepare() as a request to
perform a one-phase commitment.

Rollback

When a rollback has to be performed, the Transaction Service issues an
xa_rollback() primitive and process its results to determine the heuristic situatio

Recovery

In the XA interface, the recovery of an RM is triggered by the Transaction Manag
which issues an xa_recover() ; the RM then gives back a list of all XIDs that are
either in the Ready state or have been heuristically completed.

In the Transaction Service recovery is performed by a resource that issues a
replay_completion operation to a Coordinator (see Subsection "Transaction
Completion after Failure" in “Transaction Service Protocols” on page 10-49).

Failure of an Operation

Any failure of an operation typically leads to a rollback of the transaction, especially if
it is not possible to determine whether the operation has been performed or not.
However, in the decided commit state, the commit operation must be retried until the
reply has been received (unless a heuristic hazard condition is detected).
Transaction Service: v1.1 Support of X/Open Resource Managers November 1997 10-79

10

er().
M

s

rt

e
e

SI

y
Failure of an RM

If an RM fails, the Transaction Service detecting the failure will issue an xa_recov
The Transaction Service will then get a list of XIDs of transactions for which the R
is in the ready state and transactions that have been heuristically completed.

The Transaction Service will then:

• Call xa_rollback() for all transactions that it knows to be neither in the
prepared state nor in the decided commit state.

• Call xa_commit() for all transactions that it knows to be in the decided commit
state.

• Wait for the decisions commit or rollback for the other.

Failure of Transaction Service

Upon warm restart of the Transaction Service and retrieval of the states of transaction
needing recovery from stable storage, the Transaction Service will call xa_recover()
to get the list of transactions for which the RM needs recovery (see failure of an RM,
here above).

A.3 Interoperation with Transactional Protocols

A.3.1 Transactional Protocols

A CORBA application may sometimes need to interoperate with one or more
applications using one of the de-facto standard transactional protocol: OSI TP and
SNA LU 6.2. In this case, the Transaction Service must be able to import or expo
transactions using one of these protocols.

Export is the ability to relate a transaction of the Transaction Service to a transaction
of a foreign transactional protocol. Importing means relating a Transaction Servic
transaction to a transaction started on a remote application and propagated via th
foreign transactional protocol.

Since the model used by the Transaction Service is similar to the model of OSI TP and
the X/Open DTP model, the interactions with OSI TP are straightforward. Since O
TP is a compatible superset of SNA LU 6.2, a mapping to SNA communications is
easily accomplished.

To interoperate, a mapping should be defined for the two-phase commit, rollback, and
recovery mechanisms, and for the transaction identifiers.

Notice that neither OSI TP nor SNA LU 6.2 supports nested transactions.

A.3.2 OSI TP Interoperability

OSI TP [ISO92] is the transactional protocol defined by ISO. It has been selected b
X/Open to allow the distribution of transactions by one of the communication
interfaces: remote procedure call1, client-server 2 or peer-to-peer (CPI-C Level-2 API
[CIW93]).
10-80 Transaction Service: v1.1 Interoperation with Transactional Protocols November 1997

10

ues

he

acts

 will
er a

s
The Transaction Service supports only unchained transactions. The use of dialog
using the Chained Transactions functional unit is possible only if restrictive rules are
defined. These rules are not described in this document.

OSI TP Transaction Identifiers

In OSI TP, loosely-coupled transactions are supported and every node of the
transaction tree possesses a transaction branch identifier which is composed of t
transaction identifier (or atomic action identifier) and a branch identifier (the branch
identifier being null for the root node of the transaction tree). Both the transaction
identifier and the branch identifier contains an AE-Title (Application Entity Title) and
a suffix that make it unique within a certain scope.

The format of the standard X/Open XID is compatible with the OSI TP identifiers, the
gtrid corresponding to the atomic action identifier and the bqual corresponding to
the branch identifier.

Incoming OSI TP Communications (Imported Transactions)

The Transaction Service is a subordinate in an OSI TP transaction tree and inter
with its superior by regular PDUs as defined by the OSI TP protocol. The Transaction
Service introduces the transaction identifier received on the OSI TP dialogue using the
TransactionFactory::recreate operation.

The Transaction Service maps the OSI TP commitment, rollback and recovery
procedures to the Transaction Service commitment procedure as follows:

• The Transaction Service, upon reception of an OSI TP Prepare message, will
enter the first phase of commitment procedure.

• When it enters the prepared state for the transaction, the Transaction Service
trigger the sending of an OSI TP Ready message to its superior. (It may trigg
Recover (Ready) message when normal communications are broken with the
superior).

• The Transaction Service, upon reception of an OSI TP Commit message, enter
the second phase of commitment procedure. (It may receive a Recover (Commit)
when normal communications are broken with the superior.)

• The Transaction Service, upon reception of an OSI TP Rollback message (it may
be a Recover (Unknown) when normal communications are broken with the
superior or any other rollback-initiating condition) will enter its rollback
procedure (unless a rollback is already in progress).

• The Transaction Service, upon reception of the last rollback reply, will trigger the
sending of a Rollback Response/Confirm message to its superior.

1. See “Distributed Transaction Processing: The TxRPC Specification, X/Open Document P305.” X/Open Company
Ltd., Reading, U.K..

2. See “Distributed Transaction Processing: The XATMI Specification, X/Open Document P306.” X/Open Company
Ltd., Reading, U.K..
Transaction Service: v1.1 Interoperation with Transactional Protocols November 1997

10

l.

ss

ack

of an

Outgoing OSI TP Communications (Exported Transactions)

The Transaction Service behaves as a superior in an OSI TP transaction tree and
interacts with its subordinates by regular PDUs as defined by the OSI TP protoco

The Transaction Service will map the OSI TP commitment procedure as follows:

• The Transaction Service, during the first phase of commitment procedure will
invoke an OSI TP Prepare message to all its subordinates.

• Upon reception of an OSI TP Ready message, the Transaction Service will
process this message as a successful reply to prepare.

• The Transaction Service, upon entering the second phase of the commitment
procedure will send an OSI TP Commit message (it may be a Recover (Commit)
when normal communications are broken with the subordinate) to all
subordinates.

• The Transaction Service, upon reception of an OSI TP Rollback message (it may
be any other rollback-initiating condition) will enter its rollback procedure (unle
a rollback is already in progress).

• The Transaction Service, upon reception of the last Rollback Response/Confirm
message from its subordinates, will process this message as a reply to a rollb
operation and determine the heuristic situation.

A.3.3 SNA LU 6.2 Interoperability

SNA LU 6.2 ([SNA88a], [SNA88b]) is a transactional protocol defined by IBM. It is
widely used for transaction distribution. The standard interface to access LU 6.2
communications is CPI-C (Common Programming Interface for Communications)
defined by IBM in the context of SAA [CPIC93] and currently being evolved by the
CPI-C Implementers' Workshop to become CPI-C level 2, a modern interface usable
for LU 6.2 and OSI TP communications [CIW93].

LU 6.2 supports only chained transactions but, at a given node, a transaction is started
only when resources have been involved in the transaction. LU 6.2 can be used for a
portion of an “unchained” transaction tree if the LU 6.2 conversations are ended after
each transaction by any node that has both LU 6.2 conversations and dialogues
unchained transaction.

LU 6.2 Transaction Identifiers

SNA LU 6.2 also supports loosely-coupled transactions and uses a specific format for
transaction identifiers: the Logical Unit of Work (LUWID) corresponds to the OSI
Transaction Identifier. The LUWID is composed of:

• The Fully Qualified Logical Unit Name, which is composed of up to 17 bytes, is
unique in an SNA network or a set of interconnected SNA networks.

• An instance number which is unique at the LU that create the transaction.

• The sequence number that is incremented whenever the transaction is committed.
10-82 Transaction Service: v1.1 Interoperation with Transactional Protocols November 1997

10

tring

 of

ol.
n

ter

o is

se of

)
The Conversation Correlator corresponds to the OSI TP Branch Identifier; it is a s
of 1 to 8 bytes which are unique within the context of the LU having established the
conversation and is meaningful when combined with the Fully Qualified LU Name
this Logical Unit.

Incoming LU 6.2 Communications

The LU 6.2 two-phase commit protocol is different from the OSI TP protocol: the
system sending a Prepare message has to perform logging and is responsible for
recovery. LU 6.2 does also support features like last-agent optimization, read-only and
allows any node in the transaction tree to request commitment.

The Transaction Service is a subordinate in an LU 6.2 transaction tree and interacts
with its superior using SNA requests and responses as defined by the LU 6.2 protoc
The Transaction Service maps the LUWID corresponding to the incoming conversatio
to an OMG otid_t and issues TransactionFactory::recreate to import the
transaction.

The Transaction Service maps the LU 6.2 commitment, rollback and recovery
procedures to the Transaction Service commitment procedure as follows:

• The Transaction Service, upon reception of an LU 6.2 Prepare message will en
the first phase of commitment procedure.

• The Transaction Service, upon entering the prepared state for the transaction, the
Transaction Service will trigger the sending of a Request Commit message t
superior.

• The Transaction Service, upon reception of an LU 6.2 Committed message (it
may be a Compare States (Committed) when normal communications are broken
with the superior) will enter the second phase of commitment procedure.

• The Transaction Service, upon leaving the decided commit state, will trigger the
sending of a Forget message to is superior (it may be a Reset when normal
communications are broken with the superior).

Due to the two-phase commit difference, the Transaction Service will never send the
equivalent of the Recover(Ready) unless prompted by the superior.

The last-agent and read-only features may also be supported by the Transaction
Service.

Outgoing LU 6.2 Communications

The Transaction Service has to log when the Prepare message is sent and, in ca
communication failure or restart of the Transaction Service, a recovery is needed.

ODMG Standard

ODMG-93 is a standard defined by ODMG (Object Database Management Group
describing portable interface to access Object Database Management Systems
(ODBMS).
Transaction Service: v1.1 Interoperation with Transactional Protocols November 1997

10

ion

tion
rnal

ion
Since it is likely that, in the future, many objects involved in transactions will be
handled by an ODBMS, this standard has a strong relationship with the Transact
Service.

A.4 ODMG Model

The ODMG model defines optional transactions and supports the nested transac
concept. The ODMG model does not cover the integration of ODBMS with an exte
Transaction Service, allowing other resources and communications to be involved in a
transaction. No two-phase commit or recovery protocol is described.

A transaction object must be created. The transactional operations are:

• Begin (or start) to begin a transaction (or a subtransaction).

• Commit to request commitment of a transaction.

• Abort to rollback a transaction.

• Checkpoint to commit the transaction but keep the locks. This feature is not
supported by the current version of the Transaction Service.

• abort_to_top_level to request rollback of a nested transaction family. The
Transaction Service does not directly support this feature but does provide means
to perform this functionality by resuming the context of the top-level transact
and then requesting rollback.

If the transaction object is destroyed, the transaction is rolled back.

Integration of ODMG ODBMSs with the Transaction Service

Since ODMG-93 does not define any way to integrate an ODBMS into an existing
transaction, the integration is difficult unless the ODBMS supports the XA interface, in
which case the section on XA-compliant RM is applicable.

In the future, it is anticipated that ODBMS will implement the Transaction Service-
defined interfaces and be considered as a recoverable server.

A possibility is to use, at a root node, an ODBMS as a last resource and, after all
subordinates are prepared, to request a one-phase commitment to the ODBMS. If the
outcome for the ODBMS is commit, the transaction will be committed, if it is rollback,
the transaction will be rolled back. The mechanism may work if it is possible to
determine, after a crash, whether the ODBMS committed or rolled back; this may be
done at application level.
10-84 Transaction Service: v1.1 ODMG Model November 1997

10
 Appendix B Transaction Service Glossary

B.1 TransactionTerms

2PC: See Two-phase commit.

Abort : See Rollback

Active : The state of a transaction when processing is in progress and completion of the
transaction has not yet commenced.

Atomicity : A transaction property that ensures that if work is interrupted by failure, any
partially completed results will be undone. A transaction whose work completes
is said to commit. A transaction whose work is completely undone is said to
rollback (abort).

Begin : An operation on the Transaction Service which establishes the initial boundary
of a transaction.

Commit : Commit has two definitions as follows:

An operation in the Current and Terminator interfaces that a program uses to
request that the current transaction terminate normally and that the effects of
that transaction be made permanent.

An operation in the Resource interface which causes the effects a transaction to
be made permanent.

Commit co ordinator : In a two-phase commit protocol, the program that collects the vote from the
participants.

Commit participan t: In a two-phase commit protocol, the program that returns a vote on the
completion of a transaction.

Committed : The property of a transaction or a transactional object, when it has successfully
performed the commit protocol. See also in-doubt, active, and rolled back.

Completion : The processing required (either by commit or rollback) to obtain the durable
outcome of a transaction.
Glossary TransactionTerms November 1997 10-85

10

.

Coordinator : A coordinator involves Resource objects in a transaction when they are
registered. A coordinator is responsible for driving the two-phase commit
protocol. See also Commit coordinator and Commit participant.

Consistency : A property of a transaction that ensures that the transaction’s actions, taken as a
group, do not violate any of the integrity constraints associated with the state of
its associated objects. This requires that the application program be
implemented correctly: the Transaction Service provides the functionality to
support application data consistency.

Decided commit state : A root coordinator enters the decided commit state when it has written a log-
commit record; a subordinate coordinator or resource is in the decided commit
state when it has received the commit instruction from its superior; in the latter
case, a log-commit record may be written but this is not essential.

Decided rollback state : A coordinator or resource enters the decided rollback state when it decides to
rollback the transaction or has received a signal to do so.

Direct c ontext
management:

An application manipulates the Control object and the other objects associated
with the transaction. See also Indirect context management.

Durability : A transaction property that ensures the results of a successfully completed
transaction will never be lost, except in the event of catastrophe. It is generally
implemented by a combination of persistent storage and a logging service that
provides a backup copy of permanent changes.

Execution environment : An implementation-dependent factor that may determine the outcome of certain
operations on the Transaction Service. Typically the execution environment is
the scope within which shared state is managed.

Flat Transaction : A transaction that has no subtransactions—and that cannot have subtransactions

Forgotten "state" : This is not really a transaction state at all, because there is no memory of the
transaction: it has either completed or rolled back and all records on permanent
storage have been deleted.

Heuristic Commit or
Rollback :

To unilaterally make the commit or rollback decision about in-doubt
transactions when the coordinator fails or contact with the coordinator fails.

Indirect context
management :

An application uses the Current object, provided by the Transaction Service, to
associate the transaction context with the application thread of control. See also
Direct context management.
10-86 Glossary TransactionTerms November 1997

10
In-doubt : The state of a transaction if it is controlled by a transaction manager that can not
be contacted, so the commit decision is in doubt. See also active, committed,
rolled back.

Interposition : Adding a sequence of one or more subordinate coordinators between a root
coordinator and its participants.

Isolation : A transaction property that allows concurrent execution, but the results will be
the same as if execution was serialized. Isolation ensures that concurrently
executing transactions cannot observe inconsistencies in shared data.

Lock service : Called the Concurrency Control Service, it is an Object Service used by
resources to control access to shared objects by concurrently executing methods.

Log-ready record (and
contents):

for an intermediate coordinator a log-ready record contains identification of the
(superior) coordinator and of Resource objects (including subordinate
coordinators) registered with the coordinator which replied VoteCommit (i.e., it
excludes registered objects which replied VoteReadOnly); for a Resource object
a log-ready record includes identification of the coordinator with which it is
registered.

Log-commit record (and
contents):

A log-commit record contains identification of all registered Resource objects
which replied VoteCommit.

Log-heuristic record : This contains a record of a heuristic decision either HeuristicCommit or
HeuristicRollback .

Log-damage record : This contains a record of heuristic damage i.e. where it is known that a heuristic
decision conflicted with the decided outcome (HeuristicMixed) or where
there is a risk that a heuristic decision conflicted with the decided outcome
(HeuristicHazard).

Log service: A service used by resource managers for recording recovery information and the
Transaction Service for recording transaction state durably.

Nested transaction : A transaction that either has subtransaction or is a subtransaction on some other
transaction.

Participant : See Commit participant.
Glossary TransactionTerms November 1997 10-87

10
Persistent sto rage : Generally speaking, a synonym for Stable storage. In the context of the OMA,
the Persistent Object Service (POS) provides an object representation of stable
storage.

Prepared : The state that a transaction is in when phase one of a two-phase commit has
completed.

Presumed rollback : An optimization of the two-phase commit protocol that results in more efficient
performance as the root coordinator does not need to log anything before the
commit decision and the Participants (i.e. Resource objects) do not need to log
anything before they prepare. So called because, at restart, if no record of the
transaction is found, it is safe to assume the transaction rolled back.

Propagation : A function of the Transaction Service that allows the Transaction context of a
client to be associated with a transactional operation on a server object. The
Transaction Service supports both implicit and explicit propagation of
transaction context.

Recoverable Object : An object whose data is affected by committing or rolling back a transaction.

Recoverable Server : A transactional object with recoverable state that registers a Resource (not
necessarily itself) with a Coordinator to participate in transaction completion.

Recovery Service : A service used by resource managers for restoring the state of objects to a prior
state of consistency.

Resource : An object in the Transaction Service that is registered for involvement in two-
phase commit—2PC. Corresponds to a Resource Manager.

Resource Manager : An X/Open term for a component which manages the integrity of the state of a
set of related resources.

Rollback : Rollback (also known as Abort) has two definitions, as follows:

An operation in the Current and Terminator interfaces used to indicate that the
current transaction has terminated abnormally and its effects should be
discarded.

An operation in the Resource interface which causes all state changes in the
transaction to be undone.
10-88 Glossary TransactionTerms November 1997

10
Rolled Back: The property of a transaction or a transactional object when it has discarded all
changes made in the current transaction. See also in-doubt, active, and
committed.

Root Coordinator: The first coordinator in a sequence of coordinators where there is interposition.
The coordinator associated with the transaction originator.

Security Service : An object service which provides identifications of users (authentication),
controls access to resources (authorization), and provides auditing of resource
access.

Stable storage : Storage not likely to be damaged as the result of node failure.

Sub-coordinator : See Subordinate Coordinator.

Subordinate Coordinator : A coordinator subordinate to the root coordinator when interposition has been
performed. A subordinate coordinator appears as a Resource object to its
superior. Also known as a Sub-coordinator.

Synchronization : An object in the Transaction Service which controls the transfer of persistent
object state data so it can be made durable by its associated resource.

Thread : The entity that is currently in control of the processor.

Thread Service : A service which enables methods to be executed concurrently by the same
process. Where two or more methods can execute concurrently each method is
associated with its own thread of control.

TP monitor : A system component that accepts input work requests and associates resources
with the programs that act upon these requests to provide a run-time
environment for program execution.

Transaction : A collection of operations on the physical and abstract application state.

Transactional client : An arbitrary program that can invoke operations of many transactional objects
in a single transaction. Not necessarily the Transaction originator.

Transaction Context : The transaction information associated with a specific thread. See Propagation.

Transactional operation : An operation on an object that participates in the propagation of the current
transaction.
Glossary TransactionTerms November 1997 10-89

10
Transaction originator : An arbitrary program—typically, a transactional client, but not necessarily an
object—that begins a transaction.

Transaction Manager : A system component that implements the protocol engine for 2-phase commit
protocol. See also Transaction Service.

Transactional object : An object whose operations are affected by being invoked within the scope of a
transaction.

Transactional server: A collection of one or more objects whose behavior is affected by the
transaction, but has no recoverable state of its own.

Transaction Service : An Object Service that implements the protocols required to guarantee the
ACID (Atomicity, Consistency, Isolation, and Durability) properties of
transactions. See also Transaction Manager.

TSPortability : An interface of the Transaction Service which allows it to track transactional
operations and propagate transaction context to another Transaction Service
implementation.

Two-Phase commit : A transaction manager protocol for ensuring that all changes to recoverable
resources occur atomically and furthermore, the failure of any resource to
complete will cause all other resource to undo changes. Also called 2PC.
10-90 Glossary TransactionTerms November 1997

Query Service Specification 11
g

e
11.1 Service Description

11.1.1 Overview

The Query Service provides query operations on collections of objects. The queries are
predicate-based and may return collections of objects. They can be specified usin
object derivatives of SQL and/or other styles of object query languages, including
direct manipulation query languages.

The term “query” has read-only connotations, but we use it to denote general
manipulation operations including selection, insertion, updating and deletion on
collections of objects. Throughout this chapter, the term “object” is used in the general
sense to include data.

The Query Service can be used to return collections of objects that may be:

• Selected from source collections based on whether their member objects satisfy a
given predicate.

• Produced by query evaluators based on the evaluation of a given predicate. Thes
query evaluators may manage implicit collections of objects.

The source and result collections may be typed. The source collection may be specified
by the client or may be the result of previous queries.

11.1.2 Design Principles

The Query Service exists to allow arbitrary users and objects to invoke queries on
arbitrary collections of other objects. Such queries are declarative statements with
predicates, including the ability to specify values of attributes; to invoke arbitrary
operations; and to invoke arbitrary services within the OMG environment, such as the
Li fe Cycle, Persistent Object, and Relationship Services.
CORBAservices July 1996 11-1

11

n
To support the OMG architecture, the Query Service must allow querying against any
objects, with arbitrary attributes and operations.

To be useful in practical situations, the Query Service must allow use of performance
enhancing mechanisms, such as indexing.

To be useful in environments with database systems—object-oriented, relational, and
other—and with other systems that store and access large collections of objects, the
Query Service must map well to these native systems’ internal mechanisms for
specifying collections and using indexing. The Query Service must also allow the
native systems to contribute to specifying collections and indexing.

To maximize usefulness to the community at large, the Query Service is based o
existing standards for query and extended when necessary to accommodate other
design principles.

The Query Service also supports flexibility in implementation and extensions.

11.1.3 Architecture

The Query Service design provides an architecture for a nested and federated service
that can coordinate multiple nested query evaluators, much as the Transaction Service
provides an architecture for a nested and federated service that can coordinate multiple
nested resources managers.
11-2 CORBAservices July 1996

11

 al
Query Evaluators: Nesting and Federation

Figure 11-1 Query Evaluators: Nesting and Federation

Objects may participate in the Query Service in two ways. The simplest involves any
CORBA object as is. The Query Evaluator is then responsible for evaluating the query
predicate and performing all query operations by invoking operations on that object
through its published OMG IDL interfaces. Any non-supported operations trigger
exceptions. This mechanism provides the greatest generality, including support forl
CORBA objects, but with the least optimization.

In a more involved manner, objects participate as members of a collection, either
explicit or implicit. The collection supports a specific query interface (that is, the
collection is itself a Query Evaluator). In this case, the Query Evaluator passes the
query predicate to the collection, which then evaluates the predicate and performs
query operations on an appropriate member object, receives any result, combines such
results with all other participating object results, and returns this to the caller. This
accomplishes the nesting, by passing the query evaluation on to a lower level. Such
nesting may continue to an arbitrary number of levels, without limit.

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAAA

Client

Query Evaluator

A AAAAAAA Query Evaluator

Native Query
System

AA
AA
AAAA
AA

AA
AA
AAA

AA
AA
AAA
A

Query Evaluator

Object

A AAAAA

Object
Query Service: v1.0 Service Description July 1996 11-3

11

pe

w a
This second way allows Query Evaluators or any associated native query systems to
evaluate the query using the internal optimization at their disposal. This is expected to
include faster access, caching, and indexing. Interpretation of names embedded in
query predicates is determined by the Query Evaluator or its associated native query
systems.

The Query Service specification does not define evaluation, indexing or optimization
mechanisms. These are in the province of the implementor and may vary significantly
in different environments. The Query Service simply provides a mechanism for
passing the query to such systems and allowing their optimizations to take effect.

Collections

The Query Service provides definitions and interfaces for creating and manipulating
collections of objects. These (explicit) collections may form both the scope to which a
query may be applied and the result of the query, when the result is one or more
objects.

The collections are defined as objects, with methods for adding and removing
members. They may be arbitrary in nature. In particular, they are not limited to ty
extents, as in some object systems, though type extents are examples of such
collections. They may map directly to collections managed by native query systems,
for optimization, and may also include arbitrary CORBA objects.

Associated iterators are defined to allow manipulation of collections, including
traversal over and retrieval of the objects within the collections. Such iterators allo
constant interface that can be invoked and implemented for arbitrary situations,
including mixtures of general CORBA objects; native query system collections; highly
distributed collections that could not be simultaneously accessed; collections across
multiple heterogeneous products and systems; very small collections; and very large
collections that could not be materialized physically.
11-4 CORBAservices July 1996

11

uery,

d

of the

o
)
Queryable Collections for Scope and Result

For collections to serve as both the result of a query and as a scope for another q
these collections must themselves be Query Evaluators. Such collections are called
Queryable Collections. They support both the Query Evaluator and collection
interfaces, as illustrated in Figure 11-2.

Figure 11-2 Queryable Collections

One of the issues that arises in using Queryable Collections is scoping in a neste
environment. If the collection being queried allows adding arbitrary objects, and if
objects are then added which are outside the scope of the evaluation mechanism
Queryable Collection, then the Queryable Collection would have to provide the full
functionality of a top-level Query Evaluator, evaluating predicates on arbitrary
CORBA objects. This would defeat the purpose of nesting.

To solve this problem, we allow Queryable Collection implementations, in response to
the invocation of the add and replace operations, to internally decide whether to add or
replace the specified object, and to raise an exception if they decide not to. This allows
arbitrary Queryable Collections—which are always supported at the top Query
Evaluator level, and sublevel implementations that scope Queryable Collections t
their own domain—to use whatever local mechanisms their (possibly pre-existing
query engines use. Examples of local mechanisms include optimization capabilities
such as physical and logical indices; clustering; caching, and so forth.

Query Objects

Since queries can be complex and resource-demanding, there are numerous
circumstances under which one would like to:

• Use graphical means to construct a query.

Query
Evaluator Collection

Queryable
Collection

Queryable
Collection

...

query

query

query query
Query Service: v1.0 Service Description July 1996 11-5

11

 back

bort.

ct

t and

, a

tions.
QL.)

ry,

• Save a query and re-execute it later on, maybe with different set of search
parameters.

• Precompile a query for later execution; this may be for the purpose of syntaxand
semantics checking and/or query optimization.

• Execute a query in an asynchronous manner; go do something else and come
for the result.

• Check the status of a long-running query and decide whether to continue or a

The Query Service provides the preceding capabilities and extensions through the use
of Query objects. A Query object is created by calling a Query Manager, which is a
more powerful form of Query Evaluator. Once created, a client of the Query obje
can:

• Use whatever means appropriate to construct the query specification.

• Prepare the query for later execution.

• Execute the query any number of times, with the same or different set of search
parameters.

• Check the status of the query.

• Obtain the result of the query.

How the Query object does the preceding tasks is determined by the Query objec
its associated Query Manager.

11.1.4 Query Languages

By using a very general model and by using predicates to deal with queries, the Query
Service is designed to be independent of any specific query languages. Therefore
particular Query Service implementation can be based on a variety of query languages
and their associated query processors.

However, in order to provide query interoperability among the widest variety of query
systems and to provide object-level query interoperability, a Query Service provider
must support one of the following two query languages: SQL Query or OQL.

(Query capability is commonly implemented in database systems, hence there are
many products, tools, trained users, and experiences based on these implementa
To leverage this, we base the query language specification on SQL Query and O

• SQL Query. Specifically, SQL-92 Query, which is defined in Chapter 7 (Entry
SQL), and Sections 13.7, 13.8 and 13.10 (Entry SQL) of Reference 1 on page
11-27. SQL Query is used as the generic term to denote the evolution of SQL-92
Query. That is, it is envisioned that SQL-92 Query will evolve into SQL-9x Que
and so forth. These will be future versions of SQL Query. SQL-92 Query is the
current version.

• OQL. Specifically, OQL-93, which is defined in Chapter 4 of Reference 4 on page
11-27. OQL is used as the generic term to denote the evolution of OQL-93. That is,
it is envisioned that OQL-93 will evolve into OQL-9x, and so on. These will be
future versions of OQL. OQL-93 is the current version.
11-6 CORBAservices July 1996

11

l

es

 of

f data
QL-
s

 of

age

For those Query Service providers who intend to provide only basic object-leve
query interoperability (for example, to support the needs of the Life Cycle Service
or Property Service), the following must also be supported:

• OQL Basic. Specifically, OQL-93 Basic, which is defined in Sections 4.11.1.2,
4.11.1.3, 4.11.1.4, 4.11.1.5, 4.11.1.6 (set only), 4.11.1.7 (except first and last) and
4.11.1.10 in Reference 4 on page 11-27.

Ideally we would like to specify a single query language, for complete query
interoperability. The most widely used query language in currently available query
systems is SQL-92 Query, which does not support full object query capabilities. OQL-
93 does support full object query capabilities and contains a near- (but not exact)
subset of SQL-92 Query. Including SQL-92 Query provides the widest interoperability
with the most query systems, while including OQL-93 provides full OMG Object
Model support and full object query capabilities.

X3H2 and ODMG have started working together toward merging SQL Query and
OQL with the goal of specifying a single standard query language. As SQL Query and
OQL evolve, the OMG will revise of the Query Service to conform to future chang.

SQL Query

In the relational database world the accepted standard for database language is SQL-92
(Reference 1 on page 11-27). The ANSI X3H2 committee is working on a new
version, SQL3 (Reference 5 on page 11-27), which will i nclude object extensions,
among other things. The committee is still working on the details of the modeling
constructs; the object model under consideration is different from the OMG’s Object
Model. It is important for the eventual SQL object model to be fully compatible with
the OMG Object Model so that SQL Query, the query subset of SQL, can serve as the
query lingua franca in the OMG environment.

SQL-92 is a full database language. Functionally, it consists of the following types
language statements: schema; data; transaction; commection; session; dynamic;
diagnostics; and embedded exception declaration. Among these, only a subset o
statements deal directly with query. This subset is defined to be SQL-92 Query. S
92 Query basically deals with query over tables (special kind of collections) of row
(special kind of dynamic data structures). As such, it concerns with a sub-domain
object query.

OQL

In the object database world the leading standard is ODMG-93 (Reference 4 on p
11-27). The ODMG-93 standard includes an object model, based on the OMG’s Core
Object Model, with extensions, to form the proposed object database profile. Also
included is the Object Definition Language, ODL, which is a strict superset of IDL,
providing a means to define objects in this profile model. All extensions, including
attributes and relationships, are visible in the object interfaces as operations, and hence
remain compatible with OMG IDL and the OMG architecture.
Query Service: v1.0 Service Description July 1996 11-7

11

-
e

and

s

ps
ODMG-93 also includes OQL (that is, OQL-93). OQL-93 is an adaptation of the SQL
92 Query capability to extend to all objects in the ODMG object model. It includes th
ability to include operation invocation in queries, to query over object inheritance
hierarchies, to invoke inter-object relationships, and to query over arbitrary collections.
OQL-93 is a query-only language; that is, it allows evaluation of a predicate and a
returned result, but includes no specific constructs for object modification. The ability
within OQL-93 to invoke operations provides the insert, update and delete capability
without violating encapsulation.

The OQL-93 syntax and semantics are not exactly compatible with SQL-92 Query.
However, ODMG is working with X2H2 to address this issue. It is important for the
eventual OQL to be fully compatible with SQL Query so that there is only one
standard query language. .

SQL Query = OQL

Both X3H2 and ODMG have agreed upon a vision of the evolution of SQL Query
OQL, as illustrated in Figure 11-3.

Figure 11-3 SQL Query = OQL

In Figure 11-3, solid lines indicate existing, defined specifications, while dotted line
indicate future specifications. As can be seen, SQL-92 Query is the query portion of
SQL-92. OQL-93, being a query only language and having object features, overla
with SQL-92 and is almost exactly compatible with it.

SQL-92
SQL Query
= OQL

SQL-92
Query

OQL-93

A AAA

AAA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAA

A

AA
AA
AA
AA
AA
AA
AA
AA
AA

A

A

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

A

A

AA
AA
AA
AA
AA
AAA AAA

AA

AAAA
AA
AA
AA
AA
AA

A AAA

SQL
11-8 CORBAservices July 1996

11

,

ons
cts

n

.

sed.

on
SQL-92 will evolve toward a future SQL, which is a full database language. OQL-93
will evolve toward a future OQL. The agreement from X3H2 and ODMG is to make
the query subset of SQL, SQL Query, and OQL identical so that there is a single
common query language specification.

11.1.5 Key Features

The following are key features of the Query Service:

• Provides operations of selection, insertion, updating, and deletion on collecti
of objects. The objects may be transient or persistent, local or remote; the obje
may have arbitrary attributes and operations.

• Accommodates different granularity of objects accessed by queries, including
good support for high performance access to fine-grained objects.

• Allows the scope of the objects accessible in and via the collections that are the
immediate operands of the query operations.

• Supports querying and/or returning complex data structures.

• Supports operating on user defined collections of objects.

• Supports operating on other kinds of collections and sets.

• Allows the use of attributes, inheritance, and procedurally-specified operations i
the query predicate and in the computation of results.

• Allows the use of available interfaces defined by OMG-adopted specifications.

• Allows the use of relationships for navigation, including testing for the existence
of a relationship between objects.

• Does not require breaking the encapsulation provided by the interfaces to objects

In addition, the Query Service:

• Provides an extensible framework for dealing with object query.

• Is independent of the specific syntax and semantics of the query language u
The query language can be SQL Query, OQL, a graphical query language, or any
other suitable object query language. In order to provide query interoperability
among the widest variety of query systems and object-level query
interoperability, a Query Service provider must support either SQL Query or
OQL (OQL Basic with basic object-level interoperability) as specified in Secti
11.1.4 on page 11-6.

• Allows for associative query and navigational query.
Query Service: v1.0 Service Description July 1996 11-9

11

nd

hich

e

11.2 Service Structure

11.2.1 Overview

The Query Service defines two types of service. The specification is organized arou
these types.

Type One: Collections

The Collection and Iterator interfaces define the interfaces to create and manipulate
collections of objects. The Collection interface is defined with operations for adding,
retrieving, replacing, and removing member objects. The collections that it represents
may be arbitrary in nature. The Iterator interface is defined with operations for
traversing over and retrieving objects within a collection.

Type Two: Query Framework

The Query Framework interfaces define a flexible and extensible framework for
dealing with object query. The QueryLanguageType interface provides the scheme to
use the OMG IDL type system to classify query language types. The QueryEvaluator
interface defines the basic operation to evaluate a query. The result of the query, w
can serve as the scope for further queries, is represented by the QueryableCollection.
The QueryManager interface defines a more powerful QueryEvaluator which can b
called upon to create arbitrary Query objects. Such objects can provide the capability
for graphical query construction, pre-compilation and optimization, asynchronous
query execution, and so forth.

11.2.2 Collection Interface Structure

The collection interfaces are arranged into the interface structure illustrated in
Figure 11-4. Dotted arrows represent association.

Figure 11-4 Collection interface structure

11.2.3 Query Framework Interface Hierarchy/Structure

The query framework interfaces are arranged into the interface hierarchy/structure
illustrated in Figure 11-5. Solid arrows represent inheritance and dotted arrows
represent association.

Collection IteratorAAAAAAAAAA
AA
AAAAAAACollectionFactory AAA

AAA
AAA AAAAAAAAAAAA
11-10 CORBAservices July 1996

11

.
Figure 11-5 Query Framework interface hierarchy/structure

11.2.4 Interface Overview

The Query Service defines the interfaces to support the functionality described in
Section 11.1 on page 11-1.

Table 11-1 and Table 11-2 give high level summaries of the Query Service interfaces
Collection interfaces are described in detail starting in the section Section 11.3 on
page 11-12. Query interfaces are described in Section 11.5 on page 11-19.

Table 11-1Interfaces defined in the CosQueryCollection module

Interface Purpose

CollectionFactory To create collections

Collection To aggregate objects

Iterator To iterate over collections

 QueryEvaluator

QueryableCollection

QueryQueryManager
AAA
AAA
AAA
A
AA
AA

AAA
AAA
AAA
A
AA
AAAAAA

Collection CosQuery-
Collection
module

QueryLanguageType
AA
AA
A
A
AA
AA
AAA
AAA
AA
AA
AAA
AAA
AA
AA

AA
AA
AA

A
A
AA
AA
AA

AAA
AAA
AAA
AA
AA

AAA
AAA
AAAAA
AA

.
Query Service: v1.0 Service Structure July 1996 11-11

11

ch

s can

tion
ts of

11.3 The Collection Model

11.3.1 Common Types of Collections

The Collection interface allows you to manipulate objects in a group. The objects that
are part of a Collection are called its elements. Examples of common types of
Collections are as follows:

• An Equality Collection has elements that can be checked for equality among ea
other. An example is a set.

• A Key Collection uses keys to identify elements (a key is part of an element). An
example is a key bag.

• An Ordered Collection has its elements arranged so that there is always a first
element, last element, next element, and previous element. Ordered Collection
be further classified as one of the following types:

• A Sequential Collection has sequentially ordered elements. An example is a
sequence.

• A Sorted Collection has sorted elements. An example is a sorted set (which is
also an equality Collection).

The Query Service defines only a top-level, basic Collection interface that supports
query on arbitrary collections without restriction to any particular type. Subtyping can
be used to map this basic Collection interface into a variety of collection classes,
including the ANSI C++ Standard Template Library (STL), ODMGs, and others. The
OMG Collection Service, available in the future, is expected to fit in similarly well.

11.3.2 Iterators

An Iterator is a movable pointer into a Collection. An Iterator is created in associa
with a Collection and can be used by a client to move through the member elemen
the Collection. When an Iterator is created for an ordered Collection, it points to the

Table 11-2Interfaces defined in the CosQuery module

Interface Purpose

QueryLanguageType and its
subtypes

To represent query language
types

QueryEvaluator To evaluate query predicates
and execute query operations

QueryableCollection To represent the scope and
result of queries

QueryManager To create query objects and
perform query processing

Query To represent queries
11-12 CORBAservices July 1996

11

d to

e or

e and
 a

beginning or the first element of the Collection. A series of next operations move it
through subsequent elements until it passes through the last element and points to the
end of the Collection. For unordered Collections, the elements are visited in an
arbitrary order. Each element is visited exactly once.

The Iterator interface allows traversing a Collection in a way that works consistently
for arbitrarily large Collections. In addition to the next operation, which can be use
move through the next element, it provides a reset operation to restart the iteration.
Multiple Iterators can be created to maintain state concerning traversal of the sam
different Collections.

The behavior of an Iterator can become undefined if elements are added to or deleted
from its associated Collection. This means that its behavior depends upon the typ
implementation of the Collection. In particular, an Iterator may become invalid as
result of such actions. Once an Iterator becomes invalid, it must be reset before it can
be used for traversal again.
Query Service: v1.0 The Collection Model July 1996 11-13

11
11.4 The CosQueryCollection Module

The CosQueryCollection module defines the Collection interfaces of the Query
Service. In particular, it defines the
• CollectionFactory interfaces, to create Collections.
• Collection interface, to represent generic collections.
• Iterator interface, to enumerate the Collections.

The CosQueryCollection module is shown below.

module CosQueryCollection {

exception ElementInvalid {};
exception IteratorInvalid {};
exception PositionInvalid {};

enum ValueType {TypeBoolean, TypeChar, TypeOctet, TypeShort,
TypeUShort, TypeLong, TypeULong, TypeFloat, TypeDouble,
TypeString, TypeObject, TypeAny, TypeSmallInt, TypeInteger,
TypeReal, TypeDoublePrecision, TypeCharacter, TypeDecimal,
TypeNumeric};

struct Decimal {long precision; long scale; sequence<octet>
value;}

union Value switch(ValueType) {
case TypeBoolean : boolean b;
case TypeChar : char c;
case TypeOctet: octet o;
case TypeShort : short s;
case TypeUShort : unsigned short us;
case TypeLong : long l;
case TypeULong : unsigned long ul;
case TypeFloat : float f;
case TypeDouble : double d;
case TypeString : string str;
case TypeObject : Object obj;
case TypeAny : any a;
case TypeSmallInt : short si;
case TypeInteger : long i;
case TypeReal : float r;
case TypeDoublePrecision : double dp;
case TypeCharacter : string ch;
case TypeDecimal : Decimal dec;
case TypeNumeric : Decimal n;

};
typedef boolean Null;
union FieldValue switch(Null) {

case false : Value v;
};
typedef sequence<FieldValue> Record;

typedef string Istring;
struct NVPair {Istring name; any value;};
typedef sequence<NVPair> ParameterList;

Figure 11-6 CosQueryCollection Module
11-14 CORBAservices July 1996

11
11.4.1 The CollectionFactory Interface

The CollectionFactory interface defines an operation for creating an instance of a
Collection.

interface Collection;
interface Iterator;

interface CollectionFactory {
Collection create (in ParameterList params);

};

interface Collection {
readonly attribute long cardinality;

void add_element (in any element) raises(ElementInvalid);
void add_all_elements (in Collection elements)

raises(ElementInvalid);

void insert_element_at (in any element, in Iterator where)
raises(IteratorInvalid, ElementInvalid);

void replace_element_at (in any element, in Iterator
where) raises(IteratorInvalid, PositionInvalid, ElementInvalid);

void remove_element_at (in Iterator where)
raises(IteratorInvalid, PositionInvalid);

void remove_all_elements ();

any retrieve_element_at (in Iterator where)
raises(IteratorInvalid, PositionInvalid);

Iterator create_iterator ();
};

interface Iterator {
any next () raises(IteratorInvalid, PositionInvalid);

void reset ();
boolean more ();

};
};

module CosQueryCollection {

Figure 11-6 CosQueryCollection Module
Query Service: v1.0 The CosQueryCollection Module July 1996 11-15

11

t

the

ions
Creating a Collection

Collection create (in ParameterList params);

This operation creates a new instance of a Collection. The factory is passed a list of
parameters, one of which must be:

“initial_size”, type long

which represents an initial, estimated number of elements. The Collection is initially
empty and may grow dynamically, both in elements and size. Other parameters tha
may be passed include, for example, “hints” relating to indexing, and so forth.

The ParameterList is defined to be a sequence of name-value pairs, of which
name is defined to be of type Istring. As is the case in the Naming Service,
Istring is a placeholder for a future OMG IDL internationalized string data type.

11.4.2 The Collection Interface

The Collection interface defines operations to:

• Add elements
• Replace elements
• Remove elements
• Retrieve elements

to and from a collection and an operation to create iterators for traversing the
collection.

The element type of a collection can be any. This is designed to accommodate
generality. For most common queries, the result collections tend to consist of elements
that are records or objects. For some specific queries, however, the result collect
may consist of elements of any data type.

Record is defined to be a sequence of FieldValues . A FieldValue may be
Null or may have a value. This is designed to provide direct mapping to similar
features available in a wide variety of existing query systems. The type of a
FieldValue can be one of the OMG IDL base types, string, Object or one of the
suggested mappings to SQL data types: TypeSmallInt; TypeInteger; TypeReal;
TypeDoublePrecision; TypeCharacter; TypeDecimal; and TypeNumeric. (TypeFloat is
the same as that defined for the OMG IDL base type.)

Determining the Cardinality

readonly attribute long cardinality;

This attribute identifies the number of elements that a Collection contains.

Adding an Element

void add_element (in any element) raises(ElementInvalid);
11-16 CORBAservices July 1996

11

ts

n.

or,

is
This operation adds an element to a Collection. Behaviors of all Iterators of the
Collection become undefined when the element is added.

A Collection implementation, in response to the invocation of the add_element()
operation, may internally decide whether to add the specified element, raising the
ElementInvalid exception if it decides not to add it. As discussed in “Queryable
Collections for Scope and Result” on page 11-5, this allows sublevel Query Evaluator
implementations that scope Queryable Collections to their own domain.

Adding Elements from a Collection

void add_all_elements (in Collection elements) raises
(ElementInvalid);

This operation adds all elements of the input Collection to a Collection. The elemen
are added in the Iterator order of the input Collection and are consistent with the
semantics of add_element(). This operation is really a sequence of add_element(). If
any elements are added, behaviors of all Iterators of the Collection become undefined.

Inserting an Element

void insert_element_at (in any element, in Iterator where)
raises(IteratorInvalid, ElementInvalid);

This operation inserts an element to a Collection at the position pointed to by the input
Iterator. Behaviors of all Iterators of the Collection, except the input Iterator, become
undefined when the element is inserted.

If the input Iterator is invalid, the IteratorInvalid exception will be raised. The
ElementInvalid exception will be raised as it is for the add_element() operatio

Replacing an Element

void replace_element_at (in any element, in Iterator where)
raises(IteratorInvalid, PositionInvalid, ElementInvalid);

This operation replaces the element of a Collection, pointed to by the input Iterat
with the input element. The input element must have the same positioning property as
the replaced element. (Only equality Collections and key Collections have positioning
property.)

If the input Iterator is invalid, the IteratorInvalid exception will be raised. If the
Iterator does not point at an element, the PositionInvalid exception will be
raised. The ElementInvalid exception will be raised in the same manner as it
for the add_element() operation.

Removing an Element

void remove_element_at (in Iterator where) raises
(IteratorInvalid, PositionInvalid);
Query Service: v1.0 The CosQueryCollection Module July 1996 11-17

11

or.
This operation removes the element of a Collection, pointed to by the input Iterat
After removal, behaviors of all Iterators of the Collection become undefined.

If the input Iterator is invalid, the IteratorInvalid exception will be raised. If the
Iterator does not point at an element, the PositionInvalid exception will be
raised.

Removing all Elements

void remove_all_elements ();

This operation removes all elements from a Collection. After removal, behaviors of all
Iterators of the Collection become undefined.

Retrieving an Element

any retrieve_element_at (in Iterator where) raises
(IteratorInvalid, PositionInvalid);

This operation retrieves the element of a Collection, pointed to by the input Iterator.

If the input Iterator is invalid, the IteratorInvalid exception will be raised. If the
Iterator does not point at an element, the PositionInvalid exception will be
raised.

Creating an Iterator

Iterator create_iterator ();

This operation creates an Iterator for a Collection. The Iterator is initially set at the
beginning of the Collection.

11.4.3 The Iterator Interface

The Iterator interface defines operations to:

• Access and navigate through elements of a collection

• Reset the iteration

• Test for completion of an iteration

Accessing the Current Element

any next () raises(IteratorInvalid, PositionInvalid);

This operation retrieves the element of a Collection, pointed to by the Iterator, and
advances the Iterator position. The operation will raise the IteratorInvalid
exception if the Iterator is invalid, and the PositionInvalid exception if the
Iterator does not point at an element.
11-18 CORBAservices July 1996

11

et of

t can

Resetting the Iteration

void reset ();

This operation resets the iteration to begin anew. The position of the Iterator is reset to
the beginning of a Collection.

Testing for Completion of an Iteration

boolean more ();

This operation returns true if there are more elements to be accessed and false if there
are not.

11.5 The Query Framework Model

The Query Framework interfaces provide an extensible framework for dealing with
query. This is accomplished in two ways. First, by providing a standard, generic s
object interfaces for handling query. Second, by providing extensibility so that these
object interfaces can be subtyped for further functionality.

The Query Framework interfaces define two levels of interfaces. The base level
consists of QueryEvaluator and QueryableCollection interfaces and provides the
minimal functionality for query. The advanced level consists of QueryManager and
Query interfaces and provides an extensible functionality for dealing with all aspects
of query.

11.5.1 Query Evaluators

A Query Evaluator is any object that supports the operation to evaluate a query. I
be a single object, an implicit collection of objects, or an explicit collection of objects
(particularly a Queryable Collection, as discussed in Section 11.5.2 on page 11-20).
An example of a Query Evaluator that manages implicit collections of persistent
objects is a database system.
Query Service: v1.0 The Query Framework Model July 1996 11-19

11

s, but

 are

ions

nd by

d so
The result of a query evaluation can be anything. In most cases, it is a Queryable
Collection, as illustrated in Figure 11-7. (The solid arrow represents operation
invocation and the dotted arrows represent association.)

Figure 11-7 Query Evaluator and Queryable Collection

11.5.2 Queryable Collections

A Queryable Collection supports the QueryEvaluator interface and, therefore, can be
used not only to represent the result of a query that consists of one or more object
also to define the scope to which further queries may be applied. An especially
interesting kind of Queryable Collection is the type extent, whose member objects
instances of a certain object type.

A Queryable Collection evaluates a query by either invoking the evaluation operat
on its member objects if they are Query Evaluators—or by evaluating the query
predicate on the attributes and operations of its member objects if they are not—a
combining the results from such invocations and evaluations. As such, the query
predicate must be a valid predicate for the Queryable Collection object and its member
objects. If any one of its member objects is a Queryable Collection, the predicate (the
applicable part, that is) must further be a valid predicate for its member objects, an
on. Therefore, the QueryableCollection interface provides a mechanism for nesting
queries to an arbitrary number of levels.

Queryable
Collection

AA
AAA
AA
AAA AAAAAAAAA

Query
Evaluator

Source
Collection

evaluate

IteratorAAAAA AAAAAAAAAAAAAAAAAAA AAAAAAAAAA

Result
Collection

CosQuery-
Collection
module
11-20 CORBAservices July 1996

11

ages

d. A
iverse

n,

text,
 in a
11.5.3 Query Managers

A Query Manager is a more powerful form of Query Evaluator. It provides the
operation to create Query objects. Working in tandem with a Query object, it man
the overall query processing and monitors the query execution. The QueryManager
contains the universe of collections of objects over which queries can be specifie
specific query, as represented by a Query object, operates on a subset of this un
of collections.

The relationship between a Query object and its Query Manager is shown in
Figure 11-8. (Dotted boxes represent logical entities; dotted arrows represent logical
associations.)

Figure 11-8 Query Manager and Query Object

11.5.4 Query Objects

A Query object represents a query and logically consists of the query specificatio
query status and query results. In addition, it contains the reference, either explicitly or
implicitly through the Query Manager, to the queryable collection that defines its
scope.

The Query object is responsible for composing and containing a query specification,
including parameters. The query specification may be represented in the form of
graphic, etc. A user may select a subset of the query specification to be executed
query. This is particularly useful for query debugging. The Query interface is expected
to be extended by vendors or users to provide the additional functionality for
composing and selecting the query specification.

AAAAAAAAAA

A
A
A
A
A
A
A

AAAAAAAAAAA
A
A
A
A
A
A

Query
Specification

AAAAAAAAAA

A
A
A
A
A
A
A

AAAAAAAAAAA
A
A
A
A
A
A

AAAAAAAAAA

A
A
A
A
A
A
A

AAAAAAAAAAA
A
A
A
A
A
A

AAAAAAAAAA

A
A
A
A
A
A

AAAAAAAAAAA
A
A
A
A
A

Queryable

Query
Result

Query
Status

Query
Manager

AAA
AAA
AAAAA
AAA
AA

AAAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA

AA
AAAA
AA
AA

A

AA
A
A

AA
AA
AAA

AA
AA
AAA

A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AAAA
AA
AA

A

AA
A
A

AAA
AAAA
AAA
AAA
A
A

A
A

AAAA
AAAA

AAA
AAASource

Collection

Result
CollectionAAA

AAAA
AAA
AAAA AAAAAAAA

Collection

AAA
AAA
AAAA AAAAAAAAA

Query
Query Service: v1.0 The Query Framework Model July 1996 11-21

11

d
The Query object is responsible for maintaining the status information and log
information regarding a query. The Query interface is expected to be extended by
vendors or users to provide the additional functionality for displaying the status
information.

The Query object also contains the results of a query. The Query interface is expected
to be extended by vendors or users to provide the additional functionality for browsing
query results. For example, successive results may be appended to previous results or
replace them. A user may browse query results by specifying the version numbers, an
so forth.
11-22 CORBAservices July 1996

11

 In

11.6 The CosQuery Module

The CosQuery module defines the query framework interfaces of the Query Service.
particular, it defines the following interfaces:

• QueryLanguageType interfaces to denote query language types.
• QueryEvaluator interface to represent query evaluators.
• QueryableCollection interface to denote collections which can serve as the result as

well as the source of a query.
• QueryManager interface to create queries and perform query processing.
• Query interface to represent queries.

The CosQuery module is shown below.

 module CosQuery {

exception QueryInvalid {string why};
exception QueryProcessingError {string why};
exception QueryTypeInvalid {};

enum QueryStatus {complete, incomplete};

typedef CosQueryCollection::ParameterList ParameterList;
typedef CORBA::InterfaceDef QLType;

interface QueryLanguageType {};
interface SQLQuery : QueryLanguageType {};
interface SQL_92Query : SQLQuery {};
interface OQL : QueryLanguageType {};
interface OQLBasic : OQL {};
interface OQL_93 : OQL {};
interface OQL_93Basic : OQL_93, OQLBasic {};

interface QueryEvaluator {
readonly attribute sequence<QLType> ql_types;
readonly attribute QLType default_ql_type;

any evaluate (in string query, in QLType ql_type, in
ParameterList params) raises(QueryTypeInvalid, QueryInvalid,
QueryProcessingError);

};

interface QueryableCollection : QueryEvaluator, CosQueryC-
ollection::Collection {};

interface QueryManager : QueryEvaluator {
Query create (in string query, in QLType ql_type, in

ParameterList params) raises(QueryTypeInvalid, QueryInvalid);
};
Query Service: v1.0 The CosQuery Module July 1996 11-23

11

uery
interface Query {
readonly attribute QueryManager query_mgr;

void prepare (in ParameterList params) raises(QueryPro-
cessingError);

void execute (in ParameterList params) raises(QueryPro-
cessingError);

QueryStatus get_status ();
any get_result ();

};

};

11.6.1 The QueryLanguageType Interfaces

The QueryLanguageType interfaces consist of seven interfaces that form the interface
hierarchy illustrated in Figure 11-9.

Figure 11-9 QueryLanguageType Interface Hierarchy

A Query Service provider is expected to use subtyping from SQL_92Query, OQL_93
or OQL_93Basic to denote the query language that it supports. For example, if a Q
Service provider supports a query language, Object SQL, which complies with both
SQL-92Query and OQL-93Basic, then its interface type, ObjectSQL, should be
defined to be a subtype of SQL_92Query and OQL_93Basic:

interface ObjectSQL : SQL_92Query, OQL_93Basic {};

QueryLanguageType

SQLQuery

OQL_93

OQL_93Basic

OQL

OQLBasic

SQL_92Query
11-24 CORBAservices July 1996

11

 For
cts).

uery

11.6.2 The QueryEvaluator Interface

The QueryEvaluator interface defines an operation for evaluating queries. It lets a
client determine the query language types, and the default one, that it supports.

The result type of a query can be any. This is designed to accommodate generality.
most common queries, the results tend to be Collections (mostly of records or obje
For some specific queries, however, the result may be of any data type.

Determining the Supported Query Language Types

readonly attribute sequence<QLType> ql_types;

This attribute identifies the query language types supported by the QueryEvaluator.

Determining the Default Query Language Type

readonly attribute QLType default_ql_type;

This attribute identifies the default query language type supported by the
QueryEvaluator.

Evaluating a Query

any evaluate (in string query, in QlType ql_type, in
ParameterList params) raises(QueryTypeInvalid,
QueryInvalid, QueryProcessingError);

This operation evaluates a query and performs required query processing. If the q
language type is not specified, the default query language type is assumed.

The query language type specified must be supported by the QueryEvaluator.
Otherwise, the QueryTypeInvalid exception is raised. If the query syntax or
semantics is incorrect or if the input parameter list is incorrect, the QueryInvalid
exception is raised. If any error is encountered during query processing, the
QueryProcessingError exception is raised.

11.6.3 The QueryableCollection Interface

The QueryableCollection interface is a subtype of both the QueryEvaluator and
CosQueryCollection::Collection interfaces. Any collection that supports this interface
can be used to represent the result of a query that consists of one or more objects. It can
also be used to define the scope to which further queries may be applied.

11.6.4 The QueryManager Interface

The QueryManager interface is a subtype of the QueryEvaluator interface. It defines
an additional operation for creating Query objects. The QueryManager interface works
in tandem with a Query object in managing the overall query processing and monitoring
the query execution.
Query Service: v1.0 The CosQuery Module July 1996 11-25

11

tion
Creating a Query Object

Query create (in string query, in QlType ql_type, in
ParameterList params) raises(QueryTypeInvalid,
QueryInvalid);

This operation creates a Query object representing the input query. If the query
language type is not specified, the default query language type is assumed.

The query language type specified must be supported by the QueryManager.
Otherwise, the QueryTypeInvalid exception is raised. If the query syntax or
semantics is incorrect or if the input parameter list is incorrect, the QueryInvalid
exception is raised.

11.6.5 The Query Interface

The Query interface defines operations to:

• Prepare the query for execution
• Execute the query
• Determine the preparation and execution status of the query
• Obtain the result of the query

Determining the Associated Query Manager

readonly attribute QueryManager query_mgr;

This attribute identifies the QueryManager associated with the Query object.

Preparing the Query for Execution

void prepare (in ParameterList params) raises
(QueryProcessingError);

This operation performs the necessary processing, including optimization, on the query
so that it is ready for execution. Query preparation may be carried out in coopera
with the associated QueryManager.

If the input parameter list is incorrect or if any error is encountered during query
preparation, the QueryProcessingError exception is raised.

Executing the Query

void execute (in ParameterList params) raises
(QueryProcessingError);

This operation executes the query. If the query has not been prepared before, it will
prepare the query first. Query execution may be carried out in cooperation with the
associated QueryManager.

If the input parameter list is incorrect or if any error is encountered during query
execution, the QueryProcessingError exception is raised.
11-26 CORBAservices July 1996

11

e
Determining the Query Status

QueryStatus get_status ();

This operation returns the preparation and/or execution status of the query. This may
be carried out in cooperation with the associated QueryManager.

Obtaining the Query Result

any get_result ();

This operation returns the result of the query.

11.7 References

1. American National Standard X3.135-1992, Database Language - SQL, January,
1993.

2. Object Management Group. CORBA: Common Object Request Broker Architectur
and Specification. Published by the OMG, Framingham, MA. 1995.

3. Object Management Group. Object Services RFP 4, OMG Document Number
94.4.18, May, 1994.

4. Cattell, R.G.G. (ed), The Object Database Standard: ODMG-93, v1.2, Morgan
Kaufmann Publishers, San Mateo, California. 1994.

5. Melton, Jim (ed), SQL3 Part 2: Foundation, ANSI X3H2-94-329, August, 1994.
Query Service: v1.0 References July 1996 11-27

11
11-28 CORBAservices July 1996

Licensing Service Specification 12
rs

.
mon
vided

lica-
n-

s for

on-

cy.

ns-

nsing
12.1 Existing License Management Products

This section, “Background on Existing License Management Products,” is for reade
who are unfamiliar with the management of software licenses. It provides an overview of
licensing and addresses issues that must be faced in developing and selecting a license
management system.

Application suppliers need methods for controlling the access to and use of their products
In most cases, this is necessary to ensure fair compensation for use. The most com
control method used by software suppliers is licensing, where the license can be pro
through technical (software- or hardware-based) or contractual means. While contractual
licensing is a viable option, it does not provide the same level of control as technical
licensing, which uses hardware or software tools to control licensing. Therefore, app
tion suppliers continue to require technical licensing methods to complement legal co
tracts.

Along with the expanding need for technical licensing, there are specific requirement
licensing that must change to reflect today's computing environments. Traditional licens-
ing methods (nodelocked licensing and site licensing) evolved from computing envir
ments of the past, specifically timesharing systems and stand-alone systems such as PCs
and workstations. These older licensing methods are insufficient for current environments.

While today’s computing environments provide significant advantages for application
suppliers and end users, they also present opportunities. It is apparent that softwareand
hardware resources can be managed on a network-wide basis for maximum efficien
However, the resulting requirement for network-wide license sharing is less apparent. The
traditional licensing methods (expensive site licensing and inflexible nodelocked lice
ing) do not complement today’s fleixible and efficient computing environments.

Given these realities, sophisticated technical licensing tools are required. These lice
tools are important to all constituents in the market: application suppliers; hardware ven-
dors; and application users. Software suppliers need a licensing tool to support their busi-
CORBAservices March 1996 12-1

12

ort
their

ust

t, it

 is

nge

fers
age

g

nli-

e

a-
a sin-
ness and pricing models. Hardware vendors embed and offer the technology to supp
software developers and end users, and act themselves as application suppliers for
internally developed applications. End users interact with licensing technologies when
they use, manage, and pay for software applications.

12.1.1 Business Policy

In the development and selection of software licensing systems, the licensing system m
not impose its business practices on users. The software license is, in effect, a contract
between suppliers and customers that establishes a business relationhip between them.
Because a software licensing system plays an important role in regulating this contrac
must provide mechanisms to implement the flexible business practices that suppliersneed
to deal with a diverse customer base.

One danger in developing a licensing system is that it could reflect the business practices
of the developing organization. This is sometimes the case when a licensing system
developed for internal use in a large organization and then offered for general use. A
licensing system may work for one company, but will probably not address a wide ra
of business policies and practices. Often this problem manifests itself in subtle ways.

12.1.2 License Types

If not fully considered beforehand, it is possible to construct a software licensing
scheme that forces the software suppliers and end users into a limited model of
software licensing. If a licensing system offers only limited license types and/or of
few options for applying them, software suppliers are limited in the way they man
business relationships with their software customers.

Because software licensing touches many aspects of a relationship with a customer,
including upgrades, support, enhancements, and follow-on purchases, a licensin
system must provide a wide range of license options and many options for applying
them. Software suppliers—not licensing system developers—must choose which
licensing options they want to use.

The options allowed within various license types are also critical to ensure that application
suppliers have all the capabilities necessary to establish the business relationship they
desire with their customers. Capabilities such as allowing a grace period to provide u
censed users access to the software for a limited period may be critical in retaining the
goodwill of a large and influential customer. Other licensing features include selectiv
user inclusion or exclusion lists; reserved licensing (to ensure that a license is always
available to high-priority users); and multi-use rules that allow multiple use of an applic
tion with a single license. In addition, different license types can be used together in
gle application. This ensures that the supplier, not the licensing system, determines
business policies.
12-2 CORBAservices March 1996

12

tation

l way

 they
te
e

 of a

e com-

d
rporate

 its
be

-
r

ast.
-

12.1.3 A History of License Types

Providing a wide-ranging portfolio of license types ensures that application suppliers are
able to conduct business and arrange business policies as they deem appropriate.

Nodelocked licenses (which evolved from timesharing) allow a software product to be
used at the single node for which the license was created. As the stand-alone works
market grew, new licensing models were required. Major workstations users, such as
insurance companies, banks, and industrial corporations, needing a more economica
to purchase software, demanded that application suppliers offer a business model that
would provide unlimited use at a given site. That need gave rise to site licensing.

Site licensing often resulted in dissatisfaction of both suppliers and customers. Suppliers
were asked to assess a price for usage they did not fully understand. They often felt
were being asked to discount their future revenue too deeply. Customers felt that the si
license fees were excessive and made them pay for usage that might not occur in th
future.

As networks of computers developed, system vendors began to introduce the notion
concurrent use license. Concurrent use licenses define the number of users allowed to
access an application at a given time. These licenses are allowed to “float” around the net-
work, temporarily appropriated by users as applications are invoked, then returned to the
license repository when an application is terminated. Concurrent use licensing allows end
users to purchase licenses to match their usage and allows software providers to b
pensated for use of their products. Additionally, end users can easily add more concurrent
licenses as needed.

12.1.4 Asset Management

Licenses protect expensive corporate assets. Since licenses exist only as data they are
harder to secure than a server or workstation, but every bit as important to control an
manage. Control helps ensure that licenses are used in a manner which supports co
goals, such as improving compliance with paper software license contracts and reducing
exposure to legal action. This helps keep the corporation out of court and enhances
relationship with its software suppliers. Large corporate software purchasers want to
treated as equal partners with their suppliers; licensing makes this easier.

Managing both existing and new licenses maximizes their value. Old licenses might need
to be redeployed as projects and budgets change. If the license administrator can keep
track of software licenses, know which licenses are and are not being used, and can move
them to where they are needed, corporate waste will be reduced and productivity
improved.

Similarly, if a corporation has software usage metrics, it has a strong basis for understand
ing future needs. These metrics permit a corporation to purchase licenses in bulk at lowe
prices with the confidence that they are not over or under buying.

A corporation can also measure whether they have over or under purchased in the p
An important metric is the "shelfware" measure. How much software was purchased (per
Licensing Service: v1.0 Existing License Management Products March 1996 12-3

12

ight
n

g the

er try
ermis-
w

are

ither

ands
li-

 A
haps as unused components of "suites" of software) that never leaves the user's bookcase?
Reducing such waste is a major incentive for software customers to use automated soft-
ware licensing and asset management.

12.1.5 License Usage Practices

Application suppliers can implement one or more of the license types in their software
products. An application can be programmed to require multiple license types, to allow
the supplier to sell the product in different ways to different customers.

An ideal licensing system should be transparent to end users. For example, a user m
invoke an application, which makes calls to a licensing library. Then, the library functio
locates a server with a valid license. Assuming that a valid license is available and that
person is authorized to use the license, a grant is returned to the application, allowin
program to execute, all completely transparent to the end user.

If no licenses are immediately available, the application developer can program the soft-
ware to respond in a variety of ways. The application can automatically put the user on a
wait queue, query the user as to the course of action to take, recommend that the us
again later, or grant permission to run anyway. (The developer can choose to grant p
sion to run without a license if, for example, there is a “grace period” instituted to allo
for a smooth transition to a network licensing model.) If all licenses are temporarily
checked out and users go on a wait queue, the next available license can be granted
according to user priority settings defined at the end user site.

These choices and how they are implemented comprise the policy a software provider
chooses as a business model. Policy can be further broken into two components: fixed and
variable. Fixed components are coded into the application and determine things such as
what license types are permitted; whether multiple use rules apply to the application; or if
a grace period will be extended when a license is not available. Variable components
defined externally to the client application and include such things as external definition
of the hours a product may be used, or an external list of people allowed to use it. E
list may be producer- or end user-created.

12.1.6 Scalability

Some networks are small, consisting of just a few nodes, while others grow to thous
of machines. Typically, large user communities on large networks demand licensed app
cations from many different vendors. A licensing system and its runtime environment
must, therefore, scale well to the network and all its software.

12.1.7 Reliability

Sometimes, an application obtains a license from a license server and never returns it.
licensing system must be designed to prevent licenses from being stranded and to prevent
other client-server breakdowns.
12-4 CORBAservices March 1996

12

use

.

e

 are its
n

-

 the

 and

ll and
co-

ake
i-
ified
alue

Breakdowns occur for several reasons. The application or server could abort, or the net-
work could become partitioned between the application and server. These situations could
arise unintentionally or maliciously (for example, in an attempt to gain unauthorized
of an application). Any design must make careful trade-offs between license availability
and security enforcement. All designs require a scheme to detect breakdowns.

Generally, there are two detection methods: continuous detection or occasional check-in
Continuous detection methods ensure that while a license is in use by an application, the
application and server are both continuously aware of each other's existence and ar
immediately notified of a breakdown. These schemes are typically implemented by using
a connection protocol such as a port. The main advantages of a continuous scheme
directness, immediacy, and simplicity. The main disadvantage is its negative impact o
network performance. If a redundant server high availability model is employed, then con-
tinuous connections need to be maintained between the application and each of the serv
ers, thereby multiplying network traffic.

Occasional detection provides a method for the application to check in with the server
periodically before some time out has occurred. The breakdown is identified either by
server (if the time out occurs), or by the application (if the check-in is unsuccessful). This
method is very scalable and has a negligible impact on performance. The application sup-
plier should be able to adjust the time-out to allow trade-offs between higher security
higher availability.

Additionally, the occasional detection model is very tolerant of momentary interruptions
on the network. Continuous detection is not tolerant of such interruptions. Lost connec-
tions between the client and the server in a system using continuous detection causes a
breakdown or program termination.

Application suppliers will want to determine for themselves which action to take in the
case of a client-server breakdown. Some may want more strict enforcement and choose to
terminate an application; others might choose to display a polite message and allow the
application to continue.

12.1.8 Legacy Applications

Managing a business relationship with a minimum of disruption includes the ability to
accommodate existing customer applications within the scope of the licensing system.
This must be done without requiring access to or modification of the application's source
code, as the apparently simple solution of modifying source code may not always be avail-
able. Consider the personal computer, for which there are tens of thousands of sma
inexpensive applications. Modifying the sources of all these applications would be an e
nomically unacceptable approach even if the source code were available.

Software suppliers are eagerly awaiting an integrated licensing technology that will t
existing “shrink-wrapped” applications and enhance them to function in a licensed env
ronment. It may not be possible to provide a security fence as high as a source-mod
application, but the level of license security could be made commensurate with the v
of the application and well beyond the economic justification for attempting to defeat the
security.
Licensing Service: v1.0 Existing License Management Products March 1996 12-5

12

ring;
ust

 to

 that

urity,

ssed,

g the

e

ing

reby
12.1.9 Security

Until recently, licensing systems were required to enforce only simple, single-system
application use. Security infractions caused few implications. Today, security require-
ments must be designed to operate in more complex networks.

The distributed computing networks in use today are designed for easy resource sha
demand more complex licensing models (presenting new security challenges); and m
support mass distribution of software (on compact disk, for example). A supplier's ability
to ship trial copies of applications relies heavily on the security of the licensing system
ensure that prospective customers do not transgress the intended use permissions. An
application supplier must also rely on the licensing system’s security when it ships a com-
plete set of applications to its entire installed base: the licensing system must ensure
only the purchased applications are used.

Each application supplier has a different security need. Each will want to choose from a
spectrum of trade-offs, such as security versus availability, and effect of breach versus
development effort. A licensing system should not dictate one particular level of security,
but should allow application suppliers to choose the security level appropriate for their
business needs.

12.1.10 Client/Server Authentication

A secure licensing system should address the possibility of someone attempting to create
an impostor license server (an imposter server always grants licenses). Without sec
an impostor could be established by eavesdropping on valid client-server communication
and then mimicking the license grant protocol. Impostor clients should also be addre
since a successful impostor client could disrupt legitimate license activities by artificially
returning a license to the license server when it is actually still in use, thereby makin
returned license available for other users.

12.1.11 Example: Application Acquiring and Releasing a Concurrent Licens

This section contains an example of how an application might interact with one of the var-
ious license management products that exist today.

In a system that uses concurrenct licensing, end users at their workstations and PCs see no
change in their normal working routine. They start applications as they normally would.
The application has calls to the license library that transparently go over the network to
request a license for the application. Using transport-specific naming and location facili-
ties, a server holding a valid license is located and a “yes” is returned to the request
application.

The application need not be downloaded over the network to the workstation each time the
application is invoked. The application, once loaded, remains at the workstation as it nor-
mally would. Only a request for a license and a return grant go over the network, the
providing a rapid response time that is virtually unnoticed by users.
12-6 CORBAservices March 1996

12

r
-
nse
 of
er

cens-
When end users close an application, the license is “returned” to the server. The server
then can make this license available for other requests as they come in.

Administration and reporting tools act as clients to the license server, tapping into serve
databases and log files to access the stored information. The license servers, though imple
mented as multiple physical servers, operate as a single repository managing all lice
activity for the network. This single, “logical” server handles licenses for any number
vendors, for any number of products, with any number of product versions. The serv
also handles any number of clients making requests for its facilities, thereby automatically
scaling to accommodate increases in the number of users, machines, applications, and
licenses.

12.2 Service Description

Licensing Service terms are defined in Appendix A.

12.2.1 Overview

Figure 12-1 Licensing Service Relationships

The Licensing Service provides a mechanism for producers to control the use of their
intellectual property in a manner determined by their business and customer needs. In
Figure 12-1, the Licensing Service Manager, Producer Licensing Service, and the Li
ing System are shown as three distinct objects. Implementations of the Licensing Service

Implementation

Licensing
System

Cos Producer

Service

Service
Manager

Producer
Client

Cos License

Producer
Policy

License
Doc

License
Licensing Service: v1.0 Service Description March 1996 12-7

12

d

s. A

to
iate,
may differ. The dotted line indicates components that depend on the implementation
design and are addressed in terms of an example solution. Components outside the dotte
line are addressed in this chapter.

12.2.2 Key Components of a Licensing System

License Attributes

To implement controls, the Licensing Service needs a set of fundamental attribute
license can be thought of as having three dimensions of attributes:

Time includes, but is not limited to the attribute of Expiration/Duration. All licenses
should be able to have start/duration and expiration dates.

Value Mapping includes, but is not limited to, the following attributes:

• A unit is a quantity that can be used by policy
mechanisms.

• Allocative . Use of an license with an allocative
attribute removes it from the pool of available
allocative licenses for a given product until it is
returned. This is traditionally known as concurrent use
licensing.

• Consumptive . Use of a license with a consumptive
attribute permanently records its use. This can be used
to provide metering capability. It can also be used to
implement a “grace period” via the use of overflow
licenses when the maximum number of allowed concurrent
licenses has been met.

Consumer includes, but is not limited to, the following attributes:

• Assignment or Reservation. All licenses should be able
to be assigned to or reserved for a specific entity or
collection of entities. The definition of what an
entity may be is implementation-specific. One example
is where an entity is defined to be a specific user and
a collection of entities is a specific organization
comprised of a collection of specific users. Other
examples of what an entity might be include a specific
machine or collection of machines, a specific system
resource or resource collection, such as printers and
adapters.

Licensing Policy

The Licensing Service allows the license attributes to be combined and derived from
form any policy deemed necessary. This allows the producer and, where appropr
the end user administrators to control product use to fit their business environmenst.
12-8 CORBAservices March 1996

12

a

tual
t use
l
 the
s of
c
any

he

ture

ently
ver
The following derived attributes are representative examples of those that can be used for
a flexible policy implementation:

• Time windows

• Value

• Use by a collection of related objects

• Postage meter

• Gas meter

Time Windows

It may be necessary for some policies to constrain the time periods within which
particular license unit may be used. A time window attribute can be derived from the
expiration/duration attribute.

Value

 A Producer can define, as part of their Producer Policy, the mapping between ac
use of their intellectual property and the way license units are associated with tha
in the Licensing System. A simplistic example might be where a single unit of contro
represents a single active implementation of a given object with no constraints on
number of instances. A more complex example may be where the number of unit
control required may be calculated to satisfy a combination of requirements: a specifi
machine size where an implementation is active, how many instances, and how m
method activations are allowed in parallel.

Use By a Collection of Related Objects

The definition of granularity is very broad. In an OMA-compliant system, the
Licensing Service will allow control from the fine grain of a method activation to t
coarse grain control of a suite of objects acting together in a relationship to represent
an application. The relationship may be defined with the Relationship Service, a fu
Collection Service or any other Service providing relational capability for objects. The
Producer Policy can discover all theseobjects according to the implementation.

Postage Meter

Derived from consumptive, use of a license with a postage meter attribute perman
removes it from the pool of available licenses. The total number of licenses is ne
less than zero (0) for any product.

Gas Meter

Derived from consumptive, use of a license with a gas meter attribute adds to the pool
of consumed licenses. The total number of licenses is initialized to 0.

Examples of how these attributes can be used in license policy are as follows:
Licensing Service: v1.0 Service Description March 1996 12-9

12

op-
g

ns-

ro-

s the

will
of the

ticular

r
ta-

le of

t is
• An end user administrator could be empowered by the
Licensing Service to combine assignment and time
constraints on installed license units to constrain the
use of certain products to a set of individuals outside
of the normal work week.

• A producer could provide a personal use license by
combining an allocative attribute with an assignment
attribute to an individual with a unit attribute of 1.

• A producer could enhance the previous example by
allowing end user administrators to reassign the
license to a particular group.

Interfaces Isolated From Business Policies

The Licensing Service interfaces are isolated from policy issues. The client interface only
delivers notification that a producer wants some or all of the producer’s intellectual pr
erty to be controlled reliably and securely. Once the notification is made, the Licensin
Service can identify the appropriate policy.

For example, consider a producer who wants to restrict the activation of a particular
method to a certain simultaneous number of users. The producer need only tell the Lice
ing Service interface to indicate that a method has been activated and who activated it.
When the method activation is complete, an indication must be sent that the use is done.
The LS can then, in an implementation-specific way, determine if a producer-defined limit
has been met. The Licensing Service can notify the object, telling it what to do if a p
ducer policy is activated from overuse or another condition. The Producer can still over-
ride a generic policy with an alternate behavior for a particular Producer Client , since
policy responses are inside the Client implementation.

A Producer Policy implementation requires the use of other object services such a
Relationship and Property Services. As other services are defined, producer policy
implementations will broaden to use them. The producer client might change to
address any new producer policy, but the underlying Licensing Service interface
not require change. These services can be used to find out about objects outside
objects themselves.

For example, consider the Relationship Service. If producers choose to license a par
set of their objects that are related in a manner defined by the relationship service, the pro-
ducer policy implementation can obtain relationship information using the relationship
service. The objects involved need to have no special knowledge about their relationships
to one another other than that required to conspire together in the relation to achieve thei
desired functionality. Mechanisms provided to support this by an particular implemen
tion will vary. One implementation may choose to support this using a document sty
policy delivery, others may support producer policy object implementation. This can not
be defined or restricted by the Licensing Service client interface.

A mechanism for license document delivery is not defined in the Licensing Service: i
implementation-specific.
12-10 CORBAservices March 1996

12

f

s

n
ct
lli-

icy.

ll

s

th

g
olicy.

n-

r is a

ly

 and
 Ser-
12.2.3 Licensing in the CORBA Environment

Licensing in the CORBA world faces many issues. The provision of services by
objects in the ORB environment must allow for service producers to control use o
their intellectual property according to their business models.

Constraint of use must range from strict control to benign monitoring of intellectual
property. Strict control might allow only a specific number or combination of service
to be used. Benign monitoring mechanisms might allow service use without constraint,
but would track usage for later examination.

If producers require strict control, they will also require assurance that the informatio
provided by their licensing mechanism is secure. It would be pointless to choose stri
control if it were a trivial matter to replace some component within the ORB which nu
fied strict control enforcement without the producers’ services being aware of it. The level
of trust in the Licensing Service must meet the producer’s chosen enforcement pol
For example, suppose a producer has selected a policy that allows use of his object service
by an end user without constraint, but the policy requires the Licensing Service to log a
service usage so a monthly post-facto charge can be made for use of the service. This
capability is of limited use if the Licensing Service’s logging mechanism allows end user
to illicitly modify the logs to show low usage.

To enable usage control, there must be a mechanism that provides the end user wi
appropriate authorization. This authorization is usually conveyed as a text string that can
be thought of as a License Document. The size of this document may vary from a few tens
of characters to a few thousand characters depending on the functionality provided by the
underlying Licensing Service. The content of the document must be protected by an
implementation-specific mechanism.

To support a wide variety of business models, producers require usage constraint policies
(producer policies) that can vary for end user conditions. For example, a producer might
deliver a demonstration of a client service that allows unlimited use of the service durin
the demonstration period, but upon purchase requires a strict usage enforcement p
The enforcement policy may need to be varied depending on customer needs. A large cus-
tomer may negotiate a post-sale period where analysis of use is supported by benign mo
itoring and later moved to strict enforcement. Interfaces to the Licensing Service allow
this and many other varieties of usage controls without requiring changes to the pro-
ducer’s fundamental product.

The ability for an end user to apply constraints beyond those specified by a produce
well-recognized benefit to the end user. The capability in this area will vary across imple-
mentations of the Licensing Service.

Because we live in a dynamic economic environment, a producer’s policies must be easi
changed. The best approach for a Licensing Service specification is to separate the “I
want to be controlled!” requirements of the application or service from the “how am I to
be controlled?” requirements of the policy that have to deal with all of the exceptions
producer business practices. This separation enables a producer to choose a Licensing
vice implementation based on considerations of how well a specific Licensing Service
supports the producer’s business practices, as instantiated by the producer policies.
Licensing Service: v1.0 Service Description March 1996 12-11

12

ppli-
ing

 a
 LS

o the
ce is

e

r

ince,
ment.
the

.

 are

a very
The interface to the Licensing Service accomplishes this by allowing the controlled a
cations or services to notify the Licensing Service of its wish to be controlled specify
how the enforcement is to be performed.

Administration and policy issues are not addressed in detail by the Licensing Service
interface; instead, they are left to implementors. End users need to control their own inter-
face and reporting capabilities. The ability of the underlying Licensing Service to generate
management reports, both of historical and snapshot-of-time usage, will vary widely
depending on the implementation. The administrative interfaces for the Licensing Ser-
vices include command line only, GUI only, and combined GUI and command line. An
administrative interface would affect the ability of end users to manage their environments
as they choose, so it is not defined by the Licensing Service.

12.2.4 Design Principles

The design of the Licensing Service interface satisfies the following principles:

Neutrality. The Licensing Service should not introduce any constraint on the way
Producer can use the interfaces because of some underlying dependency on the
implementation. Producers need to be able to choose Licensing Service
implementations that allow them to deliver their products in a manner best suited t
individual Producer's business needs without requirements on the way the interfa
used. It is expected that LS implementations will allow many Producer Client objects
to reference a single instance of the associated ProducerSpecificLicenseService
interface to reduce the overhead of object creation.

Extensibility. The Licensing Service allows for extensions to support styles of
Producer Policies that are not currently obvious. The Licensing Service provides
extensibility in its object reference in the returned Action structure in the check-us
operation. This allows implementation-specific extensions to the notification
mechanism. The interface can also be extended by adding additional arguments and/o
operations; for example, in support of the Security Service.

Security. The Licensing Service provides a mechanism such that a degree of trust can
be established between the users of the interface (the Producers) and the underlying
license management system. This is different from a typical secure environment s
the Producer does not usually trust the end user or the end user security environ
A mechanism is provided to allow the Producer to authenticate, in real time, that
underlying license management system is a legitimate provider of the Licensing
Service. End user administration can not circumvent this authenticating mechanism

Performance. Implementations of the Licensing Service may choose to optimize
performance by the manner in which Producer Specific Licensing Service objects
managed. For example, an implementation could choose to allow multiple copies of a
Producer Specific Licensing Service to distribute client operations.

The Licensing Service mechanisms must allow both synchronous and asynchronous
messages so a producer can decide what is best for its application. For example,
short duration method activation may well be best suited, for performance reasons, to
12-12 CORBAservices March 1996

12

ng

ion-

hosen

l

es

te

rted
s to

force

t
using asynchronous meechanisms. On the other hand, if producers want to be
extremely strict, they might choose synchronous messages to prevent misuse and
accept the resulting loss of performance.

The Licensing Service provides mechanisms so that an application using the Licensi
Service cannot accidentally orphan a license by acquiring an allocative style of license
and never releasing when an application fails. Current mechanisms include connect
oriented, client-server communications; client-server heartbeat mechanisms; and
server-based, client status query mechanisms. Keep in mind that the mechanism c
may place a performance burden on the producer client.

12.2.5 Licensing Service Interfaces

The Licensing Service defines the interface between the Producer Client and the
Licensing Service Manager (LicenseServiceManager interface) and the interface
between the Producer Client and the Producer Licensing Service
(ProducerSpecificLicenseService interface). The interfaces enable Producers to contro
use of their intellectual property in any manner they deem appropriate for their
business model. The isolation of policy from the Licensing Service interfaces enhanc
Producer flexibility. The interfaces for administration, policy creation, and license
document creation are not addressed, because they are implementation-specific.

The LicenseServiceManager interface provides a mechanism for the Producer to loca
an object supporting the second interface, ProducerSpecificLicenseService. All of the
operations required to constrain use of producers’ intellectual property are suppo
by the second interface. This design allows the implementors of Licensing Service
make trade-offs such as those between client performance, licensing system
performance, and ease of administration.

Once a Producer Client implementation has obtained a ProducerSpecificLicenseService
object reference, the three operations (start_use, end_use, check_use) can
be performed on this interface within the Client where the Producer deems it correct. The
information returned from these operations provides the basis for the Producer to en
its chosen usage constraint policy.

Interfaces are Mandatory

All the interfaces are mandatory for all implementations. Optional arguments exist in
the LicenseServiceManager interface. For the check_use operation the
ProducerNotification component of the returned Action can be a nil object reference
indicating that the implementation does not support this kind of notification
mechanism. In the start_use operation the call_back argument can be a nil objec
reference indicating that the Producer client implementation is not using event services
and is designed to operate in a poll only mode. The properties argument to
start_use , check_use , and end_use can be nil.
Licensing Service: v1.0 Service Description March 1996 12-13

12

t

e
Constraints on Object Behavior

The Licensing Service interface assumes the provision of an Event Service (the Event
Service is specified in Chapter 4 of this manual. If an Event Service implementation
supports true asynchronous events—where delivery of an event can interrupt an
object’s task to invoke the push operation—then the Producer Client implementation
must manage its internal state in a re-entrant world.

Figure 12-2 Licensing Service Instance Diagram

In Figure 12-2, the Producer Client performs the operation
obtain_producer_specific_license_service on the LicenseServiceMan-
ager interface (Step 1). The Licensing Service Manager implementation creates an objec
(Steps 2 and 3) or locates an object reference to an object who has an interface Producer-
SpecificLicenseService and who is capable of responding to the particular producer chal-
lenge. It then returns the reference to the Producer Client (Step 4). The producer client
now uses the reference to perform the operations start_use, check_use, and
end_use (Steps 5 & 6). In implementations that support true asynchronous events, th
ProducerSpecificLicenseService object can asynchronously perform the push operation

Licensing
System

Cos Producer

 Service

 Service
 Manager

Producer
Client

Cos License

Producer
Policy

License
Doc

1

4

6
5

3

2
 License
12-14 CORBAservices March 1996

12

u-

e

ks for

l is

-

using the reference to the interface in the Producer Client provided as one of the arg
ments to the start_use operation in a previous step (in Step 5).

12.2.6 Licensing Event Trace Diagram

Figure 12-3 on page 12-16 represents the flow of events through Producer Client objects
and a Licensing Service implementation. The steps below are illustrated in the diagram.

1. Producer Client gets an object reference to the Producer Specific Licensing Service.

2. Producer Client determines that usage control is required and performs the
start_use operation.

3. Producer Client does an intial check_use c all to retrieve the initial
recommended_check_interval.

4. Producer Specific Licensing Service instance interprets policy and interacts with th
Licensing System as necessary.

5. If asynchronous events are supported, the Producer Specific Licensing Service as
event notification to the particular Producer Client at an interval determined by Pol-
icy.(See page 35 for information on asynchronous events).

6. Event Service delivers the event to the Producer Client.

7. Producer Client responds to the event by performing the check_use operation.

Steps 4,5,6,7 are repeated until the Producer Client instance indicates that usage contro
no longer necessary.

8. Producer Client performs the end_use operation when usage control is to be termi
nated.

If asynchronous events are not supported, the Client implementation will need to “poll”
the Producer Specific Licensing Service with the check_use operation at an interval
defined by the check_interval argument to the check_use operation. To initially
Licensing Service: v1.0 Service Description March 1996 12-15

12
retrieve this check_interval value, the Client will need to invoke a check_use immedi-
ately after the start_use call.

Figure 12-3 Licensing Event Trace Diagram

Client License Producer
Specific

License
Manager

Event
Service

1

2

5
6

7

4

5
6

8

1-obtain_producer_specific_license_service
2.start_use

4.inquiry to the Licensing System
5.ask for event notification
6.event notification
7.check_use
8.end_use

License
Service

Service
Manager

4

3

3.Initial check_use
12-16 CORBAservices March 1996

12
12.3 The CosLicensing Module

The CosLicensing module is a collection of interfaces that together define the
Licensing Service. The module contains two interfaces:

The LicenseServiceManager interface consisting of the following operation:

• obtain_producer_specific_license_service

The ProducerSpecificLicenseService interface consisting of the following operations:

• start_use

• check_use

• end_use

This section describes the LicenseServiceManager and ProducerSpecificLicenseService
interfaces and their operations.

The CosLicensing module is shown below. Note that this module definition uses some
definitions from the CosEventComm module (in the Event Service) and the CosProperty-
Service module (in the Property Service).

#include “CosEventComm.idl”
#include “CosPropertyService.idl”

Module CosLicensingManager {
 exception InvalidProducer{};
 exception InvalidParameter{};
 exception ComponentNotRegistered{};

typedef Object ProducerSpecificNotification;

enum ActionRequired { continue, terminate};

enum Answer { yes, no };

struct Action {
 ActionRequired action ;
 Answer notification_required ;
 Answer wait_for_user_confirmation_after_notification ;
 unsigned long notification_duration;
 ProducerSpecificNotification producer_notification;
 string notification_text;
};

struct ChallengeData {
 unsigned long challenge_index;
 unsigned long random_number;
 string digest;

};

Figure 12-4 CosLicensingManager Module
Licensing Service: v1.0 The CosLicensing Module March 1996 12-17

12
struct Challenge {
 enum challenge_protocol { default, producer_defined };
 unsigned long challenge_data_size;
 any challenge_data;

};

typedef any LicenseHandle;

interface ProducerSpecificLicenseService {

 readonly attribute string producer_contact_info
 readonly attribute string
producer_specific_license_service_info

 LicenseHandle start_use (
 in Principle principle,
 in string component_name,
 in string component_version,
 inProperty::PropertySet license_use_context,
 CosEventComm::PushConsumer call_back,
 inout Challenge challenge
)

 raises (InvalidParameter, ComponentNotRegistered);

 void check_use (
 in LicenseHandle handle,

 in Property::PropertySet
license_use_context,
 out unsigned long recommended_check_interval,
 out Action action_to_be_taken,
 inout Challenge challenge
)

 raises (InvalidParameter);

 void end_use (
 in LicenseHandle handle,
 Property::PropertySet license_use_context,
 inout Challenge challenge
)

 raises (InvalidParameter);

};

interface LicenseServiceManager {
 ProducerSpecificLicenseService

obtain_producer_specific_license_service (
 in string producer_name,
 inout Challenge challenge
)

#include “CosEventComm.idl”

Figure 12-4 CosLicensingManager Module
12-18 CORBAservices March 1996

12

t

Table 12-1Exceptions Raised by Licensing Service Operations

12.3.1 LicenseServiceManager Interface

The LicenseServiceManager interface defines a single operation: obtaining the
producer specific Licensing Service object.

The LicenseServiceManager interface allows a producer to control the use of their
intellectual property. The
obtain_producer_specific_license_service opera tion returns an
object reference that supports the ProducerSpecificLicenseService interface. This
operation is protected by the use of a producer challenge.

It is likely that implementations of the License ServiceManager will make use of other
Object Services, such as Life Cycle, to create a producer-specific instance of the
Licensing Service. The Life Cycle Service is not used directly in order to allow the
service implementation to cache object references for performance reasons. Requiring
instance creation on every use of the
obtain_producer_specific_license_service operation is not desirable,
but can be allowed in a particular implementation.

The operation obtain_producer_specific_license_service raises the
InvalidProducer and InvalidParameter exceptions.

 raises (InvalidProducer, InvalidParameter };
 };
};

Exception Raised Description

 InvalidProducer Indicates that the producer argument is not correct or tha
an appropriate producer cannot be found.

 InvalidParameter Indicates that one of the parameters is invalid. No
additional detail is provided in this document since this will
include a failed challenge. Additional information could
assist if someone wanted to make a deliberate attempt to
work out the challenge of a producer.

 ComponentNotRegistered Indicates that the specific component has not been
registered with the Licensing System.

#include “CosEventComm.idl”

Figure 12-4 CosLicensingManager Module
Licensing Service: v1.0 The CosLicensing Module March 1996 12-19

12

e

he
fe.

12.3.2 ProducerSpecificLicenseService Interface

The ProducerSpecificLicenseService interface defines three operations: notification
that a product has started to be used, notification that a product is still in use, and
notification that a product has finished being used.

Any object that possesses an object reference that supports the ProducerSpecific
LicenseService interface and is capable of satisfying the challenge for that particular
instance of the ProducerSpecificLicenseService interface can perform the following
operations:

• The start_use operation which allows producers to
notify the License Service that some aspect of their
product has started to be used and is to be controlled
by the service.

• The check_use operation which allows the producers to
notify the Licensing Service that some aspect of their
product that previously notified the service using a
start_use operation is still in use.

• The end_use operation which allows the producers to
notify the Licensing Service that an aspect of their
product, previously notified to the service in the
start_use operation, has completed its use.

All of the previously listed operations are protected by a challenge mechanism to allow
a producer to be satisfied that the instance of the Licensing ServiceManager is a
legitimate one to control the producer’s intellectual property.

The attribute producer_contact_info may be used to provide information that can be
displayed to an end user. The attribute producer_specific_license_service_info can b
used, if necessary, for a Producer Client to alter the way it interacts with different
ProducerSpecificLicenseService objects. These attributes are defined at creation of t
ProducerSpecificLicenseService instance and do not change during the instance’s li

The start_use, check_use and end_use capture and propagate information about the
user's runtime context to the Licensing Service via the license_use_context parameter.
This information will typically include the user's name, their node's name, network
address, local time, and so on. This information can then be used by the License
System for a variety of purposes:

• In an access control mechanism to determine whether or
not to allow the user to continue.

• In a private, possibly secure, usage logging mechanism.

• To provide data for peripheral management functions,
such as triggering an e-mail message to the network
administrator when resources run out.

The operations start_use, check_use , and end_use raise the InvalidParameter
exception.

The action_to_be_taken output parameter in the check_use operation is used to
give the ProducerClient information on actions to be taken as a result of its request to be
12-20 CORBAservices March 1996

12

t

active or running. The following describes the Action structure in more detail. Note tha
only the action field must be specified. All other fields can return a value of NULL in
which case behavior is determined by the coded policy defined within the ProducerClient
implementation.

• action : This field indicates if the ProducerClient
should continue or terminate its processing depending
on whether the requested license is available from the
Licensing System.

• notification_required : Indicates whether or not the
ProducerClient needs to prompt the local user with a
message indicating the results of the licensing
request.

• wait_for_user_confirmation_after_notification :
Indicates whether the ProducerClient needs to wait for
a confirmation before continuing its processing. This
is applicable only if a notification has been
requested.

• notification_duration : If the user notification is
required without confirmation, this indicates how long
the ProducerClient needs to wait before continuing with
its processing.

• producer_notification : This provides a reference to an
object used by a Licensing System to return
implementation specific results and control information
to the ProducerClient. For example, producer policy
instructions can be part of this object interface. It
could also communicate the expiration date and time.

• notification_text : This provides the text to be
communicated to the local user if required.

The check_use operation thus collects into a single client action the ability to address
the following requirements:

• Give the capability to the producer client to get both the results from and the actions
to be performed following a request for permission to be active and/or running.

• Give the capability to the producer client to periodically verify the right to be active
and/or running in the case of 'time dependent' licensing policy (for example, time
based consumable licenses, expiration times, and so forth). The
recommended_check_interval is the parameter strictly tied to this verification.

• Give the capability to both the producer client and the Licensing Service
implementation to detect the following unexpected conditions and then either
release the related active license and/or stop the usage accounting:

• Abnormal termination of either the producer client or
the Licensing Service.

• Unrecoverable breakdown in communication between the
Producer Client and the Licensing Service.
Licensing Service: v1.0 The CosLicensing Module March 1996 12-21

12

n as
m

nt

• The indirect detection of these conditions is performed
by forcing the producer client to issue a check request
within the check interval.

The check request concept is left to the specific Licensing System implementations.
However, that does not prevent the Licensing Service from using the check operatio
the heartbeat mechanism. The heartbeat mechanism is a general purpose mechanis
required inside a client/server based application to determine if the other end is still active.
Some applications dedicate a specific process or task to this purpose and rely on eve
detection, others use a polling mechanism, others use system notification exits, and so on.
Furthermore, because of the different concepts, the polling and exits could not be fully sat-
isfied by a single checking rate.

12.4 References

Object Management Group. Object Services RFP 4, OMG Document Number 94.4.18,
May, 1994.
12-22 CORBAservices March 1996

12

are

po-

 is

histi-
 the

-

he
 As an
ossi-

 Appendix A Licensing Service Glossary

License Document: Represents the fundamental element of control. It provides a secure
delivery vehicle describing such things as how many copies of the intellectual property
allowed, how long each copy may be used, and other elements of how producers wish to
constrain usage of their intellectual property.

Licensing Service: The general term for the complete service, it consists of three com
nents: Producer Client; Producer Licensing Service; and Licensing Service Manager.

Licensing Service Manager: The Common Object Service Licensing Service Manager
responsible for managing and creating the Producer Licensing Service objects.

License Unit: License documents may contain the concept of license units that are inter-
preted in a producer-specific manner by the producer policy. A typical example of a
license unit could be one where a single unit is to represent a single concurrent use of a
producer’s intellectual property by an individual user. The term license can be used to
refer to the smallest indivisible quantity of license units that a given Licensing System
implementation supports.

Licensing System: The implementation-specific component that provides fundamental
usage control that, in conjunction with the Producer Licensing Service, provides sop
cated producer policies. The Licensing System is responsible for securely managing
fundamental units of control - the License Documents for all Producers.

Producer: The company or individual who owns the intellectual property that requires
usage control.

Producer Client: Any object, or component of an object, that wants to have its usage con
trolled or metered via a Licensing Service.

Producer Policy: A Producer Policy is a collection of data that describes the detailed
terms and conditions, or business policies, which govern control and monitoring of a pro-
ducer’s intellectual property wherever the property can be used. The implementation of
producers’ policies is very specific to the Producer’s selection of a Licensing System.
There are two components to business policy implementation in a licensing system. One
component is contained in the License Document and includes fundamental things like
expiration date and quantities. The other component, the Producer Policy, includes t
broader aspects of business policy and may be derived from the License Document.
example of the broader issues that require Policy, the Producer Policy deals with all p
ble licensing exceptions such as when no license is found.

Producer-Specific Licensing Service: A producer-specific implementation that interacts
with and selects the particular Licensing System and Policy used by a specific Producer to
control the Producer’s intellectual property. In this chapter, the Producer-Specific Licens-
ing Service is is also referred to as the Producer Licensing Service.
Licensing Service: v1.0 References March 1996 12-23

12

t

e.

 this
 Appendix B Use of Other Services

This appendix describes the relationship between the Licensing Service and these
Object Services: Property; Relationship; and Security.

 B.1 Property Service

The properties argument to the start_use , check_use and end_use
operations enables implementations to choose between using the Property Service or
providing name value pairs directly to the Licensing Service. This decision can be
based on performance considerations or other practical concerns. For example, the
inability to differentiate ownership where a single property is used in a single
operation (method) but has differing values (as far as the Licensing Service is
concerned) because more than one principal is using the particular instance’s method a
one time.

Examples of properties that are useful:

• UNITS_TO_RESERVE provides a hint to the producer policy
implementation indicating that the currently controlled
aspect of the producers intellectual property has some
idea about what it is going to ‘use’ over the next
amount of time.

• VALUE_TO_CONSUMER provides a hint to the producer
policy implementation indicating that the currently
controlled aspect has some idea of the value of what it
is currently doing.

• NODE_NAME provides a hint to the producer policy
implementation about where the currently being
controlled object is executing.

These are currently always producer-specific. The Licensing Service places no semantic
or syntactic interpretation on these properties but makes them available, in an implemen-
tation-specific way, to the producers policy.

 B.1.1 License_Use_Context

There will need to be a set of information about each producer client made available to the
ProducerSpecificLicenseService as a "PropertySet" as specified by the Property Servic
The PropertySet is a dynamic equivalent of CORBA attributes. This set of information is
made available to the start_use , check_use and end_use operations for the
Licensing System to use in determining various aspects of policy. As one example,
data structure could contain:

• All data from the principal , as retrieved through the
new context information provided by the CORBA 2.0
specification and as used, for example, by the
Transaction Service.
12-24 CORBAservices March 1996

12

 it

for
• Any data the producer client may need, either in the
present or the future. Being all inclusive early on
reduces the need to re-deploy the licensed software if
subsequent licenses need additional data.

• Fields from the example list of licensing attributes
(provided below.)

The example list is useful to allow people other than the original producer to create license
documents for an object implementation. This happens in the case of either acquisitions
or distribution agreements. The example list makes it easier for one object implementa-
tion to be licensed by multiple license systems depending on the environment in which
finds itself.

The list items are suggestions. Currently, no central registry of names exists; also, many
items are not clearly defined. The list is a starting point and can serve as a check list
Producers.

Canonical List of user_context Properties:

• DATE_TODAY

• Today's date and time.

• GROUP_ID

• Integer group

• ID GROUP_NAME

• Name of group of users

• HARDWARE_FAMILY

• String of compatible hardware family

• HARDWARE_MODEL

• Hardware model

• HARDWARE_PRODUCER

• Manufacturer name

• NETWORK_ID

• Integer network identifier

• NETWORK_NAME

• String network identifier

• NETWORK_PROTOCOL

• String protocol name, for example, "TCP/IP" or
"DECnet"

• NETWORK_STYLE

• 1 is local, 2 is LAN, 3 is WAN.

• NODE_ID

• Integer node identifier

• NODE_NAME

• Name of computer

• OPERATING_SYSTEM

• String identifying the OS
Licensing Service: v1.0 References March 1996 12-25

12

iron-

e
n
nse

se is

• OS_VERSION

• String identifying the OS version

• PROCESS_FAMILY

• String identifying a group of related processes

• PROCESS_ID

• Integer identifying a process number

• PROCESS_NAME

• String identifying the name of the process

• PROCESS_TYPE

• 1 is batch, 2 is interactive, 3 is other

• PRODUCT_NAME

• Name of intellectual property being protected

• PRODUCT_PUBLISHER

• Owner of intellectual property being protected

• PRODUCT_VERSION

• Version string of intellectual property

• PUBLIC_KEY

• String containing public key to test against Product

• RELEASE_DATE

• Integer indicating the date the software was released

• USER_ID

• Integer indicating user

• USER_NAME

• String containing user name

 B.1.2 Dependent Licenses

The Licensing Service can examine not only the most recent set of user runtime env
ment data but it can also examine data from previous runtime contexts collected along a
particular thread of control. For example, a user may log in as "Fred" and begin som
action under that name. This action may include an operation being dispatched to a
object implementation logged in as "root". If this second process needs to obtain a lice
which was reserved for "Fred" then it ought to be able to do so. The user should be known
by all the names associated with that thread of control.

Another example of a recursive license right is the "embedded" license. Such a licen
not valid unless another object implementation was used earlier on the thread of control.
A database software vendor might issue License Documents for use within, say, an
accounting package. Other uses which might be worth more must be licensed separately.
An example of an interface which would support a stack of License Use Context is as fol-
lows:

interface UserContext {
Property::PropertySet License_Use_Context create ();
void push(in Property::PropertySet License_Use_Context);
void pop ();
12-26 CORBAservices March 1996

12

ge

als
unsigned long getDepth ();
Property::PropertySet License_Use_Context top ();
Property::PropertySet License_Use_Context get (in unsigned long

which_frame);

void clear ();
void remove ();
}

 B.2 Relationship Service

Support for collections and relationships will be determined by the mechanisms made
available to producers by the particular implementations of the Licensing Service. It is
expected that the preferred mechanisms will be to allow the Producer Policy to make use
of Object Services such as the Relationship and Property Services, but this is not a require-
ment of the Licensing Service.

Each implementation of the Licensing Service can address the problem of how to mana
the relationships among licenses. The types of relations one can assume exists among
licenses can be generically classified as follows:

• Prerequisite licenses, for example. the previous
example of a database vendor.

• Corequisite licenses, that is, a set of licenses which
must all coexist to give the producer client the right
to be running.

• Exrequisite licenses, that is, a set of licenses that
can run only if others are not active.

• Generic dependent licenses, that is, a set of licenses
whose dependencies are described through a specific
constraint expression.

 B.3 Security Service

The Security Service will probably replace the logic in each Licensing System that de
with producer client authentication and access control.
Licensing Service: v1.0 References March 1996 12-27

12

f-
 Appendix C Producer Client Implementation Issues

 C.1 Client Implementation

In this example, a Producer decides to control method activation. In the Producer’s object
activation, the implementation performs the
obtain_producer_specific_license_service operation on the LicenseSer-
viceManager interface and stores the resultant object reference. In the implementation of
each method that is to be controlled, the start_use operation is performed on the
stored object reference.

Depending on whether asynchronous events are supported, the Producer implementation
will vary as follows:

• If true asynchronous events are supported, the Producer
implementation needs to provide an interface inherited
from CosEventComm, the PushConsumer interface.

• If asynchronous events are not supported, or the
Producer chooses to not use events, then each
implementation that uses the start_use operation needs
to use the check_use operation no less frequently than
the period specified in the recommended_check_interval
argument until the implementation performs an end_use
operation. If, within the recommended check interval,
the Producer Client does not perform the check_use
operation, the Producer Policy may choose to release
the associated licenses assuming that the Producer
Client has ceased functioning.

Producers must decide how they want to use the Property Service to provide properties to
the start_use, check_use and end_use operations. In the Producer implemen-
tation, the returned argument action_to_be_taken from the check_use operation needs
to influence how the object continues after each check_use operation.

The Producer needs to determine the name for each component and the version for each
component. The Producer will then need to produce the Licensing System implementation
dependant policy and license document for the Producer's chosen policy.

When a particular use of the Producer object is completed the end_use operation is
used to let the Licensing Service know that control is no longer required for that compo-
nent.

 C.2 Asynchronous Events

In CORBA implementations where true asynchronous events are supported, provision is
made in the start_use operation to provide the Licensing Service with the object re
erence that corresponds to a client PushConsumer interface. This will allow the license
12-28 CORBAservices March 1996

12
service to asynchronously send a push event to the specified interface with the arguments
defined in the following pseudocode:

 C.3 Pseudocode

struct AsyncLicenseData{

ProducersSpecificLicenseService service;

LicenseHandle handle;

Challenge challenge;

};

/* Producer client implements an interface for the 'push' operation:
*/

void xxxx_push(Object o, Environment *e, any data)

{

struct AsyncLicenseData *check;

/* get the actual information that is needed to proceed */

check = (struct AsyncLicenseData *)(data->_value);

/*

perform producer specific testing and lookup on:

 check->handle

 check->challenge

need to make sure that the component of this instance

that handle refers to is still active and that the

challenge is valid.

 */

 /*

 providing all is well, cause a check_use operation for

 the handle. Have to assemble the challenge, decide which

 properties are important for this handle and so forth.

 */
Licensing Service: v1.0 References March 1996 12-29

12
check->service->check_use(ev,

 check->handle,

 properties,

 interval,

 action,

 challenge);

/* test the challenge returned and so forth */

}

When the Producer Client has the push operation invoked, activating the routine
xxxx_push in the pseudocode example, the producer implementation should determine
which aspect of the implementation is referenced by the handle argument and then invoke
the check_use operation on the handle provided as one of the arguments to the push
operation. At thar point, the implementation should determine if the object related to the
handle is still active; determine if the challenge is valid; and then perform the
check_use operation on the provided object reference. The results from this operation
will indicate whether any action is to be taken and, if so, the implementation should pro-
ceed according to the Producer Policy.
12-30 CORBAservices March 1996

12

is

ntu-

sents

t
 Appendix D Challenge Mechanism

 D.1 Default

For a producer to verify that a particular instance of the LicenseServiceManager is legiti-
mate, a challenge mechanism is required. This requirement may either disappear or be
reduced if the Security Service delivers a similar mechanism that can then be inherited by
the LicenseServiceManager.

The mechanism proposed, by default, assumes the use of shared secrets in the producer
implementations of their objects and the specific instance of the Licensing Service that
involved to control the producer’s intellectual property.

The challenge mechanism is straightforward. When any operation is requested by a pro-
ducer’s instance a challenge structure is provided along with the normal parameters. This
challenge structure consists of the MD5 of all the arguments to the operation, a random
number, and a forward secret value known only to the producer. The Licensing Service
instance for this producer can confirm that the client instance is legitimate by verifying
that the challenge is correct. In return the instance of the license system sends back the
MD5 of the same random number and a reverse secret value again known only to the pro-
ducer. The instance invoking the operation on the Licensing Service can verify that the
Licensing Service is legitimate by validating the generated MD5.1 The challenge mecha-
nism defined in the proposed interfaces supports more than one set of shared for-
ward/reverse secrets. As part of the ChallengeData structure an index is provided,
challenge_index, that allows the client to choose which shared secret set is to be used in
the challenge. A conforming implementation of the LS needs to support at least four sets
of shared secrets whose indices are 0 through 3.

This mechanism is not intended to be completely secure. Instead, it provides trust
between the producer and the producer-specific instance of the Licensing Service. Eve
ally, the Security Service will probably replace the need for the challenge mechanism.

 D.2 Alternative

As an alternative to the default challenge, a Producer can choose to define its own
challenge protocol. By setting the challenge_protocol enumerated element of a
challenge to 'producer_defined' the definition of what the challenge element repre
becomes the responsibility of the producer and not the Licensing Service directly. This

1. MD5 is a message digest algorithm defined by R. Rivest in the Internet RFC 1321. It is in the public
domain and provides a mechanism to generate a 128-bit “fingerprint” of messages of arbitrary length. I
is conjectured that the difficulty of coming up with two messages that have the same digest is 2^64
operations and that generating a specific digest for a message is 2^128 operations, making it suitable for
the basis of the challenge protocol described in this specification.
Licensing Service: v1.0 References March 1996 12-31

12

ce is

one
al-

cer

r.

echa-

e, that

ider
will depend on the implementation of the Licensing Service, since the mechanisms
available to the producer to support this are defined by the way a Licensing Servi
implemented.

Note

If the object producer so chooses, the same program can be licensed by more than
Licensing System. It is simply a matter of who satisfies the challenge. In fact, the ch
lenge mechanism supports as many Licensing Service providers as an object produ
chooses to pick up. They can choose sets of challenge data to deal with particular provid-
ers and use a standard set of challenge data to get the first available service provide

It is not guaranteed to be true that all object producers will use the same challenge m
nism. However, as long as the object producer chooses to use the default challenge, this
will be the case. As soon as an object producer decides to use an alternate challeng
will be defined by the license system provider. At that point, only that implementation of
the Licensing Service can satisfy the challenge and remove the multiple service prov
capability. Default challenge mechanisms must be supported; however, if licensing sys-
tem providers offer an alternative, a producer need not use the default.
12-32 CORBAservices March 1996

 Property Service 13
.

 of

t
; it

t
13.1 Overview

13.1.1 Service Description

An object supports an interface. An interface consists of operations and attributesThe
interface is statically defined in OMG IDL. Two objects are of the same type if they
support the same interface.

Properties are typed, named values dynamically associated with an object, outside
the type system. There are many useful cases for properties. For example:

• Object Classification -- A particular document may be classified as important; i
must be read by the end of the day. Another document is marginally important
must be read by the end of the month. Yet another document is not marked
important. The classification of the document was invented by the user. It is no
part of the document’s type. However, a user may use a standard utility to find all
documents marked important.

• Object Usage Count -- An on-line service download utility increments a counter
every time an object has been downloaded by a user. The information is associated
with the object but it is not part of the object’s type.

The property service implements objects supporting the PropertySet interface or the
PropertySetDef interface. The PropertySet interface supports a set of properties. A
property is two tuple of: <property_name, property_value >.
property_name is a string that names the property. property_value is of type
any and carries the value assigned to the property.

The PropertySetDef interface is a specialization (subclass) of the PropertySet interface
that exposes the characteristics (or metadata) of each property (e.g. readonly or
read/write access). In general, this specification will use the term PropertySet to refer
to the collection of properties and will only use the term PropertySetDef when
explicitly referring to operations related to property metadata.
CORBAservices July 1996 13-1

13

il.

f

tions

f

r

 is
The association of properties with an object is considered an implementation deta
This property service specification allows for the creation of PropertySets or
PropertySetDefs via factory interfaces, or an object may inherit the PropertySet or
PropertySetDef interfaces.

Client’s Model of Properties

As with CORBA attributes, clients can get and set property values. However, with
properties, clients can also dynamically create and delete properties associated with an
object. Clients can manipulate properties individually or in batches using a sequence o
the Property data type called Properties .

In addition, when using objects that support the PropertySetDef interface, clients can
create and manipulate properties and their characteristics, such as the property mode.
The PropertySetDef interface also provides operations for clients to retrieve constraint
information about a PropertySet, such as allowed property types.

To aid in the client’s view of properties associated with an object, the client may
request a list of property names (PropertyNames) or the number of properties.

Iterators are used by the property service to return lists of properties when the number
of properties exceeds that which is expected by the client. Iterators contain opera
that allow clients fine-grained control over the enumeration of properties.

Object’s Model of Properties

Every object that wishes to provide a property service must support either the
PropertySet or PropertySetDef interface. PropertySet is the interface that provides
operations for defining, deleting, enumerating and checking for the existence of
properties. The PropertySetDef interface is a subclass of PropertySet that provides
operations to retrieve PropertySet constraints, define and modify properties with
modes, and to get and set property modes.

Subclasses of PropertySet or PropertySetDef may impose restrictions on some or all o
the properties they store.

Properties are intended to be the dynamic equivalent of CORBA attributes. As such,
the PropertySet interface provides exceptions to allow implementors to support the
concepts of a readonly property and a fixed property (i.e., a property that cannot be
deleted). In addition, the PropertySetDef interface provides operations for
implementors to declare their PropertySet constraints to clients. This mechanism is fo
those implementations that need the dynamics of properties, yet want the interface
control of CORBA attributes.

A PropertySet object may support the storage of property data types itself, or there
may be a “generic” PropertySet implementation that handles the parsing of property
data types and the memory management associated with storing properties. This
considered an implementation detail.
13-2 CORBAservices July 1996

13

n

he

-

When a PropertySet object receives a define_property request from a client, it
must ensure there are no property_name conflicts and then retain the property
information such that the object can later respond to get_property,
delete_property , and is_property_defined requests from clients.

When a PropertySet object receives a define_property request to an existing
property from a client, it must ensure that the any TypeCode of the
property_value of the request matches the existing property’s any TypeCode.

Use of property modes within a PropertySet is an implementation issue, as clients ca
neither access nor modify a property mode. For example, an implementation may
define some initial readonly properties at create time and raise the ReadOnlyProperty
exception if a client attempts to define a new property value.

13.1.2 OMG IDL Interface Summary

The property service defines interfaces to support functionality described in the
previous sections. The following table gives a high-level description of the property
service interfaces.

13.1.3 Summary of Key Features

The following are key features of the Property Service:

• Provides the ability to dynamically associate named values with objects outside t
static IDL-type system.

• Defines operations to create and manipulate sets of name-value pairs or name
value-mode tuples.

Table 13-1Property Service Interfaces

Interface Purpose

PropertySet Supports operations for defining, deleting, enumerating and
checking for the existence of properties.

PropertySetDef Supports operations for retrieving PropertySet constraints
and getting and setting property modes.

PropertiesIterator Supports operations to allow clients fine-grained control over
the enumeration of properties.

PropertyNamesIterator Supports operations to allow clients fine-grained control over
the enumeration of property names.

PropertySetFactory Creates PropertySets.

PropertySetDefFactory Creates PropertySetDefs.
Property Service: v1.0 Overview July 1996 13-3

13

al
es

r

n

ts of
The names are simple OMG IDL strings. The values are OMG IDL anys. The use
of type any is significant in that it allows a property service implementation to de
with any value that can be represented in the OMG IDL-type system. The mod
are similar to those defined in the Interface Repository AttributeDef interface.

• Designed to be a basic building block, yet robust enough to be applicable for a
broad set of applications.

• Provides “batch” operations to deal with sets of properties as a whole.

The use of “batch” operations is significant in that the systems and network
management (SNMP, CMIP, ...) communities have proven such a need when
dealing with “attribute” manipulation in a distributed environment.

• Provides exceptions such that PropertySet implementors may exercise control of (o
apply constraints to) the names and types of properties associated with an object,
similar in nature to the control one would have with CORBA attributes.

• Allows PropertySet implementors to restrict modification, addition and/or deletio
of properties (readonly, fixed) similar in nature to the restrictions one would have
with CORBA attributes.

• Provides client access and control of constraints and property modes.

• Does not rely on any other object services.

13.2 Service Interfaces

13.2.1 CosPropertyService Module

The CosPropertyService module defines the entire property service, which consis
data types, exceptions and the following interfaces:

• PropertySet

• PropertySetDef

• PropertySetFactory

• PropertySetDefFactory

• PropertiesIterator

• PropertyNamesIterator
13-4 CORBAservices July 1996

13

ata

d the

Data Types

The CosPropertyService module provides a number of structure and sequence d
types to manipulate PropertySet and PropertySetDef information.

A property is a two tuple of: <property_name, property_value >.
property_name is a string, which names the property. property_value is of
type any and carries the value assigned to the property. This data type is considere
base type for dealing with property data and is used throughout the PropertySet
interface.

Clients can manipulate properties individually or in batches using a sequence of the
Property data type called Properties or, when appropriate, a sequence of the
PropertyName data type called PropertyNames .

/***/
/* Data Types */
/***/

 typedef string PropertyName;
 struct Property {
 PropertyName property_name;
 any property_value;
 };

 enum PropertyModeType {
 normal,
 read_only,
 fixed_normal,
 fixed_readonly,
 undefined
 };

 struct PropertyDef {
 PropertyName property_name;
 any property_value;
 PropertyModeType property_mode;
 };

 struct PropertyMode {
 PropertyName property_name;
 PropertyModeType property_mode;
 };

 typedef sequence<PropertyName> PropertyNames;
 typedef sequence<Property> Properties;
 typedef sequence<PropertyDef> PropertyDefs;
 typedef sequence<PropertyMode> PropertyModes;
 typedef sequence<TypeCode> PropertyTypes;

Figure 13-1 Data types
Property Service: v1.0 Service Interfaces July 1996 13-5

13

cs

nce

cs

e of

 to

 a
A PropertyDef is a three tuple of: <property_name, property_value,
property_mode_type >. property_name is a string, which names the
property. property_value is of type any and carries the value assigned to the
property. property_mode_type is an enumeration that defines the characteristi
of the property. A property definition combines property characteristics (metadata)and
property data information and is used in the PropertySetDefFactory and
PropertySetDef interfaces. The PropertyDef data type provides clients access and
control of property metadata.

Clients can manipulate property definitions individually or in batches using a seque
of the PropertyDef data type called PropertyDefs.

A PropertyMode is a two tuple of: <property_name,
property_mode_type >. property_name is a string, which names the
property. property_mode_type is an enumeration that defines the characteristi
of the property. The PropertyMode data type is used in the PropertySetDef
interface and provides clients access and control of property metadata.

Clients can manipulate property modes individually or in batches using a sequenc
the PropertyMode data type called PropertyModes.

There are five mutually exclusive property mode types defined:

• Normal means there are no restrictions to the property. A client may define new
values to an existing property or delete this property.

• Readonly means clients can only get the property information. However, a readonly
property may be deleted.

• Fixed_Normal means the property cannot be deleted. However, clients are free
define new values to an existing property.

• Fixed_Readonly means the property cannot be deleted and clients can only get the
property information.

• Undefined is used to signify PropertyNotFound when requesting a multiple get
mode request. Using this on an operation that sets the mode of a property (e.g.
set_mode or define_property_with_mode) will raise the
UnsupportedMode exception.

Restrictions on the property_mode_type field is an implementation issue. For
example, a PropertySetDef implementation may choose to not support a client setting
property to the fixed_readonly mode.
13-6 CORBAservices July 1996

13
Exceptions

The PropertySet interface supports the following exceptions.

/***/
/* Exceptions */
/***/
 exception ConstraintNotSupported{};
 exception InvalidPropertyName {};
 exception ConflictingProperty {};
 exception PropertyNotFound {};
 exception UnsupportedTypeCode {};
 exception UnsupportedProperty {};
 exception UnsupportedMode {};
 exception FixedProperty {};
 exception ReadOnlyProperty {};

 enum ExceptionReason {
 invalid_property_name,
 conflicting_property,
 property_not_found,
 unsupported_type_code,
 unsupported_property,
 unsupported_mode,
 fixed_property,
 read_only_property
 };

 struct PropertyException {
 ExceptionReason reason;
 PropertyName failing_property_name;
 };

 typedef sequence<PropertyException> PropertyExceptions;

 exception MultipleExceptions {
 PropertyExceptions exceptions;
 };

Figure 13-2 PropertySet interface exceptions.
Property Service: v1.0 Service Interfaces July 1996 13-7

13

e

ns is
• ConstraintNotSupported

Indicates that either the allowed_property_types,
allowed_properties, or allowed_property_defs parameter could
not be properly supported by this PropertySet or PropertySetDef.

• InvalidPropertyName

Indicates that the supplied property_name is not valid. For example, a
property_name of length 0 is invalid. Implementations may place other
restrictions on property_name .

• ConflictingProperty

Indicates that the user is trying to modify an existing property_name with an
any TypeCode in a property_value that is different from the current.

• PropertyNotFound

Indicates that the supplied property_name is not in the PropertySet.

• UnsupportedTypeCode

Indicates that a user is trying to define a property having an any TypeCode that is
not supported by this PropertySet.

• UnsupportedProperty

Indicates that a user is trying to define a property not supported by this PropertySet.

• FixedProperty

Indicates that a user is trying to delete a property that the PropertySet considers
undeletable.

• ReadOnlyProperty

This indicates that a user is trying to modify a property that the PropertySet
considers to be readonly.

• MultipleExceptions

This exception is used to return a sequence of exceptions when dealing with th
“batch” operations of define_properties and delete_all_properties
in the PropertySet interface, define_properties_with_modes and
set_property_modes in the PropertySetDef interface,
create_initial_propertyset in the PropertySetFactory interface, and
create_initial_propertysetdef in the PropertySetDefFactory interface.
Each operation defines the valid entries that may occur in the sequence.

A PropertyException is a two tuple of: <reason,
failing_property_name >. reason is an enumeration reflecting one of the
exceptions defined above. failing_property_name is a string, which names
the property. The sequence of property exceptions returned as MultipleExceptio
the PropertyExceptions data type.
13-8 CORBAservices July 1996

13

nd

ch

uld

ty
13.2.2 PropertySet Interface

The PropertySet interface provides operations to define and modify properties, list a
get properties, and delete properties.

The PropertySet interface also provides “batch” operations, such as
define_properties , to deal with sets of properties as a whole. The execution of
the “batch” operations is considered best effort (i.e., not an atomic set) in that not all
suboperations need succeed for any suboperation to succeed.

For define_properties and delete_properties , if any suboperation fails, a
MultipleExceptions exception is returned to identify which property name had whi
exception.

For example, a client may invoke define_properties using three property
structures. The first property could be accepted (added or modified), the second co
fail due to an InvalidPropertyName, and the third could fail due to a
ConflictingProperty. In this case a property is either added or modified in the
PropertySet, and a MultipleExceptions is raised with two items in the
PropertyExceptions sequence.

The get_properties and delete_all_properties “batch” operations utilize
a boolean flag to identify that mixed results occurred and additional processing may be
required to fully analyze the exceptions.

Making “batch” operations behave in an atomic manner is considered an
implementation issue that could be accomplished via specialization of this proper
service.

Defining and Modifying Properties

This set of operations is used to define new properties to a PropertySet or set new
values on existing properties.

 /* Support for defining and modifying properties */
 void define_property(
 in PropertyName property_name,
 in any property_value)
 raises(InvalidPropertyName,
 ConflictingProperty,
 UnsupportedTypeCode,
 UnsupportedProperty,
 ReadOnlyProperty);

 void define_properties(
 in Properties nproperties)
 raises(MultipleExceptions);

Figure 13-3 Operations used to define new properties or set new values
Property Service: v1.0 Service Interfaces July 1996 13-9

13

not
define_property

Will modify or add a property to the PropertySet. If the property already exists, then
the property type is checked before the value is overwritten. If the property does
exist, then the property is added to the PropertySet.

To change the any TypeCode portion of the property_value of a property, a client
must first delete_property , then invoke the define_property .

define_properties

Will modify or add each of the properties in Properties parameter to the
PropertySet. For each property in the list, if the property already exists, then the
property type is checked before overwriting the value. If the property does not exist,
then the property is added to the PropertySet.

This is a batch operation that returns the MultipleExceptions exception if any define
operation failed.

Table 13-2Exceptions Raised by Define Operations

Exception Raised Description

InvalidPropertyName Indicates that the property name is invalid. (A property
name of length 0 is invalid; implementations may place
other restrictions on property names.)

ConflictingProperty Indicates that the property indicated created a conflict in
the type or value provided.

UnsupportedTypeCode Indicates that the any TypeCode of the property_value
field is not supported in this PropertySet.

UnsupportedProperty Indicates that the supplied property is not supported in this
PropertySet, either due to PropertyName restrictions or
specific name-value pair restrictions.

ReadOnlyProperty Indicates that the property does not support client
modification of the property_value field.

MultipleExceptions The PropertyExceptions sequence may contain any of the
exceptions listed above, multiple times and in any order.
13-10 CORBAservices July 1996

13

l
Listing and Getting Properties

This set of operations is used to retrieve property names and values from a
PropertySet.

get_number_of_properties

Returns the current number of properties associated with this PropertySet.

get_all_property_names

Returns all of the property names currently defined in the PropertySet. If the
PropertySet contains more than how_many property names, then the remaining
property names are put into the PropertyNamesIterator.

get_property_value

Returns the value of a property in the PropertySet.

get_properties

Returns the values of the properties listed in property_names .

When the boolean flag is true, the Properties parameter contains valid values for al
requested property names. If false, then all properties with a value of type tk_void
may have failed due to PropertyNotFound or InvalidPropertyName.

 /* Support for Getting Properties and their Names */
 unsigned long get_number_of_properties();

 void get_all_property_names(
 in unsigned long how_many,
 out PropertyNames property_names,
 out PropertyNamesIterator rest);

 any get_property_value(
 in PropertyName property_name)
 raises(PropertyNotFound,
 InvalidPropertyName);

 boolean get_properties(
 in PropertyNames property_names,
 out Properties nproperties);

 void get_all_properties(
 in unsigned long how_many,
 out Properties nproperties,
 out PropertiesIterator rest);

Figure 13-4 Operations used to retrieve property names and values
Property Service: v1.0 Service Interfaces July 1996 13-11

13

to
A separate invocation of get_property for each such property name is necessary
determine the specific exception or to verify that tk_void is the correct any
TypeCode for that property name.

This approach was taken to avoid a complex, hard to program structure to carry mixed
results.

get_all_properties

Returns all of the properties defined in the PropertySet. If more than how_many
properties are found, then the remaining properties are returned in

Table 13-3Exceptions Raised by List and Get Properties Operations

Deleting Properties

This set of operations can be used to delete one or more properties from a PropertySet.

delete_property

Deletes the specified property if it exists from a PropertySet.

Exception Raised Description

PropertyNotFound Indicates that the specified property was not defined for
this PropertySet.

InvalidPropertyName Indicates the property name is invalid. (A property name of
length 0 is invalid; implementations may place other
restrictions on property names.)

MultipleExceptions The PropertyExceptions sequence may contain any of the
exceptions listed above, multiple times and in any order.

 /* Support for Deleting Properties */
 void delete_property(
 in PropertyName property_name)
 raises(PropertyNotFound,
 InvalidPropertyName,
 FixedProperty);

 void delete_properties(
 in PropertyNames property_names)
 raises(MultipleExceptions);

 boolean delete_all_properties();

Figure 13-5 Operations used to delete properties
13-12 CORBAservices July 1996

13

t all
erties

fore

e
delete_properties

Deletes the properties defined in the property_names parameter. This is a batch
operation that returns the MultipleExceptions exception if any delete failed.

delete_all_properties

Variation of delete_properties . Applies to all properties.

Since some properties may be defined as fixed property types, it may be that no
properties are deleted. The boolean flag is set to false to indicate that not all prop
were deleted.

A client could invoke get_number_of_properties to determine how many
properties remain. Then invoke get_all_property_names to extract the property
names remaining. A separate invocation of delete_property for each such property
name is necessary to determine the specific exception.

Note – If the property is in a PropertySetDef, then the set_mode operation could be
invoked to attempt to change the property mode to something other than fixed be
using delete_property .

This approach was taken to avoid the use of an iterator to return an indeterminat
number of exceptions.

Table 13-4Exceptions Raised by delete_properties Operations

Exception Raised Description

PropertyNotFound Indicates that the specified property was not defined.

InvalidPropertyName Indicates that the property name is invalid. (A property
name of length 0 is invalid; implementations may place
other restrictions on property names.)

FixedProperty Indicates that the PropertySet does not support the deletion
of the specified property.

MultipleExceptions The PropertyExceptions sequence may contain any of the
exceptions listed above, multiple times and in any order.
Property Service: v1.0 Service Interfaces July 1996 13-13

13

e

the

a

 the

ty
Determining If a Property Is Already Defined

The is_property_defined operation returns true if the property is defined in th
PropertySet, and returns false otherwise.

13.2.3 PropertySetDef Interface

The PropertySetDef interface is a specialization (subclass) of the PropertySet interface.
The PropertySetDef interface provides operations to retrieve PropertySet constraints,
define and modify properties with modes, and to get or set property modes.

It should be noted that a PropertySetDef is still considered a PropertySet. The
specialization operations are simply to provide more client access and control of
characteristics (metadata) of a PropertySet.

The PropertySetDef interface also provides “batch” operations, such as
define_properties_with_modes , to deal with sets of property definitions as
whole. The execution of the “batch” operations is considered best effort (i.e., not an
atomic set) in that not all suboperations need to succeed for any suboperation to
succeed.

For define_properties_with_modes and set_property_modes , if any
suboperation fails, a MultipleExceptions exception is returned to identify which
property name had which exception.

For example, a client may invoke define_properties_with_modes using four
property definition structures. The first property could be accepted (added or
modified), the second could fail due to an UnsupportedMode, the third could fail due
to a ConflictingProperty, and the fourth could fail due to ReadOnlyProperty. In this
case a property is either added or modified in the PropertySetDef and a
MultipleExceptions exception is raised with three items in the PropertyExceptions
sequence.

The get_property_modes “batch” operation utilizes a boolean flag to signal that
mixed results occurred and additional processing may be required to fully analyze
exceptions.

Making “batch” operations behave in an atomic manner is considered an
implementation issue that could be accomplished via specialization of this proper
service.

 boolean is_property_defined(
 in PropertyName property_name)
 raises(InvalidPropertyName);

Figure 13-6 is_property_defined operation
13-14 CORBAservices July 1996

13

 on a

at

Retrieval of PropertySet Constraints

This set of operations is used to retrieve information related to constraints placed
PropertySet.

get_allowed_property_types

Indicates which types of properties are supported by this PropertySet. If the output
sequence is empty, then there is no restrictions on the any TypeCode portion of the
property_value field of a Property in this PropertySet, unless the
get_allowed_properties output sequence is not empty.

For example, a PropertySet implementation could decide to only accept properties th
had any TypeCodes of tk_string and tk_ushort to simplify storage processing and
retrieval.

get_allowed_properties

Indicates which properties are supported by this PropertySet. If the output sequence is
empty, then there is no restrictions on the properties that can be in this PropertySet,
unless the get_allowed_property_types output sequence is not empty.

Defining and Modifying Properties with Modes

This set of operations is used to define new properties to a PropertySet or set new
values on existing properties.

 /* Support for retrieval of PropertySet constraints*/
 void get_allowed_property_types(
 out PropertyTypes property_types);

 void get_allowed_properties(
 out PropertyDefs property_defs);

Figure 13-7 Operations used to retrieve information related to constraints
Property Service: v1.0 Service Interfaces July 1996 13-15

13

t

the

n the
define_property_with_mode

This operation will modify or add a property to the PropertySet. If the property already
exists, then the property type is checked before the value is overwritten. The property
mode is also checked to be sure a new value may be written. If the property does no
exist, then the property is added to the PropertySet.

To change the any TypeCode portion of the property_value of a property, a client
must first delete_property , then invoke the define_property_with_mode .

define_properties_with_modes

This operation will modify or add each of the properties in the Properties parameter
to the PropertySet. For each property in the list, if the property already exists, then
property type is checked before overwriting the value. The property mode is also
checked to be sure a new value may be written. If the property does not exist, the
property is added to the PropertySet.

This is a batch operation that returns the MultipleExceptions exception if any define
operation failed.

 /* Support for defining and modifying properties */
 void define_property_with_mode(
 in PropertyName property_name,
 in any property_value,
 in PropertyModeType property_mode)
 raises(InvalidPropertyName,
 ConflictingProperty,
 UnsupportedTypeCode,
 UnsupportedProperty,
 UnsupportedMode,
 ReadOnlyProperty);

 void define_properties_with_modes(
 in PropertyDefs property_defs)
 raises(MultipleExceptions);

Figure 13-8 Operations used to define new properties or values
13-16 CORBAservices July 1996

13
Table 13-5Exceptions Raised by define Operations

Getting and Setting Property Modes

This set of operations is used to get and set the property mode associated with one or
more properties.

Exception Raised Description

InvalidPropertyName Indicates that the property name is invalid. (A property
name of length 0 is invalid; implementations may place
other restrictions on property names.)

ConflictingProperty Indicates that the property indicated created a conflict in
the type or value provided.

UnsupportedTypeCode Indicates that the any TypeCode of the property_value
field is not supported in this
PropertySet.

UnsupportedProperty Indicates that the supplied property is not supported in this
PropertySet, either due to PropertyName restrictions or
specific name-value pair restrictions.

UnsupportedMode Indicates that the mode supplied is not supported in this
PropertySet.

ReadOnlyProperty Indicates that the property does not support client
modification of the property_value field.

MultipleExceptions The PropertyExceptions sequence may contain any of the
exceptions listed above, multiple times and in any order.
Property Service: v1.0 Service Interfaces July 1996 13-17

13

name.
get_property_mode

Returns the mode of the property in the PropertySet.

get_property_modes

Returns the modes of the properties listed in property_names .

When the boolean flag is true, the property_modes parameter contains valid values
for all requested property names. If false, then all properties with a
property_mode_type of undefined failed due to PropertyNotFound or
InvalidPropertyName. A separate invocation of get_property_mode for each such
property name is necessary to determine the specific exception for that property

This approach was taken to avoid a complex, hard to program structure to carry mixed
results.

set_property_mode

Sets the mode of a property in the PropertySet.

Protection of the mode of a property is considered an implementation issue. For
example, an implementation could raise the UnsupportedMode when a client attempts
to change a fixed_normal property to normal .

 /* Support for Getting and Setting Property Modes */
 PropertyModeType get_property_mode(
 in PropertyName property_name)
 raises(PropertyNotFound,
 InvalidPropertyName);

 boolean get_property_modes(
 in PropertyNames property_names,
 out PropertyModes property_modes);

 void set_property_mode(
 in PropertyName property_name,
 in PropertyModeType property_mode)
 raises(InvalidPropertyName,
 PropertyNotFound,
 UnsupportedMode);

 void set_property_modes(
 in PropertyModes property_modes)
 raises(MultipleExceptions);
 };

Figure 13-9 Operations used to get and set property mode
13-18 CORBAservices July 1996

13

irs

set_property_modes

Sets the mode for each property in the property_modes parameter. This is a batch
operation that returns the MultipleExceptions exception if any set failed.

Table 13-6Exceptions Raised by Get and Set Mode Operations

13.2.4 PropertiesIterator Interface

A PropertySet maintains a set of name-value pairs. The get_all_properties
operation of the PropertySet interface returns a sequence of Property structures
(Properties). If there are additional properties, the get_all_properties operation
returns an object supporting the PropertiesIterator interface with the additional
properties.

The PropertiesIterator interface allows a client to iterate through the name-value pa
using the next_one or next_n operations.

Resetting the Position in an Iterator

The reset operation resets the position in an iterator to the first property, if one
exists.

next_one, next_n

The next_one operation returns true if an item exists at the current position in the
iterator with an output parameter of a property. A return of false signifies no more
items in the iterator.

Exception Raised Description

PropertyNotFound Indicates that the specified property was not defined.

InvalidPropertyName Indicates that the property name is invalid. (A property
name of length 0 is invalid; implementations may place
other restrictions on property names.)

UnsupportedMode Indicates that the mode supplied (set operations only) is not
supported in this PropertySet.

MultipleExceptions The PropertyExceptions sequence may contain any of the
exceptions listed above, multiple times and in any order.

 void reset();

Figure 13-10reset operation
Property Service: v1.0 Service Interfaces July 1996 13-19

13

ng

one

o
The next_n operation returns true if an item exists at the current position in the
iterator and the how_many parameter was set greater than zero. The output is a
properties sequence with at most the how_many number of properties. A return of
false signifies no more items in the iterator.

Destroying the Iterator

The destroy operation destroys the iterator.

13.2.5 PropertyNamesIterator Interface

A PropertySet maintains a set of name-value pairs. The get_all_property_names
operation returns a sequence of names (PropertyNames). If there are additional names,
the get_all_property_names operation returns an object supporting the
PropertyNamesIterator interface with the additional names.

The PropertyNamesIterator interface allows a client to iterate through the names usi
the next_one or next_n operations.

Resetting the Position in an Iterator

The reset operation resets the position in an iterator to the first property name, if
exists.

next_one, next_n

The next_one operation returns true if an item exists at the current position in the
iterator with an output parameter of a property name. A return of false signifies n
more items in the iterator.

 boolean next_one(out Property aproperty);
 boolean next_n(
 in unsigned long how_many,
 out Properties nproperties);

Figure 13-11next_one and next_n operations (properties)

 void destroy();

Figure 13-12destroy operation

 void reset();

Figure 13-13reset operation
13-20 CORBAservices July 1996

13
The next_n operation returns true if an item exists at the current position in the
iterator and the how_many parameter was set greater than zero. The output is a
PropertyNames sequence with at most the how_many number of names. A return of
false signifies no more items in the iterator.

Destroying the Iterator

The destroy operation destroys the iterator.

13.2.6 PropertySetFactory Interface

The create_propertyset operation returns a new PropertySet. It is considered
an implementation issue as to whether the PropertySet contains any initial properties
or has constraints.

The create_constrained_propertyset operation allows a client to create a
new PropertySet with specific constraints. The modes associated with the allowed
properties is considered an implementation issue.

The create_initial_propertyset operation allows a client to create a new
PropertySet with specific initial properties. The modes associated with the initial
properties is considered an implementation issue.

 boolean next_one(out PropertyName property_name);
 boolean next_n(
 in unsigned long how_many,
 out PropertyNames property_names);

Figure 13-14next_one, next_n operations (PropertyNames)

 void destroy();

Figure 13-15destroy operation

 interface PropertySetFactory
 {
 PropertySet create_propertyset();
 PropertySet create_constrained_propertyset(
 in PropertyTypes allowed_property_types,
 in Properties allowed_properties)
 raises(ConstraintNotSupported);
 PropertySet create_initial_propertyset(
 in Properties initial_properties)
 raises(MultipleExceptions);
 };

Figure 13-16 PropertySetFactory interface
Property Service: v1.0 Service Interfaces July 1996 13-21

13
Deletion of any initial properties is an implementation concern. For example, an
implementation may choose to initialize the PropertySet with a set of
fixed_readonly properties for create_propertyset or choose to initialize
all allowed_properties to be fixed_normal for
create_constrained_propertyset .

The relationship of a PropertySet to a specific object is an implementation issue.

13.2.7 PropertySetDefFactory Interface

The create_propertysetdef operation returns a new PropertySetDef. It is
considered an implementation issue as to whether the PropertySetDef contains any
initial properties or has constraints.

The create_constrained_propertysetdef operation allows a client to create a
new PropertySetDef with specific constraints, including property modes.

The create_initial_propertysetdef operation allows a client to create a new
PropertySetDef with specific initial properties, including property modes.

It should be noted that deletion of intial or allowed properties is tied to the property
mode setting for that property. In other words, initial or allowed properties are not
inherently safe from deletion.

 interface PropertySetDefFactory
 {
 PropertySetDef create_propertysetdef();
 PropertySetDef create_constrained_propertysetdef(
 in PropertyTypes allowed_property_types,
 in PropertyDefs allowed_property_defs)
 raises(ConstraintNotSupported);
 PropertySetDef create_initial_propertysetdef(
 in PropertyDefs initial_property_defs)
 raises(MultipleExceptions);
 };

Figure 13-17 PropertySet Def Factory interface
13-22 CORBAservices July 1996

13

data
 Appendix A Property Service IDL

The CosPropertyService module defines the entire property service, consisting of

types, exceptions, and interfaces described in previous sections.

module CosPropertyService
{
/***/
/* Data Types */
/***/

 typedef string PropertyName;
 struct Property {
 PropertyName property_name;
 any property_value;
 };

 enum PropertyModeType {
 normal,
 read_only,
 fixed_normal,
 fixed_readonly,
 undefined
 };

 struct PropertyDef {
 PropertyName property_name;
 any property_value;
 PropertyModeType property_mode;
 };

 struct PropertyMode {
 PropertyName property_name;
 PropertyModeType property_mode;
 };

 typedef sequence<PropertyName> PropertyNames;
 typedef sequence<Property> Properties;
 typedef sequence<PropertyDef> PropertyDefs;
 typedef sequence<PropertyMode> PropertyModes;
 typedef sequence<TypeCode> PropertyTypes;

 interface PropertyNamesIterator;
 interface PropertiesIterator;
 interface PropertySetFactory;
 interface PropertySetDef;
 interface PropertySet;

/***/
/* Exceptions */
/***/
 exception ConstraintNotSupported{};
 exception InvalidPropertyName {};
 exception ConflictingProperty {};
Property Service: v1.0 Service Interfaces July 1996 13-23

13
 exception PropertyNotFound {};
 exception UnsupportedTypeCode {};
 exception UnsupportedProperty {};
 exception UnsupportedMode {};
 exception FixedProperty {};
 exception ReadOnlyProperty {};

 enum ExceptionReason {
 invalid_property_name,
 conflicting_property,
 property_not_found,
 unsupported_type_code,
 unsupported_property,
 unsupported_mode,
 fixed_property,
 read_only_property
 };

 struct PropertyException {
 ExceptionReason reason;
 PropertyName failing_property_name;
 };

 typedef sequence<PropertyException> PropertyExceptions;

 exception MultipleExceptions {
 PropertyExceptions exceptions;
 };

/***/
/* Interface Definitions */
/***/
 interface PropertySetFactory
 {
 PropertySet create_propertyset();
 PropertySet create_constrained_propertyset(
 in PropertyTypes allowed_property_types,
 in Properties allowed_properties)
 raises(ConstraintNotSupported);
 PropertySet create_initial_propertyset(
 in Properties initial_properties)
 raises(MultipleExceptions);
 };

/*---*/
 interface PropertySetDefFactory
 {
 PropertySetDef create_propertysetdef();
 PropertySetDef create_constrained_propertysetdef(
 in PropertyTypes allowed_property_types,
 in PropertyDefs allowed_property_defs)
 raises(ConstraintNotSupported);
 PropertySetDef create_initial_propertysetdef(
 in PropertyDefs initial_property_defs)
 raises(MultipleExceptions);
13-24 CORBAservices July 1996

13
 };

/*---*/
 interface PropertySet
 {
 /* Support for defining and modifying properties */
 void define_property(
 in PropertyName property_name,
 in any property_value)
 raises(InvalidPropertyName,
 ConflictingProperty,
 UnsupportedTypeCode,
 UnsupportedProperty,
 ReadOnlyProperty);

 void define_properties(
 in Properties nproperties)
 raises(MultipleExceptions);

 /* Support for Getting Properties and their Names */
 unsigned long get_number_of_properties();

 void get_all_property_names(
 in unsigned long how_many,
 out PropertyNames property_names,
 out PropertyNamesIterator rest);

 any get_property_value(
 in PropertyName property_name)
 raises(PropertyNotFound,
 InvalidPropertyName);

 boolean get_properties(
 in PropertyNames property_names,
 out Properties nproperties);

 void get_all_properties(
 in unsigned long how_many,
 out Properties nproperties,
 out PropertiesIterator rest);

 /* Support for Deleting Properties */
 void delete_property(
 in PropertyName property_name)
 raises(PropertyNotFound,
 InvalidPropertyName,
 FixedProperty);

 void delete_properties(
 in PropertyNames property_names)
 raises(MultipleExceptions);

 boolean delete_all_properties();

 /* Support for Existence Check */
Property Service: v1.0 Service Interfaces July 1996 13-25

13
 boolean is_property_defined(
 in PropertyName property_name)
 raises(InvalidPropertyName);
 };

/*---*/
 interface PropertySetDef:PropertySet
 {
 /* Support for retrieval of PropertySet constraints*/
 void get_allowed_property_types(
 out PropertyTypes property_types);

 void get_allowed_properties(
 out PropertyDefs property_defs);

 /* Support for defining and modifying properties */
 void define_property_with_mode(
 in PropertyName property_name,
 in any property_value,
 in PropertyModeType property_mode)
 raises(InvalidPropertyName,
 ConflictingProperty,
 UnsupportedTypeCode,
 UnsupportedProperty,
 UnsupportedMode,
 ReadOnlyProperty);

 void define_properties_with_modes(
 in PropertyDefs property_defs)
 raises(MultipleExceptions);

 /* Support for Getting and Setting Property Modes */
 PropertyModeType get_property_mode(
 in PropertyName property_name)
 raises(PropertyNotFound,
 InvalidPropertyName);

 boolean get_property_modes(
 in PropertyNames property_names,
 out PropertyModes property_modes);

 void set_property_mode(
 in PropertyName property_name,
 in PropertyModeType property_mode)
 raises(InvalidPropertyName,
 PropertyNotFound,
 UnsupportedMode);

 void set_property_modes(
 in PropertyModes property_modes)
 raises(MultipleExceptions);
 };

/*---*/
 interface PropertyNamesIterator
13-26 CORBAservices July 1996

13
 {
 void reset();
 boolean next_one(
 out PropertyName property_name);
 boolean next_n (
 in unsigned long how_many,
 out PropertyNames property_names);
 void destroy();
 };

/*---*/
 interface PropertiesIterator
 {
 void reset();
 boolean next_one(
 out Property aproperty);
 boolean next_n(
 in unsigned long how_many,
 out Properties nproperties);
 void destroy();
 };
};
Property Service: v1.0 Service Interfaces July 1996 13-27

13
13-28 CORBAservices July 1996

 Time Service Specification 14
ser to

n

n
 to

e

cast
s
14.1 Introduction

14.1.1 Time Service Requirements

The requirements explicitly stated in the RFP ask for a service that enables the u
obtain current time together with an error estimate associated with it.

Additionally, the RFP suggests that the service also provide the following facilities:

• Ascertain the order in which “events” occurred.

• Generate time-based events based on timers and alarms.

• Compute the interval between two events.

Although the RFP mentions specification of a synchronization mechanism, the
submitters deemed it inappropriate to specify a single such mechanism as discussed i
Section 14.1.3, Source of Time.

14.1.2 Representation of Time

Time is represented many ways in programs. For example the X/Open DCE Time
Service [1] defines three binary representations of absolute time, while the UNIX
SVID defines a different representation of time. Other systems use time represented i
myriads of different ways. It is not a goal of the service defined in this submission
deal with all these different representations of time or to propose a new unifying
representation of time.

To satisfy the set of requirements that are addressed, we have chosen to use only th
Universal Time Coordinated (UTC) representation from the X/Open DCE Time
Service. Global clock synchronization time sources, such as the UTC signals broad
by the WWV radio station of the National Bureau of Standards, deliver time, which i
relatively easy to handle in this representation. UTC time is defined as follows.
CORBAservices July 1997 14-1

14

e

at

re

the

s.

tware

f the
Time units 100 nanoseconds (10 -7 seconds)

Base time 15 October 1582 00:00:00.

Approximate range AD 30,000

UTC time in this service specification always refers to time in Greenwich Time Zone.
The corresponding binary representations of relative time is the same one as for
absolute time, and hence with similar characteristics:

Time units 100 nanoseconds (10 -7 seconds)

Approximate range +/- 30,000 years

In order to ease implementation on existing systems, migration from them and
interoperation with them, care has been taken to ensure that the representation of tim
used interoperates with X/Open DCE Time Service [1], and that the operation for
getting current time is easy to implement on X/Open DCE Time Service, NTP [2] (and
for that matter any other reasonable distributed time synchronization algorithm th
one might come up with, e.g. ones presented in [3]) with appropriate values for
inaccuracies.

14.1.3 Source of Time

The services defined in this chapter depend on the availability of an underlying Time
Service that obtains and synchronizes time as required to provide a reasonable
approximation of the current time to these services. The following assumptions a
made about the underlying time synchronization service:

• The Time Service is able to return current time with an associated error parameter.

• Within reasonable interpretation of the terms, the Time Service is available and
reliable. The time provided by the underlying service can be trusted to be within
inaccuracy window provided by the underlying system.

• The time returned by the Time Service is from a monotonically increasing serie

Additionally, if the underlying Time Service meets the criteria to be followed for
secure time presented in Appendix A, Implementation Guidelines, then the Time
Service object is able to provide trusted time.

No additional assumptions are made about how the underlying service obtains the time
that it delivers to this service. For example it could utilize a range of techniques
whether it be using a Cesium clock attached to each node or some hardware/sof
time synchronization method. It is assumed that the underlying service may fail
occasionally. This is accounted for by providing an appropriate exception as part o
interface. The availability and accuracy of trusted time depends on what is provided by
the underlying Time Service.
14-2 CORBAservices July 1997

14

14.1.4 General Object Model

The general architectural pattern used is that a service object manages objects of a
specific category as shown in Figure 14-1.

Figure 14-1 General Object Model for Service

The service interface provides operations for creating the objects that the service
manages and, if appropriate, also provides operations for getting rid of them.

The Time Service object consists of two services, and hence defines two service
interfaces:

• Time Service manages Universal Time Objects (UTOs) and Time Interval Objects
(TIOs), and is represented by the TimeService interface.

• Timer Event Service manages Timer Event Handler objects, and is represented by
the TimerEventService interface.

The underlying facility that delivers time is associated with the UniversalTime and
SecureUniversalTime operation of the TimeService interface as described in
Section 14.2, Basic Time Service.

Service

Service Interface

Instances managed by

Instance
Interface

Object

the Service Object
Time Service: v1.0 Introduction July 1997 14-3

14

 in

e

 in

the

e

 and
nd,
14.1.5 Conformance Points

There are two conformance points for this service.

• Basic Time Service. This service consists of all data types and interfaces defined
the TimeBase and CosTime modules in Section 14.2, Basic Time Service. It
provides operations for getting time and manipulating time. A complete
implementation of the TimeBase and the CosTime modules is necessary and
sufficient to conform to the Time Service object standard. An implementation of the
CosTime module in which the universal_time operation always raises the
TimeUnavailable exception is not acceptable for satisfying this conformanc
point.

• Timer Event Service. This service consists of all data types and interfaces defined
the CosTimerEvent module in Section 14.3, Timer Event Service. It provides
operations for managing time-triggered event handlers and the events that they
handle. A complete implementation of this module is necessary to conform to
optional Timer Event Service component of the Time Service object. Since the
CosTimerEvent module depends on the CosTime module, it is not possible to
conform just to the Timer Event Service without conforming to Basic Time Service.
To claim conformance to Timer Event Service, both Timer Event Service and Time
Service must be provided.

14.2 Basic Time Service

All data structures pertaining to the basic Time Service, Universal Time Object, and
Time Interval Object are defined in the TimeBase module so that other services can
make use of these data structures without requiring the interface definitions. The
interface definitions and associated enums and exceptions are encapsulated in th
CosTime module.

14.2.1 Object Model

The object model of this service is depicted in Figure 14-2. The Time Service object
manages Universal Time Objects (UTOs) and Time Interval Objects (TIOs). It does so
by providing methods for creating UTOs and TIOs. Each UTO represents a time,
each TIO represents a time interval, and reference to each can be freely passed arou
subject to the caveats discussed in Appendix A, Implementation Guidelines.
14-4 CORBAservices July 1997

14

 to
Figure 14-2 Object Model for Time Service

14.2.2 Data Types

A number of types and interfaces are defined and used by this service. All definitions
of data structures are placed in the TimeBase module. All interfaces, and associated
enum and exception declarations are placed in the CosTime module. This separation of
basic data type definitions from interface related definitions allows other services
use the time data types without explicitly incorporating the interfaces, while allowing
clients of those services to use the interfaces provided by the Time Service to
manipulate the data used by those services.

module TimeBase {

typedef unsigned long long TimeT;
typedef TimeT InaccuracyT;
typedef short TdfT;
struct UtcT {

TimeT time; // 8 octets
unsigned long inacclo; // 4 octets
unsigned short inacchi; // 2 octets
TdfT tdf; // 2 octets

// total 16 octets.
};

struct IntervalT {
TimeT lower_bound;

Time Service

TimeService interface

UTO interface

universal_time

new_universal_time

absolute _time
compare_time

secure_universal_time

interval
time
inaccuracy
tdf
utc_time

UTO

TIO

UTO

TIO

TIO interface
spans
time
overlap
time_interval

uto_from_utc
new_interval
Time Service: v1.0 Basic Time Service July 1997 14-5

14

r
base is

TimeT upper_bound;
};

};

Type TimeT

TimeT represents a single time value, which is 64 bits in size, and holds the numbe
of 100 nanoseconds that have passed since the base time. For absolute time the
15 October 1582 00:00.

Type InaccuracyT

InaccuracyT represents the value of inaccuracy in time in units of 100
nanoseconds. As per the definition of the inaccuracy field in the X/Open DCE Time
Service [1], 48 bits is sufficient to hold this value.

Type TdfT

TdfT is of size 16 bits short type and holds the time displacement factor in the form
of minutes of displacement from the Greenwich Meridian. Displacements East of the
meridian are positive, while those to the West are negative.

Type UtcT

UtcT defines the structure of the time value that is used universally in this service.
The basic value of time is of type TimeT that is held in the time field. Whether a
UtcT structure is holding a relative or absolute time is determined by its history.
There is no explicit flag within the object holding that state information. The iacclo
and inacchi fields together hold a 48-bit estimate of inaccuracy in the time field.
These two fields together hold a value of type InaccuracyT packed into 48 bits.
The tdf field holds time zone information. Implementation must place the time
displacement factor for the local time zone in this field whenever they create a UTO.

The contents of this structure are intended to be opaque, but in order to be able to
marshal it correctly, at least the types of fields need to be identified.

Type IntervalT

This type holds a time interval represented as two TimeT values corresponding to the
lower and upper bound of the interval. An IntervalT structure containing a lower
bound greater than the upper bound is invalid. For the interval to be meaningful, the
time base used for the lower and upper bound must be the same, and the time base
itself must not be spanned by the interval.

module CosTime {
enum TimeComparison {

TCEqualTo,
TCLessThan,
14-6 CORBAservices July 1997

14

ope.

f

d to

e

en

aps.
TCGreaterThan,
TCIndeterminate

};

enum ComparisonType {
IntervalC,
MidC

};

enum OverlapType {
OTContainer,
OTContained,
OTOverlap,
OTNoOverlap

};
};

Enum ComparisonType

ComparisonType defines the two types of time comparison that are supported.
IntervalC comparison does the comparison taking into account the error envel
MidC comparison just compares the base times. A MidC comparison can never return
TCIndeterminate .

Enum TimeComparison

TimeComparison defines the possible values that can be returned as a result o
comparing two UTOs. The values are self-explanatory. In an IntervalC
comparison, TCIndeterminate value is returned if the error envelopes around the
two times being compared overlap. For this purpose the error envelope is assume
be symmetrically placed around the base time covering time-inaccuracy to
time+inaccuracy. For IntervalC comparison, two UTOs are deemed to contain th
same time only if the Time attribute of the two objects are equal and the Inaccuracy
attributes of both the objects are zero.

Enum OverlapType

OverlapType specifies the type of overlap between two time intervals. Figure 14-3
depicts the meaning of the four values of this enum. When interval A wholly contains
interval B, then it is an OTContainer of interval B and the overlap interval is the
same as the interval B. When interval B wholly contains interval A, then interval A is
OTContained in interval B and the overlap region is the same as interval A. Wh
neither interval is wholly contained in the other but they overlap, then the
OTOverlap case applies and the overlap region is the length of interval that overl
Finally, when the two intervals do not overlap, the OTNoOverlap case applies.
Time Service: v1.0 Basic Time Service July 1997 14-7

14

he

ond
Figure 14-3 Illustration of Interval Overlap

14.2.3 Exceptions

This service returns standard CORBA exceptions where specified in addition to t
service-specific exception described in this section.

module CosTime {
exception TimeUnavailable {};

}

TimeUnavailable

This exception is raised when the underlying trusted time service fails, or is unable to
provide time that meets the required security assurance.

14.2.4 Universal Time Object (UTO)

The UTO provides various operations on basic time. These include the following
groups of operations:

• Construction of a UTO from piece parts, and extraction of piece parts from a UTO
(as read only attributes).

• Comparison of time.

• Conversion from relative to absolute time, and conversion to an interval.

Of these, the first operation is required for completeness, since in its absence it would
be difficult to provide a time input to the timer event handler, for example. The sec
operation is required by the RFP, and the third is required for completeness and
usability.

module CosTime {
interface TIO; // forward declaration
interface UTO {

readonly attribute TimeBase::TimeT time;
readonly attribute TimeBase::InaccuracyT inaccuracy;
readonly attribute TimeBase::TdfT tdf;
readonly attribute TimeBase::UtcT utc_time;

UTO absolute_time();

TimeComparison compare_time(

Interval A

Interval B
OTContainerOTContained OTOverlap OTNoOverlap
14-8 CORBAservices July 1997

14

, as

he

ve
in ComparisonType comparison_type,
in UTO uto

);

TIO time_to_interval(
in UTO uto

);

TIO interval();
};

};

The UTO interface corresponds to an object that contains utc time, and is the means
for manipulating the time contained in the object. This interface has operations for
getting a UtcT type data structure containing the current value of time in the object
well as operations for getting the values of individual fields of utc time, getting
absolute time from relative time, and comparing and doing bounds operations on
UTOs. The UTO interface does not provide any operation for modifying the time in t
object. It is intended that UTOs are immutable.

Readonly attribute time

This is the time attribute of a UTO represented as a value of type TimeT .

Readonly attribute inaccuracy

This is the inaccuracy attribute of a UTO represented as a value of type
InaccuracyT .

Readonly attribute tdf

This is the time displacement factor attribute tdf of a UTO represented as a value of
type TdfT .

Readonly attribute utc_time

This attribute returns a properly populated UtcT structure with data corresponding to
the contents of the UTO.

Operation absolute_time

This attribute returns a UTO containing the absolute time corresponding to the relati
time in object. Absolute time = current time + time in the object. Raises
CORBA::DATA_CONVERSION exception if the attempt to obtain absolute time
causes an overflow.
Time Service: v1.0 Basic Time Service July 1997 14-9

14

eter

wo
Operation compare_time

Compares the time contained in the object with the time given in the input param
uto using the comparison type specified in the in parameter comparison_type ,
and returns the result. See the description of TimeComparison in Section 14.2.2,
Data Types, for an explanation of the result. See the explanation of
ComparisonType in Section 14.2.2 for an explanation of comparison types. Note
that the time in the object is always used as the first parameter in the comparison. The
time in the utc parameter is used as the second parameter in the comparison.

Operation time_to_interval

Returns a TIO representing the time interval between the time in the object and the
time in the UTO passed in the parameter uto . The interval returned is the interval
between the midpoints of the two UTOs and the inaccuracies in the UTOs are not
taken into consideration. The result is meaningless if the time base used by the t
UTOs are different.

Operation interval

Returns a TIO representing the error interval around the time value in the UTO as a
time interval. TIO.upper_bound = UTO.time+UTO.inaccuracy. TIO.lower_bound =
UTO.time - UTO.inaccuracy.

14.2.5 Time Interval Object (TIO)

The TIO represents a time interval and contains operations relevant to time intervals.

module CosTime {
interface TIO {

readonly attribute TimeBase::IntervalT time_interval;

OverlapType spans (
in UTO time,
out TIO overlap

);
OverlapType overlaps (

in TIO interval,
out TIO overlap

);

UTO time ();
}

}

Readonly attribute time_interval

This attribute returns an IntervalT structure with the values of its fields filled in
with the corresponding values from the TIO.
14-10 CORBAservices July 1997

14
Operation spans

This operation returns a value of type OverlapType depending on how the interval
in the object and the time range represented by the parameter UTO overlap. See the
definition of OverlapType in Section 14.2.2, Data Types. The interval in the object
is interval A and the interval in the parameter UTO is interval B. If OverlapType is
not OTNoOverlap , then the out parameter overlap contains the overlap interval,
otherwise the out parameter contains the gap between the two intervals. The
exception CORBA::BAD_PARAM is raised if the UTO passed in is invalid.

Operation overlaps

This operation returns a value of type OverlapType depending on how the interval
in the object and interval in the parameter TIO overlap. See the definition of
OverlapType in Section 14.2.2, Data Types. The interval in the object is interval A
and the interval in the parameter TIO is interval B. If OverlapType is not
OTNoOverlap , then the out parameter overlap contains the overlap interval,
otherwise the out parameter contains the gap between the two intervals. The
exception CORBA::BAD_PARAM is raised if the TIO passed in is invalid.

Operation time

Returns a UTO in which the inaccuracy interval is equal to the time interval in the ITO
and time value is the midpoint of the interval.

14.2.6 Time Service

The TimeService interface provides operations for obtaining the current time,
constructing a UTO with specified values for each attribute, and constructing a TIO
with specified upper and lower bounds.

module CosTime {
interface TimeService {

UTO universal_time()
raises(TimeUnavailable

);
UTO secure_universal_time()

raises(TimeUnavailable
);
UTO new_universal_time(

in TimeBase::TimeT time,
in TimeBase::InaccuracyT inaccuracy,
in TimeBase::TdfT tdf

);
UTO uto_from_utc(

in TimeBase::UtcT utc
);
Time Service: v1.0 Basic Time Service July 1997 14-11

14

rned

r

to a
TIO new_interval(
in TimeBase::TimeT lower,
in TimeBase::TimeT upper

);
};

};

Operation universal_time

The universal_time operation returns the current time and an estimate of
inaccuracy in a UTO. It raises TimeUnavailable exceptions to indicate failure of
an underlying time provider. The time returned in the UTO by this operation is not
guaranteed to be secure or trusted. If any time is available at all, that time is retu
by this operation.

Operation secure_universal_time

The secure_universal_time operation returns the current time in a UTO only
if the time can be guaranteed to have been obtained securely. In order to make such a
guarantee, the underlying Time Service must meet the criteria to be followed for
secure time, presented in Appendix A, Implementation Guidelines. If there is any
uncertainty at all about meeting any aspect of these criteria, then this operation must
return the TimeUnavailable exception. Thus, time obtained through this operation
can always be trusted.

Operation new_universal_time

The new_universal_time operation is used for constructing a new UTO. The
parameters passed in are the time of type TimeT and inaccuracy of type
InaccuracyT . This is the only way to create a UTO with an arbitrary time from its
components. This is expected to be used for building UTOs that can be passed as the
various time arguments to the Timer Event Service, for example.
CORBA::BAD_PARAM is raised in the case of an out-of-range parameter value fo
inaccuracy .

Operation uto_from_utc

The uto_from_utc operation is used to create a UTO given a time in the UtcT
form. This has a single in parameter UTC, which contains a time together with
inaccuracy and tdf . The UTO returned is initialized with the values from the
UTC parameter. This operation is used to convert a UTC received over the wire in
UTO.
14-12 CORBAservices July 1997

14

l
Operation new_interval

The new_interval operation is used to construct a new TIO. The parameters are
lower and upper , both of type TimeT , holding the lower and upper bounds of the
interval. If the value of the lower parameter is greater than the value of the upper
parameter, then a CORBA::BAD_PARAM exception is raised.

14.3 Timer Event Service

The module CosTimerEvent encapsulates all data type and interface definitions
pertaining to the Timer Event Service.

14.3.1 Object Model

The TimerEventService object manages Timer Event Handlers represented by Timer
Event Handler objects as shown in Figure 14-4. Each Timer Event Handler is
immutably associated with a specific event channel at the time of its creation. The
Timer Event Handler can be passed around as any other object. It can be used to
program the time and content of the events that will be generated on the channe
associated with it. The user of a Timer Event Handler is expected to notify the Timer
Event Service when it has no further use for the handler.

Figure 14-4 Object Model of Timer Event Service

Timer Event Service

Timer Event Service Interface

Timer Event Handler Objects

Timer Event Handler

register
unregister

Interface
set_timer
cancel_timer
set_data
status
time_set

event_time

Timer Events
Time Service: v1.0 Timer Event Service July 1997 14-13

14

nel of

 t

se

cted

erval
14.3.2 Usage

In a typical usage scenario of this service, the user must first create an event chan
the “push” type (see CORBA Service: Event Service Specification [Chapter 4]). The
user must then register this event channel as the sink for events generated by theimer
event handler that is returned by the registration operation. The user can then use the
timer event handler object to set up timer events as desired. The service will cau
events to be pushed through the event channel within a reasonable interval around the
requested event time. The implementor of the service will document what the expe
interval is for their implementation. The data associated with the event includes a
timestamp of the actual event time with the error envelope including the requested
event time.

14.3.3 Data Types

All declarations pertaining to this service is encapsulated in the CosTimerEvent
module.

module CosTimerEvent{
enum TimeType {

TTAbsolute,
TTRelative,
TTPeriodic

};

enum EventStatus {
ESTimeSet,
ESTimeCleared,
ESTriggered,
ESFailedTrigger

};

struct TimerEventT{
TimeBase::UtcT utc;
any event_data;

};
};

Enum TimeType

TimeType is used to specify whether a time is TTRelative , TTAbsolute , or
TTPeriodic in operations for setting timer intervals for the event-triggering
mechanism. The TTRelative value is used to specify that the time provided is
relative to current time, TTAbsolute is used to specify that the time provided is
absolute, and TTPeriodic is used to specify that the time provided is a period (and
hence a relative time) between successive events. If TTPeriodic is used, then the
same event continues to be triggered repeatedly at the completion of the time int
specified, until the timer is reset.
14-14 CORBAservices July 1997

14

ata

nt-

ad

or

Enum EventStatus

EventStatus defines the state of a TimerEventHandler object. The state
ESTimeSet means that the event has been set with a time in the future, and will be
triggered when that time arrives. ESTimeCleared means that the event is not set to
go off, and the time was cleared before the previously set triggering time arrived.
ESTriggered means that the event has already triggered and the appropriate d
has been sent the event channel. ESFailedTrigger means that the event did
trigger, but data could not be delivered over the event channel.

In case of TTPeriodic events, the status ESTriggered never occurs. Upon
successful triggering of a TTPeriodic event, the status is set to ESTimeSet .

Type TimerEventT

This is the structure that is returned to the event requester by the time-driven eve
triggering mechanism. It has two fields. The first field, utc , contains the actual time at
which the event was triggered. This value is set in the time field of utc . The
inaccuracy fields inacclo and inacchi of utc are set to the difference between
the requested event time and the actual event time.

The second field, event_data , contains the data that the requester of the event h
asked to be sent when the event was triggered.

14.3.4 Exceptions

Timer Event Service raises standard CORBA exceptions as specified in OMG IDL f
the service. It does not have any service-specific exceptions.

14.3.5 Timer Event Handler

Timer Event Handlers are created and managed by the Timer Event Service. A
TimerEventHandler object holds information about an event that is to be
triggered at a specific time and action that is to be taken when the event is triggered. It
provides operations for setting, resetting, and canceling the timer event associated with
it, as well as for changing the event data that is sent back as a part of a TimeEventT
structure on the event channel upon the triggering of the event. The only thing that
cannot be changed is the event channel associated with that event handler. An attribute
named status holds the current status of the event handler.

module CosTimerEvent {
interface TimerEventHandler {

readonly attribute EventStatus status;
boolean time_set(

out CosTime::UTO uto
);
void set_timer(

in TimeType time_type,
in CosTime::UTO trigger_time

);
Time Service: v1.0 Timer Event Service July 1997 14-15

14

d
boolean cancel_timer();
void set_data(

in any event_data
);
};

};

Attribute status

status is a readonly attribute that reflects the current state of the
TimerEventHandler . See the definition of EventStatus enumerator in Section
14.3.1, Object Model, for details.

Operation time_set

Returns TRUE if the time has been set for an event that is yet to be triggered, FALSE
otherwise. In addition, it always returns the current value of the timer in the event
handler as the out uto parameter.

Operation set_timer

Sets the triggering time for the event to the time specified by the uto parameter,
which may contain TTRelative , TTAbsolute or TTPeriodic time. The
time_type parameter specifies what type of time is contained in the uto parameter.
The previous trigger, if any, is canceled and a new trigger is enabled at the time
specified if absolute , or at current time + time specified if r elative . If a
relative time value of zero is specified (i.e. the time attribute of utc = 0LL), then
the last r elative time that was specified is reused. If no relative time was
previously specified, then a CORBA::BAD_PARAM exception is raised. If a
periodic time is specified (time_type == periodic), then the time parameter is
interpreted as a relative time and the time trigger is set at the periodicity define
by the time (i.e. at current time + time, current time + 2 * time, etc.).

Operation cancel_timer

Cancels the trigger if one had been set and had not gone off yet. Returns TRUE if an
event is actually canceled, FALSE otherwise.

Operation set_data

The data that will be passed back through the event channel in a TimerEventT
structure for all future triggering of the event handler is set to event_data .

14.3.6 Timer Event Service

The Timer Event Service provides operations for registering and unregistering events.

module CosTimerEvent {
14-16 CORBAservices July 1997

14

d

he

interface TimerEventService {

TimerEventHandler register(
in CosEventComm::PushConsumer event_interface,
in any data

);
void unregister(

in TimerEventhandler timer_event_handler
);
CosTime::UTO event_time(

in TimerEventT timer_event
);

};
};

Operation register

The register operation registers the event handler specified by the data and the
event_interface parameters. When the event handler is triggered, the data is
delivered using the push operation (of the PushConsumer interface in Chapter 4,
Event Service Specification, Section 4.3, CosEventComm Module) specified in the
event_interface parameter. Only the Push Model is supported for timer event
delivery. Note that the event handler needs to be primed with a triggering time using
the set_time operation of the TimerEventHandler interface in order for an actual
event to be triggered. At initialization, the time in the handler is set to current time an
its state is set to ESTimeCleared , and no event is scheduled. Raises
CORBA::NO_RESOURCE exception if lack of resources causes it to fail to register t
event handler.

Operation unregister

The unregister operation notifies the service that the timer_event_handler
will not be used any more and all resources associated with it can be destroyed.
Subsequent attempts to use that object reference will raise CORBA::INV_OBJREF.

Operation event_time

The event_time operation returns a UTO containing the time at which the event
contained in the timer_event structure was triggered.

14.4 Conformance

It is sufficient to provide just the Time Service (module TimeBase and CosTime) to
claim conformance with the Time Service object as described in Section 14.1.5,
Conformance Points. To claim conformance with the Timer Event Service, both Time
Service and Timer Event Service (module CosTimerEvent) must be provided.

In order to conform to the Basic Time Service, the semantics of the
secure_universal_time operation must be strictly adhered to. In order to return
a valid time from this operation, the vendor must provide a statement about how the
Time Service: v1.0 Conformance July 1997 14-17

14
security assurance criteria specified in Appendix A, Implementation Guidelines, are
met in their product. To conform to the object Time Service, in all other cases, i.e.
when the security assurance criteria are not satisfied, the
secure_universal_time operation must raise the TimeUnavailable
exception.
14-18 CORBAservices July 1997

14

g of

 the
ot

tion.

ded

inst
 Appendix A Implementation Guidelines

A.1 Introduction

This appendix contains advice to implementors. Appropriate documented handlin
the criteria presented here is mandatory for conformance to the Basic Time Service
conformance point.

A.2 Criteria to Be Followed for Secure Time

The following criteria must be followed in order to assure that the time returned by
secure_universal_time operation is in fact secure time. If these criteria are n
satisfactorily addressed in an ORB, then it must return the TimeUnavailable
exception upon invocation of the secure_universal_time operation of the
TimeService interface.

Administration of Time

Only administrators authorized by the system security policy may set the time and
specify the source of time for time synchronization purposes.

Protection of Operations and Mandatory Audits

The following types of operations must be protected against unauthorized invoca
They must also be mandatorily audited:

• Operations that set or reset the current time

• Operations that designate a time source as authoritative

• Operations that modify the accuracy of the time service or the uncertainty interval
of generated timestamps

Synchronization of Time

Synchronization of time must be transmitted over the network. This presents an
opportunity for unauthorized tampering with time, which must be adequately guar
against. Time Service implementors must state how time values used for time
synchronization are protected while they are in transit over the network.

Time Service implementors must state whether or not their implementation is secure.
Implementors of secure time services must state how their system is secured aga
threats documented in Chapter 15, Security Service Specification. They must also
document how the issues mentioned in this section are addressed adequately.
Time Service: v1.0 Conformance July 1997 14-19

14

y
d to
s

r

l

A.3 Proxies and Time Uncertainty

The Time Service object returns a timestamp, which contains both a time and an
associated uncertainty interval. These values are considered valid at the instant the
are returned by the Time Service object; however, if these values are not delivere
the caller immediately, they may no longer be reliable by the time the caller receive
them.

In a CORBA system, the use of proxy objects can render time values unreliable by
introducing unpredictable and uncorrected latency between the time the time serve
object generates a timestamp and the time the caller’s time server proxy receives the
timestamp and returns it to the caller (see Figure 14-5 below).

Figure 14-5 Time Service and Proxies

Implementors of the Time Service must prevent this problem from occurring. Two
possible ways of preventing proxy latency are:

• Prohibit proxies of the time server object (i.e. require a Time Service
implementation in every address space that will need to make Time Service cals).

• Create a special time server proxy, which measures latency between the Time
Service object and the proxy, recalculates the time interval’s uncertainty, and
adjusts the interval value before returning the timestamp to the caller.

Other approaches probably exist; the two above are intended as examples only.

Caller

Time
Service
Proxy

Time
Service

get time Time=x;interval=3sec
(delivered at time x)

Time=x;interval=3sec
(delivered at time x+y -- y may be greater than 3sec)
14-20 CORBAservices July 1997

14

ng in
 Appendix B Consolidated OMG IDL

B.1 Introduction

This appendix contains a summary of the OMG IDL defined in this document.

B.2 Time Service

This section contains the OMG IDL definitions pertaining to the Time Service, which
is encapsulated in the TimeBase and CosTime modules. The TimeBase module
contains the basic data type declarations that can be used by others without pulli
the Time Service interfaces. The Time Service interface and associated enums and
exceptions are declared in the CosTime module.

module TimeBase {
typedef unsigned long long TimeT;
typedef TimeT InaccuracyT;
typedef short TdfT;
struct UtcT {

TimeT time; // 8 octets
unsigned long inacclo; // 4 octets
unsigned short inacchi; // 2 octets
TdfT tdf; // 2 octets

// total 16 octets.
};

struct IntervalT {
TimeT lower_bound;
TimeT upper_bound;

};
};

module CosTime {

enum TimeComparison {
TCEqualTo,
TCLessThan,
TCGreaterThan,
TCIndeterminate

};

enum ComparisonType{
IntervalC,
MidC

};

enum OverlapType {
OTContainer,
OTContained,
OTOverlap,
OTNoOverlap

};
Time Service: v1.0 Conformance July 1997 14-21

14
exception TimeUnavailable {};
interface TIO; // forward declaration

interface UTO {

readonly attribute TimeBase::TimeT time;
readonly attribute TimeBase::InaccuracyT inaccuracy;
readonly attribute TimeBase::TdfT tdf;
readonly attribute TimeBase::UtcT utc_time;
UTO absolute_time();
TimeComparison compare_time(

in ComparisonType comparison_type,
in UTO uto

);
TIO time_to_interval(

in UTO uto
);
TIO interval();

};

interface TIO {
readonly attribute TimeBase::IntervalT time_interval;
boolean spans (

in UTO time,
out TIO overlap

);
boolean overlaps (

in TIO interval,
out TIO overlap

);
UTO time ();

};

interface TimeService {
UTO universal_time()

raises(TimeUnavailable
);
UTO secure_universal_time()

raises(TimeUnavailable
);
UTO new_universal_time(

in TimeBase::TimeT time,
in TimeBase::InaccuracyT inaccuracy,
in TimeBase::TdfT tdf

);
UTO uto_from_utc(

in TimeBase::UtcT utc
);
TIO new_interval(

in TimeBase::TimeT lower,
in TimeBase::TimeT upper

);
};

};
14-22 CORBAservices July 1997

14

B.3 Timer Event Service

This section contains all the OMG IDL definitions pertaining to the Timer Event
Service, which are encapsulated in the CosTimerEvent module. This module depends
on TimeBase, CosTime, CosEventComm and CORBA.

module CosTimerEvent{
enum TimeType {

TTAbsolute,
TTRelative,
TTPeriodic

};

enum EventStatus {
ESTimeSet,
ESTimeCleared,
ESTriggered,
ESFailedTrigger

};

struct TimerEventT {
TimeBase::UtcT utc;
any event_data;

};

 interface TimerEventHandler {
readonly attribute EventStatus status;
boolean time_set(

out CosTime::UTO uto
);
void SetTimer(

in TimeType time_type,
in CosTime::UTO trigger_time

);
 boolean cancel_timer();
 void set_data(

in any event_data
);
};

interface TimerEventService {
TimerEventHandler register(

in CosEventComm::PushConsumer event_interface,
in any data

);
void unregister(

in TimerEventHandler timer_event_handler
);
CosTime::UTO event_time(

in TimerEventT timer_event
);

};
};
Time Service: v1.0 Conformance July 1997 14-23

14

ch
 be
time.

it

 by

citly

an
 Appendix C Notes for Users

C.1 Introduction

This appendix contains notes covering the following matters:

• Guarding against proxy-related inaccuracies in time contained in UTO.

• How to transmit time and time intervals across the network and recover the
corresponding UTO and TIO at the other end.

C.2 Proxies and Time

As explained in Appendix B, Consolidated OMG IDL, indiscriminate use of remote
proxies to obtain value of current time can lead to obtaining values of time in whi
the inaccuracy is incorrect due to transmission delays. Consequently, care should
taken to ensure that the local Time Service is used to obtain the value of current

C.3 Sending Time Across the Network

When passing small objects such as UTO and TIO from one location to another, one
should be aware that each time the passed object reference is used by the recipient
causes an object invocation to take place across the network and is inherently
inefficient. The preferred way of dealing with this problem is to pass small objects
value instead of by reference. Unfortunately, due to various reasons, OMG IDL does
not allow specification of passing of object parameters by value. Consequently, the
user has to explicitly take action to avoid this problem.

The interfaces defined contain features that make it possible for the user to expli
send the value of time, and time interval across from one location to another and then
reconstruct the appropriate object at the receiving end. This is done as follows:

• The signature of the operation that passes time or time interval as a parameter
across the network should specify that time is passed as the data type and not as
object reference. For example, for passing universal time, a signature such as

void foo(in TimeBase::UtcT);

should be used instead of

void foo(in CosTime::UTO);

• The invoker should use the data attribute of the UTO as the in parameter. In
pseudo-code, something such as the following should be done by the invoker:

CosTime::UTO uto = CosTime::universal_time();
foo(uto.data);
14-24 CORBAservices July 1997

14

s:

ever,

• At the server end, the time data received can be converted to a UTO as follow

foo(in TimeBase::UtcT utc) {
CosTime::UTO uto = CosTime::TimeService::uto_from_utc(utc);

.....

};

It would be nice to say in the definition of the foo operation something such as:

foo(in byvalue UTO uto);

and have the system take care of doing essentially what is described above. How
there are difficult model- and paradigm-related issues that need resolution before such
a change can be coherently proposed.
Time Service: v1.0 Conformance July 1997 14-25

14

 as

 Appendix D Extension Examples

D.1 Introduction

The process of constructing the contents of a TimeBase::TimeT value can be quite
tedious, involving many 64-bit multiplications and additions. The CORBA Facility for
Time Representation is going to provide user-friendly ways of creating TimeT data
and displaying them. However, if one is planning to use only the Time Service, it will
be necessary to construct some rudimentary facility to build TimeT things. This
appendix shows one way of doing this as an example of how to extend this service in
useful ways.

D.2 Object Model

Following the design pattern used in the rest of this service definition, the basic
extension is to define a TimeI object corresponding to the TimeT structure, and
extend TimeService to provide an operation for creating such objects. The TimeI
object has attributes corresponding to the user-friendly representation of time such
year, month, day, hour, minute, second, microsecond, etc.

D.3 Summary of Extensions

The additions are encapsulated in the FriendlyTime module. The changes are as
follows:

• Data type declaration for components of time.

• Definition of the TimeI interface, consisting mostly of attributes.

• Definition of the FriendlyTime::TimeService interface derived from the
CosTime::TimeService interface, for adding the operation to create TimeI objects.

D.4 Data Types

The data types are self-explanatory for the purposes of setting up this example. A
complete specification should state more specific properties of each of these data
types.

module FriendlyTime {
typedef unsigned short YearT; // must be > 1581
typedef unsigned short MonthT; // 1 - 12
typedef unsigned short DayT; // 1 - 31
typedef unsigned short HourT; // 0 - 24
typedef unsigned short MinuteT; // 0 - 59
typedef unsigned short SecondT; // 0 - 59
typedef unsigned short MicrosecondT;

}

14-26 CORBAservices July 1997

14

ed to

D.5 Exceptions

No exceptions are defined in this module.

D.6 Friendly Time Object

The time object provides a friendly interface to the various components usually us
represent time in normal human discourse. The set of attributes used in this example
are by no means exhaustive, and is used only for illustrative purposes.

module FriendlyTime {
interface TimeI {

attribute YearT year;
attribute MonthT month;
attribute DayT day;
attribute HourT hour;
attribute MinuteT minute;
attribute SecondT second;
attribute MicrosecondT microsecond;
attribute TimeBase::TimeT time;
void reset(); // set all attributes to zero

};
};

The TimeI object can be viewed as a representation conversion object. The general
technique for using it is to create one using the operation
CosFriendlyTime::TimeService::time introduced in Section D.7, Extended
Time Service. This creates a TimeI object with time set to zero in it. Then the _set
operation can be used to set the values of the various attributes. Finally, the attribute
time can be used to get the corresponding TimeT value.

Conversely, one can set any TimeT value in the time attribute and then get the year,
month, etc. from the appropriate attributes.

The reset operation facilitates reuse of time objects.

D.7 Extended Time Service

CosTime::TimeService is extended by derivation to provide an operation for
creating TimeI objects.

module FriendlyTime {
interface TimeService : CosTime::TimeService {

TimeI time();
};

};
Time Service: v1.0 Conformance July 1997 14-27

14

 is no
D.8 Epilogue

The extension provided in this appendix makes the Time Service defined in the
normative part of the document more easily usable. This leads one to wonder whythis
extension is not part of the main body of this submission. The reason is that there
agreement on what the most useful representative components of time are, and the
feeling that in general this should be dealt with at the Common Facilities level in
general. We still felt that it would be useful to illustrate how easy it is to extend the
basic service to provide this ease-of-use facility, thus this appendix.
14-28 CORBAservices July 1997

14

1,

-1,
 Appendix E References
• X/Open DCE Time Service, X/Open CAE Specification C310, November 1994.

• RFC 1119 Network Time Protocol, D. Mills, September 1989.

• Probabilistic Clock Synchronization, Flaviu Cristian, Distributed Computing (1989)
3: Pg. 146-158.

• OMG IDL type Extensions RFP, Andrew Watson Ed., OMG Doc. No. 95-1-35.

• CORBAServices: Common Object Service Specification, OMG Doc. No. 95-3-3
March 31 1995 revision, Chapter 4, Event Service Specification, Section 4.2
Pg. 4-6.

• CORBAServices: Common Object Service Specification, OMG Doc. No. 96-10
October 1996 revison, Chapter 15, Security Service Specification.
Time Service: v1.0 Conformance July 1997 14-29

14
14-30 CORBAservices July 1997

 Security Service Specification 15
uracy

 well

tional
,

15.1 Introduction to Security

15.1.1 Why Security?

Enterprises are increasingly dependent on their information systems to support their
business activities. Compromise of these systems either in terms of loss or inacc
of information or competitors gaining access to it can be extremely costly to the
enterprise.

Security breaches, which compromise information systems, are becoming more
frequent and varied. These may often be due to accidental misuse of the system, such
as users accidentally gaining unauthorized access to information. Commercial as
as government systems may also be subject to malicious attacks (for example, to gain
access to sensitive information).

Distributed systems are more vulnerable to security breaches than the more tradi
systems, as there are more places where the system can be attacked. Therefore
security is needed in CORBA systems, which takes account of their inherent
distributed nature.

15.1.2 What Is Security?

Security protects an information system from unauthorized attempts to access
information or interfere with its operation. It is concerned with:

• Confidentiality . Information is disclosed only to users authorized to access it.

• Integrity . Information is modified only by users who have the right to do so, and
only in authorized ways. It is transferred only between intended users and in
intended ways.
CORBAservices November 1996 15-1

15

re,

te

t are

sets,

 are in
ort a

e

at user

 can
ain

a.

n

ot
• Accountability . Users are accountable for their security-relevant actions. A
particular case of this is non-repudiation, where responsibility for an action cannot
be denied.

• Availability . Use of the system cannot be maliciously denied to authorized users.

[Availability is often the responsibility of other OMA components such as archive/
restore services, or of underlying network or operating systems services. Therefo
this specification does not respond to all availability requirements.]

Security is enforced using security functionality as described below. In addition, there
are constraints on how the system is constructed, for example, to ensure adequa
separation of objects so that they don't interfere with each other and separation of
users’ duties so that the damage an individual user can do is limited.

Security is pervasive, affecting many components of a system, including some tha
not directly security related. Also, specialist components, such as an authentication
service, provide services that are specific to security.

The assets of an enterprise need to be protected against perceived threats. The amount
of protection the enterprise is prepared to pay for depends on the value of the as
and the threats that need to be countered. The security policy needed to protect against
these threats may also depend on the environment and how vulnerable the assets
this environment. This document specifies a security architecture which can supp
variety of security policies to meet different needs.

15.1.3 Threats in a Distributed Object System

The CORBA security specification is designed to allow implementations to provid
protection against the following:

• An authorized user of the system gaining access to information that should be
hidden from him.

• A user masquerading as someone else, and so obtaining access to whatever th
is authorized to do, so that actions are being attributed to the wrong person.
In a distributed system, a user may delegate his rights to other objects, so they
act on his behalf. This adds the threat of rights being delegated too widely, ag
causing a threat of unauthorized access.

• Security controls being bypassed.

• Eavesdropping on a communication line, so gaining access to confidential dat

• Tampering with communication between objects - modifying, inserting and deleting
items.

• Lack of accountability due, for example, to inadequate identification of users.

Note that some of this protection is dependent on the CORBA security implementatio
being constructed in the right way according to assurance criteria (as specified in
Appendix E, Guidelines for a Trustworthy System), and using security mechanisms
with the right characteristics. Conformance to the CORBA security interfaces is n
15-2 CORBAservices November 1996

15

pal
et

t is
ould

 and

 of
t

enough to ensure that this protection is provided, just as conformance to the
transactional interfaces (for example) is not enough to guarantee transactional
semantics.

This specification does not attempt to counter all threats to a distributed system. For
example, it does not include facilities to counter breaches caused by analyzing the
traffic between machines.

More information about security threats and countermeasures is given in Appendix E,
Guidelines for a Trustworthy System.

15.1.4 Summary of Key Security Features

The security functionality defined by this specification comprises:

• Identification and authentication of principals (human users and objects which
need to operate under their own rights) to verify they are who they claim to be.

• Authorization and access control - deciding whether a principal can access an
object, normally using the identity and/or other privilege attributes of the princi
(such as role, groups, security clearance) and the control attributes of the targ
object (stating which principals, or principals with which attributes) can access it.

• Security auditing to make users accountable for their security related actions. I
normally the human user who should be accountable. Auditing mechanisms sh
be able to identify the user correctly, even after a chain of calls through many
objects.

• Security of communication between objects, which is often over insecure lower
layer communications. This requires trust to be established between the client
target, which may require authentication of clients to targets and authentication
of targets to clients. It also requires integrity protection and (optionally)
confidentiality protection of messages in transit between objects.

• Non-repudiation provides irrefutable evidence of actions such as proof of origin
data to the recipient, or proof of receipt of data to the sender to protect agains
subsequent attempts to falsely deny the receiving or sending of the data.

• Administration of security information (for example, security policy) is also
needed.

This visible security functionality uses other security functionality such as
cryptography, which is used in support of many of the other functions but is not
visible outside the Security services. No direct use of cryptography by application
objects is proposed in this specification, nor are any cryptographic interfaces defined.

15.1.5 Goals

The security architecture and facilities described in this document were designed with
the following goals in mind. Not all implementations conforming to this specification
will meet all these goals.
Security Service: v1.0 November 1996 15-3

15

have

at

.

d

Simplicity

The model should be simple to understand and administer. This means it should
few concepts and few objects.

Consistency

It should be possible to provide consistent security across the distributed object system
and associated legacy systems. This includes:

• Support of consistent policies for determining who should be able to access wh
sort of information within a security domain that includes heterogeneous systems.

• Fitting with existing permission mechanisms.

• Fitting with existing environments, for example, the ability to provide end-to-end
security even when using communication services, which are inherently insecure

• Fitting with existing logons (so extra logons are not needed) and with existing user
databases (to reduce the user administration burden).

Scalability

It should be possible to provide security for a range of systems from small, local
systems to large intra- and interenterprise ones. For larger systems, it should be
possible to:

• Base access controls on the privilege attributes of users such as roles or groups
(rather than individual identities) to reduce administrative costs.

• Have a number of security domains, which enforce different security policy details
but support interworking between them subject to policy. (This specification
includes architecture, but not interfaces for such interdomain working.)

• Manage the distribution of cryptographic keys across large networks securely an
without undue administrative overheads.

Usability for End Users

Security should be available as transparently as possible, based on sensible,
configurable defaults.

Users should need to log on to the distributed system only once to access object
systems and other IT services.
15-4 CORBAservices November 1996

15

s to
rotect

urity

 be
o

nd

some
Usability of Administrators

The model should be simple to understand and administer and should provide a single
system image. It should not be necessary for an administrator to specify controls for
individual objects or individual users of an object (except where security policy
demands this).

The system should provide good flexibility and fine granularity.

Usability for Implementors

Application developers must not need to be aware of security for their application
be protected. However, a developer who understands security should be able to p
application specific actions.

Flexibility of Security Policy

The security policy required varies from enterprise to enterprise, so choices of sec
features should be allowed. An enterprise should need to pay only for the level of
protection it requires, reducing the level (and therefore costs) for less sensitive
information or when the system is less vulnerable to threats. The enterprise should
able to balance the costs of providing security, including the resources required t
implement, administer and run the system, against the perceived potential losses
incurred as the result of security breaches.

Particular types of flexibility required include:

• Choice of access control policy. The interfaces defined here allows for a choice of
mechanisms, ACLs using a range of privilege attributes such as identities, roles,
groups, or labels. Details are hidden except from some administrative functions a
security aware applications that want to choose their own mechanisms.

• Choice of audit policy. The event types which are to be audited is configurable.
This makes it pssible to control the size of the audit trail, and therefore the
resources required to store and manage it.

• Support for security functionality prof iles as defined either in national or
international government criteria such as TCSEC (the US Trusted Computer
Evaluation Security Criteria) and ITSEC (the European Information Technology
Security Evaluation Criteria), or by more commercial groups such as X/Open, is
required.

Independence of Security Technology

The CORBA security model should be security technology neutral. For example,
interfaces specified for security of client-target object invocations should hide the
security mechanisms used from both the application objects and ORB (except for
security administrative functions). It should be possible to use either symmetric or
asymmetric key technology.
Security Service: v1.0 November 1996 15-5

15

s
 that
ire

 to

ould
e

ld be
g

ine,
It should be possible to implement CORBA security on a wide variety of existing
systems, reusing the security mechanisms and protocols native to those systems. For
example, the system should not require introduction of new cryptosystems, acces
control repositories or user registries. If the system is installed in an environment
also includes a procedural security regime, the composite system should not requ
dual administration of the user or authorization policy information.

Application Portability

An application object should not need to be aware of security, so it can be ported
environments that enforce different security policies and use different security
mechanisms. If an object enforces security itself, interfaces to Security services sh
hide the particular security mechanisms used, for example, for authentication. Th
application security policy (for example, to control access to its own functions and
state) should be consistent with the system security policy; for example, use shou
made of the same attributes for access control. Portability of applications enforcin
their own security depends on such attributes being available.

Interoperability

The security architecture should allow interoperability between objects including:

• Providing consistent security across a heterogeneous system where different
vendors may supply different ORBs.

• Interoperating between secure systems and those without security.

• Interoperating between domains of a distributed system where different domains
may support different security policies, for example, different access control
attributes.

• Interoperating across systems that support different security technology.

This specification includes an architecture that covers all of these, at least in outl
but does not give specific interfaces and protocols for the last two. Interoperability
between domains is expected to have limited functionality in initial implementations,
and interoperability between security mechanisms is not expected to be supported.

Performance

Security should not impose an unacceptable performance overhead, particularly for
normal commercial levels of security, although a greater performance overhead may
occur as higher levels of security are implemented.

Object Orientation

The specification should be object-oriented:

• The security interfaces should be purely object-oriented.
15-6 CORBAservices November 1996

15

to

n be
n for
y

.

t
as
ired

re

y.

,
d
• The model should use encapsulation to promote system integrity and to hide the
complexity of security mechanisms under simple interfaces.

• The model should allow polymorphic implementations of its objects based on
different underlying mechanisms.

Specific Security Goals

In addition to the security requirements listed above, there are more specific
requirements that need to be met in some systems, so the architecture must take in
account:

• Regulatory requirements. The security model must conform to national
government regulations on the use of security mechanisms (cryptography, for
example). There are several types of controls, for example, controls on what ca
exported and controls on deployment and use such as limitations on encryptio
confidentiality. Details vary between countries; examples of requirements to satisf
a number of these are:

• Allowing use of different cryptographic algorithms.

• Keeping the amount of information encrypted for confidentiality to a minimum

• Using identities for auditing which are anonymous, except to the auditor.

• Evaluation criteria for assurance. The security functionality and architecture mus
allow implementations to conform to standard security evaluation criteria such
TCSEC or ITSEC for security functionality and assurance (which gives the requ
level of confidence in the correctness and effectiveness of the security
functionality). It should allow assurance and security functionality classes or
profiles up to about the E3/B2 level. However, the specification also allows systems
with lower levels of security, where other requirements such as performance a
more important.

Security Architecture Goals

The security architecture should confine key security functionality to a trusted core,
which enforces the essential part of the security policy such as:

• Ensuring that object invocations are protected as required by the security polic

• Requiring access control and auditing to be performed on object invocation.

• Preventing (groups of) application objects from interfering with each other or
gaining unauthorized access to each other’s state.

It must be possible to implement this trusted computing base so it cannot be bypassed
and kept small to reduce the amount of code which needs to be trusted and evaluate
in more secure systems. This trusted core is distributed, so it must be possible for
different domains to have different levels of trust.
Security Service: v1.0 November 1996 15-7

15

m
ay).

f

s all

:

 in

ty

It should also be possible to construct systems where particular Security services can
be replaced by ones using different security mechanisms, or supporting different
security policies without changing the application objects or ORB when using the
(unless these objects have chosen to do this in a mechanism or policy-specific w

The security architecture should be compatible with standard distributed security
frameworks such as those of POSIX and X/Open.

15.2 Introduction to the Specification

This document specifies how to provide security in stand-alone and distributed
CORBA-compliant systems. Introducing Object Security services does not in itsel
provide security in an object environment; security is pervasive, so introducing it has
implications on the Object Request Broker and on most Object services, Common
Facilities and object implementations.

This document defines the core security facilities and interfaces required to ensure a
reasonable level of security of a CORBA-compliant system as a whole. It include
the security facilities required in the OS RFP3 and associated OMG White Paper on
Security, except where it is felt that this would be too big a step at this stage
(particularly when relevant standards are not in place). The specification includes

• A security model and architecture which describe the security concepts and
framework, the security objects needed to implement them, and how this counters
security threats.

• The security facilities available to applications. This includes security provided
automatically by the system, protecting all applications, even those unaware of
security. The security facilities can also be used by security-aware applications
through OMG IDL interfaces defined in this specification.

• The security facilities and interfaces available for performing essential security
administration.

• The security facilities and interfaces available to ORB implementors, to be used
the production of secure ORBs.

• A description of how Security services affect the CORBA 2 ORB interoperabili
protocols.

Items not included in this specification are:

• Support for interoperability between ORBs using different security mechanisms,
though interoperability of different ORBs using the same security mechanism is
supported.

• Audit analysis tools, though an audit service that both the system and applications
can use to record events is included.
15-8 CORBAservices November 1996

15

aces,

nd

two

 of

ther
• Management interfaces other than essential security policy management interf
as management services have been identified as a Common Facility. The security
policy management interfaces were viewed as a necessary feature of this
specification as it is not possible to deploy a secure system without defining a
managing its policy.

• Interfaces to allow applications to access cryptographic functions for use, for
example, in protecting their stored data. These interfaces are not provided for
reasons: first, cryptography is generally a low-level primitive, used by Security
Service implementors but not needed by the majority of application developers; and
second, providing a cryptographic interface would require addressing a variety
difficult regulatory and import/export issues.

• Specific security policy profiles.

The security model and architecture specified is extensible, to allow addition of fur
security facilities later. Additional security facilities could be designed as ORB
extensions, Security Object services, or Common Facilities, as appropriate.

15.2.1 Conformance to CORBA Security

Conformance to CORBA security covers:

• Main security functionality . There are two possible levels:

• Level 1: This provides a first level of security for applications which are unaware
of security and for those having limited requirements to enforce their own
security in terms of access controls and auditing.

• Level 2: This provides more security facilities, and allows applications to control
the security provided at object invocation. It also includes administration of
security policy, allowing applications administering policy to be portable.

• Security Functionality Options. These are functions expected to be required in
several ORBs, so are worth including in this specification, but are not generally
required enough to form part of one of the main security functionality levels
specified above. There is only one such option in the specification.

• Non-repudiation: This provides generation and checking of evidence so that
actions cannot be repudiated.

This specification is designed to allow security policies to be replaced. The
additional policies must also conform to this specification. This includes, for
example, new Access Policies.

• Security Replaceability. This specifies if and how the ORB fits with different
Security services. There are two possibilities:

• ORB Services replaceability: The ORB uses interceptor interfaces to call on
object services, including security ones. It must use the specified interceptor
interfaces and call the interceptors in the specified order. An ORB conforming to
this does not include any significant security specific code, as that is in the
interceptors.
Security Service: v1.0 November 1996 15-9

15

 in

ed
 (for
ed

 can
ible

urity

y
• Security Service replaceability: The ORB may or may not use interceptors, but all
calls on Security services are made via the replaceability interfaces specified
Section 15.7, Implementor’s Security Interfaces. These interfaces are position
so that the Security services do not need to understand how the ORB works
example, how the required policy objects are located), so they can be replac
independently of that knowledge.

If the ORB does not conform to one of these replaceability options, the standard
security policies defined in this specification cannot be replaced by others, nor
the implementation of the Security services. For example, it would not be poss
to replace the standard access policy by a label-based policy if one of the
replaceability options is not supported. Note that some replaceability of the sec
mechanism used for security associations may still be provided if the
implementation uses some standard generic interface for Security services such as
GSS-API.

An ORB that supports one or both of these replaceability options may be Security
Ready (i.e., supports no security functionality itself, but ready to have security
added) or may support security functionality Level 1 or Level 2.

• Secure Interoperability . Possibilities are:

• Secure Interoperability - Standard: An ORB conforming to standard secure
interoperability can generate and use security information in the IOR and can
send and receive secure requests to/from other ORBs using the GIOP/IIOP
protocol with the security (SECIOP) enhancements defined in Section 15.8,
Security and Interoperability, if they both use the same underlying security
technology.

• Standard plus DCE-CIOP Option: An ORB conforming to standard plus DCE-
CIOP secure interoperability supports all functionality required by standard
secure interoperability, and also provides secure interoperability (using the DCE
Security services) between ORBs using the DCE-CIOP protocol.

If the ORB does not conform to one of these, it does not use the GIOP securit
enhancements, so will interoperate securely only in an environment-specific way.

The conformance statement required for a CORBA conformant security
implementation is defined in Appendix F, Conformance Statement. This includes a
table which can be ticked to show what the ORB conforms to.

15.2.2 Specification Structure

Normative and Non-normative Material

This specification contains normative and non-normative (explanatory) material. Only
Sections 15.5 through 5.8 and Appendices A, B, D, and F are normative.
15-10 CORBAservices November 1996

15

 high
re

s

 2

ndix

e
Section Summaries

Section 15.1 and its subsections, which is an introduction to security, explains why
security is needed in distributed object systems, and enumerates the security
requirements for secure distributed object systems.

Section 15.2 and its subsections provide an introduction to and overview of the
specification.

Section 15.3 and its subsections describe the security reference model, which
provides the overall framework for CORBA security.

Section 15.4 and its subsections describe the security architecture, which underlies
this specification. This introduces different users’ views of security and gives an
outline of how secure CORBA-compliant systems are constructed. It also presents
level models of the objects involved for different views, and describes how they a
used.

Section 15.5 and its subsections specify the security facilities and interfaces available
to application developers. Most functions can be implemented transparently to
application, though interfaces and additional functionality are available to security-
aware applications.

Section 15.6 and its subsections specify the administrator’s facilities and interfaces.
Only essential administration functions are defined by this specification; other
administrative capabilities are expected to be developed outside the Object Service
Program.

Section 15.7 and its subsections specify the Implementors interfaces used to build
secure CORBA systems. This section specifies the IDL interfaces of the security
objects available to ORB implementors, and describes the relationship and
dependencies of these objects on the ORB core and also on external Security services,
where these are used.

Section 15.8 and its subsections specify the architecture for interoperability in a
secure, distributed object system. It also specifies how security affects the CORBA
GIOP/IIOP and DCE ESIOP interoperability protocols.

Appendix A, Consolidated OMG IDL , contains the complete OMG IDL
specification, including the module structure, of the interfaces defined in this
document, except for those that are CORBA core extensions and defined in Appe
B, Summary of CORBA 2 Core Changes.

Appendix B, Summary of CORBA 2 Core Changes, describes the changes required
to the CORBA 2 core for security.

Appendix C, Relationship to Other Services, describes the relationship of the
Security services to other object services and to the common facilities.

Appendix D, Conformance Details, describes in more detail what conformance to th
security functionality conformance levels and the security implementation
conformance points requires.
Security Service: v1.0 November 1996 15-11

15

nd

he

col
y at

ate
ns as

s.

 may
Appendix E, Guidelines for a Trustworthy System, provides guidelines for
implementation of a trustworthy system, which provides protection against the security
threats in a distributed object system with the required assurance of its correctness a
effectiveness.

Appendix F, Conformance Statement, describes the conformance statement, which
must accompany a secure CORBA implementation and what this implementation must
contain.

Appendix G, Facilities Not in This Specification, outlines security facilities that have
not been included in this specification, but left for another phase of security
specifications.

Appendix H, Interoperability Guidelines, includes guidelines for defining security
mechanism tags in interoperable object references, and examples of the use of t
secure inter-ORB protocol SECIOP.

Appendix I, Glossary.

Proof of Concept

With the exception of Audit, Non-repudiation services, and the revised IIOP proto
extensions for security, all the facilities in this specification have been prototyped b
least one of the submitting companies.

The Non-repudiation Service interfaces are based upon the draft IETF Non-repudiation
functionality as defined in the IDUP-GSS-API proposal.

15.3 Security Reference Model

This section describes a security reference model that provides the overall framework
for CORBA security. The purpose of the reference model is to show the flexibility for
defining many different security policies that can be used to achieve the appropri
level of functionality and assurance. As such, the security reference model functio
a guide to the security architecture.

15.3.1 Definition of a Security Reference Model

A reference model describes how and where a secure system enforces security policie
Security policies define:

• Under what conditions active entities (such as clients acting on behalf of users)
access objects.

• What authentication of users and other principals is required to prove who they are,
what they can do, and whether they can delegate their rights. (A principal is a
human user or system entity that is registered in and is authentic to the system.)

• The security of communications between objects, including the trust required
between them and the quality of protection of the data in transit between them.
15-12 CORBAservices November 1996

15

ss
d by

ut
eir

a

ns
licy
• What accountability of which security-relevant activities is needed.

Figure 15-1 depicts the model for CORBA secure object systems. All object
invocations are mediated by appropriate security to enforce policies such as acce
controls. These functions should be tamper-proof, always be invoked when require
security policy, and function correctly.

Figure 15-1 A Security model for object systems

Many application objects are unaware of the security policy and how it is enforced.
The user can be authenticated prior to calling the application client and then security is
subsequently enforced automatically during object invocations. Some applications will
need to control or influence what policy is enforced by the system on their behalf, b
will not do the enforcement themselves. Some applications will need to enforce th
own security, for example, to control access to their own data or audit their own
security-relevant activities.

The ORB cannot be completely unaware of security as this would result in insecure
systems. The ORB is assumed to at least handle requests correctly without violating
security policy, and to call Security services as required by security policy.

A security model normally defines a specific set of security policies. Because the
Object Management Architecture (OMA) must support a wide variety of different
security policies to meet the needs of many commercial markets, a single instance of
security model is not appropriate for the OMA. Instead, a security reference model is
defined that provides a framework for building many different kinds of policies. The
security reference model is a meta-policy because it is intended to encompass all
possible security policies supported by the OMA.

The meta-policy defines the abstract interfaces that are provided by the security
architecture defined in this document. The model enumerates the security functio
that are defined as well as the information available. In this manner, the meta-po
provides guidance on the permitted flexibility of the policy definition. The remaining
sections describe the elements of the meta-model. The description is kept deliberately
general at this point.

Client Target
Object

request request

ORB

Security Implementation
enforcing security policy

user

A

AA
A
A
A
A
A
A
A
A

A

AA
A
A
A
A
A
A
A
A
A

..
Security Service: v1.0 November 1996 15-13

15

ither

n

 the

.

l

e

15.3.2 Principals and Their Security Attributes

An active entity must establish its rights to access objects in the system. It must e
be a principal, or a client acting on behalf of a principal.

A principal is a human user or system entity that is registered in and authentic to the
system. Initiating principals are the ones that initiate activities. An initiating principal
may be authenticated in a number of ways, the most common of which for huma
users is a password. For systems entities, the authentication information such as its
long-term key, needs to be associated with the object.

An initiating principal has at least one, and possibly several identities (represented in
the system by attributes), which may be used as a means of:

• Making the principal accountable for its actions.

• Obtaining access to protected objects (though other privilege attributes of a
principal may also be required for access control).

• Identifying the originator of a message.

• Identifying who to charge for use of the system.

There may be several forms of identity used for different purposes. For example,
audit identity may need to be anonymous to all but the audit administrator, but the
access identity may need to be understood so it can be specified as an entry in an
access control list. The same value of the identity can be used for several of the above

The principal may also have privilege attributes which can be used to decide what it
can access. A variety of privilege attributes may be available depending on access
policies (see Access Policies under Section 15.3.4). The privilege attributes, which a
principal is permitted to take, are known by the system. At any one time, the principa
may be using only a subset of these permitted attributes, either chosen by the principal
(or an application running on its behalf), or by using a default set specified for the
principal. There may be limits on the duration for which these privilege attributes ar
valid and may be controls on where and when they can be used.

Security attributes may be acquired in three ways:

• Some attributes may be available, without authentication, to any principal. This
specification defines one such attribute, called Public.

• Some attributes are acquired through authentication; identity attributes and privilege
attributes are in this category.

• Some attributes are acquired through delegation from other principals.
15-14 CORBAservices November 1996

15

get
When a user or other principal is authenticated, it normally supplies:

• Its security name.

• The authentication information needed by the particular authentication method
used.

• Requested privilege attributes (though the principal may change these later).

A principal’s security attributes are maintained in secure CORBA systems in a
credential as shown in Figure 15-2.

Figure 15-2 Credential containing security attributes

15.3.3 Secure Object Invocations

Most actions in the system are initiated by principals (or system entities acting on their
behalf). For example, after the user logs onto the system, the client invokes a tar
object via an ORB as shown in Figure 15-3.

Figure 15-3 Target Object via ORB

Credentials - containing security attributes

unauthenticated
attributes
- Public

authenticated attributes

identity
attributes

privilege
attributes

Client

request request

ORB

Target
Object

client-side security on invocation
security association, access control

message protection, audit

target-side security on invocation
security association, access control

message protection, audit
Security Service: v1.0 November 1996 15-15

15

ch
ions,
ion.
t use

 on
.4,

aling

t, a
iation

ill not

and

n the

ether
ality
What security functionality is needed on object invocation depends on security policy.
It may include:

• Establishing a security association between the client and target object so that ea
has the required trust that the other is who it claims to be. In many implementat
associations will normally persist for many interactions, not just a single invocat
(Within some environments, the trust may be achieved by local means, withou
of authentication and cryptography.)

• Deciding whether this client (acting for this principal) can perform this operation
this object according to the access control policy, as described in Section 15.3
Access Control Module.

• Auditing this invocation if required, as described in Section 15.3.5, Auditing.

• Protecting the request and response from modification or eavesdropping in transit,
according to the specified quality of protection.

For all these actions, security functions may be needed at the client and target object
sides of the invocation. For example, protecting a request may require integrity se
of the message before sending it, and checking the seal at the target.

The association is asymmetric. If the target object invokes operations on the clien
new association is formed. It is possible for a client to have more than one assoc
with the same target object. The application is unaware of security associations; it sees
only requests and responses.

A secure system can also invoke objects in an insecure system. In this case, it w
be possible to establish trust between the systems, and the client system may restrict
the requests passed to the target.

Establishing Security Associations

The client and target object establish a secure association by:

• Establishing trust in one another’s’ identities, which may involve the target
authenticating the client’s security attributes and/or the client’s authenticating the
target’s security name.

• Making the client’s credentials (including its security attributes) available to the
target object.

• Establishing the security context which will be used when protecting requests
responses in transit between client and target object.

The way of establishing a security association between client and object depends on
the security policies governing both the client and target object, whether they are i
same domain, and the underlying security mechanism, for example, the type of
authentication and key distribution used.

The security policies define the choice of security association options such as wh
one-way or mutual authentication is wanted between client and target, and the qu
of protection of data in transit between them.
15-16 CORBAservices November 1996

15

l

sible

 may
s have

.

The security policy is enforced using underlying security mechanisms. This mode
allows a range of such mechanisms for security associations. For example, the
mechanism may use symmetric (secret) key technology, asymmetric (public) key
technology, or a combination of these. The Key Distribution services, Certification
Authorities and other underlying Security services, which may be used, are not vi
in the model.

Message Protection

Requests and responses can be protected for:

• Integrity. This prevents undetected, unauthorized modification of messages and
detect whether messages are received in the correct order and if any message
been added or removed.

• Confidentiality. This ensures that the messages have not been read in transit.

A security association may in some environments be able to provide integrity and
confidentiality protection through mechanisms inherent in the environment, and so
avoid having to use encryption.

The security policy specifies the strength of integrity and confidentiality protection
needed. Achieving this integrity protection may require sealing the message and
including sequence numbers. Confidentiality protection may require encrypting it.

This security reference model allows a choice of cryptographic algorithms for
providing this protection.

Performing a request on a remote object using an ORB and associated services, such as
TP, might cause a message to be constructed to send to the target as shown in the
following diagram. At the target, this process is reversed, and results in the ORB
invoking the operation on the target passing it the parameters sent by the client. The
reply returned follows a similar path.

Message protection could be provided at different points in the message handling
functionality of an ORB, which would affect how much of the message is protected
Security Service: v1.0 November 1996 15-17

15

 be

e may

in the
BA

se, an

of
of

Figure 15-4 Message protection

Messages are protected according to the quality of protection required which may
for integrity, but may also be for confidentiality. Both integrity and confidentiality
protection are applied to the same part of the message. The request and respons
be protected differently.

The CORBA security model can protect messages even when there is no security
underlying communications software. In this case, the message protected by COR
security includes the target id, operation and parameters, and also any service
information included in the message.

In some systems, protection may be provided below the ORB message layer (for
example, using the secure sockets layer or even more physical means). In this ca
ORB that knows such security is available will not need to provide its own message
protection.

Note that as messages will normally be integrity protected, this will limit the type
interoperability bridge that can be used. Any bridge that changes the protected part
the message after it has been integrity (or confidentiality) protected will cause the
security check at the target to fail unless a suitable security gateway is used to
reprotect the message.

Client Target
Object

operation

parameters

operation(parameters)
on target object reference

parameters

parametersoperation

parametersoperationtarget id

parametersoperationtarget idservice
info

parametersoperationtarget idservice
info

host
address

always protected
if any message protection is done

always protected, so parameters can
be used only in specified operations

protected, so operation is on the right
object (implies message must be back in
clear before routing to target object)
service info like GIOP service context
added by services such as TP.
service info should be protected
the host address cannot be encrypted
as this would prevent correct routing

ORB/OA

message header and protected message
15-18 CORBAservices November 1996

15

t

d an

e
olicy

t

RB
iation

.

15.3.4 Access Control Model

The model depicted in Figure 15-5 provides a simple framework for many differen
access control security policies. This framework consists of two layers: an object
invocation access policy, which is enforced automatically on object invocation, an
application access policy, which the application itself enforces.

The object invocation access policy governs whether this client, acting on behalf of th
current principal, can invoke the requested operation on this target object. This p
is enforced by the ORB and the Security services it uses, for all applications, whether
they are aware of security or not.

The application object access policy is enforced within the client and/or the objec
implementation. The policy can be concerned with controlling access to its internal
functions and data, or applying further controls on object invocation.

All instantiations of the security reference model place at least some trust in the O
to enforce the access policy. Even in architectures where the access control med
occurs solely within the client and target objects, the ORB is still required to validate
the request parameters and ensure message delivery as described above.

Figure 15-5 Access control model

The access control model shows the client invoking an operation as specified in the
request, and also shows application access decisions, which can be independent of this

Object Invocation Access Policy

A client may invoke an operation on the target object as specified in the request only
if this is allowed by the object invocation access policy. This is enforced by Access
Decision Functions.

Client

request request

ORB

Target
Object

client-side invocation access decision target-side invocation access decision

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAAA

client application
access decision

target application
access decision
Security Service: v1.0 November 1996 15-19

15

 or
, and

 is

bject

is

y
e

s

 range
and

les
Client side access decision functions define the conditions that allow the client to
invoke the specified operation on the target object. Target side access decision
functions define the conditions that allow the object to accept the invocation. One
both of these may not exist. Some systems may support target side controls only
even then, only use them for some of the objects.

The access policy for object invocation is built into these access decision functions,
which just provide a yes/no answer when asked to check if access is allowed. A range
of access policies can be supported as described in the Access Policies section.

The access decision function used on object invocation to decide whether access
allowed bases its decision on:

• The current privilege attributes of the principal (see Section 15.3.2, Principles and
Their Security Attributes). Note that these can include capabilities.

• Any controls on these attributes, for example, the time for which they are valid.

• The operation to be performed.

• The control attributes of the target object (see the Access Policies section).

The first three of these functions are available as part of the environment of the o
invocation.

The control attributes for the target object are associated with the object when it
created (though may be changed later, if security policy permits).

Application Access Policy

Applications may also enforce access policies. An application access policy may
control who can invoke the application, extending the object invocation access polic
enforced by the ORB, and taking into account other items such as the value of th
parameters, or the data being accessed. As for standard object invocation acces
controls, there may be client and target object access decision functions.

An application object may also control access to finer-grained functions and data
encapsulated within it, which are not separate objects.

In either case, the application will need its own access decision function to enforce the
required access control rules.

Access Policies

The general access control model described here can be used to support a wide
of access policies including Access Control List schemes, label-based schemes,
capability schemes. This section describes the overall authorization model used for all
types of access control.

The authorization model is based on the use of access decision functions, which decide
whether an operation or function can be performed by applying access control ru
using:
15-20 CORBAservices November 1996

15

d

 as:

e
s, or

s.

ntrol
joins
based
• Privilege attributes of the initiator (called initiator Access Control Information or
ACI in ISO/IEC 10181-3).

• Control attributes of the target (sometimes known as the target ACI).

• Other relevant information about the action such as the operation and data, an
about the context, such as the time.

Figure 15-6 Authorization model

The privilege and control attributes are the main variables used to control access, and
so this section focuses on these.

Privil ege Attributes

A principal can have a variety of privilege attributes used for access control such

• The principal’s access identity.

• Roles, which are often related to the user’s job functions.

• Groups, which normally reflect organizational affiliations. A group could reflect th
organizational hierarchy, for example, the department to which the user belong
a cross-organizational group, which has a common interest.

• Security clearance.

• Capabilities, which identify the target objects (or groups of objects), and their
operations on which the principal is allowed.

• Other privileges that an enterprise defines as being useful for controlling acces

In an object system, which may be large, using individual identities for access co
may be difficult if many sets of control attributes need to be changed when a user
or leaves the organization or changes his job. Where possible, controls should be
on some grouping construct (such as a role or organizational group) for scalability.

The security reference model does not dictate the particular privilege attributes, that
any compliant secure system must support; however, this specification does define a
standard, extensible set of privilege attribute types.

Note: in this specification, privilege is often used as shorthand for privilege attribute.

Control Attributes

Control attributes are associated with the target. Examples are:

Access Decision Function
enforcing

access control rules

Action and
context info

Initiator
privilege attributes

access allowed?

yes/no

Target
control attributes
Security Service: v1.0 November 1996 15-21

15

 to

r,

than

.

ss of
ed
 via a

.

t
• Access control lists, which identify permitted users by name or other privilege
attributes, or

• Information used in label-based schemes, such as the classification of an object,
which identifies (according to rules) the security clearance of principals allowed
perform particular operations on it.

An object system may have many objects, each of which may have many operations,
so it may not be practical to associate control attributes with each operation on each
object. This would impose too large an overhead on the administration of the system,
and the amount of storage needed to hold the information.

Control attributes are therefore expected to be shared by categories of objects,
particularly objects of the same type in the same security policy domain. Howeve
they could be associated with an individual object.

Rights

Control attributes may be associated with a set of operations on an object, rather
each individual operation. Therefore, a user with specified privileges may have rights
to invoke a specific set of operations.

It is possible to define what rights give access to what operations.

Access Policies Supported by This Specification

The model allows a range of access policies using control attributes, which can group
subjects (using privileges), objects (using domains), and operations (using rights)

This specification defines a particular access policy type and associated management
interface as part of security functionality Level 2. This is defined in
DomainAccessPolicy Interface under Section 15.6.4, Access Policies.

Regardless of the access control policy management interface used (i.e. regardle
whether the particular Level 2 access policy interfaces or other interfaces not defin
in this specification are used), all access decisions on object invocation are made
standard access decision interface, so the access control policy can be changed either
by administrative action on, or substitution of, the objects that define the policy and
implement the access decision. However, different management interfaces will
ordinarily be required for management of different types of control attributes.

15.3.5 Auditing

Security auditing assists in the detection of actual or attempted security violations
This is achieved by recording details of security relevant events in the system.
(Depending on implementation, recording an audit event may involve writing even
information to a log, generating an alert or alarm, or some other action.) Audit policies
specify which events should be audited under what circumstances.

There are two categories of audit policies: system audit policies, which control what
events are recorded as the result of relevant system activities, and application audit
policies, which control which events are audited by applications.
15-22 CORBAservices November 1996

15

 of

s.

sfers

,

ed to

ject

ased
ne,

System events, which should be auditable, include events such as authentication
principals, changing privileges, success or failure of object invocation, and the
administration of security policies. These system events may occur in the ORB or in
security or other services, and these components generate the required audit record

Application events may be security relevant, and therefore may need auditing
depending on the application. For example, an application that handles money tran
might audit who transferred how much money to whom.

Events can be categorized by event family (e.g. system, financial application service)
and event type within that family. For example, there are defined event types for
system events.

Figure 15-7 Auditing model

Potentially a very large number of events could be recorded; audit policies are us
restrict what types of events to audit under which circumstances. System audit policies
are enforced automatically for all applications, even security unaware ones.

The invocation audit policy is enforced at a point in the ORB where the target ob
and operation for the request are known, and the reply status is known. The model
supports audit policies where the decision on whether to audit an event can be b
on the event type (such as method invocation complete, access control check do
security association made), the success or failure of this event (failures only may be
audited), the object and the operation being invoked, the audit id of principal on whose
behalf the invocation is being done, and even the time of day.

This specification defines a particular invocation audit policy type and associated
management interfaces as part of functionality Level 2. This allows decisions on
whether to audit an invocation to depend on the object type, operation, event type, and
success or failure of this.

Client

request request

ORB

Target
Object

security association

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AAA

client application
audit

target application
audit

invocation access control etc.
security association

invocation access control etc.

Audit Audit
Security Service: v1.0 November 1996 15-23

15

g,
e

ed to

erated

on
The specification also defines a particular audit policy type for application auditin
which allows decisions on whether to audit the event to be based on the event typand
its success or failure.

Events can either be recorded on audit trails for later analysis or, if they are deem
be serious, alarms can be sent to an administrator. Application audit trails may be
separate from system ones. This specification includes how audit records are gen

 and then written to audit channels, but not how these records are filtered later, how
audit trails and channels are kept secure, and how the records can be collected and
analyzed.

15.3.6 Delegation

In an object system, a client calls on an object to perform an operation, but this object
will often not complete the operation itself, so will call on other objects to do so. This
will usually result in a chain of calls on other objects as shown in Figure 15-8.

Figure 15-8 Delegation model

This complicates the access model described in Section 15.3.4, Access Control Model,
as access decisions may need to be made at each point in the chain. Different
authorization schemes require different access control information to be made
available to check which objects in the chain can invoke which further operations
other objects.

In privilege delegation, the initiating principal’s access control information (i.e. its
security attributes) may be delegated to further objects in the chain to give the
recipient the rights to act on its behalf under specified circumstances.

Client

Client

Target

Target
Object

Client

Target

Client

Target

Target
Object

Target
Object

..
15-24 CORBAservices November 1996

15

e

bject

eived

btain

gated

t
.

Another authorization scheme is reference restriction where the rights to use an
object under specified circumstances are passed as part of the object reference to th
recipient. Reference restriction is not included in this specification, though described
as a potential future security facility in A ppendix G, Facilities Not in This
Specification.

The following terms are used in describing delegation options.

• Initiator : the first client in a call chain.

• Final target: the final recipient in a call chain.

• Intermediate: an object in a call chain that is neither the initiator nor the final
target.

• Immediate invoker: an object or client from which an object receives a call.

Privi lege Delegation

In many cases, objects perform operations on behalf of the initiator of a chain of o
invocations. In such cases, the initiator needs to delegate some or all of its privilege
attributes to the intermediate objects which will act on its behalf.

Some intermediates in a chain may act on their own behalf (even if they have rec
delegated credentials) and perform operations on other objects using their own
privileges. Such intermediates must be (or represent) principals so that they can o
their own privileges to be transmitted to objects they invoke.

Some intermediates may need to use their own privileges at some times, and dele
privileges at other times.

A target may wish to restrict which of its operations an invoker can perform. This
restriction may be based on the identity or other privilege attributes of the initiator.
The target may also want to verify that the request comes from an authorized
intermediate (or even check the whole chain of intermediates). In these cases, it mus
be possible to distinguish the privileges of the initiator and those of each intermediate

Some restrictions may or may not be placed by the initiator about the set of objects
which may be involved in a delegation chain.

When no restrictions are placed and only the initiator's privileges are being used, this
case is called impersonation.

When restrictions are placed, additional information is used so that objects can verify
whether or not their characteristics (e.g. their name or a part of their name) satisfy the
restrictions. In order to allow clients or initiating objects to specify this additional
information, objects can be (securely) associated with these characteristics (e.g. their
name).
Security Service: v1.0 November 1996 15-25

15

hich

rol

llow
Overview of Delegation Schemes

There are potentially a large number of delegation models. They can all be captured
using the following sentence.

An intermediate invoking a target object may perform:

When delegating privileges through a chain of objects, the caller does not know w
objects will be used in completing the request, and therefore cannot easily restrict
privileges to particular methods on objects. It generally relies on the target’s cont
attributes to do this.

A privilege delegation scheme may provide any of the other controls, though no one
scheme is likely to provide all of them.

Facilities Potentially Available

Different facilities are available to intermediates (or clients) before initiating object
invocations and to intermediate or target objects accepting an invocation.

Controls Used Before Initiating Object Invocations

A client or intermediate can specify restrictions on the use of the access control
information provided to another intermediate or to a target object. Interfaces may a
support of the following facilities.

• Control of privileges delegated. An initiator (or an intermediate) can restrict
which of its own privileges are delegated.

1. one method on one object

2. several methods on one object

3. any method on a. one object
b. some object(s)
c. any object

(target restrictions)
(no target restrictions)

 using (no privileges
(a subset of the initiator’s privileges
(both the initiator’s and its own privileges
(received privileges and its own privileges

(simple delegation)
(composite delegation)
(combined or traced
delegation, depending on
whether privileges are
combined or concatenated)

 during some validity period (part of time constraints)

 for a specified number of invocations (part of time constraints)
15-26 CORBAservices November 1996

15

r

get
et

,
hers.
 the
• Control of target restrictions. An initiator (or an intermediate) can restrict where
individual privileges can be used. This restriction may apply to particular objects, or
some grouping of objects. It may restrict the target objects, which may use some
privileges for access control, and the intermediates, which can also delegate them.

Control of privileges used. As previously described, there are several options fo
deciding which privileges an intermediate object may use when invoking another
object. Note that delegated privileges are not actually delegated to a single tar
object; they are available to any object running under the same identity as the targ
object in the target object’s address space (since any objects in the target’s address
space may retrieve the inbound Credentials and any object sharing the target’s
identity may successfully become the caller’s delegate).

The specified interfaces allow the following.

• no delegation: the client permits the intermediate to use its privileges for access
control decisions, but does not permit them to be delegated, so the intermediate
object cannot use these privileges when invoking the next object in the chain.

Figure 15-9 No delegation

• simple delegation: the client permits the intermediate to assume its privileges
both using them for access control decisions and delegating them to other ot
The target object receives only the client's privileges, and does not know who
intermediate is (when used without target restrictions, this is known as
impersonation).

Figure 15-10Simple delegation

Client Intermediate
Object

Target
Object

client credentials intermediate
credentials

Client Intermediate
Object

Target
Object

client credentials client credentials
Security Service: v1.0 November 1996 15-27

15

 and
y

h

f

t

of
• composite delegation: the client permits the intermediate object to use its
credentials and delegate them. Both the client privileges and the immediate
invoker’s privileges are passed to the target, so that both the client privileges
the privileges from the immediate source of the invocation can be individuall
checked.

Figure 15-11Composite delegation

• combined privileges delegation: the client permits the intermediate object to use
its privileges. The intermediate converts these privileges into credentials and
combines them with its own credentials. In that case, the target cannot distinguis
which privileges come from which principal.

Figure 15-12Combined privileges delegation

• traced delegation: the client permits the intermediate object to use its privileges
and delegate them. However, at each intermediate object in the chain, the
intermediate's privileges are added to privileges propagated to provide a trace o
the delegates in the chain.

Figure 15-13Traced delegation

A client application may not see the difference between the last three options, it
may just see them all as some form of “composite” delegation. However, the targe
object can obtain the credentials of intermediates and the initiator separately if they
have been transmitted separately.

• Control of time restrictions. Time periods can be applied to restrict the duration
the delegation. In some implementations, the number of invocations may also be
controllable.

Client Intermediate
Object

Target
Object

client credentials
client and

intermediate

credentials

Client Intermediate
Object

Target
Object

client credentials

client and
intermediate’s

privileges

in a single
credential

Client Target
Object

intermediate
objects

client credentials chain of

credentials
15-28 CORBAservices November 1996

15

only
re

d

ermit

he

 it
Facilit ies Used on Accepting Object Invocations

An intermediate or a target object should be able to:

• Extract received privileges and use them in local access control decisions.
Often only the privileges of the initiator are relevant. When this is not the case,
the privileges of the immediate invoker may be relevant. In some cases, both a
relevant. Finally, the most complex authorization scheme may require the full
tracing of the initiator and all the intermediates involved in a call chain.
In addition, some targets may need to obtain the miscellaneous security attributes
(such as audit identity, charging identity) and the associated target restrictions an
time constraints.

• Extract credentials (when permitted) for use when making the next call as a
delegate.

• Build (when permitted) new credentials from the received access control
information with changed (normally reduced) privileges and/or different target
restrictions or time constraints.

Specifying Delegation Options

The administrator may specify which delegation option should be used by default
when an object acts as an intermediate. For example, he may specify whether a
particular intermediate object normally delegates the initiating principal's privileges or
uses its own, or both if needed. Also, the Access policy used at the target could p
or deny access based on more than one of the privileges it received (e.g. the initiator's
and the intermediate's). This allows many applications to be unaware of the delegation
options in use, as many of the controls for delegation are done automatically by t
ORB when the intermediate invokes the next object in the chain.

However, a security-aware intermediate object may itself specify what delegation
wants. For example, it may choose to use the original principal's privileges when
invoking some objects and its own when invoking others.

Technology Support for Delegation Options

Different security technologies support different delegation models. Currently, no one
security technology supports all the options described above.

In Security Functionality Level 1, all delegation is done automatically in the ORB
according to delegation policy, so the objects in the chain cannot change the mode of
delegation used, or restrict privileges passed and where or when they are used.

Of the options on which credentials are passed, only no delegation and impersonation
(simple delegation without any target restrictions) need to be supported.
Security Service: v1.0 November 1996 15-29

15

d,
ow

 is
d in

 may
r and
,

te

ics of
d are
ed of

here

es
ence

 be
e
In Security Functionality Level 2, applications may use any of the interfaces specifie
but may get a NotSupported exception returned. Note that these interfaces do not all
the application to set controls such as target restrictions. Appendix G, Facilities Not in
This Specification, includes potential future advanced delegation facilities, which
include such controls.

15.3.7 Non-repudiation

Non-repudiation services provide facilities to make users and other principals
accountable for their actions. Irrefutable evidence about a claimed event or action
generated and can be checked to provide proof of the action. It can also be store
order to resolve later disputes about the occurrence or the nonoccurrence of the event
or action.

The non-repudiation services specified here are under the control of the applications
rather than used automatically on object invocation, so are only available to
applications aware of this service.

Depending on the non-repudiation policy in effect, one or more pieces of evidence
be required to prove that some kind of event or action has taken place. The numbe
the characteristics of each depends upon that non-repudiation policy. As an example
evidence containing a timestamp from a trusted authority may be required to valida
evidence.

There are many types of non-repudiation evidence, depending on the characterist
the event or action. In order to distinguish between them, the types are defined an
part of the evidence. Conceptually, evidence may thus be seen as being compos
the following components:

• The non-repudiation policy (or policies) applicable to the evidence,

• The type of action or event,

• The parameters related to the type of action or event.

A date and time are also part of the evidence. This shows when an action or event took
place and allows recovery from some situations such as the compromise of a key.

The evidence includes some proof of the origin of data, so a recipient can check w
it came from. It also allows the integrity of the data to be verified.

Facilities included here allow an application to deal with evidence of a variety of typ
of actions or events. Two common types of non-repudiation evidence are the evid
of proof of creation of a message and proof of receipt of a message.

Non-repudiation of Creation protects against an originator's false denial of having
created a message. It is achieved at the originator by constructing and generating
evidence of Proof of Creation using non-repudiation services. This evidence may
sent to a recipient to verify who created the message, and can be stored and then mad
available for subsequent evidence retrieval.

15-30 CORBAservices November 1996

15

 of

 the

 a
ISO

ence.
Non-repudiation of Receipt protects against a recipient's false denial of having
received a message (without necessarily seeing its content). It is achieved at the
recipient by constructing and generating evidence of Proof of Receipt using the non-
repudiation services. This is shown in Figure 15-14.

Figure 15-14Proof of Receipt

One or more Trusted Third Parties need to be involved, depending on the choice
mechanism or policy.

Non-repudiation services may include:

• Facilities to generate evidence of an action and verify that evidence later.

• A delivery authority which delivers the evidence (often with the message) from
originator to the recipient. Such a delivery authority may generate proof of origin
(to protect against a sender's false denial of sending a message or its content) and
proof of delivery (to protect against a recipient's false denial of having received
message or its content). Non-repudiation of Origin and Delivery are defined in
7498-2.

• An evidence storage and retrieval facility used when a dispute arises. An
adjudicator service may be required to settle the dispute, using the stored evid

Figure 15-15Non-repudiation services

 (plus message)
 evidence of creation

RecipientOriginator

 evidence of receipt

Object
A

Object
B

Service Req/Resp Dispute/Judgement

Non-repudiation service

Evidence
Generation

and
Adjudicator

Service Req/Resp

Evidence
Storage

and
RetrievalVerification

Delivery
Authority
Security Service: v1.0 November 1996 15-31

15

 is
le

t was

ere

cy
 to be

d

The non-repudiation services illustrated in Figure 15-15 are based on the ISO non-
repudiation model; as the shaded box in the diagram indicates, this specification
supports only Evidence Generation and Verification, which provides:

• Generation of evidence of an action.

• Verification of evidence of an action.

• Generation of a request for evidence related to a message sent to a recipient.

• Receipt of a request for evidence related to a message received.

• Analysis of details of evidence of an action.

• Collection of the evidence required for long term storage. In this case, more
complete evidence may be needed.

The Non-repudiation Service allows an application to deal with a variety of types of
evidence, not just the non-repudiation of creation and receipt previously described.

No Non-repudiation Evidence Delivery Authority is defined by this specification; it
anticipated that vendors will want to customize these authorities (which are responsib
for delivering messages and related non-repudiation evidence securely in accordance
with specific non-repudiation policies) to meet specialized market requirements. Also,
no evidence storage and retrieval services are specified, as other object services can be
used for this.

Note that this specification does not provide evidence that a request on an objec
successfully carried out; it does not require use of non-repudiation within the ORB.

15.3.8 Domains

A domain (as specified in the ORB Interoperability Architecture) is a distinct scope,
within which certain common characteristics are exhibited and common rules
observed. There are several types of domain relevant to security:

• Security policy domain. The scope over which a security policy is enforced. Th
may be subdomains for different aspects of this policy.

• Security environment domain. The scope over which the enforcement of a poli
may be achieved by some means local to that environment, so does not need
enforced within the object system. For example, messages will often not need
cryptographic protection to achieve the required integrity when being transferre
between objects in the same machine.

• Security technology domain. Where common security mechanisms are used to
enforce the policies.

These can be independent of the ORB technology domains.
15-32 CORBAservices November 1996

15

ake
re

t

rity

ty-

 be

the
Security Policy Domains

A security policy domain is a set of objects to which a security policy applies for a
set of security related activities and is administered by a security authority. (Note that
this is often just called a security domain.) The objects are the domain members. The
policy represents the rules and criteria that constrain activities of the objects to m
the domain secure. Security policies concern access control, authentication, secu
object invocation, delegation and accountability. An access control policy applies to
the security policies themselves, controlling who may administer security-relevan
policy information.

Figure 15-16Security policy domains

Security policy domains provide leverage for dealing with the problem of scale in
security policy management (by allowing application of policy at a domain granula
rather than at an individual object instance granularity).

Security policy domains permit application of security policy information to securi
unaware objects without requiring changes to their interfaces (by associating the
security policy management interfaces with the domain rather than with the objects to
which policy is applied).

Domains provide a mechanism for delimiting the scope of administrators’ authorities.

Policy Domain Hierarchies

A security authority must be identifiable and responsible for defining the policies to
applied to the domain, but may delegate that responsibility to a number of
subauthorities, forming subdomains where the subordinate authorities’ policies are
applied.

Subdomains may reflect organizational subdivisions or the division of responsibility
for different aspects of security. Typically, organization-related domains will form
higher-level superstructure, with the separation of different aspects of security forming
a lower-level structure.

security
policy

management

Security Authority
Security Service: v1.0 November 1996 15-33

15

but

’

nt

RB
ort it.
For example, there could be:

• An enterprise domain, which sets the security policy across the enterprise.

• Subdomains for different departments, each consistent with the enterprise policy
each specifying more specific security policies appropriate to that department.

With each department, authority may be further devolved:

• Authority for auditing could be the preserve of an audit administrator.

• Control of access to a set of objects could be the responsibility of a specific
administrator for those objects.

This supports what is recognized as good security practice (it separates administrators
duties) while reflecting established organizational structures.

Figure 15-17Policy domain hierarchies

Federated Policy Domains

As well as being structured into superior/subordinate relationships, security policy
domains may also be federated. In a federation, each domain retains most of its
authority while agreeing to afford the other limited rights. The federation agreeme
records:

• The rights given to both sides, such as the kind of access allowed.

• The trust each has in the other.

It includes an agreement as to how policy differences are handled, for example, the
mapping of roles in one domain to roles in the other.

Figure 15-18Federated policy domains

System- and Application-Enforced Policies

In a CORBA system, the “system” security policy is enforced by the distributed O
and the Security services it uses and the underlying operating systems that supp
This is the only policy that applies to objects unaware of security.
15-34 CORBAservices November 1996

15

ir

ins

ay be
ject

ty at
The application security policy is enforced by application objects, which have the
own security requirements. For example, they may want to control access to their own
functions and data at a finer granularity than the system security policy provides.

Figure 15-19System- and application-enforced policies

Overlapping Policy Domains

Not all policies have the same scope. For example, an object may belong to one
domain for access control and a different domain for auditing.

Figure 15-20Overlapping policy domains

In some cases, there may even be overlapping policies of the same type (however, this
specification does not require implementations to support overlapping policy doma
of the same type).

Security Environment Domains

Security policy domains specify the scope over which a policy applies. Security
environment domains are the scope over which the enforcement of the policies m
achieved by means local to the environment. The environment supporting the ob
system may provide the required security, and the objects within a specific
environment domain may trust each other in certain ways. Environment domains are
by definition implementation-specific, as different implementations run in different
types of environments, which may have different security characteristics.

Environment domains are not visible to applications or Security services.

In an object system, the cost of using the security mechanisms to enforce securi
the individual object level in all environments would often be prohibitive and
unnecessary. For example:

application security
policy domain

system security policy domain

audit domain

access control
domain
Security Service: v1.0 November 1996 15-35

15

ute

ould

ad,

 to

are

r
ain,

t the

).

rity

 and
• Preventing objects from interfering with each other might require them to exec
in separate system processes or virtual machines (assuming the generation
procedure could not ensure this protection) but, in most object systems, this w
be considered an unacceptable overhead, if applied to each object.

• Authenticating every object individually could also impose too large an overhe
particularly where:

• There is a large object population.

• There is high connectivity, and therefore a large number of secure associations.

• The object population is volatile, requiring objects to be frequently introduced
the Security services.

This cost can be reduced by identifying security environment domains where
enforcement of one or more policies is not needed, as the environment provides
adequate protection. Two types of environment domains are considered:

• Message protection domains. These are domains where integrity and/or
confidentiality is available by some specific means, for example, an underlying
secure transport service is used. An ORB, which knows such protection exists, can
exploit it, rather than provide its own message protection

• Identity domains. Objects in an identity domain can share the same identity.
Objects in the same identity domain and

• when invoking each other, do not need authentication to establish who they
communicating with.

• are equally trusted by others to handle credentials received from a client. Fo
example, if a client is prepared to delegate its rights to one object in the dom
it is prepared to delegate the same rights to all of them. If any object in the
identity domain invokes a further object, that target object is prepared to trus
calling object based on the identity of its identity domain.

Note that neither of these affect what access controls apply to the object (except in that
if trust is required and is not established with this domain, then access will be denied

Security Technology Domains

These are domains that use the same security technology for enforcing the secu
policy. For example:

• The same methods are available for principal authentication and the same
Authentication services are used.

• Data in transit is protected in the same way, using common key distribution
technology with identical algorithms.

• The same types of access control are used. For example, a particular domain may
provide discretionary access control using ACLs using the same type of identity
privilege attributes.

• The same audit services are used to collect audit records in a consistent way.
15-36 CORBAservices November 1996

15

.
ple,
curity

ey

A particular security technology is normally used to authenticate principals and to
form security associations between client and object and handle message protection
(Different technologies may be able to use the same privilege attributes, for exam
the same access id and also the same audit id.) An important part of this is the se
technology used for key distribution. There are two main types of security technology
used for key distribution, both of which are available in commercial products:

• Symmetric key technology where a shared key is established using a trusted K
Distribution Service.

• Asymmetric (or “public”) key technology where the client uses the public key of
the target (certified by a Certification Authority), while the target uses a related
private key.

Public key technology is also the most convenient technology upon which to
implement non-repudiation, which has led to its use in several electronic mail
products.

The CORBA security interfaces specified here are security mechanism neutral, socan
be implemented using a wide variety of security mechanisms and protocols.

Domains and Interoperability

Interoperability between objects depends on whether they are in the same:

• Security technology domain

• ORB technology domain

• Security policy domains

• Naming and other domains

The level of security interoperability fully defined in this first CORBA security
specification is limited, though it includes an architecture that allows further
interoperability to be added.

The following diagram shows a framework of domains and is used to discuss the
interoperability goals of this specification.

Figure 15-21Framework of domains

ORB
Technology
Domain A

ORB
Technology
Domain B

CORBA 2
interoperability

bridge

Security Technology Domain 1

Security
Technology

Gateway

Security
Technology

Domain 2
Security Service: v1.0 November 1996 15-37

15

rity

ass

rity

ain.
y a
by a

thout

Interoperating between Security Technology Domains

Sending a message across the boundary between two different security technology
domains is only possible if:

• The communication between the objects does not need to be protected, so secu
is not used between them, or

• A security technology gateway has been provided, which allows messages to p
between the two security technology domains. A gateway could be as simple as a
physically secure link between the domains and an agreement between the
administrators of the two domains to turn off security on messages sent over the
link. On the other hand, it could be a very complicated affair including a protocol
translation service with complicated key management logic, for example.

It is not a goal of this specification to define interoperability across Security
Technology Domains, and hence to specify explicit support for security technology
gateways. This is mainly because the technology is immature and appropriate common
technology cannot yet be identified. However, where the security technology in the
domains can support more than one security mechanism, this specification allows an
appropriate matching mechanism to be identified and used.

Interoperating between ORB Technology Domains

If different ORB implementations are in the same security technology domain, they
should be able to interoperate via a CORBA 2 interoperability bridge. (This
specification extends the CORBA 2 interoperability specification to detail how secu
fits in it.) However, there may still be restrictions on interoperability when:

• The objects are in different security policy domains, and the security attributes
controlling policy in one domain are not understood or trusted in the other dom
As previously described, crossing a security policy boundary can be handled b
security policy federation agreement. This can be enforced in either domain or
gateway.

• The ORBs are in different naming or other domains, and messages would normally
be modified by bridges outside the trusted code of either ORB environment.
Security protection prevents tampering with the messages (and therefore any
changes to object references in them). In general, crossing of such domains wi
using a Security Technology gateway is not possible if policy requires even
integrity protection of messages.

15.3.9 Security Management and Administration

Security administration is concerned with managing the various types of domainsand
the objects within them.

Managing Security Policy Domains

For security policy domains, the following is required:
15-38 CORBAservices November 1996

15

g

ging

 only

, the

ple,

o be

 to a

done

ain.
• Managing the domains themselves - creating, deleting them including controllin
where they fit in the domain structure.

• Managing the members of the domain, including moving objects between domains.

• Managing the policies associated with the domains - setting details of the security
policies as well as specifying which policies apply to which domains.

This specification focuses on management of the security policies. However, mana
policy domains and their members in general are expected to be part of the
Management Common Facilities and also affected by the Collections Service, so
an outline specification is given here.

This specification includes a framework for administering of security policies, and
details of how to administer particular types of policy. For example, it includes
interfaces to specify the default quality of protection for messages in this domain
policy for delegating credentials, and the events to be audited.

General administration of all access control policies is not detailed, as the way of
administering access control policies is dependent on the type of policy. For exam
different administration is needed for ACL-based policies and label-based policies.
However, the administration of the standard DomainAccessPolicy is defined.

Access policies may use rights to group operations for access control. Administration
of the mapping of rights to operations is included in this specification. Such mapping
of rights to operations is used by the standard DomainAccessPolicy, and can als
used by other access policies.

Interfaces for federation agreements allowing interaction with peer domains is left
later security specification.

Managing Security Environment Domains

For environment domains, an administrator may have to specify the characteristics of
the environment and which objects are members of the domain. This will often be
in an environment-specific way, so no management interfaces for it are specified here.

Managing Security Technology Domains

For security technology domains, administration may include:

• Setting up and maintaining the underlying Security services required in the dom

• Setting up and maintaining trust between domains in line with the agreements
between their management.

• Administering entities in the way required by this security technology. Entities to
be administered include principals, which have identities, long-term keys, and
optionally privileged attributes.
Security Service: v1.0 November 1996 15-39

15

ther

ty

ure
tation
s

ded
t.)

plete

urity

o
Such administration is often security technology specific. Also, it may be done outside
the object system, as it is a goal of this specification to allow common security
technology to be used, and even allow a single user logon to object, as well as o
applications. This specification does not include such security technology specific
administration.

15.3.10 Implementing the Model

This reference model is sufficiently general to cover a very wide variety of securi
policies and application domains to allow conformant implementations to be provided
to meet a wide variety of commercial and government secure systems in terms of both
security functionality and assurance. (Any implementation of this model will need to
identify the particular security policies it supports.)

The model also allows different ways of putting together the trusted core of a sec
object system to address different requirements. There are a number of implemen
choices on how to ensure that the security enforcement cannot be bypassed. Thi
enforcement could be performed by hardware, the underlying operating system, the
ORB core, or ORB services. Appendix E, Guidelines for a Trustworthy System,
describes some of these options. (It is important when instantiating this architecture for
a particular ORB product, or set of Security services supporting one or more ORBs, to
identify what portions of the model must be trusted for what. This should be inclu
in a conformance statement as described in Appendix F, Conformance Statemen

15.4 Security Architecture

This section explains how the security model is implemented. It describes the com
architecture as needed to support all conformance levels described in Section 15.2.1,
Conformance to CORBA Security. Not all of these levels are mandatory for all
implementors to support.

This section starts by reviewing the different views that different users have of sec
in CORBA-compliant systems, as the security architecture must cater to these.

The structural model for security in CORBA-compliant systems is described. This
includes some expansion of the ORB service concept introduced into CORBA 2 t
support interoperability between ORBS.

The security object models for the three major views (application development,
administration, and object system implementors) are then described.

15.4.1 Different Users’ View of the Security Model

The security model can be viewed from the following users’ perspectives:

• Enterprise management

• The end user

• The application developer

• Administration of an operational system
15-40 CORBAservices November 1996

15

;
em.
inst
ssets
s

r and
n A

e

roles

bly

rove

ly
y
allows

ilege
• The object system implementors

Enterprise Management View

Enterprise management are responsible for business assets including IT systems
therefore they have ultimate responsibility for protecting the information in the syst
The enterprise view of security is therefore mainly about protecting its assets aga
perceived threats at an affordable cost. This requires assessing the risks to the a
and the cost of countermeasures against them as described in Appendix E, Guideline
for a Trustworthy System. It will require setting a security policy for protecting the
system, which the security administrators can implement and maintain.

Not all parts of an enterprise require the same type of protection of their assets.
Enterprise management may identify different domains where different security
policies should apply. Managers will need to agree how much they trust each othe
what access they will provide to their assets. For example, when a user in domai
accesses objects in domain B, what rights should he have? One enterprise may also
interwork with domains in other enterprises.

Enterprise management therefore knows about the structure of the organization and th
security policies needed in different parts of it. Security policy options supported by
the model include:

• A choice of access control policies. For example, controls can be based on job
(or other attributes) and use ACL, capabilities, or label-based access controls.

• Different levels of auditing so choosing which events to be logged can be flexi
chosen to meet the enterprise needs.

• Different levels of protection of information communicated between objects in a
distributed system. For example, integrity only or integrity plus confidentiality.

The enterprise manager is not a direct user of the CORBA security system.

End User View

The human user is an individual who is normally authenticated to the system to p
who he or she is.

The user may take on different job roles which allow use of different functions and
data, thereby allowing access to different objects in the system. A user may also
belong to one or more groups (within and across organizations) which again imp
rights to access objects. A user may also have other privileges such as a securit
clearance that permits access to secret documents, or an authorization level that
the user to authorize purchases of a given amount.

The user is modeled in the system as an initiating principal who can have privilege
attributes such as roles and groups and others privileges valid to this organization.

The user invokes objects to perform business functions on his behalf, and his priv
attributes are used to decide what he can access. His audit identity is used to make him
individually accountable throughout the system. He has no idea of what further objects
are required to perform the business function.
Security Service: v1.0 November 1996 15-41

15

he

from

me as

at

mber
tem.

rs
The user view is described further in the security model in Section 15.3, Security
Reference Model.

Application Developer View

The application developer is responsible for the business objects in the system: t
applications. His main concern is the business functions to be performed.

Many application developers can be unaware of the security in the system, though their
applications are protected by it. So much of the security in the system is hidden
the applications. ORB security services are called automatically on object invocation,
and both protect the conversation between objects and control who can access them.

Some application objects need to enforce some security themselves. For example, an
application might want to control access based on the value of the data and the ti
well as the principal who initiated the operation. Also, an application may want to
audit particular security relevant activities.

The model includes a range of security facilities available for those applications that
want to use them. For example:

• The quality of protection for object invocations can be specified and used to protect
all communication with a particular target or just selected invocations.

• Audit can also be used independently of other security facilities and does not
require the application to understand other security issues.

• Other functions, such as user authentication or handling privilege attributes for
access control generally require more security understanding and operations on the
objects, which represent the user in the system. However, this is still done via
generic security interfaces, which hide the particular security technology used.

One special type of application developer is also catered for. The “application” th
provides the user interface (user sponsor or logon client) needs an authentication
interface capable of fitting with a range of authentication devices. However, the model
also allows authentication to be done before calling the object system.

The application view is described in Section 15.5, Application Developer’s Interfaces.

Administrator’s View

Administrators, like any other users, know about their job roles and other privileges,
and expect these to control what they can do. In many systems, there will be a nu
of different administrators, each responsible for administering only part of the sys
This may be partly to reduce the load on individual administrators, but partly for
security reasons, for example to reduce the damage any one person can do.

Administrators and administrative applications see more of the system than other use
or normal application developers. For example, the application developers see
individual objects whereas the administrator knows how these are grouped, for
example, in policy domains.
15-42 CORBAservices November 1996

15

that

r

eed

ring

urity

he
e
In an operational system, administrators will be responsible for creating and
maintaining the domains, specifying who should be members of the domain, its
location, etc. They will also be responsible for administering the security policies
apply to objects in these domains.

An administrator may also be responsible for security attributes associated with
initiating principals such as human users, though this may be done outside the object
system. This would include administration of privilege attributes about users, but
might also include other controls. For example, they might constrain the extent to
which the user’s rights can be delegated.

The model does not include explicit management interfaces for managing domains o
security attributes of initiating principals, though it does describe the resultant
information. It is expected that the CORBA Common Facilities will, in the future,
include management facilities that can manage security, as well as other objects, in an
OMA-compliant system. Note that the security facilities described here are also
applicable to management. For example, management information needs to be
protected from unauthorized access and protected for integrity in transit, and
significant management actions, particularly those changing security information, n
to be audited.

The administrator’s view is further described in Section 15.6, Administrator’s
Interfaces.

Object System Implementor’s View

Secure object system developers must put together:

• An ORB.

• Other Object Services and/or Common Facilities.

• The security services these require to provide the security features.

The system must be constructed in such a way as to make it secure.

The ORB implementor in a secure object system uses ORB Security services du
object invocation, as defined in Section 15.4.2, Structural Model. In addition,
protection boundaries are required to prevent interference between objects and will
need controlling by the ORB and associated Object Adapter and ORB services.

Object Service and Common Facilities developers may need to be security aware if
they have particular security requirements (for example, functions whose use should be
limited or audited). However, like any application objects, most should depend on the
ORB and associated services to provide security of object invocations.

The Security services implementor has to provide ORB Security services (for sec
of object invocations) and other security services to support applications’ view of
security as previously defined. The ORB Security services implementor shares some
application visible security objects such as a principal’s credentials, and also sees t
security objects used in making security associations. The Security services should us
the Security Policy and other security objects defined in this model to decide what
security to provide.
Security Service: v1.0 November 1996 15-43

15

 will

 are

 of
r
.

e

While these security objects may provide all the security required themselves, they
often call on external security services, so that consistent security can be provided for
both object and other systems. The Security services defined in this specification
designed to allow for convenient implementation using generic APIs for accessing
external security services so it is easier to link with a range of such services. Use
such external security services may imply use of existing, nonobject databases fo
users, certificates, etc. Such databases may be managed outside the object system

The Implementor’s view is specified in Section 15.7, Implementor’s Security
Interfaces. The implications of constructing the system securely to meet threats ar
described in Appendix E, Guidelines for a Trustworthy System.

15.4.2 Structural Model

The architecture described in this section sets the major concepts on which the
subsequent specifications are based.

The structural model has four major levels used during object invocation:

• Application-level components, which may or may not be aware of security;

• Components implementing the Security services, independently of any specific
underlying security technology. (This specification allows the use of an isolating
interface between this level and the security technology, allowing different security
technologies to be accommodated within the architecture.) These componentsare:

• The ORB core and the ORB services it uses.

• Security services.

• Policy objects used by these to enforce the Security Policy.

• Components implementing specific security technology;
15-44 CORBAservices November 1996

15

n

e

t

nt to

way
• Basic protection and communication, generally provided by a combination of
hardware and operating system mechanisms.

Figure 15-22Structural model

Figure 15-22 illustrates the major levels and components of the structural model,
indicating the relationships between them. The basic path of a client invocation of a
operation on a target object is shown.

Application Components

Many application components are unaware of security and rely on the ORB to call the
required security services during object invocation. However, some applications
enforce their own security and therefore call on security services directly (see Th
Model as Seen by Applications, under Section 15.4.5, Security Object Models). As in
the Object Management Architecture, the client may, or may not, be an object.

ORB Services

The ORB Core is defined in the CORBA architecture as “that part of the ORB tha
provides the basic representation of objects and the communication of requests.”The
ORB Core therefore supports the minimum functionality necessary to enable a clie
invoke an operation on a target object, with (some of) the distribution transparencies
required by the CORBA architecture.

An object request may be generated within an implicit context, which affects the
in which it is handled by the ORB, though not the way in which a client makes the
request. The implicit context may include elements such as transaction identifiers,

Client

request request

ORB Core

Target
Object

AAAAAAAAAAAAAAA

A
A
A

AAAAAAAAAAAAAAAA
A
A

ORB
Services

ORB
Services

Security
and other
Services

security technology

Basic Protection and Communications

A

AA
A
A

A

AA
A
A

A
AA
A

Security Service: v1.0 November 1996 15-45

15

r

r

a
recovery data and, in particular, security context. All of these are associated with
elements of functionality, termed ORB Services, additional to that of the ORB Core
but, from the application view, logically present in the ORB.

Figure 15-23ORB services

Selection of ORB Services

The ORB Services used to handle an object request are determined by:

• The security policies that apply to the client and target object because of the
domains to which they belong, for example the access policies, default quality of
protection;

• Other static properties of the client and target object such as the security
mechanisms and protocols supported;

• Dynamic attributes, associated with a particular thread of activity or invocation; fo
example, whether a request has integrity or confidentiality requirements, or is
transactional.

A client's ORB determines which ORB Services to use at the client when invoking
operations on a target object. The target’s ORB determines which ORB Services to use
at the target. If one ORB does not support the full set of services required, then eithe
the interaction cannot proceed or it can only do so with reduced facilities, which may
be agreed to by a process of negotiation between ORBs.

Bindings and Object References at the Client

The Security Architecture builds upon the CORBA 2 Interoperability Architecture in
considering the selection of ORB Services as part of the process of establishing
binding between a client and a target object.

Client

ORB Core

Target
Object

ORB
Services

ORB
Services

Logical Object Request
15-46 CORBAservices November 1996

15

t how

of the
nal).

 its

t
The ORB determines how to establish the binding using the policies, static properties,
and dynamic properties associated with the client and target. At the client, an object
reference defines those policies and static properties of the target object that affec
the client's ORB establishes a binding to the object, for example, the quality of
protection needed. Subsequently there may be a need to modify or extend details
binding for a particular invocation (e.g. when a request is required to be transactio

Associated with each binding is information specific to the particular usage by the
client of the object reference. A binding is uniquely associated with:

• The object reference of the target object.

• Elements of client context, for this binding, associated with particular ORB or
Object Services (e.g. access policy domain, security context).

A binding is distinct from the target object to which it is made, though uniquely
associated with it. The state associated with a binding is accessible via operations on
the target object reference on the client side (which are completely disjointed from
application level operations), and via a "Current" object at the target side.

Figure 15-24Object reference

If a client requires to establish several distinct, independent bindings to the same targe
object, then it can make a copy of an existing object reference. Any binding
established via the new reference is distinct from bindings used with the old reference.

Client

ORB Core

Target
Object

ORB
Services

ORB
Services

 Request

binding binding

target obj ref

Current

Object Reference
Security Service: v1.0 November 1996 15-47

15

urity

ins

ain.

iated

ies it
Security Services

In a secure object system, the ORB Services called will include ORB Security Services
for secure invocation and access control.

ORB Security Services and applications may call on Object Security Services for
authentication, access control, audit, non-repudiation, and secure invocations. These
security services form the Security Replaceability Conformance option.

These object security services may in turn call on external security services to
implement security technology.

Security Policies and Domain Objects

A security policy domain is the set of objects to which common security policies apply
as described in Security Policy Domains, under Section 15.3.8, Domains. The domain
itself is not an object. However, there is a policy domain manager for each security
policy domain. This domain manager is used when finding and managing the policies
that apply to the domain. The ORB and security services use these to enforce the
security policies relevant to object invocation.

On object creation, the ORB implicitly associates the object with one or more Sec
Policy domains as described in Administrative Model, under Section 15.4.5, Security
Object Models. An implementation may allow objects to be moved between doma
later.

There may be several security policies associated with a domain, with a policy object
for each. There is at most one policy of each type associated with each policy dom
(See Administrative Model, under Section 15.4.5, for a list of policy types.) These
policy objects are shared between objects in the domain, rather than being assoc
with individual objects. (If an object needs to have an individual policy, then there
must be a domain manager for it.)

Figure 15-25Domain objects

Where an object is a member of more than one domain, for example, there is a
hierarchy of domains, the object is governed by all policies of its enclosing domains.
The domain manager can find the enclosing domain’s manager to see what polic
enforces.

policy
object

domain
manager

enclosing
domain managers
15-48 CORBAservices November 1996

15

s

t

ay

he

in

The
pe of
tive

it

ed to
vices
.

The reference model allows an object to be a member of multiple domains, which may
overlap for the same type of policy (for example, be subject to overlapping acces
policies). This would require conflicts among policies defined by the multiple
overlapping domains to be resolved. The specification does not include explicit suppor
for such overlapping domains and, therefore, the use of policy composition rules
required to resolve conflicts at policy enforcement time.

Policy domain managers and policy objects have two types of interfaces:

• The operational interfaces used when enforcing the policies. These are the
interfaces used by the ORB during an object invocation. Some policy objects m
also be used by applications, which enforce their own security policies.

The caller asks for the policy of a particular type (e.g. the delegation policy), and
then uses the policy object returned to enforce the policy (as described in the
subsections The Model as Seen by Applications, and The Model as Seen by t
Objects, under Section 15.4.5, Security Object Models). The caller finding a policy
and then enforcing it does not see the domain manager objects and the doma
structure.

• The administrative interfaces used to set security policies (e.g. specifying which
events to audit or who can access objects of a specified type in this domain).
administrator sees and navigates the domain structure, so is aware of the sco
what he is administering. (Administrative interfaces are described in Administra
Model, under Section 15.4.5.)

Applications will often not be aware of security at all, but will still be subject to
security policy, as the ORB will enforce the policies for them. Security policy is
enforced automatically by the ORB both when an object invokes another and when
creates another object.

An application that knows about security can also override certain default security
policy details. For example, a client can override the default quality of protection of
messages to increase protection for particular messages. (Application interfaces are
described in The Model as Seen by Applications, under Section 15.4.5.)

Note that this specification does not include any explicit interfaces for managing the
policy domains themselves: creating and deleting them, moving objects between them,
changing the domain structure and adding, changing and removing policies appli
the domains. Such interfaces are expected to be the province of other object ser
and facilities such as Management Facilities and/or Collection Service in the future

15.4.3 Security Technology

The object security services previously described insulate the applications and ORBs
from the security technology used. Security technology may be provided by existing
security components. These do not have domain managers or objects. Security
technology could be provided by the operating system. However, distributed,
heterogeneous environments are increasingly being used, and for these, security
technology is provided by a set of distributed security services. This architecture
identifies a separate layer containing those components which actually implement the
Security Service: v1.0 November 1996 15-49

15

S-API

ing

h

 not
n of

urity
ment
ower

 do

n
s of

nd
e
ired
security services. It is envisaged that various technologies may be used to provide
these and, furthermore, that a (set of) generic security interface(s) such as the GS
will be used to insulate the implementations of the security services from detailed
knowledge of the underlying mechanisms. The range of services (and correspond
APIs) includes:

• The means of creating and handling the security information required to establis
security associations, including keys.

• Message protection services providing confidentiality and integrity.

The use of standard, generic APIs for interactions with external security services
only allows interchangeability of security mechanisms, but also enables exploitatio
existing, proven implementations of such mechanisms.

15.4.4 Basic Protection and Communications

Environment Domains

As described in Security Environment Domains, under Section 15.3.8, Domains, the
way security policies are enforced can depend on the security of the environment in
which the objects run. It may be possible to relax or even dispense with some sec
checks in the object system on interactions between objects in the same environ
domain. For example, in a message protection domain where secure transport or l
layer communications is provided, encryption is not needed at the ORB level. In an
identity domain, objects may share a security identity and so dispense with
authenticating each other. Environment domains are implementation concepts; they
not have domain managers.

Environment domains can be exploited to optimize performance and resource usage.

Component Protection

The maintenance of integrity and confidentiality in a secure object system depends on
proper segregation of the objects, which may include the segregation of security
services from other components. At the lowest level of this architecture, Protectio
Domains, supported by a combination of hardware and software, provide a mean
protecting application components from each other, as well as protecting the
components that support security services. Protection Domains can be provided by
various techniques, including physical, temporal, and logical separation.

The Security Architecture identifies various security services, which mediate
interactions between application level components: clients and target objects. The
Security Object Models show how these mechanisms can themselves be modeled a
implemented in terms of additional objects. However, security services can only b
effective if there is some means of ensuring that they are always invoked as requ
by security policies: it must be possible to guarantee, to any required level of
assurance, that applications cannot bypass them. Moreover, security services
themselves, like other components, must be subject to security policies.
15-50 CORBAservices November 1996

15

cross
ans

hey

 must
ty

ries,

e,

le for
The general approach is to establish protection boundaries around groups of one or
more components which are said to belong to a protection domain. Components
belonging to a protection domain are assumed to trust each other, and interactions
between them need not be mediated by security services, whereas interactions a
boundaries may be subject to controls. In addition, it is necessary to provide a me
of establishing a trust relationship between components, allowing them to interact
across protection boundaries, in a controlled way, mediated by security services.

Figure 15-26Controlled relationship

In this architecture, the trusted components supporting security services are
encapsulated by objects, as described in The Model as Seen by the Objects
Implementing Security, under Section 15.4.5, Security Object Models. Clearly, objects
that encapsulate sensitive security information must be protected to ensure that t
can only be accessed in an appropriate way.

Figure 15-27Object encapsulation

Protection boundaries and the controlled relationships that cross those boundaries
inevitably be supported by functionality more fundamental than that of the Securi
Object Models, and invariably requires a combination of hardware and operating
system mechanisms. Whichever way it is provided, this functionality constitutes part
of the Trusted Computing Base.

Protection boundaries may be created by physical separation, interprocess bounda
or within process access control mechanisms (e.g. multilevel “onionskin” hardware-
supported access control). Less rigorous protection may be acceptable in some
circumstances, and in such cases protection boundaries can be provided, for exampl
by using appropriate compilation tools to conceal protected interfaces and data.

The architecture is defined in a modular way so that, where necessary, it is possib
implementations to create protection boundaries between:

• Application components, which do not trust each other;

• Components supporting security services and other components;

Protection
Domain A

Protection
Domain B

Controlled
Relationship

Protection
Domain A

Protection
Domain B

Security Service
Security Service: v1.0 November 1996 15-51

15

A

.

t to

bject
• Components supporting security services and each other.

In addition, controlled communication across protection boundaries may be required.
In such cases, it must be possible to constrain components within a protection
boundary to interact with components outside the protection boundary only via
controlled communications paths (it must not be possible to use alternative paths).
Such communication may take many forms, ranging from explicit message passing to
implicit sharing of memory.

15.4.5 Security Object Models

This section describes the objects required to provide security in a secure CORB
system from three viewpoints:

• The model as seen by applications.

• The model as seen by administrators and administrative applications.

• The model as seen by the objects implementing the secure object system.

For each viewpoint, the model describes the objects and the relationships between
them, and outlines the operations they support. A summary of all objects is also given

The Model as Seen by Applications

Many applications in a secure CORBA system are unaware of security, and therefore
do not call on the security interfaces. This subsection is therefore mainly relevan
those applications that are aware of and utilize security. Facilities available to such
applications are:

• Finding what security features this implementation supports.

• Establishing a principal’s credentials for using the system. Authenticating the
principal may be necessary.

• Selecting various security attributes (particularly privileges) to affect later
invocations and access decisions.

• Making a secure invocation.

• Handling security at a target object and at intermediates in a chain of objects,
including use of credentials for application control of access and delegation.

• Auditing application activities.

• Non-repudiation facility -- generation and verification of evidence so that actions
cannot be repudiated.

• Finding the security policies that apply to this object.

Finding Security Features

An application can find out what security features are supported by this secure o
implementation. It does this by calling on the ORB to
get_service_information . Information returned includes the security
15-52 CORBAservices November 1996

15

im to

bed

It may
functionality level and options supported and the version of the security specification
to which it conforms. It also includes security mechanisms supported (though the ORB
Security Services, rather than applications, needs this).

Establishing Credentials

If the principal has already been authenticated outside the object system, then
Credentials can be obtained from Current (see later).

If the principal has not been authenticated, but is only going to use public services
which do not require presentation of authenticated privileges, a Credentials object may
be created without any authenticated principal information.

If the principal has not been authenticated, but is going to use services that need h
be, then authentication is needed as shown in Figure 15-28.

Figure 15-28Authentication

User sponsor

The user sponsor is the code that calls the CORBA Security interfaces for user
authentication. It need not be an object, and no interface to it is defined. It is descri
here so that the process of Credentials acquisition may be understood.

The user provides identity and authentication data (such as a password) to the user
sponsor, and this calls on the Principal Authenticator object, which authenticates the
principal (in this case, the user) and obtains Credentials for it containing authenticated
identity and privileges.

The user sponsor represents the entry point for the user into the secure system.
have been activated, and have authenticated the user, before any client application is
loaded. This allows unmodified, security-unaware client applications to have
Credentials established transparently, prior to making invocations.

There is no concept of a target object sponsor.

user

..

Principal
Authenticator Credentials CurrentA

A
A

AAAA
AAAA
AAAA

A
AAAAA

AAAA

create

User
Sponsor Client

AAAA

request

ORB
Security Service: v1.0 November 1996 15-53

15

e

okes

both
e

ed
Principal authenticator

The Principal Authenticator object is the application-visible object responsible for th
creation of Credentials for a given principal. This is achieved in one of two ways. If
the principal is to be authenticated within the object system, the user sponsor inv
the authenticate operation on the Principal Authenticator (and
continue_authentication if needed for multiexchange authentication
dialogues).

Credentials

A Credentials object holds the security attributes of a principal. These security
attributes include its authenticated (or unauthenticated) identities and privileges and
information for establishing security associations. It provides operations to obtainand
set security attributes of the principal it represents.

There may be credentials for more than one principal, for example, the initiating
principal who requested some action and the principal for the current active object.
Credentials are used on invocations and for non-repudiation.

There is an is_valid operation to check if the credentials are valid and a refresh
operation to refresh the credentials if possible.

Current

The Current object represents the current execution context (thread of activity) at
client and target objects. In a secure environment, the Current object supports th
SecureCurrent interface, which gives access to security information. Current retains a
reference to the Credentials associated with the execution environment. Object
invocations use Credentials in Current. If a user sponsor is used, it should set the user’s
credentials as the default credentials for subsequent invocations in Current. This may
also be done as the result of initializing the ORB when the user has been authenticat
outside the object system. This allows a security-unaware application to utilize the
credentials without having to perform any explicit operation on them.

At target and intermediate objects, other Credentials are available via Current.
15-54 CORBAservices November 1996

15

ials

e a

nce.
Handling Multiple Credentials

An application object may use different Credentials with different security
characteristics for different activities.

Figure 15-29Multiple credentials

The Credentials::copy operation can be used to make a copy of the Credent
object and get the object reference for the copy. The new Credentials object (i.e. the
copy) can then be modified as necessary, using its interface, before it is used.

When all required changes have been made, the set_credentials operation can be
used on the Current object to specify a different Credentials object as the default for
subsequent invocations.

At any stage, a client or target object can find the default credentials for subsequent
invocations by calling get_credentials on Current, asking for the invocation
credentials.

Selecting Security Attributes

A client may require different security for different purposes, for example, to enforc
least privilege policy and so specify that limited privileges should be used when
calling particular objects, or collections of objects, and restrict the scope to which
these privileges are propagated. A client may also want to protect conversations with
different targets differently.

There are two ways of changing security attributes for a principal:

• Setting attributes on the credentials for that principal. If attributes are set on the
credentials, these apply to subsequent object invocations using those credentials. It
can therefore apply to invocations of many target objects.

• Setting attributes on the target object reference (meaning on the binding as
described in ORB Services, under Section 15.4.2, Structural Model). Attributes set
here apply to subsequent invocations, which this client makes using this refere

A AAAAAAAAAA
AA
AA

A
A

AAA
AAA
AAA
AAA

A
A
A
A

A

AAAAA
AAAA
AAAA

copyCredentials Credentials Current

Object
(client or
target)

set_credentials(invocation credentials)

Copy
Obj Ref (new)
Security Service: v1.0 November 1996 15-55

15

d

o set

these

In both cases, the change applies immediately to further object invocations associate
with these credentials or this object reference.

Figure 15-30Changing security attributes

A wider range of attributes can be set on the credentials than on a specific object
reference. Operations available include:

• set_privileges to set privileges in the credentials. The system will reject an
attempt to set privileges if the calling principal is not entitled to one or more of the
requested privileges. There may be additional restrictions on which privileges may
be claimed if the caller is an intermediate in a delegated call chain attempting t
privileges on delegated Credentials.

• set_security_features to set such features as the quality of protection of
messages (and the credentials to use for future invocations when at an intermediate
object).

Setting any of these attributes may result in a new security association being needed
between this client and target.

Note: This specification does not contain an operation to restrict when and where
privileges can be used in target objects or delegated, though this may be specified in
the future (see Section G.9, Target Control of Message Protection).

A client may want to use different privileges or controls when invoking different
targets. It can do this by using override_default_credentials specifying the
credentials to be used with that target. A client may want to specify that a particular
quality of protection applies only to selected invocations of a target object. For
example, it may want confidentiality of selected messages. The client can do this by
using override_default_QOP , specifying a QOP on the target object reference
and then resetting this QOP when confidentiality is no longer required.

From the application’s point of view, the override_default operations are
normal invocations. However, they are actually operations upon the reference to the
target object rather than the target object itself.

Client Credentials

Binding

set_privileges

set_security_features

override_default_QOP

override_default_credentials
15-56 CORBAservices November 1996

15

e

 the

ion

e
Equivalent get_ operations are also provided to permit an application to determin
the security specific options currently requested, for example get_attributes
(privileges, and other attributes such as audit id) and get_security_features on
credentials objects and get_active_credentials and
get_security_features on target objects.

Making a Secure Invocation

A secure invocation is made in the same way as any other object invocation, but
actual invocation is mediated by the ORB Security Services, invisibly to the
application, which enforce the security requirements, both in terms of policy and
application preference. The following diagram shows an application making the
invocation, and the ORB Security Services utilizing the security information in
Current, and hence the Credentials there.

Figure 15-31Making a secure invocation

Note: For any given invocation, it is target and client security policy that determines
which (if any) ORB Security Services mediate that invocation. If the policy for a given
invocation requires no security, then no services will be used. Similarly, if only access
control is required, then only the ORB Security Service responsible for the provis
of access control will be invoked.

Security at the Target

At the target, as at the client, the Current object is the representative of the local
execution context within which the target object’s code is executing. The Current
object can be used by the target object, or by ORB and Object Service code in th
target object’s execution context, to obtain security information about an incoming
security association and the principal on whose behalf the invocation was made.

Client

request request

ORB Core

Target
Object

ORB

Services
Security

ORB

Services
Security

target obj ref

Current
Security Service: v1.0 November 1996 15-57

15

e
lient

on.

Figure 15-32Target object security

A security-aware target application may obtain information about the attributes of the
principal responsible for the request by invoking the get_attributes operation on
Current. The target normally uses get_attributes to obtain the privilege
attributes it needs to make its own access decisions.

The get_attributes operation can also be used at the client and can be used on
any Credentials object, not just on Current. When called on Current, it always gets th
incoming credentials from the client at the target object, and from the user at the c
machine.

Intermediate Objects in a Chain of Objects

When a client calls a target object to perform some operation, this target object often
calls another object to perform some function, which calls another object and so
Each intermediate object in such a chain acts first as a target, and then as a client, as
shown in Figure 15-33.

Target
Object

request

application
access decision

Current Credentials

get_attributes

A A
AAAA
AAAA

AA
AA
15-58 CORBAservices November 1996

15

rity

r the
n.

ill be
Figure 15-33Security-unaware intermediate object

For a security-unaware intermediate object, Current retains a reference to the secu
context established with the incoming client. When this intermediate object invokes
another target, either the delegated credentials from the client or the credentials fo
intermediate object’s principal (or both) become the current ones for the invocatio
The security policy for this intermediate object governs which credentials to use, and
the ORB Security Services enforce the policy, passing the required credentials to the
target, subject to any delegation constraints. The intermediate object’s principal w
authenticated, if needed, by the ORB Security Services.

A security-aware intermediate object can:

• Use the privileges of any delegated credentials for access control.

• Decide which credentials to use when invoking further targets.

• Restrict the privileges available via these credentials to further clients (where
security technology permits).

incoming request

Current

Credentials
(delegated and/or

object’s own)

Intermediate Object
(acts as target, then client)

to next targetrequest
Security Service: v1.0 November 1996 15-59

15

is

n

ion.

at is
Figure 15-34Security-aware intermediate object

After a chain of object calls, the target can call get_attributes on Current as
previously described. Note that this call always obtains the privilege and other
attributes associated with the first of the received credentials.

The target can use the received_credentials attribute on Current to get the
incoming credentials. This may be a list of one or more credential objects depending
on the authentication and delegation technology used. If more than one credential
returned, the first credential is that of the initiator. Other credentials are of
intermediates in the chain. After composite delegation (see Section 15.3.6,
Delegation), the credentials are of the initiator and immediate invoker. After traced
delegation, credentials for all intermediates in the chain will be present (as well as the
initiator). If a target object receives a request which includes credentials for more tha
one principal, it may choose which privileges to use for access control and which
credentials to delegate, subject to policy.

An intermediate object may wish to make a copy of the incoming credentials, modify
and then delegate them, though not all implementations will support this modificat
In this case, it must acquire a reference to the incoming credentials (using the
received_credentials attribute) , and then use set_privileges to
modify them. Finally it uses a call to set_credentials to make the received
credentials the default ones for subsequent invocations. When the
received_credentials are passed to set_credentials , logic under the
Current interface determines that a delegation operation is required and does wh
necessary transparently.

If the intermediate object wishes to change the association security defaults (for
example, the quality of protection) for subsequent invocations, it can do so by using
the Current interfaces (e.g. override_default_qop).

incoming request

Current

received

Intermediate Object
(acts as target, then client)

to next targetrequest

credentials own
credentials

invocation
credentials

get_credentials set_credentials

A

AA
A
A
A
A
A

15-60 CORBAservices November 1996

15

In

.

, as
other

ds

ns.
d

ss

ke
er.

 as

 it is
The intermediate object may be a principal and wish to use its own identity and some
specific privileges in further invocations, rather than delegating the ones received.
this case, it can call authenticate to obtain the appropriate credential, and then
call set_privileges to establish the appropriate rights. After doing this, it can use
set_credentials to establish its credential as the default for future invocations

If the intermediate does not have its own individual credential object (for example
it does not have an individual security name) but instead shares credentials with
objects, it can call current::get_credentials (specifying own credentials) to
get a copy of the credentials (which will have been set up automatically). It can then
copy and set_privileges , etc. on these, as appropriate for the objects it inten
invoking.

If it wants to use composite delegation with a modified version of its own credentials,
it should call Current::set_credentials (specifying its own credentials) and
the required delegation mode before making the invocation. Note that this will not
modify the credentials shared with other objects.

Security Mechanisms

Applications are normally aware of the security mechanism used to secure invocatio
The secure object system is aware of the mechanisms available to both client an
target object and can choose an acceptable mechanism. However, some security-
sophisticated applications may need to know about, or even control the choice of
mechanisms using get_security_mechanism and
override_default_mechanism .

Application Access Policies

Applications can enforce their own access policies. No standard application acce
policy is defined, as different applications are likely to want different criteria for
deciding whether access is permitted. For example, an application may want to ta
into account data values such as the amount of money involved in a funds transf

However, the application is recommended to use an access decision object similar to
the one used for the invocation access policy. This is to isolate the application from
details of the policy. Therefore, the application should decide if access is needed
shown in Figure 15-35.

Figure 15-35access_allowed application

The application can specify the privileges of the initiating principal and a variety of
authorization data, which could include the function being performed, and the data
being performed on.

Access
Application

access_allowed

Object
Decision
Security Service: v1.0 November 1996 15-61

15

ccess

 to the

 using

 in

dit

it

ject

 type
s

ct to
me,
nels.
An application access policy can be used to supplement the standard invocation a
policy with an application-defined policy. Such a policy might, for example, take into
account the parameters to the request. In this case, the authorization data passed
application-defined policy would be likely to include the request’s operation,
parameters, and target object.

The application access policy could be associated with the domain, and managed
the domain structure as for other policies (see Administrative Model, in Section
15.4.5). In this case, the application obtains the Access Decision object as shown
Figure 15-36.

Figure 15-36get_policy application

However, the application could choose to manage its access policy differently.

Auditing Application Activities

Applications can enforce their own audit policies, auditing their own activities. Au
policies specify the selection criteria for deciding whether to audit events.

As for application access policies, application audit policies can be associated with
domains and managed via the domain structure. No standard application level aud
policy is specified, as different applications may want to use different selectors in
deciding which events to audit. Application events are generally not related to ob
invocations. Applications can provide their own audit policies, which use different
criteria. The most common selectors for these audit policies to use are the event
and its success or failure, the audit_id and the time. (Management of such policie
can generally be done using the interfaces for audit policy administration defined in
Section 15.6.5, Audit Policies, by specifying new selectors, appropriate to the
application concerned.)

Whether or not the application uses an audit policy, it uses an Audit Channel obje
write the audit records. One Audit Channel object is created at ORB initialization ti
and this is used for all system auditing. Applications can use different audit chan
The way an Audit Channel object handles the audit records is not visible to the caller.
It may filter them, route them to appropriate audit trails, or cause event alarms.
Different Audit Channel objects may sent audit records to different audit trails.

Applications and system components both invoke the audit_write operation to
send audit records to the audit trail.

CurrentApplication
get_policy(application access)
15-62 CORBAservices November 1996

15

it

is
ccess

ation
 the
Figure 15-37audit_write application

If an application is using an audit policy administered via domains, it uses an Aud
Decision object (see the Access Decision object) to decide whether to audit an event. It
can find the appropriate Audit Decision object using the get_policy operation on
Current as follows.

Figure 15-38Audit decision object

The application invokes the audit_needed operation on the Audit Decision object,
passing the values the Audit Decision object requires to decide whether auditing
needed. (This set of selectors could include, for example, the type of event, its su
or failure, the identity of the caller, the time, etc. See administration of audit policies in
Section 15.6.5, Audit Policies.) The Audit Decision object responds with whether an
audit record needs to be written to the audit channel or not.

An audit channel can also be associated with an audit policy object, so the applic
can use an audit channel associated with the application (and these can link into
system audit services). If so, the application uses the audit_channel attribute to
find the Audit Channel object to use. However, applications can create their own
channel objects.

Finding What Security Policies Apply

An application may want to find out what policies the system is enforcing on its
behalf. For example, it may want to know the default quality of protection to be used
by default for messages or for non-repudiation evidence.

To do this, it can call get_policy on Current, and then the appropriate get_
operation on the policy object obtained as defined in Section 15.6, Administrator’s
Interfaces (if permitted).

Audit ChannelApplication
audit_write

Audit DecisionApplication
audit_needed

audit_channel Object

Current

audit_decision
Security Service: v1.0 November 1996 15-63

15

of

dence

e

luded

ey

, and

ined
Non-repudiation

The non-repudiation services in this specification provide generation of evidence
actions and later verification of this evidence, to prove that the action has occurred.
There is often data associated with the action, so the service needs to provide evi
of the data used, as well as the type of action.

These core facilities can be used to build a range of non-repudiation services. It is
envisioned that delivery services will be implemented to deliver this evidence to wher
it is needed and evidence stores will be built for use by adjudicators. As different
services may have different requirements for these, interfaces for them are not inc
in this specification.

Non-repudiation credentials and policies

Non-repudiation operations are performed on NRCredentials. As for any other
Credentials object, these hold the identity and attributes of a principal. However, in
this case, the attributes include whatever is needed for identifying the user for
generating and checking evidence. For example, it might include the principal’s k
(or provide access to it) as needed to sign the evidence.

NRCredentials are available via the Current object as for other Credentials objects
support the operations defined for credentials previously described. The credentials to
be used for non-repudiation can be specified using the set_credentials operation
on Current with a type of NRCredentials.

An application can set security attributes related to non-repudiation using a
set_NR_features operation on the NRCredentials object (see the
set_security_features operations on Credentials).

Figure 15-39set_NR_features operation

set_NR_features can be used to specify, for example, the quality of protection
and the mechanism to be used when generating evidence using these credentials.

By default, the features are those associated with the non-repudiation policy obta
by invoking get_policy specifying NRpolicy on Current. However, non-repudiation
policies may come from other sources. For example, the policy to be used when
generating evidence for a particular recipient may be supplied by that recipient.

There is a get_NR_features operation on NRCredentials equivalent to
set_NR_features .

Evidence generation and verification operations are also performed on NRCredentials
objects. These are described next.

NRCredentialsApplication
set_NR_features
15-64 CORBAservices November 1996

15

be

lls the

able.

rated

.

is

e

the
the

ily

side

ce.
Using non-repudiation services

An application can generate evidence associated with an action so that it cannot
repudiated at a later date. All evidence and related information is carried in non-
repudiation tokens. (The details of these are mechanism specific.)

The application decides that it wishes to generate some proof of an action and ca
generate_token operation on an NRCredentials object.

Figure 15-40generate_token operation

This evidence is created in the form of a non-repudiation token rendered unforge
[Generation of the token uses the initiating principal’s security attributes in the
NRCredentials (normally a private key), for example, to sign the evidence.]

Depending on the underlying cryptographic techniques used, the evidence is gene
as:

• A secure envelope of data based on symmetric cryptographic algorithms requiring
what is termed to be a trusted third party as the evidence generating authority

• A digital signature of data based on asymmetric cryptographic algorithms which
assured by public key certificates, issued by a Certification Authority.

Depending on the non-repudiation policy in effect for a specific application and th
legal environment, additional information (such as certificates or a counter digital
signature from a Time Stamping Authority) maybe required to complete the non-
repudiation information. A time reference is always provided with a non-repudiation
token. A Notary service may be required to provide assurance about the properties of
the data.

Complete evidence

Non-repudiation evidence may have to be verified long after it is generated. While
information necessary to verify the evidence (e.g. the public key of the signer of
evidence, the public key of the trusted time service used to countersign the evidence,
the details of the policy under which the evidence was generated, etc.) will ordinar
be easily accessible at the time the evidence is generated, that information may be
difficult or impossible to assemble a long time afterward.

The CORBA Non-repudiation Service provides facilities for incorporating all
information necessary for the verification of a piece of non-repudiation evidence in
the evidence token itself. A token including both non-repudiation evidence and all
information necessary to verify that evidence is said to contain "complete" eviden

NRCredentialsApplication generate_token
(e.g. proof of creation)
Security Service: v1.0 November 1996 15-65

15

ure.

e

 in

aring

te
There may be policy-related limitations on the time periods during which complete
evidence may be formed. For example, Non-repudiation policy may permit addition of
the signer’s public key to the evidence only after expiration of the interval, during
which the signer may permissibly declare that key to have been compromised.
Similarly, the policy may require application of the Trusted Time Service
countersignature within a specified interval after application of the signer’s signat

To facilitate the generation of complete evidence, the information returned from th
calls which verify evidence and request formation of complete evidence, includes two
indicators (complete_evidence_before and complete_evidence_after)
indicating the earliest time at which complete evidence may usefully be requested and
the latest time at which complete evidence can successfully be formed.

A call to verify_evidence before complete evidence can be formed may result
a response declaring the evidence to be "conditionally valid." This means that the
evidence is not invalid at the current time, but a future event (e.g. the signer decl
his key compromised) might cause the evidence to be invalid when complete.

Figure 15-41 illustrates the policy considerations relating to generation of comple
evidence, and the sequence of actions involved in generating and using complete
evidence.
15-66 CORBAservices November 1996

15

is

n
if
Figure 15-41Non-repudiation service

An application may receive a token and need to know what sort of token it is. This
done using get_token_details . When the token contains evidence,
get_token_details can be used to extract details such as the non-repudiation
policy, the evidence type, the originator’s name, and the date and time of generation.
These details can be used to select the appropriate non-repudiation policy and other
features (using set_NR_features), as necessary for verifying the evidence. Whe
the token contains a request to send back evidence to one or more recipients, then
appropriate, evidence can be generated.

(< >)

trusted time service
countersignature
window

user key repudiation window

Time

Non-Repudiation Service

event
data

evidence
token

evidence
token
with
trusted
timestamp

OK

complete_evidence_before complete_evidence_after

form_complete_evidence

form_
complete_
evidence

verify_
evidence

generate_
token

evidence
token

complete
Security Service: v1.0 November 1996 15-67

15

n

at

oes
An application verifies the evidence using the verify_evidence operation.

Figure 15-42verify_evidence operation

Verification of non-repudiation tokens uses information associated with the Non-
repudiation Policy applicable to the non-repudiation token and security information
about the recipient who is verifying the evidence (normally the public key from a
Certification Authority and a set of trust relationships between Certification
Authorities).

Using non-repudiation for receipt of messages

An application receiving a message with proof of origin may handle it as shown i
Figure 15-43.

Figure 15-43Proof of origin message

• The application receives the incoming message with a non-repudiation token th
has been generated by the originator.

• The application now wishes to know the type of token that it has received. It d
this by calling the get_token_details operation. The token may be:

• A request that evidence be sent back (such as an acknowledge of receipt)

• Evidence of an action (such as a proof of creation)

• Both evidence and a request for further evidence.

• The application’s next action depends on which of the three cases applies.

• In the first case, the application verifies that it is appropriate to generate the
requested evidence and, if so, generates that evidence using generate_token .

Application NRCredentialsverify_evidence

NRCredentials NRCredentials

Application
Object

incoming request
with message plus
evidence e.g. proof
of origin

deliver message
and evidence to
originator e.g.
proof of receipt

get_token_details
& verify_evidence
e.g. proof of origin

generate_evidence
e.g. proof of receipt
15-68 CORBAservices November 1996

15

i

store
. It

s as
• In the second case, the application retrieves the data associated with the evidence
if it is outside the token, and verifies the evidence using verify_evidence ,
presenting the token alone or the concatenation of the token and the data.

• In the last case, the application verifies the received evidence by first calling
verify_evidence , and then generating evidence if appropriate, as in the frst
case.

• If the application receives a token that contains valid evidence, and wishes to
it for later use, it needs to make sure that it holds all the necessary information
may need to call form_complete_evidence in order to get the complete
evidence needed when this could not be provided using the verify operation.

• When the application has generated evidence as the result of a request from the
originator of the message, the application must send it to the various recipient
indicated in the NR token received.

Using non-repudiation services for adjudication

Adjudication applications use the verify_evidence operation on the NR token,
which must contain complete evidence to settle disputes.

Administrative Model

The administrative model described here is concerned with administering security
policies.

• Administration of security environment domains and security technology domains
may be implementation specific, so it is not covered here. This means
administrating security technology specific objects is out of the scope of this
specification.

• Explicit management of nonsecurity aspects of domains is not covered.

Administrative activities covered here are:

• Creating objects in a secure environment subject to the security policies

• Finding the domain managers that apply to this object.

• Finding the policies for which these domain managers are responsible.

• Setting security policy details for these policy objects.

• Specifying which rights give access to which operations in support of access
policies.

The model used here is not specific to security, though the specific policies described
are security policies.

Security Policies

Security policies may affect the security enforced:
Security Service: v1.0 November 1996 15-69

15

n

 in

he

cts

 as
eir

• By applications. In general, enforcing policy within applications is an applicatio
concern, so it is not covered by this specification. However, where the application
uses underlying security services, it will be subject to their policies.

• By the ORB Security Services during object invocation (the main focus of this
specification).

• In other security object services, particularly authentication and audit.

• In any underlying security services. (In general, this is not covered by this
specification, as these security services are often security technology specific.)

This specification defines the following security policy types:

• Invocation access policy
The object that implements the access control policy for invocations of objects
this domain.

• Invocation audit policy
This controls which types of events during object invocation are audited, and t
criteria controlling auditing of these events.

• Secure invocation policy
This specifies security policies associated with security associations and message
protection. For example, it specifies:

• Whether mutual trust between client and target is needed (i.e., mutual
authentication if the communications path between them is not trusted).

• Quality of protection of messages (integrity and confidentiality).

There may be separate invocation policies for applications acting as client and those
acting as target objects in this domain. This applies to access, audit, and secure
invocation policies. There may also be separate policies for different types of obje
in the domain.

• Invocation delegation policy
This controls whether objects of the specified type in this domain, when acting
an intermediate in a chain, by default delegate the received credentials, use th
own credentials, or pass both.

• Application access policy
This policy type can be used by applications to control whether application
functions are permitted. Unlike invocation policies, it does not have to be managed
via the domain structure, but may be managed by the application itself.

• Application audit policy
This policy type can be used by applications to control which types of application
events should be audited under what circumstances.

• Non-repudiation policy
Where non-repudiation is supported, a non-repudiation policy has the rules for
generation and verification of evidence.
15-70 CORBAservices November 1996

15

of

ing

e-

. For

, i.e.

ved to
• Construction policy
This controls whether a new domain is created when an object of a specific type is
created.

Domains at Object Creation

When a new object is created in a secure environment, the ORB implicitly associates
the object with the following elements forming its environment.

• One or more Security Policy Domains, defining all the policies to which the object
is subject.

• The Security Technology Domains, characterizing the particular variants of security
mechanisms available in the ORB.

• Particular Security Environment Domains where relevant.

The application code involved in an object’s creation does not need to be aware
security to protect the objects it creates. Also, automatically making an object a
member of policy domains on creation ensures that mandatory controls of enclos
domains are not bypassed.

The ORB will establish these associations when the creating object calls
CORBA::BOA::create or an equivalent. Some or all of these associations may
subsequently be explicitly referenced and modified by administrative or application
activity, which might be specifically security-related but could also occur as a sid
effect of some other activity, such as moving an object to another host machine.

Also, in some cases, when a new object is created, a new domain is also needed
example, in a banking system, there may be a domain for each bank branch, which
provides policies for bank accounts at that branch. Therefore when a bank branch is
created, a new domain is needed. As for a newly created object’s domain membership,
if the application code creating the object is to be unaware of security, the domain
manager must be created transparently to the application. A construction policy
specifies whether new objects of this type in this domain require a new domain.

This construction policy is enforced at the same time as the domain membership
by BOA::create or equivalent.

Other Domain and Policy Administration

Once an object has been created as a member of a policy domain, it may be mo
other domains using the appropriate domain management facilities (not specified in
this document).

Once a domain manager has been created, new security policy objects can be
associated with it using the appropriate domain management facilities. These security
policy objects are administered as defined in this specification.
Security Service: v1.0 November 1996 15-71

15

ly

ports

ult

r
The following diagram shows the operations needed by an administrative application
to manage security policies.

Figure 15-44Managing security policies

Finding Domain Managers

An application can make a call on an object reference to get_domain_managers .
This returns a list of the immediately enclosing domain managers for this object. If
these do not have the type of policy required, a call can be made to
get_domain_managers on one of these domain managers to find its immediate
enclosing domains.

Finding the Policies

Having found a domain manager, the administrative application can now find the
security policies associated with that domain by calling get_domain_policy on
the domain manager specifying the type of policy it wants (e.g. client secure
invocation policy, application audit policy). This returns the object needed to
administer the policy associated with this domain. Each policy object supports the
operations required to administer that policy.

Note: The policy object used for administering the policy may be the same as theone
used for enforcing it, but need not be. For example, an AccessPolicy interface for
managing the policy may be supported by a different object from the one that sup
the AccessDecision interface used for deciding if access is allowed.

In this specification, no facilities are provided to specify the rules for combining
policies for overlapping domains, though some implementations may include defa
rules for this. (Definition of such rules is a potential candidate for future security
specifications. See Appendix G, Facilities Not in This Specification.)

If the policy that applies to the domain manager’s own interface is required (rathe
than the one for the objects in the domain), then get_policy (rather than
get_domain_policy) is used.

Setting Security Policy Details

Having found the required security policy object, the application uses its
administrative interfaces to set the policy.

Application
Object

Object
Reference

Domain
Manager

Policy
Object

get_domain_managers

get_domain_managers
get_domain_policy(policy type)

set_policy_option
15-72 CORBAservices November 1996

15

ode
s

or

y
 its

s of

ain,
The administrative interfaces depend on the type of policy. For example, the
delegation policy only requires a delegation mode to be set to specify delegation m
used when the object acts as an intermediate in a chain of object invocations, wherea
an access policy will need to specify who can access the objects.

Administrative interfaces are defined in Section 15.6, Administrator’s Interfaces, f
the standard policy types, which all ORBs supporting security functionality Level 2
support.

However, different administration may be needed if standard policies are replaced b
different policies. A supplier providing another policy may therefore have to specify
administrative interfaces.

Specifying Use of Rights for Operation Access

The access policy is used to decide whether a user with specified privileges has
specified rights. A specific right may permit access to exactly one operation. More
often, the right permits access to a set of operations.

A RequiredRights object specifies which rights are required to use which operation
an interface. The administrator can set_required_rights on this object.

The Model as Seen by the Objects Implementing Security

Security is provided for security-unaware applications by implementation level
security objects, which are not directly accessible to applications. These same
implementation objects are also used to support the application-visible security objects
and interfaces described in the subsections The Model as Seen by Applications, and
Administrative Model.

There are two places where security is provided for applications, which are unaware of
security. These are:

• On object invocation when invocation time policies are automatically enforced.

• On object creation, when an object automatically becomes a member of a dom
and therefore subject to the domain’s policies.
Security Service: v1.0 November 1996 15-73

15

t

nt

n

f
Implementor’s View of Secure Invocations

Figure 15-45 shows the implementation objects and services used to support secure
invocations.

Figure 15-45Securing invocations

ORB Security Services

ORB Security Services are interposed in the path between the client and target objec
to handle the security of the object invocation. They may be interspersed with other
ORB services, though where message protection is used, this will be the last ORB
service at the client side, as the request cannot be changed after this.

The ORB services use the policy objects to find which policies to apply to the clie
and target object, and hence the invocation. The ORB and ORB Services establish the
binding between client and target object as defined in ORB Services, under Sectio
15.4.2, Structural Model. The ORB Security Services call on the security services to
provide the required security.

Security Policy

The security policies associated with the client object are accessed by the ORB
Security Services using the get_policy operation on Current specifying the type o
policy required. (The client side services also have to check the binding to see if any
policies have been overridden by the client using operations on the target object
reference.) At the target, get_policy is used on the object’s reference (at least in
the message level interceptors, as Current is not available at that stage).

Client

request
request

ORB Core

Target
Object

target obj ref

Current

ORB Security
(and other
Services

ORB Security
(and other
Services

Current

Target
Policies

Client
Policies

Security
ServicesSecurity

Services

Binding

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

ABinding

A

AAAA
AAA
AAA

AAAA AAAA

A

AAA
AA
AA
AA
15-74 CORBAservices November 1996

15

ration

licy.
ases,

Figure 15-46get_policy operation

The policy may be associated with domain managers as described in the administ
view. However, information may be cached during environment setup or previous
object invocations, and the get_policy interface hides whether the policy
information has been obtained in advance or is searched for in response to this call.

Once the policy object has been obtained, the ORB Service uses it to enforce po
The operations used to enforce the policy depend on the type of policy. In some c
such as secure invocation or delegation, the ORB Service invokes a get_ operation
specifying the particular policy options required (e.g., whether confidentiality is
required, and the delegation mode). It then uses this information to enforce the policy,
for example, pass the required policy options to the Vault to enforce.

Some policy objects may include rules, which enforce the policy. For example, an
access policy object supports an access_allowed operation which responds with a
yes or no.

ORB
Security
Service

Current
Policy
Object

get_policy(type of policy)

manipulate policy
Security Service: v1.0 November 1996 15-75

15

s

 is

ess
Specific ORB Security Services and Replaceable Security Services

The specific ORB Security Services and security services included in the CORBA
security object model are shown in Figure 15-47.

Figure 15-47ORB Security Services

Two ORB Security Services are shown:

• The access control service, which is responsible for checking if this operation is
permitted and enforcing the invocation audit policy for some event types.

• The secure invocation service. On the client’s initial use of this object, it may need
to establish a security association between client and target object. It also protect
the application requests and replies between client and target object.

The security services they use are discussed next.

Access policy

An access decision object is used to determine if this operation on this target object
permitted. It is obtained by the ORB service using the get_policy operation
previously described. There may be different policies, and therefore different acc
decision policy objects, at the client and target.

Client

reply request

ORB Core

Target
Object

Access
Control

Secure
Invocation

Access
Control

Secure
Invocation

Client
Access
Decision

Vault

Security
Context

Target
Access
Decision

Vault

Security
Context

per request

to set up
security
association

per message
to protect
message

AAAA
AAAA

AAAA
AAAA

AA
AA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAAAAAAAAA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA AAAAAAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAAAAAAA
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A AAAAAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAAAAAA
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A AAAAAAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAAAAAAA
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

create create

replyrequest

ORB Security Services

Security Services
15-76 CORBAservices November 1996

15

ntrol

cipal
okes

es

future

t the

urity

(or

s.
The ORB service invokes the access_allowed operation on the Access Policy
object specifying the operation required, the principal credentials to be used for
deciding if this access is allowed, etc. This is independent of the type of access co
policy, which may be discretionary using ACLs or capabilities, mandatory labels
usage, etc.

The Access Decision object uses the access policy to decide what rights the prin
has. If the Access Policy object is separate from the Access Decision object, it inv
get_effective_rights on the Access Policy object.

If the access policies use rights (rather than directly identifying that this operation is
permitted), the Access Decision object now invokes get_required_rights on the
RequiredRights object to find what rights are needed for this operation. It compar
these rights with the effective rights granted by the policy objects, and if required
rights have been granted, it grants access. This model could be extended in the
to handle overlapping access policy domains as described in Appendix G, Facilities
Not in This Specification.

Figure 15-48Access decision object

Vault

The Vault object is responsible for establishing the security association between client
and target. It is invoked by the Secure Invocation ORB Service at the client and a
target (using init_security_context and accept_security_context).
The Vault creates the security context objects, which are used for any further sec
operations for this association.

Authentication of users (and some other principals) is done explicitly using the
authenticate operation described in The Model as Seen by Applications, under Section
15.4.5, Security Object Models. Authentication of an intermediate object in a chain
the principal representing the object) may be done automatically by the Vault when an
intermediate object invokes another object.

The Vault, like the security context objects it creates, is invisible to all application

Access
Policy

Required
Rights

Access
Decision

get_required_rightsget_effective_rights

access_allowed
Security Service: v1.0 November 1996 15-77

15

urity
. This

or
Security context

For each security association, a pair of Security Context objects (one associated with
the client, and one with the target) provide the security context information.
Establishing the security contexts may require several exchanges of messages
containing security information, for example, to handle mutual authentication or
negotiation of security mechanisms.

Security Context objects maintain the state of the association, such as the credentials
used, the target’s security name, and the session key. is_valid and refresh
operations are supported to check the validity of the context and refresh it if possible.

Security Contexts objects provide operations for protecting messages for integrityand
confidentiality such as protect_message , reclaim_message .

They also have received_credentials and
received_security_features attributes, which are made available via the
Current object.

A security context can persist for many interactions and may be shared when a client
invokes several target objects in the same trusted identity domain. Although neither the
client nor target is aware of an “association,” it is an important optimizing concept for
the efficient provision of security services.

Relationship between implementation objects for associations

There is not always a one-for-one relationship between client-target object pairs and
security contexts. For example, if a client uses different privileges for different
invocations on that object, this will result in separate security contexts. Also, a sec
context may be shared between this client’s calls on more than one target object
is normally the case if the target objects share a security name, as shown in Figure
15-49. Note that the Vault decides whether to use the same or a different security
context based on the target security name (which may be the name of an object
trusted identity domain).
15-78 CORBAservices November 1996

15

Figure 15-49Target objects sharing security names

Implementor’s View of Secure Object Creation

When an object is created in a secure environment, it is associated with Security
Policy, Environment, and Technology domains as described Administrative Model, in
Section 15.4.5, Security Object Models.

The way it is associated with Environment and Technology domains is ORB
implementation-specific, and therefore not described here.

Current

Client Target
Object

T3

Target
Object

T2

Target
Object

T1

obj ref
for T1

obj ref
for T2

obj ref
for T3

Current Current

Security
context for

C-S1

Security
context for

C-T3

Security
context for

C-T3

Security
context for

C-S1

Object sharing
security name S1

T3 messages

T2 messages

T1 messages
Security Service: v1.0 November 1996 15-79

15

he

ted

ager

, the
may

 are
For policy domains, the construction policy of the application or factory creating t
object is used as shown in Figure 15-50.

Figure 15-50Object created by application or factory

The application (which may be a generic factory) object calls BOA::create to
create the new object reference. The ORB obtains the construction policy associa
with the creating object.

The construction policy controls whether, in addition to creating the specified new
object, the ORB must also create a new domain for the newly created object. If anew
domain is needed, the ORB creates both the requested object and a domain man
object. A reference to this domain manager can be found by calling
get_domain_managers() on the newly created object’s reference.

While the management interface to the construction policy object is standardized
interface from the ORB to the policy object is assumed to be a private one, which
be optimized for different implementations.

If a new domain is created, the policies initially applicable to it are the policies of the
enclosing domain.

The calling application, or an administrative application later, can change the domains
to which this object belongs, using the domain management interfaces.

Summary of Objects in the Model

The previous sections have described the various security-related objects, which
available to applications, administrators, and implementors.

Figure 15-51 shows the relationship between the main objects visible in different
views for three types of security functionality.

Application

ORB

application’s
own object
reference

construction
policy
object

BOA::create or equivalent

get_policy(construction policy)

use policy
15-80 CORBAservices November 1996

15

to

ing

ese
ry

ss is
ject
• Authentication of principals and security associations (which includes
authentication between clients and targets) and message protection.

• Authorization and access control (i.e., the principal being authorized to have
privileges or capabilities and control of access to objects).

• Accountability -- auditing of security-related events and using non-repudiation
generate and check evidence of actions.

Figure 15-51Relationship between main objects

Credentials are visible to the application after authentication, for setting or obtain
privileges and capabilities, for access control, and are available to ORB service
implementors. Only the first of these usages is shown.

Policy objects have management interfaces to allow policies to be maintained. Th
interfaces depend on the type of policy. For example, management of a mandato
access control policy using labels is different from management of an ACL. However,
at run-time, an access policy object is used, which has a standard “check if acce
allowed” interface, whatever the access control policy used. The access policy ob
has both management and run-time interfaces.

Domain Manager
A

A

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AA

AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

A AAA

A AAA

A AAA

A AAA

A

A

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

administration
objects

implementation
ORB services

implementation
security objects

application
visible objects

authentication and
security association

authorization and
access control

accountability

Principal
Authenticator Current

Credentials

Secure Invocation

Vault Security
Context

Secure Invocation Policies

Delegation Policy

Access Policies

Access Decision

Access Control

Application
Access Decision

Invocation
Audit
Policy

Appl’n
Audit
Policy

Audit
Decision

Audit
Channel

Non-repudiation
Credentials

Audit
Decision

Audit
Channel
Security Service: v1.0 November 1996 15-81

15

 to

een
e

cts,

The diagram does not show:

• Environment objects, such as Current.

• Application objects (client, target object, target object reference at the client).

• The ORB core (though the security ORB services it calls are shown).

• The construction policy object.

15.5 Application Developer’s Interfaces

15.5.1 Introduction

This section defines the security interfaces used by the application developer who
implements the business logic of the application. For an overview of how these interfaces
are used, see the Security Model as seen by applications in Section 15.4, Security
Architecture.

Note that applications may be completely unaware of security, and therefore not need
use any of these interfaces. In general, applications may have different levels of security
awareness. For example:

• Applications unaware of security, so that an application object, which has not b
designed with security in mind, can participate in a secure object system and b
subject to its controls such as:

• Protection default quality of object invocations.

• Control of who can perform which operations on which objects.

• Auditing of object invocations.

• Applications performing security-relevant activities. An application may control
access and audit its functions and data at a finer granularity than at object
invocation.

• Applications wanting some control of the security of its requests on other obje
for example, the level of integrity protection of the request in transit.

• Applications that are more sophisticated in how they want to control their
distributed operations, for example, control whether their credentials can be
delegated.

• Applications using more specialist security facilities such as non-repudiation.

Security operations use the standard CORBA exceptions. For example, any invocation
that fails because the security infrastructure does not permit it, will raise the standard
CORBA::NO_PERMISSION exception. A security operation that fails because the
feature requested is not supported in this implementation will raise a NO_IMPLE MENT
exception. No security-specific exceptions are specified.
15-82 CORBAservices November 1996

15

s

 to

ion

s
Security Functionality Conformance

Two security functionality levels are specified in this document, plus one optional facility.

Security Functionality Level 1

Security functionality Level 1 provides an entry level of security functionality that applie
to all applications running under a secure ORB, whether aware of security or not. This
includes security of invocations between client and target object, message protection,
some delegation, access control, and audit.

The security functionality is in general specified by administering the security policies for
the objects, and is mainly transparent to applications.

Security functionality Level 1 includes interfaces for applications as follows:

• get_attributes allows an application to obtain the privileges and other
attributes of the principal on whose behalf it is operating. It can then use these
control access to its own functions and data (see Section 15.5.4, Interfaces, and
Section 15.5.9, Use of Interfaces for Access Control).

Security Functionality Level 2

This security functionality level provides further security functionality such as more
delegation options.

It also allows an application aware of security to have more control of the enforcement of
this security. Most of the interfaces specified in this section are only available as part of
this functionality level. Note that although implementations must support all Level 2
interfaces in order to conform to Security Functionality Level 2, different implementations
of these interfaces may support different semantics; some implementations will therefore
be capable of enforcing a wider variety of policies than others.

Security Replaceability Ready (either option)

A security replaceability ready ORB provides no security functionality itself, but is
Security Ready (i.e. it makes well-formed calls to known security interfaces as defined in
Appendix D, Conformance Details) and supports the get_service_information
operation which allows an application to find out what security is supported (see
Section 15.5.2, Finding Security Features). It also supports the get_current
operation on the ORB to obtain the Current object for the execution context (see Sect
B.3, Extension to the Use of Current).

Optional Functionality

The only specified optional facility specified here is non-repudiation. The interfaces for
this are specified in Section 15.5.11, Non-repudiation.

It is possible to add other security policies to this specification, for example, extra acces
or delegation policies, but these are not part of this specification.
Security Service: v1.0 November 1996 15-83

15

s. In
Introduction to the Interfaces

The interfaces specified here, as in other sections, are designed to allow a choice of
security policies and mechanisms. Where possible, they are based on international
standard interfaces. Several of the credentials interfaces are based on those of GSS-API.

Data Types

Many of the security data types used by applications are also used for implementation
interfaces. These are therefore defined in the security common data module.

Some data types, such as security attributes and audit events, have an extensible set of
values, so the user can add values as required to meet user-specific security policie
these cases, a family is identified, and then a set of types or values for this family. Family
identifiers 0-7 are reserved for OMG-defined families, and therefore standard values.
More details of these families and associated data types are given in Appendix A,
Consolidated OMG IDL.

module CORBA {
// the following data structures are used to return what
// security is implemented by get_service_information

typedef unsigned short ServiceType;

const ServiceType Security = 1;
// other Service types to be defined

typedef unsigned long ServiceOption;

const ServiceOption SecurityLevel1 = 1;
const ServiceOption SecurityLevel2 = 2;
const ServiceOption NonRepudiation = 3;
const ServiceOption SecurityORBServiceReady = 4;
const ServiceOption SecurityServiceReady = 5;
const ServiceOption ReplaceORBServices = 6;
const ServiceOption ReplaceSecurityServices = 7;
const ServiceOption StandardSecureInteroperability = 8;
const ServiceOption DCESecureInteroperability = 9;

// Service details supported by the implementation

typedef unsigned long ServiceDetailType;

// security mech type(s) supported for secure associations

const ServiceDetailType SecurityMechanismType = 1;

// privilege types supported in standard access policy

const ServiceDetailType SecurityAttribute = 2;
struct ServiceDetail {

ServiceDetailType service_detail_type;
sequence <octet> service_detail;

 };
15-84 CORBAservices November 1996

15

struct ServiceInformation {

sequence <ServiceOption> service_options;
sequence <ServiceDetail> service_details;

};

// Security Policy Types supported

enum PolicyType {
 SecClientInvocationAccess,

SecTargetInvocationAccess,
SecApplicationAccess,

 SecClientInvocationAudit,
SecTargetInvocationAudit,
SecApplicationAudit,

 SecDelegation,
 SecClientSecureInvocation,

SecTargetSecureInvocation,
SecNonRepudiation,
SecConstruction

};
};

 module Security {
typedef string SecurityName;
typedef sequence <octet> Opaque;

// extensible families for standard data types

struct ExtensibleFamily {
unsigned short family_definer;
unsigned short family;

};

// security association mechanism type

typedef string MechanismType;
struct SecurityMechandName {

MechanismType mech_type;
SecurityName security_name;

};

typedef sequence<MechanismType> MechanismTypeList;
typedef sequence<SecurityMechandName>SecurityMechandNameList;

// security attributes

typedef unsigned long SecurityAttributeType;

// identity attributes; family = 0

const SecurityAttributeType AuditId = 1;
const SecurityAttributeType AccountingId = 2;
Security Service: v1.0 November 1996 15-85

15
const SecurityAttributeType NonRepudiationId = 3;

// privilege attributes; family = 1

const SecurityAttributeType Public = 1;
const SecurityAttributeType AccessId = 2;
const SecurityAttributeType PrimaryGroupId = 3;
const SecurityAttributeType GroupId = 4;
const SecurityAttributeType Role = 5;
const SecurityAttributeType AttributeSet = 6;
const SecurityAttributeType Clearance = 7;
const SecurityAttributeType Capability = 8;

struct AttributeType {
ExtensibleFamily attribute_family;
SecurityAttributeType attribute_type;

};

typedef sequence<AttributeType>AttributeTypeList;

struct SecAttribute {
AttributeType attribute_type;
Opaque defining_authority;

 Opaque value;
// the value of this attribute can be

 // interpreted only with knowledge of type
};

typedef sequence<SecAttribute> AttributeList;

// Authentication return status

enum AuthenticationStatus {
SecAuthSuccess,
SecAuthFailure,
SecAuthContinue,
SecAuthExpired

};

// Association return status
enum AssociationStatus {

SecAssocSuccess,
SecAssocFailure,
SecAssocContinue

};

// Authentication method
typedef unsigned long AuthenticationMethod;

// Credential types which can be set as Current default

enum CredentialType {
SecInvocationCredentials,
SecOwnCredentials,
SecNRCredentials
15-86 CORBAservices November 1996

15
};

// Declarations related to Rights
struct Right {

Extensible Family rights_family;
string right;

};

typedef sequence <Right> RightsList;

enum RightsCombinator {
SecAllRights,
SecAnyRight

};

// Delegation related
enum DelegationState {

SecInitiator,
SecDelegate

};

// pick up from TimeBase
typedef TimeBase::UtcT UtcT;
typedef TimeBase::IntervalT IntervalT;
typedef TimeBase::TimeT TimeT;

// Security features available on credentials.
enum SecurityFeature {

SecNoDelegation,
SecSimpleDelegation,
SecCompositeDelegation,
SecNoProtection,
SecIntegrity,
SecConfidentiality,
SecIntegrityAndConfidentiality,
SecDetectReplay,
SecDetectMisordering,
SecEstablishTrustInTarget

};

// Security feature-value
struct SecurityFeatureValue {

SecurityFeature feature;
boolean value;

};

typedef sequence<SecurityFeatureValue>SecurityFeatureValueList;

// Quality of protection which can be specified
// for an object reference and used to protect messages
enum QOP {

SecQOPNoProtection,
SecQOPIntegrity,
SecQOPConfidentiality,
Security Service: v1.0 November 1996 15-87

15
SecQOPIntegrityAndConfidentiality
};

// Association options which can be administered
// on secure invocation policy and used to
// initialize security context

typedef unsigned short AssociationOptions;

const AssociationOptions NoProtection= 1;
const AssociationOptions Integrity= 2;
const AssociationOptions Confidentiality = 4;
const AssociationOptions DetectReplay = 8;
const AssociationOptions DetectMisordering = 16;
const AssociationOptions EstablishTrustInTarget = 32;
const AssociationOptions EstablishTrustInClient = 64;

// Flag to indicate whether association options being
// administered are the “required” or “supported” set

enum RequiresSupports {
SecRequires,
SecSupports

};

// Direction of communication for which
// secure invocation policy applies
enum CommunicationDirection {

SecDirectionBoth,
SecDirectionRequest,
SecDirectionReply

};

// AssociationOptions-Direction pair
struct OptionsDirectionPair {

AssociationOptions options;
CommunicationDirection direction;

};

typedef sequence<OptionsDirectionPair>OptionsDirectionPairList;

// Delegation mode which can be administered
enum DelegationMode {

SecDelModeNoDelegation, // i.e. use own credentials
SecDelModeSimpleDelegation, // delegate received credentials
SecDelModeCompositeDelegation // delegate both;

};

// Association options supported by a given mech type

struct MechandOptions {
MechanismType mechanism_type;
AssociationOptions options_supported;

};
15-88 CORBAservices November 1996

15
typedef sequence<MechandOptions>MechandOptionsList;

// Audit data structures

struct AuditEventType {
ExtensibleFamily event_family;
unsigned short event_type;

};

typedef sequence<AuditEventType>AuditEventTypeList;

typedef unsigned long SelectorType;

const SelectorType InterfaceRef = 1;
const SelectorType ObjectRef = 2;
const SelectorType Operation = 3;
const SelectorType Initiator = 4;
const SelectorType SuccessFailure = 5;
const SelectorType Time = 6;

// values defined for audit_needed and audit_write are:
// InterfaceRef: object reference
// ObjectRef: object reference
// Operation: op_name
// Initiator: Credentials
// SuccessFailure: boolean
// Time: utc time on audit_write; time picked up from
// environment in audit_needed if required

struct SelectorValue {
SelectorType selector;
any value;

};
typedef sequence<SelectorValue> SelectorValueList;

};

In the interface specifications in the rest of this section, data types defined above are
included without the qualifying Security:: for ease of readability. The full
definitions are included in Appendices A and B.
Security Service: v1.0 November 1996 15-89

15

t
15.5.2 Finding Security Features

Description of Facilities

An application can find out what security facilities this implementation supports, for
example, which security functionality level and options it supports. It can also find ou
what security technology is used to provide this implementation.

The get_service_information operation defined here could be used for
information about other CORBA facilities and services, so is not specific to security,
though only security details are specified.

Interfaces

interface ORB {

boolean get_service_information (
 in ServiceType service_type,

out ServiceInformation service_information,
);

};

Parameters

service_type
Identifies the service for which the information is required.

service_information
The information pertaining to the service.

Return Value
Returns TRUE if the service is supported and, if so, the
service_information contains valid information. FALSE is returned
if the service is unsupported.

Portability Implications

Applications dependent on security facilities beyond those in security functionality
Level 1 may not be portable between different secure ORBs. This interface allows
applications to adapt to the security available.

15.5.3 Authentication of Principals

Description of Facilities

A principal must establish its credentials before it can invoke an object securely. For many
clients, there are default credentials, created when the user logs on. This may be
performed prior to using any object system client. These default credentials are
automatically used on object invocation without the client having to take specific action.
Even if user authentication is executed within the object system, it should normally be
15-90 CORBAservices November 1996

15

nt,

er,

r

n.

ther

e
r

nally
 done by a user sponsor/login client, which is separate from the business application clie
so that business applications can remain unaware of security.

In most cases, principals must be authenticated to establish their credentials. Howev
some services accept requests from unauthenticated users. In this case, if the principal has
no credentials at the time the request is made, unauthenticated credentials are created
automatically for it.

If the user (or other principal) requires authentication and has not been authenticated prio
to calling the object system, the (login) client must invoke the Principal Authenticator
object to authenticate, and optionally select attributes for, the principal for this sessio
This creates the required Credentials object and makes it available as the default
credentials for this client. Its object reference is also returned so it can be used for o
operations on the Credentials. If the object system supports non-repudiation, the
credentials returned can be used for non-repudiation operations as specified in Section
15.5.11, Non-repudiation.

Authentication of principals may require more than one step, for example, when a
challenge/response or other multistep authentication method is used. In this case, th
authentication service will return information to the caller, which may be used in furthe
interactions with the user before continuing the authentication. So there are both
authenticate and continue authentication operations.

There is no need for an application to explicitly authenticate itself to act as an initiating
principal prior to invoking other objects, as this will be performed automatically if needed.
However, it does need to be performed explicitly if the object wants to specify particular
attributes.

Interfaces

This section defines the “Authenticate” and “Continue Authentication” operations on the
Principal Authenticator object.

authenticate

This is called, for example, by a user sponsor to authenticate the principal and optio
request privilege attributes that the principal requires during its session with the system. It
creates a Credentials object including the required attributes.

AuthenticationStatus authenticate (
in AuthenticationMethod method,
in string security_name,
in Opaque auth_data,
in AttributeList privileges,
out Credentials creds,
out Opaque continuation_data,
out Opaque auth_specific_data

);

Parameters

method The identifier of the authentication method used.
security_nameThe principal’s identification information (e.g. login name).
Security Service: v1.0 November 1996 15-91

15

ized

of
auth_data The principal’s authentication information such as password or long term
key.

privileges The privilege attributes requested.
creds Object reference of the newly created Credentials object. Not fully

initialized, therefore unusable unless return parameter is ‘Success.’
auth_specific_data

Information specific to the particular authentication service used.
continuation_data

If the return parameter from the authenticate operation is ‘Continue,’ then
this parameter contains challenge information for authentication
continuation.

Return Value

The return parameter is used to specify the result of the operation.

‘SecAuthSuccess’
Indicates that the object reference of the newly created initialized
credentials object is available in the creds parameter.

‘SecAuthFailure’
Indicates that authentication was in some way inconsistent or erroneous,
and therefore credentials have not been created.

‘SecAuthContinue’
Indicates that the authentication procedure uses a challenge/response
mechanism. The creds contains the object reference of a partially initial
Credentials object. The continuation_data indicates details of the
challenge.

‘SecAuthExpired’
Indicates that the authentication data contained some information, the
validity of which had expired (e.g. expired password). Credentials have
therefore not been created.

continue_authentication

This continues the authentication process for authentication procedures that cannot
complete in a single operation. An example of this might be a challenge/response type
authentication procedure.

AuthenticationStatus continue_authentication (
in Opaque response_data,
inout Credentials creds,
out Opaque continuation_data,
out Opaque auth_specific_data

);

Parameters

response_data
The response data to the challenge.
15-92 CORBAservices November 1996

15

t

tion

 the

ed

-

ate
or or

ere
creds Reference of the partially initialized Credentials object. The Credentials
object is fully initialized only when return parameter is ‘Success.’ Note tha
this parameter is described as inout, as the authentication procedure will
modify the state of the Credentials object.

continuation_data
If the return parameter from the continue_authentication
operation is ‘Continue,’ then this parameter contains challenge informa
for authentication continuation.

auth_specific_data
Information specific to the particular authentication service used.

Return Value

The return parameter is used to specify the result of the operation.

‘SecAuthSuccess’
Indicates that the Credentials object whose reference was identified by
creds parameter is now fully initialized.

‘SecAuthFailure’
Indicates that the response data was in some way inconsistent or erroneous,
and that therefore credentials have not been created.

‘SecAuthContinue’
Indicates that the authentication procedure requires a further
challenge/response. The Credentials object whose reference was identifi
in the creds parameter is still only partially initialized. The
continuation_data indicates details of the next challenge.

‘SecAuthExpired’
Indicates that the authentication data contained some information whose
validity had expired (e.g. expired password). A Credentials object has
therefore not been created.

Portability Implications

The authenticate and continue authentication operations allow different authentication
methods to be used. However, methods available are dependent on availability of
underlying authentication mechanisms. This specification does not dictate that particular
mechanisms should be used. However, use of some mechanisms, e.g. those involving
hardware such as smart cards or finger print readers, may also require use of device
specific objects so the client using such objects will not be portable to systems which do
not support such devices. It is therefore recommended that use of both the authentic
operations described here and any device-specific ones be confined to a user spons
login client, or that such authentication is done prior to calling the object system, wh
the credentials resulting from this can be used in portable applications.
Security Service: v1.0 November 1996 15-93

15

ssion

ntials

y a

tions

,

ction

p
15.5.4 Credentials

Description of Facilities

A Credentials object represents a principal’s current credential information for the se
and therefore includes information such as that principal’s privilege attributes and
identities such as the audit id. (It also includes some security-sensitive data required when
this principal is involved in peer entity authentication. However, such data is not visible to
applications.)

An application may want to:

• Specify security invocation options to be used by default whenever these crede
are used for object invocations.

• Modify the privilege and other attributes in the credentials, for example, specif
new role or a capability. This can modify the current privileges in use, or the
application can make a copy of the Credentials object first, and then modify the
new copy.

• Inquire about the security attributes currently in the credentials, particularly the
privilege attributes.

• Check if the credentials are still valid or if they have timed out, and if so, refresh
them.

Credential objects are created as the result of:

• Authentication (see Section 15.5.3, Authentication of Principals).

• Copying an existing Credentials object.

• Asking for a Credentials object via Current (see Section 15.5.6, Security Opera
on Current).

The way these credentials are made available for use in invocations is described in Section
15.4, Security Architecture, and defined in detail in Sections 15.5.5, Object Reference
and Section 15.5.6, Security Operations on Current.

Credentials used for non-repudiation also support further facilities as described in Se
15.5.11, Non-repudiation.

Interfaces

All the following operations are part of the Credential interface.

copy

This operation creates a new Credentials object, which is an exact duplicate (a "dee
copy") of the Credentials object which is the target of the invocation. The return value is a
reference to the newly created copy of the original Credentials object.

Credentials copy ();
15-94 CORBAservices November 1996

15

this

Return Value

An object reference to a copy of the Credentials object, which was the target of the
call.

set_security_features

This associates a set of security features with a Credentials object and sets each feature to
be “on” or “off.” The security features affect how a secure association is set up, such as
what delegation mode to use, whether trust in the target is needed, and what message
protection is required.

Some implementations may allow the security features to be set for communication in one
direction only (i.e. for requests only, or replies only) via the direction parameter, but
support is not required for compliant implementations. The request-only and reply-only
feature sets are treated as overrides to the “both” feature set. If an unsupported direction is
passed to set_security_features , the BAD_PARAM exception should be raised.

The value of a security feature set by this operation is used for invocations using this
Credentials object (if this does not contravene the ClientSecureInvocation policy for that
feature or the target’s invocation policy). Once associated with the Credentials object, a
feature may be turned “on” or “off” again with an additional call to
set_security_feature .

void set_security_features (
in CommunicationDirection direction,
in SecurityFeatureValueList security_features

);

Parameters

direction The communication direction (i.e. both, request, or reply) to which the
security feature should be applied. Normally set to both.

security_features
A sequence of required feature-value pairs. They may indicate the
delegation mode or a secure association option such as a message protection
requirement, or whether trust in the target is needed. To set the feature on,
set the boolean value to TRUE; a value of FALSE is used to turn off the
feature.

get_security_features

This returns the security features associated with the Credentials.

The direction parameter indicates which set of security features (i.e. those set for the
request direction, the reply direction, or both) should be returned. Conforming
implementations are not required to support the “request” and “reply” directions. If an
unsupported direction is passed to get_security_features , the
CORBA::BAD_PARAM exception should be raised.

SecurityFeatureValueList get_security_features (
in CommunicationDirection direction

);
Security Service: v1.0 November 1996 15-95

15

te set

ch as

,

ested.
Parameters

direction The communication direction (i.e. both, request, or reply) for which the
security features should be retrieved. Normally set to both.

Return Value

A sequence of required feature-value pairs. A boolean value of TRUE indicates the
feature is on; a value of FALSE indicates the feature is off.

set_privileges

This is used to request a set of privilege attributes (such as role, groups), updating the state
of the supplied Credentials object. One of the attributes requested may be an attribu
reference, which causes a set of attributes to be requested.

Note: This operation can only be used to set privilege attributes. Other attributes, su
the audit identity, are generated by the system and cannot be changed by the application.

boolean set_privileges(
in boolean force_commit,
in AttributeList requested_privileges,
out AttributeList actual_privileges

);

Parameters

force_commitIf true, the attributes should be applied immediately. Otherwise, attribute
acquisition may be deferred to when required by the system.

requested_privileges
A set of (typed) privilege attribute values. One of these may be a role name
which is an attribute set reference used to select a set of attributes. (A null
attribute set requests default attributes.) Attributes can include capabilities.

actual_privileges
The set of (typed) privileges actually obtained.

Return Value

true Indicates that attributes can be set, and that the actual_privileges
parameter contains the complete set or subset of those attributes requ
It is the responsibility of the application programmer to interrogate the
returned attributes to determine their suitability.

false Operation failed, Credentials were not modified.
15-96 CORBAservices November 1996

15

 to:

s
 has

ipal
get_attributes

This is used to get privilege and other attributes from the Credentials. It can be used

• Get privilege attributes, including capabilities, for use in access control decision. If
the principal was not authenticated, only one privilege attribute is returned. This
type Public and no meaningful value.

• Get other attributes such as audit or charging identities if available. (If the princ
is not authenticated, none of these are returned.)

Note: This operation is also available on the Current pseudo-object.

AttributeList get_attributes (
in AttributeTypeList attributes

);

Parameters

attributes The set of security attributes (privilege attributes and identities) whose
values are desired. If this list is empty, all attributes are returned.

Return Value

The requested set of attributes reflecting the state of the Credentials.

is_valid

Credentials objects may have limited lifetimes. This operation is used to check if the
Credentials are still valid.

boolean is_valid (
out UtcT expiry_time

);

Parameters

expiry_time The time that the Credentials expire.

refresh

This allows the application to update expired Credentials.

boolean refresh ();

Return Value

False The Credentials could not be refreshed.
Security Service: v1.0 November 1996 15-97

15

es be

d

 is

 on

d

d

s

t.
Portability Implications

The authenticate and set privilege operations allow particular privilege
attributes to be specified. The attributes supported by different systems may vary
according to security policies supported. It is recommended that use of these interfac
limited, so business application objects are not exposed to particular policy details (unless
they need to be, as they are enforcing compatible security policies directly).

15.5.5 Object Reference

Description of Facilities

If the client application is unaware of security (for example, was written to use an ORB
without security), the ORB services will enforce the relevant security policies
transparently to applications. As described elsewhere, the security enforced is specifie
by:

• The security policy set at the client by administrative action.

• The credentials used by the client.

• The security policy for the target object. Relevant security information about this
made available to the client in the target’s object reference.

These policies include association options, any controls on whether this client can perform
this operation on this target, and the quality of protection of messages.

The only visibility of security to most applications is that some operations will now fail
because they would breach security controls.

An application client unaware of security can communicate with a security aware one and
vice versa.

A client application aware of security can also specify what security policy options it
wants to apply when communicating with this target object by performing operations
the target object’s reference. The following operations are available.

• override_default_credentials specifies a Credentials object to be used when
calling this target object. For example, the client may want to make different
privileges available to different targets, so choose Credentials with the require
privileges.

• override_default_QOP specifies that a particular quality of protection is require
for future messages it sends using this object reference.

• get_active_credentials returns the active credentials to be used for invocations via
this target object reference.

• get_security_features returns the quality of protection and other security feature
which will apply to invocations via this object reference.

• get_policy is used to find the security policy of the specified type for this objec
15-98 CORBAservices November 1996

15

.

e.

es

• get_security_mechanisms returns the security association mechanisms available

• override_default_mechanism allows a different mechanism to be requested.

• get_security_names returns the security name(s) for the target.

Note: The application states its minimum security requirements. A higher level of
security may still be enforced as this may be required by security policy.

Although these operations quote the target object reference, the scope of the effect of the
operation is the use of that reference itself, and not the object that it represents.

A target object can influence the security policy for incoming invocations by setting
security policies using the administrative interfaces in Section 15.6, Administrator’s
Interfaces. This will affect the security information exported as part of its object referenc

Interfaces

In ORBs providing security, the Object interfaces includes the security-related interfac
defined in this section. The availability and functionality of specific operations will vary
depending on the level of security provided by the ORB. OMG IDL values for defined
security levels are described in Appendix A, Consolidated OMG IDL.

override_default_credentials

This specifies a Credentials object to be used for future invocations that this client makes
on this target object. The client can choose any Credentials object available to it. For
example, it may want to enforce a least privilege policy, so use Credentials with only
those privileges required by that target object.

If needed, override_default_credentials should be used before making any
invocation on this object, as it will generally result in a new security association needing
to be established with the target object.

void override_default_credentials (
in Credentials creds

);

Parameters

creds The object reference of the Credentials object, which is to become the
default.

override_default_QOP

The client application requests the quality of protection to use for messages when
invoking the target object, consistent with its controlling security policy. Note that a
request for a particular quality of protection may be overridden by Security Policy. For
example, Security Policy may insist that all messages be confidential even if the client had
not asked for this. (The invoker can determine this by calling
get_security_features and reading the value actually set for it.)
Security Service: v1.0 November 1996 15-99

15

s

 A
It is possible to use this operation to change the QOP (e.g. confidentiality), for a particular
message or sequence of messages, and then call override_default_QOP again to
revert to a different set of options. Changing QOP will not in general require the
establishment of a different security association.

This operation does not allow QOP to be overridden for a single direction of
communication (i.e. request or reply). If that feature is required, use
set_security_features on an override Credentials object.

void override_default_QOP (
in QOP qop

);

Parameters

qop Required quality of protection of messages.

get_security_features

This is used by the client to find its net security requirements for invoking a particular
target object, as successfully requested thus far. Note that although the operation quote
the target object reference, the scope of the effect of the operation is the use of that
reference itself, and not the object it represents.

The direction parameter indicates which set of security features (i.e. those set for the
request direction, the reply direction, or both) should be returned. Conforming
implementations are not required to support the “request” and “reply” directions. If an
unsupported direction is passed to get_security_features , the
CORBA::BAD_PARAM exception should be raised.

SecurityFeatureValueList get_security_features (
in CommunicationDirection direction

);

Parameters

direction The communication direction (i.e., both, request, or reply) for which the
security features should be retrieved. Normally set to both.

Return Value

The sequence of feature-value pairs currently requested on this object reference.
boolean value of TRUE indicates the feature is on; otherwise FALSE.

get_active_credentials

This operation returns a reference to the credentials that will be used when invoking
operations using this object reference.

Credentials get_active_credentials ();
15-100 CORBAservices November 1996

15

This

for

 will
osen
ject
get_policy

This gets the security policy object of the specified type, which applies to this object.
operation is also available on Current and is generally used there to get the policies for the
current object.

get_policy is used on object references during administration. For example, it may be
used to get the policy for a domain.

CORBA::Policy get_policy (
in CORBA::PolicyTypepolicy_type

);

Parameters

policy_type The type of policy to be obtained.

Return Value

policy A policy object that can be used to obtain the policy object.

get_security_mechanisms

Applications do not normally need to be aware of the security mechanisms used
security of the invocation between client and target. The client environment knows
what mechanisms it supports, and the target object reference exported from a secure
system specifies what mechanisms the target supports. So the client’s ORB can
normally choose the mechanism to use. Even if it cannot, negotiation of mechanisms
may be supported without the application seeing it.

Applications can call get_security_mechanisms() to determine the set of
mechanisms supported by both the client and the target.

MechanismTypeList get_security_mechanisms();

Return Value

The mechanism types that both the client and target object support.

override_default_mechanism

For the rare cases where the application wants to influence what security mechanism
be used for future invocations, the application can ask to override the mechanism ch
by the system. This will apply only to invocations that this client makes using this ob
reference.

void override_default_mechanism (
in MechanismType mechanism_type);
Security Service: v1.0 November 1996 15-101

15

 for
or

curity

ive

s
ials.

ns,
hen

t

n
get_security_names

This operation is for use by security sophisticated applications. It is used by clients who
wish to determine which security names are associated with the target. It is possible
different security names to be used for the target, depending on the mechanism used f
the target. The name may be shared by several objects.

SecurityMechandNameList get_security_names ();

Return Value

A list of pairs of values, each containing a security mechanism and associated security
name.

Portability Implications

The security features that can be set are generally ones supported by a variety of se
mechanisms. Applications using them will therefore be portable between any systems
where the security mechanisms support these features. However, some security
mechanisms will not support all features, for example, they may not provide replay
protection, or may not support confidentiality of application data (owing to regulatory
controls). Applications should check the response when attempting to set security
features, and if a requested feature is not available, take suitable action.

15.5.6 Security Operations on Current

Description

The Current object represents service specific state information associated with the
current execution context; both clients and targets have Current objects representing their
execution contexts. (Note that a reference to the Current object representing the act
execution context can be retrieved using the ORB::get_current() operation; see
Section B.3, Extension to the Use of Current, for details). In a secure ORB, the Current
object includes operations relevant to Security; these operations are described in thi
section and provide access to information about one or more of the following credent

• invocation credentials: these are the credentials at the client, used when this client
invokes another object. There must always be credentials available for invocatio
but setting these is generally done transparently to the business applications. W
a user logs on, the user sponsor or other logon program normally sets this to the
user’s credentials. If this is done outside the object system, it is picked up at ORB
initialization. At an intermediate object, its default value is either the received
credentials or the object’s own credentials, depending on the delegation policy tha
applies to that object.

• own credentials: the credentials associated with the active object. A particular
object may have its own credentials or may share credentials with other objects. A
object’s own credentials are normally set up as the result of the object (or the
environment domain to which it belongs) being initiali zed.
15-102 CORBAservices November 1996

15

s
le

s to
ion.

.

• received credentials: the credentials received from the client of the invocation a
seen at the target object. Depending on delegation options, this may be a sing
Credentials object, or a list of credentials including those of both the initiator and
other principals in the chain

• non-repudiation credentials: when non-repudiation is supported, the credentials of
the initiating principal in whose name evidence is being generated or verified. On
logon, or ORB initialization, these are normally set to the user’s credentials. At
other objects, they are set by default to their own credentials.

The following applications have the following functions.

• get_attributes obtain privilege and other attributes associated with received
credentials (which should be the user’s privileges when at the workstation).

• set_credentials can specify the type of credentials. This changes the credential
be used in the future for invocation, as its own credentials, or for non-repudiat

• get_credentials can obtain the credentials currently associated with the Current
object for invocation, non-repudiation, or as its own credentials.

• received_credentials attribute contains the credentials received from the client.

• received_security_features, an attribute at the target application, contains the
security features of the message sent by the client.

The application can also use the

• get_policy operation to find what security policies apply to it.

• required_rights_object attribute to discover which operations require which rights.

• principal_authenticator attribute to get a reference to a PrincipalAuthenticator
object (which can be used to authenticate principals and thus obtain Credentials
objects for them).

Interfaces

get_attributes

This is used to get privilege (and other) attributes from the client’s credentials. It is
available in the security functionality Level 1 to allow applications to enforce their own
security policies without these applications having to perform operations on credentials

This interface can be used to get:

• Privilege attributes for use in access control decisions. If the principal was not
authenticated, only one privilege attribute is returned. This has type Public and no
meaningful value.

• Other attributes, such as audit or charging identities, if available.

At the client, this generally gets the user’s (or other principal’s) privileges. At the target, it
gets the received privileges.
Security Service: v1.0 November 1996 15-103

15

ges

tion
Note that a get_attributes operation is also available on Credential objects.

AttributeList get_attributes (
in AttributeTypeList attributes

);

Parameters

attributes The set of security attributes (privilege attributes and identities) whose
values are desired. if this list is empty, all attributes are returned.

Return Value

The set of attributes or identities reflecting the state of the credentials.

set_credentials

As described previously, credentials are associated with Current for different types of use.
Credentials are automatically associated with Current by the object system at
initialization, authentication, and object invocation. However, the application may want to
specify particular credentials to use. set_credentials on the Current object sets the
specified credentials as the default one for the following.

• Subsequent invocations made by that client.
This may be done to reduce the privileges available to that client by setting
credentials having fewer privileges. Also, an intermediate object can explicitly ask
for the received credentials to be delegated by using the
received_credentials as the specified credentials on set_credentials .

• The object’s own credentials.
If an application authenticates itself (so creates new credentials), or sets privile
on its own credentials, getting a new credentials object, it can use
set_credentials to set these credentials as its own on invocations requiring
them (e.g. for composite delegation).

• Non-repudiation.
As for the invocation credentials, non-repudiation credentials may be set
transparently to the business application. The credentials used for non-repudia
may be the same as the credentials used for invocations.

void set_credentials (
in CredentialType cred_type,
in Credentials creds

);

Parameters

cred_type The type of credential to be set (i.e. invocation, own, or non-repudiation).

creds The object reference of the Credentials object, which is to become the
default.
15-104 CORBAservices November 1996

15

fy

the
ly
get_credentials

This operation allows an application access to the credentials associated with Current. As
for set_credentials , the application can ask for the default credentials for future
invocations, its own credentials, or the ones used for non-repudiation.

An application will normally get invocation or other credentials when it wants to modi
them (for example, reduce the privileges available).

Credentials get_credentials (
in CredentialType cred_type);

Parameters

cred_type The type of credentials to be obtained.

Return Value

The object reference of the credentials.

received_credentials

At a target object, this gets the credentials received from the client. If credentials
representing more than one principal are received, the contents of these credentials depend
on the delegation model in use. They may be:

• The credentials of the only principal identified, if simple delegation is used (or if
the security technology used has merged the credentials of all the callers in the
chain).

• A list of credentials, if the credentials for different principals in a chain of calls can
be distinguished. Note that the number of credentials in this list depend on the
delegation option in use. There may be credentials for the initiator of the chain and
the immediate invoker only, or credentials providing a trace of all principals in
chain. The first entry in the chain is the “primary” principal’s credentials, normal
the credentials of the initiator of the chain. A get_attributes call on Current
returns the privileges from these credentials.

At the workstation, the received_credentials attribute is the user’s credentials,
which are also the default credentials for invocation.

readonly attribute CredentialsList received_credentials;

Return Value

A sequence of Credential object references received from the requester.

received_security_features

This attribute at the target application provides the security features of the message sent by
the client.
Security Service: v1.0 November 1996 15-105

15

e

on

is

readonly attribute SecurityFeatureValueList
received_security_features ;

Return Value

A sequence of feature-value pairs. A boolean value of TRUE indicates that the feature
is on; otherwise FALSE.

get_policy

This gets the security policy object of the specified type, which applies to this object.
When used on Current, it gets the security policy object for this client (which may not be
an object) or the current object.

Policy get_policy (
in PolicyType policy_type);

Parameters

policy_type The type of policy to be obtained.

Return Value

policy A policy object which can be used to interrogate the policy in force as
defined in Section 15.6, Administrator’s Interfaces. For example, the secur
invocation policy would give the secure associations defaults for this object,
and the delegation policy would say which credentials were delegated
invocations by this object.

required_rights_object

This attribute is the RequiredRights object available in the environment. This object
rarely used by applications directly; it is generally used by Access Decision objects to find
the rights required to use a particular interface, though it could be used directly by the
application if it wishes to do all its own access control, and base this on Rights.

readonly attribute RequiredRights required_rights_object;

The operations in the interface of this object are defined in Section 15.6.4, Access
Policies.

principal_authenticator

This attribute is the PrincipalAuthenticator object available in the environment. It can be
used by the application to authenticate principals and obtain Credentials containing their
privilege attributes.

readonly attribute PrincipalAuthenticator principal_authenticator;

The operations in the interface of this object are defined in Section 15.3.2, Principles and
Their Security Attributes.
15-106 CORBAservices November 1996

15

 the

event,

n

what

d

15.5.7 Security Audit

Description of Facilities

Auditing of object invocations is done automatically by the ORB according to the audit
invocation policies (ClientInvocationAudit and TargetInvocationAudit) for this
application.

Applications can also audit their own security relevant activities, where the auditing
performed by the ORB does not audit the required activities and/or data.

In this case, the application is responsible for enforcing the application audit policy. It
uses an audit_needed operation on the Audit Decision object for the policy to decide
which activities to audit.

Audit information is passed to an Audit Channel object in the form of an audit record.The
audit record must contain, or be sufficient to identify:

• The type of event.

• The principal responsible for the action, identified by its credentials.

• Event-specific data associated with the event type. This will vary, depending on
event type.

• The time. This may or may not be secure.

It may also want to record some of the values used for selecting whether to audit the
for example, its success or failure.

An application audit policy will specify the event families and event types as defined i
Section 15.6.5, Audit Policies.

Interfaces

The interfaces specified here are the ones to the Audit Decision object to decide
to audit, and the Audit Channel interface used to write the audit records.

audit_needed

This operation on the Audit Decision object is used to decide whether an audit recor
should be written to the audit channel. The application specifies the event type to be
checked and the values for the selectors, which the audit policy requires to make the
decision.

boolean audit_needed
(in AuditEventType event_type,

in SelectorValueList value_list
);
Security Service: v1.0 November 1996 15-107

15

it

ials

ail.

 this
Parameters

event_type Event type associated with the operation.

value_list List of zero or more selector id value pairs.

Return Value

True If an audit record should be created and sent to the audit channel.
False If an audit record is not needed.

audit_write

This operation writes an audit record to the Audit Channel object, and hence the aud
trail. The audit trail is implementation-specific and outside the scope of this document. It
is expected to be an event service of some sort, such as an OMG Event Service.

void audit_write (
in AuditEventType event_type,
in CredentialsList Creds,
in UtcT time,
in SelectorValueList descriptors,
in Opaque event_specific_data

);

Parameters

event_type The type of event being audited.
creds The credentials of the principal responsible for the event. If no credent

are specified, the own credentials associated with Current are used.
time The time the event occurred.
descriptors A set of values to be recorded associated with the event in the audit trail.

These are often the same values as those used to select whether to audit the
event.

event_specific_data
Data specific to a particular type of event, to be recorded in the audit tr

Return Value

None.

audit_channel

This attribute of the Audit Decision object provides the audit channel associated with
audit policy.

readonly attribute AuditChannel audit_channel;
15-108 CORBAservices November 1996

15

ble
g.

 the

y

s, so
give
Portability Implications

An application relying on the system audit policies enforced at invocation time is porta
to different environments, although the audit policies themselves may need changin

Applications with their own application audit policies are portable, providing the audit
policy itself is portable and the selectors used are available in these environments. For
example, if selectors use privileges, the same ones must be available.

15.5.8 Administering Security Policy

When an object is created, it automatically becomes a member of one or more
domains, and therefore is subject to the security policies of those domains.

Security aware applications can administer security policies (providing they are
authorized to do so) using the interfaces described in Section 15.6, Administrator’s
Interface.

15.5.9 Use of Interfaces for Access Control

Description of Facilities

Access policies for applications may be enforced the following ways.

• Automatically by the ORB services on object invocation, to determine whether
caller has the right to invoke an operation on an object.

• By the application itself, to enforce further controls on who can invoke it to do
what.

• By the application to control access to its own internal functions and state.

This section is concerned with applications that wish to enforce their own access controls,
either supplementing the automatic controls on invocation or controlling internal
functions.

As explained in Access Policies under Section 15.3.4, Access Control Model, the decision
on whether to allow such access may use the following:

• The principal’s credentials (which either contain its privilege attributes, or identif
the principal so these can be obtained). Using only the principal’s identity generally
requires that identity to be known at all targets, and leads to scalability problem
its use is depreciated. Use of the principal’s role or group(s) are more likely to
easier administration in large systems, as would security clearance. Enterprise-
defined attributes can also be used when supported.

• The target’s control attributes such as an ACL or security classification.
Security Service: v1.0 November 1996 15-109

15

ion

sion

nd

hese

• Other relevant information about the action such as the operation (on object
invocation) and parameters, and also context information such as time.
The application can use rights associated with an interface (as described in Sect
15.6.3, Security Policies Introduction) rather than specify controls for individual
operations.

• The security policy rules using this information as enforced by the access deci
function.

The access policies enforced automatically by the ORB during object invocation can take
into account the principal’s credentials, the target’s control attributes, the operation a
the time (though the time is not used in the standard access policy defined in Section15.6,
Administrator’s Interface). However, the ORB does not use the parameters to the
operation for controlling access. So, for example, if there is a rule that only senior
managers can authorize expenditure over £5000, the application is likely to need its own
function to perform the required check.

Where an application enforces its own access decisions, it will be responsible for
maintaining its own control information about operations, functions, and data it wishes to
protect. It can do this in a way specific to its own particular functions or data, but in some
cases, it is possible to have a more generic way of handling access decisions, and in these
cases, it may be possible to use a common access decision object with common
administration of the ACLs or other control attributes.

Interfaces

Application access decision functions should be made by Access Decision objects. T
may require different information depending on, for example, the action or data to be
controlled and the security policy rules as previously described.

The Access Decision object should support an access_allowed operation as is used
for enforcing access policies in the ORB (see Access Decision Object under Section
15.7.4, Implementation-Level Security Object Interfaces). The input parameters to this
should normally specify:

• The privileges of the initiator of the action. The form of these depends on the
specific policy. Some options are:

• The privileges of the initiator as supplied by a get_attributes operation on
Current (see Interfaces under Section 15.6.2, Security Operations on Current).

• A credentials object, which represents principal.

• A credentials list (the received_credentials), where access controls
distinguish initiator and delegate principals.

• Other information required by the access decision function, including:

• Application-level decisions on whether an invocation is permitted, the operation
and parameters passed in the request, and the object reference.

• Control of access to internal functions and data, the action, and relevant
parameters.
15-110 CORBAservices November 1996

15

l
r an

e

se

ribed

y be

to

obtain

The return value from the access_allowed operation should be TRUE if access is
permitted, otherwise FALSE.

It is recommended that where possible, access decisions are made by such Access
Decision objects (or at least separate internal functions) that hide details of the actua
security policy used, so the application does not need to know, for example, whethe
ACL or label-based policy is used.

Portability Implications

Portability of applications enforcing their own access controls is improved by use of
Access Decision objects as previously described. The application then does not need to
know the particular rules used, and even which principal and object attribute types are
used to decide whether access should be permitted. (It can also hide whether the
principal’s credentials include all privilege attributes needed, or whether these are
obtained dynamically when needed.).

Different systems may need to support different access control policies. By hiding details
of the access control rules used to enforce the policy behind a standard interface, th
application will generally be portable to environments with different policies.

Applications that use their own specific code to make access decisions will only be
portable to systems that support the identity and privilege attribute types used in tho
decisions with the same syntax.

15.5.10 Use of Interfaces for Delegation

Description of Facilities

An operation on a target object may result in calls on many other objects as desc
in Section 15.3.6, Delegation. An intermediate object in this chain of objects may:

• Delegate the credentials received (often containing the initiating principal’s
privileges) to the next object in the chain, so access decisions at the target ma
based on that principal’s privileges.

• Act on its own behalf, so use its own credentials when invoking another object in
the chain.

• Supply privileges from both, so access decisions at the target object can take in
account both the initiating principal’s privileges and where these came from.

Which of these delegation modes should be used depends on the application. For
example, a user might call a database object asking for some data, and this may
the data from a file that also contains data belonging to other users. In this example,
the database object would control access to the data using the user’s privileges,
whereas the filestore object would use the database’s privileges.
Security Service: v1.0 November 1996 15-111

15

n
des

 are

ns
lly

faces
In general, the delegation mode used is specified by the administrator in the delegation
policy for objects of this type in this domain. However, a security aware applicatio
can also specify the delegation mode it wants to use, as it may want different mo
when invoking different objects.

Interfaces

All the interfaces used for delegation are specified elsewhere. This section describes
how they are used during delegation.

An intermediate object can set the delegation mode for an invocation by performing a
set_security_features operation on the Credentials object to be used for the
invocation (see Section 15.5.4, Credentials). This can be used to set the delegation
mode to:

• NoDelegation , meaning use the intermediate’s object’s own credentials.

• SimpleDelegation , meaning use the credentials received from the client.

• CompositeDelegation, meaning use both.

The way the received and intermediate’s own credentials are combined in
CompositeDelegation is not defined. Depending on the implementation:

• The initiating principal’s and the intermediate’s own credentials are passed, and
available separately at the target.

• The received credentials and intermediate’s own credentials are combined, so the
target sees only a single credentials object with privileges from each of these.

• Credentials from all objects in the delegation chain are passed and are available
separately to the target.

None of these particular composite delegation modes are part of the Security
Functionality Level 2. They are described here because of the effect on the
received_credentials (see Interfaces under Section 15.5.6, Security Operatio
on Current), which a target object uses to find out who called it. The target norma
uses this to get privileges for use in access control decisions.

The received_credentials attribute provides a CredentialsList, not just a single
Credentials object. This list will only have more than one entry after composite
delegation as defined above. If there is more than one entry in the list, the first entry is
that of the initiator in the chain, normally the main one used for access controls. This
is also the one whose privileges are obtained via get_attributes .

Portability Implications

Where possible, the delegation mode should be set using the administrative inter
to the delegation policy, so applications may delegate privileges (or not) without any
application level code, and so be portable.
15-112 CORBAservices November 1996

15

kely

, the

tion

t

g a

ng

larly
e
If an application sets its own delegation mode, it should be able to handle a
NotSupported exception if CompositeDelegation is specified, as this may not be
supported.

If the application wants to enforce its own access policy, it should use an Access
Decision object (as described in Interfaces under Section 15.5.9, Use of Interfaces for
Access Control), which hides whether access decisions utilize the initiator’s privileges
separately from the delegate’s privileges.

However, where an application wants to provide specific checks which intermediates
have been involved in performing the original user’s operation, such checks are li
to depend on the delegation scheme and its implementation, and so not be portable.

15.5.11 Non-repudiation

Non-repudiation is an optional facility, not part of security functionality Level 1 or 2.

Description of Facilities

The Non-repudiation Service provides evidence of application actions in a form that
cannot be repudiated later. This evidence is associated with some data (for example
amount field of a funds transfer document).

Non-repudiation evidence is provided in the form of a token. Two token types are
supported:

• Token including the associated data

• Token without included data (but with a unique reference to the associated data)

Non-repudiation tokens may be freely distributed. Any possessor of a non-repudiation
token (and the associated data, if not included in the token) can use the non-repudia
Service to verify the evidence. Any holder of a non-repudiation token may store it (along
with the associated data, if not included in the token) for later adjudication.

The non-repudiation interfaces support generation and verification of tokens embodying
several different types of evidence. It is anticipated that the following will be the mos
commonly used non-repudiation evidence token types:

• Non-repudiation of Creation prevents a message creator's false denial of creatin
message.

• Non-repudiation of Receipt prevents a message recipient's false denial of havi
received a message.

Generation and verification of non-repudiation tokens require as context a non-
repudiation credential, which encapsulates a principal's security information (particu
keys) needed to generate and/or verify the evidence. Most operations provided by th
Non-repudiation Service are performed on NRCredentials objects.
Security Service: v1.0 November 1996 15-113

15

nd

.

ata

t

a
Non-repudiation Service operations supported by the NRCredentials interface are as
follows.

• set_NR_features specifies the features to apply to future evidence generation a
verification operations.

• get_NR_features returns the features which will be applied to future evidence
generation and verification operations.

• generate_token generates a non-repudiation token using the current non-
repudiation features. The generated token may contain:

• Non-repudiation evidence.

• A request, containing information describing how a partner should use the Non-
repudiation Service to generate an evidence token.

• Both evidence and a request.

• verify_evidence verifies the evidence token using the current non-repudiation
features.

• get_token_details returns information about an input non-repudiation token. The
information returned depends upon the type of the token (evidence or request)

• form_complete_evidence is used when the evidence token itself does not contain
all the data required for its verification, and it is anticipated that some of the d
not stored in the token may become unavailable during the interval between
generation of the evidence token and verification unless it is stored in the token.
The form_complete_evidence operation gathers the “missing” information
and includes it in the token so that verification can be guaranteed to be possible a
any future time.

The verify_evidence operation returns an indicator (evid_complete),
which can be used to determine whether the evidence contained in a token is
complete. If a token’s evidence is not complete, the token can be passed to
form_complete_evidence to complete it.

If complete evidence is always required, the call to form_complete_evidence
can, in some cases, be avoided by setting the form_complete request flag on the
call to verify_evidence ; this will result in a complete token being returned vi
the evid_out parameter.

Interfaces

Non-repudiation Service Data Types

The following data types are used in the Non-repudiation Service interfaces:

typedef MechanismType NRmech;
typedef ExtensibleFamily NRPolicyId;

enum EvidenceType {
SecProofofCreation,

 SecProofofReceipt,
15-114 CORBAservices November 1996

15

e
 SecProofofApproval,
 SecProofofRetrieval,

 SecProofofOrigin,
 SecProofofDelivery,

SecNoEvidence // used when request-only token desired
};
enum NRVerificationResult {

SecNRInvalid,
SecNRValid,
SecNRConditionallyValid

};

// the following are used for evidence validity duration
typedef ulong DurationInMinutes;

const DurationInMinutes DURATION_HOUR = 60;
const DurationInMinutes DURATION_DAY = 1440;
const DurationInMinutes DURATION_WEEK = 10080;
const DurationInMinutes DURATION_MONTH = 43200;// 30 days
const DurationInMinutes DURATION_YEAR = 525600;//365 days

typedef long TimeOffsetInMinutes;

struct NRPolicyFeatures {
 NRPolicyId policy_id;
 unsigned long policy_version;
 NRmech mechanism;
};

typedef sequence<NRPolicyFeatures> NRPolicyFeaturesList;

// features used when generating requests
struct RequestFeatures {

NRPolicyFeatures requested_policy;
EvidenceType requested_evidence;
string requested_evidence_generators;
string requested_evidence_recipients;
boolean include_this_token_in_evidence;
};

Non-repudiation Service Operations

This section describes the Non-Repudiation Service operations. All these operations ar
part of the interface of the NRCredentials object.

set_NR_features

When an NRCredentials object is created, it is given a default set of NR features, which
determine what NR policy will be applied to evidence generation and verification
requests.
Security Service: v1.0 November 1996 15-115

15

 an

ntly
ta on
Security-aware applications may set NR features to specify policy affecting evidence
generation and verification. The interface for setting NR features is:

boolean set_NR_features (
 in NRPolicyFeaturesList requested_features,

 out NRPolicyFeaturesList actual_features);

Parameters

requested_features
The non-repudiation features required.

actual_features
The NR features that were set (may differ from those requested depending
on implementation).

Return Value

true If the requested features were equivalent.
false If the actual features differ from the requested features.

get_NR_features

A get_NR_features interface is provided to allow security-aware applications to determine
what NR policy is currently in effect:

NRPolicyFeaturesList get_NR_features ();

Return Value

The current set of NR features in use in this NRCredentials object.

generate_token

This operation generates a non-repudiation token associated with the data passed in
input buffer. Environmental information (for example, the calling principal’s name) is
drawn from the NRCredentials object.

If the data for which non-repudiation evidence is required is larger than can convenie
fit into a single buffer, it is possible to issue multiple calls, passing a portion of the da
each call. Only the last call (i.e. the one on which input_buffer_complete =
true) will return an output token and (optionally) an evidence check.

void generate_token (
in Opaque input_buffer,
in EvidenceType generate_evidence_type,
in boolean include_data_in_token,
in boolean generate_request,
in RequestFeatures request_features,
in boolean input_buffer_complete,
out Opaque nr_token,
out Opaque evidence_check);

Parameters
15-116 CORBAservices November 1996

15

s

he

nce

tion
input_buffer Data for which evidence should be generated.
generate_evidence_type

Type of evidence token to generate (may be NoEvidence).
include_data_in_token

If set TRUE, data provided in input_buffer will be included in
generated token; otherwise FALSE.

generate_request
The output token should include a request, as described in the
request_features parameter.

request_features
A structure describing the request. Its fields are:

requested_policy: non-repudiation policy to use when generating evidence
tokens in response to this request.

requested_evidence: type of evidence to be generated in response to thi
request.

requested_evidence_generators: names of partners who should generate
evidence in response to this request.

requested_evidence_recipients: names of partners to whom evidence
generated in response to this request should be sent.

include_this_token_in_evidence: if set true, the evidence token
incorporating the request will be included in the data for which partners will
generate evidence. If set false, evidence will be generated using only t
associated data (and not the token incorporating the request).

input_buffer_complete
True if the contents of the input buffer complete the data for which evide
is to be generated; false if more data will be passed on a subsequent call.

nr_token The returned NR token.

evidence_check
Data to be used to verify the requested token(s) (if any) when they are
received.

Return Value

None.

verify_evidence

Verifies the validity of evidence contained in an input NR token.

If the token containing the evidence to be verified was provided to the calling applica
by a partner responding to the calling application’s request, then the calling application
should pass the evidence check it received when it generated the request as a parameter to
verify_evidence along with the token it received from the partner.
Security Service: v1.0 November 1996 15-117

15

 his
y be

t
It is possible to request the generation of complete evidence. This may succeed or fail; if it
fails, a subsequent call to form_complete_evidence can be made. Output indicators
are provided, which give guidance about the time or times at which
form_complete_evidence should be called; see the parameter descriptions for
explanations of these indicators and their use. Note that the time specified by
complete_evidence_before may be earlier than that specified by
complete_evidence_after; in this case it will be necessary to call
form_complete_evidence twice.

Because keys can be revoked or declared compromised, the return from
verify_evidence cannot in all cases be a definitive “SecNRValid” or
“SecNRInvalid”; sometimes “SecNRConditionallyValid” may be returned, depending
upon the policy in use. “SecNRConditionallyValid” will be returned if:

• The interval during which the generator of the evidence may permissibly declare
key invalid has not yet expired (and therefore it is possible that the evidence ma
declared invalid in the future), or

• Trusted time is required for verification, and the time obtained from the token is not
trusted.

NRVerificationResult verify_evidence (
 in Opaque input_token_buffer,
 in Opaque evidence_check,
 in boolean form_complete_evidence,
 in boolean token_buffer_complete,
 out Opaque output_token,
 out Opaque data_included_in_token,
 out boolean evidence_is_complete,

 out boolean trusted_time_used,
 out TimeT complete_evidence_before,
 out TimeT complete_evidence_after);

Parameters

input_token_buffer
Buffer containing (possibly a portion, possibly all of) evidence token to be
verified; buffer may also contain data associated with evidence token
(parsing of buffer in this case is understood only by NR mechanism; see
get_token_details).

evidence_check
The evidence check.

form_complete_evidence
Set TRUE if complete evidence is required; otherwise FALSE.

token_buffer_complete
Set TRUE if the input_token_buffer completes the input token;
FALSE if more input token data remains to be passed on a subsequen
call.
15-118 CORBAservices November 1996

15

 the

The

tion
te and

iated

f the
output_token If form_complete_evidence was set to TRUE, this parameter will
contain complete evidence (and the Return Value will be Valid) or an
“augmented” but still incomplete evidence token, in which case
conditionally valid is returned.

data_included_in_token
Data associated with the evidence; extracted from input token (may be
null).

evidence_is_complete
TRUE if evidence in input token is complete; otherwise FALSE.

trusted_time_used
TRUE if the evidence token contains a time considered to be trusted
according to the rules of the non-repudiation policy. FALSE indicates that
the security policy mandates trusted time and that the time in the token is
not considered to be trusted.

complete_evidence_before
If evidence_is_complete is FALSE, and the return value from
verify_evidence is conditionallyValid, the caller should call
form_complete_evidence with the returned output token before this
time. This may be required, for example, in order to ensure that the time
skew between the evidence generation time and the trusted time service’s
countersignature on the evidence falls within the interval allowed by the
current NR policy.

complete_evidence_after
If evidence_is_complete is FALSE and the return value from
verify_evidence is conditionallyValid, the caller should call
form_complete_evidence with the returned output token after this
time. This may be required, for example, to ensure that all authorities
involved in generating the evidence have passed the last time at which
current NR policy allows them to repudiate their keys.

Return Value

SecNRInvalidEvidence is invalid.
SecNRValid Evidence is valid.
SecNRConditionallyValid

Evidence cannot yet be determined to be invalid.

get_token_details

The information returned depends upon the type of the token (evidence or request).
mechanism that created the token is always returned.

• If the input token contains evidence, the following is returned: the non-repudia
policy under which the evidence has been generated, the evidence type, the da
time when the evidence was generated, the name of the generator of the evidence,
the size of the associated data, and an indicator specifying whether the assoc
data is included in the token.

• If the input token contains a request, the following is returned: the name of the
requester of the evidence, the non-repudiation policy under which the evidence to
send back should be generated, the evidence type to send back, the names o
Security Service: v1.0 November 1996 15-119

15

ames
een

g
 input
recipients who should generate and distribute the requested evidence, and the n
of the recipients to whom the requested evidence should be sent after it has b
generated.

• If the input token contains both evidence and a request, an indicator describin
whether the partner’s evidence should be generated using only the data in the
token, or using both the data and the evidence in the input token.

void get_token_details (
 in Opaque token_buffer,
 in boolean token_buffer_complete,
 out string token_generator_name,
 out NRPolicyFeatures policy_features,
 out EvidenceType evidence_type,
 out UtcT evidence_generation_time,

out UtcT evidence_valid_start_time,
 out DurationInMinutes evidence_validity_duration,
 out boolean data_included_in_token,

out boolean request_included_in_token,
out RequestFeatures request_features);

Parameters

token_buffer Evidence token to parse.
token_buffer_complete

Indicator when the token has been fully provided.
token_generator_name

Principal name of token generator.
policy_featuresDescribes the policy used to generate the token.
evidence_type Type of evidence contained in the token (may be NoEvidence).
evidence_generation_time

Time when evidence was generated.
evid_validity_start_time

Beginning of evidence validity interval.
evidence_validity_duration

Length of evidence validity interval.
data_included_in_token

TRUE if the token includes the data for which it contains evidence;
otherwise FALSE.

request_included_in_token
TRUE if the token includes a request, otherwise FALSE.

request_features
Describes the included request, if any. See the generate_NR_token
parameter description for details.

Return Value

None.
15-120 CORBAservices November 1996

15

red
form_complete_evidence

form_complete_evidence is used to generate an evidence token that can be verified
successfully with no additional data at any time during its validity period.

boolean form_complete_evidence (
in Opaque input_token,
out Opaque output_token,
out boolean trusted_time_used,
out TimeT complete_evidence_before,
out TimeT complete_evidence_after);

Parameters

input_token The evidence token to be completed.
output_token The “augmented” evidence token; may be complete.
trusted_time_used

TRUE if the token’s generation time can be trusted, otherwise FALSE. If
trusted time is required by the policy under which the evidence will be
verified, and if this indicator is not set, the evidence will not be conside
complete.

complete_evidence_before
If the return value is FALSE, form_complete_evidence should be
called before this time.

complete_evidence_after
If the return value is FALSE, form_complete_evidence should be
called after this time.

Return Value

true Evidence is now complete.
false Evidence is not yet complete.

15.6 Administrator’s Interfaces

This section describes the administrative features of the specification. Administration
specifies the policies that control the security-related behavior of the system. These
features form an ‘Administrator’s View,’ encompassing the interfaces that a human
administrator would need to use, but the facilities may also be used by conventional
applications that wish to be involved in administrative actions. ‘Administrator’ may
therefore refer to a human or system agent.

Most interfaces defined here are in Security Functionality Level 2, as Level 1 security
does not include administration interfaces.
Security Service: v1.0 November 1996 15-121

15

at
 a

. It is

f

s to
ssibly

e
inds
f
15.6.1 Concepts

Administrators

This specification imposes no constraints on how responsibilities are divided among
security administrators, but in many cases an enterprise will have a security policy th
restricts the responsibilities of any one individual. Also, legal requirements may dictate
separation of roles so that, for example, there are different administrators for access
control and auditing functions.

Administrators are subject to the same security controls as other users of the system
expected that an enterprise will define roles (or other privileges) that certain
administrators will adopt. Administrative operations are subject to access controls and
auditing in the same way as other object invocations, so only administrators with the
required administrative privileges will be able to invoke administrative operations.

Because administrative or management services in general have been identified as a
Common Facility in the Object Management Architecture, only minimal, security-specific
interfaces are given here together.

This specification does not define administrative functions concerning the management o
underlying mechanisms supporting the security services, such as an Authentication
Service, Key Distribution Service, or Certification Authority.

Policy Domains

Security administrators specify security policies for particular security policy domains
(for brevity, only the words in bold are used for the remainder of this section).

A domain includes an object, termed the domain manager, which references the policy
objects for this domain, and zero or more other objects, which are domain members and
therefore subject to the policies.

The domain manager records the membership of the domain and provides the mean
add and remove members. The domain manager is itself a member of a domain, po
the domain it manages.

There are different types of policy objects for administering different types of policy. As
described in Security Policy Domains under Section 15.3.8, Domains, domains may b
members of other domains, so forming containment hierarchies. Because different k
of policy affect different groups of objects, objects (and domains) may be members o
multiple domains.

The policies that apply to an object are those of all its enclosing domains.
15-122 CORBAservices November 1996

15

,

g as

licies

ary

 also

basic
other
Security Policies

This specification covers administration of security policies, which are enforced by a
secure object system either of the following ways.

• Automatically on object invocation. This covers system policies for security
communications between objects, control of whether this client can use this
operation on this target object, whether the invocation should be audited, and
whether an original principal’s credentials can be delegated.

• By the application. This covers security policies enforced by applications.
Applications may enforce access, audit, and non-repudiation policies. The
application policies may be managed using domains as for other security policies
or the application can choose to manage its own policies in its own way.

Invocation time policies for an object can be applicable only when this object is actin
a client, only when it is a target object, or whenever it is acting as either.

Security policies may be administered by any application with the right to use the security
administrative interfaces. This is subject to the invocation access control policy for the
administrative interface.

15.6.2 Domain Management

This section includes the interfaces needed to find domain managers and find the po
associated with these. However, it does not include interfaces to manage domain
membership, structure of domains, and manage which policies are associated with
domains, as these are expected to be developed in a future Management Facility
specification (for example, one based on the X/Open Systems Management Prelimin
Specification); the Collection Service is also relevant here.

This section also includes the interface to the construction policy object, as that is
relevant to domains. Similarly, it includes the interface administrative applications
needed to find the domains (and therefore the policies) that apply to objects. The
definitions of the interfaces related to these are part of the CORBA module, since
definitions in the CORBA module depend on these.

Interfaces to administer the security policy objects are defined in Section 15.6.3,
Security Policies Introduction.

module CORBA // Basic Management infrastructure
{

interface Policy // Features common to all Policies
{ };

interface DomainManager {
// Features common to all Domain Managers

// get policies for objects in this domain; each domain may have
// policies of various different types. This call returns the policy
// of the specified type for the domain which is the target of the call.

Policy get_domain_policy (
in PolicyType policy_type);
Security Service: v1.0 November 1996 15-123

15

from

orm to
// Note that the domain manager also inherits the
// get_policy and get_domain_managers operations
// defined for all objects in a secure system - see below
};

interface ConstructionPolicy: Policy{
void make_domain_manager(

in CORBA::InterfaceDef object_type);
};

// additions to CORBA::Object interface
interface Object {

DomainManagerList get_domain_managers();
// Note that Section 15.5 defines other extensions to
// the Object interface, including get_policy
};

typedef sequence<DomainManager> DomainManagerList;
};

Policy

The return type of operations that retrieve policy objects. This is an empty interface
which various Policy interfaces are derived.

Domain Manager

The domain manager will provide mechanisms for:

• Establishing and navigating relationships to superior and subordinate domains.

• Creating and accessing policies.

There should be no unnecessary constraints on the ordering of these activities, for
example, it must be possible to add new policies to a domain with a preexisting
membership. In this case, some means of determining the members that do not conf
a policy that may be imposed is required.

All domain managers provide the get_domain_policy operation, in addition to the
other policy-related operations provided by the CORBA::Object interface, i.e.
get_policy (described in Section 15.5.5, Object Reference) and
get_domain_managers (described in Extensions to the Object Interface under
Section 15.6.2, Domain Management).
15-124 CORBAservices November 1996

15

pond
is

 If
get_domain_policy

This gets the policy of the specified type for objects in this domain.

Policy get_domain_policy (
in PolicyType policy_type

);

Parameters

policy_type The type of policy for objects in the domain which the application wants
to administer. For security, the possible policy types are described in
Section 15.6.3, Security Policies Introduction.

Return Value

A reference to the policy object for the specified type of policy in this domain.

Construction Policy

The construction policy interface allows callers to specify that when instances of a
particular interface are created, they should be automatically assigned membership in a
newly created domain at creation time.

make_domain_manager

This specifies that when an instance of the interface specified by the input parameter is
created, a new domain manager will be created and the newly created object will res
to get_domain_managers () by returning a reference to this domain manager. Th
policy is implemented by the ORB during execution of BOA::create (or equivalent)
and results in the construction of both the application-specified object and a Domain
Manager object.

void make_domain_manager (
in InterfaceDef object_type

);

Parameters

object_type The type of the objects for which Domain Managers will be created.
this is nil, the policy applies to all objects in the domain.

Extensions to the Object Interface

Section 15.5.5, Object Reference, defines operations on the CORBA::Object interface
for application use. Note that these include a get_policy operation. For administrative
applications, the Object interface is also extended with the following operation.
Security Service: v1.0 November 1996 15-125

15

e
ble

als,

ply

ir

In
get_domain_managers

get_domain_managers allows security administration services (and security-awar
applications) to retrieve the domain managers, and hence the security policies applica
to individual objects.

sequence <DomainManager> get_domain_managers ();

Return Value

The list of immediately enclosing domain managers of this domain manager.

15.6.3 Security Policies Introduction

Invocation security policies are enforced automatically by ORB services during object
invocation. These are:

• invocation access policies (ClientInvocationAccess and TargetInvocationAccess)
for controlling access to objects.

• invocation audit policies (ClientInvocationAudit and TargetInvocationAudit)
control which operations on which objects are to be audited.

• invocation delegation policies for controlling the delegation of privileges.

• secure invocation policies (ClientSecureInvocation and TargetSecureInvocation)
for security associations, including controlling the delegation of client’s credenti
and message protection.

Different policies generally apply when an object acts as a client from when it is the
target of an invocation.

In addition to these invocation policies, there are a number of policy types, which ap
independently of object invocation. These are:

• application access policy, which applications may use to manage and enforce their
access policies.

• application audit policy, which applications can use to manage and enforce the
audit policies.

• non-repudiation policies determine the rules for the generation and use of
evidence.

There is also a policy concerned with creation of objects, which is enforced by
BOA::create . This is the construction policy, which controls whether a new domain
is created when an object of a specified type is created.

Note: Policies associated with underlying security technology are not included. For
example, there are no policies for principal authentication as this is often done by specific
security services.

Interfaces are provided for setting all the types of security policies previously listed.
each case, these management interfaces permit administration of standard policy
15-126 CORBAservices November 1996

15

olicy

tions

ons.

e’s

tter

er to
semantics supported by the interfaces defined in this specification. It is also possible for
implementors to replace the policy objects whose interfaces are defined in this
specification with different policy objects supporting different semantics; in general such
policy objects will also have management interfaces different from those defined in this
specification.

15.6.4 Access Policies

There are two invocation access policies: the ClientInvocationAccess policy, which is
used at the client side of an invocation, and the TargetInvocationAccess policy, which is
used at the target side.

There is one policy type for application access. However, no standard administrative
interface to this is specified, as different applications have different requirements.

Access Policies control access by subjects (possessing Privilege Attributes), to objects,
using rights. Privilege Attributes have already been discussed (in Section 15.5,
Application Developer’s Interfaces); rights are described in the next section.

Rights

The standard AccessPolicy objects in a secure CORBA system implement access p
using rights (though implementations may define alternative, non-rights-based
AccessPolicy objects).

In rights-based systems, AccessPolicy objects grant rights to PrivilegeAttributes; for each
operation in the interface of a secure object, some set of rights is required. Callers must be
granted these required rights in order to be allowed to invoke the operation.

Secure CORBA systems provide a RequiredRights interface, which allows:

• Object interface developers to express the “access control types” of their opera
using standard rights, which are likely to be understood by administrators, without
requiring administrators to be aware of the detailed semantics of those operati

• Access-control checking code to retrieve the rights required to invoke an interfac
operations.

A RequiredRights object is available as an attribute of Current in every execution context.
Every RequiredRights object will get and set the same information, so it does not ma
which instance of the RequiredRights interface is used. The required rights for all
operations of all secured interfaces are assumed to be accessible through any instance of
RequiredRights.

Note that Required Rights are characteristics of interfaces, not of instances. All
instances of an interface, therefore, will always have the same Required Rights.

Note also that because Required Rights are defined and retrieved through the
RequiredRights interface, no change to existing object interfaces is required in ord
assign required rights to their operations.
Security Service: v1.0 November 1996 15-127

15

his
o

are

ht of

e

d),

re
Rights Families

This specification provides a standard set of rights for use with the
DomainAccessPolicy interface defined in DomainAccessPolicy Interface later in t
section. These rights may not satisfy all access control requirements. However; t
allow for extensibility, rights are grouped into Rights Families. The RightsFamily
containing the standard rights is called “corba,” and contains three rights: “g”
(interpreted to mean “get”), “s” (interpreted to mean “set”), and “m” (interpreted to
mean “manage”). Implementations may define additional Rights Families. Rights
always qualified by the RightsFamily to which they belong.

RequiredRights Interface

A RequiredRights object can be thought of as a table; an example RequiredRights table
appears later in this section. Note that implementations need not manage required
rights on an interface-by-interface basis; RequiredRights objects should be thoug
as databases of policy information, in the same way as Interface Repositories are
databases of interface information. Thus in many implementations, all calls to the
RequiredRights interface will be handled by a single RequiredRights object instance,
or by one of a number of replicated instances of a master RequiredRights object
instance.

An operation’s entry in the RequiredRights table lists a set of rights, qualified (or
“tagged”) as usual with the RightsFamily. It also specifies a Rights Combinator; the
rights combinator defines how entries with more than one required right should b
interpreted. This specification defines two Rights Combinators: AllRights (which
means that all rights in the entry must be granted in order for access to be allowe
and AnyRight (which means that if any right in the entry is granted, access will be
allowed).

Note that the following behaviors of systems conforming to CORBA Security are
unspecified and therefore may be implementation-dependent:

• Assignment of initial required rights to newly created interfaces.

• Inheritance of required rights by newly created derived interfaces.

get_required_rights

This operation retrieves the rights required to execute the operation specified by
operationName of the interface specified by obj. obj’s interface will be determined and
used to retrieve required rights. The returned values are a list of rights and a
combinator describing how the list of rights should be interpreted if it contains mo
than one entry.

 void get_required_rights(
 in Object obj,
 in Identifier operation_name,
 in RepositoryId interface_name,

 out RightsList rights,
 out RightsCombinatorrights_combinator

);
15-128 CORBAservices November 1996

15

ed.

is

t
n of

d.

Parameters

obj The object for which required rights are to be returned.

operation_nameThe name of the operation for which required rights are to be return

interface_name The name of the interface in which the operation described by
operation_name is defined, if this is different from the interface of
which obj is a direct instance. Not all implementations will require th
parameter; consult your implementation documentation.

rights The returned list of required rights.

rights_combinator

The returned rights combinator.

set_required_rights

This operation updates the rights required to execute the operation specified by
operationName of the interface specified by interface. The caller must provide a list of
rights and a combinator describing how the list of rights should be interpreted if i
contains more than one entry. Note that consistency issues arising from replicatio
RequiredRights objects or distribution of the RequiredRights interface must be handled
correctly by implementations; after a call to set_required_rights changes an
interface’s required rights, all subsequent calls to get_required_rights , from
any client, must return the updated rights set.

 void set_required_rights(
 in string operation_name,
 in RepositoryId interface_name,
 in RightsList rights,
 in RightsCombinator rights_combinator

);

Parameters

operation_nameThe name of the operation for which required rights are to be update

interface_name The name of the interface whose required rights are to be updated.

rights The desired new list of required rights.

rights_combinator

The desired new rights_combinator .

AccessPolicy Interface

This is the root interface for the various kinds of invocation access control policy. This
interface supports querying of the effective access granted by a credential by an
invocation access policy. It inherits the Policy interface and has one operation,
get_effective_rights .

get_effective_rights
Security Service: v1.0 November 1996 15-129

15

s

hts

t
et

asis.
e do-

d

This operation returns the current effective rights (of family RightsFamily) granted by
this AccessPolicy object to the subject possessing all privilege attributes in the
credentials cred.

RightsList get_effective_rights (
 in CredentialsList creds_list,
 in ExtensibleFamily rights_family

);

Note that this specification does not define how an Access Policy object combine
rights granted through different Privilege Attribute entries, in case a subject has more
than one Privilege Attribute to which the Access Policy grants rights. However, this
call will cause the Access Policy object to combine rights granted to all privilege
attributes in the input Credential (using whatever operation it has implemented), and
return the result of the combination.

Access Decision objects, and applications that check whether access is permitted
without using an Access Decision object, should use this operation to retrieve rig
granted to subjects.

Specific Invocation Access Policies

This specification allows different Invocation Access policies to be provided through
specialization of the AccessPolicy interface.

Each specific Invocation Access policy is responsible for defining its own administrative
interfaces. The specification defines a standard Invocation Access policy interface,
including administrative operations; it is presented in the next section. This standard
policy may of course be replaced by or augmented with other policies.

DomainAccessPolicy Interface

The DomainAccessPolicy interface provides discretionary access policy managemen
semantics. CORBA implementations with policy requirements, which cannot be m
by the DomainAccessPolicy abstraction, may choose to implement different Access
Policy objects; for example, they may choose to implement access control policy
management using capabilities.

Domains
This specification defines interfaces for administration of access policy on a domain b
Each domain may be assigned an access policy, which is applied to all objects in th
main. Each access-controlled object in a CORBA system must be a member of at leastone
domain.

A DomainAccessPolicy object defines the access policy, which grants a set of name
“subjects” (e.g. users), a specified set of “rights” (e.g. g,s,m) to perform operations on the
“objects” in the domain. A DomainAccessPolicy can be represented by a table whose row
labels are the names of subjects, and whose cells are filled with the rights granted to the
subject named in that row’s label, as in Table 15-1 (note that the use of the
Delegation State will be discussed in the section of the same name next).
15-130 CORBAservices November 1996

15

ht

ps,
 “user

es;
Table 15-1DomainAccessPolicy

This DomainAccessPolicy grants the rights “g” and “s” to Alice and Zeke, and the rig
“g” to Bob and Cathy. (The annotation “corba” prefixing the granted rights indicates
which Rights Family, as defined in the previous section, each of the rights in the table is
drawn from. In this case, all rights are drawn from DomainAccessPolicy’s standard
“corba” Rights Family. The delegation state column is described under the heading
“Delegation States”.)

DomainAccessPolicy Use of Privil ege Attributes

Administration of principals by individual identity is costly, so the DomainAccess
Policy aggregates principals for access control. A common aggregation is called a
“user group.” This specification generalizes the way users are aggregated, using
“Privilege Attributes” (as defined in Access Policies under Section 15.3.4, Access
Control Module). Users may have many kinds of privilege attributes, including grou
roles, and clearances (note that user access identities, often referred to simply as
identities” or “userids,” are considered to be a special case of privilege attributes). The
DomainAccessPolicy object uses Privilege Attributes as its subject entries.

This specification does not provide an interface for managing user privilege attribut
an implementation of this specification might provide a “User Privilege Attribute
Table” enumerating the set of users granted each Privilege attribute. An implementor
might provide a user privilege attribute table, shown next.
Table 15-2User Privilege Attributes (Not Defined by This Specification)

Given the definitions in this table, we can simplify our DomainAccessPolicy as
follows (note that, for convenience, each PrivilegeAttribute entry is annotated in the
table with its PrivilegeAttribute type).

Subject
Delegation
State

Granted
Rights

alice initiator corba:gs-

bob initiator corba:g--

cathy initiator corba:g--

...

zeke initiator corba:gs-

Users Privilege Attribute

bob, cathy group:programmers

zeke group:administrators
Security Service: v1.0 November 1996 15-131

15

also

cy
ts

-

Table 15-3 DomainAccessPolicy (with Privilege Attributes)

Delegation State

The DomainAccessPolicy abstraction allows administrators to grant different rights when
a Privilege attribute is used by a delegate than those granted to the same Privilege
attribute when used by an initiator (note that "initiator" means the principal issuing the
first call in a delegated call chain; that is, the only client in the call chain that is not
a target object). The DomainAccessPolicy shown next illustrates the use of this feature.
Table 15-4DomainAccessPolicy (with Delegate entry)

This DomainAccessPolicy grants Alice the “g” and “s” rights when she accesses an object
as an initiator, but only the “g” right when a delegate using her identity accesses the same
object.

DomainAccessPolicy Use of Rights and Rights Families

The rights granted to a Privilege Attribute by a DomainAccessPolicy entry must each
be “tagged” with the RightsFamily to which they belong; each DomainAccessPoli
entry can grant its row’s PrivilegeAttribute rights from any number of different Righ
Families.

Implementations may define new Rights Families in addition to the standard “corba”
family, though this should be done only if absolutely necessary, since new Rights
Families complicate the administrator’s model of the system.

AccessDecision Use of AccessPolicy and RequiredRights

The AccessDecision object and its interfaces are described in Access Decision Object
under Section 15.7.4, Implementation-Level Security Object Interfaces. It is used at run
time to perform access control checks. AccessDecision objects rely upon AccessPolicy

Privilege Attribute
Delegation
State

Granted
Rights

access_id:alice intitator corba:gs-

group:programmers initiator corba:g--

group:administrators initiator corba:gs-

Privilege
Attribute

Delegation
State

Granted
Rights

access_id:alice initiator corba:gs-

access_id:alice delegate corba:g--

group:programmers initiator corba:g--

group:administrators initiator corba:gs-
15-132 CORBAservices November 1996

15

n

g the
objects to provide the policy information upon which their decisions are based (some
implementations may provide both the AccessDecision and AccessPolicy interfaces o
the same object).

To complete the example, imagine that we have the following set of object instances.

Table 15-5Interface Instances

The DomainAccessPolicy object illustrated next has been updated to include a list of rights
of type “other” granted to each of the Privilege attributes.

Table 15-6DomainAccessPolicy (with Required Rights Mapping)

Table 15-7 shows RequiredRights () for three object interfaces (c1, c2, and c3), usin
standard RightsFamily “corba” and a second RightsFamily, “other,” whose rights set is as-
sumed to be {g, u, o, m, t, s}.

Objects Interface

obj_1, obj_8, obj_n c1

obj_2, obj_5 c2

obj_12 c3

Privilege
Attribute

Delegation
State Granted Rights

access_id:alice initiator corba: gs-
other: -u-m-s

access_id:alice delegate corba: g--
other: ------

group:programmers initiator corba: g--
other: -u----

group:administrators initiator corba: gs-
other: ------
Security Service: v1.0 November 1996 15-133

15

cy.

 an

s an

,

ne
Table 15-7RequiredRights for Interfaces c1, c2 and c3

 Using this, we can calculate the effective access granted by this DomainAccessPoli

• alice can execute operations m1 and m2 of objects obj_1, obj_8, and obj_n as
initiator, but may execute only m2 as a delegate.

• alice can execute operations m3 and m4 of objects obj_2, and obj_5 as an initiator,
but may execute no operations of obj_2 and obj_5 as a delegate.

• alice can execute operations m5 and m6 of object obj_12 as an initiator, but may
execute no operations as a delegate.

• “programmers” can execute operation m2 of objects obj_1, obj_8, and obj_n a
initiator, but no operations as a delegate.

• “programmers” can execute operation m3 of objects obj_2 and obj_5 as an initiator,
but no operations as a delegate.

• “administrators” can execute operations m1 and m2 of objects obj_1, obj_8, and
obj_n as an initiator, but no operations as a delegate.

• “administrators” can execute operations m5 and m6 of object obj_12 as an initiator
but no operations as a delegate.

DomainAccessPolicy Interface

The DomainAccessPolicy object provides interfaces for managing access policy.

Each domain manager may have at most one AccessPolicy, and therefore at most o
DomainAccessPolicy (though an object instance may have more than one domain
manager, and therefore, more than one DomainAccessPolicy). The DomainAccessPolicy
interface inherits the AccessPolicy interface and defines operations to specify which
subjects can have which rights as follows.

grant_rights

This operation grants the specified rights to the privilege attribute priv_attr in
delegation state del_state.

Required
Rights

Rights
Combinator Operation Interface

corba:s all m1 c1

corba:gs any m2

other:u all m3 c2

other:ms all m4

other: s all m5 c3

corba:gs all m6
15-134 CORBAservices November 1996

15

le

ed to

d
Utilities that manage access policy should use this operation to grant rights to a sing
privilege attribute.

 void grant_rights(
in Attribute priv_attr,

 in DelegationState del_state,
 in ExtensibleFamily rights_family,
 in RightsList rights

);

revoke_rights

This operation revokes the specified rights of the privilege attribute priv_attr in
delegation state del_state.

Utilities that manage access policy should use this operation to revoke rights grant
a single privilege attribute.

 void revoke_rights(
 in Attribute priv_attr,
 in DelegationState del_state,
 in ExtensibleFamily rights_family,
 in RightsList rights

);

replace_rights

This operation replaces the current rights of the privilege attribute priv_attr in
delegation state del_state with the rights provided as input.

Utilities that manage access policy should use this operation to replace rights grante
to a single privilege attribute in cases where using grant_rights () and
revoke_rights () is inappropriate. For example, replace_rights () might be
used to change an access_id’s authorizations to reflect a change in job description
(since the change in authorization in this case is related to the duties of the new job
rather than to the current authorizations granted to the user owning the access_id).

void replace_rights (
 in Attribute priv_attr,
 in DelegationState del_state,
 in ExtensibleFamily rights_family,
 in RightsList rights

);

get_rights

This operation returns the current rights (of type rightsFamily) of the Privilege
attribute priv_attr in delegation state del_state.
Security Service: v1.0 November 1996 15-135

15

e

of
eful

in a

udit
Utilities that manage access policy should use this operation to retrieve rights granted
to an individual privilege attribute.

 RightsList get_rights (
 in Attribute priv_attr,
 in DelegationState del_state,
 in ExtensibleFamily rights_family

);

15.6.5 Audit Policies

There are two invocation audit policies: the ClientInvocationAudit policy, which is used at
the client side of an invocation, and the TargetInvocationAudit policy, which is used at the
target side. There is also an application audit policy type.

Audit policy administration interfaces are used to specify the circumstances under which
object invocations and application activities in this domain are audited. As for access
policies, this specification allows different audit policies to be specified, which may hav
different administrative interfaces.

Different audit policies are potentially possible, which allow a great range of options
what to audit. Some of these are needed to respond to the problem of getting the us
information, without generating huge quantities of audit information.

Examples of what events could be audited during invocation include:

• Specified operations on objects.

• Failed operations (i.e. those that raise an exception) on specified object types
domain.

• Use of certain operations during certain time intervals (e.g., overnight).

• Access control failures on specified operations.

• Operations done by a specified principal.

• Combinations of these.

Note that many of these events may be related to the business application. For example, an
operation of update_bank_account is a business, rather than system, operation.
However, some events are mainly of interest to a Privilege administrator (e.g., access
failures to systems objects).

Application audit policies may audit similar types of events, though these are often related
to application functions, not object invocations.

Audit Administration Interfaces

A standard invocation audit policy administration interface is part of Security
Functionality Level 2. It can be used to administer both client and target invocation a
policies.
15-136 CORBAservices November 1996

15

s the

ied

l,
This standard audit policy is used to specify for a set of event families and event type
selectors to be used to define which events are to be audited.

These are related to the selectors used on audit_needed (on AuditDecision objects)
and audit_write (on Audit Channel objects) as follows.
Table 15-8Standard Audit Policy

Note that audit policy is managed on an audit policy domain basis. Assignment of initial
audit selectors to newly created domains is unspecified and hence may be
implementation-dependent.

The following operations are available on the audit policy object.

set_audit_selectors

This operation defines the selectors to be used to decide whether to audit the specif
event families and types.

void set_audit_selectors (
in CORBA::InterfaceDef object_type,
in AuditEventTypeList events,
in SelectorValueList selectors

);

Parameters

object_type The type of objects for which an audit policy is being set. If this is ni
all object types are implied.

events Event types are specified as family and type ids. If the type id is zero,
the selectors apply to all event types in that family.

selectors The values of the selectors to be used.

Selector Type
Value on audit_needed
and audit_write Value Administered

Interface from object reference object type

Object object reference none - the policy applies to all objects in
the domain

Operation op_name operation

Initiator credential list security attributes (audit_id and privileges)

Success Failure boolean boolean

Time utc when event occurred time interval during which auditing is
needed
Security Service: v1.0 November 1996 15-137

15

t.

,

t in

 is a
clear_audit_selectors

This clears all audit selectors for the specified event families and types.

void clear_audit_selectors (
in CORBA::InterfaceDef object_type,
in AuditEventTypeList events,

);

replace_audit_selectors

This replaces the specified selectors.

void replace_audit_selectors (
in CORBA::InterfaceDef object_type,
in AuditEventTypeList events,
in SelectorValueList selectors

);

get_audit_selectors

This obtains the current values of the selectors for the specified event family or even

SelectorValueList get_audit_selectors (
in CORBA::InterfaceDef object_type,
in AuditEventTypeList events,
in SelectorValueList selectors

);

set_audit_channel

This specifies the audit channel object to be used with this audit policy.

void set_audit_channel (
in AuditChannel audit_channel

);

15.6.6 Secure Invocation and Delegation Policies

These policies affect the way secure communications between client and target are set up
and then used. There are three policies here:

• ClientSecureInvocation policy, which specifies the client policy in terms of trust in
the target’s identity and protection requirements of the communications between
them.

• TargetSecureInvocation policy, which specifies the target policy in terms of trus
the client’s identity and protection requirements of the communications between
them

• Delegation policy, which specifies whether credentials are delegated for use by the
target when a security association is established between client and target. This
client side policy.
15-138 CORBAservices November 1996

15

.

f

rity

eed

In all these cases, there is a standard policy interface for administering the policy options
Unlike access and audit policies, this is not replaceable. The standard policy
administration interfaces allow support of a range of policies.

Secure Invocation Policies

These are used to set client and target invocation policies which specify both a set o
required secure association options and a set of supported options that control how:

• The security association is made, for example, whether trust between client and
target is established (implying authentication if the client and target are not in the
same identity domain).

• Messages using that association are protected, for example, the levels of integ
and confidentiality.

The administrator should specify the required association options, but will often not n
to specify the supported options as these default to the ones supported by the security
mechanism used. However, the administrator could choose to restrict what is supported,
and in this case, should specify supported options.

Some implementations may support separate sets of association options for
communications in the request direction and the reply direction, e.g for an application that
requires no protection on the request, but confidentiality on the reply. Conforming
implementations are not required to support this unidirectional feature. Some selectable
policy options may not be meaningful to set for a certain direction, e.g. the
EstablishTrustInTarget option is not meaningful for a reply.

Both ClientSecureInvocation and TargetSecureInvocation support the same interface,
though not all of the selectable policy options are meaningful to both client and target.

Required and Supported Secure Invocation Policy

For both the ClientSecureInvocation and TargetSecureInvocation policies, a separate set
of secure association options may be established to indicate required policy and
supported policy. The required policy indicates the options that an object requires for
communications with a peer. The supported policy specifies the options that an object
can support if requested by a communicating peer.

The required options indicate the minimum requirements of the object; stronger
protection is not precluded.

Secure Association Options

The selectable secure association options are listed next with a description of their
semantics for required policy and supported policy.

NoProtection

• Required semantics: the object’s minimal protection requirement is unprotected
invocations.

• Supported semantics: the object supports unprotected invocations.
Security Service: v1.0 November 1996 15-139

15

es.

s.

 of

of

te

s);

Integrity

• Required semantics: the object requires at least integrity-protected invocations.

• Supported semantics: the object supports integrity-protected invocations.

Confidentiality

• Required semantics: the object requires at least confidentiality-protected
invocations.

• Supported semantics: the object supports confidentiality-protected invocations.

DetectReplay

• Required semantics: the object requires replay detection on invocation messag

• Supported semantics: the object supports replay detection on invocation message

DetectMisordering

• Required semantics: the object requires sequence error detection on fragments
invocation messages.

• Supported semantics: the object supports sequence error detection on fragments
invocation messages.

EstablishTrustInTarget

• Required semantics: On client policy, the client requires the target to authentica
its identity to the client. On target policy, this option is not meaningful.

• Supported semantics: On client policy, the client supports having the target
authenticate its identity to the client. On target policy, the target is prepared to
authenticate its identity to the client.

EstablishTrustInClient

• Required semantics: On client policy, this option is not meaningful. On target
policy, the target requires the client to authenticate its privileges to the target.

• Supported semantics: On client policy, the client is prepared to authenticate its
privileges to the target. On target policy, the target supports having the client
authenticate its privileges to the target.

Note that on an invocation, if both the client and target policies specify that peer trust is
needed, mutual authentication of client and target is generally required.

If the target accepts unauthenticated users as well as authenticated ones, the
EstablishTrustInClient option may be set for supported policy, but not for required
policy. This allows unauthenticated clients to use this target (subject to access control
the target can still insist on only authenticated users for certain operations by using access
controls.
15-140 CORBAservices November 1996

15

icy

 not

 all

ly,

Secure Invocation Administration Interfaces

Set Association Options

This method on the ClientSecureInvocation and TargetSecureInvocation policy objects is
used to set the secure association options for objects in the domain to which the pol
applies. Separate options may be set for particular object types by using the
object_type parameter.

This call allows requesting a different set of association options for communication inthe
request direction versus the reply direction, although conforming implementations are not
required to support this feature. The “request” and “reply” options sets are treated as
overrides to the “both” options set when evaluating policy for a single communication
direction. Implementations should raise the CORBA::BAD_PARAM exception if an
unsupported direction is requested on this call.

Not all selectable association options are meaningful for every policy set. For example,
EstablishTrustInClient, which is meaningful for the TargetSecureInvocation policy, is
meaningful as a requirement for the ClientSecureInvocation policy. Likewise, certain
association options do not make sense when applied to only a single direction (e.g.,
EstablishTrustInTarget is not meaningful for communication in the reply direction). An
implementation may choose whether to raise an exception or silently ignore requests for
invalid association options.

void set_association_options (
in CORBA::InterfaceDef object_type,
in RequiresSupports requires_supports,
in CommunicationDirection direction,
in AssociationOptions options

);

Parameters

object_type The type of objects that the association options apply to. If this is nil,
object types are implied.

requires_supports

Indicates whether the operation applies to the required options or the
supported options.

direction Indicates whether the options apply to only the request, only the rep
or to both directions of the invocation.

options Indicates requested secure association options by setting the
corresponding options flags.

get_association_options

This is used to find what secure association options apply on ClientSecureInvocationand
TargetSecureInvocation policy objects for the required or supported policy, for the
indicated direction, and for the specified object type.

Implementations should raise the CORBA::BAD_PARAM exception if an unsupported
direction is requested on this call.
Security Service: v1.0 November 1996 15-141

15

 all

ly,

y

or

te
ism

,
AssociationOptions get_association_options (
in CORBA::InterfaceDef object_type,
in RequiresSupports requires_supports,
in InvocationDirection direction

);

Parameters

object_type The type of objects that the association options apply to. If this is nil,
object types are implied.

requires_supports

Indicates whether the operation applies to the required options or the
supported options.

direction Indicates whether the options apply to only the request, only the rep
or to both directions of the invocation.

Return Values

The association options flags set for this policy.

Invocation Delegation Policy

This policy controls which credentials are used when an intermediate object in a chain
invokes another object.

set_delegation_mode

The set_delegation_mode operation specifies which credentials are delegated b
default at an intermediate object in a chain where objects invoke other objects. This
default can be overridden by the object at run time.

void set_delegation_mode (
in CORBA::InterfaceDef object_type,
in DelegationMode mode

);

Parameters

object_type The type of the objects to which this delegation policy applies.
mode The delegation mode. Options are:

SecDelModeNodelegation: the intermediates’s own credentials are used f
future invocations.
SecDelModeSimple: the initiating principal credentials are delegated.
SecDelModeComposite: both the received credentials and the intermedia
object’s own credentials are passed (if the underlying security mechan
supports this). The requester’s credentials and the intermediate’s own
credentials may be combined into a single credential, or kept separate
depending on the underlying security mechanism.
15-142 CORBAservices November 1996

15

y be
nd

me

e
.

e
e at

ce’s
get_delegation_mode

This returns the delegation mode associated with the object.

DelegationMode get_delegation_mode (
in CORBA::InterfaceDef object_type

);

15.6.7 Non-repudiation Policy Management

This section defines interfaces for management of non-repudiation policy. These
interfaces are included in the non-repudiation conformance option.

Non-repudiation policies define the following:

• Rules for the generation of evidence, such as the trusted third parties which ma
involved in evidence generation and the roles in which they may be involved a
the duration for which the generated evidence is valid.

• Rules for the verification of evidence, for example, the interval during which a
trusted third party may legitimately declare its key to have been compromised or
revoked.

• Rules for adjudication, for example, which authorities may be used to adjudicate
disputes.

The non-repudiation policy itself may be used by the adjudicator when resolving a
dispute. For example, the adjudicator might refer to the non-repudiation policy to
determine whether the rules for generation of evidence have been complied with.

For each type of evidence, a policy defines a validity duration and whether trusted ti
must be used to generate the evidence.

For each non-repudiation mechanism, a policy defines the set of trusted third parties
(“authorities”), which may be used by the mechanism. A policy also defines, for each
mechanism, the maximum allowable “skew” between the time of generation of evidence
and the time of countersignature by a trusted time service; if the interval between thes
two times is larger than the maximum skew, the time is not considered to be trusted

For each authority, a policy defines which roles the authority may assume, and a tim
offset, relative to evidence generation time, which allows computation of the last tim
which the authority can legitimately declare its key to have been compromised or revoked.
For example, if an authority has a defined last_revocation_check_offset of
negative one hour, then all revocations taking effect earlier than one hour before the
generation of a piece of evidence will render that evidence invalid; no revocation taking
place later than one hour before the generation of the evidence will affect the eviden
validity. Note that the last_revocation_check_offset is inclusive, in the sense
that all revocations occurring up to and including the time defined by
generation_time + offset are considered effective.
Security Service: v1.0 November 1996 15-143

15
Data Types for Non-repudiation Policy Management Interfaces

The following data types are used by the NR policy management interfaces.

struct EvidenceDescriptor {
 EvidenceType evidence_type,
 DurationInMinutes evidence_validity_duration,
 boolean must_use_trusted_time,
 } ;

typedef sequence <EvidenceDescriptor> EvidenceDescriptorList;

struct AuthorityDescriptor {
string authority_name,
string authority_role,
TimeOffsetInMinutes last_revocation_check_offset
 // may be >0 or <0; add this to evid. gen. time to
 // get latest time at which mech. will check to see
 // if this authority’s key has been revoked.

 } ;

typedef sequence <AuthorityDescriptor> AuthorityDescriptorList;

struct MechanismDescriptor {
 NRmech mech_type,
 AuthorityDescriptorList authority_list,
 TimeOffsetInMinutes max_time_skew,

 // max permissible difference between evid. gen. time
// and time of time service countersignature

 // ignored if trusted time not reqd.
} ;

typedef sequence <MechanismDescriptor> MechanismDescriptorList;

Non-repudiation Policy Management Interfaces

The non-repudiation policy defined in this specification supports
get_NR_policy_info and set_NR_policy_info operations.

get_NR_policy_info

Returns information from a non-repudiation policy object.

void get_NR_policy_info (
 out ExtensibleFamily NR_policy_id,

out unsigned long policy_version,
 out TimeT policy_effective_time,
 out TimeT policy_expiry_time,

out EvidenceDescriptorList supported_evidence_types,
out MechanismDescriptorList supported_mechanisms

);

Parameters

NR_policy_idThe identifier of this non-repudiation policy.
15-144 CORBAservices November 1996

15

ces

this
ndix
policy_version
The version number of this non-repudiation policy.

policy_effective_time
The time at which this policy came into effect.

policy_expiry_time
The time at which this policy expires.

supported_evidence_types
The types of evidence that can be generated under this policy.

supported_mechanisms
The non-repudiation mechanisms which can be used to generate and verify
evidence under this policy.

set_NR_policy_info

Updates non-repudiation policy information.

boolean set_NR_policy_info (
in MechanismDesciptorList requested_mechanisms,
out MechanismDescriptorList actual_mechanisms

);

Parameters

requested_mechanisms
The non-repudiation mechanisms to be supported under this policy.

actual_mechanisms
The non-repudiation mechanisms now supported under this policy.

Return Values

true If the requested mechanisms were all set.
false If the actual mechanisms returned differ from those requested.

15.7 Implementor’s Security Interfaces

This section describes the ORB facilities available to security service implementors to
support construction of secure ORBs using portable components and also the object
security services, which implement security. The interfaces defined in this appendix
support the replaceability conformance options defined in Appendix D, Conformance
Details.

• Generic ORB service (interceptor) interfaces. This section defines ORB interfa
that allow services such as security to be inserted in the invocation path.
Interceptors are not specific to security; they could be used to invoke any ORB
service. Interceptors are therefore proposed as a generic ORB extension. For
reason, the generic interfaces supported by interceptors are presented in Appe
B, Summary of CORBA 2 Core Changes; only security-specific interceptor

interfaces are defined in this section. These interfaces permit services to be neatly
Security Service: v1.0 November 1996 15-145

15

d,

cies

st.

f a

n.

sult
separated so that, for example, security functions can coexist with other ORB
services such as transactions and replication (see Section 15.7.1, Generic ORB
Services and Interceptors).

• Security Service replaceability. This appendix defines the security service
interfaces. that allow different security service implementations to be substitute
whether or not the generic ORB service interfaces are supported (see Section
15.7.4, Implementation-Level Security Object Interfaces, for details).

Appendix E, Guidelines for a Trustworthy System, offers additional guidance to
implementors of secure ORBs, including a discussion of using protection boundaries to
separate components, depending on the level of security required.

The description of security interceptors in Section 15.7.3, Security Interceptors
(particularly that in Invocation Time Policies), specifies how client and target side poli
and client preferences are used to decide what policy options to enforce. This definition of
how the options are used applies whether the ORB conforms to the replaceability options
or not.

None of the interfaces defined in this section affect the application and administrator's
views described in Section 15.5, Application Developer’s Interfaces, and Section 15.6,
Administrator’s Interfaces.

15.7.1 Generic ORB Services and Interceptors

An Interceptor implements one or more ORB services. Logically, an interceptor is
interposed in the invocation (and response) path(s) between a client and target object. Two
types of interceptors are defined in this specification:

• Request-level interceptor, which perform transformations on a structured reque

• Message-level interceptors, which perform transformations on an unstructured
buffer.

15.7.2 Request-Level Interceptors

Request-level interceptors are used to implement services which may be required
regardless of whether the client and target are collocated or remote. They resemble the
CORBA bridge mechanism in that they receive the request as a parameter, and
subsequently reinvoke it using the Dynamic Invocation Interface (DII). An example o
request-level interceptor is the Access Control interceptor, which uses information about
the requesting principal and the operation in order to make an access control decisio

The ORB core invokes each request level interceptor via the client_invoke
operation (at the client) or the target_invok e operation (at the target) defined in this
section. The interceptor may then perform actions, including invoking other objects,
before reinvoking the (transformed) request using CORBA:: Request::invoke .
When the latter invocation completes, the interceptor has the opportunity to perform other
actions, including recovering from errors and retrying the invocation or auditing the re
if necessary, before returning.
15-146 CORBAservices November 1996

15

on

e

, and
Message-Level Interceptors

When remote invocation is required, the ORB will transform the request into a message,
which can be sent over the network. As functions such as encryption are performed
messages, a second kind on interceptor interface is required.

The ORB code invokes each message-level interceptor via the send_message
operation (when sending a message, for example, the request at the client and the reply at
the target) or the receive_message operation (when receiving a message). Both hav
a message as an argument. The interceptor generally transforms the message and then

invokes send. Send operations return control to the caller without waiting for the
operation to finish. Having completed the send_message operation, the interceptor
can continue with its function or return.

Selecting Interceptors

An ORB that uses interceptors must know which interceptors may need to be called
in what order they need to be called. An ORB that supports interceptors, when serving as a
client, uses information in the target object reference, as well as local policy, to decide
which interceptors must actually be called during the processing of a particular request
sent to a particular target object.

When an interceptor is first invoked, a bind time function is used to set up interceptor
binding information for future use.

Interceptor Interfaces

This section describes the interceptors defined specifically for invoking the security
services.

Details of the interfaces common to all interceptors are included in Appendix B, Summary
of CORBA 2 Core Changes, as they are not security-specific. Appendix B includes
definitions of:

• The RequestInterceptor interfaces client_invoke and target_invoke .

• The MessageInterceptor interfaces, including send_message and
receive_message .

Appendix B also describes which interfaces the interceptors call, e.g. to get information
from the tags in an IOR. Some extensions are proposed to these CORBA interfaces to give
access to other information not currently in the CORBA 2 specification, such as the
component tags of a multicomponent profile in an object reference.

15.7.3 Security Interceptors

The ORB Services replaceability option requires implementation of two security
interceptors:
Security Service: v1.0 November 1996 15-147

15

,
hen

g of
ial

ptors
• Secure Invocation Interceptor. This is a message-level interceptor. At bind time
this establishes the security context required to support message protection; w
processing a request, it is a message-level interceptor that uses cryptographic
services to provide message protection and verification. It is able to check and
protect messages (requests and replies) for both integrity and confidentiality.

• Access Control Interceptor. This is a request-level interceptor, which determines
whether an invocation should be permitted. This interceptor also handles auditin
general invocation failures, but not related to denial of access (access-control den
failures are audited within the Access Decision object, which is called by this
interceptor to check access control).

This specification does not define a separate audit interceptor, as the other interceptors’
implementations or the security service implementations call Audit Service interfaces
directly if the events for which they are responsible are to be audited.

The security interceptors implement security functionality by calling the replaceable
security service objects (defined later in this section) as shown in Figure 15-52.

Figure 15-52Security Functionality Implemented by Security Service Objects

The diagram shows the order in which security interceptors are called. Other interce
may also be used during the invocation. The order in which other interceptors are called in
relationship to security interceptors depends on the type of interceptor.

At the client:

• In general, the access control interceptor should be called first (to avoid
unnecessary processing of the request by other interceptors when permission to
perform the request is denied).

reply request

ORB Core

Client

Control

Client

Invocation

Client
Access
Decision

Vault

Security
Context

Target
Access
Decision

Vault

Security
Context

per request

to set up
security
association

per message

create create

replyrequest

Secure

Interceptors

 Access

Interceptors

Target

Control

Target

Invocation
Secure

Interceptors

 Access

Interceptors
15-148 CORBAservices November 1996

15

fore
-

d

d

de)

ind
ls

by

t

the

r
• All request level interceptors (e.g. transaction or replication ones) are called be
the secure invocation interceptor, as the secure invocation interceptor is a message
level interceptor.

The secure invocation interceptor should ordinarily be the last interceptor invoke
(because message protection may encrypt the request, so that the code
implementing a further interceptor will not understand it). Even if only integrity
protection is used, the integrity check will fail if the message has been altered in
any way. Note that data compression and data fragmentation should be applie
before the message-protection interceptor is called.

At the target, analogous rules apply to the interceptors in the reverse order.

Invocation Time Policies

Interceptors decide what security policies to enforce on an invocation as follows:

• They call the get_policy operation defined in Section 15.5, Application
Developer’s Interfaces, to find what policies apply to this client (at the client si
or this target (at the target side).

• At the client side, the security hints in the target object reference are used to f
what policies apply to the target object and what security mechanisms and protoco
are supported. This uses operations on the object reference.

• At the client, the overrides set by the client on the credentials or target object
reference and the security supported by the mechanism in the client’s environment
are taken into account. The Secure Invocation interceptor uses
get_credentials on Current and get_security_features on the object
reference.

The get_policy operation may be used to get any of the following policies:

• The invocation access policies of the current execution context. These are used
the access control interceptor to check whether access is permitted.

• The invocation audit policy. This is used by interceptors and security services to
check whether to audit events during an invocation.

• The secure invocation policy. This is used by the secure invocation interceptor a
bind time. It uses get_association_options as defined in Section 15.6,
Administrator’s Interfaces. The secure invocation policies (and hints in the object
reference) specify required and supported values. The interceptor checks that
required values can be supported, and will not continue with the invocation if the
client’s requirements are not met. If the target’s requirements are not met, the
invocation may optionally proceed, allowing policy enforcement at the target.

• The invocation delegation policy. This is used by the secure invocation intercepto
at bind time. The interceptor calls get_delegation_mode to retrieve this
information.
Security Service: v1.0 November 1996 15-149

15

 the

lls

urity

he

e
Secure Invocation Interceptor

At bind time, the secure invocation interceptor establishes a security context, which the
client initiating the binding can use to securely invoke the target object designated by
object reference used in establishing the binding. At object invocation time, the secure
invocation interceptor is called to use the (previously established) security context to
protect the message data transmitted from the client to the invoked target object.

Note: The remainder of this section assumes that security interceptors are implemented
using the security services replaceability interfaces defined in this specification;
interceptors built for implementations which do not provide the security services
replaceability interfaces will have similar responsibilities, but will obviously make
different calls.

Bind Time - Client Side

The Secure Invocation interceptor’s client bind time functions are used to:

• Find what security policies apply.

• Establish a security association between client and target. This is done on first
invoking the object, but may be repeated when changes to the security context
occur, such as those caused by the client invoking
override_default_credentials .

Security policies relevant to this interceptor are the client secure invocation and delegation
policies. To retrieve the invocation policy objects, the Secure Invocation interceptor ca
the get_policy operation.

The interceptor checks if there is already a suitable security context object for this client’s
use of this target. If a suitable context already exists, it is used. If no suitable context
exists, the interceptor establishes a security association between the client and target
object (see Establishing Security Associations under Section 15.3.3, Secure Object
Invocations).

The client interceptor calls Vault::init_security_context to request the
security features (such as QOP, delegation) required by the client policy, client overrides
and target (as defined in its object reference). The Vault returns a security token to be sent
to the target, and indicates whether a continuation of the exchange is needed. It also
returns a reference to the newly-created Security Context object for this client-target
security association. (The way trust is established depends on policy, the security
technology used, and whether both client and target object are in the same identity
domain. It may involve mutual authentication between the objects and negotiation of
mechanisms and/or algorithms.)

The interceptor constructs the association establishment message (including the sec
token, which must be transferred to the target to permit it to establish the target-side
Security Context object). The association establishment message may be constructed in
one of two ways:

• When only the initial security token is needed to establish the association, the
association establishment message may also include the object invocation in t
buffer (i.e. the request) supplied to the interceptor when it was invoked by
send_message . After constructing the association establishment message, th
15-150 CORBAservices November 1996

15

e

 not

other

ge.

urity

d

.

ding

ity
interceptor invokes send, which results in the ORB sending the message to the
target. After receipt at the target, the association establishment message is
intercepted by the Secure Invocation Interceptor in the target, which at bind tim
calls Vault::accept_security_context to create the target Security
Context object (if needed).

• When several exchanges are required to establish the security association, the
association establishment message is sent separately, in a message that does
include the object invocation in the buffer (i.e. the request), again using send. This
message is intercepted in the target and the Vault called to create the Security
Context object. However, in this case, the target interceptor must generate an
security token and send it back to the client interceptor. The client interceptor calls

the Security Context object with a continue_security_context operation
passing the token returned from the target to check if trust has now been
established. There may be several exchanges of security tokens to complete this.
Once the security association has been established, the original client object
invocation (i.e. request) is sent in a separate association establishment messa

Details of the transformation to the request and the association establishment message
formats appear in Section 15.8, Security and Interoperability.

Bind Time - Target Side

The secure invocation interceptor’s target bind functions:

• Find the target secure invocation policies.

• Respond to association establishment messages from the client to establish sec
associations.

On receiving an association establishment message, the target secure invocation
interceptor separates it (if needed) into the security token and the request message an
uses the Vault (if there is no security context object yet) or the appropriate Security
Context object to process the security token. As previously described, this may result in
exchanges with the client. Once the association is established, the message protection
function described next is used to reclaim the request message and protect the reply

Message Protection (Client and Target Sides)

The Secure Invocation Interceptor is used after bind time for message protection,
providing integrity and/or confidentiality protection of requests and responses, accor
to quality of protection requirements specified for this security association in the active
Security Context object.

The quality of protection required for the request may have changed since the last
invocation in this security association, as the client may have used
override_default_QOP to set the QOP on the target object reference. The
interceptor therefore has to get the QOP by using get_security_features on the
object reference. The interceptor should also check if
override_default_credentials has been used, and if so, set up a new secur
association as at bind time.
Security Service: v1.0 November 1996 15-151

15

t

ce

t

for

rt
The Secure Invocation Interceptor’s send_message method calls
SecurityContext::protect_message , and its receive_message method
calls SecurityContext::reclaim_message , in each case using the appropriate
Security Context object.

Access Control Interceptor

Bind Time

At bind time, the client access control interceptor uses Current::get_policy to get
the ClientInvocationAccess Policy and ClientInvocationAudit policy. The target access
control interceptor uses the get_policy interface on the target object reference to ge
the TargetInvocationAccessPolicy and TargetInvocationAudit policy.

Access Decision Time

The Access Control Interceptor decides whether a request should be allowed or
disallowed.

Access control decisions may be made at the client side, depending on the client access
control policy, and at the target side depending on the target’s access control policy.
Target side access controls are the norm; client-side access controls can be used to redu
needless network traffic in distributed ORBs. Note that in some ORBs, system integrity
considerations may make exclusive reliance on client-side access control enforcement
undesirable.

The Access Control Interceptor client_invoke and target_invoke methods
invoke the access_allowed method of the Access Policy object obtained at bind time,
specifying the appropriate authorization data. The access policy returns a boolean
specifying whether the request should be allowed or disallowed.

The Access Control Interceptor does not know what sort of policy this Access Policy
object supports. It may be ACL-based, capability-based, label-based, etc. It also does no
know if the Access Policy object uses the credentials exactly as passed, or takes the
identity from the credentials and uses these to find further valid privileges if needed
this principal from a trusted source.

The Access Control Interceptor may also check if this invocation attempt should be
audited, by calling the audit_needed operation on the appropriate Audit Policy object;
if this call indicates that the invocation attempt should be audited, the Access Control
Interceptor calls the Audit Channel interface to write the appropriate audit record.

This interceptor does not transform the request. It either passes the request unchanged
when using CORBA::Request::invoke to continue processing the request, or it
aborts the request by returning with an exception, rather than calling
CORBA::Request::invoke .

15.7.4 Implementation-Level Security Object Interfaces

This specification defines four implementation-level security object interfaces to suppo
security service replaceability:
15-152 CORBAservices November 1996

15

 to

 and

e

ce.
• Vault is used to create a security context for a client/target-object association.

• Security Context objects hold security information about the client-target
security association and are used to protect messages.

• Access Decision objects are used (usually by Access Control Interceptors)
decide if requests should be allowed or disallowed.

• Audit . Audit Decision objects are used to decide if events are to be audited,
Audit Channel objects are used to write audit records to the audit trail.

Vault

The Vault interface provides methods for establishing security contexts between clients
and targets when these are in different trust domains, so that authentication is required to
establish trust. Implementations of the Vault interface are responsible for calling
audit_needed to determine whether the audit policy requires auditing of successful
and/or failed access control checks, and for calling audit_write whenever audit is
needed.

Interfaces

The Vault interfaces are described next. Note that if a call to the Vault interface results in
an incomplete Security Context (i.e. one which requires continued dialogue to complete),
the continuation of the dialogue is accomplished using the interface of the incomplet
Security Context object rather than the Vault interface.

init_security_context

This is used by the association interceptor (or the ORB if separate interceptors are not
implemented) at the client to initiate the establishment of a security association with the
target. As part of this, it creates the Security Context object, which will represent the
client’s view of the shared security context.

AssociationStatus init_security_context (
in CredentialsList creds_list,
in SecurityName target_security_name,
in Object target,
in DelegationMode delegation_mode,
in OptionsDirectionPairList association_options,
in MechanismType mechanism,
in Opaque mech_data,
in Opaque chan_bindings,
out Opaque security_token,
out SecurityContext security_context);

Parameters

creds_list The credentials to be used to establish the security association. There is
normally only one credential object: either the default ones from Current, or
the ones specified in an override operation on the target object referen
However, for composite, combined or traced delegation, more than one
credential object is needed.
Security Service: v1.0 November 1996 15-153

15

e

nd

e

.
ay

ct

in

ion.

ared

target_security_name
The security name of the target as set in its object reference.

target The target object reference.
delegation_mode

The mode of delegation to employ. The value is obtained by combining
client policy and application preferences as described in Invocation Tim
Policies under Section 15.7.3, Security Interceptors.

association_options
A sequence of one or more pairs of secure association options and direction.
The options include such things as required peer trust and message
protection. Normally, one pair will be specified, for the “both” direction.
Implementations that support separate association options for requests a
replies may supply an additional options set for each direction supported.
These values are obtained from a combination of the client’s security
policy, the hints in the target object reference, and any requests made by th
application.

mechanism Normally NULL, meaning use default mechanism for security associations
Otherwise, it contains the security mechanism(s) requested. (These m
have been obtained from the target object reference.)

mech_data Any data specific to the chosen mechanism, as found in the target obje
reference.

chan_bindingNormally NULL (zero length). If present, they are channel bindings as
GSS-API.

security_token The token to be transmitted to the target to establish the security associat
Note that this may take several exchanges, but operations required at the
client to continue the establishment of the association are on the Security
Context object.

security_context
This is the Security Context object at the client which represents the sh
security context between client and target as identified by the specified
security target name.

Return Value
The return value is used to specify the result of the operation.

SecAssocSuccess
Indicates that the security context has been successfully created and that no
further interactions with it are needed to establish the security association.

SecAssocFailure
Indicates that there was some error, which prevents establishment of the
association.

SecAssocContinue
Indicates that the association procedure needs more exchanges.

accept_security_context

This is used by the association interceptor (or ORB) at the target to accept a request from
the client to establish a security association. As part of this, it creates the Security Context
object, which will represent the target’s view of the shared security context.

AssociationStatus accept_security_context (
in CredentialsList creds_list,
in Opaque chan_bindings,
15-154 CORBAservices November 1996

15

he

ns

urity
in Opaque in_token,
out Opaque out_token,
out SecurityContext security_context

);

Parameters

creds_list The credentials of the target. Note that this may be the credentials of t
trust domain, not the individual object.

chan_bindings If present, the channel bindings are as in GSS-API.
in_token The security token transmitted from the client.
out_token If establishment of the security association is not yet complete, this contains

the security token to be transmitted to the client to continue the security
dialogue. Note that as at the client, any further operations needed to
complete the security association are on the security context object.

security_context
The Security Context object at the target which represents the shared
security context between client and target.

Return Value

SecAssocSuccess
Indicates that the security context has been successfully created and no
further interactions with it are needed to establish the security association.

SecAssocFailure
Indicates that there was some error that prevents establishment of the
association.

SecAssocContinue
The first stage of establishing the security association has been successful,
but it is not complete. The out_token contains the token to be returned
to continue it.

get_supported_mechs

This operation returns the mechanism types supported by this Vault object and the
association options these support.

MechandOptionsList get_supported_mechs ();

Return Value

The list of mechanism types supported by this Vault object and the association optio
they support.

Security Context Object

A Security Context object represents the shared security context between a client and a
target. It is used as follows:

• By the security association interceptors to complete the establishment of a sec
association between client and target after the Vault has initiated this.
Security Service: v1.0 November 1996 15-155

15

d/or

 the

ed

, or the
lity
• By the message protection interceptors in protecting messages for integrity an
confidentiality.

• In response to a target object’s request to Current for privileges and other
information (sent from the client) about the initiating principal.

• In response to a target object’s request to Current to supply one (or more)
credentials object(s) from incoming information about principal(s).

• To check if the security context is valid, and if not, try and refresh it.

Interfaces

The Security Context object has the following attributes in common with the Current
object:

readonly attribute CredentialsList received_credentials;

readonly attribute SecurityFeatureValueList security_features;

continue_security_context

This operation is invoked by the association interceptor to continue establishment of
security association. It can be called by either the client or target interceptor on the local
security context object.

AssociationStatus continue_security_context (
in Opaque in_token
out Opaque out_token

);
Parameters

in_token The security token generated by the other one of the client-target pair and
sent to this Security Context object to be used to continue the
dialogue between client and target to establish the security association.

out_token If required, a further security token to be returned to the other Security
Context object to continue the dialogue.

Return Value

SecAssocSuccess
The security association has been successfully established.

SecAssocFailure
The attempt to establish a security association has failed.

SecAssocContinue
The context is only partially initialized and further operations are requir
to complete authentication.

protect_message

The protect_message operation on the Security Context object provides the means
whereby the client message protection interceptor may protect the request message
target interceptor may protect the response message for integrity and/or confidentia
according to the Quality of Protection required.
15-156 CORBAservices November 1996

15

void protect_message (
in Opaque message,
in QOP qop,
out Opaque text_buffer,
out Opaque token

);

Parameters

 message The message for which protection is required.

 qop Required message protection options.

 text_buffer The protected message, optionally encrypted.

 token The integrity checksum, if any.

Return Value

None.

reclaim_message

The reclaim_message operation on the Security Context object provides the means
whereby a protected message may be checked for integrity and the message optionally
decrypted if needed.

boolean reclaim_message (
in Opaque text_buffer,
in Opaque token,
out QOP qop,
out Opaque message

);

Parameters

text_buffer The message for which the check is required and optionally the message
to be decrypted.

token The integrity checksum, if any. Will typically be zero length if QOP
indicates that confidentiality was applied.

qop The quality of protection that was applied to the protected message.

message The unprotected message, decrypted if required.

Return Value

If the reclaim_message operation returns a value of FALSE, then the message has
failed its integrity check. If TRUE, the integrity of the message can be assured.

is_valid

The is_valid operation on the Security Context object allows a caller to determine
whether the context is currently valid.

boolean is_valid (
out UtcT expiry_time);

Parameters
Security Service: v1.0 November 1996 15-157

15

ontrol
d

pty

d or
expiry_timeThe time at which this context is no longer valid.

Return Value

If the is_valid operation returns a value of FALSE, then the context is no longer valid.
If TRUE, the context is still valid.

refresh

This operation may extend the useful lifetime of the SecurityContext. The precise
behavior is implementation-specific. refresh may be called on both valid and expired
contexts.

boolean refresh ();

Return Value

If the refresh operation returns a value of FALSE, then the context could not be
refreshed. In this case, the caller should acquire a new context using the
Vault::init_security_context interface. If TRUE, the context was
successfully refreshed.

Access Decision Object

The Access Decision object is responsible for determining whether the specified
credentials allow this operation to be performed on this target object. It uses access c
attributes for the target object to determine whether the principal’s privileges, obtaine
from the Security Context object, are sufficient to meet the access criteria for the
requested operation. The interfaces are as follows.

access_allowed

interface AccessDecision {

boolean access_allowed (
in SecurityLevel2::CredentialsList cred_list,
in CORBA::Object target,
in CORBA::Identifier operation_name,
in CORBA::Identifier target_interface_name

);

Parameters

cred_list The list of Credentials associated with the request. The list may be em
(in the case of unauthenticated requests), it may contain only a single
credential, or it may contain several credentials (in the case of delegate
otherwise cascaded requests). The Access Decision object is presumed to
have rules for dealing with all these cases.

target The reference used to invoke the target object. The method invoked.
operation_name

The name of the operation being invoked on the target.

target_interface_name
15-158 CORBAservices November 1996

15

The name of the interface to which the operation being invoked belongs.
This may not be required in some implementations and will only be required
in cases in which the operation being invoked does not belong to the
interface of which the target object is a direct instance.

Return Value

boolean A return value of TRUE indicates that the request should be allowed,
otherwise FALSE.

Audit Objects

There are two types of audit objects:

• The audit decision object, used to find out whether an action needs to be audited.
Similar audit decision objects are used for all audit policies.

• The audit channel objects, used by many of the implementation components (such
as interceptors and security objects) and also used by applications to write audit
records.

Audit Decision Objects

Audit Decision objects support the audit_needed interface defined in Section 15.5,
Application Developer’s Interfaces.

boolean audit_needed (
in AuditEventType event_type,
in SelectorValueList value_list

);

Parameters

event_type The type of the event that has occurred.

selector_values A list containing the values of the following audit selectors:

Initiator (the credentials-list of the principal whose action caused the
event)

Object (the target object reference. If no target object exists, pass a
reference to “self”)

Operation (the name of the operation being invoked. Pass null if not
applicable)

SuccessFailure (a boolean indicating whether the operation which
triggered the event succeeded or failed)

Return Value

boolean A return value of TRUE indicates that the event must be audited,
otherwise FALSE.
Security Service: v1.0 November 1996 15-159

15

s

e

on

or

h
A standard audit policy is proposed in Section 15.6, Administrator’s Interfaces, but if this
is to be replaceable without ORB/interceptor changes, a standard interface needs to be
available for the ORB or interceptor to call. Therefore, for replaceability, the selector
used on audit needed during invocation must always be the same (see
selector_values above), though not all of these need to be used in taking the
decision to audit, depending on policy. Note that the time is not passed over this interface.
If the selectors specified in the audit policy use time to decide on whether to audit th
event, the AuditDecision object should obtain the current time itself.

Audit Channel Objects

Audit Channel objects support the audit_write interface defined in Section 15.5,
Application Developer’s Interfaces.

Principal Authentication

The Principal Authentication object defined in Section 15.5.3, Authentication of
Principals, may also be called by implementation security objects, specifically the Vault.

Non-repudiation

The Non-repudiation services are accessible through the NRCredentials interface. Its
functionality and operations are defined in Section 15.5, Application Developer’s
Interfaces.

15.7.5 Replaceable Security Services

It is possible to replace some security services independently of others.

Replacing Authentication and Security Association Services

Replacement of the authentication, security context management, and message protecti
services underlying a secure ORB implementation can be accomplished by replacing the
Principal Authentication, Vault, Credentials, and Security Context objects with
implementations using the new underlying technology.

Note that if the Vault uses GSS-API to link to external security services, it may be
substantially security technology independent, and so may require no changes or min
changes in order to accommodate a new underlying authentication technology (though it
may also have to use technology independent interfaces for principal authentication in
some circumstances, as this is not always hidden under GSS-API).

The Vault is replaced by changing the version in the environment.

Replacing Access Decision Policies

Access control policies can be changed by replacing the Access Policy objects, whic
define and enforce access control policies (for example, substituting another Access
15-160 CORBAservices November 1996

15

 and

d in a

cts

e

d

ing

r
Policy object for DomainAccessPolicy). If a single object supports both AccessPolicy
AccessDecision interface, then only that object needs to be replaced. Otherwise, both
AccessPolicy and AccessDecision objects may need to be replaced.

Applications may also change their access control policies. If the application access policy
object(s) is similar to the invocation access policy object(s), then they can be replace
similar way.

Replacing Audit Services

Audit policies may be replaced, for example, to support certain types of invocation audit
policy not supported by the standard audit policy objects. In this case, the policy obje
are replaced in a similar way to the access policy objects.

Also, Audit Channel objects may be replaced to change how audit records are routed to a
collection point or filtered.

The Audit Channel object used for object system auditing is replaced by replacing th
Audit Channel object in the environment. Other Audit Channel objects may be replaced
by associating a different channel object with the appropriate audit policy.

Application auditing objects can be replaced by the application.

Replacing Non-repudiation Services

The Non-repudiation Service is a stand-alone replaceable security service associatewith
NRCredentials and NRPolicy objects. Different NR services may use different
mechanisms and support different policies. For example, it may be that a service us
symmetric encipherment techniques may be replaced by a service using asymmetric
encipherment techniques.

The same credentials and authentication method may be used for non-repudiation and fo
other secure invocations, so when replacing either of these, the effect on the other should
be considered.

Other Replaceability

No other replaceability points are defined as part of this specification. However,
individual implementations may permit replacement of other security services or
technologies.

Linking to External Security Services

Most of an OMA-compliant secure system is unaware of the actual security services used,
and that these may be shared with other systems. OMA-compliant secure system
implementors are not required to make any interfaces other than those in Section 15.5,
Application Developer’s Interfaces, available to applications (though some
implementations may expose more of the interfaces in this specification); ORBs and ORB
interceptors use the interfaces specified in this section.
Security Service: v1.0 November 1996 15-161

15

n

ity

nt.

.

O

 this
y
The security service interfaces specified in this section may encapsulate calls to external
security services via APIs.

The external services used may include:

• Authentication Services, to authenticate principals.

• Privilege (Attribute) Services, for selecting and certifying privilege attributes for
authenticated principals (if access control can be based on privileges as well as on
individual identity).

• Security Association Services, for establishing secure associations between
applications. These services may themselves use other security services such as Key
Distribution Services (if secret keys are used), a Certification Authority for
certifying public keys, and Interdomain Services for handling communications
between security policy domains.

• Audit (and Event) Services.

• Cryptographic Support Facilities, to perform cryptographic operations (perhaps i
an algorithm-independent way).

This proposal does not mandate which interfaces are used to access external secur
services, but notes the following possibilities:

• The GSS-API is used for security associations and for the majority of Credentials
and Security Context operations, as this allows easy security service replaceme
With this in mind, several interfaces in Section 15.4, Security Architecture, have
been designed to allow easy mapping to GSS-API functions, and the Credentials
and Security Context objects are consistent with GSS-API credentials and contexts

• IDUP GSS-API may be used for independent data unit protection and evidence
generation and verification.

• Cryptographic operations performed by a Cryptographic Support Facility (CSF) to
ease replacement of cryptographic algorithms. No specific interface is
recommended for this yet, as such interfaces are being actively discussed in X/pen
and other international bodies, and standards are not yet stable.

15.8 Security and Interoperability

This section specifies a model for secure interoperability between ORBs, which conform
to the CORBA 2 interoperability specification and employ a common security technology.

The interoperability model also describes other interoperability cases, such as the effect on
interoperability of crossing security policy domains. However, detailed definitions of
these are not given in this specification.

This section defines the extensions required to the interoperability protocol for security.
This includes:

• Specification of tags in the CORBA 2 Interoperable Object Reference (IOR), so
can carry information about the security policy for the target object, and the securit
technology which can be used to communicate securely with it.
15-162 CORBAservices November 1996

15

this

end
• A security interoperability protocol to support the establishment of a security
association between client and target object and the protection of CORBA 2
General Inter-ORB Protocol (GIOP) messages between them for integrity and/or
confidentiality. This is independent of the security technology used to provide
protection.

• Security when using the DCE-CIOP protocol.

As the security information needed by a security mechanism is generally independent of
which ORB interoperability protocol is used, other Environment-Specific Protocols
(ESIOPs) may support security in a similar way to that described for GIOP. However, the
proposal in Section 15.8.5, DCE-CIOP with Security, only addresses DCE-CIOP, which
supports only DCE security.

The security protocol specified does not define details of the contents of the security
tokens exchanged to establish a security association, the integrity seals for message
integrity, or the details of encryption used for confidentiality of messages, as these dep
on the particular security mechanism used. This specification does not specify
mechanisms.

15.8.1 Interoperability Model

This section describes secure interoperability when:

• The ORBs share a common interoperability protocol.

• Consistent security policies are in force at the client and target objects.

• The same security mechanism is used.

All other options build from this. The model for secure interoperability is shown in
Figure 15-53.
Security Service: v1.0 November 1996 15-163

15

 is

 with

 it.
Figure 15-53Secure Interoperability Model

When the target object registers its object reference, this contains extra security
information to assist clients in communicating securely with it.

The protocol between client and target object on object invocations is as follows:

• If there is not already a security association between the client and target, one
established by transmitting security token(s) between them (transparently to the
application).

• Requests and responses between client and target are protected in transit between
them.

Security Information in the Object Reference

When an object is created in a secure object system, the security attributes associated
it depend on the security policies for its domain and object type and the security
technology available. A client needs to know some of this information to communicate
securely with this object in a way the object will accept. Therefore, the object reference
transferred between two interoperating systems includes the following information:

• A security name or names for the target so the client can authenticate its identity.

• Any security policy attributes of the target relevant to a client wishing to invoke
This covers policies such as the required quality of protection for messages and
whether the target requires authentication of the client’s identity and supports
authentication of its identity.

Client

request request

ORB Core

Target
Object

ORB

Services
Security

ORB

Services
Security

security token at association setup

protected message

reply reply
15-164 CORBAservices November 1996

15

n

sed.

een

e

 to
been

ad in

s.
• Identification of the security technology used for secure communication betwee
objects this target supports and any associated attributes. This allow the client to
use the right security mechanism and cryptographic algorithms to communicate
with the target.

Establishing a Security Association

The contents of the security tokens exchanged depend on the security mechanism u

A particular security mechanism may itself have options on how many security tokens are
used. The minimum is an initial context token (a term used in GSS-API), sent from the
client to the target object to establish the security association. This typically contains:

• An identification of the security mechanism used.

• Security information used by this mechanism to establish the required trust betw
client and target and to set up the security context necessary for protecting
messages later.

• The principal’s credentials.

• Information for protecting this security data in transit.

In addition to this token, subsequent security tokens may be needed if:

• Mutual authentication of client and target is required.

• Some negotiation of security options for this mechanism is required, for example,
the choice of cryptographic algorithms.

Protecting Messages

The invocation may be protected for integrity and/or confidentiality. In either case, th
messages forming the request and reply are transformed by the ORB Security Services.
For integrity, extra information (e.g., an integrity seal and sequence number) is added
the message so the target ORB Security Services can check that the message has not
changed and that no messages have been inserted or deleted in the sequence.

For confidentiality, the message itself is encrypted so it cannot be intercepted and re
transit.

Details of how messages are protected are again mechanism-dependent. Note, however,
that messages cannot be changed once they have been protected, as they cannot be
understood once confidentiality protected, and the integrity check will fail if they are
altered in any way.

Security Mechanisms for Secure Object Invocations

The interoperability model above can be supported using different security mechanism
Security Service: v1.0 November 1996 15-165

15

h
t to

t.

rd

e is at
e that

e basic
nce.
This specification does not define a standard security mechanism to be supported by all
secure ORBs. It therefore does not specify a particular set of security token formats and
message protection details for a particular security mechanism.

Security Mechanism Types

There are two major types of security mechanisms used in existing systems for security
associations, which are:

• Those using symmetric (secret) key technology where a shared key is used by bot
sides, and a trusted third party (a Key Distribution Service) is used by the clien
obtain a key to talk to the target.

• Those using asymmetric (public) key technology where the keys used by the two
sides are different, though linked. In this case, long term, public keys are normally
freely available in certificates that have been certified by a Certification Authority.

Several existing systems use symmetric key technology for key distribution when
establishing security associations. These are usually based on MIT’s Kerberos produc
Such systems normally include no public key technology.

Other security mechanisms use public key technology for authentication and key
distribution as this has advantages for scalability and interenterprise working. The number
of public key-based systems are growing and the use of public key technology is standa
for non-repudiation, which is an optional component in this specification, and increasingly
needed in commercial systems so any OMG security specification must not preclude its
use. Also, the use of smart cards with public key technology is increasing. However, non-
repudiation is not a service required for secure interoperability.

Interoperating with Multiple Security Mechanisms

The current specification allows a client to identify the security mechanism(s) supported
by the target. Where a client or target supports more than one mechanism, and ther
least one mechanism in common between client and target, the client can choose on
they both support.

Some security mechanisms may support a number of options, for example:

• A choice of cryptographic algorithms for protecting messages.

• A choice of using public or secret key technology for key distribution.

The appropriate options can be chosen by the client in the same way as choosing th
mechanism, via the client security policy and information in the target’s object refere
However, some mechanisms will be able to negotiate options using extra exchanges at
association establishment, which are specific to the particular mechanisms.

Interoperability where there is no mechanism in common is likely to be the subject of a
future security RFP. It is expected that this would be done by a specialist interoperability
bridge as described in the Security Interoperability Bridges section.
15-166 CORBAservices November 1996

15

it.

s

ere

,

ed on

et

e

Interoperating between Underlying Security Services

Security mechanisms for secure object invocations use underlying security services for
authentication, privilege acquisition, key distribution, certificate management, and aud
Under some circumstances, these need to interoperate. For example, key distribution
services may need to communicate with each other, and audit services may need to
transmit audit records between systems.

Interoperability of such underlying security services is considered out of scope of thi
specification, as they are mechanism dependent.

Interoperating between Security Policy Domains

The previous sections consider interoperability within a security policy domain wh
consistent security policies apply to access control, audit, and other aspects of the
system. These rely on information about the principal, including its identity and
privilege attributes, being trusted and having a consistent meaning throughout the
policy domain.

Where a large distributed system is split into a number of security policy domains
interoperation between security policy domains is needed. This requires the
establishment of trust between these domains. For example, an ORB security
association service at a target system will need to identify the source of the principal’s
credentials so it can decide how much to trust them.

Once the identity of the client domain has been established, interdomain security
policies need to be enforced. For example, access control policies are mainly bas
the principal’s certified identity and privilege attributes. The policy for this could be:

• The target domain trusts the client domain to identify principals correctly, but does
not trust their privilege attributes, so treats all principals from other domains as
guest users.

• The administrators of the two domains have agreed to some privilege attributes in
common, and trust each other to give these only to suitably authorized users. In this
case, the target system will give principals from the client domain with these
privileges the same rights as principals from the target domain.

• The administrators of the two domains agree what particular privilege attributes in
the client domain are equivalent to particular privilege attributes in the target
domain, and so grant corresponding access rights.

For the first two of these, the target domain security policy could enforce restrictions on
which privilege attributes may be used there. This would not necessarily affect the
interoperability protocols; the get_attributes operation will simply not return all of
the privileges. But even in this case, some security mechanisms will choose to modify the
principal’s credentials to exclude unwanted attributes.

In the third case, the privilege attributes need to be translated to the ones used in the targ
domain. If this translation is to be done only once, an interdomain service could be used,
which both translates the credentials and reprotects them so they can be delegated btween
nodes in the target domain.
Security Service: v1.0 November 1996 15-167

15

n
,

,

e

y

the

ent
Such an interdomain service may be invoked by the ORB Security Services, but may be
invoked by a separate interoperability bridge between the ORB domains. If invoked by a
ORB service, it extends the implementation of the Vault object described in Section 15.7
Implementor’s Security Interfaces, and this will probably call on a mechanism-specific
Interdomain Service.

Secure Interoperability Bridges

Secure Interoperability Bridges between ORB domains are relevant to this architecture, as
in the future, they may be specified as part of some secure CORBA-compliant systems.
However, this specification does not describe how to build such bridges. If security
interoperability bridges implemented separately from ORB Security Services are needed
they are expected to be the subject of separate RFPs.

Secure interoperability bridges may be needed for:

• ORB-mediated bridges, where data marshalling is done outside the ORB and
associated ORB services.

• Translating between security mechanisms (technology domains).

• Mapping between security policy domains.

In all these cases, both the system and application data being passed will need to b
altered, affecting its protected status. This needs to be reestablished using security services
trusted by both client and target domains.

15.8.2 Protocol Enhancements

The following sections detail the enhancements required to the CORBA 2 interoperabilit
specification for security.

• Section 15.8.3, CORBA Interoperable Object Reference with Security, defines the
enhancements needed for the Interoperable Object Reference (IOR).

• Section 15.8.4, Secure Inter-ORB Protocol (SECIOP), defines the enhancements
needed to secure GIOP messages, and Section 15.8.5, DCE-CIOP with Security,
defines the DCE-CIOP with security.

15.8.3 CORBA Interoperable Object Reference with Security

The CORBA 2 Interoperable Object Reference (IOR) comprises a sequence of ‘tagged
profiles.’ A profile identifies the characteristics of the object necessary for a client to
invoke an operation on it correctly, including naming/addressing information. The tag is a
standard, OMG-allocated identifier for the profile, which allows the client to interpret
profile data, but although the tag is OMG-allocated, the profile itself may not be OMG-
specified.

One profile thought necessary for OMG to define was a multicomponent profile, that is, a
profile that itself consisted of tagged components. It is proposed that new multicompon
TAGs are defined, which allows the multicomponent profile to be used for IIOP.
15-168 CORBAservices November 1996

15

,

f

 the

rall

ient

nt

However, use of tagged components within the multicomponent profile to carry IIOP
security, and other data may cause performance degradations in certain situations. For
example, if an IOR carries many tagged components unrecognized by a client
implementation, it must process these when they appear before those that it does
recognize. Some, such as the components describing IIOP, have a high probability o
being recognized and used by many clients. Consequently, implementations with an
objective to optimize IOR processing will place such components at the beginning of
tagged component sequence.

The following TAGs are defined:

• IIOP components, which can be used in a multicomponent profile (see Section
B.7, Further Definition of ORB Interoperability).

• Security components that identify security mechanism types, one for each
mechanism supported. Each security mechanism component can also include
mechanism-specific data.

• Aspects of the target object policy that cover the dependencies between an ove
use of components (for example, the quality of protection required) may be
specified in separate policy components. This avoids establishing unnecessary
dependencies between other (technology) components.

Security Components of the IOR

The following new tags are used to define the security information required by the cl
to establish a security association with the target. Note that a tag may occur more than
once, denoting that the target allows the client some choice. See the revised CORBA 2.0
specification (OMG Document Interop/96-05-01) for more information about placeme
of security information in IORs to support interoperable security in IIOP, GIOP protocols,
DCE-CIOP, and ESIOP protocols via the multi-component profile. Chapter 10 of that
document defines the IOR format, supported tags, and rules for composition of IOR
components; Chapter 12 of that document describes the GIOP header and message
formats and the IIOP IOR format; and Chapter 13 of that document describes the DCE-
CIOP message formats.

TAG_x_SEC_MECH

This is the prototype TAG definition for OMG registered security association
mechanisms. The mechanism is identified by the TAG value. The component data for
TAGs of this kind is defined by the person who registers the TAG. The confidentiality and
integrity algorithms to be used with the mechanism may be either encoded into the TAG
value or in mechanism-specific data (see Guidelines for Mechanism TAG Definition in
Appendix H, Interoperability Guidelines).

If this definition includes:

sequence <TaggedComponent> components ;

The components field can contain any of the other component TAGs, whose values can be
specific to the mechanism.
Security Service: v1.0 November 1996 15-169

15

nce to

y

d

nce to
If the mechanism is selected for use, the components in this field are used in prefere
any recorded at the multicomponent level.

Multiple TAG_x_SEC_MECH components may be present to enumerate the security
mechanisms available at the target.

TAG_GENERIC_SEC_MECH

This TAG enables mechanisms not registered with the OMG, but common to both client
and target to be used with the standard interoperability protocol. Its definition is:

struct GenericMechanismInfo {

sequence <octet> security_mechanism_type;

sequence <octet> mech_specific_data;

sequence <TaggedComponent> components;

};

The first part of this TAG is the security_mechanism_type , which identifies the
type of underlying security mechanism supported by the target including confidentialit
and integrity algorithm definition. It is an ASN.1 Object Identifier (OID) as described for
use with the GSS-API in IETF RFC 1508.

The mech_specific_data field allows mechanism specific information to be passe
by the target to the client.

The components field can contain any of the other component TAGs, whose values can be
specific to the mechanism.

If the mechanism is selected for use, the components in this field are used in prefere
any recorded at the multicomponent level.

Multiple TAG_GENERIC_SEC_MECH components may be present to enumerate the
security mechanisms available at the target.

TAG_ASSOCIATION_OPTIONS

This TAG is used to define the association properties supported and required by the target.
Its definition is:

struct TargetAssociationOptions{

AssociationOptions target_supports;

AssociationOptions target_requires;

};

Parameters

target_supports
Gives the functionality supported by the target.

target_requires
Defines the minimum that the client must use when invoking the target,
although it may use additional functionality supported by the target.
15-170 CORBAservices November 1996

15

d

of
The following table gives the definition of the options.
Table 15-9Option Definitions

TAG_SEC_NAME

The target security name component contains the security name used to identify and
authenticate the target. It is an octet sequence, the content and syntax of which is define
by the authentication service in use at the target. The security name is often the name
the environment domain rather than the particular target object.

The TAG_SEC_NAME component is not needed if the target does not need to be
authenticated.

target_supports target_requires

NoProtection The target supports
unprotected messages

The target’s minimal
protection requirement is
unprotected invocations

Integrity The target supports integrity
protected messages

The target requires
 messages to be integrity
protected

Confidentiality The target supports
confidentiality protected
invocation

The target requires
invocations to be protected for
confidentiality

DetectReplay The target can detect replay
of requests (and request
fragments)

The target requires security
associations to detect
message replay

DetectMisordering The target can detect sequence
errors of requests and request
fragments

The target requires security
associations to detect
message missequencing

EstablishTrustInTarget The target is prepared to
authenticate its identity to the
client

(This option is not defined.)

EstablishTrustInClient The target is capable of
authenticating the client

The target requires
establishment of trust in the
client’s identity
Security Service: v1.0 November 1996 15-171

15

”
ter

en a
Table 15-10IOR Example

In this example if mechanism “mech 1” is used, the target security name is “MBn1” while
the association must use integrity replay and misordering options. If mechanism “mech 2
is used, no mechanism-specific security name has been specified and so “Manches
branch” is used as the security name. The association options are EstablishTrustInClient
and Integrity.

Operational Semantics

This section describes how an ORB and associated ORB services should use the IOR
security components to provide security for invocations, and how the target object
information should be provided.

Client Side

During a request invocation, the nonsecurity tagged components in the IOR
multicomponent profile indicate whether the target supports IIOP and/or some other
environment-specific protocol such as DCE-CIOP. Security mechanism tag components
specify the security mechanisms (and associated integrity and confidentiality algorithms)
that this target can use. The ORB selects a combination of interoperability protocol and a
security mechanism that it can support.

If there is a common interoperability protocol, but no common security mechanism, th
secure request on this IOR cannot be assured.

Tag Value
Mech Specific
Tag Value

tag_sec_name “Manchester branch”

tag_association_
options

Supports and requires
integrity to establish
trust in the clients
privileges

tag_generic_sec_
mech

mech 1 oid tag_sec_name "MBnl"

tag_association_o
ptions

Supports and requires
integrity, replay
detection, misordering
detection, to establish
trust in the client’s
security attributes

tag_generic_sec_
mech

mech 2 oid tag_association_o
ptions

Target requires and
supports
confidentiality, to
establish trust in the
client’s security
attributes
15-172 CORBAservices November 1996

15

 the

.

the

s it

ism-
If the same security mechanism is supported at the client and the target, but the
TAG_ASSOCIATION_OPTIONS component specifies that no protection is needed or no
SEC_MECH is specified, then unprotected requests are supported by the target, and
request can be made without using security services. If the target requires protected
requests, then the ORB must choose an alternative transport and/or security mechanism

The IOR tags and the client’s policies and preferences are used together to choose
security for this client’s conversation with the target.

The specific security service used may not understand the CORBA security values, and so
may require them to be mapped into values it can understand.

Determining association options

The association options in the IOR table in Section 15.8.5, DCE-CIOP with Security, lists
possible association options such as NoProtection, Integrity, DetectReplay.

The actual association options used when a client invokes a target object via an IOR
depend on:

• The client-side secure invocation policy and environment.

• Client preferences as specified by set_association_options on the
Credentials or override_default_QOP on the object reference.

• The target-side secure invocation policy and environment (as indicated by
information in the TAG_ASSOCIATION_OPTIONS component).

An association option should be enforced by the security services if the client require
and the target supports it, or the target requires it and the client supports it.

If the target cannot support the client’s requirements, then a NO_PERMISSION exception
should be raised. If the client cannot meet the requirements of the target, then the
invocation may optionally proceed, allowing policy enforcement on the target side.

Target Side

The security information required in the IOR for this target must be supplied from the
target (or its environment). This specification does not define exactly when particular
information is added, as some of it may only be needed when the object reference is
exported from its own environment.

The security information may come from a combination of:

• The object’s own credentials (see Section 15.5.6, Security Operations on Current).
This includes, for example, the target’s security name. It could include mechan
specific information such as the target’s public key if it has one.

• Policy associated with the object. This includes, for example, the QOP.

• The environment. This includes, for example, the mechanism types supported.

The target object does not need to supply this information itself. This is done
automatically by the ORB when required. For example, much of the information for the
target’s own credentials are set up on object creation.
Security Service: v1.0 November 1996 15-173

15

s

d
As at the client, the specific security service used may require CORBA security values to
be mapped into those it understands.

If when the client invokes the target identified by the IOR, an Invoke Response message i
returned for the request with the status INVOKE_LOCATION_FORWARD, then the
returned multiple component profile must contain security information as well as the new
binding information for the target specified in the original Invoke Request message.

Any security information in the returned profile applies to the new binding information
and replaces all security information in the original profile. This
INVOKE_LOCATION_FORWARD behavior can be used to inform the client of update
security information (even if the address information hasn’t changed).

15.8.4 Secure Inter-ORB Protocol (SECIOP)

To provide a flexible means of securing interoperability between ORBs, a new protocol is
introduced into the CORBA 2.0 Interoperability Architecture. This protocol sits below the
GIOP protocol and provides a means of transmitting GIOP messages (or message
fragments) securely, as shown in .

Figure 15-54New CORBA 2.0 Protocol

SECIOP messages support the establishment of Security Context objects and protected
message passing. Independence from GIOP allows the GIOP protocol to be revised
independently of SECIOP (e.g., to support request fragmentation).

SECIOP Message Header

SECIOP messages share a common header format with GIOP messages defined in
CORBA 2.0. The fields of this header have the following definition for SECIOP.

• Magic. Identifies the protocol of the message. Each protocol (GIOP,SECIOP) is
allocated a unique identifier by the OMG. The value for SECIOP is “SECP.”

• Protocol_version. This contains the major and minor protocol versions of the
protocol identified by magic. The initial value for SECIOP is 1 major version, 0
minor version.

• byte_order, as in the GIOP header definition.

AAAAAAAA

A
A
A

AAAA
AAAA

AAAA
AAAAA

A
GIOP

fragmentation

SECIOP

IIOP

AAAAAAAAA

AA
AA
AA

AAAA
AAAA

AAAA
AAAAA

A
GIOP

fragmentation

SECIOP

IIOP

transport
15-174 CORBAservices November 1996

15

e

e

• message_type. This is the protocol specific identifier for the message.

• message_size, as in the GIOP header definition.

A minor change is required to the GIOP header to rename the field GIOP_Version
protocol_version .

SECIOP

The SECIOP protocol is used to control the secure association between clients and targets
and provides a means for the transmission of protected messages between clients and
targets.

Where possible, SECIOP messages are sent with GIOP messages rather than as separate
exchanges. However this is not always possible (e.g. when the client wishes to
authenticate the target before it is prepared to send a GIOP message).

Each name in the enumeration below corresponds to a structure discussed later in this
section. The name of the designated structure is obtained by removing the initial "MT"
from the name of the corresponding enumeration constant (for example, the structur
corresponding to MTEstablishContext is named EstablishContext). The section titles
under which the structures are discussed bear the names of the corresponding enumration
constants (i.e. the section names start with "MT").

SECIOP has the following message types:

enum MsgType {

MTEstablishContext, MTCompleteEstablishContext,

 MTContinueEstablishContext, MTDiscardContext,

 MTMessageError, MTMessageInContext

};

struct ulonglong {

unsigned long low;

unsigned long high;

};

typedef ulonglong ContextId;

enum ContextIdDefn {

Client, Peer, Sender

};

ContextId

This type is used to define the identifiers allocated by the client and target for the
association.

ContextIdDefn

This enum is used to define the kind of context identifier held in a SECIOP message. The
Security Service: v1.0 November 1996 15-175

15

t

has no

.

rity

h
does
context identifier will either be the one specified by the client that established the context,

or it will be the identifier associated with the receiver of the message (i.e. the reques
target for request or request fragment messages or the request client for reply or reply
fragment messages). The value must equal Client if the value of
target_context_id_valid in the CompleteEstablishContext was false, or the
message has not yet been exchanged. It must equal Peer if the value of
target_context_id_valid in the CompleteEstablishContext was true. The use of
peer identifiers allows the recipient of the message to more efficiently find its security
context. The values are defined as:

• Client. The context id is that of the association’s client.

• Peer. The context id is that of the recipient of the message.

• Sender. The context id is that of the sender of the message. This is only used with
the DiscardContext message when the sender of the DiscardContext message
context and has received a message that it cannot process.

Message Definitions

MTEstablishContext

This message is passed by the client to the target when a new association is to be
established. Its definition is:

struct EstablishContext {

ContextId client_context_id;

sequence <octet> initial_context_token;

};

• client_context_id . This is the client’s identifier for the security association
It is passed by the target to the client with subsequent messages within the
association. It enables the client to link the message with the appropriate secu
context.

• initial_context_token . This is the token required by the target to establish
the security association. It contains a mechanism version number, mech type
identifier, and mechanism-specific information required by the target to establis
the context. It may be sent with a protected message (for example, if the client
not wish to authenticate the target).

MTCompleteEstablishContext

This message is returned by the target to indicate that the association has been established.
It is sent as a reply to an establish context or continue establish context. It may be sent
with a GIOP reply or reply fragment. Its definition is:

struct CompleteEstablishContext {

ContextId client_context_id;

boolean target_context_id_valid;

ContextId target_context_id;

sequence <octet> final_context_token;
15-176 CORBAservices November 1996

15

.
with

 a

y
ciate a

e

ence.

ot send
 to be

e
};

• client_context_id . This is the client’s identifier for the security association
It is returned by the target to the client to enable the client to link the message
the appropriate security context.

• target_context_id_valid . This indicates whether the target has supplied
target_context_id for use by the client. TRUE indicates that the following
field is valid.

• target_context_id . The targets identifier for the association. It is passed b
the client to the target with subsequent messages. It enables the target to asso
local identifier with the context to allow the target to identify the context
efficiently.

• final_context_token . This is the token required by the client to complete th
establishment of the security association. It may be zero length.

MTContinueEstablishContext

This message is used by the client or target during context establishment to pass further
messages to its peer as part of establishing the context. It may be the response to an
establish context or to another continue establish context and is defined as:

struct ContinueEstablishContext {

ContextId client_context_id;

sequence <octet> continuation_context_token;

};

• client_context_id . The client’s identifier for the association. It is used by
both client and target to identify the association during the establishment sequ

• continuation_context_token . This is the security information required to
continue establishment of the security association.

MTDiscardContext

This message is used to indicate to the receiver that the sender of the message has
discarded the identified context. Once the message has been sent, the sender will n
further messages within the context. The message is used as a hint to enable contexts
closed tidily. Its definition is:

struct DiscardContext {

ContextIdDefn message_context_id_defn;

ContextId message_context_id;

sequence<octet> discard_context_token;

};

• message_context_id_defn . The type of context identifier supplied in the
message_context_id field.

• message_context_id . The context identifier to be used by the recipient of th
message to identify the context to which the message applies.
Security Service: v1.0 November 1996 15-177

15

ge
mit
 used.

e
ient’s
ype
• discard_context_token . A token to be used by the recipient of the messa
to identify which context needs to be discarded. Not all security mechanisms e
such tokens; in case no token is available, a zero-length octet string should be

MTMessageError

This message is used to indicate an error detected in attempting to establish an association
either due to a message protocol error or a context creation error. The message is also used
to indicate errors in use of the context.

struct MessageError {

ContextIdDefn message_context_id_defn;

ContextId message_context_id;

long major_status;

long minor_status;

};

• message_context_id_defn . The type of context identifier supplied in the
message_context_id field.

• message_context_id . The context identifier to be used by the recipient of th
message to identify the context to which the message applies. It is either the cl
identifier for the context (type client) or the receiver of the messages identifier (t
peer).

• major_status . The reason for rejecting the context. The values used are those
defined by the GSS API (RFC 1508) for fatal error codes.

• minor_status . This field allows mechanism specific error status to further
define the reason for rejecting the context. It is not defined further here.

MTMessageInContext

Once established messages are sent within the context using the MessageInContext
message. Its definition is:

enum ContextTokenType {

SecTokenTypeWrap,

SecTokenTypeMIC

};

struct MessageInContext {

ContextIdDefn message_context_id_defn;

ContextId message_context_id;

ContextTokenType message_context_type;

sequence <octet> message_protection_token;

};
15-178 CORBAservices November 1996

15

e

d to

s

hich

in the

tted
, the
er
• message_context_id_defn . The type of context identifier supplied in the
message_context_id field.

• message_context_id . The context identifier to be used by the recipient of th
message to identify the context to which the message applies.

• message_context_type . An indicator on whether the protection token is a
"Wrap" token (which includes the protected message text and is ordinarily use
provide confidentiality protection) or an "MIC" token (which does not include the
protected message text and is used to provide only integrity protection).

• message_protection_token . The Wrap or MIC token for the message. Thi
is a self-defining token which indicates how the message is protected. If the
message is not protected, the token will be zero length.

For unprotected and integrity-protected messages, the token will be an MIC token, and the
MessageInContext message will be followed by the higher level protocol message, w
is being protected by the security context (i.e. GIOP message or message fragment). In
this case, the length of the higher level protocol message is included in the
message_size field of the MessageInContext message’s SECIOP header.

For confidentiality-protected messages, the protected message text will be included
message_protection_token (which will be a Wrap token) of the
MessageInContext message, and no higher-level protocol messages will be transmi
within the security context described by the MessageInContext message. In this case
value in the message_size field of the MessageInContext message’s SECIOP head
will represent the length of the MessageInContext message only.

SECIOP Protocol State Tables

Note that some mechanisms may start in state S3.
Table 15-11Client State Table

No context (SO) Context being
created Message
allowed (S1)

Context being
created Message
not allowed (S2)

Context created
(S3)

request context
establish (client
auth)

create context
send establish
context S1

request context
establish (target or
mutual auth)

create context
send establish
context S2

receive message
error

send
DiscardContext
with the message
sender’s
context_id SO

discard context SO discard context SO discard context SO
Security Service: v1.0 November 1996 15-179

15
See Table 15-12 for the Target State information.

receive continue
establish context
message

send
DiscardContext
with the message
sender’s
context_id S0

update context state
if ok
 send continue
 establish context
 S2
else
 send message error
 S0

receive complete
establish context
message

send
DiscardContext
with the message
sender’s
context_id S0

complete context
with target’s
context id
if ok
 S3
else
 delete context
 send message
 error S0

complete context
with target’s
context id
if ok
 S3
else
 delete context
 send message
 error S0

request to send
message in context

send message in
context with client
context id S1

send message in
xontext with client
or target context id
S3

receive message in
context

send
DiscardContext
with the message
sender’s
context_id S0

process message
if ok
 S1
else
 if message decode
 error send message
 error S1
else
 send message error
 S0

process message
if ok
 S3
else
 if message decode
 error send message
 error S3
else
 send message error
 S0

request to send
discard context
message

send discard context
message delete
context S0

send discard context
message delete
context S0

send discard context
message delete
context S0

receive discard
context message

delete context S0 delete context S0 delete context S0

No context (SO) Context being
created Message
allowed (S1)

Context being
created Message
not allowed (S2)

Context created
(S3)
15-180 CORBAservices November 1996

15
Table 15-12Target State Table

No context (SO) Context being
created Message
allowed (S1)

Context being
created Message
not allowed (S2)

Context created
(S3)

receive establish
context message
(client auth)

create context
if ok
 send complete
 establish context
 S3
else
 send message
 error S0

receive extablish
context message
(target or mutual
auth)

create context
if ok
 if continuation
 send continue
S2
 else
 send complete
 establish S3
else
 send message
 error delete
 context S0

receive message
error

send
DiscardContext
with the message
sender’s
context_id SO

delete context SO delete context SO

receive continue
establish context
message

send
DiscardContext
with the message
sender’s
context_id S0

update context
if ok
 if continuation
 send continuation
 S2
else
 send complete
 establish S3
else
 send message error
 context S0

request to send
message in context

send message in
xontext with peer
context id S3
Security Service: v1.0 November 1996 15-181

15

y
15.8.5 DCE-CIOP with Security

This section describes how to provide secure interoperability between ORBs, which use
the DCE Common Inter-ORB Protocol (DCE-CIOP). It describes how the DCE-CIOP
transport layer should handle security (for example, how it should interpret the security
components of the IOR profile when selecting DCE Security Services for a request and
secure invocation).

Goals of Secure DCE-CIOP

The original goals of DCE-CIOP, documented in the CORBA 2.0 specification, are
maintained and enhanced by Secure DCE-CIOP:

• Support multivendor, mission critical, enterprise-wide, secure ORB-based
applications.

• Leverage services provided by DCE wherever appropriate.

• Allow efficient and straightforward implementation using public DCE APIs.

• Preserve ORB implementation freedom.

Secure DCE-CIOP achieves these goals by taking advantage of the integrated securit
services provided by DCE Authenticated RPC. It is not a goal of the Secure DCE-CIOP
specification to support the use of arbitrary security mechanisms for protection of DCE-
CIOP messages.

receive message in
context

send
DiscardContext
with the message
sender’s
context_id S0

process message
if ok
 S1
else
 if message decode
 error send message
 error S1
else
 send message error
 S0

process message
if ok
 S3
else
 if message decode
 error send message
 error S3
else
 send message error
 S0

request to send
discard context
message

send discard context
message delete
context S0

send discard context
message delete
context S0

receive discard
context message

delete context S0 delete context S0

No context (SO) Context being
created Message
allowed (S1)

Context being
created Message
not allowed (S2)

Context created
(S3)
15-182 CORBAservices November 1996

15

f a

in

t and
Secure DCE-CIOP Overview

Secure interoperability between ORBs using the DCE-CIOP transport relies on the DCE
Security Services and the DCE Authenticated RPC run-time that utilizes those services.

The DCE Security Services (specified in the X/Open Preliminary Specification X/Open
DCE: Authentication and Security Services), as employed by the DCE Authenticated RPC
run-time (specified in the X/OPEN CAE Specification C309 and the OSF AES/Distributed
Computing RPC Volume), provide the following security features:

• Cryptographically secured mutual authentication of a client and target

• Ability to pass client identity and authorization credentials to the target as part o
request

• Protection against undetected, unauthorized modification of request data.

• Cryptographic privacy of data

• Protection against replay of requests and data

The RPC run-time provides the communication conduit for exchanging security
credentials between communicating parties. It protects its communications from threats
such as message replay, message modification, and eavesdropping.

The DCE-CIOP uses DCE RPC APIs to request security features for a given client-target
communication binding. Subsequent DCE-CIOP messages on that binding flow over RPC
and thus are protected at the requested levels.

This Secure DCE-CIOP specification defines the IOR Profile components required to
support Secure DCE-CIOP. Each component is identified by a unique tag, and the
encoding and semantics of the associated component_data are specified. Client secure
association requirements, as indicated by client-side policy and target secure association
requirements, as specified in the target IOR Profile security components are mapped to
DCE Security Services. Finally, the use of DCE APIs to protect DCE-CIOP messages is
described.

IOR Security Components for DCE-CIOP

The information necessary to invoke secure operations on objects using DCE-CIOP is
encoded in an IOR in a profile identified by TAG_MULTIPLE_COMPONENTS. The
profile_data for this profile is a CDR encapsulation (see “CDR Transfer Syntax”
Section 12.3 of the CORBA 2.0 specification) of the MultipleComponentProfile type,
which is a sequence of TaggedComponent structures. These types are described in
Chapter 3 of CORBA 2.0.

The Multiple Component Profile contains the tagged components required to support
DCE-CIOP, described in Chapter 13 of the CORBA 2.0 specification, as well as the
components required to support security for DCE-CIOP. The general security components
are described in Security Components in the IOR under Section 15.8.4, CORBA
Interoperable Object Reference with Security. The DCE-specific security componen
semantics for the common security components are described here.
Security Service: v1.0 November 1996 15-183

15

rofile

s

r

ew
Although a conforming implementation of Secure DCE-CIOP is only required to generate
and recognize the components defined here and in Chapter 13 of CORBA 2.0, the p
may also contain components used by other kinds of ORB transports and services.
Implementations should be prepared to encounter profiles identified by
TAG_MULTIPLE_COMPONENTS that do not support DCE-CIOP. Unrecognized
components should be preserved but ignored. Although an implementation may choose to
order the components in a profile in a particular way, other implementations are not
required to preserve that order. Implementations must be prepared to handle profile
whose components appear in any order.

TAG_DCE_SEC_MECH

For a profile to support Secure DCE-CIOP, it must include exactly one
TAG_DCE_SEC_MECH component. Presence of this component indicates support fo
the [non-GSSAPI] “DCE Security with Kerberos V5 with DES” mechanism type. The
component_data field contains an authorization service identifier and an optional
sequence of tagged components.

Future versions of DCE Security that require different information than what is provided
by the component_data structure shown next are expected to be supported with a n
component tag, rather than with revisions to the data structure associated with the
TAG_DCE_SEC_MECH tag.

The DCE Security Mechanism component is defined by the following OMG IDL:

module DCE_CIOP {

const IOP::ComponentId TAG_DCE_SEC_MECH = 103

// CORBA IDL doesn't (yet) support const octet

//

// const octet DCEAuthorizationNone = 0;

// const octet DCEAuthorizationName = 1;

// const octet DCEAuthorizationDCE = 2;

struct DCESecurityMechanismInfo {

octet authorization_service;

sequence<TaggedComponent> components;

};

};

A TaggedComponent structure is built for the DCE Security mechanism component by
setting the tag member to TAG_DCE_SEC_MECH, and setting the component_data
member to a CDR encapsulation of a DCESecurityMechanismInfo structure.
15-184 CORBAservices November 1996

15

ime

e of

.8.4,

authorization_service Field

The authorization_service field is used to indicate what authorization service is
required by the target, and therefore must be supported by the authenticated RPC run-t
for invocations on this IOR. Two authorization models are supported:

• DCEAuthorizationName and DCEAuthorizationDCE, with a third identifier.

• DCEAuthorizationNone, to indicate that no authorization is required.

See DCE RCP Authorization Services in Section 15.8.6, DCE-CIOP with Security, for
details.

Components field

The components field contains a sequence of zero or more tagged components, non
which may appear more than once, from the following list of common security IOR
components: TAG_ASSOCIATION_OPTIONS, and TAG_SEC_NAME.

Each of these components, defined in Security Components of the IOR in Section 15
CORBA Interoperable Object Reference with Security, may be present either in the
components field of the DCESecurityMechanismInfo structure, or at the top level of the
IOR profile. When one of these components appears at the top level of the profile, its data
may be shared by other security mechanisms in the profile. When it appears in the nested
components field of DCESecurityMechanismInfo, its data is available only to the DCE
Security mechanism and overrides the data of an identically-tagged component, if present,
at the top level of the profile.

TAG_ASSOCIATION_OPTIONS

The association options component, described in Security Components of the IOR in
Section 15.8.4, CORBA Interoperable Object Reference with Security, contains flags
indicating which protection and authentication services the target supports, and which it
requires. This component is optional for Secure DCE-CIOP; defaults are used when the
component is not present.

The way in which association options are interpreted for use with DCE security is
reflected in Table 15-13, which shows how an association option is mapped to a DCE
RPC protection level and authentication service.
Security Service: v1.0 November 1996 15-185

15

rt
Table 15-13Association Option Mapping to DCE Security

If the TAG_ASSOCIATION_OPTIONS component is not present, then the target is
assumed both to support and to requirerpc_c_protect_level_default and
rpc_c_authn_dce_secret . (The value of rpc_c_protect_level_default
is defined by the DCE implementation or by a site administrator.) See Behavior When
TAG_ASSOCIATION_OPTIONS Not Present later in this section, for a description of
how DCE security parameters are selected when this component is not present.

See DCE RPC Protection Levels and DCE RPC Authentication Services later in this
section, for more details on the protection provided by the DCE authenticated RPC
services.

target_supports field

When an association option is set in the target_supports field of the
TAG_ASSOCIATION_OPTIONS component_data , it indicates that the target
supports invocations which use Secure DCE-CIOP with the protection level and
authentication service that correspond to the selected option, as shown in Table 15-13.
Any or all of the association options may be set in the target_supports field. The
options set in the target_supports field will be compared with client-side policy
required options to determine if the target can support the client’s requirements.

Although, for the DCE security mechanism, a single selected option may imply suppo
for several other options (e.g., selection of the Integrity option implies support for
DetectReplay, DetectMisordering, and EstablishTrustInClient), it is recommended that
every supported option be explicitly set in the target_supports field to facilitate
comparison with client requirements.

Association Option DCE RPC
Protection Level

DCE RPC
Authentication Service

NoProtection rpc_c_protect_level_none rpc_c_authn_none

Integrity rpc_c_protect_level_pkt_integrity rpc_c_authn_dce_secret

Confidentiality rpc_c_protect_level_pkt_privacy rpc_c_authn_dce_secret

DetectReplay rpc_c_protect_level_pkt rpc_c_authn_dce_secret

DetectMisordering rpc_c_protect_level_pkt rpc_c_authn_dce_secret

EstablishTrustInTarget rpc_c_protect_level_connect rpc_c_authn_dce_secret

EstablishTrustInClient rpc_c_protect_level_connect rpc_c_authn_dce_secret

tag not present rpc_c_protect_level_default rpc_c_authn_dce_secret
15-186 CORBAservices November 1996

15

s

ms

rally,

ot

e

ence
target_requires field

When an association option is set in the target_requires field of the
TAG_ASSOCIATION_OPTIONS component_data , it indicates that the target
requires invocations secured with at least the protection level and authentication service
that correspond to the selected option, as shown in Table 15-13. Since DCE RPC support
a range of protection levels, each of which provides all the protection of the level below it
and also some additional protection, selecting multiple target_requires options
does not make sense. For DCE, no more than one option need be selected in the
target_requires field.

If a TAG_ASSOCIATION_OPTIONS component is contained within the
DCESecurityMechanismInfo structure, the target_requires field may conform to
the DCE semantics (i.e. no more than one option selected). If other security mechanis
are sharing the TAG_ASSOCIATION_OPTIONS component, and perhaps using different
rules for interpreting the target_requires field, then the target_requires field may
have several options selected. The DCE Association Options Reduction algorithm,
described later in this section, handles both cases and is used to select the appropriate DCE
secure invocation services given a set of required association options.

The EstablishTrustInTarget option in the target_requires field is meaningless, and
is therefore ignored.

TAG_SEC_NAME

The security name component contains the DCE principal name of the target. Gene
this is a global principal name that includes the name of the cell in which the target
principal’s account resides. If a cell-relative principal name (i.e., the cell prefix does n
appear) is specified, the local cell is assumed. Cell-relative principal names are only
appropriate for use in IORs that are consumed by clients in the same cell in which th
target resides. When an IOR containing a cell-relative principal name in the
TAG_SEC_NAME component crosses a cell boundary, the cell-relative principal name
should be replaced with a global name.

The format of a “human-friendly” DCE principal name is described in Section 1.13 of the
X/Open DCE: Authentication and Security Services specification [hereafter referred to as
X/Open DCE Security]. It is a string containing a concatenated cell name and cell-relative
principal name that looks like:

/.../cell-name/cell-relative-principal-name

For example, the principal with the cell-relative name “printserver” in the
“mis.prettybank.com” cell has the global principal name:

/.../mis.prettybank.com/printserver

The component_data member of the TAG_SEC_NAME component is set to the
string value of the DCE principal name. The string is represented directly in the sequ
of octets, including the terminating NUL.

If the TAG_SEC_NAME component is not present, then a value of NUL is assumed,
indicating that the client will depend on the DCE authenticated RPC run-time to retrieve
Security Service: v1.0 November 1996 15-187

15

rested

ts
the DCE principal name of the target, identified in the IOR by the DCE-CIOP string
binding and binding name components. This case indicates that the client is not inte
in authentication of the target identity.

DCE RPC Security Services

This section provides details about the protection provided by DCE Authenticated RPC
authorization services, protection levels, and authentication services. See the
rpc_binding_set_auth_info() man page in the OSF DCE 1.1 Application
Development Reference for more information about using these protection parameters to
secure an association between a client and target.

DCE RPC Authorization Services

This section describes the DCE authorization service indicated by the
authorization_service member of the DCESecurityMechanismInfo structure in
the component_data field of the TAG_DCE_SEC_MECH component.

DCEAuthori zationName indicates that the target performs authorization based on the
client security name. The DCE RPC authorization service DCEAuthorizationName asser
the principal name (without cryptographic protection if the association option
NoProtection is chosen, or with cryptographic protection otherwise).

DCEAuthori zationDCE indicates that the target performs authorization using the
client’s Privilege Attribute Certificate (for OSF DCE 1.0.3 or previous versions), or the
client’s Extended Privilege Attribute Certificate (for DCE 1.1). The authorization service
DCEAuthorizationDCE asserts the principal name and appropriate authorization data
(without cryptographic protection if the association option NoProtection is chosen, or
with cryptographic protection otherwise).

DCEAuthori zationNone indicates that the target performs no authorization based on
privilege information carried by the RPC run-time. This is valid only if the association
option NoProtection is chosen.

The authorization_service identifiers defined here for Secure DCE-CIOP
correspond to DCE RPC authorization service identifiers and are defined to have identical
values.

Table 15-14Relationship between Identifiers

Secure DCE-CIOP
authorization_service

DCE RPC
Authorization Service

Shared
Value

DCEAuthorizationNone rpc_c_authz_none 0

DCEAuthorizationName rpc_c_authz_name 1

DCEAuthorizationDCE rpc_c_authz_dce 2
15-188 CORBAservices November 1996

15

d

E

 is
n

 is

DCE RPE Protection Levels

The meanings of the DCE RPC protection levels referenced in Table 15-14 are describe
next. For the purposes of evaluating the protection levels, it is interesting to remember that
a single DCE-CIOP message is transferred over the wire in the body of one or more DC
RPC PDUs.

• rpc_c_protect_level_none indicates that no authentication or message protection
to be performed, regardless of the authentication service chosen. Depending o
target policy, the client may be granted access as an unauthenticated principal.

• rpc_c_protect_level_connect indicates that the client and server identities are
exchanged and cryptographically verified at the time the binding is set up between
them. Strong mutual authentication and replay detection for the binding setup only
is provided. There are no protection services per DCE RPC PDU.

• rpc_c_protect_level_pkt indicates that the rpc_c_protect_level_connect services
are provided plus detection of misordering or replay of DCE RPC PDUs. There
no protection against PDU modification.

• rpc_c_protect_level_pkt_integrity offers the rpc_c_protect_level_pkt services
plus detection of DCE RPC PDU modification.

• rpc_c_protect_level_pkt_privacy offers the rpc_c_protect_level_pkt_integrity
services plus privacy of RPC arguments, which means the DCE-CIOP message in
its entirety is privacy protected.

• rpc_c_protect_level_default indicates the default protection level, as defined by
the DCE implementation or by a site administrator (should be one of the above
defined values).

DCE RPC Authentication Services

The meanings of the DCE RPC authentication services referenced in Table 15-14 are
described next.

• rpc_c_authn_none indicates no authentication. If this is selected, then no
authorization, DCEAuthorizationNone, must be chosen as well.

• rpc_c_authn_dce_secret indicates the DCE shared-secret key authentication
service.

Secure DCE-CIOP Operational Semantics

This section describes how the DCE-CIOP transport layer should provide security for
invocation and locate requests.

During a request invocation, if the IOR components indicate support for the DCE-CIOP
transport and the TAG_DCE_SEC_MECH component is present, then a Secure DCE-
CIOP request can be made.
Security Service: v1.0 November 1996 15-189

15

ingle

Deriving DCE Security Parameters from Association Options

The client-side secure invocation policy and the target-side policy expressed in the
TAG_ASSOCIATION_OPTIONS component are used to derive the actual options using
the method described in Determining Association Options in Section 15.8.4, CORBA
Interoperable Object Reference with Security. These options are then reduced to a s
required_option using the algorithm described in DCE Association Options
Reduction Algorithm, next. The resultant required_option is used to select a DCE
RPC protection level and authentication service using Table 15-13, Association Option
Mapping to DCE Security. The derived protection level and authentication service are
used to secure the association via the rpc_binding_set_auth_info() call (see
Securing the Binding Handle to the Target, further in this section).

DCE Association Options Reduction Algorithm

The DCE Association Options Reduction algorithm is used to select a single association
option, required_option , given the value required by client and target derived as
described in Determining Association Options in Section 15.8.3, CORBA Interoperable
Object Reference with Security. The resultant required_option indicates, via Table
15-13, the DCE protection level and authentication service to use for invocations.

The association option names used in the following algorithm refer to options in the
negotiated-required options set.

The DCE Association Options Reduction algorithm is expressed as follows.

If Confidentiality is set, then required_option = Confidentiality;

else if Integrity is set, then required_option = Integrity;

else if DetectReplay is set, OR

 if DetectMisordering is set,

 then required_option = DetectReplay;

 (alternatively, the same results are obtained with:

 then required_option = DetectMisordering;)

else if EstablishTrustInClient is set,

 then required_option = EstablishTrustInClient;

else required_option = NoProtection.

Behavior When TAG_ASSOCIATION_OPTIONS Not Present

As described earlier, if the TAG_ASSOCIATION_OPTIONS component is not present,
then the target is assumed to support and require rpc_c_protect_level_default
and rpc_c_authn_dce_secret . Since these protection parameters are not expressed
as association options, the usual method of deriving a single required_option by
combining client and target policy (see Determining Association Options in Section
15.8.3, CORBA Interoperable Object Reference with Security, and DCE Associations
Options Reduction Algorithm, above) cannot be used. As an alternative, use the following
method to derive the required DCE RPC protection level and authentication service:
15-190 CORBAservices November 1996

15

tion

d

es

, if

CE

e

sed
• Translate the client-side secure invocation policy from a set of client supported
association options to a single client_supported_option and from a set of
client required association options to a single client_required_option ,
using in each case the algorithm described in DCE Association Options Reduc
Algorithm.

• Using Table 15-13, Association Option Mapping to DCE Security, translate the
client_supported_option and client_required_option to
corresponding “supported” and “required” DCE RPC protection level/authentication
service pairs.

• If the target principal is a member of the local cell, determine the target require
protection level implied by rpc_c_protect_level_default by calling
rpc_mgmt_inq_dflt_protect_level() passing
rpc_c_authn_dce_secret as the authn_svc parameter. If the target
principal is not a member of the local cell or if it’s difficult to determine, then
assume a target required protection level of
rpc_c_protect_level_pkt_integrity .

• If the client supports rpc_c_authn_dce_secret , then choose the strongest
protection level that both the client and target support and that does not exceed the
strongest protection level required by either the client or target. If the client do
not support rpc_c_authn_dce_secret , then choose rpc_c_authn_none
and rpc_c_protect_level_none . Use the protection level and authentication
service thus derived to secure the association between this client and target.

Securing the Binding Handle to the Target

The DCE-CIOP protocol engine acquires an rpc_binding_handle to the target using
its normal procedure. The DCE_CIOP sets authentication and authorization information
on that binding handle with the rpc_binding_set_auth_info() call using data
from the IOR profile security components in the following way:

• The target security name string from the TAG_SEC_NAME component (or NUL
the component is not present) is passed to rpc_binding_set_auth_info()
via the server_princ_name parameter.

• If the TAG_ASSOCIATION_OPTIONS component is present in the IOR, see
Deriving DCE Security Parameters from Association Options above to select a D
RPC protection level and authentication service for this invocation.

If the TAG_ASSOCIATION_OPTIONS component is not present in the IOR, se
Behavior When TAG_ASSOCIATION_OPTIONS Not Present above to select a
DCE RPC protection level and authentication service for this invocation.

The selected protection level is passed to rpc_binding_set_auth_info()
via the protect_level parameter. The selected authentication service is pas
via the authn_svc parameter to rpc_binding_set_auth_info() .

• The auth_identity parameter is set to NUL to use the DCE default login
context.
Security Service: v1.0 November 1996 15-191

15
• The authorization service identifier from the authorization_service field of
the DCESecurityMechanismInfo component_data is mapped to the
corresponding DCE RPC authorization service identifier, which is then passed via
the authz_svc parameter.

After a successful call to rpc_binding_set_auth_info (), the authenticated
binding handle will be used by the DCE-CIOP protocol engine to make secure requests.
15-192 CORBAservices November 1996

15

y

on

 2
 Appendix A Consolidated OMG IDL

A.1 Introduction

The OMG IDL for CORBA security is split into modules as follows:

• A module containing the common data types used by all other security modules.

• A module for application interfaces for each Security Functionality Levels 1 and 2.
(Note that security-ready ORBs provide no real security functionality. Since the
provide only one operation, and that is proposed to be on the ORB, they are
included in Appendix B, Summary of CORBA 2 Core Changes, not here.)

• A module for Security Level 2 security policy administration.

• A module for non-repudiation, including the non-repudiation policy administrati
interface. This is the optional non-repudiation service.

• A module for the replaceable implementation Security Service, as described in
Section 15.7, Implementor’s Security Interfaces.

In addition, a number of extensions to existing CORBA modules are proposed for:

• Finding details of services in general, and in particular the security implementation.

• ORB Service/interceptor interfaces.

• The Object and Current interfaces for handling security (and management)
information.

• Extensions for domain and policy handling.

• Secure interoperability using GIOP and DCE-CIOP.

• Core management-related interfaces.

The IDL changes for these modules are defined in Appendix B, Summary of CORBA
Core Changes.

A minimal security Management module is also included in Appendix B.

A.2 General Security Data Module

This subsection defines the OMG IDL for security data types common to the other
security modules, which is the module Security. This module must be available with any
ORB that claims to be Security Ready. The Security module depends on the Time module.

module Security {

typedef string security_name;
typedef sequence <octet> Opaque;

// extensible families for standard data types

struct ExtensibleFamily {
unsigned short family_definer;
Security Service: v1.0 November 1996 15-193

15
unsigned short family;
};

// security association mechanism type

typedef string MechanismType;
struct SecurityMechandName {

MechanismType mech_type;
SecurityName security_name;

};

typedef sequence<MechanismType> MechanismTypeList;
typedef sequence<SecurityMechandName> SecurityMechandNameList;

// security attributes

typedef unsigned long SecurityAttributeType;

// identity attributes; family = 0

const SecurityAttributeType AuditId = 1;
const SecurityAttributeType AccountingId = 2;
const SecurityAttributeType NonRepudiationId = 3;

// privilege attributes; family = 1

const SecurityAttributeType Public = 1;
const SecurityAttributeType AccessId = 2;
const SecurityAttributeType PrimaryGroupId = 3;
const SecurityAttributeType GroupId = 4;
const SecurityAttributeType Role = 5;
const SecurityAttributeType AttributeSet = 6;
const SecurityAttributeType Clearance = 7;
const SecurityAttributeType Capability = 8;

struct AttributeType {
ExtensibleFamily attribute_family;
SecurityAttributeType attribute_type;

};
typedef sequence<AttributeType> AttributeTypeList;

struct SecAttribute {
AttributeType attribute_type;
Opaque defining_authority;

 Opaque value;
// the value of this attribute; can be

 // interpreted only with knowledge of type
};

typedef sequence<SecAttribute> AttributeList;

// Authentication return status

enum AuthenticationStatus {
SecAuthSuccess,
15-194 CORBAservices November 1996

15
SecAuthFailure,
SecAuthContinue,
SecAuthExpired

};

// Association return status

enum AssociationStatus {
SecAssocSuccess,
SecAssocFailure,
SecAssocContinue

};

// Authentication method
typedef unsigned long AuthenticationMethod;

// Credential types which can be set as Current default

enum CredentialType {
SecInvocationCredentials,
SecOwnCredentials,
SecNRCredentials

};

// Declarations related to Rights
struct Right {

ExtensibleFamily rights_family;
string right;

};

typedef sequence <Right> RightsList;

enum RightsCombinator {
SecAllRights,
SecAnyRight

};

// Delegation related
enum DelegationState {

SecInitiator,
SecDelegate

};

// pick up from TimeBase
typedef TimeBase::UtcT UtcT;
typedef TimeBase::IntervalT IntervalT;
typedef TimeBase::TimeT TimeT;

// Security features available on credentials.
enum SecurityFeature {

SecNoDelegation,
SecSimpleDelegation,
SecCompositeDelegation,
SecNoProtection,
SecIntegrity,
Security Service: v1.0 November 1996 15-195

15
SecConfidentiality,
SecIntegrityAndConfidentiality,
SecDetectReplay,
SecDetectMisordering,
SecEstablishTrustInTarget

};

// Security feature-value
struct SecurityFeatureValue {

SecurityFeature feature;
boolean value;

};

typedef sequence<SecurityFeatureValue>
SecurityFeatureValueList;

// Quality of protection which can be specified
// for an object reference and used to protect messages
enum QOP {

SecQOPNoProtection,
SecQOPIntegrity,
SecQOPConfidentiality,
SecQOPIntegrityAndConfidentiality

};

// Association options which can be administered
// on secure invocation policy and used to
// initialize security context

typedef unsigned short AssociationOptions;

const AssociationOptions NoProtection = 1;
const AssociationOptions Integrity= 2;
const AssociationOptions Confidentiality = 4;
const AssociationOptions DetectReplay= 8;
const AssociationOptions DetectMisordering = 16;
const AssociationOptions EstablishTrustInTarget = 32;
const AssociationOptions EstablishTrustInClient = 64;

// Flag to indicate whether association options being
// administered are the “required” or “supported” set

enum RequiresSupports {
SecRequires,
SecSupports

};

// Direction of communication for which
// secure invocation policy applies
enum CommunicationDirection {

SecDirectionBoth,
SecDirectionRequest,
SecDirectionReply

};
15-196 CORBAservices November 1996

15
// AssociationOptions-Direction pair
struct OptionsDirectionPair {

AssociationOptions options;
CommunicationDirection direction;

};

typedef sequence<OptionsDirectionPair>
OptionsDirectionPairList;

// Delegation mode which can be administered
enum DelegationMode {

SecDelModeNoDelegation, // i.e. use own credentials
SecDelModeSimpleDelegation, // delegate received

credentials
SecDelModeCompositeDelegation// delegate both;

};

// Association options supported by a given mech type

struct MechandOptions {
MechanismType mechanism_type;
AssociationOptions options_supported;

};

typedef sequence<MechandOptions> MechandOptionsList;

// Audit

struct AuditEventType {
ExtensibleFamily event_family;
unsigned short event_type;

};

typedef sequence<AuditEventType> AuditEventTypeList;

typedef unsigned long SelectorType;

const SelectorType InterfaceRef = 1;
const SelectorType ObjectRef = 2;
const SelectorType Operation = 3;
const SelectorType Initiator = 4;
const SelectorType SuccessFailure = 5;
const SelectorType Time = 6;

// values defined for audit_needed and audit_write are:
// InterfaceRef: object reference
// ObjectRef: object reference
// Operation: op_name
// Initiator: Credentials
// SuccessFailure: boolean
// Time: utc time on audit_write; time picked up from
// environment in audit_needed if required

struct SelectorValue {
Security Service: v1.0 November 1996 15-197

15
SelectorType selector;
any value;

};

typedef sequence<SelectorValue> SelectorValueList;
};

A.3 Application Interfaces - Security Functionality Level 1

This subsection defines those interfaces available to application objects using only
Security Functionality Level 1, and consists of a single module, SecurityLevel1. This
module depends on the CORBA module, and on the Security and Time module. The
interface Current is implemented by the ORB. Its interface is defined by the following
PIDL.

module SecurityLevel1 {
interface Current : CORBA::Current { // PIDL

Security::AttributeList get_attributes (
in Security::AttributeTypeList attributes

);
};

};

A.4 Application Interfaces - Security Functionality Level 2

This subsection defines the addition interfaces available to application objects using
Security Functionality Level 2. There is one module, SecurityLevel2. This module
depends on CORBA and Security. The interfaces are described in Section 15.5,
Application Developer’s Interfaces.

module SecurityLevel2 {
// Forward declaration of interfaces
interface PrincipalAuthenticator;
interface Credentials;
interface Object;
interface Current;

// Interface PrincipalAuthenticator
interface PrincipalAuthenticator {

Security::AuthenticationStatus authenticate (
in Security::AuthenticationMethod method,
in string security_name,
in Security::Opaque auth_data,
in Security::AttributeList privileges,
out Credentials creds,
out Security::Opaque continuation_data,
out Security::Opaque auth_specific_data

);

Security::AuthenticationStatus continue_authentication (
in Security::Opaque response_data,
inout Credentials creds,
out Security::Opaque continuation_data,
15-198 CORBAservices November 1996

15
out Security::Opaque auth_specific_data
);

};

// Interface Credentials
interface Credentials {

Credentials copy ();

void set_security_features (
in Security::CommunicationDirection direction,
in Security::SecurityFeatureValueList security_features

);

Security::SecurityFeatureValueList
get_security_features (
in Security::CommunicationDirection

direction
);

boolean set_privileges (
in boolean force_commit,
in Security::AttributeList requested_privileges,
out Security::AttributeList actual_privileges

);

Security::AttributeList get_attributes (
in Security::AttributeTypeList attributes

);
boolean is_valid (

out Security::UtcT expiry_time
);

boolean refresh();
};

typedef sequence <Credentials> CredentialsList;

// RequiredRights Interface

interface RequiredRights{
void get_required_rights(

in Object obj,
in CORBA::Identifier operation_name,
in CORBA::RepositoryId interface_name,
out Security::RightsList rights,
out Security::RightsCombinator rights_combinator

);

void set_required_rights(
 in string operation_name,
 in CORBA::RepositoryId interface_name,
 in Security::RightsList rights,

in Security::RightsCombinator rights_combinator
Security Service: v1.0 November 1996 15-199

15
);
};

// Interface Object derived from Object
// providing additional operations on objref at this
// security level.

interface Object : CORBA::Object { // PIDL

void override_default_credentials (
in Credentials creds

);

void override_default_QOP (
in Security::QOP qop

);

Security::SecurityFeatureValueList get_security_features (
in Security::CommunicationDirection direction

);

Credentials get_active_credentials();

Security::MechanismTypeList get_security_mechanisms();

void override_default_mechanism(
in Security::MechanismType mechanism_type

);

Security::SecurityMechandNameList get_security_names ();
};

// Interface Current derived from SecurityLevel1::Current
// providing additional operations on Current at this
// security level. This is implemented by the ORB

interface Current : SecurityLevel1::Current { //PIDL

void set_credentials (
in Security::CredentialType cred_type,
in Credentials creds

);

Credentials get_credentials (
in Security::CredentialType cred_type

);

readonly attribute CredentialsList received_credentials;

readonly attribute Security::SecurityFeatureValueList
received_security_features;

CORBA::Policy get_policy (
in CORBA::PolicyType policy_type

);
15-200 CORBAservices November 1996

15

ies,

and
readonly attribute RequiredRights required_rights_object;
readonly attribute PrincipalAuthenticator principal_authenticator;

};

// interface audit channel
interface AuditChannel {

void audit_write (
in Security::AuditEventType event_type,
in CredentialsList creds,
in Security::UtcT time,
in Security::SelectorValueList descriptors,
in Security::Opaque event_specific_data

);
};
// interface for Audit Decision

interface AuditDecision {
boolean audit_needed (

in Security::AuditEventType event_type,
in Security::SelectorValueList value_list

);

readonly attribute AuditChannel audit_channel;
};

};

A.5 Security Administration Interfaces

This section covers interfaces concerned with querying and modifying security polic
and comprises the module SecurityAdmin. The SecurityAdmin module depends on
CORBA, Security, and SecurityLevel2. The interfaces are described in Section 15.6,
Administrator’s Interfaces. There are related interfaces for finding domain managers
policies. Since they are not security specific, they are included in Appendix B, Summary
of CORBA 2 Core Changes, not here.

module SecurityAdmin {

// interface AccessPolicy
interface AccessPolicy : CORBA::Policy {

Security::RightsList get_effective_rights (
in SecurityLevel2::CredentialsList cred_list,
in Security::ExtensibleFamily rights_family

);
};

// interface DomainAccessPolicy
interface DomainAccessPolicy : AccessPolicy {

void grant_rights(
in Security::SecAttribute priv_attr,
in Security::DelegationState del_state,
in Security::ExtensibleFamily rights_family,
Security Service: v1.0 November 1996 15-201

15
in Security::RightsList rights
);

void revoke_rights(
in Security::SecAttribute priv_attr,
in Security::DelegationState del_state,
in Security::ExtensibleFamily rights_family,
in Security::RightsList rights

);
void replace_rights (

in Security::SecAttribute priv_attr,
in Security::DelegationState del_state,
in Security::ExtensibleFamily rights_family,
in Security::RightsList rights

);
Security::RightsList get_rights (

in Security::SecAttribute priv_attr,
in Security::DelegationState del_state,
in Security::ExtensibleFamily rights_family

);
 };

// interface AuditPolicy

interface AuditPolicy : CORBA::Policy {
void set_audit_selectors (

in CORBA::InterfaceDef object_type,
in Security::AuditEventTypeList events,
in Security::SelectorValueList selectors

);

void clear_audit_selectors (
in CORBA::InterfaceDef object_type,
in Security::AuditEventTypeList events

);

void replace_audit_selectors (
in CORBA::InterfaceDef object_type,
in Security::AuditEventTypeList events,
in Security::SelectorValueList selectors

);

Security::SelectorValueList get_audit_selectors (
in CORBA::InterfaceDef object_type,
in Security::AuditEventTypeList events,
in Security::SelectorValueList selectors

);

void set_audit_channel (
in SecurityLevel2::AuditChannel audit_channel

);
};

// interface SecureInvocationPolicy
interface SecureInvocationPolicy : CORBA::Policy {
15-202 CORBAservices November 1996

15
void set_association_options(
in CORBA::InterfaceDef object_type,
in Security::RequiresSupports requires_supports,
in Security::CommunicationDirection direction,
in Security::AssociationOptions options

);

Security::AssociationOptions get_association_options(
in CORBA::InterfaceDef object_type,
in Security::RequiresSupports requires_supports,
in Security::CommunicationDirection direction

);
};

// interface DelegationPolicy
interface DelegationPolicy : CORBA::Policy {

void set_delegation_mode(
in CORBA::InterfaceDef object_type,
in Security::DelegationMode mode

);

Security::DelegationMode get_delegation_mode(
in CORBA::InterfaceDef object_type

);
};

};

A.6 Application Interfaces for Non-repudiation

This subsection defines the optional application interface for non-repudiation. This
module depends on Security and CORBA. The interfaces are described in Section 15.5,
Application Developer’s Interfaces.

module NRservice {
typedef Security::MechanismType NRmech;
typedef Security::ExtensibleFamily NRPolicyId;

enum EvidenceType {
SecProofofCreation,

 SecProofofReceipt,
 SecProofofApproval,

 SecProofofRetrieval,
 SecProofofOrigin,
 SecProofofDelivery,

SecNoEvidence // used when request-only token desired
};

enum NRVerificationResult {
SecNRInvalid,
SecNRValid,
SecNRConditionallyValid

};
Security Service: v1.0 November 1996 15-203

15
// the following are used for evidence validity duration
typedef unsigned long DurationInMinutes;

const DurationInMinutes DurationHour = 60;
const DurationInMinutes DurationDay = 1440;
const DurationInMinutes DurationWeek = 10080;
const DurationInMinutes DurationMonth = 43200;// 30 days
const DurationInMinutes DurationYear = 525600;//365 days

typedef long TimeOffsetInMinutes;

struct NRPolicyFeatures {
 NRPolicyId policy_id;
 unsigned long policy_version;
 NRmech mechanism;
};

typedef sequence<NRPolicyFeatures> NRPolicyFeaturesList;

// features used when generating requests
struct RequestFeatures {

NRPolicyFeatures requested_policy;
EvidenceType requested_evidence;
string requested_evidence_generators;
string requested_evidence_recipients;
boolean include_this_token_in_evidence;

};

struct EvidenceDescriptor {
 EvidenceType evidence_type;
 DurationInMinutes evidence_validity_duration;
 boolean must_use_trusted_time;
 };

typedef sequence<EvidenceDescriptor> EvidenceDescriptorList;

struct AuthorityDescriptor {
string authority_name;
string authority_role;
TimeOffsetInMinutes last_revocation_check_offset;

 // may be >0 or <0; add this to evid. gen. time to
 // get latest time at which mech. will check to see
 // if this authority’s key has been revoked.

 };

typedef sequence<AuthorityDescriptor> AuthorityDescriptorList;

struct MechanismDescriptor {
 NRmech mech_type;
 AuthorityDescriptorList authority_list;
 TimeOffsetInMinutes max_time_skew;

 // max permissible difference between evid. gen. time
// and time of time service countersignature

 // ignored if trusted time not reqd.
 };
15-204 CORBAservices November 1996

15
typedef sequence<MechanismDescriptor> MechanismDescriptorList;

interface NRCredentials {

boolean set_NR_features (
 in NRPolicyFeaturesList requested_features,

 out NRPolicyFeaturesList actual_features
);

NRPolicyFeaturesList get_NR_features ();

void generate_token (
in Security::Opaque input_buffer,
in EvidenceType generate_evidence_type,
in boolean include_data_in_token,
in boolean generate_request,
in RequestFeatures request_features,

in boolean input_buffer_complete,
out Security::Opaque nr_token,
out Security::Opaque evidence_check

);

NRVerificationResult verify_evidence (
 in Security::Opaque input_token_buffer,
 in Security::Opaque evidence_check,
 in boolean form_complete_evidence,
 in boolean token_buffer_complete,
 out Security::Opaque output_token,
 out Security::Opaque data_included_in_token,
 out boolean evidence_is_complete,

 out boolean trusted_time_used,
 out Security::TimeT complete_evidence_before,
 out Security::TimeT complete_evidence_after

);

void get_token_details (
 in Security::Opaque token_buffer,
 in boolean token_buffer_complete,
 out string token_generator_name,
 out NRPolicyFeatures policy_features,
 out EvidenceType evidence_type,
 out Security::UtcT evidence_generation_time,

out Security::UtcT evidence_valid_start_time,
 out DurationInMinutes evidence_validity_duration,
 out boolean data_included_in_token,

out boolean request_included_in_token,
out RequestFeatures request_features

);

boolean form_complete_evidence (
in Security::Opaque input_token,
out Security::Opaque output_token,
out boolean trusted_time_used,
Security Service: v1.0 November 1996 15-205

15

out Security::TimeT complete_evidence_before,
out Security::TimeT complete_evidence_after

);
};

interface NRPolicy {

void get_NR_policy_info (
 out Security::ExtensibleFamily NR_policy_id,

out unsigned long policy_version,
 out Security::TimeT policy_effective_time,
 out Security::TimeT policy_expiry_time,

out EvidenceDescriptorList supported_evidence_types,
out MechanismDescriptorList supported_mechanisms

);

boolean set_NR_policy_info (
in MechanismDescriptorList requested_mechanisms,
out MechanismDescriptorList actual_mechanisms

);
};

};

A.7 Security Replaceable Service Interfaces

This section defines the IDL interfaces to the Security objects, which should be replaced if
there is a requirement to replace the Security services used for security associations (i.e.
the Vault and Security Contexts, Access Decision, and Audit Decision). This section
comprises the module SecurityReplaceable. This module depends on the CORBA,
Security, and SecurityLevel2 modules. The interfaces are described in Section 15.7,
Implementor’s Security Interfaces.

module SecurityReplacable {

// Forward ref of Security Context object

interface SecurityContext ;

interface Vault {
Security::AssociationStatus init_security_context (

in SecurityLevel2::CredentialsList
creds_list,

in Security::SecurityName target_security_name,
in Object target,
in Security::DelegationMode delegation_mode,
in Security::OptionsDirectionPairList association_options,
in Security::MechanismType mechanism,
in Security::Opaque mech_data, //from IOR
in Security::Opaque chan_binding,
out Security::Opaque security_token,
out SecurityContext security_context

);

Security::AssociationStatus accept_security_context (
15-206 CORBAservices November 1996

15
in SecurityLevel2::CredentialsList
creds_list,

in Security::Opaque chan_bindings,
in Security::Opaque in_token,
out Security::Opaque out_token

);

Security::MechandOptionsList get_supported_mechs ();
};

interface SecurityContext {

readonly attribute SecurityLevel2::CredentialsList
 received_credentials;

readonly attribute Security::SecurityFeatureValueList
security_features ;

Security::AssociationStatus continue_security_context (
in Security::Opaque in_token,
out Security::Opaque out_token

);

void protect_message (
in Security::Opaque message,
in Security::QOP qop,
out Security::Opaque text_buffer,
out Security::Opaque token

);
boolean reclaim_message (

in Security::Opaque text_buffer,
in Security::Opaque token,
out Security::QOP qop,
out Security::Opaque message

);

boolean is_valid (
out Security::UtcT expiry_time

);

boolean refresh ();
};

interface AccessDecision {

boolean access_allowed (
in SecurityLevel2::CredentialsList cred_list,
in Object target,
in CORBA::Identifier operation_name,
in CORBA::Identifier target_interface_name

);
};

};

The interfaces for interceptors are considered as CORBA core extensions, so the IDL for
these is summarized in Appendix B, Summary of CORBA 2 Core Changes, not here.
Security Service: v1.0 November 1996 15-207

15

n
A.8 Secure Inter-ORB Protocol (SECIOP)

The SECIOP module holds structure declarations related to the layout of message fields i
the secure inter-ORB protocol. This module does not depend on any other module.

module SECIOP {

const IOP::ComponentId TAG_GENERIC_SEC_MECH = 12;

const IOP::ComponentId TAG_ASSOCIATION_OPTIONS = 13;

const IOP::ComponentId TAG_SEC_NAME = 14;

struct TargetAssociationOptions{
Security::AssociationOptions target_supports;
Security::AssociationOptions target_requires;

};

struct GenericMechanismInfo {
sequence <octet> security_mechanism_type;
sequence <octet> mech_specific_data;
sequence <IOP::TaggedComponent> components;

};

enum MsgType {
MTEstablishContext,
MTCompleteEstablishContext,

 MTContinueEstablishContext,
MTDiscardContext,

 MTMessageError,
MTMessageInContext

};

struct ulonglong {
unsigned long low;
unsigned long high;

};

typedef ulonglong ContextId;

enum ContextIdDefn {
Client,
Peer,
Sender

};

struct EstablishContext {
ContextId client_context_id;
sequence <octet> initial_context_token;

};

struct CompleteEstablishContext {
ContextId client_context_id;
boolean target_context_id_valid;
ContextId target_context_id;
15-208 CORBAservices November 1996

15

r

he
sequence <octet> final_context_token;
};

struct ContinueEstablishContext {
ContextId client_context_id;
sequence <octet> continuation_context_token;

};

struct DiscardContext {
ContextIdDefn message_context_id_defn;
ContextId message_context_id;
sequence <octet> discard_context_token;

};

struct MessageError {
ContextIdDefn message_context_id_defn;
ContextId message_context_id;
long major_status;
long minor_status;

};

enum ContextTokenType {
SecTokenTypeWrap,
SecTokenTypeMIC

};

struct MessageInContext {
ContextIdDefn message_context_id_defn;
ContextId message_context_id;
ContextTokenType message_context_type;
sequence <octet> message_protection_token;

};
};

A.9 Values for Standard Data Types

A number of data types in this specification allow an extensible set of values, so the use
can add values as required to meet his own security policies. However, if all users defined
their own values, portability and interoperability would be seriously restricted.

Therefore, some standard values for certain data types are defined. These include t
values that identify:

• Security attributes (privilege and other attribute types)

• Rights families

• Audit event families and types

• Security mechanism types as used in the IOR (and Vault, etc.)

Rights families and audit event families are defined as an ExtensibleFamily type. This has
a family definer value registered with OMG and a family id defined by the family definer.
Security attribute types also have family definers. Family definers with values 0 - 7 are
Security Service: v1.0 November 1996 15-209

15

ing

of

t
reserved for OMG. The family value 0 is used for defining standard types (e.g., of security
attributes).

A.9.1 Attribute Types

Section 15.5, Application Developer’s Interfaces, defines an attribute structure for
privilege and other attributes. This includes:

• A family, as previously described.

• An attribute type. Users may add new attribute types. Two standard OMG families
are defined: the family of privilege attributes (family = 1), and the family of other
attributes (family = 0). Types in these families are listed in the following table.

• An optional defining authority. This indicates the authority responsible for defin
the value within the attribute type. Some policies demand that multiple sources of
values for a given attribute type be supported (e.g. a policy accepting attribute
values defined outside the security domain). These policies give rise to a risk
value clashes. The defining authority field is used to separate these values. When
not present (i.e. length = 0), the value defaults to the name of the authority tha
issued the attribute.

• An attribute value. The attribute value is defined as a sequence<octet>, which
someone who understands that attribute type can decipher.

Table 15-14Attribute Values

Attribute
Type
Value Meaning

Privilege Attributes (family = 1) All privilege attributes are used for access control

Public 1 The principal has no authenticated identity

AccessId 2 The identity of the principal used for access control

PrimaryGroupId 3 The primary group to which the principal belongs

GroupId 4 A group to which the principal belongs

Role 5 A role the principal takes

AttributeSet 6 An identifier for a set of related attributes, which a
user or application can obtain

Clearance 7 The principal’s security clearance

Capability 8 A capability

Other Attributes (family = 0)

AuditId 1 The identity of the principal used for auditing

AccountingId 2 The id of the account to be charged for resource use

NonRepudiationId 3 The id of the principal used for non-repudiation
15-210 CORBAservices November 1996

15

s,

l
rity

e

can

A.9.2 Rights Families and Values

Administration is simplified by defining rights that provide access to a set of operation
so the administrator only needs to know what rights are required, rather than the semantics
of particular operations.

Rights are grouped into families. Only one rights family is defined in this specification.
The family definer is OMG (value 0) and the family id is CORBA (value 1). Other
families may be added by vendors or users.

Three values are specified for the standard CORBA rights family values.

A.9.3 Audit Event Families and Types

Events, like rights, are grouped into families as defined in Section 15.5, Application
Developer’s Interfaces.

Only one event family is defined in this specification. This has a family definer of OMG
(value 0) and family of SYSTEM (value 1) and is used for auditing system events. Al
events of this type are audited by the object security services, or the underlying secu
services they use. Some of these events must be audited by secure object systems
conforming to SecurityFunctionality Level 1 (though in some cases, the event may b
audited by underlying security services). Other event types are identified so that, if
produced, a standard record is generated, so that audit trails from different systems
more easily be combined. System audit events are specified in .

Table 15-15 CORBA Rights Family Value

Right Meaning

get Used for any operation on the object that does not change its state

set For operations on an object that changes its state

manage For operations on the attributes of the object, not its state

Table 15-16 System Audit Events

Event Type
Whether
Mandatory Meaning and Event Specific Data

Principal authentication Yes Authentication of principals, either via the
principal authentication interface or underlying
security services

Session authentication Yes Security association/peer authentication

Authorization Yes Authorization of an object invocation (normally
using an Access Decision object)

Invocation No Object invocation (i.e. the request/reply)

Security environment
state change

No Change to the security environment for this client
or object (e.g. set_security_features,
override_default_credentials)
Security Service: v1.0 November 1996 15-211

15

e
Application audit policies are expected to use application audit families.

A.9.4 Security Mechanisms

The security specification allows use of different mechanisms for security associations.
These are used in the Interoperable Object Reference and also on the interface to th
Vault.

No values for these are defined in this version of the specification. However, values
will be defined in response to the Out-of-the-Box Interoperability RFP. Values will be
registered by OMG as described in Appendix H, Interoperability Guidelines.

Policy change Yes Change to a security policy (using the
administrative interfaces in Section 15.6,
Administrator’s Interfaces)

Object creation No Creation of an object

Object destruction No Destruction of an object

Non-repudiation No Generation or verification of evidence

Table 15-16 System Audit Events

Event Type
Whether
Mandatory Meaning and Event Specific Data
15-212 CORBAservices November 1996

15

re

ne

 and

 (i

t
 Appendix B Summary of CORBA 2 Core Changes

B.1 Introduction

In a secure object environment, security must be pervasive and automatically enforced, so
that it cannot be bypassed. Both clients (which may or may not be objects) and target
objects require a secure environment in which security policies will be enforced.

The CORBA security specification requires a number of changes to the CORBA Core to
provide this security. Where possible, the changes proposed are made general, so futu
services can make use of them, rather than being specific to security.

This appendix describes the changes needed to the CORBA Core. It also specifies o
change to the Transaction Service to have it use a general mechanism for obtaining the
initial reference to the Current pseudo-object.

B.2 Finding What Security Facilit ies Are Supported

This specification provides an operation, get_service_information , which can be
used to find what security facilities are supported by this implementation (i.e. what
security functionality level and options), and also some details about the mechanism
policy options.

The get_service_information operation could be used for information about
other CORBA facilities and services, so is not security-specific, though only security
details are specified.

The specific changes required in the CORBA module appear in Section B.9.1, CORBA
Module Changes to Support Security Level 1.

B.3 Extension to the Use of Current

The Transaction Service introduced a Current interface to allow an application to
demarcate and manage the transaction associated with the current thread of activity.e.
the execution context of the client or target object).

This specification generalizes this use of Current so it can be used to handle other
information associated with the execution context at both client and target objects. In
particular, it associates security information, such as credentials, with Current and
provides means for accessing it.

The Current object in the environment may provide both Transaction and Security
operations, depending on the implementation.

For security, there are two new interfaces: SecurityLevel1::Current and
SecurityLevel2::Current , which the Current pseudo-object in a secure objec
system supports. The pseudo-OMG IDL for these are presented in Appendix A,
Consolidate OMG IDL.
Security Service: v1.0 November 1996 15-213

15

n
o the

s

 not

g

,

The mechanism for obtaining a reference to the Current object is provided by the new
get_current operation of the ORB. The details of changes that need to be made to
CORBA and CosTransactions to incorporate this general mechanism are in Sectio
B.9.4, Changes to Support the Current Pseudo-Object. A single operation is added t
ORB interface:

Current get_current ();
Return Value
An object reference to the Current pseudo-object.

B.4 Extensions to Object Interfaces for Security

In a similar manner, a secure object system extends the existing CORBA::Object
interface which is implicitly supported by all objects, with the operations in the
SecurityLevel1::Object and SecurityLevel2::Object interface. As
with most of the operations in the existing CORBA::Object interface, the additional
security functions operate locally on the object reference and are not implemented a
invocations on the target. See Interfaces in Section 15.5.5, Object Reference, for details of
operations provided by SecurityLevel1::Object and
SecurityLevel2::Object.

Note that at a client in a secure environment, the object reference of objects that are
themselves in a secure environment will still contain the SecurityLevel1::Object
or SecurityLevel2::Object operations (depending on the level of security
supported by the ORB), since object reference operations are implemented by the client
ORB. Security-aware applications will access these security-specific operations by usin
the SecurityLevel1::Object or the SecurityLevel2::Object interface
instead of the vanilla CORBA::Object interface. Others will transparently continue to
use the usual CORBA::Object interface, and still be provided the level of security
appropriate for security-unaware applications.

 B.5 Extensions to CORBA for Domains and Policies

In a secure object system, all objects should be subject to policy. The CORBA security
specification therefore specifies policy domains, where each domain has a domain
manager and a number of associated security policies.

Both the applications and ORB need to be able to find what policies apply so they can
enforce them. Administrative applications need to be able to find the domain managers
and hence the policy objects, so they can administer the policies.

Domain managers, and the way of finding policies associated with them, are not security-
specific. Therefore, the get_policy and get_domain_managers operations
needed to support this (see Section 15.6, Administrator’s Interfaces) are proposed as
extensions to the standard CORBA Object interface, rather than as part of the security
service specific Object interfaces. (Note that this specification does not specify interfaces
for managing membership of domains, as this is assumed to be done by a Management or
Collections service.)

Ensuring that all objects are subject to security policy also affects the way objects are
created. When objects are created, they must automatically be made members of domains,
15-214 CORBAservices November 1996

15

ly

ic to

 the

 (a

curity

y, an

 used.

ffers)
and so subject to the security policies for those domains.

Many applications, even those that create other objects, are often unaware of security, so
these applications should not have to take any special action to ensure that the new
created object is subject to policy.

Therefore, BOA::create must be extended as described in the Implementor’s View of
Secure Object Creation in Section 15.4.5, Security Object Models. This change does not
affect the definition of the BOA::create interface; rather it has implications for its
implementation. As previously noted, domains and policy mechanisms are not specif
security. The specific changes to the CORBA module are in Section B.9.2, CORBA
Module Changes to Support Security Level 2.

B.6 Further Definition of ORB Services

This section gives an enhanced definition of the ORB Services, which were introduced to
CORBA 2 as part of the Interoperability specification. This enhanced definition is
required to support the ORB Services replaceability conformance option and covers
Interceptor interfaces used to implement security functions during invocation. It does not
specify how ORB service implementations are registered with the ORB, nor their
relationship with specific object adaptors, since this can and should be addressed by the
generic ORB technology adoption process.

B.6.1 ORB Core and ORB Services

The ORB Core is defined in the CORBA architecture as “that part of the ORB which
provides the basic representation of objects and the communication of requests.” ORB
Services, such as the Security Services, are built on this core and extend the basic
functions with additional qualities or transparencies, thereby presenting a higher-level
ORB environment to the application.

The function of an ORB service is specified as a transformation of a given message
request, reply, or derivation thereof). A client may generate an object request, which
necessitates some transformation of that request by ORB services (for example, Se
Services may protect the message in transit by encrypting it).

B.6.2 Interceptors

An interceptor is responsible for the execution of one or more ORB services. Logicall
interceptor is interposed in the invocation (and response) path(s) between a client and a
target object. When several ORB services are required, several interceptors may be

Two types of interceptors are defined in this specification:

• Request-level interceptors, which execute the given request.

• Message-level interceptors, which send and receive messages (unstructured bu
derived from the requests and replies.

Interceptors provide a highly flexible means of adding portable ORB Services to a CORB-
Security Service: v1.0 November 1996 15-215

15

ed
olicies
ied by

ext.
s

t on
ill

lso

 an

ed

g
compliant object system. The flexibility derives from the capacity of a binding between
client and target object to be extended and specialized to reflect the mutual requirements
of client and target. The portability derives from the definition of the interceptor interface
in OMG IDL.

The kinds of interceptors available are known to the ORB. Interceptors are created by the
ORB as necessary during binding, as described next.

B.6.3 Client-Target Binding

The Security architecture builds upon the ORB Interoperability architecture in considering
the selection of ORB Services as part of the process of establishing a binding between a
client and a target object.

A binding provides the context for a client communicating with a target object via a
particular object reference. The binding determines the mechanisms that will be involv
in interactions such that compatible mechanisms are chosen and client and target p
are enforced. Some requirements, such as auditing or access control, may be satisf
mechanisms in one environment, while others, such as authentication, require cooperation
between client and target. Binding may also involve reserving resources in order to
guarantee the particular qualities of service demanded.

Although resolution of mechanisms and policies involves negotiation between the two
parties, this need not always involve physical interactions between the parties as
information about the target can be encoded in the object reference, allowing resolution of
the client and target requirements to take place in the client. The outcome of the
negotiation can then be sent with the request, for example, in the GIOP service cont
Where there is an issue of trust, however, the target must still check that this outcome i
valid.

The binding between client and target at the application level can generally be
decomposed into bindings between lower-level objects. For example, the agreemen
transport protocol is an agreement between two communications endpoints, which w
generally not have a one-to-one correspondence to application objects. The overall
binding therefore includes a set of related sub-bindings which may be shared, and a
potentially distributed among different entities at different locations.

B.6.4 Binding Model

No object representing the binding is made explicitly visible since the lifetime of such
object is not under the control of the application, an existing binding potentially being
discarded, and a new one made without the application being aware of the fact.

Instead, operations that will affect how a client will interact with a target are provid
on the Object interface and allow a client to determine how it will interact with the
target denoted by that object reference. On the target side, the binding to the client may
be accessed through the Current interface. This indirect arrangement permits a wide
range of implementations that trade-off the communication and retention of bindin
information in different ways.
15-216 CORBAservices November 1996

15

t
re

e,

n

e.

lways
 called

bject
Figure 15-55Binding Model

The action of establishing a binding is generally implicit, occurring no later than the firs
invocation between client and target. It may be necessary for a client to establish mo
than one binding to the same target object, each with different attributes (for exampl
different security features). In this case, the client can make a copy of the object reference
using Object::duplicate and subsequently specify different attributes for that
reference.

The scope of attributes associated with an object reference is that of the object
reference instance, i.e. the attributes are not copied if the object reference is used as a
argument to another operation or copied using Object::duplicate . If an object
reference is an inout argument, the attributes will still be associated with the object
reference after the call if the reference still denotes the same object, but not otherwis

B.6.5 Establishing the Binding and Interceptors

An ORB maintains a list of interceptors, which it supports, and when these are called.
Note that at the client, when handling the request, the request-level interceptors are a
called before the message level ones, while at the target the message-level ones are
first.

When the ORB needs to bind an object reference, it refers to the characteristics of the
target object and relates this to the types of interceptor it supports. From this it determines
the appropriate type of interceptor to handle the request and creates it, passing the o
reference in the call. (No separate interceptor initialization operation is used. The
client_invoke/target_invoke or send_message/receive_message
calls are used both for the first invocation and for subsequent ones.)

Client

ORB Core

Target
Object

Interceptors Interceptors

binding binding

target obj ref

Current
Security Service: v1.0 November 1996 15-217

15

re

ct

n

n.

 (for

re.
se

n to

r
When an interceptor is created, it performs its bind time functions. These may involve
getting the policies that apply to the client (and have not been overridden by the client)
and to the target. This could involve communicating with the target, for example, a secu
invocation interceptor setting up a security association. Note that the ORB Core itself is
unaware of service-specific policies. In addition to performing its specific functions, the
interceptor must continue the request by invoking object(s) derived from the given obje
reference.

The interceptors themselves maintain per-binding information relevant to the functio
they perform. This information will be derived from:

• The policies that apply to the client and target object because of the domains to
which they belong, for example the access policies, default quality of protectio

• Other static properties of the client and target object such as the security
mechanisms and protocols supported.

• Dynamic attributes, associated with a particular execution context or invocation
example, whether a request must be protected for confidentiality).

If the relevant client or target environment changes, part or all of a binding may need to be
reestablished. For example, the secure invocation interceptor may detect that the
invocation credentials have changed and therefore needs to establish a new security
association using the new credentials. If the binding cannot be reestablished, an exception
is raised to the application, indicating the cause of the problem.

Similarly, at the target, the ORB will create an instance of each interceptor needed the
A single interceptor handles both requests and replies at the client (or target), as the
share context information.

B.6.6 Using Interceptors

When a client performs an object request, the ORB Core uses the binding informatio
decide which interceptors provide the required ORB Services for this client and target as
described in Section 15.7.3, Security Interceptors.

Request-Level Interceptors

Request-level interceptors could be used for services such as transaction management,
access control, or replication. Services at this level process the request in some way. For
example, they may transform the request into one or more lower-level invocations o
make checks that the request is permitted. The request-level interceptors, after performing
whatever action is needed at the client (or target), reinvoke the (transformed) request using
the Dynamic Invocation Interface (DII) CORBA::Request::invoke . The interceptor
is then stacked until the invocation completes, when it has an opportunity to perform
further actions, taking into account the response before returning.
15-218 CORBAservices November 1996

15

ined in
rget

tion

lt of
r

may

 can

r

Interceptors can find details of the request using the operations on the request as def
the Dynamic Skeleton interface in CORBA 2. This allows the interceptor to find the ta
object1, operation name, context, parameters, and (when complete) the result.

If the interceptor decides not to forward the request, for example, the access control
interceptor determines that access is not permitted, it indicates the appropriate excep
and returns.

When the interceptor resumes after an inner request is complete, it can find the resu
the operation using the result operation on the Request pseudo-object, and check fo
exceptions using the exception operation, etc. before returning.

Message-Level Interceptors

When remote invocation is required, the ORB will transform the request into a message
that can be sent over the network. Message-level interceptors operate on messages in
general without understanding how these messages relate to requests (for example, the
message could be just a fragment of a request). Note that the message interceptors
achieve their purpose not by (just) transforming the given message, but by communicating
using their own message (for example, to establish a secure association). Fragmentation
and message protection are possible message-level interceptors.

send_message is always used when sending a message, so is used by the client to send
a request (or part of a request), and by the target to send a reply.

When a client message-level interceptor is activated to perform a send_message
operation, it transforms the message as required, and calls a send operation to pass the
message on to the ORB and hence to its target. Unlike invoke operations, send
operations may return to the caller without completing the operation. The interceptor
then perform other operations if required before exiting. The client interceptor may next
be called either using send_message to process another outgoing message, or using
receive_message to process an incoming message.

A target message-level interceptor also supports send_message and
receive_message operations, though these are obviously called in a different orde
from the client side.

B.6.7 Interceptor Interfaces

Two interceptor interfaces are specified, both used only by the ORB:

• RequestInterceptor for operations on request-level interceptors. Two operations
are supported:

• client_invoke for invoking a request-level interceptor at the client.

• target_invoke for invoking a request-level interceptor at the target.

1.It is assumed that the target object reference is available, as this is described in the C++ mapping for
DSI, though not yet in the OMG IDL.
Security Service: v1.0 November 1996 15-219

15

ns

get

in the

)

ns
• MessageInterceptor for operations on message-level interceptors. Two operatio
are supported:

• send_message for sending a message from the client to the target or the tar
to the client.

• receive_message for receiving a message.

Request-level interceptors operate on a representation of the request itself as used
CORBA Dynamic Invocation and Skeleton interfaces. (It is assumed that the Request
pseudo-object defined in the Dynamic Invocation interface is compatible with the
ServerRequest pseudo-object in the Dynamic Skeleton interface, and so supports
operations such as op_name, which returns the name of the operation being invoked.

Client and Target Invoke

These invoke a request-level interceptor at the client or target. Both operations have
identical parameters and return values.

interface RequestInterceptor: Interceptor // PIDL
{

void client_invoke (
inout Request request);

void target_invoke (
inout Request request);

};

Parameters
request The request being invoked. This is a pseudo-object as defined in the

Dynamic Invocation Interface. After invocation, output parameters and the
associated result and exceptions may have been updated.

Send and Receive Message

These invoke a message-level interceptor to send and receive messages. Both operatio
have identical parameters and return values.

interface MessageInterceptor: Interceptor
{

void send_message (
in Object target,
in Message msg);

void receive_message (
in Object target,
in Message msg,);

};
Parameters
targetThe target object reference.
15-220 CORBAservices November 1996

15

e

ce to
t

cur

y

h
Note: The target here may not be the same as seen by the application. For example, a
replication request-level interceptor may send the request to more than on
underlying object.

msgThe message to be handled by this interceptor.

B.6.8 Interface Changes Required for Interceptors

Use of binding and interceptors requires extra interfaces on the target object referen
get components (e.g. from the multicomponent profiles in the IOR). It is assumed tha
these will be specified by the CORBA 2 (revision) task force, since this group is
developing the general form of the multicomponent profile structure.

B.7 Further Definition of ORB Interoperability

This specification describes the use of and extensions to the CORBA 2.0 interoperability
protocol and Interoperable Object Reference (IOR) to allow secure interoperability
between ORBs. Additional tags are defined in IOR Security Components of the DCE-
CIOP in Section 15.8.5, DCE-CIOP with Security, for security information in the IOR.
Extra messages are added to the IOP/IIOP protocol for protected messages and replies and
are defined in Section 15.8.4, Secure Inter-ORB Protocol (SECIOP). These are designed
to be able to fit with GIOP fragmentation proposals also being considered. These seity
extensions can be used with a range of different security mechanisms for security
associations.

This submission describes TAGs for security for use in multicomponent profiles.
Modifications to the CORBA 2.0 IOR specification to support this are being discussed b
the Interoperability Revision Task Force, and have also been discussed with the security
submitters.

Appendix I, Further ORB Interoperability, contains a description of possible
modifications to CORBA 2 for this, but the definitive version of such changes will come
from the Revision Task Force.

The security submitters therefore require the Interoperability Revision Task Force to
define the modifications needed. This should result in multicomponent profiles, whic
will be used both by IIOP- or IIOP-derived protocols and DCE-CIOP.

This specification maintains strict message format compatibility with the IIOP protocol as
defined in CORBA 2.0. It also maintains compatibility with existing unsecured
implementations of DCE-CIOP.
Security Service: v1.0 November 1996 15-221

15

rence
B.8 Implications of Assurance

The ORB must function correctly, enforcing security policy on object invocation, object
creation, etc. as defined in this specification. It must do this to the level of assurance
specified in its Conformance Statement (see Appendix F, Conformance Statement). It
must also meet other assurance requirements defined there such as preventing interfe
between objects to the required extent.

B.9 Enhancements to the CORBA Module

The enhancements to the CORBA Core previously discussed requires the following
modifications to the CORBA module.

B.9.1 CORBA Module Changes to Support Security Level 1

The following additions and changes to the CORBA module are necessary for the Security
Level 1 conformance point

New Data Types Added to the CORBA Module

The following data types need to be inserted into the CORBA module preceding the
declaration of the ORB interface.

module CORBA {

typedef unsigned short ServiceType ;

const ServiceType Security = 1 ;
// other Service types to be defined

typedef unsigned long ServiceOption ;

const ServiceOption SecurityLevel1 = 1;
const ServiceOption SecurityLevel2 = 2;
const ServiceOption NonRepudiation = 3;
const ServiceOption SecurityORBServiceReady = 4;
const ServiceOption SecurityServiceReady = 5;
const ServiceOption ReplaceORBServices = 6 ;
const ServiceOption ReplaceSecurityServices = 7;
const ServiceOption StandardSecureInteropability = 8;
const ServiceOption DCESecureInteroperability = 9;

// Service details supported by the implementation

typedef unsigned long ServiceDetailType;

// security mech type(s) supported for secure associations

const ServiceDetailType SecurityMechanismType = 1;
15-222 CORBAservices November 1996

15

c

// privilege types supported in standard access policy

const ServiceDetailType SecurityAttribute = 2;

struct ServiceDetail {
ServiceDetailType service_detail_type;
sequence <octet> service_detail;

 };

struct ServiceInformation {
sequence <ServiceOption> service_options;
sequence <ServiceDetail> service_details;

};
};

Extensions to the ORB Interface

The operation get_service_information needs to be appended to the list of
operations in the ORB interface.

module CORBA {
interface ORB {

boolean get_service_information (
in ServiceType service_type,
out ServiceInformation service_information

);
};

};

The specific change consists of adding the lines

boolean get_service_information (
in ServiceType service_type,
out ServiceInformation service_information

);

to the list of operations in the definition of the ORB interface on page 7-2 in CORBA V2.0
July 1995. The associated addition of data types and interfaces must precede the
declaration of the ORB interface in the CORBA module.

B.9.2 CORBA Module Changes to Support Security Level 2

The following additions and changes to the CORBA module are necessary for the Seurity
Level 2 conformance point.

New Data Types Added to the CORBA Module

The following data types need to be added to the CORBA module for this conformance
level.

module CORBA {
enum PolicyType {

SecClientInvocationAccess,
Security Service: v1.0 November 1996 15-223

15
SecTargetInvocationAccess,
SecApplicationAccess,

 SecClientInvocationAudit,
SecTargetInvocationAudit,
SecApplicationAudit,
SecDelegation,

 SecClientSecureInvocation,
SecTargetSecureInvocation,
SecNonRepudiation,
SecConstruction

};
};

New Interfaces Added to the CORBA Module

The following segment of OMG IDL needs to be inserted into the CORBA module
preceding the definition of the Object interface.

module CORBA
{

// Interfaces to support the basic management infrastructure
interface Policy {
// Features common to all Policies
};

interface DomainManager {

// get policies for objects in this domain
Policy get_domain_policy (

in PolicyType policy_type
);

typedef sequence<DomainManager> DomainManagerList;
};

interface ConstructionPolicy : Policy{
void make_domain_manager(

in InterfaceDef object_type
);

};
};

Extensions to the Object Interfaces

The operations in the OMG IDL block shown next need to be appended to the list of
operations in the definition of the Object interface in the CORBA module.

module CORBA {
interface Object {
// operations to facilitate basic management infrastructure

Policy get_policy (
in PolicyType policy_type

);
DomainManagerList get_domain_managers();
15-224 CORBAservices November 1996

15

is

 the

he
};
};

The specific changes are on page 7-3 of CORBA V2.0 July 1995. Append the following
lines to the list of operations in the definition of Object interface.

Policy get_policy (
in PolicyType policy_type

);
DomainManagerList get_domain_managers();

Add the corresponding documentation for these operations from Section 15.6.2 of th
document to page 7-3 of CORBA V2.0 July 1995.

B.9.3 CORBA Module Changes for Replaceability Conformance

The following additions and changes to the CORBA module are necessary for supporting
the Interceptor mechanism to satisfy the ORB Services Replaceability conformance
option.

New Interfaces Added to the CORBA Module

The following new interfaces need to be added to the CORBA module to support this
conformance option.

The message-level interceptor has a Message parameter, which is a pseudo-object (see
Request pseudo-object used on the message interface). This pseudo-object comprises an
ordered sequence of octets. The operations for accessing it should be aligned with t
operations for operating on collections as expected to be defined for the Collections
Service technology adoption process.

module CORBA {
interface Interceptor { // PIDL

// Generic interceptor operations (management etc.)
};

interface RequestInterceptor: Interceptor { // PIDL
void client_invoke (

inout Request request
);
void target_invoke (

inout Request request
);

};

interface MessageInterceptor: Interceptor { // PIDL
void send_message (

in Object target,
in Message msg

);
void receive_message (

in Object target,
Security Service: v1.0 November 1996 15-225

15

ting
ot

atible

in Message msg
);

};
};

Add corresponding documentation for these operations from Section B.6, Further
Definition of ORB Services, to the appropriate section of CORBA V2.0 July 1995.

B.9.4 Changes to Support the Current Pseudo-Object

The CORBA module changes and additions described here are necessary for suppor
Security Replaceability and Security Level 2. The changes to Transaction service are n
necessary from the perspective of meeting any security requirements, but is highly
recommended for maintaining uniformity of mechanisms and interfaces.

New Interface Added to the CORBA Module

module CORBA
{
 // interface for the Current pseudo-object

interface Current { // PIDL
};

};

Extensions to the ORB Interfaces

The following extension needs to be made to the ORB interface.

module CORBA {
interface ORB {

Current get_current ();
};

};

The specific change consists of adding

Current get_current ();

to the definition of the ORB interface on page 7-2 in CORBA V2.0 July 1995. The
associated addition of data types and interfaces must precede the declaration of the ORB
interface in the CORBA module.

Transaction Service Changes

The following change needs to be made to the Transaction Service to make it comp
with and able to use the ORB::get_current operation. The change is to be made in
CORBAservices: Common Object Services Specification, Rev. Ed. March 31, 1995, OMG
Document Number 95-3-31.

On page 10-19, change the first line of the OMG IDL in the box from
15-226 CORBAservices November 1996

15
interface Current {

to

interface Current : CORBA::ORB::Current {

B.9.5 CORBA Module Deprecated Interfaces

SecurityLevel2::Credentials is the preferred interface for retrieving
information about the identity of callers in CORBA Security conformant ORB
implementations; the use of CORBA::get_principal is deprecated, and it is
anticipated that this interface will be eliminated in a future CORBA revision.
Security Service: v1.0 November 1996 15-227

15

s

iner
do
be

m,

e

for
 Appendix C Relationship to Other Services

C.1 Introduction

This appendix describes the relationship between Object Services and Common Facilitie
and the security architecture components, if they are to participate in a consistent, secure
object system.

C.2 General Relationship to Object Services and Common Facilities

In general, Object Services and Common Facilities, like any application objects, may be
unaware of security, and rely on the security enforced automatically on object invocations.
As for application objects, access to their operations can be controlled by access policies
as described in Section 15.3, Security Reference Model, Section 15.5, Application
Developer’s Interfaces, and elsewhere.

An Object Service or Common Facility needs to be aware of security if it needs to enforce
security itself. For example, it may need to control access to functions and data at a f
granularity than at object invocation, or need to audit such activities. The way it can
this is described in Section 15.4, Security Architecture. Existing Object Services should
reviewed to see if such access control and auditing is required.

If an Object Service or Common Facility is required to be part of a more secure syste
some assurance of its correct functioning, if security relevant, is needed, even if it is not
responsible for enforcing security itself. See Appendix E, Guidelines for a Trustworthy
System, for guidelines on this matter.

Where an Object Service is called by an ORB service as part of object invocation in a
secure system, there is a need to ensure security of all the information involved in th
invocation. This requires ORB Services to be called in the order required to provide the
specified quality of protection. For example, the Transaction Service must be invoked first
to obtain the transaction context information before the whole message is protected
integrity and/or confidentiality.

In the following sections, we provide an initial estimation of the relationship between
Security Service and other existing services and facilities.

C.3 Relationship with Specific Object Services

C.3.1 Transaction Service

This specification builds on the definition of Current introduced by the Transaction
Service to provide information about the current execution context. It also specifies a
general ORB operation for applications to get hold of an object reference to the Current
pseudo-object (see Appendix B, Summary of CORBA 2 Core Changes).

In order to have the Transaction Service use the proposed mechanism, the definition of the
CosTransactions::Current interface needs to be modified so that it is derived
15-228 CORBAservices November 1996

15

,

d
n

ss

 if

ion of
from CORBA::ORB::Current . The necessary change is presented in Section B.9.4
Changes to Support the Current Pseudo-Object.

C.3.2 Naming Service

For security, the object must be correctly identified wherever it is within the distribute
object system. The Naming Service must do this successfully in an environment where a
object name is unique within a naming context, and name spaces are federated. (However,
to provide the required proof of identity, objects, and/or the gatekeepers which give acce
to them will be authenticated using a separate Authentication Service.) See Section E.6.2,
Basis of Trust, for additional information about the relationship between security and
names.

C.3.3 Event Service

The implementation of a Security Audit Service may involve the use of Event Service
objects for the routing of both audits and alarms.

However, this is only possible if the Event Service itself is secure in that it protects the
audit trail from modification and deletion. It must also be able to guard against recursion
it audits its own activities.

C.3.4 Persistent Object Service

No explicit use is made of this service. Audit trails may be saved using this service, in
which case the implementation of the Persistent Object Service must ensure that data
stored and retrieved through it is not tampered with by unauthorized entities. If it is used in
the implementation of Security Service or by a secure application, it must follow the
guidelines in Appendix E, Guidelines for a Trustworthy System.

C.3.5 Time Service

The Security Service uses the data types for time, timestamps, and time intervals as
defined by the Time Service, so that applications can readily use the Time Service defined
interfaces to manipulate the time data that the Security Service uses. The interfaces of
Security Service do not explicitly pass any interfaces defined in the Time Service.

C.3.6 Other Services

The other services are not used explicitly. If any of them are used in the implementat
Security Service or by a secure application, it must be verified that the service used
follows the guidelines in Appendix E, Guidelines for a Trustworthy System.
Security Service: v1.0 November 1996 15-229

15
C.4 Relationship with Common Facilities

Because Management Services have been identified as Common Facilities in the Object
Management Architecture, only minimal, security-specific administration interfaces are
specified here. When Common Facilities Management services are specified, they will
need to take into account the need for security management and administration identified
in this specification. Also, such management services will themselves need to be secure.

This specification adds certain basic interfaces to CORBA, which form the basis for the
minimal policy administration related interfaces and functionality that has been provided.
Future management facilities are expected to build upon this foundation.
15-230 CORBAservices November 1996

15

o

 in
ed
, so

rity

ions
e for
 Appendix D Conformance Details

D.1 Introduction

Conformance to CORBA Security covers:

• Main security functionality . There are two possible levels.

• Level 1: This provides a first level of security for applications unaware of
security, and for those that have limited requirements to enforce their own
security in terms of access controls and auditing.

• Level 2: This provides more security facilities, and allows applications to control
the security provided at object invocation. It also includes administration of
security policy, allowing applications administering policy to be portable.

• Security Functionality Options. These are functions expected to be required in
several ORBs, so are worth including in this specification, but are not generally
required enough to form part of one of the main security functionality levels
previously specified. There is only one such option in the specification.

• Non-Repudiation: This provides generation and checking of evidence so that
actions cannot be repudiated.

• Security Replaceability. This specification is designed to allow security policies t
be replaced. The additional policies must also conform to this specification. This
includes, for example, new Access Polices. Security Replaceability specifies if and
how the ORB fits with different security services. There are two possibilities.

• ORB Services replaceability: The ORB uses interceptor interfaces to call on
object services, including security ones. It must use the specified interceptor
interfaces and call the interceptors in the specified order. An ORB conforming to
this does not include any significant security-specific code, as that is in the
interceptors.

• Security Service replaceability: The ORB may or may not use interceptors, but all
calls on security services are made via the replaceability interfaces specified
Section 15.7, Implementor’s Security Interfaces. These interfaces are position
so that the security services do not need to understand how the ORB works
they can be replaced independently of that knowledge.

An ORB that supports one or both of these replaceability options may be Secu
Ready (i.e. support no security functionality itself, but be ready to have security
added, or may support Security Functionality Level 1 or 2).

Note: Some replaceability of the security mechanism used for secure associat
may still be provided if the implementation uses some standard generic interfac
security services such as GSS-API.

• Secure Interoperability : Possibilities are

• Secure Interoperability - Standard: An ORB supporting this can generate/use
security information in the IOR and can send/receive secure requests to/from
other ORBs using the GIOP/IIOP protocol with the security (SECIOP)
Security Service: v1.0 November 1996 15-231

15

or

ic

es

enhancements defined in Section 15.8, Security and Interoperability, providing
they can both use the same underlying security mechanism and algorithms f
security associations.

• Standard plus DCE-CIOP Option: As for Standard, but secure DCE-CIOP is also
supported.

If the ORB does not conform to one of these, it will not use the GIOP security
enhancements, and so will interoperate securely only in an environment-specif
way.

The conformance statement required for a CORBA Security conformant implementation
is defined in Appendix F, Conformance Statement. Appendix F includes a checklist,
which can be completed to show what the ORB conforms to; it is reproduced next. A main
security functionality level must always be specified. Functional Options, Security
Replaceability, and Security Interoperability should be indicated by checking the box
corresponding to the function supported by the ORB.

D.2 Security Functionality Level 1

Security Functionality Level 1 is the level to which all OMG-compliant security
implementations must conform. It provides:

• A level of security functionality available to applications unaware of security. (It
will, of course, also provide this functionality to applications aware of security.)
This level includes security of the invocation between client and target object,
simple delegation of client security attributes to targets, ORB-enforced access
control checks, and auditing of security-relevant system events.

• An interface through which a security-aware application can retrieve security
attributes, which it may use to enforce its own security policies (e.g. to control
access to its own attributes and operations).

D.2.1 Security Functionality Required

An ORB supporting Level 1 security functionality must provide the following security
features for all applications, whether they are security-aware or not.

Main
Functionali
ty Level

Functiona
l Options Security Replaceability

Security
Interoperability

1 2 Non
Repudiatio
n

ORB
Service
s

Securit
y
Service
s

Security
Ready -
ORB
Services

Security
Ready -
Security
Services

Standar
d

Standar
d
+ DCE-
CIOP
15-232 CORBAservices November 1996

15

cure

trols

gate

may

duct

alues

 in
• Allow users and other principals to be authenticated, though this may be done
outside the object system.

• Provide security of the invocation between client and target object including:

• Establishment of trust between them, where needed. At Level 1, this may be
supported by ORB level security services or can be achieved in any other se
way. For example, it could use secure lower-layer communications. Mutual
authentication need not be supported.

• Integrity and/or confidentiality of requests and responses between them.

• Control of whether this client can access this object. At this level, access con
can be based on "sets" of subjects and "sets" of objects. Details of the Access
Policy and how this is administered are not specified.

• At an intermediate object in a chain of calls, the ability to be able to either dele
the incoming credentials or use those of the intermediate object itself.

• Auditing of the mandatory set of system’s security-relevant events specified in
Appendix A, Consolidated OMG IDL. In some cases, the events to be audited
occur, and be audited, outside the object system (for example, in underlying
security services). In this case, the conformance statement must identify the pro
responsible for generating the record of such an event (or choice of product, for
example, when the ORB is portable to different authentication services).

At this level, auditing of object invocations need not be selectable. However, it
must be possible to ensure that certain events are audited (see Section A.9, V
for Standard Data Types, for the list of mandatory events).

For security aware applications, it must also:

• Make the privileges of authenticated principals available to applications for use
application access control decisions.

These facilities require the ORB and security services to be initialized correctly. For
example, the Current object at the client must be initialized with a reference to a
credentials object for the appropriate principal.

D.2.2 Security Interfaces Supported

Security interfaces available to applications may be limited to:

• get_service_information providing security options and details (see
Section 15.5.2, Finding Security Features).

• get_attributes on Current (see Interfaces under Section 15.5.6, Security
Operations on Current).

No administrative interfaces are mandatory at this level.
Security Service: v1.0 November 1996 15-233

15

l

) or
D.2.3 Other Security Conformance

An ORB providing Security Functionality Level 1 may also conform to other security
options. For example, it may also:

• Support some of the Security Functionality Options specified in Section D.4,
Security Functionality Options.

• Provide security replaceability using either of the replaceability options.

• Provide secure interoperability, though in this case, will need to provide security
associations at the ORB level (not lower-layer communications) as the protoco
assumes security tokens are at this level.

D.3 Security Functionality Level 2

This is the functionality level that supports most of the application interfaces defined in
Section 15.5, Application Developer’s Interfaces, and the administrative interfaces
defined in Section 15.6, Administrator’s Interfaces. It provides a competitive level of
security functionality for most situations.

D.3.1 Security Functionality Required

An ORB that supports Security Functionality Level 2 supports the functionality in
Security Level 1 previously defined, and also:

• Principals can be authenticated outside or inside the object system.

• Security of the invocation between client and target objects is enhanced.

• Establishment of trust and message protection can be done at the ORB level, so
security below this (for example, in the lower layer communications) is not
required (though may be used for some functions).

• Further integrity options can be requested (e.g. replay protection and detection of
messages out of sequence) but need not be supported.

• The standard DomainAccessPolicy is supported for control of access to
operations on objects.

• Selective auditing of methods on objects is supported.

• Applications can control the options used on secure invocations. It can:

• Choose the quality of protection of messages required (subject to policy controls).

• Change the privileges in credentials.

• Choose which credentials are to be used for object invocation.

• Specify whether these can just be used at the target (e.g. for access control
whether they can also be delegated to further objects.
15-234 CORBAservices November 1996

15

2

ly to
curity

ing
• No further delegation facilities are mandatory, but the application can request
"composite" delegation, and the target can obtain all credentials passed, in systems
that support this. Note that "composite" here just specifies that both received
credentials and the intermediate’s own credentials should be used. It does not
specify whether this is done by combining the credentials or linking them.

• Administrators can specify security policies using domain managers and policy
objects as specified in Section 15.6, Administrator’s Interfaces. The security policy
types supported at Level 2 are all those defined in Section 15.6 except non-
repudiation. The standard policy management interfaces for each of the Level
policies is supported.

• Applications can find out what security policies apply to them. This includes
policies they enforce themselves (e.g. which events types to audit) and some
policies the ORB enforces for them (e.g. default qop, delegation mode).

• ORBs (and ORB Services, if supported) can find out what security policies app
them. They can then use these policy objects to make decisions about what se
is needed (check if access is permitted, check if auditing is required) or get the
information needed to enforce policy (get QOP, delegation mode, etc.) depend
on policy type.

As at Level 1, these facilities require the ORB and security services to be initialized
correctly.

D.3.2 Security Interfaces Supported

Interfaces supported at this level are:

• All application interfaces defined in Section 15.5, Application Developer’s
Interfaces (except those in Section 15.5.11, Non-repudiation).

• All security policy administration interfaces defined in Section 15.6,
Administrator’s Interfaces (except those for the non-repudiation policy).

Note that some of these interfaces may return a NO-IMPLEMENT exception, as not
ORBs conforming to Level 2 Security need implement all possible values of all
parameters. This will happen when:

• A privilege attribute is requested of a type that is not supported (attribute types
supported are defined in Appendix A, Consolidated OMG IDL).

• A delegation mode is requested, which is not supported.

• A communication direction for association options is requested, which is not
supported.
Security Service: v1.0 November 1996 15-235

15

g

 the

o
D.3.3 Other Security Conformance

An ORB providing Security Functionality Level 2 may also conform to other security
options. For example, it may also:

• Support some of the Security Functionality Options specified in Section D.5,
Security Replaceability.

• Provide security replaceability, using either of the replaceability options.

• Provide secure interoperability.

D.4 Security Functionality Options

An ORB may also conform to optional security functionality defined in this specification.
Only one optional facilities is specified: non-repudiation.

Also, some requirements on conformance of additional facilities are specified.

D.4.1 Non-repudiation

Security Functionality

An ORB conforming to this must support the non-repudiation facilities for generatin
and verifying evidence described in The Model as Seen by Applications in Section
15.4.5, Security Object Models. Note that these use NRCredentials, which may be
same as the credentials used for other security facilities. Where non-repudiation is
supported, the credentials acquired from the environment or generated by the
authenticate operation must be able to support non-repudiation.

Security Interfaces Supported

The following interfaces must be supported. All are available to applications. They are:

• set_/get_NR_features as defined in Section 15.5.11, Non-repudiation.

• generate_token , verify_evidence , form complete evidence and get token
details as defined in Section 15.5.11.

• Use of set/get_credentials on Current specifying the type of credentials t
be used is NRCredentials.

• NR policy object with associated interfaces as in Section 15.6.7, Non-repudiation
Policy Management.
15-236 CORBAservices November 1996

15

e

ed to

.4,

.

Fit with Other Security Conformance

Non-repudiation requires use of credentials; thus it can only be used with ORBs, which
support some of the interfaces defined in Security Functionality level 2. However,
conformance to all of Security Functionality Level 2 is not a prerequisite for conformanc
to the non-repudiation security functionality option.

Secure interoperability as defined in Section D.6, Secure Interoperability, is not affected
by non-repudiation. The evidence may be passed on an invocation as a parameter to a
request, but the ORB need not be aware of this.

The current specification does not specify interoperability of evidence (i.e. one non-
repudiation service handling evidence generated by another).

D.4.2 Conformance of Additional Policies

This specification is designed to allow security policies to be replaced. The additional
policies must also conform to some of the interfaces in this specification if they are us
replace the standard policies automatically enforced on object invocation.

The case described next is for the addition of a new Access Policy which can be used for
controlling access to objects automatically, replacing the standard DomainAccessPolicy.

Clearly, other policies can be replaced. For example, the audit policy could be replaced by
one that used different selectors, or the delegation policy could be replaced by one that
supported more advanced features.

Additional Access Policies

A new Access Policy, which is to be enforced automatically at invocation time, should be
supported by providing a new Access Policy object. This must support the
access_allowed operation defined in Access Decision Object under Section 15.7
Implementation-Level Security Object Interfaces, so that it can be called automatically by
the ORB to check if access is allowed.

This policy object should be associated with a domain, and be specified as a client or
target policy as for the standard Access Policy. The policy object should include
administrative interfaces to allow the policy to be administered, but this need not
(normally cannot) conform to the administrative interface defined for the standard policy

D.5 Security Replaceability

This specifies how an ORB can fit with security services, which may not come from the
same vendor as the ORB. As explained above, there are two levels where this can be done
(apart from any underlying APIs used by an implementation).
Security Service: v1.0 November 1996 15-237

15

ch

,
D.5.1 Security Features Replaceability

Conformance to this allows security features to be replaced.

If it is provided without conformance to the ORB Service replaceability option (see
Section D.5.2, ORB Services Replaceability), it requires the ORB to have a reasonable
understanding of security, handling credentials, etc. and knowing when and how to call on
the right security services.

Support for this replaceability option requires an ORB (or the ORB Services it uses) to
use the implementation-level security interfaces as defined in Section 15.7, Implementor’s
Security Interfaces. This includes:

• The Vault, Security Context, Access Decision, Audit and Principal Authentication
objects defined in Section 15.7.4, Implementation-Level Security Object Interfaces.

• This also includes the CORBA changes defined in Appendix B, Summary of
CORBA 2 Core Changes.

D.5.2 ORB Services Replaceability

Conformance to this allows an ORB to know little about security except which
interceptors to call in what order. This is intended for ORBs, which may use different
ORB services from different vendors, and require these to fit together. It therefore
provides a generic way of calling a variety of ORB Services, not just security ones. It also
assumes that any of these services may have associated policies, which control some of
their actions.

Support for this replaceability option requires an ORB to:

• Use the Interceptor interfaces defined in Section B.6 to call security interceptors
defined in Section 15.7.3, Security Interceptors, in the order defined there.

• Use the get_policy interfaces (and the associated security policy interfaces su
as access_allowed , audit_needed defined in Section 15.7.4,
Implementation-Level Security Object Interfaces, for access control and audit and
also get_association_options and get_delegation_mode defined in
Section 15.6.6, Secure Invocation and Delegation Policies, for association options
quality of protection of messages, and delegation).

D.5.3 Security Ready for Replaceability

An ORB is Security Ready for Replaceability if it does not provide any security
functionality itself, but does support one of the security replaceability options.

Security Functionality Required

An ORB that is Security Ready does not have to provide any security functionality,
though must correctly respond to a request for the security features supported.
15-238 CORBAservices November 1996

15

the

ity

RB

,

ons,
nce the

 for
rithms,

Security Interfaces Supported
• get_service_information operation providing security options and details

(see Section 15.5.2, Finding Security Features).

• get_current operation to obtain the Current object for the execution context
(see Section B.3, Extension to the Use of Current).

Other Security Conformance

An ORB that is Security Ready for replaceability supports one of the replaceability
options. This should be done in such a way that the ORB can work without security, but
can take advantage of security services when they become available. So it calls on
replaceability interfaces correctly (using dummy routines to replace security services
when these are needed, but not available).

The ORB may also conform to secure interoperability, meaning it can transmit secur
tokens and handle protected messages returned by security interceptors and/or services in
accordance with the secure interoperability security conformance option.

D.6 Secure Interoperability

The definition of secure interoperability in this document specifies that a conformant O
can:

• Generate, and take appropriate action on, Interoperable Object References (IORs)
which include security tags as specified in Section 15.8, Security and
Interoperability.

• Transmit and receive the security tokens needed to establish security associati
and also the protected messages used for protected requests and responses o
association has been established according to the protocol defined in Section 15.8.

Note that a Security Ready ORB (i.e. with no built-in security functionality) may, by
additions of appropriate security services, conform to secure interoperability.

The current security specification does not mandate a particular security mechanism for
security associations (or the associated set of cryptographic algorithms they use), so
ORBs to interoperate securely, they must choose to use the same mechanism, algo
etc. (or use a bridge between them, if available). A future specification is expected to
cover standard security mechanisms and algorithms.

D.6.1 Secure Interoperability - Standard

An ORB that conforms to this must support the security-enhanced IOR defined in Section
15.8, Security and Interoperability, and also GIOP/IIOP protocol with the SECIOP
enhancements as defined in Section 15.8. (This is in line with CORBA 2 interoperability,
where all interoperable ORBs must support the IOR and GIOP/IIOP.)
Security Service: v1.0 November 1996 15-239

15

 may

As for CORBA 2, this may be done by immediate bridges or half bridges. (However,
use of half bridges implies more complex trust relationships, which some systems
not be able to support.) This allows a large range of security mechanisms to be used.

D.6.2 Secure Interoperability with DCE-CIOP Option

An ORB that conforms to this must conform to Standard Secure Interoperability using
GIOP/IIOP as described in Section D.6.1, and also support secure interoperability using
DCE-CIOP as defined in Section 15.8, Security and Interoperability.

The only security mechanism supported is DCE Security. Any version of DCE up to and
including DCE 1.1 is supported; the DCE interfaces and protocols are specified in X/Open
Application Environment Specification for Distributed Computing.
15-240 CORBAservices November 1996

15

ity
s

hiness

y
ess.

e

stem.
 Appendix E Guidelines for a Trustworthy System

E.1 Introduction

This appendix provides some general guidelines for helping ORB implementors produce a
trustworthy system. The intention is to have all information related to trustworthiness and
assurance in this appendix, to explain how the specification has taken into account the
requirements for assurance, and also to show how conformant implementations can have
different levels of assurance.

The remainder of the introduction first provides the rationale for including these
guidelines in the specification, and then gives some background on trustworthiness and
assurance. Section E.2, Protecting Against Threats, describes the threats and
countermeasures relevant to a CORBA security implementation. Sections E.3 through E.6
provide the architecture and implementation guidelines for each security object model
described in Section 15.4, Security Architecture.

E.1.1 Purpose of Guidelines

The security standards proposed in this specification have been deliberately chosen to
allow flexibility in the security features, which can be provided. The specification can
support significantly different security policies and mechanisms for security functions
such as access control, audit and authentication. However, there is an overall secur
model which applies whatever the security policy. This is described in the earlier section
of the document.

There is also flexibility in the level of security assurance, which can be provided,
conforming to this model and these standards. This appendix describes the trustwort
issues underlying the security model and interfaces described earlier in the document, and
provides implementation guidance on what components of the architecture need to be
trusted and why. Note that trust requirements assume conformance to all of the securit
models, including the implementor’s view, as the implementation affects trustworthin
If a CORBA security implementation conforms to the security features replaceability
level, but not the ORB services one, any requirements on ORB services will apply to th
ORB. Trustworthiness will also depend on several other implementation choices, such as
the particular security technology used.

E.1.2 Trustworthiness

Before an enterprise places valuable business assets within an IT system, enterprise
management must decide whether the assets will be adequately protected by the sy
Management must be convinced that the particular system configuration is sufficiently
trustworthy to meet the security needs of the enterprise environment. Security
trustworthiness is thus the ability of a system to protect resources from exposure to misuse
through malicious or inadvertent means.

The basis for trust in distributed systems differs from host-centric stand-alone systems
largely for two reasons. First, the assignment of trust in a distributed system is not isolated
Security Service: v1.0 November 1996 15-241

15

st in

 that

RBA

t it is

rall
se of

 so

trade-
to a single global system mechanism. Second, the degree of trust in elements of distributed
systems (particularly distributed object systems) may change dynamically over time,
whereas in host-centric systems trustworthiness is typically static. In many cases, tru
distributed systems must be seen in the context of mutual suspicion.

E.1.3 Assurance

Assurance is a qualitative measure of trustworthiness; assurance is the confidence that a
system meets enterprise security needs. The qualitative nature of assurance means
enterprises may have different assurance guidelines for an equivalent level of confidence
in security. Some organizations may need extensive evaluation criteria, while other
organizations need very little evidence of trustworthiness.

It is necessary to set a context by which CORBA developers and end-users of the CO
Security specification may evaluate the level of security to meet their needs. A single
overall trust model that underlies the security reference model and architecture (as
described elsewhere in this specification) can set this context for closed systems, bu
unlikely that a single trust model exists for the diversity of open distributed systems likely
to populate the distributed object technology world.

To support a balanced approach, assurance arguments should be assembled from a set of
system building blocks. Concepts of system composition and integration should allow the
assurance analysis to be tailored to specific user requirements. Assurance evidence should
be carefully packaged to best support enterprise decision-makers during the security trade-
off process.

The security object models defined by the CORBA Security specification are the basis for
the necessary building blocks. The trust guidelines described in Section, Guidelines for
Structural Model, provide constraints on how these components may relate.

The relationship between assurance and security provides the foundation for the ove
security model. The key characteristic is balance. Balanced assurance promotes the u
assurance arguments and evidence appropriate to the level of risk in the system
components.

Basic system building blocks, such as those in the CORBA Security specification
previously noted, are critical to developing balanced assurance. For example,
confidentiality is of most importance to a classified intelligence or military system,
whereas data integrity may be of more importance in a computer patient record system.
The former relies on assurance in the underlying operating system, where the latter
focuses security in application software.

E.2 Protecting Against Threats

An enterprise needs to protect its assets against perceived threats using appropriate
security measures. This document addresses security in distributed object systems,
focuses on the threats to assets, software, and data, in such systems.

An enterprise may want to assess the risk of a security breach occurring, against the
damage which will be done if it does occur. The enterprise can then decide the best
15-242 CORBAservices November 1996

15

nd

geted

RBA-
off between the cost of providing protection from such threats and any performance
degradation this causes, against the probability of loss of assets. This specification allows
options in how security is provided to counter the threats. However, it is expected that
many enterprises will not undertake a formal risk assessment, but rely on a standard level
of protection for most of their assets, as identified by industry or government criteria. This
section describes CORBA-specific security goals, the main distributed system threats, and
protection against them. The discussion does not emphasize generic issues of threats a
countermeasures, but instead concentrates on issues that are unique to the CORBA
security architecture.

E.2.1 Goals of CORBA Security

The overall goals of the CORBA security architecture were described in Section 15.1,
Introduction to Security. CORBA security is based on the four fundamental objectives of
any secure system:

• Maintain confidentiality of data and/or system resources.

• Preserve data and/or system integrity.

• Maintain accountability.

• Assure data/system availability.

Many of the goals described in Section 15.1 are relevant to any IT system that is tar
at large-scale applications. However, some security goals described are specific to the
CORBA security architecture. These goals deserve special attention because they surface
potential threats that may not be encountered in typical architectures. CORBA-specific
security goals include:

• Providing security across a heterogeneous system where different vendors may
supply different ORBs.

• Providing purely object-oriented security interfaces.

• Using encapsulation to promote system integrity and to hide the complexity of
security mechanisms under simple interfaces.

• Allowing polymorphic implementations of objects based on different underlying
mechanisms.

• Ensuring object invocations are protected as required by the security policy.

• Ensuring that the required access control and auditing is performed on object
invocation.

The discussion of the architecture and implementation guidelines in Section E.3,
Guidelines for Structural Model, addresses the mechanisms used to ensure these CO
specific security goals, as well as many other generic security issues.
Security Service: v1.0 November 1996 15-243

15

uted
d

the

s and

l

d

r
E.2.2 Threats

The CORBA security model needs to take into account all potential threats to a distrib
object system. It must be possible to set a security policy and choose security services an
mechanisms that can protect against the threats to the level required by a particular
enterprise.

A security threat is a potential system misuse that could lead to a failure in achieving
system security goals previously described. Section 15.1, Introduction to Security,
provided an overview of security threats in a distributed object system. These threat
related attacks include:

• Information compromise - the deliberate or accidental disclosure of confidentia
data (e.g., masquerading, spoofing, eavesdropping).

• Integrity violations - the malicious or inadvertent modification or destruction of
data or system resources (e.g., trapdoor, virus).

• Denial of service - the curtailment or removal of system resources from authorize
users (e.g., network flooding).

• Repudiation of some action - failure to verify the actual identity of an authorized
user and to provide a method for recording the fact (e.g., audit modification).

• Malicious or inadvertent misuse - active or passive bypassing of controls by
either authorized or unauthorized users (e.g., browsing, inference, harassment).

The threats described above give rise to a wide variety of attacks. Most if not all the
threats that pertain to host-centric systems are pertinent to distributed systems.
Furthermore, it appears likely that the wide distribution of resources and mediation in
truly distributed systems will not only exacerbate the strain on host-centric security
services and mechanisms in use today on client/server systems, but also engender new
forms of threat.

Threats may be of different strengths. For example, accidental misuse of a system is easie
to protect against than malicious attacks by a skilled hacker. This specification does not
attempt to counter all threats to a distributed system. Those that should be countered by
measures outside the scope of this specification include:

• Denial of service, which may be caused by flooding the communications with
traffic. It is assumed that the underlying communications software deals with this
threat.

• Traffic analysis.

• Inclusion of rogue code in the system, which gives access to sensitive information.
(This affects the build and change control process.)

E.2.3 Vulnerabilities of Distributed Object-Oriented Systems

Vulnerabilities are system weaknesses that leave the system open to one or more of the
threats previously described. Information systems are subject to a wide range of
vulnerabilities, a number of which are compounded in distributed systems. These
15-244 CORBAservices November 1996

15

ntrols
n

at user

ting

they

rget

 false

in a

ill
vulnerabilities often result from deliberate or unintentional trade-offs made in system
design and implementation, usually to achieve other more desirable goals such as
increased performance or additional functionality.

Classes of vulnerabilities include:

• An authorized user of the system gaining access to some information which should
be hidden from that user, but has not been properly protected (e.g., access co
have not been properly set up or the store occupied by one object has not bee
cleared out when another reuses the space).

• A user masquerading as someone else, and so obtaining access to whatever th
is authorized to do, resulting in actions being attributed to the wrong person. In a
distributed system, a user may delegate his rights to other objects, so they can act
on his behalf. This adds the threat of rights being delegated too widely, again,
causing a threat of unauthorized access.

• Controls that enforce security being bypassed.

• Eavesdropping on a communication line giving access to confidential data.

• Tampering with communication between objects: modifying, inserting, and dele
items.

• Lack of accountability due, for example, to inadequate identification of users.

System data as well as business data must be protected. For example:

• If a principal’s credentials are successfully obtained by an unauthorized user,
could be used to masquerade as that principal.

• If the security sensitive information in the security context between client and ta
object is available to an unauthorized user, confidential messages can be read, and
it may be possible to modify and resend integrity-protected messages or send
messages without this being detected.

As described earlier, system threats and vulnerabilities are compounded by the
complexities of distributed object-based systems. Some of the inherent characteristics of
distributed object systems that make them particularly vulnerable include:

• Dynamic Systems -- Distributed object systems are always changing. New
components are constantly being added, deleted, and modified. Security policies
also may be dynamically modified as enterprises change. Dynamic systems are
inherently complex, and thus security may be difficult to ensure. For example,
large distributed object system it will be difficult to update a security policy
atomically. While an administrator installs a new policy on some parts of the
system, other parts of the system still may be using the old version of the policy.
These potential inconsistencies in policy enforcement could lead to a security
failure.

• Mutual Suspicion -- In a large distributed system, some system components w
not trust others. Mistrust could occur at many layers within the architecture:
principals, objects, administrators, ORBs, and operating systems may all have
varying degrees of trustworthiness. In this environment, there is always the
Security Service: v1.0 November 1996 15-245

15

us

ys

rity

ain
a

ll.

e
e

els

t

e
potential to inadvertently place unjustified trust in some system component, th
exposing a vulnerability. Although there are many mechanisms (e.g., cryptographic
authentication) to ensure the identity of a remote component, the system security
architecture must be carefully structured to ensure that these checks are alwa
performed.

• Multiple Policy Domains -- Distributed object systems that interconnect many
enterprises are likely to require many different security policy domains, each one
enforcing the security requirements of its organization. There is no single secu
policy and enforcement mechanism that is appropriate for all businesses. As a
result, security policies must be able to address interactions across policy dom
boundaries. Defining the appropriate policies to enforce across domains may be
difficult job. Mismatched policies could lead to vulnerabilities.

• Layering of Security Mechanisms -- Distributed object systems are highly
layered, and the security mechanisms for those systems will be layered as we
Complex, potentially nondeterministic interactions at the boundary of the layers is
another area for vulnerabilities to occur. A hardware error, for example, could caus
security checking code in the ORB to be bypassed, thus violating the policy. Th
complexity of the layering is further compounded in systems where security
enforcement is widely distributed; that is, there is no clear security perimeter
containing only a small amount of simple functionality.

• Complex Administration -- Finally, large geographically distributed object
systems may be difficult to administer. Security administration requires the
cooperation of all the administrators, who even may be mutually suspicious. All of
the issues listed above lead to complex, error-prone administration. An innocent
change to a principal’s access rights, for example, could expose a serious
vulnerability.

E.2.4 Countermeasures

Some threats are common across most distributed secure systems, so should be countered
by standard security features of any OMA-compliant secure systems. However, the level
of protection against these threats may vary. Complete protection is almost impossible to
achieve. Most enterprises will want a balance between a level of protection against threats
which are important to them, and the cost in performance and use of other resources of
providing that level of protection.

A number of measures exist for countering or mitigating the effects of the above
threats/attacks. Countering these threats requires the use of the security object mod
described in this specification. Relevant features of the object models include the
following:

• Authentication of principals proves who they are, so it is possible to check wha
they should be able to do. This check can be performed at both client and target
object, as the client principal’s credentials can be passed to the server.

• Authentication between clients and target objects allows them to check that they ar
communicating with the right entities.
15-246 CORBAservices November 1996

15

nsit
,

,

el
• Security associations can protect the integrity of the security information in tra
between client and target object (e.g., credentials, keys) to prevent theft and replay
and keep the keys used for protecting business data confidential.

• Business data can be integrity-protected in transit so any tampering is detected
using the message protection ORB services. (This includes detecting extra or
missing messages, and messages out of sequence.)

• Unauthorized access to objects is protected using access controls.

• Misuse of the system can be detected using auditing.

• Segregating (groups of) applications from each other and security services from
applications can prevent unauthorized access between them.

• Bypassing of security controls is deterred by use of a Trusted Computing Base
(TCB), where security is automatically enforced during object invocation.

Assurance arguments and evidence are frequently founded on the concept of a TCB
which mediates security by segregating the security-relevant functions into a security
kernel or reference monitor.

A traditional monolithic TCB approach is not suitable for the open, multiuser, multiple
environment situations in which most CORBA users reside. In many cases, for example,
secure interoperability of CORBA applications and ORBs may be based on mutual
suspicion. TCB scalability issues also argue against typical TCB approaches. Given the
complexity of distributed systems, it is not clear whether centralized access mediation is
possible in the presence of distributed data and program logic.

Traditional TCB approaches also do not adequately address application security
requirements, particularly for many commercial applications. Applications common to the
CORBA world such as general purpose DBMSs, financial accounting, electronic
commerce, or horizontal common facilities will have many security requirements in
addition to those that can be enforced by a central underlying TCB.

Despite the limitations of the traditional TCB, we use the concept of a distributed TCB in
the assurance discussions of the next section. The concept of a distributed TCB is the
collection of objects and mechanisms that must be trusted so that end-to-end security
between client and target object is maintained. However, note that depending on the
assurance requirements of a particular CORBA security architecture, sensitive data may
still be handled by “untrusted” ORB code. Thus, our informal use of the distributed TCB
concept may not correspond to other existing models for network TCBs, particularly for
minimal assurance commercial CORBA security applications.

E.3 Guidelines for Structural Model

This section provides architecture and implementation guidelines for the structural mod
of the CORBA security architecture described in Section 15.4, Security Architecture. The
security functions provided in the model and the basis for trust are described.
Security Service: v1.0 November 1996 15-247

15

rity

 the
E.3.1 Security Functions

Figure 15-56 outlines interactions during a normal use of the system. It gives a simple
case, where the application is unaware of security except for calling a security service
such as audit. The security interactions include those seen by application objects and
secure object system implementors.

Figure 15-56Normal System Interactions

This diagram is the basis for the discussions of security functions in each of the secu
object models described next.

E.3.2 Basis of Trust

Enterprise management is responsible for setting the overall security policies and ensuring
system enforcement of the policies.

The system developer and systems integrators must provide a system that supports
required level of assurance in the core security functionality. Generally application
developers cannot be expected to be aware of all the threats to which the system will be
subject, and to put the right countermeasures in place.

Higher levels of security may require the code enforcing it to be formally evaluated
according to security criteria such as those of the US TCSEC or European ITSEC.

Client

ORB

Target
Object

Security

Services
ORB

Services

Clientnon-repud

Credentials

audit etc.

ORB
Security

user

.. object reference

CurrentObj RefCredentials

Application View

System
Implementor’s

View

security tokens

transformed request
15-248 CORBAservices November 1996

15

d on

her.

.

Distributed Trusted Computing Base

The key security functionality in the system is enforced transparently to the application
objects so that it can be provided for application objects, which are security unaware. This
key functionality is contained in the distributed TCB of the system. It is therefore
responsible for ensuring that:

• Users cannot invoke objects unless they have been authenticated (unless the
security policy supports unauthenticated, guest access for some services).

• Security policies on access control, audit, and security association are enforce
object invocation. This includes policies for message protection, both
confidentiality (ensuring confidential data cannot be read) and integrity (ensuring
any corruption of data in transit is detected).

• A principal’s credentials are automatically transferred on object invocation if
required, so the access control and other security policies can be enforced at the
server object.

• Application objects which do not trust each other cannot interfere with each ot

• The security policy between different security policy domains is suitably mediated

• The security mechanisms themselves cannot be tampered with.

• The security policy data cannot be changed except by authorized administrators.

• The system cannot be put into an undefined or insecure state as a result of the
operation of nonprivileged code.

The distributed TCB also needs to provide the required information so that applications
can enforce their own security policies in a way that is consistent with the domain security
policy.
Security Service: v1.0 November 1996 15-249

15
Figure 15-57Distributed TCB

The TCB in an OMA-compliant secure system is normally distributed and includes
components as follows.

• The distributed core ORBs and associated Object Adapters
Core ORBs are trusted to function correctly and call the ORB Security Services
correctly in the right order, but do not need to understand what these do.
Object Adapters are trusted to utilize the operating system facilities to provide the
required protection boundaries between components in line with the security policy.

• The associated ORB Services
ORB Services other than security are trusted similarly to the ORB. ORB Security
Services are used to provide the required security on object invocation.

• Related objects
ORB Services use objects such as the binding and Current to find which security is
required.

• Security objects
Security objects include those available to applications such as Principal
Authentication and Credentials and those called by security interceptors (Vault,

AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Core ORBS and OAs

Binding

Application

Current

lower layer
communications

External Security Services

Operating System, Hardware

Security Objects
(Principal Authentication, Credentials, Security policies,

Vault, Security Context, Access Decision)

(Distributes) Trusted Computing Base

ORB
Services
15-250 CORBAservices November 1996

15

g the

nsure
and

y

to

Security Context, Access Decision, and Security Audit). These are trusted to
function correctly to enforce security in line with the security policy and other
requirements.

• Any external security services used by the security services, as part of enforcin
security policy.

• The supporting operating systems.
These are trusted to ensure that objects (in different trust domains) cannot interfere
with each other (using protection domains). The security services should also e
that the security information driving the security policy (such as the credentials
security contexts) is adequately protected from the application objects using such
features.

• Optionally, lower layer communications software. However, this does not generall
need to be particularly secure (at least for normal commercial security) as
protection of data in transit is done by the security association and message
protection interceptors, which are independent of the underlying communication
software.

A distributed system may be split into domains, which have different security policies.
These domains may include ORBs and ORB Services with different levels of trust. Trust
between domains needs to be established, and an interdomain policy between them
enforced. The ORB security services (and external security services that these call)
provide this interdomain working are part of the distributed TCB. Note, therefore, that the
parts of this TCB in different domains may have different levels of trust.

Note that application objects may enforce their own security polices, if these are
consistent with the policy of the security domain. However, failure to enforce these
securely will affect only the applications concerned and any other application objects that
trusted them to perform this function.

Protection Boundaries

The general approach is to establish protection boundaries around groups of one or more
components, which are said to belong to a corresponding protection domain.
Components belonging to a protection domain are assumed to trust each other, and
interactions between them need not be protected from each other, whereas interactions
across boundaries may be subject to controls. Protection Boundaries and Domains are a
lower level concept than Environment Domains; they are the fundamental protection
mechanism on which higher levels are built.

At a minimum, it must be possible to create protection boundaries between:

• Application components that do not trust each other.

• Components that support security services and other components.

• Components that support security services and each other.
Security Service: v1.0 November 1996 15-251

15

ans
le,

ries
re

ple,
Controlled Communications

As well as providing protection boundaries, it is necessary to provide a controlled me
of allowing particular components to interact across protection boundaries (for examp
an application invoking a Security Object (explicitly), or an interceptor (implicitly).

It must not be possible for applications to bypass security services which enforce security
policies. It is therefore necessary to ensure that the components supporting those services
are always invoked when required. This is achieved by using both protection bounda
and controlled communications to ensure that client requests (and server responses) a
routed via the components (interceptors and Security Objects), which implement the
security services.

Figure 15-58 illustrates the segregation of components implementing security services
into separate protection domains from application components; the only means of
communication between components is via controlled communication paths.

Figure 15-58Base Protection and Communications

In implementation terms, components could, for example, be executed in separate
processes, with process boundaries acting as protection boundaries. Alternatively, security
services could be executed in-process with (i.e. in the same address space as)
corresponding client and server application components, provided that they are adequately
protected from each other -- for example, by hardware-supported multilevel access control
mechanisms).

Figure 15-59 shows two examples of protection boundaries. In the first example, the
boundaries between components might be process boundaries. In the second exam
ORB and security components might be protected from applications by memory
protection mechanisms (e.g. kernel and user spaces) and client and server components
might be protected from each other by physical separation.

Client Server
Logical Object Request

Security Services

Base Protection and Communications
15-252 CORBAservices November 1996

15

is

by

to
Figure 15-59Protection Boundaries

E.3.3 Construction Options

For some systems, the TCB in domains of the distributed system may need to meet
security evaluation criteria for both functionality and assurance (in the correctness and
effectiveness of the security functionality) as defined in TCSEC, ITSEC, or other security
evaluation criteria.

The split into components previously described allows a choice over the way the system
constructed to meet different requirements for assurance and performance.

This section describes three options for how the system may be constructed, as follows:

• A commercial system where all applications are generated using trusted tools.

• A commercial system with limited security requirements.

• A higher security system.

Note: These are just examples to show the type of flexibility provided by the security
model. It is not expected that any implementation will provide all the options implied
these.

Example Using Trusted Generation Tools and ORBs

If all applications are generated using trusted tools, applications can be trusted not to
interfere with other components in the same environment. Therefore there is no need
provide protection boundaries between different application objects or between
application objects and the underlying ORB.

If the ORB and ORB Services are also trusted, there may need be no need to provide a
protection boundary between the ORB and the underlying security services and objects. It
may well be acceptable to run them all in the same process, relying on the trust between
the components, rather than more rigidly enforced boundaries.

AAAAAAAAAAAAAAAAAAAAAA

AA
AA
AA
AA

AAAAAAAAAAAAAAAAAAAAAAA
A
A
A

Hardware and Operating System
AAAAAAAAAAAAAAAAAAAAA

A
A
A
A

AAAAAAAAAAAAAAAAAAAAAA
A
A
A

Hardware and Operating System

Client ClientServer ServerApplications

Security etc.

ORB
Security Service: v1.0 November 1996 15-253

15

urity
ur

ty of

he

 the

rrupt.
However, if the application generation tools and the ORB are less trusted than the sec
services, then there may need to be a protection boundary to prevent access to secity-
sensitive information in the Credentials, Security Context, and Vault objects.

Commercial System with Limited Security Requirements

Some systems may not contain very sensitive business information, so enterprises may not
be prepared to pay for a high level of security. They may also know that the probabili
serious malicious attempts to break the system is low, and decide that protecting against
such attempts is not worth the cost. They may also choose not to sacrifice performance for
better levels of security.

In many systems, applications are generated using tools that are not particularly trusted.
For example, using a C compiler, it would be possible to write an application that can
read, or even alter, any information within the same protection domain. Theoretically,
providing good security implies putting protection boundaries between each application
object, and between applications and the ORB and Security Services.

The security model allows environment domains to be defined, where enforcement of
policy can be achieved by means local to the environment. For example, objects in t
same identity domain can share a security identity. Applications belonging to environment
domains may trust each other not to interfere with each other, and so can be put in the
same protection domain.

It may also be acceptable to run (part of) the ORB in the same protection domain as
application objects. This assumes that an interface boundary between applications and the
ORB is sufficient protection from accidental damage (the probability of an application
corrupting an ORB being low in a commercial system). Even if the application does
corrupt the ORB, damage is limited, as the ORB does not handle security-sensitive data.

In some commercial systems, it may also be acceptable to run some of the security
services in the same protection domain as the application and ORB. The chance of these
being accidentally (or maliciously) corrupted may be low, so it may be acceptable to risk a
failure to enforce the access control policy because the Access Decision object is co

However, it will often be desirable to protect the state information of security objects,
which contain very sensitive security information from the applications.

Higher Security System

In a security system requiring high assurance, different security policies may be used. For
example, label-based access controls may be used and these may be mandatory (set under
administrator’s controls) and not changeable by application objects.

Stronger protection boundaries are also likely to be needed, allowing:

• Individual applications to be protected from each other. Even if environment
domains are used, the size of the domain is likely to be smaller.

• The ORB and ORB Services to be protected from the application.
15-254 CORBAservices November 1996

15

m

tion

n

ent

• The core security objects, which contain security-sensitive information such as keys
to be protected from applications and ORBs, etc.

• Particular secure objects (e.g. the Access Decision objects) to be separate fro
others, as they may have been written by someone less trusted than those who
wrote, for example, the Security Context objects.

E.3.4 Integrity of Identities (Trojan Horse Protection)

In traditional procedural systems, protecting the integrity of an identity is
straightforward; programs are stored in files, which are protected against modifica
by operating system access control mechanisms. When invoked, programs run inside a
process whose address space is protected by operating system memory protectio
mechanisms. Programs load code in fairly predictable ways.

Since this specification does not mandate which entities have identities, implementors
have a wide variety of choices; identities may be associated, for example, with the
following:

• Object instances

• Servers

• Object adaptors

• Address spaces

If identities are associated with object instances, precautions are necessary to prev
object instance code from being modified by other code (which may have no identity,
or a different identity) in the instance’s address space.

Servers may permit dynamic instantiation of previously unknown classes into their
address spaces. This makes it difficult to determine what code is running under an
identity if identities are associated with servers; this in turn makes it difficult to
determine whether a server identity can be “trusted.” Identified servers must therefore
be provided with some way of controlling what code can run under their identities.

Observing the following guidelines will help to ensure integrity of identities.

• Code running under one identity must not be permitted to modify code running
under another identity without passing an authorization check.

• It must be possible for an identified “entity” to control which code runs within the
scope of its identity.

E.4 Guidelines for Application Interface Model

This section provides architecture and implementation guidelines for the application
interface model of the CORBA security architecture described in Section 15.4, Security
Architecture. The security functions provided in the model and the basis for trust are
described.
Security Service: v1.0 November 1996 15-255

15

n

ices
ation

e

of.
 that

ll as
ot

ntrol

t. This

t

E.4.1 Security Functions

Logging onto the System

When a user or other principal wants to use a secure object system, it authenticates itself
and obtains credentials. These contain its certified identity and (optionally) privilege
attributes, and also controls where and when they can be used. This principal informatio
is integrity-protected and it should be possible to ascertain what security service certified
them.

Walkthrough of Secure Object Invocation

The following is a walkthrough of what happens when a client invokes a target object.

• The client invokes the object using its object reference. The ORB Security Serv
are transparent to the client and application object and use the security inform
with the object reference and the security policy to decide on the security facilities
required. There are separate ORB Services for security associations, message
protection, and access control on object invocation, but the audit service can b
called by any or none of these according to security policy.

The client and target object establish the required level of trust in each other,
transmitting security tokens to each other to provide the required degree of pro
For example, they may or may not require mutual authentication. It is expected
most security mechanisms will provide options here, though the details of how they
do this, and the form of tokens used, is mechanism dependent.

The principal’s credentials are normally passed from client to target object
transparently. These should be protected in transit from theft and replay as we
for integrity of the information itself (though some security mechanisms may n
support this). The Vault object will validate these, checking that it trusts who
certified them, as well as whether they are still intact.

Different ORB services may be called at the target end. For example, access co
is normally called at the server, rather than the client.

• Once the security association has been established between client and target object,
the request can be passed using the message protection interceptor to protect i
should be able to provide integrity and/or confidentiality protection. It should also
be able to provide continuous authentication, as the messages will be protected
using keys only known to this client and server (or the trust group for the targe
object).

• The application object may also call security services for access control and audit.
These will use the security information available from the environment to identify
the initiating principal and its privileges.
15-256 CORBAservices November 1996

15

y be
 a

so

alf,

ion.

 with
 the

ati

ct

o be
• This application object may now act as a client, and call further objects. It may
delegate the client’s credentials or use its own (or use both). However, there ma
constraints on whether the client’s credentials can be delegated. For example,
particular principal’s credentials may be constrained to particular groups of objects.

E.4.2 Basis of Trust

Users have some trust in application objects, and application objects have some trust in
other objects. Both may:

• Trust application objects to perform the business functions.

• Have limited trust in some applications, or domains of the distributed system,
restrict which of their privilege attributes are available to these objects.

• Want to restrict the extent that their credentials can be propagated at all.

• Have to prove their identity to the system so it can enforce access on their beh
unless they are only going to access publicly available services.

Both users and applications trust the underlying system to enforce the system security
policy, and therefore protect their information from unauthorized access and corrupt

E.5 Guidelines for Administration Model

This section provides architecture and implementation guidelines for the administration
model of the CORBA security architecture described in Section 15.4, Security
Architecture. The security functions provided in the model and the basis for trust are
described.

E.5.1 Security Functions

Object and Object Reference Creation

When an object is created in a secure object system, the security attributes associated
it depend on the security policies associated with its domain and object type, though
object may be permitted to change some of these. These attributes control what security is
enforced on object invocation (or example, whether access control is needed and, if so, the
Access Decision object to be used; the minimum quality of protection required).

The object reference for a such an object is extended to include some security informon.
For example, it may contain:

• An extended identity. This includes the object identity as normal in an object
reference. However, it will also contain the identity of the trust domain, if the obje
belongs to one. Small objects, which are dynamically created and do not need to be
protected from each other, will normally share a trust domain. There could als
a node identity.
Security Service: v1.0 November 1996 15-257

15

 as

ific

elves,

d, it

t

rust
• Security policy attributes required by the object when invoked by a client such
the minimum quality of protection of data in transit.

• The security technology it supports. It may also contain some mechanism-spec
information such as its public key, if public key technology is being used, and
particular algorithms used.

Much of the information is just “hints” about which security is required, and will be
verified by the ORB services supporting the target object, so does not need protecting.

E.5.2 Basis of Trust

Authorization Policy Information

Domain objects may store policy information inside their own encapsulation
boundaries, or they may store it elsewhere (for example, authorization policy
information could be encapsulated in the state data of the protected objects thems
or it could be stored in a procedural Access Control Manager whose interfaces are
accessible to Domain objects). Wherever authorization policy information is store
must be protected against modification by unauthorized users.

Authorization policy information must be modifiable only by authorized administrators.

Audit Policy Information and Audit Logs

Audit policy information is security sensitive and must be protected against
unauthorized modification. Audit logs are security sensitive and may contain private
information; they should be viewed and changed only by authorized auditors.

• Audit policy information must be modifiable only by authorized audit
administrators.

• Audit logs must be protected against unauthorized examination and modification.

E.6 Guidelines for Security Object Implementation Model

This section provides architecture and implementation guidelines for the security objec
implementation model of the CORBA security architecture described in Section 15.4,
Security Architecture. The security functions provided in the model and the basis for t
are described.

E.6.1 Security Functions

The distributed core ORBs, object adapters, ORB security services, and security objects
provide the underlying implementation to support the application and administration
interfaces.
15-258 CORBAservices November 1996

15

t

 be
ay

the
 an
that
o

,

s
r,

E.6.2 Basis of Trust

Target Object Identities

CORBA objects do not have unique identities; for this reason, when objects that are no
associated with a human user authenticate themselves in a secure CORBA system, they
use “security names.” Successful authentication to a target object indicates that it
possesses the authentication data (perhaps a cryptographic key), which is presumed to
known only to the legitimate owner of the security name. An object’s security name m
be included in references to that object as a “hint.” The question “how do applications
know that the security-name hint is reliable?” naturally arises.

The answer is as follows:

• If the EstablishTrustinTarget security feature is specified, then the security services
defined in this specification will authenticate the target security name found in
target object reference. The semantics of this authentication operation include
assumption that the security name in the reference corresponds to an identity
the user is willing to trust to provide the target object’s implementation. There is n
way for the security services to test this assumption.

• If your implementation provides a trusted source of object references, then
everything will work properly. If you do not have a source of trusted object
references, the specification provides a get_security_names operation on the
object reference through which applications can retrieve the target’s security name
and perform any tests, which may help satisfy them of its validity.

CORBA object references can circulate very widely; for example, they can be
“stringified” and then (potentially) copied onto a piece of paper. Implementations with
very high integrity requirements could ensure that references are trustworthy by providing
a trustworthy service that generates references and cryptographically signs the contents
including the target security name.

Assumptions about Security Association Mechanisms

Implementation of a secure CORBA system requires use of security mechanisms to
enforce the security with the required degree of protection against the threats. For
example, cryptographic keys are normally used in implementing security, for function
such as authenticating users and protecting data in transit between objects. Howeve
different security mechanisms may use different types of cryptographic technology (e.g.
secret or public key) and may use it in different ways when, for example, protecting data
in transit. These cryptographic keys have to be managed, and again, the way this is done is
mechanism specific.

A full analysis of how well an implementation counters the threats requires knowledge of
the security mechanisms used. However, this specification does not dictate that a
particular mechanism is used.

It does assume that the security mechanisms used for authentication and security
associations can provide the relevant security countermeasures listed in Section E.2.4,
Security Service: v1.0 November 1996 15-259

15

e

ll be

 the

 of

ords,
Countermeasures. These are expected to be provided by a number of security
mechanisms, which will be available for protecting secure object systems. Therefore, the
analysis of threats and the trust model assume this facility level.

It would be possible to use a security mechanism that does not provide some of thes
facilities (for example, mutual authentication, or even to switch this off to improve
performance in systems that can provide it). However, if such a system is used, it wi
vulnerable to more threats.

Invoking Special Objects

Some of the objects described in this document are “pseudo” objects, which bypass
normal invocation process and therefore are not subject to the security enforced by the
ORB services. The Current object (used, for example, by the target object to obtain
security information about the client) is of this type. Protection of these objects is provided
by other means, for example, using protection boundaries previously described.

Isolating Security Mechanisms

Figure 15-60 depicts how security functionality and trust is distributed throughout the
architecture.

Figure 15-60Distribution of Security Functionality and Trust

The split of security objects is designed to reduce (as much as possible) the amount
security-sensitive information, which must be visible to applications and ORBs.

• Only log-in applications (where provided) need to handle secrets such as passw
and then only briefly during authentication.

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A

AAA
A
A
A
A
A
A
A
A
A
A
A

Application
may be security unaware

may enforce application security policy

core ORB and OA

must function correctly e.g.
invoke required interceptors

in the right order

ORB security interceptors

must function correctly
ensure security enforced

core security objects - must enforce security
Principal

Authentication

Credentials Vault Security
Context

Access
Decision

Audit
Non-

repudiation
15-260 CORBAservices November 1996

15

is
rget
 the

 are

ity
e
l
e
ty

d
ng

 ORB

tion
m
• Cryptographic keys and other security-sensitive information about principals are
held with Credentials objects. References to Credentials objects are visible to
applications so they can invoke operations on them to, for example, reduce
privileges in the credentials before calling an object. However, no operations on the
Credentials provide visibility of security information such as keys.

• Security information used to protect application data in transit between objects
held in Security Context objects, which are not visible to applications at all. (Ta
applications can ask for attributes associated with an incoming invocation using
Current object.)

Security objects such as Credentials, Security Context, and Access Decision objects
also not used directly by the core ORB, only by the security interceptors. Therefore the
core ORB needs to be trusted to call the interceptors correctly in the right order, but does
not need to understand security or have access to the security-sensitive information in
them.

The split also is intended to isolate components which may be replaced to change secur
policy or security mechanisms. For example, to replace the access control policy, th
Access Decision objects need to be changed. However, the access control interceptor wil
remain responsible for finding and invoking the right Access Decision object. To replac
the security mechanisms for security association, only the Vault and associated Securi
Context objects need to be replaced.

Integrity of the ORB and Security Service Objects

Security in a CORBA environment depends on the correct operation of the ORB an
Security Services. In order for these mechanisms to operate correctly, the followi
rules must be followed.

• The ORB and Vault code must not be modifiable by unauthorized users or
processes.

• The ORB must protect all messages, according to policy, using the message
protection interfaces.

• The ORB must always check the client’s authorization before dispatching a client’s
message to a protected object.

Safeguarding the Object Environment

To guard against unauthorized modification of the ORB and security services,
implementors should use Operating System protection mechanisms to isolate the
and Security Service objects from untrusted applications and user code.

Note that some modifications of ORB or Vault code may not compromise system
integrity. For example, in a CORBA implementation, which relies on third-party
authentication and does not share Vault or ORB objects between processes, corrup
of the client-side Vault (or ORB) by user-written code may not compromise syste
security. (This is because the client-side ORB and Vault in a third-party-based system
Security Service: v1.0 November 1996 15-261

15

n

ng a

d
ants
d to

’s
may, depending upon the implementation, contain only information that the user is
entitled to know and change anyway. In this case, nothing the user can do to
information on his machine will enable him to deceive the third-party authenticatio
server about his identity and credentials.)

Safeguarding the Dispatching Mechanism

To ensure that the ORB always checks the client’s authorization before dispatchi
client’s message to a protected object, ORB implementors should follow one of the
following rules.

• Eliminate “direct dispatching” mechanisms (which permit clients to dispatch
messages directly to target objects without going through the ORB).

• Permit “direct dispatching” only after checking authorization and issuing “restricte
object references” to client objects. A “restricted object reference” is one that gr
access only to those methods of the target object, which the client is authorize
invoke.

Safeguarding Information in Shared Vault Objects

Vault objects encapsulate identity-specific, security-sensitive information (for
example, cryptographic keys associated with Security Context objects). If code owned
by one principal can penetrate a Vault object and examine or modify another
principal’s information, security can be compromised.

In an implementation that does not permit sharing of Vault objects by multiple
identities, this problem does not arise. However, if Vault objects are accessible toand
encapsulate information about multiple identities, the following guidelines should be
observed:

• Do not permit a Vault object, which encapsulates one principal’s Security Contexts,
to exist in the same address space as code running under a different principal
identity.

• If a Vault object contains Security Contexts for two different principals, ensure that
no principal is able to obtain or use another principal’s Security Contexts.
15-262 CORBAservices November 1996

15

e in

 make

ty

s
e
 Appendix F Conformance Statement

F.1 Introduction

A secure object system, like any secure system, should not only provide security
functionality, but should also provide some assurance of the correctness and effectiveness
of that functionality.

Each OMG-compliant secure or security ready implementation must therefore includ
its documentation a conformance statement describing:

• The product’s supported security functionality levels and options, security
replaceability, and security interoperability, as described in Appendix D,
Conformance Details.

• The vendor’s assurance argument that demonstrates how effectively the product
provides its specified security functionality and security policies.

• Constraints on the use of the product to ensure security conformance.

The vendor provides the conformance statement so that a potential product user can
an informed decision on whether a product is appropriate for a particular application.
Ordinary descriptive documentation is not required as part of an OMG-compliant product.
However, because the CORBA security specification provides a general security
framework rather than a single model, there are many different kinds of secure ORB
implementations that conform to the framework. For example, some systems may have
greater flexibility and support customized security policies, while other systems may
come with a single built-in policy. Some systems may strive for a high level of securi
assurance, while others provide minimal assurance. The conformance statement will help
the user understand the security features provided by the product.

Some products will undergo an independent formal security evaluation (such as one
meeting the ITSEC or TCSEC). The OMG security conformance statement does not tak
the place of a formal evaluation, but may refer to formal assurance documentation, if it
exists. When formal evaluations are not required (often the case in commercial systems),
it is expected that the product’s security conformance statement along with supporting
product documentation will provide an adequate description of security functionality and
assurance.
Security Service: v1.0 November 1996 15-263

15
F.2 Conformance Template Overview

The following template specifies the contents for CORBA security conformance
statements. Guidelines for using this template are provided in Section, Conformance
Guidelines.

CORBA Security Conformance Statement
<date>

<product identification>
<vendor identification>

1. Introduction

1.1 Summary of Security Conformance

1.2 Scope of Product

1.3 Security Overview

2. Security Conformance

2.1 Main Security Functionality Level

2.2 Security Functionality Options

2.3 Security Replaceability

2.4 Secure Interoperability

3. Assurance

3.1 Philosophy of Protection

3.2 Threats

3.3 Security Policies

3.4 Security Protection Mechanisms

3.5 Environmental Support

3.6 Configuration Constraints

3.7 Security Policy Extensions

4. Supplemental Product Information
15-264 CORBAservices November 1996

15

rt
rity

re:

rts,
F.3 Conformance Guidelines

The guidelines in this section are intended to help the ORB implementor determine which
information belongs in each section of the conformance statement. The statement will
often be accompanied by product documentation to provide some of the information
needed.

1. Introduction

1.1 Summary of Security Conformance

This section should give a summary of the security conformance provided by the product.
The summary is in the form of a table with boxes that are ticked to show the relevant
conformance.

For the main security functionality level, one of the boxes must be selected (either Level 1
or Level 2), though note that an ORB can be just Security Ready, so does not suppo
either of the main security functionality levels. For security functionality options, secu
replaceability, and secure interoperability, the appropriate boxes should be selected.

1.2 Scope of Product

This section should define what security components this product offers. Examples a

• ORB plus all security services needed to support it plus other object services fitting
with it and meeting the assurance criteria.

• Security-ready ORB.

• Security Services, which can be used with a security-ready ORB.

1.3 Security Overview

This section should give an overview of the product’s security features.

2. Security Conformance

2.1 Main Security Functionality Level

This section should define which main security functionality level this product suppo
Level 1 or Level 2.

Main
Functionali
ty Level

Functiona
l Options Security Replaceability

Security
Interoperability

1 2 Non-
repudiatio
n

ORB
Service
s

Securit
y
Service
s

Security
Ready -
ORB
Services

Security
Ready -
Security
Services

Standar
d

Standar
d
+ DCE-
CIOP
Security Service: v1.0 November 1996 15-265

15

l.

se it is

This should also include any qualifications on that support. For example, any
interpretation of the CORBA security specification and how it is supported, any bells and
whistles around the published interfaces, and any limitations on support for this leve

As in the conformance level descriptions, the description should be divided into:

• The security functionality provided by the product

• The application developer’s interfaces

• The administrative interfaces

2.2 Security Functionality Options

This section should define which functionality options are provided, in particular the
support for non-repudiation.

For non-repudiation, as this is a published interface in this specification, it should be
accompanied by a qualification statement if needed, as for the main security functionality
level.

2.3 Security Replaceability

This section should define whether the product supports replaceability of security
services, ORB services, or neither.

This should also include any qualifications on that support. For example, any
interpretation of the CORBA security specification and how it is supported, any bells and
whistles around the published interfaces, and any limitations on support for this
conformance option.

2.4 Secure Interoperability

This section should define whether the product supports standard secure interoperability,
standard and DCE-CIOP interoperability, or neither. As with the previous sections,
qualifications of the support, interpretations of the CORBA specification, and limitations
should be included as needed.

3. Assurance

If the product already has supporting assurance documentation (for example, becau
being formally evaluated), much of this section may be satisfied by references to such
documentation. Appendix E, Guidelines for a Trustworthy System, provides general
discussions of many of the topics described here, particularly the basis of trust needed for
each of the architecture object models.

3.1 Philosophy of Protection

Overview of supported security policies, security mechanisms and supporting
mechanisms.

3.2 Threats

Description of specific threats intended to be addressed by the system security policy, as
well as those not addressed.
15-266 CORBAservices November 1996

15

per-

,

are
3.3 Security Policies

Description of any predefined policies, including

• Classes of entities (such as clients, objects) controlled by security policy

• Modes of access (conditions that allow active entities to access objects)

• Use of domains (policy, trust, technology)

• Requirements for authentication of principal, client and target objects

• Requirements for trusted path between principals, clients, ORBs, and target objects

• Delegation model

• Security of communications

• Accountability requirements (audit, non-repudiation)

• Environmental assumptions of the policy (e.g. classes of users, LAN/WAN,
physical protection)

3.4 Security Protection Mechanisms

• Rationale for approach

• Identification of components, which must function properly for security policies to
be enforced

• Description of mechanisms used to enforce security policy

• How protection mechanisms are distributed in the architecture

• Why security mechanisms (such as access control) are always invoked and tam
proof

3.5 Environmental Support

• How the underlying environment (such as operating systems, generation tools
hardware, network services, time services, security technology) are used in
providing assurance

• How installation tools ensure secure configuration

• How security management and administration maintains secure configuration

3.6 Configuration Constraints

Constraints to ensure that system security assurance is preserved, for example:

• Requirements on use and development of: clients, target objects, legacy softw

• Limitations on interoperability

• Required software and hardware configuration

3.7 Security Policy Extensions

• Supported security policy extensions, if applicable

• Limitations of extensions
Security Service: v1.0 November 1996 15-267

15

sions
• Requirements imposed on developers to ensure trustworthiness of policy exten

• Supported interactions and compositions of security policies

4. Supplemental Product Information

Supplemental product information is included at the vendor’s discretion. It can be used to
describe, for example:

• Additional security features, not covered by the CORBA Security specification

• The impact of security mechanisms on existing applications
15-268 CORBAservices November 1996

15

g

ions

ypes

s
how
utes.

.

 Appendix G Facilities Not in This Specification

G.1 Introduction

Security in CORBA systems is a big subject, which affects many parts of the Object
Management Architecture. It was therefore decided to phase the specification in line with
the priorities agreed as part of the security evaluation criteria by the Security Workin
Group prior to the production of this specification.

This specification therefore includes the core security facilities and the security
architecture to allow further facilities to be added. Priority has been given to those
requirements most needed by commercial systems. Even with these limitations, the size of
the specification is larger than desirable for OMG members to review easily or for vendors
to implement.

Some of the facilities omitted from this specification are agreed to be required in some
secure CORBA systems, and so are expected to be added later, using the usual OMG
process of RFPs to request their specification.

This appendix lists those security facilities which are not included in the specification, but
left to later specifications, which may be in response to further RFPs for Object Services
or Common Facilities.

G.2 Interoperability Limitations between Unlike Domains

Secure interoperability is included in this specification. This allows applications running
under different ORBs in different domains to interoperate providing that:

• Both support and can use the same security mechanisms (and algorithms, etc.) for
authentication and secure associations (an ORB may support a choice of security
mechanisms).

• Use of these between the domains will not contravene any government regulat
on the use of cryptography.

• The security policies they support are consistent -- for example, use the same t
for privileges which can be understood in both places.

Limitations in the specification which affect this type of interoperability are:

• The standard policies defined do not include specifying different policies when a
client communicates with different domains (though it is possible to define specific
policies to do this).

• There is no specification of the mapping policies required to translate attribute
when crossing a domain boundary where these policies are inconsistent, and
these must be positioned, for example, to allow delegation of the mapped attrib
Again, such mapping policies are not prevented.

• In general, there is no specification of how federated policies are implemented
Security Service: v1.0 November 1996 15-269

15

bject

et

le

ed at

or

ting
• There is no specification of gateways to handle interoperability between security
mechanisms. It is expected that only limited interoperability between particular
security mechanisms will ever be provided, so this is not expected to be the su
of an RFP in the foreseeable future.

G.3 Nonsession-Oriented SECIOP Protocol

The SECIOP protocol defined in Section 15.8, Security and Interoperability, assumes that
all underlying security mechanisms are session-oriented. The current specification does
not support security mechanisms, which encapsulate key distribution and other security
context management information in a single message along with the data being protected
(examples of such mechanisms include those accessed through the proposed intern
IDUP-GSS-API interface). Changes to the SECIOP protocol would be required to support
non-session-oriented protocols.

G.4 Mandatory Security Mechanisms

The current specification does not mandate any particular security mechanism which all
secure ORBs must implement. This is because the submitters did not think it was possib
to specify out-of-the-box interoperability adequately in the timescale of this submission.

G.5 Specific Security Policies

This specification includes some standard types of security policies for security
functionality such as access control, audit, and security of invocations. These are aim
general commercial users. Some enterprises may require other types of policies, for
example, support of mandatory access controls. Where there is a sufficient market f
such policies, new policies may be defined, providing they fit with the replaceability
interfaces defined in this specification.

G.6 Other Audit Services

This specification only contains limited audit facilities, which allow audit records of
security relevant events to be collected. It does not include:

• Filtering of records after generation to further reduce the size of the audit trail.

• Routing audit records to a collection point for consolidation and analysis or rou
some as alarms to security administrators. (However, routing may be done using the
OMG Event Service, if that is secure enough.)

• Audit reporting or analysis tools to use the audit trails to track down problems.
15-270 CORBAservices November 1996

15

w to

 one

ence.

ion

ect to

es
G.7 Management

This specification contains only the management interfaces, which are essential for
security policy management. It specifies how to obtain and use security policy objects.
However, it does not contain:

• All facilities for handling domains, policies other than those required for security
policy administration. This is to avoid unnecessary conflict with System
Management proposals.

• Management of some aspects of security. For example, it does not specify ho
create and install permanent keys, as this is implementation specific.

G.8 Reference Restriction

This specification requires the movement of credentials to delegate access rights from
object to another. Another technique of access rights delegation restricts the use of an
object reference according to a set of criteria. This approach, know as reference
restriction, is under study by a number of vendors, but is not ready for standardization at
this time. The criteria used to restrict references could include:

• Whether an object has the right to assert certain privileges, such as act on behalf of
a principal, act on behalf of a group of principals, act in a particular role, act with a
particular clearance, etc.

• Whether the object reference has been limited to use within a given time interval.

• Whether a particular method can be used by an object holding the object refer

Various techniques for restricting object references have been developed. Some use
cryptographic methods, while others store state in the object associated with the restricted
reference, allowing the object to decide if a method request meets the restricted reference
use criteria.

It is anticipated that vendors will explore this type of access rights delegation and move
towards the standardization of an interface supporting it in a submission to a future RFP.

G.9 Target Control of Message Protection

In the current specification, message protection can be specified by policy administrat
at both the client and the target object.

Requesting an operation on an object may result in many other objects being invoked. The
CORBA security specification in this document allows an intermediate object in such a
chain of objects to delegate received credentials to the next object in the chain (subj
policy). However, the current specification does not allow the application to control when
and where these credentials are used. A later specification may provide such controls to
ride the default quality of protection selectively. Therefore, it could cause some messag
to have different qualities of protection during a security association.
Security Service: v1.0 November 1996 15-271

15

r

by

 in
chain

d

icy

 a

 be

s
The target has no equivalent interface to request the quality of protection for a particula
response. There are cases where this could be useful.

A future security specification should consider adding control of quality of protection
the target for individual responses.

G.10 Advanced Delegation Features

Requesting an operation on an object may result in many other objects being invoked.
The CORBA security specification in this document allows an intermediate object
such a chain of objects to delegate received credentials to the next object in the
(subject to policy).

However, the current specification does not allow the application to control when and
where these credentials are used.

A later specification may provide such controls.

If so, it is expected that a set_controls operation on the Credentials object will be
added to enable the application to set the controls, and a matching get_controls
operation to enable it to see what controls apply (see the set_privileges and
get_attributes operations defined in Interfaces under Section 15.5.4, Credentials).

The set_controls operation would allow the application to specify a set of require
control values such as delegation mode (allowing for richer forms of delegation),
restrictions on where the credentials may be used and/or delegated, and validity period.

Note: These operations were not included in the specification because of concerns about
portability of applications using them. Current delegation implementations use a wide
variety of delegation controls, and some use similar controls in semantically different
ways. Further implementation experience and investigation may make it possible to define
a portable, standard set.

G.11 Reconciling Policy for Overlapping and Hierarchical Domains

This specification does not require support for overlapping or hierarchical security pol
domains. However, it is possible to implement both using the interfaces provided.

Recall from Section 15.6, Administrator’s Interfaces, that the DomainAccessPolicy for
each domain defines which rights are granted to subjects when they attempt to access
objects in the domain. In order to make an access decision, the AccessDecision logic also
needs to know which rights are required to execute the operations of an object, which is
member of the relevant domain. The RequiredRights interface provides this information;
the AccessDecision object will probably use this interface in most implementations.

A RequiredRights instance can be queried to determine which rights a user must
granted in order to be allowed to invoke an object’s operations. The intended use of
DomainAccessPolicy and RequiredRights objects by the AccessDecision object i
illustrated next, in Figure 15-61.
15-272 CORBAservices November 1996

15

r

ls
f

an
oli
the

 input
Figure 15-61Intended Use by AccessDecision

AccessDecision retrieves the relevant policy object by calling
get_domain_managers on the target object reference, and then calling
get_domain_policy(access) on the returned domain manager (assuming fo
purposes of this example that there is only one). It then calls
get_effective_rights on the returned policy object. DomainAccessPolicy cal
get_required_rights on RequiredRights and compares the returned list o
required rights with the effective rights. If all required rights have been granted, it
grants the access.

Figure 15-62 illustrates how the specification could be implemented to support
overlapping access policy domains (i.e. to allow an object to be a member of more th
one domain, such that each domain has an access policy and all domains’ access pcies
are applied). In the diagram, the AccessDecision object must have logic to combine
policies asserted by the various AccessPolicy objects (which may involve evaluating
which AccessPolicy object’s policy takes precedence over the others). Note that the
AccessDecision object knows the target object reference, because it is passed as an
parameter to the access_allowed operation.

AccessDecision

RequiredRights

access_allowed

DomainAccessPolicy

get_effective_rights get_required_rights
Security Service: v1.0 November 1996 15-273

15

Figure 15-62Supporting Overlapping Access Policy Domains

Hierarchical domains can be handled in a similar way as illustrated in Figure 15-63 (note
that once again the AccessDecision object’s implementation is responsible for reconciling
the various retrieved policies).

Figure 15-63Hierarchical Domains

AccessDecision

RequiredRights

access_allowed

get_required_rights

 AccessPolicy

get_effective_rights

DomainManager

get_domain_policy(access)

Target

get_domain_managers

AccessDecision

RequiredRights

access_allowed

get_required_rights

 AccessPolicy

get_effective_rights

DomainManager

get_domain_policy(access)

Target

get_domain_managers

DomainManager AccessPolicy

get_superior_domain_managers
15-274 CORBAservices November 1996

15

target
e
cy

 are

in

g a

this
G.12 Capability-Based Access Control

Capability-based systems store access policy information in tokens, which are passed
from sender to receiver along with a message, rather than in tables associated with
objects or domains. In such systems, the DomainAccessPolicy object will generally not b
used in resolving target-side access control checks. Instead, a CapabilityAccessPoli
object might be returned from a call to object::get_policies in a capability-based
system. This object could retrieve the granted rights from the capability (which will be
associated with the requester’s credentials), illustrated in Figure 15-64.

Figure 15-64Retrieving Granted Rights

Note that neither the CapabilityAccessPolicy interfaces nor the Capability interfaces
defined in this specification (the get_granted_rights call to the capability in the
previous diagram is printed in italics, to indicate that no IDL is provided for it in this
specification). The diagram assumes that CapabilityAccessPolicy inherits the
get_effective_rights operation from AccessPolicy .

G.13 Non-repudiation Services

This specification contains Non-repudiation Services for evidence handling. It is
anticipated that future service offerings could include data protection processing and the
specification of a delivery service. In addition, it is expected that policy processing
interfaces will emerge to cover the broad range of non-repudiation policy coverage with
the service.

It is anticipated that the data protection and delivery service functions will be reachin
level of maturity within other standards domains (such as IETF and ISO SC27), which
should allow a richer definition of these services to be enabled in future revisions of

AccessDecision

RequiredRights

access_allowed

get_required_rights

CapabilityAccessPolicy

get_effective_rights

Capability

get_granted_rights
Security Service: v1.0 November 1996 15-275

15

d
f
specification.

The absence of these services in this specification means that application writers an
manipulators will need to consult local implementation practice for the correct course o
action to be taken when writing or porting their software.

This specification also does not include a standard format of evidence token for
interoperability. In the future, a token format based on public key certificates may be
specified.
15-276 CORBAservices November 1996

15

. Its

(for

.

 Appendix H Interoperability Guidelines

H.1 Introduction

This appendix includes:

• Guidelines for defining Security Mechanism TAGs in Interoperable Object
References (IORs)

• Examples of the secure inter-ORB protocol, SECIOP

H.2 Guidelines for Mechanism TAG Definit ion in IORs

Section 15.8, Security and Interoperability, defined a prototype TAG definition for
security association mechanisms. This appendix provides guidelines that specifiers of
mechanism TAGs (called authors here) should follow.

In addition to registering TAGs with the OMG, authors must lodge a document that
explains how the mechanism (and its associated options) is mapped to this standard
document should:

• Identify the "security mechanism tagged component" being described. It may be
either:

• A new component TAG for the mechanism with a set of options it can have
example, a separate TAG for each combination of mechanism and algorithm),

or

• Use TAG_GENERIC_SEC_MECH and specify the mechanism OID (for use in
the security_mechanism_type field) being described by this specification

It may not be both.

• Specify the scope implied by the above mechanism identifier. This should not
exceed:

• Security association mechanism

• Negotiation protocols

• Cryptographic algorithms

• Authentication method (e.g. public key)

• For the first example under the first bullet, describe the format, contents, and
encoding of the component_data field for the TAG-specific components. For
the second example under the first bullet, describe the format, contents, and
encoding of the data in the mech_specific_data and components fields of the
TAG specific components. In each case, this may include:

• Allocating new component TAGs and describing the format, contents, and
encoding of their data.

• Specifying the use of these new tagged components, as well as other predefined
tagged components within TAG-specific components.
Security Service: v1.0 November 1996 15-277

15

the

art of a

he
e
• Specifying the use of these new tagged components, as well as other predefined
tagged components that may or should appear at the top level of the
multicomponent profile.

• Describe a model that should be followed when defining future extensions or
variations using the same mechanism.

• The author must define either by reference to another document, or explicitly,
format of the context tokens used by the mechanism in the SECIOP protocol.

H.3 SECIOP Examples

H.3.1 Mutual Authentication

In this example, the client wishes to authenticate the identity of the target (in addition to
the targets requirement to authenticate the client) before it is prepared to send a request to
the target.

The client sends an EstablishContext message to the target containing the client’s context
id for the association, and the token required by the target to authenticate it and define the
options chosen by the client for the association. The target verifies the client’s token and
generates the token required by the client to authenticate the target. The target sends this
token (along with the client’s context id for the association and its own) to the client in a
CompleteEstablishContext message. When the client receives this message, it
authenticates the target using the token supplied by the target and establishes the peer id as
part of the context.

Having completed the establishment of the context, the client sends the request as p
MessageInContext message, which includes the target’s context identifier and the
integrity token for the message. When the target receives the message, it identifies t
context by its identifier, checks the integrity of the message with the token, and passes th
message to GIOP. When the reply is returned, it is sealed for integrity and returned to the
client in a SECIOP MessageInContext with the client identifier for the context and the
generated integrity token.
15-278 CORBAservices November 1996

15

t

 its
s its
Figure 15-65Mutual Authentication

H.3.2 Confidential Message with Context Establishment

This example describes how context establishment is combined with the transmission of a
confidentiality protected message when the client does not wish to authenticate the targe
before passing it a message.

The client establishes its context object with identifier c_id_1. This identifier is included
with the token (token_1) in an EstablishContext message. The GIOP request is
transformed into the message seal (ms_1) and sent with the client’s context identifier in a
MessageInContext.

When the target receives the message, it first processes the EstablishContext message,
authenticating the client and allowing the target to create its context object. It then unseals
the message in ms_1 and passes it to GIOP.

When GIOP sends the reply, SECIOP adds a CompleteEstablishContext message to the
MessageInContext message, which protects the reply, to enable the target to return
context identifier to the client. When the client receives the message, it first complete
view of the context (adding the targets id to the state for the context). It can then unseal the
reply from ms_2 and passes the reply message up the protocol stack.

Client establishes
context object id = c_od_1
token = token_1 EstablishContext(c_id_1, token_1)

Target establishes
context objectid = c_id_69
token = token_2

CompleteEstablishContext(c_id_1, c_id_69, token_2)

Client completes context
and transmits signed GIOP
request with sign = ms_1

MessageInContext(peer, c_id_69, ms_1)(GIOP request)

Target checks sign and
processes request, signs
reply and transmits reply
with sign = ms_2

MessageInContext(peer, c_id_1, ms_2)(GIOP reply)

Client checks sign
and processes reply.
Security Service: v1.0 November 1996 15-279

15

he

e

king

own

Figure 15-66Confidential Message with Context Establishment

H.3.3 Fragmented GIOP Request with Context Establishment

In this example, the security context is established as part of the processing of a
fragmented GIOP request (note that the current GIOP protocol does not support
fragmentation, but this example indicates the independence of SECIOP from the current
GIOP protocol and explains how the SECIOP protocol would handle a fragmented GIOP
request). The sequence described reflects the requirement of the target to authenticate t
client’s privileges.

The client establishes its context object (with id c_id_1) and passes this identifier with the
authentication token in an EstablishContext message. As the client does not require
authenticating the target, this message is sent with a MessageInContext message with th
integrity sign (ms_1) and the GIOP fragment (as the message field of the
MessageInContext).

When the target receives the messages, it authenticates the client using token_1. It then
creates a context object with c_id_69, and then processes the MessageInContext, chec
the integrity of the message using sign ms_1. Having checked the message, it passes the
fragment up the protocol stack.

The client sends the final fragment as a MessageInContext with sign ms_2, but as the
target has not yet passed its identifier for the context to the client, the client uses its
identifier for the context.

Client establishes context
object id = c_id_1
token id = token_1
Seals GIOP request into
seal = ms_1 Establish Context(c_id_1, token_1)

MessageInContext(client, c_id_1, ms_1)

Target establishes context
object id = c_id_69
Target unseals and
processes request, seals
reply and transmits
reply in
seal = ms_2

CompleteEstablishContext(c_id_1, c_id_69, nul)
MessageInContext(peer, c_id_1, ms_2)

Client unseals and
processes reply
15-280 CORBAservices November 1996

15

tifier

The target finds its context object from the client’s identifier (c_id_1) and checks the
integrity of the message. It then passes the final fragment up the protocol stack to GIOP.

GIOP now has a complete request and can invoke the object (subject to the access
decision function).

GIOP generates a single fragment reply, which is passed to the SECIOP protocol machine.
The reply is sent within a MessageInContext with sign ms_3. In addition, a
CompleteEstablishContext message is generated to allow the target to pass its iden
for the context (c_id_69) to the client for use in future messages.

The client receives the message and updates its context object to record the target’s
context identifier. It then checks the integrity of the MessageInContext and passes the
reply up the protocol stack (to GIOP).

Figure 15-67Fragmented GIOP Request with Context Establishment

Client establishes context
object id = c_id_1
token id = token_1
Client signs GIOP

sign = ms_1
Establish Context(c_id_1, token_1)
MessageInContext(client, c_id_1, ms_1)

Target establishes context
object id = c_id_69
and checks the fragment

CompleteEstablishContext(c_id_1, c_id_69, nul)
MessageInContext(peer, c_id_1, ms_2)

Client unseals and
processes reply

fragment with

(GIOP fragment)

sign.

Client signs final
fragment with
sign = ms_2 MessageInContext(client, c_id_1, ms_2)

(GIOP fragment)

Target checks sign and
processes request, signs
reply and transmits
reply with
sign = ms_2

(GIOP reply)
Security Service: v1.0 November 1996 15-281

15

.

er to

ty

at a

n

g.
 Appendix I Glossary

I.1 Definitions

absolute time: Time accurate within a known margin of error.

access control: The restriction of access to resources to prevent its unauthorized use

access control information (ACI): Information about the initiator of a resource access
request, used to make an access control enforcement decision.

access control list: A list of entities, together with their access rights, which are
authorized to have access to a resource.

access decision function: The function which is evaluated in order to make an access
control enforcement decision. The inputs to an access decision function include the
requester’s access control information (q.v.), the resource’s control information, and
context data.

ADO: Access Decision Object: The CORBA security object which implements access
decision functions.

accountability: The property that ensures that the action of an entity may be traced
uniquely to the entity.

active threat: The threat of a deliberate unauthorized change to the state of a system.

adjudicator: An authority that resolves disputes among parties in accordance with a
policy. In CORBA security, an adjudicator evaluates non-repudiation evidence in ord
resolve disputes.

anonymous user: A user of the system operating under a distinguished "public" identi
corresponding to no specific user.

assurance: 1. Justified confidence in the security of a system. 2. Development,
documentation, testing, procedural, and operational activities carried out to ensure th
system’s security services do in fact provide the claimed level of protection.

asymmetric key: One half of a key pair used in an asymmetric ("public-key") encryptio
system. Asymmetric encryption systems have two important properties: (i) the key used
for encryption is different from the one used for decryption (ii) neither key can feasibly be
derived from the other.

audit: See security audit.

audit event: The data collected about a system event for inclusion in the system audit lo

audit trail: See security audit trail.

authentication: The verification of a claimant’s entitlement to use a claimed identity
and/or privilege set.

authentication information: Information used to establish a claimant’s entitlement to a
claimed identity (a common example of authentication information is a password).
15-282 CORBAservices November 1996

15

ted

d

f a

 with

 an
authorization: The granting of authority, which includes the granting of access based on
access rights.

availability: The property of being of being accessible and usable upon demand by an
authorized user.

call chain: The series of client to target object calls required to complete an operation.
Used in this specification in conjunction with delegation.

certification authority: A party trusted to vouch for the binding between names or
identities and public keys. In some systems, certification authorities generate public keys.

ciphertext: The result of applying encryption to input data; encrypted text.

cleartext: Intelligible data; text which has not been encrypted or which has been decryp
using the correct key. Also known as "plaintext".

confidentiality: The property that information is not made available or disclosed to
unauthorized individuals, entities, or processes.

conformance level: A graduated sequence of defined sets of functionality defined by the
CORBA Security specification. An implementation must implement at least one of these
defined sets of functionality in order to claim conformance to CORBA Security.

conformance option: A defined set of functionality which implementations may
optionally provide in order to claim CORBA Security conformant functionality over an
above the minimum required by the defined conformance levels.

conformance statement: A written document describing the conformance levels and
conformance options to which an implementation of the OMG CORBA Security
specification conforms.

control attributes: The set of characteristics which restrict when and where privileges can
be invoked or delegated.

counter-measures: Action taken in response to perceived threats.

credentials: Information describing the security attributes (identity and/or privileges) o
user or other principal. Credentials are claimed through authentication or delegation (q.v.)
and used by access control (q.v.).

current object: An object representing the current execution context; CORBA Security
associates security state information, including the credentials of the active principal,
the current object.

DAC: Discretionary Access Control - an access control policy regime wherein the creator
of a resource is permitted to manage its access control policy information.

data integrity: The property that data has not been undetectably altered or destroyed in
unauthorized manner or by unauthorized users.

DCE: Distributed Computing Environment (of OSF).

DCE CIOP:DCE Common Inter-ORB Protocol - the protocol specified in the OMG
CORBA 2.0/ Interoperability specification which uses the DCE RPC for interoperability.
Security Service: v1.0 November 1996 15-283

15

that

et of

 that

.

.

by

e

.

decipherment: Generation of cleartext from ciphertext by application of a cryptographic
algorithm with the correct key.

decryption: See decipherment.

delegation: The act whereby one user or principal authorizes another to use his (or her or
its) identity or privileges, perhaps with restrictions.

denial of service: The prevention of authorized access to resources or the delaying of
time-critical operations.

digital signature: Data appended to, or a cryptographic transformation of. a data unit
allows a recipient of the data unit to prove the source and integrity of the data against
forgery, e.g. by the recipient.

domain: A set of objects sharing a common characteristic or abiding by a common s
rules. CORBA Security defines several types of domains, including security policy
domains, security environment domains, and security technology domains.

domain manager: A CORBA Security object through whose interfaces the characteristics
of a security policy domain are administered.

encipherment: Generation of ciphertext from corresponding cleartext by application of a
cryptographic algorithm and a key.

encryption: See encipherment.

ESIOP: Environment-Specific Inter-ORB Protocol (specified in the OMG CORBA 2.0/
Interoperability specification).

evidence: Data generated by the CORBA Security Non-Repudiation service to prove
a specific principal initiated a specific action.

evidence token: A data structure containing CORBA Security Non-Repudiation evidence

federated domains: Separate domains whose policy authorities have agreed to a set of
shared policies governing access by users from one domain to resources in another

GSS-API: Generic Security Services- Application Programming Interface - specified
RFC 1508 issued by the Internet IETF. An update to this interface is near completion as
this is written, and it is anticipated that RFC 1508 will be superseded by a revised
specification soon.

GIOP: General Inter-ORB Protocol (specified in the OMG CORBA 2.0/ Interoperability
specification.)

group: A CORBA Security privilege attribute. Many users (and other principals) may b
assigned the same group attribute; this allows administrators to simplify security
administration by granting rights to groups rather than to individual principals.

granularity: The relative fineness or coarseness by which a mechanism may be adjusted

hierarchical domains: A set of domains together with a precedence hierarchy defining the
relationships among their policies.
15-284 CORBAservices November 1996

15

s

s,

n
identity: A security attribute with the property of uniqueness; no two principals’ identities
may be identical. Principals may have several different kinds of identities, each unique
(for example, a principal may have both a unique audit identity and a unique access
identity). Other security attributes (e.g. groups, roles, etc...) need not be unique.

immediate invoker: In a delegated call chain, the client from which an object directly
receives a call.

impersonation: The act whereby one principal assumes the identity and privileges of
another principal without restrictions and without any indication visible to recipients of
the impersonator’s calls that delegation has taken place.

initiator : The first principal in a delegation “call chain”; the only participant in the call
chain which is not the recipient of a call.

integrity: In security terms, the property that a system always faithfully and effectively
enforces all of its stated security policies.

interceptor: An object which provides one or more specialized services, at the ORB
invocation boundary, based upon the context of the object request,. The OMG
CORBASecurity specification define the security interceptors.

intermediate: An object in a delegation “call chain” which is neither the initiator or the
ultimate (final) target.

IETF : Internet Engineering Task Force. Reviews an issues Internet standards.

IIOP : Internet Interoperable Object Protocol (specified in the OMG CORBA 2.0/
Interoperability specification).

IOR: Interoperable Object Reference - a data structure specified in the OMG CORBA 2.0/
Interoperability specification.

ITSEC: Information Technology Security Evaluation Criteria (of ECSC-EEC-EAEC).
Harmonized Criteria.

MAC: Mandatory Access Control - an access control regime wherein resource acces
control policy information is always managed by a designated authority, regardless of who
creates the resources.

mechanism: A specific implementation of security services, using particular algorithm
data structures, and protocols.

message protection: Security protection applied to a message to protect it against
unauthorized access or modification in transit between a client and a target.

mutual authentication: The process whereby each of two communicating principals
authenticates the other’s identity. Frequently this is a prerequisite for the establishment of
a secure association between a client and a target.

Non-Repudiation: The provision of evidence which will prevent a participant in an actio
from convincingly denying his responsibility for the action.

ORB Core: The functionality provide by the CORBA Object Request Broker which
provides the basic representations of objects and the communication of requests.
Security Service: v1.0 November 1996 15-285

15

st.

inst

nd

ata.

s

ge-
ORB Services: Elements of functionality provided transparently to applications by the
CORBA Object Request Broker in response to the implicit context of an object reque

ORB technology domain: A set of objects or entities that share a common ORB
implementation technology.

originator: The entity in an object request which creates the request.

passive threat: The threat of unauthorized disclosure of information without changing the
state of the system.

physical security: The measures used to provide physical protection of resources aga
deliberate and accidental threats.

POSIX: Portable Open System Interfaces (for) UNIX - A set of standardized interfaces to
UNIX systems specified by IEEE Standard 1003.

principal: A user or programmatic entity with the ability to use the resources of a system.

privacy: 1. See confidentiality. 2. The right of individuals to control or influence what
information related to them may be collected and stored and by whom that information
may be disclosed.

private key: In a public-key (asymmetric) cryptosystem, the component of a key pair
which is not divulged by its owner.

privilege: A security attribute (q.v.) which need not have the property of uniqueness, a
which thus may be shared by many users and other principals. Examples of privileges
include groups, roles, and clearances.

proof of delivery: Non-repudiation evidence demonstrating that a message or data has
been delivered.

proof of origin: Non-repudiation evidence identifying the originator of a message or d

proof of receipt: Non-repudiation evidence demonstrating that a message or data has been
received by a particular party.

protection boundary: The domain boundary within which security services provide a
known level of protection against threats.

PDU: Protocol Data Unit. The data fields of a protocol message, as distinguished from the
protocol header and trailer fields.

proof of submission: Non-repudiation evidence demonstrating that a message or data ha
been submitted to a particular principal or service.

public key: In a public-key (asymmetric) cryptosystem, the component of a key pair
which is revealed.

public-key cryptosystem: An encryption system which uses an asymmetric-key (q.v.)
cryptographic algorithm.

QOP: Quality of Protection. The type and strength of protection provided by a messa
protection service.
15-286 CORBAservices November 1996

15

ted to a

s

dures.

ust
RPC: Remote Procedure Call.

replaceability: The quality of an implementation which permits substitution of one
security service for another semantically similar service.

repudiation: Denial by one of the entities involved in an action of having participated in
all or part of the action.

RFP: Request for Proposal. An OMG procedure for soliciting technology from OMG
members.

right: A named value conferring the ability to perform actions in a system. Access control
policies grant rights to principals (on the basis of their security attributes); in order to
make an access control decision, access decision functions compare the rights gran
principal against the rights required to perform an operation.

rights type: A defined set of rights.

role: A privilege attribute representing the position or function a user represents in
seeking security authentication. A given human being may play multiple roles and
therefore require multiple role privilege attributes.

RSA: An asymmetric encryption algorithm invented by Ron Rivest, Adi Shamir, and Len
Adelman.

seal: To encrypt data for the purpose of providing confidentiality protection.

secret-key cryptosystem: A cryptosystem which uses a symmetric-key (q.v.)
cryptographic algorithm.

secure time: A reliable Time service that has not been compromised, and whose message
can be authenticated by their recipients.

security association: The shared security state information which permits secure
communication between two entities.

security attributes: Characteristics of a subject (user or principal) which form the basis of
the system’s policies governing that subject.

security audit: The facility of a secure system which records information about security-
relevant events in a tamper-resistant log. Often used to facilitate an independent review
and examination of system records and activities in order to test for adequacy of system
controls, to ensure compliance with established policy and operational procedures, to
detect breaches in security, and to recommend changes in control, policy and proce

 security features: Operational information which controls the security protection applied
to requests and responses in a CORBA Security conformant system.

security context: The CORBA Security object which encapsulates the shared state
information representing a security association.

security policy: The data which defines what protection a system’s security services m
provide. There are many kinds of security policy, including access control policy, audit
policy, message protection policy, non-repudiation policy, etc.
Security Service: v1.0 November 1996 15-287

15

olicy

l

h

ain

ly.

security policy domain: A domain whose objects are all governed by the same security
policy. There are several types of security policy domain, including access control p
domains and audit policy domains.

security service: Code that implements a defined set of security functionality. Security
services include Access Control, Audit, Non-repudiation, and others.

security technology domain: A set of objects or entities whose security services are al
implemented using the same technology.

subject: An active entity in the system; either a human user principal or a programmatic
principal.

symmetric key: The key used in a symmetric ("secret-key") encryption system. In suc
systems, the same key is used for encryption and decryption.

tagged profile: The data element in an IOR which provides the profile information for
each protocol supported.

target: The final recipient in a delegation “call chain.” The only participant in such a call
chain which is not the originator of a call.

target ACI: The Access Control Information for the target object.

target object: The recipient of a CORBA request message.

threat: A potential violation of security.

traced delegation: Delegation wherein information about the initiator and all intervening
intermediates is available to each recipient in the call chain, or to the authorization
subsystem controlling access to each recipient.

trust model: A description of which components of the system and which entities outside
the system must be trusted, and what they must be trusted for, if the system is to rem
secure.

trusted code: Code assumed to always perform some specified set of operations correct

TCB: Trusted Computing Base. The portion of a system which must function correctly in
order for the system to remain secure. A TCB should be tamper-proof and its enforcement
of policy should be noncircumventable. Ideally a system’s TCB should also be as small as
possible, to facilitate analysis of its integrity.

TCSEC: Trusted Computer System Evaluation Criteria (a U.S. Department of Defense
Standard specifying requirements for secure systems).

unauthenticated principal: A user or other principal who has not authenticated any
identity or privilege.

UNO: Universal Networked Objects (an OMG Specification, now obsolete).

UTC: Coordinated Universal Time.

unsecure time: Time obtained from an unsecure time services.

UTO: Universal Time Object.
15-288 CORBAservices November 1996

15

 to

k,

ter
user: A human being using the system to issue requests to objects in order to get them
perform functions in the system on his behalf.

user sponsor: The interactive user interface to the system which acts as the authenticating
authority (e.g. validating passwords) which validate the identity of a user.

vault: The CORBA Security object which creates security context objects.

X/Open: X/Open Company Ltd., U.K.

I.2 References

The following sources were used in the preparation of this glossary:

Applied Cryptography, 2nd edition by Bruce Schneier, John Wiley and Sons, New Yor
1996.

ISO Standard 7498-2, “Information Processing Systems -- Open Systems Interconnection
-- Basic Reference Model -- Part 2:Security Architecture”, International Standards
Organization,1989.

ECMA TR/46 “Security in Open Systems: A Security Framework”, European Compu
Manufacturers Association, 1988.

ITSEC “Information Technology Security Evaluation Criteria" European
Commission, 1991.

DoD Standard 5200.28-STD “Department of Defense Trusted Computer System
Evaluation Criteria”, US Department of Defense, 1985.

X/Open Snapshot: “Distributed Security Framework: Company Review Draft”, X/Open
Company Ltd.,U.K. 1994.

Computer Related Risks: Peter G. Neuman, The ACM Press, 1995
Security Service: v1.0 November 1996 15-289

15
15-290 CORBAservices November 1996

Trading Object Service Specification 16
This chapter provides complete documentation for the Trading Object Service
specification.

Contents

This chapter contains the following sections.

Section Title Page

“Overview” 16-2

“Concepts and Data Types” 16-4

“Exceptions” 16-23

“Abstract Interfaces” 16-28

“Functional Interfaces” 16-30

“Service Type Repository” 16-59

“Dynamic Property Evaluation interface” 16-67

“Conformance Criteria” 16-69

Appendix A, “CORBA OMG IDL based Specification of
the Trading Function”

16-74

Appendix B, “OMG Constraint Language BNF” 16-93

Appendix C, “OMG Constraint Recipe Language” 16-99
CORBAservices March 1997 16-1

16

s
ct
ther

a

f

ling

ility
16.1 Overview

The OMG trading object service facilitates the offering and the discovery of instance
of services of particular types. A trader is an object that supports the trading obje
service in a distributed environment. It can be viewed as an object through which o
objects can advertise their capabilities and match their needs against advertised
capabilities. Advertising a capability or offering a service is called “export.” Matching
against needs or discovering services is called “import.” Export and import facilitate
dynamic discovery of, and late binding to, services.

To export, an object gives the trader a description of a service and the location of an
interface where that service is available. To import, an object asks the trader for
service having certain characteristics. The trader checks against the service
descriptions it holds and responds to the importer with the location of the selected
service’s interface. The importer is then able to interact with the service. These
interactions are shown in Figure 16-1.

Figure 16-1 Interactions between a trader and its clients

Due to the number of service offers that will be offered worldwide, and the differing
requirements that users of a trading service will have, it is inevitable that a trading
service will be split up and the service offers will be partitioned.

Each partition will, in the first instance, meet the trading needs of a community o
clients (exporters and importers). Where a client needs a scope for its trading activities
that is wider than that provided by one partition, it will access other partitions either
directly or indirectly. Directly means that the client interacts with the traders hand
those partitions. Indirectly means that the client interacts with one trader only and this
trader interacts with other traders responsible for other partitions. The latter possib
is referred to as interworking (or federation) of traders.

The trading object service in an OMG environment allows interworking between
traders and objects to:

• export (advertise) services

• import information about one or more exported services, according to some criteria

T

E I

Sequence of interactions:

1. Export
2. Import
3. Service interaction1 2

3

16-2 CORBAservices March 1997

16

os. A
sed

rs, it

chable

d the

To
y
ject

16.1.1 Diversity and Scalability

The concept of trading to discover new services applies to a wide range of scenari
trader may contain numerous offers of service and its implementation may be ba
upon a database. Or, a trader may contain only a few offers and be implementable as a
memory resident trader. These two cases exhibit different qualities: availability and
integrity in the first case and performance in the second. The variation in these
scenarios illustrates the need for scalability, both upwards for very large systemsand
downwards for small, fast systems.

To discover any arbitrary offer of service, a trader needs all offers to be visible to it.
One partition cannot hold every offer, many are held at other partitions; therefore, in
addition to a number of offers, a trader must possess information about other
partitions. However, there is no need for a trader to know about all other partitions.
Some of this knowledge can be utilized indirectly via other traders.

The partitioning of the offer space and the limited knowledge held within one partition
about other partitions is the basis for meeting requirements for both distribution and
contextualisation of the trading object service.

16.1.2 Linking Traders

The requirements to contextualise the offer space and to distribute the trading object
service are both met by linking traders together. When a trader links to other trade
makes the offer spaces of those traders implicitly available to its own clients.

Each trader has a horizon limited to those other traders to which it is explicitly linked.
As those traders are linked to yet more traders, a large number of traders are rea
from a given starting trader. The traders are linked to form a directed graph with the
information describing the graph distributed among the traders. This graph is calle
trading graph.

Links may cross domain boundaries (e.g., administrative, technological, etc.);
therefore, trading is a federated system (i.e., one that spans many domains).

16.1.3 Policy

To meet the diverse requirements likely to be placed upon the trading function, some
degree of freedom is necessary when specifying the behavior of a trader object.
accomplish this, and yet still meet the goals of this specification, the concept of polic
is used to provide a framework for describing the behavior of any OMG trading ob
service implementation.

This specification identifies a number of policies and gives them semantics. Each
policy partly determines the behavior of a trader.

Policies may be communicated during interaction, in which case they relate to an
expectation on subsequent behavior.
Trading Object Service: v1.0 Overview March 1997 16-3

16

n,

ation
 an

vider

rter

face,
16.1.4 Additional ObjectID

A trading object service may be used by an object to bootstrap itself into operation; as
such, this specification mandates an additional ObjectId for use in the
resolve_initial_references() operation defined in the ORB Initialization Specificatio
OMG Document 94-10-24.

The following ObjectId is reserved for finding an initial trading object service:

TradingService

As described in 94-10-24, a client object wishing to obtain an initial trading object
service object reference will invoke the resolve_initial_references() operation, which
has the following OMG IDL signature:

typedef string ObjectId;

exception InvalidName {};

Object resolve_initial_references (in ObjectId identifier) raises
(InvalidName);

The object reference returned as the result of a successful invocation of this oper
when “TradingService” is specified as the ObjectId parameter must be narrowed to
object reference of the appropriate type; for the trading object service this type is
CosTrading::Lookup.

No other extensions are proposed to OMG IDL, CORBA, and/or the OMG object
model.

16.2 Concepts and Data Types

16.2.1 Exporter

An exporter advertises a service with a trader. An exporter can be the service pro
or it can advertise a service on behalf of another.

16.2.2 Importer

An importer uses a trader to search for services matching some criteria. An impo
can be the potential service client or it can import a service on behalf of another.

16.2.3 Service Types

A service type, which represents the information needed to describe a service, is
associated with each traded service. It comprises:

• an interface type which defines the computational signature of the service inter
and
16-4 CORBAservices March 1997

16

-

ry,
triple

e of

are
• zero or more named property types. Typically these represent behavioral, non
functional, and non-computational aspects that are not captured by the
computational signature.

The property type defines the property value type, whether a property is mandato
and whether a property is readonly. That is, associated with a property type is the
of <name, type, mode>, where the modes are:

enum PropertyMode {

PROP_NORMAL, PROP_READONLY,

PROP_MANDATORY, PROP_MANDATORY_READONLY

};

A service type repository is used to hold the type information.

typedef Object TypeRepository;

Each service type in a repository is identified by a unique ServiceTypeName.

typedef Istring ServiceTypeName; // similar to IR::Identifier

An exporter specifies the service type of the service it is advertising; an importer
specifies the service type it is seeking.

Service types can be related in a hierarchy that reflects interface type inheritanceand
property type aggregation. This hierarchy provides the basis for deciding if a servic
one type may be substituted for a service of another type. These considerations
described more fully in the following service type model.

Service Type Model

The service type model is illustrated by the following BNF:

service <ServiceTypeName>[:<BaseServiceTypeName>
[,<BaseServiceTypeName>]*]{

interface <InterfaceTypeName>;

[[mandatory] [readonly] property <IDLType> <PropertyName>;]*

};

The keyword “service” introduces a new ServiceTypeName. Its structure is similar to
that of interface repository identifiers (::First::Second::Third ...). As the service type is
visible to end users and not just to programmers, it is internationalizable.

The list of BaseServiceTypeNames lists those service types from which this service
type is derived, which in turn defines where services of this service type can substitute
for other service.

The “interface” keyword introduces the InterfaceTypeName for this service. It is
related by equivalence or by derivation to the InterfaceTypeNames in each of the
BaseServiceTypeNames.
Trading Object Service: v1.0 Concepts and Data Types March 1997 16-5

16

e

this

, but
lue

 may
 and
The properties clause is a list of property declarations. Each property declaration is
marked by the keyword “property” and may be preceded by mode attributes
“mandatory” and/or “readonly.” A property declaration is completed by an IDLTyp
and a PropertyName. A service must support all the properties of each of its base
service types, they must have identical property value types, and they must not lose
any property mode attributes.

The property mode attributes have the following connotations:

• mandatory - an instance of this service type must provide an appropriate value for
this property when exporting its service offer.

• readonly - if an instance of this service type provides an appropriate value for
property when exporting its service offer, the value for this property may not be
changed by a subsequent invocation of the Register::modify() operation.

The property strength graph is shown in Figure 16-2.

Figure 16-2 Property Strength

Summarizing, if a property is defined without any modifiers, it is optional (i.e., an
offer of that service type is not required to provide a value for that property name
if it does, it must be of the type specified in the service type), and the property va
subsequently may be modified. The “mandatory” modifier indicates that a value must
be provided, but that subsequently it may be modified. The “readonly” modifier
indicates that the property is optional, but that once given a value, subsequently it
not be modified. Specifying both modifiers indicates that a value must be provided
that subsequently it may not be modified.

From the above discussion, one can state the rules for service type conformance; a
service type β is a subtype of service type α, if and only if:

• the interface type associated with β is either the same as, or derived from, the
interface type associated with α

• all the properties defined in α are also defined in β

• for all properties defined in both α and β, the mode of the property in β must be the
same as, or stronger than, the mode of the property in α

• all properties defined in β that are also defined in α shall have the same property
value type in β as their corresponding definitions had in α

(default)

mandatory readonly

mandatory, readonly

Increasing
Strength
16-6 CORBAservices March 1997

16

d with

t
16.2.4 Properties

Properties are <name, value> pairs. An exporter asserts values for properties of the
service it is advertising. An importer can obtain these values about a service and
constrain its search for appropriate offers based on the property values associate
such offers.

typedef Istring PropertyName;

typedef sequence<PropertyName> PropertyNameSeq;

typedef any PropertyValue;

struct Property {

PropertyName name;

PropertyValue value;

};

typedef sequence<Property> PropertySeq;

enum HowManyProps { none, some, all };

union SpecifiedProps switch (HowManyProps) {

case some: PropertyNameSeq prop_names;

};

16.2.5 Service Offers

A service offer is the information asserted by an exporter about the service it is
advertising. It contains:

• the service type name,

• a reference to the interface that provides the service, and

• zero or more property values for the service.

An exporter must specify a value for all mandatory properties specified in the
associated service type. In addition, an exporter can nominate values for named
properties that are not specified in the service type. In such case, the trader is no
obliged to do property type checking.

struct Offer {

Object reference;

PropertySeq properties;

};

typedef sequence<Offer> OfferSeq;

struct OfferInfo {
Trading Object Service: v1.0 Concepts and Data Types March 1997 16-7

16

f a
Object reference;

ServiceTypeName type;

PropertySeq properties;

};

Modifiable Properties

The value of a property in a service offer can be modified, if

• the property mode is not readonly, whether optional or mandatory, and

• the trader supports the modify property functionality.

Such property values can be updated by explicit modify operations to the trader. An
exporter can control a service offer to be non-modifiable by exporting services with
service types that have readonly properties. The modify operation will return a
NotImplemented exception if a trader does not support the modify property
functionality. An importer can also specify whether or not a trader should consider
offers with modifiable properties during matching.

Dynamic Properties

A service offer can contain dynamic properties. The value for a dynamic property is
not held within a trader, it is obtained on-demand from the interface of a dynamic
property evaluator nominated by the exporter of the service. That is, a level of
indirection is required to obtain the value for a dynamic property. The structure o
dynamic property value is:

exception DPEvalFailure {

CosTrading::PropertyName name;

CORBA::TypeCode returned_type;

any extra_info;

};

interface DynamicPropEval {

any evalDP (

in CosTrading::PropertyName name,

in CORBA::TypeCode returned_type,

in any extra_info

) raises (

DPEvalFailure

);

};
16-8 CORBAservices March 1997

16

okes

namic

a

e

ffers

duce

h
struct DynamicProp {

 DynamicPropEval eval_if;

 CORBA::TypeCode returned_type;

 any extra_info;

};

It contains the interface to the dynamic property evaluator, the data type of the
returned dynamic property, and any extra implementation dependent information. The
trader recognizes this structure and, when the value of the property is required, inv
the evalDP operation from the appropriate DynamicPropEval interface. The dynamic
property evaluator interface has only one operation, whose signature is defined in this
standard for portability but its behavior is not specified. The only restrictions imposed
are that the property must not be readonly and that the trader must support the dy
property functionality.

The use of such Properties has implications on the performance of a trader. An
importer can specify whether or not a trader should consider offers with dynamic
properties during matching.

16.2.6 Offer Identifier

An offer identifier is returned to an exporter when a service offer is advertised in
trader. It identifies the exported service offer and is quoted by the exporter when
withdrawing and modifying the offer (where supported). It only has meaning to th
trader with which the service offer is registered.

typedef string OfferId;

typedef sequence<OfferId> OfferIdSeq;

16.2.7 Offer Selection

The total service offer space for an offer selection may be very large, including o
from all linked traders. Logically, the trader uses policies to identify the set S1 of
service offers to examine. The service type and constraint is applied to S1 to pro
the set S2 that satisfies the service type and constraint. Then this is ordered using
preferences before returning the offers to the importer.

Standard Constraint Language

Importers use service type and a constraint to select the set of service offers in whic
they have an interest. The constraint is a well formed expression conforming to a
constraint language.
Trading Object Service: v1.0 Concepts and Data Types March 1997 16-9

16

ower

< >>

e

y be
This document defines the standard, mandatory language which is necessary for
interworking between traders. Appendix B defines the syntax and the expressive p
of the constraint language. This constraint language is used to write standard constraint
expressions.

typedef Istring Constraint;

Its main features are:

Note – If a proprietary constraint language (outside the scope of this specification) is
used, then the name and version of the constraint language is placed between <
at the start of the constraint expression, The remainder of the string is not interpreted
by a trader that does not support the quoted proprietary constraint language.

Preferences

Preferences are applied logically to the set of offers matched by application of th
service type, constraint expression, and various policies. Application of the preferences
can determine the order used to return matched offers to the importer.

typedef Istring Preference;

Consider the preference string as being composed of two portions.

• The first portion can be comprised of any of the following case-sensitive keywords:

max min with random first

• The interpretation for the second portion is dependent on the first portion; it ma
empty. Table 16-1 describes the preferences.

Property Value Types These manipulations are restricted to int, float,
boolean, Istring/string, Ichar/char types, and
sequences thereof. The character based types are
ordered using the collating sequence in effect for
the given character set. Types outside of this
range can only be the subject of the “exist” oper-
ator.

Literals In the constraint, literals are dynamically coerced
as required for the properties they are working
with. Literals can contain Istring.

Operators The operators are comparison, boolean connec-
tive, set inclusion, substring, arithmetic opera-
tors, property existence.
16-10 CORBAservices March 1997

16

me

) is
< >>

er

rader.
ders.
it
e

g
s,
Table 16-1Preferences

If no preference is specified, then the default preference of first applies. No
combinations of the preferences are permitted.

The expression associated with max, min, and with can refer to properties associated
with the matching offers. When applying a preference expression to the set of offers
that match the service type and constraint expression, the offer set is partitioned into a
group of offers for which the preference expression

• could be evaluated (ordered according to min, max, with), and

• could not be evaluated (e.g., the preference expression refers to a property na
that is optional for that service type).

The offers are returned to the importer in the order of first group in their preference
order, followed by those in the second group.

Note – If a proprietary preference language (outside the scope of this specification
used, the name and version of the preference language used is placed between <
at the start of the preference. The remainder of the string is not interpreted by a trad
that does not support the quoted proprietary language.

Links

Links represent paths for propagation of queries from a source trader to a target t
Each link corresponds to an edge in a trading graph, in which the vertices are tra
A link describes the knowledge that one trader has of another trading service that
uses. It also includes information of when to propagate or forward an operation to th
target trader. A link has the following information associated with it:

Preference Description

max expression The expression is numeric. The matched offers are returned in a
descending order of the expression.

min expression The expression is numeric. The matched offers are returned in an
ascending order of the expression.

with expression The expression is a constraint expression. The matched offers are
ordered such that those that are TRUE precede those that are
FALSE.

random The order of returned matched offers is according to the followin
algorithm: select an offer at random from the set of matched offer
select another offer at random from the remaining set of matched
offers, ..., select the single remaining offer.

first The order of returned matched offers is in the order as the offers
are discovered.
Trading Object Service: v1.0 Concepts and Data Types March 1997 16-11

16

an

• A Lookup interface provided by the target trader, which supports the query
operation.

• A Register interface provided by the target trader, which supports the resolve
operation.

• The link’s default follow behavior, which may be used and is passed on when
importer does not specify a link_follow_rule policy.

• The link’s limiting follow behavior, which overrides an importer’s link_follow_rule
if the importer’s request exceeds the limit set by the link.

enum FollowOption {

local_only,

if_no_local,

always

};

struct LinkInfo {

Lookup target;

Register target_reg;

FollowOption def_pass_on_follow_rule;

FollowOption limiting_follow_rule;

};

The above information is set for each link when it is created. A link name is given to
the link when it is created. The name uniquely identifies a link in a trader.

typedef Istring LinkName;

typedef sequence<LinkName> LinkNameSeq;

A link is unidirectional. Only the source trader is directly aware of a link; it is the
source trader that supports the Link interface.

Additional information may be kept with a link to describe characteristics of the target
trading service as perceived by the source trader.

Policies

Policies provide information to affect trader behavior at run time. Policies are
represented as name value pairs.

typedef string PolicyName; // policy names restricted to Latin1

typedef sequence<PolicyName> PolicyNameSeq;

typedef any PolicyValue;

struct Policy {

PolicyName name;

PolicyValue value;

};
16-12 CORBAservices March 1997

16

s:

ng

i-
typedef sequence<Policy> PolicySeq;

Some policies cannot be overridden, while other policies apply in the absence of
further information and can be overridden. Policies can be grouped into two categorie

1. Policies that scope the extent of a search.

2. Policies that determine the functionality applied to an operation.

Different policies are associated with different roles in the performance of the tradi
function. These roles are:

T = Trader

L = Link

I = Import

Standardized Scoping Policies:

The following table lists the standardized scoping policies.

Table 16-2 Scoping Policies

Name Where IDL Type Description

def_search_card T unsigned longDefault upper bound of offers to be
searched; used if no search_card is speci-
fied.

max_search_card T unsigned longMaximum upper bound of offers to be
searched.

search_card I unsigned longNominated upper bound of offers to be
searched; will be overridden by
max_search_card.

def_match_card T unsigned longDefault upper bound of matched offers to
be ordered; used if no match_card is spec
fied.

max_match_card T unsigned longMaximum upper bound of matched offers
to be ordered.

match_card I unsigned longNominated upper bound of offers to be
ordered; will be overridden by
max_match_card.

def_return_card T unsigned longDefault upper bound of ordered offers to be
returned; used if no return_card is speci-
fied.

max_return_card T unsigned longMaximum upper bound of ordered offers to
be returned.

return_card I unsigned longNominated upper bound of ordered offers
to be returned; will be overridden by
max_return_card.
Trading Object Service: v1.0 Concepts and Data Types March 1997 16-13

16

The IDL types for TraderName and OctetSeq are:

typedef LinkNameSeq TraderName;

typedef sequence<octet> OctetSeq;

def_hop_count T unsigned longDefault upper bound of depth of links to be
traversed if hop_count is not specified.

max_hop_count T unsigned longMaximum upper bound of depth of links to
be traversed.

hop_count I unsigned longNominated upper bound of depth of links to
be traversed; will be overridden by the
trader’s max_hop_count.

def_pass_on_follow_rule L FollowOption Default link-follow behavior to be passed
on for a particular link if an importer does
not specify its link_follow_rule; it must not
exceed limiting_follow_rule.

limiting_follow_rule L FollowOption Limiting link follow behavior for a particu-
lar link.

def_follow_policy T FollowOption Default link follow behavior for a particu-
lar trader.

max_follow_policy T FollowOption Limiting link follow policy for all links of
the trader - overrides both link and importer
policies.

max_link_follow_policy T FollowOption Upper bound on the value of a link’s limit-
ing follow rule at the time of creation or
modification of a link.

link_follow_rule I FollowOption Nominated link follow behavior; it will be
overridden by the trader’s
max_follow_policy and the link’s
limiting_follow_rule.

starting_trader I TraderName An importer scopes its search by nominat-
ing that the query operation starts at a
remote trader; a trader is obliged to forward
the request down a link even if the link
behavior is local_only.

request_id I OctetSeq An identifier for a query operation initiated
by a source trader acting as an importer on
a link; a trader is not obliged to generate an
id, but is obliged to pass one received down
a link.

exact_type_match I boolean If TRUE, only offers of exactly the service
type specified by the importer are consid-
ered; if FALSE (or if unspecified), offers of
any serviced type that conforms to the
importer’s service type are considered.

Name Where IDL Type Description
16-14 CORBAservices March 1997

16

l

5

a

The results received by an importer are affected by the scoping policies. The
hop_count and link follow policies set the scope of the traders to visit. N1 is the tota
service offer space of those traders. Those offers that have conformant service type are
gathered into the set N2; the actual size of N2 may be further restricted by the search
cardinality policies. Constraints are applied to N2 to produce a set N3 of offers which
satisfy both the service type and the constraints; N3 may be further restricted by the
match cardinality policies. The set N3 is then ordered using preferences to produce the
set N4. The final set of offers returned to the importer, N5, may be further reduced by
the returned cardinality policies.

This is illustrated by the following diagram, where |N1| >= |N2| >= |N3| = |N4| >= |N

Figure 16-3 Pipeline View of Trader Query Steps and Cardinality Constraint Application

Standardized Capability Supported Policies

There are three optional capabilities (proxy offer, dynamic properties, and modify
offers) that a trader may or may not wish to support. If a trader does not support
capability, then an importer cannot override it with its policy parameter. However, if a
trader supports a capability and an importer does not wish to consider offers that
require such functionality, then the trader must respect the importer’s wish.

The following table lists the standardized policies related to supported functionality.

Potential
Offers

Consid-
ered
offers

Matched
Offers

Ordered
Offers

Returned
Offers

gather match

order

return

search
cardinality

match
cardinality

return
cardinalityN5 N4

N3N2N1
Trading Object Service: v1.0 Concepts and Data Types March 1997 16-15

16

der

n.

er to
to
Table 16-3 Capability Supported Policies

Trader Policies

Policies can be set for a trader as a whole. Trader policies are defined as attributes of
the trader object. They are specified initially when the trader is created, and can be
modified/interrogated via the Admin interface. An importer can interrogate these tra
policies via its Lookup interface. An exporter can interrogate a trader’s functionality
supported policies via its Register interface.

Link Follow Behavior

Each link in a trader has its own follow behavior policies. A trader has a limiting
follow policy, max_follow_policy, that overrides all the links of that trader for any
given query. Follow behavior policies are specified for each link when a link is
created. These policies, def_pass_on_follow_rule and limiting_follow_rule, can be
interrogated/modified via the Link interface. The values they can have are limited by
another trader policy, max_link_follow_policy, at the time of creation or modificatio
An importer can specify a link_follow_rule in a query. In the absence of an importer’s
link_follow_rule, the trader’s def_follow_policy is used.

After searching its local offers in response to a query, a trader must decide wheth
propagate the query along its links and, if so, what value for the link_follow_rule
pass on in the policies argument.

Name Where
IDL
Type Description

supports_modifiable_properties T boolean Whether the trader supports property
modification.

use_modifiable_properties I boolean Whether to consider offers with modifi-
able properties in the search.

supports_dynamic_properties T boolean Whether the trader supports dynamic
properties.

use_dynamic_properties I boolean Whether to consider offers with dynamic
properties in the search.

supports_proxy_offers T boolean Whether the trader supports proxy offers.

use_proxy_offers I boolean Whether to consider proxy offers in the
search.
16-16 CORBAservices March 1997

16

e

he
d.

n
ter
s the
Recall that the OMG IDL for FollowOption is:

enum FollowOption {

local_only,

if_no_local,

always

};

where “local_only” indicates that the link is followed only by explicit navigation
(“starting_trader” policy), “if_no_local” indicates that the link is followed only if ther
are no local offers that satisfy the query, and “always” has the obvious semantics.
These values are ordered as follows:

local_only < if_no_local < always

The follow policy for a particular link is:

if the importer specified a link_follow_rule policy

min(trader.max_follow_policy, link.limiting_follow_rule,
query.link_follow_rule)

else

min(trader.max_follow_policy, link.limiting_follow_rule,
trader.def_follow_policy)

If this value is “if_no_local” and there were no local offers that match the query, t
nested query is performed; if this value is “always,” the nested query is performe

If the nested query is permitted by the above rule, then the following logic determines
the value for the “link_follow_rule” policy to pass on to the linked trader.

If the importer specified a link_follow_rule policy

pass on min(query.link_follow_rule, link.limiting_follow_rule,

 trader.max_follow_policy)

else

pass on min(link.def_pass_on_follow_rule,
 trader.max_follow_policy)

Importer Policies

An importer can specify zero or more importer policies in its policy parameter. If a
importer policy is not specified, then the trader uses its default policy. If an impor
policy exceeds the limiting policy values set by the trader, then the trader override
importer expectations with its limiting policy value.

If a starting_trader policy parameter is used, trader implementations shall place this
policy parameter as the first element of the sequence when forwarding the query
request to linked traders.
Trading Object Service: v1.0 Concepts and Data Types March 1997 16-17

16

ith
licy

 be

on

re
ader

i

t it
e
Exporter Policies

There are no exporter policies specified in this standard.

Link Creation Policies

At the time that a link is created, the default and limiting follow rules associated w
the link are specified. These rules can be constrained by the max_link_follow_po
of the trader.

The trader first checks to see that the default rule is less than or equal to the limiting
rule. If not, then an exception is raised. It then compares the limiting rule against the
trader’s max_link_follow_policy, again raising an exception if the limiting rule is
greater than the trader’s max_link_follow_policy.

16.2.8 Interworking Mechanisms

Link Traversal Control

The flexible nature of trader linkage allows arbitrary directed graphs of traders to
produced. This can introduce two types of problem:

• A single trader can be visited more than once during a search due to it appearing
more than one path (i.e., distinct set of connected edges) leading from a trader.

• Loops can occur. The most trivial example of this is where two previously disjoint
trader spaces decide to join by exchanging links. This can result in the first trader
propagating a query to the second and then having it returned immediately via the
reverse link.

To ensure that a search does not enter into an infinite loop, a hop_count is used to limit
the depth of links to propagate a search. The hop_count is decremented by one befo
propagating a query to other traders. The search propagation terminates at the tr
when the hop_count reaches zero.

To avoid the unproductive revisiting of a particular trader while performing a query, a
RequestId can be generated by a source trader for each query operation that it intiates
for propagation to a target trader. The trader attribute of request_id_stem is used to
form RequestId.

typedef sequence<octet> OctetSeq;

attribute OctetSeq request_id_stem;

A trader remembers the RequestId of all recent interworking query operations tha
has been asked to perform. When an interworking query operation is received, th
trader checks this history and only processes the query if it is the operation’s first
appearance.

In order for this to work, the administrator for a set of federated traders must have
initialized the respective request_id_stems to non-overlapping values.
16-18 CORBAservices March 1997

16

n to
olicy,
e

ient to

t the

rs.

e

4,

he
The RequestId is passed in an importer’s policy parameter on the query operatio
the target trader. If the target trader does not support the use of the RequestId p
the target trader need not process the RequestId, but must pass the RequestId onto th
next linked trader if the search propagates further.

Federated Query Example

To propagate a query request in a trading graph, each source trader acts as a cl
the Lookup interface of the target trader and passes its client’s query operation to its
target trader.

The following example illustrates the modification of hop count parameter as a query
request passes through a set of linked traders in a trading graph. We assume tha
link follow policies in the traders will result in “always” follow behavior.

1. A query request is invoked at the trading interface of T1 with an importer’s hop count
policy expressed as hop_count = 4. The trader scoping policy for T1 includes
max_hop_count = 5. The resultant hop_count applied for the search (after the arbitra-
tion action that combines the trader policy and the importer policy) is hop_count = 4.

2. We assume that no match is found in T1 and the resulting follow policy is always. That
is, T1 is to pass the request to T3. A modified importer hop_count policy of hop_count
= 3 is used. The local trader scoping policy for T3 includes max_hop_count = 1 and the
generation of T3_Request_id to avoid repeat or cyclic searches of the same trade
The resultant scoping policy applied for the search at T3 is hop_count = 1 and the
T3_Request_id is stored.

3. Assuming that no match is found in T3 and the resulting follow policy is always, th
modified scoping parameter for the query request at T4 is: hop_count = 0 and
request_id = T3_Request_id.

4. Assuming that no match is found in T4. Even though the max_hop_count = 4 for T
the search is not propagated further. An unsuccessful search result will be passed back
to T3, to T1, and finally to the user at T1.

Of course, if a query request is completed successfully at any of the traders on t
linked search path, then the list of matched service offers will be returned to the
original user. Whether the query request is propagated through the remaining trading
Trading Object Service: v1.0 Concepts and Data Types March 1997 16-19

16

ed in
ther

e
graph depends upon the link follow policies; in this case, where it is assumed to be
always, the query will still visit all of the traders commensurate with the hop count
policy.

Figure 16-4 Flow of a query through a trader graph

Proxy Offers

A proxy offer is a cross between a service offer and a form of restricted link. It
includes the service type and properties of a service offer and, as such, is match
the same way. However, if the proxy offer matches the importer’s requirements, ra
than returning details of the offer, the query request (modified) is forwarded to th
Lookup interface associated with the proxy offer.

typedef Istring ConstraintRecipe;

struct ProxyInfo {

ServiceTypeName type;

Lookup target;

PropertySeq properties;

Legend

Service Offer
Link
Trader Attribute

query.hop_count = 4

query.hop_count = 3

query.hop_count = 0

max_hop_count = 5

max_hop_count = 1

max_hop_count = 4

request_id_stem

query.request_id = T3_request_id

T1

T2
T3

T4

def_follow_policy = always

def_follow_policy = always

def_follow_policy = always
16-20 CORBAservices March 1997

16

oxy

ctory

f

ort

fined
boolean if_match_all;

ConstraintRecipe recipe;

PolicySeq policies_to_pass_on;

};

If an importer’s query results in a match to a proxy offer, the trader holding the pr
offer performs a nested query on the trader hiding behind the proxy offer with the
following parameters:

• The original type parameter is passed on unchanged.

• A new constraint parameter is constructed following the ConstraintRecipe
associated with the proxy offer.

• The original preference parameter is passed on unchanged.

• A new policies parameter is constructed by appending the policies_to_pass_on
associated with the proxy offer to the original policies parameter.

• The original desired_props parameter is passed on unchanged.

• The calling trader supplies a value of how_many that makes sense given its
resource constraints.

Proxy offers are a convenient way to package the encapsulation of a legacy system of
“objects” into the trading system. It permits clients to lookup these “objects” by
matching the proxy offer. The nested call to the proxy trader, together with the
rewritten constraint expression and the additional policies appended to the original
policy parameter, permits the dynamic creation of a service instance which
encapsulates the legacy object. Another possible use of proxies is for a service fa
to be advertised as a proxy offer; the nested call to the factory causes a new instance of
the particular service to be manufactured.

A query may have matched a proxy offer due to a particular value of a property
associated with the proxy offer. Any offer returned by the proxy trader as a result o
the nested query must have the same value for that property so as not to violate the
client’s expectations regarding the constraint.

A trader does not have to support the proxy offer functionality. Traders that supp
such functionality must provide the Proxy interface for the export, withdraw, and
describe of proxy offers. An importer can specify whether or not a trader should
consider proxy offers during matching.

16.2.9 Trader Attributes

Each trader has its own characteristics, policies for supported functionalities, and
policies for scoping the extent of search. These characteristics and policies are de
as attributes to the trader. These attributes are described in Table 16-4.
Trading Object Service: v1.0 Concepts and Data Types March 1997 16-21

16

-

i-

-

Table 16-4 Trader Attributes

These attributes are initially specified when a trader is created and can be
modified/interrogated via the Admin interface.

Name IDL Type Description

def_search_card unsigned long Default upper bound of offers to be
searched for a query operation

max_search_card unsigned long Maximum upper bound of offers to be
searched for a query operation

def_match_card unsigned long Default upper bound of matched offers to
be ordered in applying a preference criteria

max_match_card unsigned long Maximum upper bound of matched offers
to be ordered in applying a preference crite
ria

def_return_card unsigned long Default upper bound of ordered offers to be
returned to an importer

max_return_card unsigned long Maximum upper bound of ordered offers to
be returned to an importer

def_hop_count unsigned long Default upper bound of depth of links to be
traversed

max_hop_count unsigned long Maximum upper bound of depth of links to
be traversed

max_list unsigned long The upper bound on the size of any list
returned by the trader, namely the returned
offers parameter in query, and the next_n
operations in OfferIterator and OfferIdIter-
ator.

def_follow_policy FollowOption Default link follow behavior for a particu-
lar trader

max_follow_policy FollowOption Limiting link follow policy for all links of
the trader - overrides both link and importer
policies

max_link_follow_policy FollowOption Most permissive follow policy allowed
when creating new links

supports_modifiable_properties boolean Whether the trader supports property mod
fication

supports_dynamic_properties boolean Whether the trader supports dynamic prop
erties

supports_proxy_offers boolean Whether the trader supports proxy offers

type_repos TypeRepository Interface to trader’s service type repository

request_id_stem OctetSeq Identification of the trader, to be used as
the stem for the production of an id for a
query request from one trader to another
16-22 CORBAservices March 1997

16

e of
16.3 Exceptions

This specification defines the exceptions raised by operations. Exceptions are
parameterized to indicate the source of the error. The OMG IDL segments below refer
to some of the typedef’s defined in Section 16.2 Concepts and Data Types.

When multiple exception conditions arise, only one exception is raised. The choic
exception to raise is implementation-dependent.

16.3.1 For CosTrading module

Exceptions used in more than one interface

exception UnknownMaxLeft {};

exception NotImplemented {};

exception IllegalServiceType {

ServiceTypeName type;

};

exception UnknownServiceType {

ServiceTypeName type;

};

exception IllegalPropertyName {

PropertyName name;

};

exception DuplicatePropertyName {

PropertyName name;

};

exception PropertyTypeMismatch {

ServiceTypeName type;

Property prop;

};

exception MissingMandatoryProperty {

ServiceTypeName type;

PropertyName name;
Trading Object Service: v1.0 Exceptions March 1997 16-23

16
};

exception IllegalConstraint {

Constraint constr;

};

exception InvalidLookupRef {

Lookup target;

};

exception IllegalOfferId {

OfferId id;

};

exception UnknownOfferId {

OfferId id;

};

exception ReadonlyDynamicProperty {

ServiceTypeName type;

PropertyName name;

};

exception DuplicatePolicyName {

PolicyName name;

};

Additional Exceptions for Lookup Interface

exception IllegalPreference {

Preference pref;

};

exception IllegalPolicyName {

PolicyName name;

};

exception PolicyTypeMismatch {

Policy the_policy;
16-24 CORBAservices March 1997

16
};

exception InvalidPolicyValue {

Policy the_policy;

};

exception IllegalPreference {
Preference pref;

};

exception IllegalPolicyName {
PolicyName name;

};

exception PolicyTypeMismatch {
Policy policy;

};

Additional Exceptions For Register Interface

exception InvalidObjectRef {

Object ref;

};

exception UnknownPropertyName {

PropertyName name;

};

exception InterfaceTypeMismatch {

ServiceTypeName type;

Object reference;

};

exception ProxyOfferId {

OfferId id;

};

exception MandatoryProperty {

ServiceTypeName type;

PropertyName name;

};

exception ReadonlyProperty {

ServiceTypeName type;
Trading Object Service: v1.0 Exceptions March 1997 16-25

16
PropertyName name;

};

exception NoMatchingOffers {

Constraint constr;

};

exception IllegalTraderName {

TraderName name;

};

exception UnknownTraderName {

TraderName name;

};

exception RegisterNotSupported {

TraderName name;

};

Additional Exceptions for Link Interface

exception IllegalLinkName {

LinkName name;

};

exception UnknownLinkName {

LinkName name;

};

exception DuplicateLinkName {

LinkName name;

};

exception DefaultFollowTooPermissive {

FollowOption def_pass_on_follow_rule;

FollowOption limiting_follow_rule;

};

exception LimitingFollowTooPermissive {
16-26 CORBAservices March 1997

16
FollowOption limiting_follow_rule;

FollowOption max_link_follow_policy;

};

Additional Exceptions for Proxy Offer Interface

exception IllegalRecipe {

ConstraintRecipe recipe;

};

exception NotProxyOfferId {

OfferId id;

};

16.3.2 For CosTradingDynamic module

There is only a DynamicPropEval interface in this module. The interface has only one
operation which raises the exception:

exception DPEvalFailure {
CosTrading::PropertyName name;
CORBA::TypeCode returned_type;
any extra_info;

};

16.3.3 For CosTradingRepos module

There is only the ServiceTypeRepository interface in this module. The following
interface-specific exceptions can be raised:

exception ServiceTypeExists {

CosTrading::ServiceTypeName name;

};

exception InterfaceTypeMismatch {

CosTrading::ServiceTypeName base_service;

Identifier base_if;

CosTrading::ServiceTypeName derived_service;

Identifier derived_if;

};

exception HasSubTypes {

CosTrading::ServiceTypeName the_type;

CosTrading::ServiceTypeName sub_type;

};

exception AlreadyMasked {
Trading Object Service: v1.0 Exceptions March 1997 16-27

16

way

t
ce.
CosTrading::ServiceTypeName name;

};

exception NotMasked {

CosTrading::ServiceTypeName name;

};

exception ValueTypeRedefinition {

CosTrading::ServiceTypeName type_1;

PropStruct definition_1;

CosTrading::ServiceTypeName type_2;

PropStruct definition_2;

};

exception DuplicateServiceTypeName {

CosTrading::ServiceTypeName name;

};

16.4 Abstract Interfaces

To enable the construction of traders with varying support for the different trader
interfaces, this specification defines several abstract interfaces from which each of the
trading object service functional interfaces (Lookup, Register, Link, Proxy, and
Admin) are derived. Each of these abstract interfaces are documented below.

16.4.1 TraderComponents
interface TraderComponents {

readonly attribute Lookup lookup_if;

readonly attribute Register register_if;

readonly attribute Link link_if;

readonly attribute Proxy proxy_if;

readonly attribute Admin admin_if;

};

A trader’s functionality can be configured by composing the defined interfaces in one
of several prescribed combinations. The composition is not modeled through
inheritance, but rather by multiple interfaces to an object. Given one of these
interfaces, a way of finding the other associated interfaces is needed. To facilitate this,
each trader functional interface is derived from the TraderComponents interface.

The TraderComponents interface contains five readonly attributes that provide a
to get a specific object reference.

The implementation of the _get_<interface>_if() operation must return a nil objec
reference if the trading service in question does not support that particular interfa
16-28 CORBAservices March 1997

16

 this

16.4.2 SupportAttributes
interface SupportAttributes {

readonly attribute boolean supports_modifiable_properties;

readonly attribute boolean supports_dynamic_properties;

readonly attribute boolean supports_proxy_offers;

readonly attribute TypeRepository type_repos;

};

In addition to the ability of a trader implementation to selectively choose which
functional interfaces to support, a trader implementation may also choose not to
support modifiable properties, dynamic properties, and/or proxy offers. The
functionality supported by a trader implementation can be determined by querying the
readonly attributes in this interface.

The type repository used by the trader implementation can also be obtained from
interface.

16.4.3 ImportAttributes
interface ImportAttributes {

readonly attribute unsigned long def_search_card;

readonly attribute unsigned long max_search_card;

readonly attribute unsigned long def_match_card;

readonly attribute unsigned long max_match_card;

readonly attribute unsigned long def_return_card;

readonly attribute unsigned long max_return_card;

readonly attribute unsigned long max_list;

readonly attribute unsigned long def_hop_count;

readonly attribute unsigned long max_hop_count;

readonly attribute FollowOption def_follow_policy;

readonly attribute FollowOption max_follow_policy;

};

Each trader is configured with default and maximum values of certain cardinality and
link follow constraints that apply to queries. The values for these constraints can be
obtained by querying the attributes in this interface.
Trading Object Service: v1.0 Abstract Interfaces March 1997 16-29

16
16.4.4 LinkAttributes
interface LinkAttributes {

readonly attribute FollowOption max_link_follow_policy;

};

When a trader creates a new link or modifies an existing link the
max_link_follow_policy attribute will determine the most permissive behavior that the
link will be allowed. The value for this constraint on link creation and modification
can be obtained from this interface.

16.5 Functional Interfaces

This section describes the five functional interfaces to a trading object service:
Lookup, Register, Link, Admin, and Proxy. The two iterator interfaces needed for
these functional interfaces are also described.

16.5.1 Lookup
interface Lookup:TraderComponents,SupportAttributes,

ImportAttributes {

typedef Istring Preference;

enum HowManyProps {none, some, all };

union SpecifiedProps switch (HowManyProps) {

case some: PropertyNameSeq prop_names;

};

exception IllegalPreference {

Preference pref;

};

exception IllegalPolicyName {

PolicyName name;

};

exception PolicyTypeMismatch {

Policy the_policy;

};
16-30 CORBAservices March 1997

16
exception InvalidPolicyValue {

Policy the_policy;

};

void query (

in ServiceTypeName type,

in Constraint constr,

in Preference pref,

in PolicySeq policies,

in SpecifiedProps desired_props,

in unsigned long how_many,

out OfferSeq offers,

out OfferIterator offer_itr,

out PolicyNameSeq limits_applied

) raises (

IllegalServiceType,

UnknownServiceType,

IllegalConstraint,

IllegalPreference,

IllegalPolicyName,

PolicyTypeMismatch,

InvalidPolicyValue,

IllegalPropertyName,

DuplicatePropertyName,

DuplicatePolicyName

);

};

Query Operation

Signature
void query (

in ServiceTypeName type,

in Constraint constr,

in Preference pref,

in PolicySeq policies,

in SpecifiedProps desired_props,

in unsigned long how_many,
Trading Object Service: v1.0 Functional Interfaces March 1997 16-31

16

her

pose

e

in

ping
 can

ith

ents
ents

ts,
t
isfies

d.
out OfferSeq offers,

out OfferIterator offer_itr,

out PolicyNameSeq limits_applied

) raises (

IllegalServiceType,

UnknownServiceType,

IllegalConstraint,

IllegalPreference,

IllegalPolicyName,

PolicyTypeMismatch,

InvalidPolicyValue,

IllegalPropertyName,

DuplicatePropertyName,

DuplicatePolicyName

);

Function

The query operation is the means by which an object can obtain references to ot
objects that provide services meeting its requirements.

The “type” parameter conveys the required service type. It is key to the central pur
of trading: to perform an introduction for future type safe interactions between
importer and exporter. By stating a service type, the importer implies the desired
interface type and a domain of discourse for talking about properties of the service.

• If the string representation of the “type” does not obey the rules for service typ
identifiers, then an IllegalServiceType exception is raised.

• If the “type” is correct syntactically but is not recognized as a service type with
the trading scope, then an UnknownServiceType exception is raised.

The trader may return a service offer of a subtype of the “type” requested. Sub-ty
of service types is discussed in “Service Types” on page 16-4. A service subtype
be described by the properties of its supertypes. This ensures that a well-formed query
for the “type” is also a well-formed query with respect to any subtypes. However, if
the importer specifies the policy of exact_type_match = TRUE, then only offers w
the exact (no subtype) service type requested are returned.

The constraint “constr” is the means by which the importer states those requirem
of a service that are not captured in the signature of the interface. These requirem
deal with the computational behavior of the desired service, non-functional aspec
and non-computational aspects (such as the organization owning the objects tha
provide the service). An importer is always guaranteed that any returned offer sat
the matching constraint at the time of import. If the “constr” does not obey the syntax
rules for a legal constraint expression, then an IllegalConstraint exception is raise
16-32 CORBAservices March 1997

16

 that
er. If

he

or

is

ader

ffers

rned.
me”

ill
The “pref” parameter is also used to order those offers that match the “constr” so
the offers returned by the trader are in the order of greatest interest to the import
“pref” does not obey the syntax rules for a legal preference expression, then an
IllegalPreference exception is raised.

The “policies” parameter allows the importer to specify how the search should be
performed as opposed to what sort of services should be found in the course of t
search. This can be viewed as parameterizing the algorithms within the trader
implementation. The “policies” are a sequence of name-value pairs. The names
available to an importer depend on the implementation of the trader. However, some
names are standardized where they effect the interpretation of other parameters
where they may impact linking and federation of traders.

• If a policy name in this parameter does not obey the syntactic rules for legal
PolicyName’s, then an IllegalPolicyName exception is raised.

• If the type of the value associated with a policy differs from that specified in th
specification, then a PolicyTypeMismatch exception is raised.

• If subsequent processing of a PolicyValue yields any errors (e.g., the starting_tr
policy value is malformed), then an InvalidPolicyValue exception is raised.

• If the same policy name is included two or more times in this parameter, then the
DuplicatePolicyName exception is raised.

The “desired_props” parameter defines the set of properties describing returned o
that are to be returned with the object reference. There are three possibilities, the
importer wants one of the properties, all of the properties (but without having to name
them), or some properties (the names of which are provided).

• If any of the “desired_props” names do not obey the rules for identifiers, then an
IllegalPropertyName exception is raised.

• If the same property name is included two or more times in this parameter, the
DuplicatePropertyName exception is raised. The desired_props parameter may
name properties which are not mandatory for the requested service type.

• If the named property is present in the matched service offer, then it shall be
returned.

The desired_props parameter does not affect whether or not a service offer is retu
To avoid “missing” desired properties, the importer should specify “exists prop_na
in the constraint.

The returned offers are passed back in one of two ways (or a combination of both).

• The “offers” return result conveys a list of offers and the “offer_itr” is a reference
to an interface at which offers can be obtained.

• The “how_many” parameter states how many offers are to be returned via the
“offers” result, any remaining offers are available via the iterator interface. If the
“how_many” exceeds the number of offers to be returned, then the “offer_itr” w
be nil.
Trading Object Service: v1.0 Functional Interfaces March 1997 16-33

16

to

tch.

d

er
If any cardinality or other limits were applied by one or more traders in responding
a particular query, then the “limi ts_applied” parameter will contain the names of the
policies which limited the query. The sequence of names returned in “limi ts_applied”
from any federated or proxy queries must be concatenated onto the names of limits
applied locally and returned.

Importer Policy Specifications

struct LookupPolicies {

unsigned long search_card;

unsigned long match_card;

unsigned long return_card;

boolean use_modifiable_properties;

boolean use_dynamic_properties;

boolean use_proxy_offers;

TraderName starting_trader;

FollowOption link_follow_rule;

unsigned long hop_count;

boolean exact_type_match;

};

The “search_card” policy indicates to the trader the maximum number of offers it
should consider when looking for type conformance and constraint expression ma
The lesser of this value and the trader’s max_search_card attribute is used by the
trader. If this policy is not specified, then the value of the trader’s def_search_car
attribute is used.

The “match_card” policy indicates to the trader the maximum number of matching
offers to which the preference specification should be applied. The lesser of this value
and the trader’s max_match_card attribute is used by the trader. If this policy is not
specified, then the value of the trader’s def_match_card attribute is used.

The “return_card” policy indicates to the trader the maximum number of matching
offers to return as a result of this query. The lesser of this value and the trader’s
max_return_card attribute is used by the trader. If this policy is not specified, then the
value of the trader’s def_return_card attribute is used.

The “use_modifiable_properties” policy indicates whether the trader should consid
offers which have modifiable properties when constructing the set of offers to which
type conformance and constraint processing should be applied. If the value of this
policy is TRUE, then such offers will be included; if FALSE, they will not. If this
policy is not specified, such offers will be included.
16-34 CORBAservices March 1997

16

 is

t
will
e

f the
 be

ere
n

sing

nt

ice
ffer
The “use_dynamic_properties” policy indicates whether the trader should consider
offers which have dynamic properties when constructing the set of offers to which type
conformance and constraint processing should be applied. If the value of this policy
TRUE, then such offers will be included; if FALSE, they will not. If this policy is not
specified, such offers will be included.

The “use_proxy_offers” policy indicates whether the trader should consider proxy
offers when constructing the set of offers to which type conformance and constrain
processing should be applied. If the value of this policy is TRUE, then such offers
be included; if FALSE, they will not. If this policy is not specified, such offers will b
included.

The “starting_trader” policy facilitates the distribution of the trading service itself. It
allows an importer to scope a search by choosing to explicitly navigate the links o
trading graph. If the policy is used in a query invocation it is recommended that it
the first policy-value pair; this facilitates an optimal forwarding of the query operation.
A “policies” parameter need not include a value for the “starting_trader” policy. Wh
this policy is present, the first name component is compared against the name held i
each link. If no match is found, the InvalidPolicyValue exception is raised. Otherwise,
the trader invokes query() on the Lookup interface held by the named link, but pas
the “starting_trader” policy with the first component removed.

The “link_follow_rule” policy indicates how the client wishes links to be followed in
the resolution of its query. See the discussion in “Link Follow Behavior” on
page 16-16 for details.

The “hop_count” policy indicates to the trader the maximum number of hops across
federation links that should be tolerated in the resolution of this query. The hop_cou
at the current trader is determined by taking the minimum of the trader’s
max_hop_count attribute and the importer’s hop_count policy, if provided, or the
trader’s def_hop_count attribute if it is not. If the resulting value is zero, then no
federated queries are permitted. If it is greater than zero, then it must be decremented
before passing on to a federated trader.

The “exact_type_match” policy indicates to the trader whether the importer’s serv
type must exactly match an offer’s service type; if not (and by default), then any o
of a type conformant to the importer’s service type is considered.

16.5.2 Offer Iterator

Signature

interface OfferIterator {

unsigned long max_left (

) raises (

UnknownMaxLeft

);

boolean next_n (
Trading Object Service: v1.0 Functional Interfaces March 1997 16-35

16

on the

.”
ng in
ing

s
s

tor.
in unsigned long n,

out OfferSeq offers

);

void destroy ();

};

Function

The OfferIterator interface is used to return a set of service offers from the query
operation by enabling the service offers to be extracted by successive operations
OfferIterator interface.

The next_n operation returns a set of service offers in the output parameter “offers
The operation returns n service offers if there are at least n service offers remaini
the iterator. If there are fewer than n service offers in the iterator, then all remain
service offers are returned. The actual number of service offers returned can be
determined from the length of the “offers” sequence. The next_n operation return
TRUE if there are further service offers to be extracted from the iterator. It return
FALSE if there are no further service offers to be extracted.

The max_left operation returns the number of service offers remaining in the itera
The exception UnknownMaxLeft is raised if the iterator cannot determine the
remaining number of service offers (e.g., if the iterator determines its set of service
offers through lazy evaluation).

The destroy operation destroys the iterator. No further operations can be invoked on an
iterator after it has been destroyed.

16.5.3 Register
interface Register : TraderComponents, SupportAttributes {

struct OfferInfo {

Object reference;

ServiceTypeName type;

PropertySeq properties;

};

exception InvalidObjectRef {

Object ref;

};

exception UnknownPropertyName {

PropertyName name;
16-36 CORBAservices March 1997

16
};

exception InterfaceTypeMismatch {

ServiceTypeName type;

Object reference;

};

exception ProxyOfferId {

OfferId id;

};

exception MandatoryProperty {

ServiceTypeName type;

PropertyName name;

};

exception ReadonlyProperty {

ServiceTypeName type;

PropertyName name;

};

exception NoMatchingOffers {

Constraint constr;

};

exception IllegalTraderName {

TraderName name;

};

exception UnknownTraderName {

TraderName name;

};

exception RegisterNotSupported {

TraderName name;

};

OfferId export (
Trading Object Service: v1.0 Functional Interfaces March 1997 16-37

16
in Object reference,

in ServiceTypeName type,

in PropertySeq properties

) raises (

InvalidObjectRef,

IllegalServiceType,

UnknownServiceType,

InterfaceTypeMismatch,

IllegalPropertyName, // e.g. prop_name = “<foo-bar”

PropertyTypeMismatch,

ReadonlyDynamicProperty,

MissingMandatoryProperty,

DuplicatePropertyName

);

void withdraw (

in OfferId id

) raises (

IllegalOfferId,

UnknownOfferId,

ProxyOfferId

);

OfferInfo describe (

in OfferId id

) raises (

IllegalOfferId,

UnknownOfferId,

ProxyOfferId

);

void modify (

in OfferId id,

in PropertyNameSeq del_list,

in PropertySeq modify_list

) raises (

NotImplemented,

IllegalOfferId,
16-38 CORBAservices March 1997

16
UnknownOfferId,

ProxyOfferId,

IllegalPropertyName,

UnknownPropertyName,

PropertyTypeMismatch,

ReadonlyDynamicProperty,

MandatoryProperty,

ReadonlyProperty,

DuplicatePropertyName

);

void withdraw_using_constraint (

in ServiceTypeName type,

in Constraint constr

) raises (

IllegalServiceType,

UnknownServiceType,

IllegalConstraint,

NoMatchingOffers

);

Register resolve (

in TraderName name

) raises (

IllegalTraderName,

UnknownTraderName,

RegisterNotSupported

);

};

Export Operation

Signature
OfferId export (

in Object reference,

in ServiceTypeName type,

in PropertySeq properties

) raises (
Trading Object Service: v1.0 Functional Interfaces March 1997 16-39

16

to a

ted

 a

 of

r).

ine

s not
tch

alue

then

d.
InvalidObjectRef,

IllegalServiceType,

UnknownServiceType,

InterfaceTypeMismatch,

IllegalPropertyName, // e.g. prop_name = “<foo-bar”

PropertyTypeMismatch,

ReadonlyDynamicProperty,

MissingMandatoryProperty,

DuplicatePropertyName

);

Function

The export operation is the means by which a service is advertised, via a trader,
community of potential importers. The OfferId returned is the handle with which the
exporter can identify the exported offer when attempting to access it via other
operations. The OfferId is only meaningful in the context of the trader that genera
it.

The “reference” parameter is the information that enables a client to interact with
remote server. If a trader implementation chooses to consider certain types of object
references (e.g., a nil object reference) to be unexportable, then it may return the
InvalidObjectRef exception in such cases.

The “type” parameter identifies the service type, which contains the interface type
the “reference” and a set of named property types that may be used in further
describing this offer (i.e., it restricts what is acceptable in the properties paramete

• If the string representation of the “type” does not obey the rules for identifiers, then
an IllegalServiceType exception is raised.

• If the “type” is correct syntactically but a trader is able to unambiguously determ
that it is not a recognized service type, then an UnknownServiceType exception is
raised.

• If the trader can determine that the interface type of the “reference” parameter i
a subtype of the interface type specified in “type,” then an InterfaceTypeMisma
exception is raised.

The “properties” parameter is a list of named values that conform to the property v
types defined for those names. They describe the service being offered. This
description typically covers behavioral, non-functional, and non-computational aspects
of the service.

• If any of the property names do not obey the syntax rules for PropertyNames,
an IllegalPropertyName exception is raised.

• If the type of any of the property values is not the same as the declared type
(declared in the service type), then a PropertyTypeMismatch exception is raise
16-40 CORBAservices March 1997

16

Id
• If an attempt is made to assign a dynamic property value to a readonly property,
then the ReadonlyDynamicProperty exception is raised.

• If the “properties” parameter omits any property declared in the service type with a
mode of mandatory, then a MissingMandatoryProperty exception is raised.

• If two or more properties with the same property name are included in this
parameter, the DuplicatePropertyName exception is raised.

Withdraw Operation

Signature
void withdraw (

in OfferId id

) raises (

IllegalOfferId,

UnknownOfferId,

ProxyOfferId

);

Function

The withdraw operation removes the service offer from the trader (i.e., after withdraw
the offer can no longer be returned as the result of a query). The offer is identified by
the “id” parameter which was originally returned by export.

• If the string representation of “id” does not obey the rules for offer identifiers, then
an IllegalOfferId exception is raised.

• If the “id” is legal but there is no offer within the trader with that “id,” then an
UnknownOfferId exception is raised.

• If the “id” identifies a proxy offer rather than an ordinary offer, then a ProxyOffer
exception is raised.

Describe Operation

Signature
OfferInfo describe (

in OfferId id

) raises (

IllegalOfferId,

UnknownOfferId,

ProxyOfferId

);
Trading Object Service: v1.0 Functional Interfaces March 1997 16-41

16

ld by
vice
 by

Id

n a
not
Function

The describe operation returns the information about an offered service that is he
the trader. It comprises the “reference” of the offered service, the “type” of the ser
offer, and the “properties” that describe this offer of service. The offer is identified
the “id” parameter which was originally returned by export.

• If the string representation of “id” does not obey the rules for object identifiers,
then an IllegalOfferId exception is raised.

• If the “id” is legal but there is no offer within the trader with that “id,” then an
UnknownOfferId exception is raised.

• If the “id” identifies a proxy offer rather than an ordinary offer, then a ProxyOffer
exception is raised.

Modify Operation

Signature
void modify (

in OfferId id,

in PropertyNameSeq del_list,

in PropertySeq modify_list

) raises (

NotImplemented,

IllegalOfferId,

UnknownOfferId,

ProxyOfferId,

IllegalPropertyName,

UnknownPropertyName,

PropertyTypeMismatch,

ReadonlyDynamicProperty,

MandatoryProperty,

ReadonlyProperty,

DuplicatePropertyName

);

Function

The modify operation is used to change the description of a service as held withi
service offer. The object reference and the service type associated with the offer can
be changed. This operation may:

• add new (non-mandatory) properties to describe an offer,

• change the values of some existing (not readonly) properties, or
16-42 CORBAservices March 1997

16

Id

e

an

ce of

the

pe
• delete existing (neither mandatory nor readonly) properties.

The modify operation either succeeds completely or it fails completely. The offer is
identified by the “id” parameter which was originally returned by export.

• If the string representation of “id” does not obey the rules for offer identifiers, then
an IllegalOfferId exception is raised.

• If the “id” is legal but there is no offer within the trader with that “id,” then an
UnknownOfferId exception is raised.

• If the “id” identifies a proxy offer rather than an ordinary offer, then a ProxyOffer
exception is raised.

The “del_list” parameter gives the names of the properties that are no longer to b
recorded for the identified offer. Future query and describe operations will not see
these properties.

• If any of the names within the “del_list” do not obey the rules for PropertyName’s,
then an IllegalPropertyName exception is raised.

• If a “name” is legal but there is no property for the offer with that “name,” then
UnknownPropertyName exception is raised.

• If the list includes a property that has a mandatory mode, then the
MandatoryProperty exception is raised.

• If the same property name is included two or more times in this parameter, the
DuplicatePropertyName exception is raised.

The “modify_list” parameter gives the names and values of properties to be changed.
If the property is not in the offer, then the modify operation adds it. The modified (or
added) property values are returned in future query and describe operations in pla
the original values.

• If any of the names within the “modify_list” do not obey the rules for
PropertyName’s, then an IllegalPropertyName exception is raised.

• If the list includes a property that has a readonly mode, then the ReadonlyProperty
exception is raised unless that readonly property is not currently recorded for
offer. The ReadonlyDynamicProperty exception is raised if an attempt is made to
assign a dynamic property value to a readonly property.

• If the value of any modified property is of a type that is not the same as the ty
expected, then the PropertyTypeMismatch exception is raised.

• If two or more properties with the same property name are included in this
argument, the DuplicatePropertyName exception is raised.

The NotImplemented exception shall be raised if and only if the
supports_modifiable_properties attribute yields FALSE.
Trading Object Service: v1.0 Functional Interfaces March 1997 16-43

16

nce
e
ving
nd a

he
Note – It is not possible to change the service type of an offer or the object refere
of the service. This has to be achieved by withdrawing and then re-exporting. Th
purpose of modify is to change the description of the offered service while preser
the OfferId. This might be important where the OfferId has been propagated arou
community of objects.

Withdraw Using Constraint Operation

Signature
void withdraw_using_constraint (

in ServiceTypeName type,

in Constraint constr

) raises (

IllegalServiceType,

UnknownServiceType,

IllegalConstraint,

NoMatchingOffers

);

Function

The withdraw_using_constraint operation withdraws a set of offers from within a
single trader. This set is identified in the same way that a query operation identifies a
set of offers to be returned to an importer.

The “type” parameter conveys the required service type. Each offer of the specified
type will have the constraint expression applied to it. If it matches the constraint
expression, then the offer will be withdrawn.

• If “type” does not obey the rules for service types, then an IllegalServiceType
exception is raised.

• If the “type” is correct syntactically but is not recognized as a service type by t
trader, then an UnknownServiceType exception is raised.

The constraint “constr” is the means by which the client restricts the set of offers to
those that are intended for withdrawal.

• If “constr” does not obey the syntax rules for a constraint then an IllegalConstraint
exception is raised.

• If the constraint fails to match with any offer of the specified service type, then a
NoMatchingOffers exception is raised.
16-44 CORBAservices March 1997

16

ame

e

nd

, that

 to
Resolve Operation

Signature
Register resolve (

in TraderName name

) raises (

IllegalTraderName,

UnknownTraderName,

RegisterNotSupported

);

Function

This operation is used to resolve a context relative name for another trader. In
particular, it is used when exporting to a trader that is known by a name rather than by
an object reference. The client provides the name, which will be a sequence of n
components.

• If the content of the parameter cannot yield legal syntax for the first component,
then the IllegalTraderName exception is raised. Otherwise, the first name
component is compared against the name held in each link.

• If no match is found, or the trader does not support links, the UnknownTraderName
exception is raised. Otherwise, the trader obtains the register_if held as part of th
matched link.

• If the Register interface is not nil, then the trader binds to the Register interface a
invokes resolve but passes the TraderName with the first component removed; if it
is nil, then the RegisterNotSupported exception is raised.

When a trader is able to match the first name component leaving no residual name
trader returns the reference for the Register interface for that linked trader. In
unwinding the recursion, intermediate traders return the Register interface reference
their client (another trader).

16.5.4 Offer Id Iterator

Signature

interface OfferIdIterator {

unsigned long max_left (

) raises (

UnknownMaxLeft

);
Trading Object Service: v1.0 Functional Interfaces March 1997 16-45

16

r

”

e

tor.
boolean next_n (

in unsigned long n,

out OfferIdSeq ids

);

void destroy ();

};

Function

The OfferIdIterator interface is used to return a set of offer identifiers from the
list_offers operation and the list_proxies operation in the Admin interface by enabling
the offer identifiers to be extracted by successive operations on the OfferIdIterato
interface.

The next_n operation returns a set of offer identifiers in the output parameter “ids.
The operation returns n offer identifiers if there are at least n offer identifiers
remaining in the iterator. If there are fewer than n offer identifiers in the iterator, then
all remaining offer identifiers are returned. The actual number of offer identifiers
returned can be determined from the length of the “ids” sequence. The next_n
operation returns TRUE if there are further offer identifiers to be extracted from th
iterator. It returns FALSE if there are no further offer identifiers to be extracted.

The max_left operation returns the number of offer identifiers remaining in the itera
The exception UnknownMaxLeft is raised if the iterator cannot determine the
remaining number of offer identifiers (e.g., if the iterator determines its set of offer
identifiers through lazy evaluation).

The destroy operation destroys the iterator. No further operations can be invoked on an
iterator after it has been destroyed.

16.5.5 Admin
interface Admin : TraderComponents, SupportAttributes,

 ImportAttributes,LinkAttributes {

typedef sequence<octet> OctetSeq;

readonly attribute OctetSeq request_id_stem;

unsigned long set_def_search_card (in unsigned long value);

unsigned long set_max_search_card (in unsigned long value);

unsigned long set_def_match_card (in unsigned long value);

unsigned long set_max_match_card (in unsigned long value);
16-46 CORBAservices March 1997

16
unsigned long set_def_return_card (in unsigned long value);

unsigned long set_max_return_card (in unsigned long value);

unsigned long set_max_list (in unsigned long value);

boolean set_supports_modifiable_properties (in boolean
value);

boolean set_supports_dynamic_properties (in boolean value);

boolean set_supports_proxy_offers (in boolean value);

unsigned long set_def_hop_count (in unsigned long value);

unsigned long set_max_hop_count (in unsigned long value);

FollowOption set_max_follow_policy (in FollowOption policy);

FollowOption set_def_follow_policy (in FollowOption policy);

FollowOption set_max_link_follow_policy (in FollowOption
 policy);

TypeRepository set_type_repos (in TypeRepository
repository);

OctetSeq set_request_id_stem (in OctetSeq stem);

void list_offers (

in unsigned long how_many,

out OfferIdSeq ids,

out OfferIdIterator id_itr

) raises (

NotImplemented

);

void list_proxies (

in unsigned long how_many,

out OfferIdSeq ids,

out OfferIdIterator id_itr

) raises (

NotImplemented

);
Trading Object Service: v1.0 Functional Interfaces March 1997 16-47

16

itten.

ffer

 this

face.

ing

, the

).

the

 nil.
};

Attributes and Set Operations

The admin interface enables the values of the trader attributes to be read and wr
All attributes are defined as readonly in either SupportAttributes, ImportAttributes,
LinkAttributes, or Admin. To set the trader “attribute” to a new value,
set_<attribute_name> operations are defined in Admin. Each of these set operations
returns the previous value of the attribute as its function value.

If the admin interface operation set_support_proxy_offers is invoked with a value set
to FALSE in a trader which supports the proxy interface, the set_support_proxy_o
value does not affect the function of operations in the proxy interface. However, in
case, it does have the effect of making any proxy offers exported via the proxy
interface for that trader unavailable to satisfy queries on that trader’s lookup inter

List Offers Operation

Signature
void list_offers (

in unsigned long how_many,

out OfferIdSeq ids,

out OfferIdIterator id_itr

) raises (

NotImplemented

);

Function

The list_offers operation allows the administrator of a trader to perform housekeep
by obtaining a handle on each of the offers within a trader (e.g., for garbage collection
etc.). Only the identifiers of ordinary offers are returned, identifiers of proxy offers are
not returned via this operation. If the trader does not support the Register interface
NotImplemented exception is raised.

The returned identifiers are passed back in one of two ways (or a combination of both

• The “ids” return result conveys a list of offer identifiers and the “id_itr” is a
reference to an interface at which additional offer identities can be obtained.

• The “how_many” parameter states how many identifiers are to be returned via
“ids” result; any remaining are available via the iterator interface. If the
“how_many” exceeds the number of offers held in the trader, then the “id_itr” is
16-48 CORBAservices March 1997

16

 is
List Proxies Operation

Signature
void list_proxies (

in unsigned long how_many,

out OfferIdSeq ids,

out OfferIdIterator id_itr

) raises (

NotImplemented

);

Function

The list_proxies operation returns the set of offer identifiers for proxy offers held by a
trader. Most “how_many” offer identifiers are returned via “ids” if:

• There are more than “how_many” offer identifiers, the remainder are returned via
the “id_itr” iterator.

• There are only “how_many” or fewer offer identifiers, the id_itr is nil.

• The trader does not support the Proxy interface, the NotImplemented exception
raised.

16.5.6 Link
interface Link : TraderComponents, SupportAttributes,

LinkAttributes {

struct LinkInfo {

Lookup target;

Register target_reg;

FollowOption def_pass_on_follow_rule;

FollowOption limiting_follow_rule;

};

exception IllegalLinkName {

LinkName name;

};

exception UnknownLinkName {

LinkName name;

};
Trading Object Service: v1.0 Functional Interfaces March 1997 16-49

16
exception DuplicateLinkName {

LinkName name;

};

exception DefaultFollowTooPermissive {

FollowOption def_pass_on_follow_rule;

FollowOption limiting_follow_rule;

};

exception LimitingFollowTooPermissive {

FollowOption limiting_follow_rule;

FollowOption max_link_follow_policy;

};

void add_link (

in LinkName name,

in Lookup target,

in FollowOption def_pass_on_follow_rule,

in FollowOption limiting_follow_rule

) raises (

IllegalLinkName,

DuplicateLinkName,

InvalidLookupRef, // e.g. nil

DefaultFollowTooPermissive,

LimitingFollowTooPermissive

);

void remove_link (

in LinkName name

) raises (

IllegalLinkName,

UnknownLinkName

);

LinkInfo describe_link (

in LinkName name

) raises (
16-50 CORBAservices March 1997

16

r

IllegalLinkName,

UnknownLinkName

);

LinkNameSeq list_links ();

void modify_link (

in LinkName name,

in FollowOption def_pass_on_follow_rule,

in FollowOption limiting_follow_rule

) raises (

IllegalLinkName,

UnknownLinkName,

DefaultFollowTooPermissive,

LimitingFollowTooPermissive

);

};

Add_Link Operation

Signature
void add_link (

in LinkName name,

in Lookup target,

in FollowOption def_pass_on_follow_rule,

in FollowOption limiting_follow_rule

) raises (

IllegalLinkName,

DuplicateLinkName,

InvalidLookupRef, // e.g. nil

DefaultFollowTooPermissive,

LimitingFollowTooPermissive

);

Function

The add_link operation allows a trader subsequently to use the service of anothe
trader in the performance of its own trading service operations.

The “name” parameter is used in subsequent link management operations to identify
the intended link. If the parameter is not legally formed, then the IllegalLinkName
exception is raised. An exception of DuplicateLinkName is raised if the link name
Trading Object Service: v1.0 Functional Interfaces March 1997 16-51

16

e
nce

f

 a

y”

ations
already exists. The link name is also used as a component in a sequence of nam
components in naming a trader for resolving or forwarding operations. The seque
of context relative link names provides a path to a trader.

The “target” parameter identifies the Lookup interface at which the trading service
provided by the target trader can be accessed. Should the Lookup interface parameter
be nil, then an exception of InvalidLookupRef is raised. The target interface is used to
obtain the associated Register interface, which will be subsequently returned as part o
a describe_link operation and invoked as part of a resolve operation.

The “def_pass_on_follow_rule” parameter specifies the default link behavior for the
link if no link behavior is specified on an importer’s query request. If the
“def_pass_on_follow_rule” exceeds the “limiting_follow_rule” specified in the next
parameter, then a DefaultFollowTooPermissive exception is raised.

The “limiting_follow_rule” parameter specifies the most permissive link follow
behavior that the link is willing to tolerate. The exception
LimitingFollowTooPermissive is raised if this parameter exceeds the trader’s attribute
of “max_link_follow_policy” at the time of the link’s creation. Note it is possible for
link’s “lim iting_follow_rule” to exceed the trader’s “max_link_follow_policy” later in
the life of a link, as it is possible that the trader could set its “max_link_follow_polic
to a more restrictive value after the creation of the link.

Remove Link Operation

Signature
void remove_link (

in LinkName name

) raises (

IllegalLinkName,

UnknownLinkName

);

Function

The remove_link operation removes all knowledge of the target trader. The target
trader cannot be used subsequently to resolve, forward, or propagate trading oper
from this trader.

The “name” parameter identifies the link to be removed. The exception
IllegalLinkName is raised if the link is formed poorly and the UnknownLinkName
exception is raised if the named link is not in the trader.

Describe Link Operation

Signature
LinkInfo describe_link (
16-52 CORBAservices March 1997

16

.

 in

.
in LinkName name

) raises (

IllegalLinkName,

UnknownLinkName

);

Function

The describe_link operation returns information on a link held in the trader.

The “name” parameter identifies the link whose description is required. For a
malformed link name, the exception IllegalLinkName is raised. An
UnknownLinkName exception is raised if the named link is not found in the trader

The operation returns a LinkInfo structure comprising:

• the Lookup interface of the target trading service,

• the Register interface of the target trading service, and

• the default, as well as the limiting follow behavior of the named link.

If the target service does not support the Register interface, then that field of the
LinkInfo structure is nil. Given the description of the Register::resolve() operation
“Resolve Operation” on page 16-45, most implementations will opt for determining the
Register interface when add_link is called and storing that information statically with
the rest of the link state.

List Links Operation

Signature
LinkNameSeq list_links ();

Function

The list_links operation returns a list of the names of all trading links within the trader
The names can be used subsequently for other management operations, such as
describe_link or remove_link.

Modify Link Operation

Signature
void modify_link (

in LinkName name,

in FollowOption def_pass_on_follow_rule,

in FollowOption limiting_follow_rule

) raises (

IllegalLinkName,
Trading Object Service: v1.0 Functional Interfaces March 1997 16-53

16

an
the

s
UnknownLinkName,

DefaultFollowTooPermissive,

LimitingFollowTooPermissive

);

Function

The modify_link operation is used to change the existing link follow behaviors of
identified link. The Lookup interface reference of the target trader and the name of
link cannot be changed.

The “name” parameter identifies the link whose follow behaviors are to be changed. A
poorly formed “name” raises the IllegalLinkName exception. An UnknownLinkName
exception is raised if the link name is not known to the trader.

The “def_pass_on_follow_rule” parameter specifies the new default link behavior for
this link. If the “def_pass_on_follow_rule” exceeds the “limi ting_follow_rule”
specified in the next parameter, then a DefaultFollowTooPermissive exception is
raised.

The “limiting_follow_rule” parameter specifies the new limit for the follow behavior
of this link. The exception LimitingFollowTooPermissive is raised if the value exceed
the current “max_link_follow_policy” of the trader.

16.5.7 Proxy
interface Proxy: TraderComponents, SupportAttributes {

typedef Istring ConstraintRecipe;

struct ProxyInfo {

ServiceTypeName type;

Lookup target;

PropertySeq properties;

boolean if_match_all;

ConstraintRecipe recipe;

PolicySeq policies_to_pass_on;

};

exception IllegalRecipe {

ConstraintRecipe recipe;

};

exception NotProxyOfferId {

OfferId id;

};
16-54 CORBAservices March 1997

16
OfferId export_proxy (

in Lookup target,

in ServiceTypeName type,

in PropertySeq properties,

in boolean if_match_all,

in ConstraintRecipe recipe,

in PolicySeq policies_to_pass_on

) raises (

IllegalServiceType,

UnknownServiceType,

InvalidLookupRef, // e.g. nil

IllegalPropertyName,

PropertyTypeMismatch,

ReadonlyDynamicProperty,

MissingMandatoryProperty,

IllegalRecipe,

DuplicatePropertyName,

DuplicatePolicyName

);

void withdraw_proxy (

in OfferId id

) raises (

IllegalOfferId,

UnknownOfferId,

NotProxyOfferId

);

ProxyInfo describe_proxy (

in OfferId id

) raises (

IllegalOfferId,

UnknownOfferId,

NotProxyOfferId

);

};
Trading Object Service: v1.0 Functional Interfaces March 1997 16-55

16

ers.

erty
at
en it

his

.

Export Proxy Operation

Signature
OfferId export_proxy (

in Lookup target,

in ServiceTypeName type,

in PropertySeq properties,

in boolean if_match_all,

in ConstraintRecipe recipe,

in PolicySeq policies_to_pass_on

) raises (

IllegalServiceType,

UnknownServiceType,

InvalidLookupRef, // e.g. nil

IllegalPropertyName,

PropertyTypeMismatch,

ReadonlyDynamicProperty,

MissingMandatoryProperty,

IllegalRecipe,

DuplicatePropertyName,

DuplicatePolicyName

);

Function

The Proxy interface enables the export and subsequent manipulation of proxy off
Proxy offers enable run-time determination of the interface at which a service is
provided. The export_proxy operation adds a proxy offer to the trader’s set of service
offers.

Like normal service offers, proxy offers have a service type “type” and named prop
values “properties.” However, a proxy offer does not include an object reference
which the offered service is provided. Instead this object reference is obtained wh
is needed for a query operation; it is obtained by invoking another query operation
upon the “target” Lookup interface held in the proxy offer.

The “if_match_all” parameter, if TRUE, indicates that the trader should consider t
proxy offer as a match to an importers query based upon type conformance alone (i.e.,
it does not match the importer’s constraint expression against the properties associated
with the proxy offer). This is most often useful when the constraint expression
supplied by the importer is simply passed along in the secondary query operation
16-56 CORBAservices March 1997

16

 for

,

ing

t

ot

tr

t

tor
The “recipe” parameter tells the trader how to construct the constraint expression
the secondary query operation to “target.” The recipe language is described in
Appendix C; it permits the secondary constraint expression to be made up of literals
values of properties of the proxy offer, and the primary constraint expression.

The “policies_to_pass_on” parameter provides a static set of <name, value> pairs for
relaying on to the “target” trader. Table 16-5 describes how the secondary policy
parameter is generated from the primary policy parameter and the
“policies_to_pass_on.”

If a query operation matches the proxy offer (using the normal service type match
and property matching and preference algorithms), this primary query operation
invokes a secondary query operation on the Lookup interface nominated in the proxy
offer. Although the proxy offer nominates a Lookup interface, this interface is only
required to conform syntactically to the Lookup interface; it need not conform to the
Lookup interface behavior specified above.

The secondary query operation is detailed in Table 16-5.

Table 16-5 Primary/Secondary Policy Parameters

• The IllegalServiceType exception is raised if the service type name (type) is no
well-formed.

• The UnknownServiceType exception is raised if the service type name (type) is n
known to the trader.

in ServiceTypeName type The type is copied from primary query.

in Constraint constr The recipe in the proxy offer is evaluated to provide the cons
parameter.

in Preference pref The preference is copied from the primary query.

in PolicySeq policies The “policies” (names and values) contained in the
policies_to_pass_on field of the proxy offer are appended to the
policies of the primary query.

in SpecifiedProps desired_props The desired_props are copied from the primary query.

in unsigned long how_many The how_many parameter is set by the trader to reflect the
trader implementation’s preference for receiving the resultan
offer as a list or through an iterator.

out OfferSeq offers At most how_many offers are returned from the secondary
query operation via offers.

out OfferIterator offer_itr If the secondary query needs to return more than how_many
offers, then the remaining offers can be accessed via the itera
offer_itr. If there are only how_many or fewer offers, then
offer_itr is nil.

out PolicyNameSeq limits_applied The names of any policy limits that were applied by the proxy
trader.
Trading Object Service: v1.0 Functional Interfaces March 1997 16-57

16

is

n
• The InvalidLookupRef exception is raised if target is not a valid Lookup interface
reference (e.g. if target is a nil object reference).

• The IllegalPropertyName exception is raised if a property name in “properties”
not well-formed.

• The PropertyTypeMismatch exception is raised if a property value is not of an
appropriate type as determined by the service type.

• The ReadonlyDynamicProperty exception is raised if a dynamic property value was
supplied for a property that was flagged as readonly.

• The MissingMandatoryProperty exception is raised if “properties” does not contain
one of the mandatory properties defined by the service type.

• The IllegalRecipe exception is raised if the recipe is not well-formed.

• The DuplicatePropertyName exception is raised if two or more properties with the
same property name are included in the “properties” parameter.

• The DuplicatePolicyName exception is raised if two or more policies with the same
policy name are included in the “policies_to_pass_on” parameter.

Note – Proxy offers cannot be modified; they must be withdrawn and re-exported.

Withdraw Proxy Operation

Signature
void withdraw_proxy (

in OfferId id

) raises (

IllegalOfferId,

UnknownOfferId,

NotProxyOfferId

);

Function

The withdraw_proxy operation removes the proxy offer identified by “id” from the
trader.

The IllegalOfferId exception is raised if “id” is not well-formed. The UnknownOfferId
exception is raised if “id” does not identify any offer held by the trader. The
NotProxyOfferId exception is raised if “id” identifies a normal service offer rather tha
a proxy offer.
16-58 CORBAservices March 1997

16

n
Describe Proxy Operation

Signature
ProxyInfo describe_proxy (

in OfferId id

) raises (

IllegalOfferId,

UnknownOfferId,

NotProxyOfferId

);

Function

The describe_proxy operation returns the information contained in the proxy offer
identified by “id” in the trader.

The IllegalOfferId exception is raised if “id” is not well-formed. The UnknownOfferId
exception is raised if “id” does not identify any offer held by the trader. The
NotProxyOfferId exception is raised if “id” identifies a normal service offer rather tha
a proxy offer.

16.6 Service Type Repository
module CosTradingRepos {

interface ServiceTypeRepository {

// local types

typedef sequence<CosTrading::ServiceTypeName>
 ServiceTypeNameSeq;

enum PropertyMode {

PROP_NORMAL, PROP_READONLY,

PROP_MANDATORY, PROP_MANDATORY_READONLY

};

struct PropStruct {

CosTrading::PropertyName name;

CORBA::TypeCode value_type;

PropertyMode mode;

};

typedef sequence<PropStruct> PropStructSeq;

typedef CosTrading::Istring Identifier; // IR::Identifier
Trading Object Service: v1.0 Service Type Repository March 1997 16-59

16
struct IncarnationNumber {

unsigned long high;

unsigned long low;

};

struct TypeStruct {

Identifier if_name;

PropStructSeq props;

ServiceTypeNameSeq super_types;

boolean masked;

IncarnationNumber incarnation;

};

enum ListOption { all, since };

union SpecifiedServiceTypes switch (ListOption) {

case since: IncarnationNumber incarnation;

};

// local exceptions

exception ServiceTypeExists {

CosTrading::ServiceTypeName name;

};

exception InterfaceTypeMismatch {

CosTrading::ServiceTypeName base_service;

Identifier base_if;

CosTrading::ServiceTypeName derived_service;

Identifier derived_if;

};

exception HasSubTypes {

CosTrading::ServiceTypeName the_type;

CosTrading::ServiceTypeName sub_type;

};

exception AlreadyMasked {

CosTrading::ServiceTypeName name;

};

exception NotMasked {

CosTrading::ServiceTypeName name;

};
16-60 CORBAservices March 1997

16
exception ValueTypeRedefinition {

CosTrading::ServiceTypeName type_1;

PropStruct definition_1;

CosTrading::ServiceTypeName type_2;

PropStruct definition_2;

};

exception DuplicateServiceTypeName {

CosTrading::ServiceTypeName name;

};

// attributes

readonly attribute IncarnationNumber incarnation;

// operation signatures

IncarnationNumber add_type (

in CosTrading::ServiceTypeName name,

in Identifier if_name,

in PropStructSeq props,

in ServiceTypeNameSeq super_types

) raises (

CosTrading::IllegalServiceType,

ServiceTypeExists,

InterfaceTypeMismatch,

CosTrading::IllegalPropertyName,

CosTrading::DuplicatePropertyName,

ValueTypeRedefinition,

CosTrading::UnknownServiceType,

DuplicateServiceTypeName

);

void remove_type (

in CosTrading::ServiceTypeName name

) raises (

CosTrading::IllegalServiceType,

CosTrading::UnknownServiceType,

HasSubTypes

);
Trading Object Service: v1.0 Service Type Repository March 1997 16-61

16
ServiceTypeNameSeq list_types (

in SpecifiedServiceTypes which_types

);

TypeStruct describe_type (

in CosTrading::ServiceTypeName name

) raises (

CosTrading::IllegalServiceType,

CosTrading::UnknownServiceType

);

TypeStruct fully_describe_type (

in CosTrading::ServiceTypeName name

) raises (

CosTrading::IllegalServiceType,

CosTrading::UnknownServiceType

);

void mask_type (

in CosTrading::ServiceTypeName name

) raises (

CosTrading::IllegalServiceType,

CosTrading::UnknownServiceType,

AlreadyMasked

);

void unmask_type (

in CosTrading::ServiceTypeName name

) raises (

CosTrading::IllegalServiceType,

CosTrading::UnknownServiceType,

NotMasked

);

};

}; /* end module CosTradingRepos */
16-62 CORBAservices March 1997

16

for

f the

e
ct
 [64-

uld
Add Type Operation

Signature
IncarnationNumber add_type (

in CosTrading::ServiceTypeName name,

in Identifier if_name,

in PropStructSeq props,

in ServiceTypeNameSeq super_types

) raises (

CosTrading::IllegalServiceType,

ServiceTypeExists,

InterfaceTypeMismatch,

CosTrading::IllegalPropertyName,

CosTrading::DuplicatePropertyName,

ValueTypeRedefinition,

CosTrading::UnknownServiceType,

DuplicateServiceTypeName

);

Function

The add_type operation enables the creation of new service types in the service type
repository. The caller supplies the “name” for the new type, the identifier for the
interface associated with instances of this service type, the properties definitions
this service type, and the service type names of the immediate super-types to this
service type.

If the type creation is successful, an incarnation number is returned as the value o
operation. Incarnation numbers are opaque values that are assigned to each
modification to the repository’s state. An incarnation number can be quoted when
invoking the list_types operation to retrieve all changes to the service repository sinc
a particular logical time. (Note: IncarnationNumber is currently declared as a stru
consisting of two unsigned longs; what we really want here is an unsigned hyper
bit integer]. A future revision task force should modify this when CORBA systems
support IDL 64-bit integers.)

• If the “name” parameter is malformed, then the CosTrading::IllegalServiceType
exception is raised.

• If the type already exists, then the ServiceTypeExists exception is raised.

• If the “if_name” parameter is not a sub-type of the interface associated with a
service type from which this service type is derived, such that substitutability wo
be violated, then the InterfaceTypeMismatch exception is raised.

• If a property name supplied in the “props” parameter is malformed, the
CosTrading::IllegalPropertyName exception is raised.
Trading Object Service: v1.0 Service Type Repository March 1997 16-63

16

r, the

lue
e

, the

itory.
• If the same property name appears two or more times in the “props” paramete
CosTrading::DuplicatePropertyName exception is raised.

• If a property value type associated with this service type illegally modifies the va
type of a super-type’s property, or if two super-types incompatibly declare valu
types for the same property name, then the ValueTypeRedefinition exception is
raised.

• If one of the ServiceTypeNames in “super_types” is malformed, then the
CosTrading::IllegalServiceType exception is raised.

• If one of the ServiceTypeNames in “super_types” does not exist, then the
CosTrading::UnknownServiceType exception is raised.

• If the same service type name is included two or more times in this parameter
DuplicateServiceTypeName exception is raised.

Remove Type Operation

Signature
void remove_type (

in CosTrading::ServiceTypeName name

) raises (

CosTrading::IllegalServiceType,

CosTrading::UnknownServiceType,

HasSubTypes

);

Function

The remove_type operation removes the named type from the service type repos

• If “name” is malformed, then the CosTrading::IllegalServiceType exception is
raised.

• If “name” does not exist within the repository, then the
CosTrading::UnknownServiceType exception is raised.

• If “name” has a service type which has been derived from it, then the HasSubTypes
exception is raised.

List Types Operation

Signature
ServiceTypeNameSeq list_types (

in SpecifiedServiceTypes which_types

);
16-64 CORBAservices March 1997

16
Function

The list_types operation permits a client to obtain the names of service types which are
in the repository. The “which_types” parameter permits the client to specify one of two
possible values:

• all types known to the repository

• all types added/modified since a particular incarnation number

The names of the requested types are returned by the operation for subsequent
querying via the describe_type or the fully_describe_type operation.

Describe Type Operation

Signature
TypeStruct describe_type (

in CosTrading::ServiceTypeName name

) raises (

CosTrading::IllegalServiceType,

CosTrading::UnknownServiceType

);

Function

The describe_type operation permits a client to obtain the details for a particular
service type.

• If “name” is malformed, then the CosTrading::IllegalServiceType exception is
raised.

• If “name” does not exist within the repository, then the
CosTrading::UnknownServiceType exception is raised.

Fully Describe Type Operation

Signature
TypeStruct fully_describe_type (

in CosTrading::ServiceTypeName name

) raises (

CosTrading::IllegalServiceType,

CosTrading::UnknownServiceType

);
Trading Object Service: v1.0 Service Type Repository March 1997 16-65

16

ular

es in
per

).

 is
Function

The fully_describe_type operation permits a client to obtain the details for a partic
service type. The property sequence returned in the TypeStruct includes all properties
inherited from the transitive closure of its super types; the sequence of super typ
the TypeStruct contains the names of the types in the transitive closure of the su
type relation.

• If “name” is malformed, then the CosTrading::IllegalServiceType exception is
raised.

• If “name” does not exist within the repository, then the
CosTrading::UnknownServiceType exception is raised.

Mask Type Operation

Signature
void mask_type (

in CosTrading::ServiceTypeName name

) raises (

CosTrading::IllegalServiceType,

CosTrading::UnknownServiceType,

AlreadyMasked

);

Function

The mask_type operation permits the deprecation of a particular type (i.e., after being
masked, exporters will no longer be able to advertise offers of that particular type
The type continues to exist in the service repository due to other service types being
derived from it.

• If “name” is malformed, then the CosTrading::IllegalServiceType exception is
raised.

• If “name” does not exist within the repository, then the
CosTrading::UnknownServiceType exception is raised.

• If the type is currently in the masked state, then the AlreadyMasked exception
raised.

Unmask Type Operation

Signature
void unmask_type (

in CosTrading::ServiceTypeName name

) raises (

CosTrading::IllegalServiceType,
16-66 CORBAservices March 1997

16

 be

 a

CosTrading::UnknownServiceType,

NotMasked

);

Function

The unmask_type undeprecates a type (i.e., after being unmasked, exporters will
able to resume advertisement of offers of that particular type).

• If “name” is malformed, then the CosTrading::IllegalServiceType exception is
raised.

• If “name” does not exist within the repository, then the
CosTrading::UnknownServiceType exception is raised.

• If the type is not currently in the masked state, then the NotMasked exception is
raised.

16.7 Dynamic Property Evaluation interface
module CosTradingDynamic {

exception DPEvalFailure {
CosTrading::PropertyName name;
CORBA::TypeCode returned_type;
any extra_info;

};

interface DynamicPropEval {

any evalDP (
in CosTrading::PropertyName name,
in TypeCode returned_type,
in any extra_info)

raises (DPEvalFailure);
};

struct DynamicProp {
DynamicPropEval eval_if;
CORBA::TypeCode returned_type;
any extra_info;

};
};

The DynamicPropEval interface is provided by an exporter who wishes to provide
dynamic property value in a service offer held by the trader.

When exporting a service offer (or proxy offer), the property with the dynamic value
has an “any” value which contains a DynamicProp structure rather than the normal
property value. A trader which supports dynamic properties accepts this DynamicProp
value as containing the information which enables a correctly-typed property value to
Trading Object Service: v1.0 Dynamic Property Evaluation interface March 1997 16-67

16

e

e,

d by

hat
n),
erty

 to

.

be obtained during the evaluation of a query. The export (or export_proxy) operation
raises the PropertyTypeMismatch if the returned_type is not appropriate for the
property name as defined by the service type.

Readonly properties may not have dynamic values. The export and modify operations
on the Register interface and the export_proxy operation on the Proxy interface rais
the ReadonlyDynamicProperty exception if dynamic values are assigned to readonly
properties.

When a query requires a dynamic property value, the evalDP operation is invoked on
the eval_if interface in the DynamicProp structure. The property name parameter is the
name of the property whose value is being obtained. The returned_type and extra_info
parameters are copied from the DynamicProp structure. The evalDP operation returns
an any value which should contain a value for that property. The value should be of a
type indicated by returned_type.

The DPEvalFailure exception is raised if the value for the property cannot be
determined. If the value is required for the evaluation of a constraint or preferenc
then that evaluation is deemed to have failed on that service offer (or proxy offer).

Other than the preceding rules, the behavior of the evalDP operation is not specifie
this standard. In particular, the purpose of the extra_info data in determining the
dynamic property value is implementation-specific.

If the trader does not support dynamic properties (indicated by the trader attribute
supports_dynamic_properties), the export and export_proxy operations should not be
parameterized by dynamic properties. The behavior of such traders in such
circumstances is not specified by this standard.

If the trader does not support dynamic properties or the importer has requested t
dynamic properties are not used (via the policies parameter of the query operatio
then dynamic property evaluation is not performed. If the value of a dynamic prop
is required by the evaluation of a constraint or preference, then that evaluation is
deemed to have failed on that service offer (or proxy offer).

The describe operation of the Register interface and the describe_proxy operation of
the Proxy interface do not perform dynamic property evaluation, but return the
DynamicProp structure as the value of the property. As these interfaces are used
create dynamic properties via the export and export_proxy operations, the other
operations on these interfaces must ensure that the dynamic nature of the properties
remains visible to the exporters.

The modify operation on the Register interface of a trader which supports dynamic
properties must accept the establishment and modification of dynamic properties,
consistent with the export operation. There is no restriction on a property value
changing from a static value stored by the trader into a dynamic value, and vice versa

Note – Readonly static properties may not be modified to be dynamic.
16-68 CORBAservices March 1997

16

 test

ation

ll be

s of

se
16.8 Conformance Criteria

The following interfaces are programmatic reference points for testing conformance:

• the Lookup interface (as server) provided by the trader implementation under test

• the Register interface (as server) provided by the trader implementation under

• the Admin interface (as server) provided by the trader implementation under test

• the Link interface (as server) provided by the trader implementation under test

• the Proxy interface (as server) provided by the trader implementation under test

• a Lookup interface (as client) of a linked trader, used by the trader implementation
under test

• a Register interface (as client) of a linked trader, used by the trader implement
under test

• a DynamicPropEval interface (as client) of an object, used by the trader
implementation under test during the evaluation of a dynamic property

The behavior defined for each of the operations in the interface specifications sha
exhibited at the conformance points associated with that behavior.

The following taxonomy is defined for specific implementation conformance classe
trading object service implementations:

• query trader - supports the Lookup interface

• simple trader - supports the Lookup and Register interfaces

• stand-alone trader - supports the Lookup, Register, and Admin interfaces

• linked trader - supports the Lookup, Register, Admin, and Link interfaces; is also a
client for Lookup and Register interfaces

• proxy trader - supports the Lookup, Register, Admin, and Proxy interfaces; is also a
client for Lookup interfaces

• full-service trader - supports the Lookup, Register, Admin, Link, and Proxy
interfaces; is also a client for Lookup and Register interfaces

Any of these specific trading object service classes may also be a client for the
DynamicPropEval interface if it supports dynamic properties.

16.8.1 Conformance Requirements for Trading Interfaces as Server

Since the interfaces to a trading object service are separable, and support for tho
interfaces is selectable subject to the conformance classes defined above, this section
specifies the conformance requirements on a per-interface basis.
Trading Object Service: v1.0 Conformance Criteria March 1997 16-69

16

up”

t a
.

sume

so

in”

o
Lookup Interface

An implementation claiming conformance to the Lookup interface as server shall
implement the complete behavior associated with all the operations and readonly
attributes defined within the scope of the Lookup interface as documented in “Look
on page 16-30.

An implementation claiming conformance to the Lookup interface as server shall also
support the OfferIterator interface as server as documented in “Offer Iterator” on
page 16-35.

Register Interface

An implementation claiming conformance to the Register interface as server shall
implement the complete behavior associated with all the operations and readonly
attributes defined within the scope of the Register interface as documented in
“Register” on page 16-36, with the following permitted exceptions:

• An implementation which only allows the value of FALSE for the
supports_modifiable_properties attribute is conformant, in which case it may reject
a service offer which includes modifiable properties passed in an export operation,
and may always respond to modify operation requests with an exception.

• An implementation which only allows the value of FALSE for the
supports_dynamic_properties attribute is conformant, in which case it may rejec
service offer which includes dynamic properties passed in an export operation

• An implementation claiming conformance to the Register interface as server, with
the value of the supports_dynamic_properties set to TRUE, shall be able to as
the client role for the DynamicPropEval interface.

• An implementation claiming conformance to the Register interface as server, with
the value of the readonly attribute supports_proxy_offers set to TRUE, shall al
support the Proxy interface.

Admin Interface

An implementation claiming conformance to the Admin interface as server shall
implement the complete behavior associated with all the operations and readonly
attributes defined within the scope of the Admin interface as documented in “Adm
on page 16-46.

An implementation claiming conformance to the Admin interface as server shall als
support the OfferIdIterator interface as server as documented in “Offer Id Iterator” on
page 16-45.
16-70 CORBAservices March 1997

16

n

” on

s

 by

s
Link Interface

An implementation claiming conformance to the Link interface as server shall
implement the complete behavior associated with all the operations and readonly
attributes defined within the scope of the Link interface as documented in “Link” o
page 16-49.

Proxy Interface

An implementation claiming conformance to the Proxy interface as server shall
implement the complete behavior associated with all the operations and readonly
attributes defined within the scope of the Proxy interface as documented in “Proxy
page 16-54.

16.8.2 Conformance Requirements for Implementation Conformance Classe

In the sections below, the following graphical notation is used:

The meaning of this notation is as follows:

• The rectangle represents an implementation of “Conformance Class Name.”

• The ellipses on the surface of the rectangle represent the interfaces supported
this implementation.

• The arrows to the right indicate that traders of this conformance class act as client
to other traders via the named interface.

Interface1 Interface2

Conformance Class Name
Interface3
Trading Object Service: v1.0 Conformance Criteria March 1997 16-71

16
Query Trader

A trading object service implementation claiming conformance to the query trader
conformance class shall meet the conformance requirements of the Lookup interface as
server.

Simple Trader

A trading object service implementation claiming conformance to the simple trader
conformance class shall meet the conformance requirements of the Lookup and
Register interfaces as server.

Stand-alone Trader

A trading object service implementation claiming conformance to the stand-alone
trader conformance class shall meet the conformance requirements of the Lookup,
Register, and Admin interfaces as server.

Lookup

query trader

Lookup Register

simple trader

Lookup Register

stand-alone trader

Admin
16-72 CORBAservices March 1997

16
Linked Trader

A trading object service implementation claiming conformance to the linked trader
conformance class shall meet the conformance requirements of the Lookup, Register,
Admin, and Link interfaces as server.

Proxy Trader

A trading object service implementation claiming conformance to the proxy trader
conformance class shall meet the conformance requirements of the Lookup, Register,
Admin, and Proxy interfaces as server.

Full-service Trader

A trading object service implementation claiming conformance to the full-service
trader conformance class shall meet the conformance requirements of the Lookup,
Register, Admin, Link, and Proxy interfaces as server.

Lookup Register

linked trader
Lookup

Admin Link

Register

Lookup Register

proxy trader
Lookup

Admin Proxy

Lookup Register

full-service trader
Lookup

Admin Link Proxy

Register
Trading Object Service: v1.0 Conformance Criteria March 1997 16-73

16

ure

Appendix A CORBA OMG IDL based Specification of the Trading Function

This appendix provides the CORBA OMG IDL specification of the interface signat
for the trading function’s computational specification. It specifies the signature for
each computational operation in OMG IDL, according to the functional description
(signature and semantics) provided in the body of this chapter.

 A.1 OMG Trading Function Module
module CosTrading {

// forward references to our interfaces

interface Lookup;

interface Register;

interface Link;

interface Proxy;

interface Admin;

interface OfferIterator;

interface OfferIdIterator;

// type definitions used in more than one interface

typedef string Istring;

typedef Object TypeRepository;

typedef Istring PropertyName;

typedef sequence<PropertyName> PropertyNameSeq;

typedef any PropertyValue;

struct Property {

PropertyName name;

PropertyValue value;

};

typedef sequence<Property> PropertySeq;

struct Offer {

Object reference;

PropertySeq properties;

};

typedef sequence<Offer> OfferSeq;
 16-74 CORBAservices March 1997

16
typedef string OfferId;

typedef sequence<OfferId> OfferIdSeq;

typedef Istring ServiceTypeName; // similar structure to
IR::Identifier

typedef Istring Constraint;

enum FollowOption {

local_only,

if_no_local,

always

};

typedef Istring LinkName;

typedef sequence<LinkName> LinkNameSeq;

typedef LinkNameSeq TraderName;

typedef string PolicyName; // policy names restricted to Latin1

typedef sequence<PolicyName> PolicyNameSeq;

typedef any PolicyValue;

struct Policy {

PolicyName name;

PolicyValue value;

};

typedef sequence<Policy> PolicySeq;

// exceptions used in more than one interface

exception UnknownMaxLeft {};

exception NotImplemented {};

exception IllegalServiceType {

ServiceTypeName type;

};
 Trading Object Service: v1.0 OMG Trading Function Module March 1997 16-75

16
exception UnknownServiceType {

ServiceTypeName type;

};

exception IllegalPropertyName {

PropertyName name;

};

exception DuplicatePropertyName {

PropertyName name;

};

exception PropertyTypeMismatch {

ServiceTypeName type;

Property prop;

};

exception MissingMandatoryProperty {

ServiceTypeName type;

PropertyName name;

};

exception ReadonlyDynamicProperty {

ServiceTypeName type;

PropertyName name;

};

exception IllegalConstraint {

Constraint constr;

};

exception InvalidLookupRef {

Lookup target;

};

exception IllegalOfferId {

OfferId id;

};
 16-76 CORBAservices March 1997

16
exception UnknownOfferId {

OfferId id;

};

exception DuplicatePolicyName {

PolicyName name;

};

// the interfaces

interface TraderComponents {

readonly attribute Lookup lookup_if;

readonly attribute Register register_if;

readonly attribute Link link_if;

readonly attribute Proxy proxy_if;

readonly attribute Admin admin_if;

};

interface SupportAttributes {

readonly attribute boolean supports_modifiable_properties;

readonly attribute boolean supports_dynamic_properties;

readonly attribute boolean supports_proxy_offers;

readonly attribute TypeRepository type_repos;

};

interface ImportAttributes {

readonly attribute unsigned long def_search_card;

readonly attribute unsigned long max_search_card;

readonly attribute unsigned long def_match_card;

readonly attribute unsigned long max_match_card;

readonly attribute unsigned long def_return_card;

readonly attribute unsigned long max_return_card;

readonly attribute unsigned long max_list;

readonly attribute unsigned long def_hop_count;

readonly attribute unsigned long max_hop_count;
 Trading Object Service: v1.0 OMG Trading Function Module March 1997 16-77

16
readonly attribute FollowOption def_follow_policy;

readonly attribute FollowOption max_follow_policy;

};

interface LinkAttributes {

readonly attribute FollowOption max_link_follow_policy;

};

interface
Lookup:TraderComponents,SupportAttributes,ImportAttributes {

typedef Istring Preference;

enum HowManyProps { none, some, all };

union SpecifiedProps switch (HowManyProps) {

case some: PropertyNameSeq prop_names;

};

exception IllegalPreference {

Preference pref;

};

exception IllegalPolicyName {

PolicyName name;

};

exception PolicyTypeMismatch {

Policy the_policy;

};

exception InvalidPolicyValue {

Policy the_policy;

};

void query (

in ServiceTypeName type,
 16-78 CORBAservices March 1997

16
in Constraint constr,

in Preference pref,

in PolicySeq policies,

in SpecifiedProps desired_props,

in unsigned long how_many,

out OfferSeq offers,

out OfferIterator offer_itr,

out PolicyNameSeq limits_applied

) raises (

IllegalServiceType,

UnknownServiceType,

IllegalConstraint,

IllegalPreference,

IllegalPolicyName,

PolicyTypeMismatch,

InvalidPolicyValue,

IllegalPropertyName,

DuplicatePropertyName,

DuplicatePolicyName

);

};

interface Register : TraderComponents, SupportAttributes {

struct OfferInfo {

Object reference;

ServiceTypeName type;

PropertySeq properties;

};

exception InvalidObjectRef {

Object ref;

};

exception UnknownPropertyName {

PropertyName name;

};
 Trading Object Service: v1.0 OMG Trading Function Module March 1997 16-79

16
exception InterfaceTypeMismatch {

ServiceTypeName type;

Object reference;

};

exception ProxyOfferId {

OfferId id;

};

exception MandatoryProperty {

ServiceTypeName type;

PropertyName name;

};

exception ReadonlyProperty {

ServiceTypeName type;

PropertyName name;

};

exception NoMatchingOffers {

Constraint constr;

};

exception IllegalTraderName {

TraderName name;

};

exception UnknownTraderName {

TraderName name;

};

exception RegisterNotSupported {

TraderName name;

};

OfferId export (

in Object reference,

in ServiceTypeName type,
 16-80 CORBAservices March 1997

16
in PropertySeq properties

) raises (

InvalidObjectRef,

IllegalServiceType,

UnknownServiceType,

InterfaceTypeMismatch,

IllegalPropertyName, // e.g. prop_name = “<foo-bar”

PropertyTypeMismatch,

ReadonlyDynamicProperty,

MissingMandatoryProperty,

DuplicatePropertyName

);

void withdraw (

in OfferId id

) raises (

IllegalOfferId,

UnknownOfferId,

ProxyOfferId

);

OfferInfo describe (

in OfferId id

) raises (

IllegalOfferId,

UnknownOfferId,

ProxyOfferId

);

void modify (

in OfferId id,

in PropertyNameSeq del_list,

in PropertySeq modify_list

) raises (

NotImplemented,

IllegalOfferId,

UnknownOfferId,

ProxyOfferId,
 Trading Object Service: v1.0 OMG Trading Function Module March 1997 16-81

16
IllegalPropertyName,

UnknownPropertyName,

PropertyTypeMismatch,

ReadonlyDynamicProperty,

MandatoryProperty,

ReadonlyProperty,

DuplicatePropertyName

);

void withdraw_using_constraint (

in ServiceTypeName type,

in Constraint constr

) raises (

IllegalServiceType,

UnknownServiceType,

IllegalConstraint,

NoMatchingOffers

);

Register resolve (

in TraderName name

) raises (

IllegalTraderName,

UnknownTraderName,

RegisterNotSupported

);

};

interface Link : TraderComponents, SupportAttributes,
LinkAttributes {

struct LinkInfo {

Lookup target;

Register target_reg;

FollowOption def_pass_on_follow_rule;

FollowOption limiting_follow_rule;

};
 16-82 CORBAservices March 1997

16
exception IllegalLinkName {

LinkName name;

};

exception UnknownLinkName {

LinkName name;

};

exception DuplicateLinkName {

LinkName name;

};

exception DefaultFollowTooPermissive {

FollowOption def_pass_on_follow_rule;

FollowOption limiting_follow_rule;

};

exception LimitingFollowTooPermissive {

FollowOption limiting_follow_rule;

FollowOption max_link_follow_policy;

};

void add_link (

in LinkName name,

in Lookup target,

in FollowOption def_pass_on_follow_rule,

in FollowOption limiting_follow_rule

) raises (

IllegalLinkName,

DuplicateLinkName,

InvalidLookupRef, // e.g. nil

DefaultFollowTooPermissive,

LimitingFollowTooPermissive

);

void remove_link (

in LinkName name

) raises (

IllegalLinkName,
 Trading Object Service: v1.0 OMG Trading Function Module March 1997 16-83

16
UnknownLinkName

);

LinkInfo describe_link (

in LinkName name

) raises (

IllegalLinkName,

UnknownLinkName

);

LinkNameSeq list_links ();

void modify_link (

in LinkName name,

in FollowOption def_pass_on_follow_rule,

in FollowOption limiting_follow_rule

) raises (

IllegalLinkName,

UnknownLinkName,

DefaultFollowTooPermissive,

LimitingFollowTooPermissive

);

};

interface Proxy : TraderComponents, SupportAttributes {

typedef Istring ConstraintRecipe;

struct ProxyInfo {

ServiceTypeName type;

Lookup target;

PropertySeq properties;

boolean if_match_all;

ConstraintRecipe recipe;

PolicySeq policies_to_pass_on;

};

exception IllegalRecipe {
 16-84 CORBAservices March 1997

16
ConstraintRecipe recipe;

};

exception NotProxyOfferId {

OfferId id;

};

OfferId export_proxy (

in Lookup target,

in ServiceTypeName type,

in PropertySeq properties,

in boolean if_match_all,

in ConstraintRecipe recipe,

in PolicySeq policies_to_pass_on

) raises (

IllegalServiceType,

UnknownServiceType,

InvalidLookupRef, // e.g. nil

IllegalPropertyName,

PropertyTypeMismatch,

ReadonlyDynamicProperty,

MissingMandatoryProperty,

IllegalRecipe,

DuplicatePropertyName,

DuplicatePolicyName

);

void withdraw_proxy (

in OfferId id

) raises (

IllegalOfferId,

UnknownOfferId,

NotProxyOfferId

);

ProxyInfo describe_proxy (

in OfferId id

) raises (
 Trading Object Service: v1.0 OMG Trading Function Module March 1997 16-85

16
IllegalOfferId,

UnknownOfferId,

NotProxyOfferId

);

};

interface Admin : TraderComponents, SupportAttributes,
ImportAttributes,

LinkAttributes {

typedef sequence<octet> OctetSeq;

readonly attribute OctetSeq request_id_stem;

unsigned long set_def_search_card (in unsigned long value);

unsigned long set_max_search_card (in unsigned long value);

unsigned long set_def_match_card (in unsigned long value);

unsigned long set_max_match_card (in unsigned long value);

unsigned long set_def_return_card (in unsigned long value);

unsigned long set_max_return_card (in unsigned long value);

unsigned long set_max_list (in unsigned long value);

boolean set_supports_modifiable_properties (in boolean
value);

boolean set_supports_dynamic_properties (in boolean value);

boolean set_supports_proxy_offers (in boolean value);

unsigned long set_def_hop_count (in unsigned long value);

unsigned long set_max_hop_count (in unsigned long value);

FollowOption set_def_follow_policy (in FollowOption policy);

FollowOption set_max_follow_policy (in FollowOption policy);

FollowOption set_max_link_follow_policy (in FollowOption
policy);
 16-86 CORBAservices March 1997

16
TypeRepository set_type_repos (in TypeRepository
repository);

OctetSeq set_request_id_stem (in OctetSeq stem);

void list_offers (

in unsigned long how_many,

out OfferIdSeq ids,

out OfferIdIterator id_itr

) raises (

NotImplemented

);

void list_proxies (

in unsigned long how_many,

out OfferIdSeq ids,

out OfferIdIterator id_itr

) raises (

NotImplemented

);

};

interface OfferIterator {

unsigned long max_left (

) raises (

UnknownMaxLeft

);

boolean next_n (

in unsigned long n,

out OfferSeq offers

);

void destroy ();

};

interface OfferIdIterator {
 Trading Object Service: v1.0 OMG Trading Function Module March 1997 16-87

16
unsigned long max_left (

) raises (

UnknownMaxLeft

);

boolean next_n (

in unsigned long n,

out OfferIdSeq ids

);

void destroy ();

};

}; /* end module CosTrading */

 A.2 Dynamic Property Module
module CosTradingDynamic {

exception DPEvalFailure {

CosTrading::PropertyName name;

CORBA::TypeCode returned_type;

any extra_info;

};

interface DynamicPropEval {

any evalDP (

in CosTrading::PropertyName name,

in CORBA::TypeCode returned_type,

in any extra_info

) raises (

DPEvalFailure

);

};

struct DynamicProp {

 DynamicPropEval eval_if;

 CORBA::TypeCode returned_type;
 16-88 CORBAservices March 1997

16
 any extra_info;

};

}; /* end module CosTradingDynamic */

 A.3 Service Type Repository Module
module CosTradingRepos {

interface ServiceTypeRepository {

// local types

typedef sequence<CosTrading::ServiceTypeName>
ServiceTypeNameSeq;

enum PropertyMode {

PROP_NORMAL, PROP_READONLY,

PROP_MANDATORY, PROP_MANDATORY_READONLY

};

struct PropStruct {

CosTrading::PropertyName name;

CORBA::TypeCode value_type;

PropertyMode mode;

};

typedef sequence<PropStruct> PropStructSeq;

typedef CosTrading::Istring Identifier; // IR::Identifier

struct IncarnationNumber {

unsigned long high;

unsigned long low;

};

struct TypeStruct {

Identifier if_name;

PropStructSeq props;

ServiceTypeNameSeq super_types;

boolean masked;

IncarnationNumber incarnation;

};

enum ListOption { all, since };

union SpecifiedServiceTypes switch (ListOption) {
 Trading Object Service: v1.0 Service Type Repository Module March 1997 16-89

16
case since: IncarnationNumber incarnation;

};

// local exceptions

exception ServiceTypeExists {

CosTrading::ServiceTypeName name;

};

exception InterfaceTypeMismatch {

CosTrading::ServiceTypeName base_service;

Identifier base_if;

CosTrading::ServiceTypeName derived_service;

Identifier derived_if;

};

exception HasSubTypes {

CosTrading::ServiceTypeName the_type;

CosTrading::ServiceTypeName sub_type;

};

exception AlreadyMasked {

CosTrading::ServiceTypeName name;

};

exception NotMasked {

CosTrading::ServiceTypeName name;

};

exception ValueTypeRedefinition {

CosTrading::ServiceTypeName type_1;

PropStruct definition_1;

CosTrading::ServiceTypeName type_2;

PropStruct definition_2;

};

exception DuplicateServiceTypeName {

CosTrading::ServiceTypeName name;

};

// attributes

readonly attribute IncarnationNumber incarnation;

// operation signatures

IncarnationNumber add_type (
 16-90 CORBAservices March 1997

16
in CosTrading::ServiceTypeName name,

in Identifier if_name,

in PropStructSeq props,

in ServiceTypeNameSeq super_types

) raises (

CosTrading::IllegalServiceType,

ServiceTypeExists,

InterfaceTypeMismatch,

CosTrading::IllegalPropertyName,

CosTrading::DuplicatePropertyName,

ValueTypeRedefinition,

CosTrading::UnknownServiceType,

DuplicateServiceTypeName

);

void remove_type (

in CosTrading::ServiceTypeName name

) raises (

CosTrading::IllegalServiceType,

CosTrading::UnknownServiceType,

HasSubTypes

);

ServiceTypeNameSeq list_types (

in SpecifiedServiceTypes which_types

);

TypeStruct describe_type (

in CosTrading::ServiceTypeName name

) raises (

CosTrading::IllegalServiceType,

CosTrading::UnknownServiceType

);

TypeStruct fully_describe_type (

in CosTrading::ServiceTypeName name

) raises (

CosTrading::IllegalServiceType,
 Trading Object Service: v1.0 Service Type Repository Module March 1997 16-91

16
CosTrading::UnknownServiceType

);

void mask_type (

in CosTrading::ServiceTypeName name

) raises (

CosTrading::IllegalServiceType,

CosTrading::UnknownServiceType,

AlreadyMasked

);

void unmask_type (

in CosTrading::ServiceTypeName name

) raises (

CosTrading::IllegalServiceType,

CosTrading::UnknownServiceType,

NotMasked

);

};

}; /* end module CosTradingRepos */
 16-92 CORBAservices March 1997

16

the

m
h

 is a

s

of
Appendix B OMG Constraint Language BNF

This appendix provides the BNF specification of the CORBA standard constraint
language; it is used for specifying both the constraint and preference expression
parameters to various operations in the trader interfaces.

A statement in this language is an Istring. Other constraint languages may be supported
by a particular trader implementation; the constraint language used by a client of the
trader is indicated by embedding “<<Identifier major.minor>>” at the beginning of
string. If such an escape is not used, it is equivalent to embedding “<<OMG 1.0>>” at
the beginning of the string.

B.1 Language Basics

 B.1.1 Basic Elements

Both the constraint and preference expressions in a query can be constructed fro
property names of conformant offers and literals. The constraint language in whic
these expressions are written consists of the following items (examples of these
expressions are shown in square brackets below each bulleted item):

• comparative functions: == (equality), != (inequality), >, >=, <, <=, ~ (substring
match), in (element in sequence); the result of applying a comparative function
boolean value
[“Cost < 5” implies only consider offers with a Cost property value less than 5;
“’Visa’ in CreditCards” implies only consider offers in which the CreditCards
property, consisting of a set of strings, contains the string ’Visa’]

• boolean connectives: and, or, not
[“Cost >= 2 and Cost <= 5” implies only consider offers where the value of the
Cost property is in the range 2 <= Cost <= 5]

• property existence: exist

• property names

• numeric and string constants

• mathematical operators: +, -, *, /
[“10 < 12.3 * MemSize + 4.6 * FileSize” implies only consider offers for which the
arithmetic function in terms of the value of the MemSize and FileSize propertie
exceeds 10]

• grouping operators: (,)

Note that the keywords in the language are case sensitive.

 B.1.2 Precedence Relations

The following precedence relations hold in the absence of parentheses, in the order
highest to lowest:
 Trading Object Service: v1.0 Language Basics March 1997 16-93

16

rty’s

d

type

type

type

type

type

type
() exist unary-minus

not

* /

+ -

~

in

== != < <= > >=

and

or

 B.1.3 Legal Property Value Types

While one can define properties of service types with arbitrarily complex OMG IDL
value types, only the following property value types can be manipulated using the
constraint language:

• boolean, short, unsigned short, long, unsigned long, float, double, char, Ichar,
string, Istring

• sequences of the above types

The “exist” operator can be applied to any property name, regardless of the prope
value type.

 B.1.4 Operator Restrictions

exist can be applied to any property

~ can only be applied if left operand and right operand are both strings or both
Istrings

in can only be applied if the left operand is one of the simple types describe
above and the right operand is a sequence of the same simple type

== can only be applied if the left and right operands are of the same simple

!= can only be applied if the left and right operands are of the same simple

< can only be applied if the left and right operands are of the same simple

<= can only be applied if the left and right operands are of the same simple

> can only be applied if the left and right operands are of the same simple

>= can only be applied if the left and right operands are of the same simple

+ can only be applied to simple numeric operands

- can only be applied to simple numeric operands

* can only be applied to simple numeric operands
 16-94 CORBAservices March 1997

16

a

/ can only be applied to simple numeric operands

<, <=, >, >= comparisons imply use of the appropriate collating sequence for
characters and strings; TRUE is greater than FALSE for booleans.

 B.1.5 Representation of Literals

boolean TRUE or FALSE

integers sequences of digits, with a possible leading + or -

floats digits with decimal point, with optional exponential notation

characters char and Ichar are of the form ‘<char>’, string and Istring are of the
form ‘<char><char>+’; to embed an apostrophe in a string, place
backslash (\) in front of it; to embed a backslash in a string, use \\.

 B.2 The Constraint Language BNF

 B.2.1 The Constraint Language Proper in Terms of Lexical Tokens
<constraint> := /* empty */

| <bool>

<preference> := /* <empty> */

| min <bool>

| max <bool>

| with <bool>

| random

| first

<bool> := <bool_or>

<bool_or> := <bool_or> or <bool_and>

| <bool_and>

<bool_and> := <bool_and> and <bool_compare>

| <bool_compare>

<bool_compare> := <expr_in> == <expr_in>

| <expr_in> != <expr_in>

| <expr_in> < <expr_in>

| <expr_in> <= <expr_in>
 Trading Object Service: v1.0 The Constraint Language BNF March 1997 16-95

16
| <expr_in> > <expr_in>

| <expr_in> >= <expr_in>

| <expr_in>

<expr_in> := <expr_twiddle> in <Ident>

| <expr_twiddle>

<expr_twiddle> := <expr> ~ <expr>

| <expr>

<expr> := <expr> + <term>

| <expr> - <term>

| <term>

<term> := <term> * <factor_not>

| <term> / <factor_not>

| <factor_not>

<factor_not> := not <factor>

| <factor>

<factor> := (<bool_or>)

| exist <Ident>

| <Ident>

| <Number>

| - <Number>

| <String>

| TRUE

| FALSE

 B.2.2 “BNF” for Lexical Tokens up to Character Set Issues
<Ident> := <Leader> <FollowSeq>

<FollowSeq> := /* <empty> */

| <FollowSeq> <Follow>

<Number>:= <Mantissa>

| <Mantissa> <Exponent>
 16-96 CORBAservices March 1997

16

et.
<Mantissa> := <Digits>

| <Digits> .

| . <Digits>

| <Digits> . <Digits>

<Exponent> := <Exp> <Sign> <Digits>

<Sign> := +

| -

<Exp>:= E

| e

<Digits> := <Digits> <Digit>

| <Digit>

<String> := ’ <TextChars> ’

<TextChars> := /* <empty> */

| <TextChars> <TextChar>

<TextChar> := <Alpha>

| <Digit>

| <Other>

| <Special>

<Special> := \\

| \’

 B.2.3 Character Set Issues

The previous BNF has been complete up to the non-terminals <Leader>, <Follow>,
<Alpha>, <Digit>, and <Other>. For a particular character set, one must define the
characters which make up these character classes.

Each character set which the trading service is to support must define these character
classes. This appendix defines these character classes for the ASCII character s

<Leader> := <Alpha>
 Trading Object Service: v1.0 The Constraint Language BNF March 1997 16-97

16
<Follow> := <Alpha>

| <Digit>

| _

<Alpha> is the set of alphabetic characters [A-Za-z]

<Digit> is the set of digits [0-9]

<Other> is the set of ASCII characters that are not <Alpha>, <Digit>,
or <Special>
 16-98 CORBAservices March 1997

16

st

ed by
s

Appendix C OMG Constraint Recipe Language

This appendix describes the recipe language used to construct the secondary conraint
expression when resolving proxy offers; the secondary constraint expression is
constructed from the primary constraint expression and the properties associated with
the proxy offer.

A statement in this language is an Istring. Other recipe languages may be support
a particular trader implementation; the recipe language used by a client of the trader i
indicated by embedding “<<Identifier major.minor>>” at the beginning of the string. If
such an escape is not used, it is equivalent to embedding “<<OMG 1.0>>” at the
beginning of the string.

While the nested invocation of the Trader behind the proxy assumes support for the
Lookup interface, the secondary constraint expression does not necessarily need to
conform to the language described in Appendix B.

C.1 The Recipe Syntax

The rewriting from primary to secondary works similarly to formatted output in a
variety of programming languages and systems. It is patterned after the variable
replacement syntax of the Bourne and Korn shells on most UNIX systems.

When it is time to construct the secondary constraint expression from the recipe, the
algorithm is as follows:

while not end of recipe

fetch the next character from the recipe

if not a ‘$’ character

append the character to the secondary constraint

else

fetch next character from the recipe

if a ‘*’ character

append the entire primary constraint to the secondary
constraint

else if not a ‘(’ character

append the character to the secondary constraint

else

collect characters up to a ‘)’ character, discarding ‘)’

lookup property with that name

append formatted value of that property to secondary
constraint
 Trading Object Service: v1.0 The Recipe Syntax March 1997 16-99

16

:

 C.2 Example

Assume a proxy offer has been exported to a trader with the following properties

<Name, ‘MyName’>, <Cost, 42>, <Host, ‘x.y.co.uk’>

and with the following recipe:

“Name == $(Name) and Cost == $$$(Cost)”

The above algorithm will generate the following secondary constraint for the nested
call to the trader behind the proxy:

“Name == ‘MyName’ and Cost == $42”
 16-100 CORBAservices March 1997

Object Collection Specification 17
The adopted specification used to create this chapter was OMG document ORBOS 96-
07-09, July 1996. This chapter provides complete documentation for the Object
Collection Service specification.

Contents

This chapter contains the following sections.

Section Title Page

“Overview” 17-2

“Service Structure” 17-2

“Combined Collections” 17-10

“Restricted Access Collections” 17-14

“The CosCollection Module” 17-15

Appendix A, “OMG Object Query Service” 17-124

Appendix B, “Relationship to Other Relevant Standards”17-133

Appendix C, “References” 17-138
CORBAservices July 1997 17-1

17

user.
 of

of

 they
ype.

nly

ction
ments

e

 a

n

hen
17.1 Overview

Collections support the grouping of objects and support operations for the
manipulation of the objects as a group. Common collection types are queues, sets,
bags, maps, etc. Collection types differ in the “nature of grouping” exposed to the
“Nature of grouping” is reflected in the operations supported for the manipulation
objects as members of a group. Collections, for example, can be ordered and thus
support access to an element at position ”i” while other collections may support
associative access to elements via a key. Collections may guarantee the uniqueness
elements while others allow multiple occurrences of elements. A user chooses a
collection type that matches the application requirements based on manipulation
capabilities.

Collections are foundation classes used in a broad range of applications; therefore,
have to meet the general requirement to be able to collect elements of arbitrary t
On the other hand, a collection instance usually is a homogenous collection in the
sense that all elements collected are of the same type, or support the same single
interface.

Sometimes you may not want to do something to all elements in a collection, but o
treat an individual object or traverse a collection explicitly (not implicitly via a
collection operation). To enable this, a pointer abstraction often called an iterator is
supported with collections. For example, an iterator points to an element in a colle
and processes the element pointed to. Iterators can be moved and used to visit ele
of a collection in an application defined manner. There can be many iterators pointing
to elements of the same collection instance.

Normally, when operating on all elements of a collection, you want to pass user-
defined information to the collection implementation about what to do with the
individual elements or which elements are to be processed. To enable this, function
interfaces are used. A collection implementation can rely on and use the defined
function interface. A user has to specialize and implement these interfaces to pass th
user-defined information to the implementation. A function interface can be used to
pass element type specific information such as how to compare elements or pass
“program” to be applied to all elements.

17.2 Service Structure

The purpose of an Object Collection Service is to provide a uniform way to
create and manipulate the most common collections generically. The Object Service
defines three categories of interfaces to serve this purpose.

1. Collection interfaces and collection factories. A client chooses a collection
interface which offers grouping properties that match the client’s needs. A client
creates a collection instance of the chosen interface using a collection factory.
When creating a collection, a client has to pass element type specific informatio
such as how to compare elements, how to test element equality, or the type
checking desired. A client uses collections to manipulate elements as a group. W
17-2 CORBAservices July 1997

17

s

hen a

)

tion

 that
ey
a collection is no longer used it may be destroyed - this includes removing the
elements collected, destroying element type specific information passed, and the
iterators pointing to this collection.

2. Iterator interfaces. A client creates an iterator using the collection for which it i
created as factory. A client uses an iterator to traverse the collection in an
application defined manner, process elements pointed to, mark ranges, etc. W
client no longer uses an iterator, it destroys the iterator.

3. Function interfaces. A client creates user-defined specializations of these
interfaces using user-defined factories. Instances are passed to a collection
implementation when the collection is created (element type specific information
or as a parameter of an operation (for example, code to be executed for each
element of the collection). Instances of function interfaces are used by a collec
implementation rather than by a client.

17.2.1 Combined Property Collections

The Object Collection Service (or simply Collection Service) defined in this
specification aims at being a complete and differentiated offering of interfaces
supporting the grouping of objects. It enables a user to make a choice when following
the rule “pay only for what you use.” With this goal in mind, a very systematic
approach was chosen.

Groups, or collections of objects, support operations and exhibit specific behaviors
are mainly related to the nature of the collection rather than the type of objects th
collect.

“Nature of the collection” can be expressed in terms of well defined properties.

Ordering of elements

A previous or next relationship exists between the elements of an ordered collection
which is exposed in the interface.

Ordering can be sequential or sorted. A sequential ordering can be explicitly
manipulated; however, a sorted ordering is to be maintained implicitly based on a sort
criteria to be defined and passed to the implementation by the user.

Access by key

A key collection allows associative access to elements via a key. A key can be
computed from an element value via a user-defined key operation. Furthermore, key
collections require key equality to be defined.

Element equality

An equality collection exploits the property that a test for element equality is defined
(i.e., it can be tested whether an element is equal to another in terms of a user-defined
element equality operation). This enables a test on containment, for example.
Object Collection Service: v1.0 Service Structure July 1997 17-3

17

xploit

e

s.

d
 with

Uniqueness of entries

A collection with unique entries allows exactly one occurrence of an element key
value, not multiple occurrences.

Meaningful combinations of these basic properties define “collections of differing
nature of grouping.” Table 17-1 provides an overview of meaningful combinations.
The listed combinations are described in more detail in the following section.

Properties are mapped to interfaces - each interface assembling operations that e
these properties. These interfaces are combined via multiple inheritance and form an
abstract interface hierarchy. Abstract means that no instance of such a class can b
instantiated, an attempt to do so may raise an exception at run-time. Leaves of this
hierarchy represent concrete interfaces listed in the table above and can be instantiated
by a user. They form a complete and differentiated offering of collection interface

Restricted Access Collections

Common data structures based on these properties sometimes restrict access such as
queues, stacks, or priority queues. They can be considered as restricted access variants
of Sequence or KeySortedBag. These interfaces form their own hierarchy of
restricted access interfaces. They are not incorporated into the hierarchy of combine
properties because a user of restricted access interfaces should not be bothered
inherited operations which cannot be used in these interfaces. Nevertheless, to support
several “views” on an interface, a restricted users view of a queue and an unrestricted
system administrators view to the same queue instance, the restricted access collections
are defined in a way that allows combining them with the combined properties
collections via multiple inheritance.

Table 17-1 Interfaces derived from combinations of collection properties

Unordered

Ordered

Sorted
Sequen-

tial

Unique Multiple Unique Multiple Multiple

Key (Key
equality
must be

specified)

Element
Equality

Map Relation Sorted Map
Sorted

Relation

No Element
Equality

KeySet KeyBag
Key Sorted

Set
Key

SortedBag

No Key

Element
Equality

Set Bag SortedSet Sorted Bag
Equality
Sequence

No Element
Equality

Heap Sequence
17-4 CORBAservices July 1997

17

ion

y

ype

ces.”

ons

 the

ch

All collections are unbounded (there is no explicit bound set) and controlled by the
collections; however, it depends on the quality of service delivered whether there are
“natural” limits such as the size of the paging space.

Collection Factories

For each concrete collection interface specified in this specification there is one
corresponding collection factory defined. Each such factory offers a typed create
operation for the creation of collection instances supporting the respective collect
interface.

Additionally, a generic extensible factory is specified to enable the usage of man
implementation variants for the same collection interface. This extensible generic
factory allows the registration of implementation variants and their user-controlled
selection at collection creation time.

Information to be passed to a collection at creation time is the element and key t
specific information that a collection implementation relies on. That is, one passes the
information how to compare element keys, how to test equality of element keys, type
checking relevant information, etc. Which type of information needs to be passed
depends on the respective collection interface.

17.2.2 Iterators

Iterators, as defined in this specification, are more than just simple “pointing devi

Iterator hierarchy

The service defines a hierarchy of iterators which parallels the collection hierarchy.

The top level iterator is generic in the sense that it allows iteration over all collecti,
independent of the collection type because it is supported by all collection types. The
ordered iterator adds some capabilities useful for all kinds of ordered collections.
Iterators further down in the hierarchy add operations exploiting the capabilities of
corresponding collection type Not. Each iterator type is supported by each collection
type. For example, a KeyIterator is supported only by collection interfaces derived
from KeyCollection.

Iterators are tightly intertwined with collections. An iterator cannot exit independently
of a collection (i.e., the iterator life time cannot exceed that of the collection for whi
it is created). A collection is the factory for its iterators. An iterator is created for a
given collection and can be used for this, and only this, collection.

Generic and iterator centric programming

Iterators on the one hand are pointer abstractions in the sense of simple pointing
devices. They offer the basic capabilities you can expect from a pointer abstraction.
One can reset an iterator to a start position for iteration and move or position it in
different ways depending on the iterator type.

There are essentially two reasons to embellish an iterator with more capabilities.
Object Collection Service: v1.0 Service Structure July 1997 17-5

17

in

d

r

d in

 one

efore,
ries

tors
 of

r
1. To support the processing of very large collections to allow for delayed
instantiation or incremental query evaluation in case of very large query results.
These are scenarios where the collection itself may never exist as instantiated ma
memory collection but is processed in “fine grains” via an iterator passed to a
client.

2. To enrich the iterator with more capabilities is to strengthen the support for the
generic programming model as introduced with ANSI STL to the C++ world.

One can retrieve, replace, remove, and add elements via an iterator. One can test
iterators for equality, compare ordered iterators, clone an iterator, assign iterators, an
destroy them. Furthermore, an iterator can have a const designation which is set when
created. A const iterator can be used for access only.

The reverse iterator semantics is supported. No extra interfaces are specified to
support this but a reverse designation is set at creation time. An ordered iterator fo
which the reverse designation is set reinterprets the operations of a given iterator type
to work in reverse.

Iterators and performance

To reduce network traffic, combined operations and bulk operations are offered.

• Combined operations are combinations of simple iterator operations often use
loops.

• Bulk operations support retrieving, replacing, and adding many elements within
operation.

Managed Iterators

All iterators are managed in the sense that iterators never become undefined; ther
they do not lead to undefined behavior. Common behavior of iterators in class libra
today is that iterators become undefined when the collection content is changed. For
example, if an element is added the side effect on iterators of the collection is
unknown. Iterators do not “know” whether they are still pointing to the same element
as before, still pointing to an element at all, or pointing “outside” the collection. One
cannot even test the state. This is considered unacceptable behavior in a distributed
environment.

The iterator model used in this specification is a managed iterator. Managed itera
are “robust” to modifications of the collection. A managed iterator is always in one
the following defined testable states:

• valid (pointing to an element of the collection)

• invalid (pointing to nothing; comparable to a NULL pointer)

• in-between (not pointing to an element, but still "remembering" enough state to be
valid for most operations on it).

A valid managed iterator remains valid as long as the element it points to remains in
the collection. As soon as the element is removed, the according managed iterato
enters a so-called in-between state. The in-between state can be viewed as a vacuum
17-6 CORBAservices July 1997

17

ss,
s)

,

ned

all,”

 to
within the collection. There is nothing the managed iterator can point to. Neverthele
managed iterators remember the next (and for ordered collection, also the previou
element in iteration order. It is possible to continue using the managed iterator (in a
set_to_next_element() for example) without resetting it first. For more information
see “The Managed Iterator Model” on page 17-85.

17.2.3 Function Interfaces

The Object Collection service specifies function interfaces used to pass user-defi
information to the collection implementation (either at creation time or as parameters
of operations). The most important is the Operations interface discussed in more
detail below.

Collectible Elements and Type Safety

Collections are foundation classes used in a broad range of applications. They have to
be able to collect elements of arbitrary type and support keys of arbitrary type.
Instances of collections are usually homogenous collections in the sense that all
elements have the same element type.

Because there is no template support in CORBA IDL today, the requirement
“collecting elements of arbitrary type” is met by defining the element type and the key
type as a CORBA any. In doing so, compile time type checking for element and key
type is impossible.

As collections are often used as homogenous collections, dynamic type
checking is enabled by passing relevant information to the collection at
creation time. This is done by specialization of the function interface
Operations. This interface defines attributes element_type and key_type as well as
defines operations check_element_type() and check_key_type() which have to be
implemented by the user. Implementations may range from “no type checking at
“type code match,” “checking an interface to be supported,” up to “checking
constraints in addition to a simple type code checking.” Using the Operations
interface allows user-defined customization of the dynamic type checking.

Collectible Elements and the Operations Interface

The function interface Operations is used to pass a number of other user-defined
element type specific information to the collection implementation.

The type checking of relevant information is one sample.

Depending on the properties represented by a collection interface, a respective
implementation relies on some element type specific or key type specific information
passed to it. For example, one has to pass the information “element comparison”
implement a SortedSet or “key equality” to guarantee uniqueness of keys in a
KeySet. The Operations interface is used to pass this information.
Object Collection Service: v1.0 Service Structure July 1997 17-7

17

g

n

ation
The third use of this interface is to pass element or key type specific information that
the different categories of implementations rely on. For example, tree-like
implementations for a KeySet rely on the “key comparison” information and hashin
based implementations rely on the information how to hash key values. This
information is passed via the Operations interface.

A user has to customize the Operations interface and to implement the appropriate
operations dependent on the collection interface to be used. An instance of the
specialized Operations interface is passed at collection creation time to the collectio
implementation.

Collectible Elements of Key Collections

Key collections offer associative access to collection elements via a key. A key is
computed from the element value and is user-defined element type specific inform
to be passed to a collection. The Operations interface has an operation key() which
returns the user-defined key of a given element.

For a specific element type, a user has to implement the element type specific key()
operation in an interface derived from Operations. The key type is a CORBA any.
Again this is designed to accommodate generality. Computable keys reflect the data
base view on elements of key collections as “keyed elements” where a key is a
component of a tuple or is “composed” from several components of a tuple.

17.2.4 List of Interfaces Defined

The Object Collection service offers the following interfaces:

Abstract interfaces representing collection properties and their combinations

• Collection

• OrderedCollection

• KeyCollection

• EqualityCollection

• SortedCollection

• SequentialCollection

• EqualitySequentialCollection

• EqualityKeyCollection

• KeySortedCollection

• EqualitySortedCollection

• EqualityKeySortedCollection
17-8 CORBAservices July 1997

17
Concrete collections and their factories

• CollectionFactory, CollectionFactories

• KeySet, KeySetFactory

• KeyBag, KeyBagFactory

• Map, MapFactory

• Relation, RelationFactory

• Set, SetFactory

• Bag, BagFactory

• KeySortedSet, KeySortedSetFactory

• KeySortedBag, KeySortedBagFactory

• SortedMap, SortedMapFactory

• SortedRelation, SortedRelationFactory

• SortedSet, SortedSetFactory

• SortedBag, SortedBagFactory

• Sequence, SequenceFactory

• EqualitySequence, EqualitySequenceFactory

• Heap, HeapFactory

Restricted access collections and their factories

• RestrictedAccessCollection, RACollectionFactory

• Stack, StackFactory

• Queue, QueueFactory

• Deque, DequeFactory

• PriorityQueue, PriorityFactory

Iterator interfaces

• Iterator

• OrderedIterator

• SequentialIterator

• SortedIterator

• KeyIterator

• EqualityIterator

• EqualityKeyIterator
Object Collection Service: v1.0 Service Structure July 1997 17-9

17

re the

e

e
 you

of

der.
• KeySortedIterator

• EqualitySortedIterator

• EqualitySequentialIterator

• EqualityKeySortedIterator

Function interfaces

• Operations

• Command

• Comparator

17.3 Combined Collections

The overview introduced properties and listed the meaningful combinations of these
properties that result in consistently defined collection interfaces forming a
differentiated offering. In the following sections, the semantics of each combination
will be described in more detail and demonstrated by an example.

17.3.1 Combined Collections Usage Samples

Bag, SortedBag

A Bag is an unordered collection of zero or more elements with no key. Multiple
elements are supported. As element equality is supported, operations which requi
capability “test of element equality” (e.g., test on containment) can be offered.

Example: The implementation of a text file compression algorithm. The algorithm
finds the most frequently occurring words in sample files. During compression, th
words with a high frequency are replaced by a code (for example, an escape character
followed by a one character code). During re-installation of files, codes are replaced by
the respective words.

Several types of collections may be used in this context. A Bag can be used during th
analysis of the sample text files to collect isolated words. After the analysis phase
may ask for the number of occurrences for each word to construct a structure with the
255 words with the highest word counts. A Bag offers an operation for this, you do not
have to “count by hand,” which is less efficient. To find the 255 words with the
highest word count, a SortedRelation is the appropriate structure (see “Relation,
SortedRelation” on page 17-13). Finally, a Map may be used to maintain a mapping
words to codes and vice versa. (See “Map, SortedMap” on page 17-12).

A SortedBag (as compared to a Bag) exposes and maintains a sorted order of the
elements based on a user-defined element comparison. Maintained elements in a sorted
order makes sense when printing or displaying the collection content in sorted or
17-10 CORBAservices July 1997

17

first

orted,

s and

an it

using

sing
nal
, more

e
est a
ser
he
cense

he
EqualitySequence

An EqualitySequence is an ordered collection of elements with no key. There is a
and a last element. Each element, except the last one, has a next element and each
element, except the first one, has a previous element. As element equality is supp
all operations that rely on the capability “test on element equality” can be offered, for
example, locating an element or test for containment.

Example: An application that arranges wagons to a train. The order of the wagons is
important. The trailcar has to be the first wagon, the first class wagons are arranged
right behind the trailcar, the restaurant has to be arranged right after the first clas
before the second class wagons, and so on. To check whether the wagon has the
correct capacity, you may want to ask: “How many open-plan carriages are in the
train?” or “Is there a bistro in the train already?”

Heap

A Heap is an unordered collection of zero or more elements without a key. Multiple
elements are supported. No element equality is supported.

Example: A “trash can” on a desktop which memorizes all objects moved to the
trashcan as long as it is not emptied. Whenever you move an object to the trashc
is added to the heap. Sometimes you move an object accidentally to the trashcan. In
that case, you iterate in some order through the trashcan to find the object - not
a test on element equality. When you find it, you remove it from the trashcan.
Sometimes you empty the trashcan and remove all objects from the trashcan.

KeyBag, KeySortedBag

A KeyBag is an unordered collection of zero or more elements that have a key.
Multiple keys are supported. As no element equality is assumed, operations such as
“test on collection equality” or “set theoretical operation” are not offered.

A KeySortedBag is sorted by key. In addition to the operations supported for a
KeyBag, all operations related to ordering are offered. For example, operations
exploiting the ordering such as “set_to_previous / set_to_next” and “access via
position” are supported.

A license server maintaining floating licenses on a network may be implemented u
a KeyBag to maintain the licenses in use. The key may be the LicenseId and additio
element data may be, for example, the user who requested the license. As usual
than one floating license is available per product; therefore, many licenses for the sam
product may be in use. A LicenseId may occur more than once. A user may requ
license multiple times, it may also occur that the same LicenseId with the same u
occurs multiple times. If a user of the product requests and receives the license, t
LicenseId, together with the request data, is added to the licenses in use. If the li
is released, it is deleted from the Bag of licenses in use. Sometimes you may want to
ask for the number of licenses of a product in use, that is ask for the number of t
licenses in use with a given LicenseId.
Object Collection Service: v1.0 Combined Collections July 1997 17-11

17

not

ity).

eys

t,
the

ber
 card

e card
, and

must

nt for
.

 all

ted.

, the
ess
Access to licenses in use is via the key LicenseId. This sample application does
require operations such as testing two collections for equality or set theoretical
operations on collections. It is not exploiting element equality; therefore, it can use a
KeyBag instead of a Relation (which would force the user to define element equal

If you want to list the licenses in use with the users holding the licenses sorted by
LicenseId, you could make use of a KeySortedBag instead of a KeyBag.

KeySet, KeySortedSet

A KeySet is an unordered collection of zero or more elements that have a key. K
must be unique. Defined element equality is not assumed; therefore, operations and
semantics which require the capability “element equality test" are not offered.

A KeySortedSet is sorted by key. In addition to the operations supported for a KeySe
all operations related to ordering are offered. For example, operations exploiting
ordering, such as “set_to_previous / set_to_next” and “access via position” are
supported.

Example: A program that keeps track of cancelled credit card numbers and the
individuals to whom they are issued. Each card number occurs only once and the
collection is sorted by card number. When a merchant enters a customer’s card num
into the point-of-sales terminal, the collection is checked to determine whether the
number is listed in the collection of cancelled cards. If it is found, the name of the
individual is shown and the merchant is given directions for contacting the card
company. If the card number is not found, the transaction can proceed because th
is valid. A list of cancelled cards is printed out each month, sorted by card number
distributed to all merchants who do not have an automatic point-of-sale terminal
installed.

Map, SortedMap

A Map is an unordered collection of zero or more elements that have a key. Keys
be unique. As defined, element equality is assumed access via the element valueand
all operations which need to test on element equality, such as a test on containme
an element, test for equality, and set theoretical operations can be offered for maps

A SortedMap is sorted by key. In addition to the operations supported for a Map,
operations related to ordering are offered. For example, operations exploiting the
ordering like “set_to_previous / set_to_next” and “access via position” are suppor

Example: Maintaining nicknames for your mailing facility. The key is the nickname.
Mailing information includes address, first name, last name, etc. Nicknames are
unique; therefore, adding a nickname/mailing inforation entry with a nickname that is
already available should fail, if the mailing information to be added is different from
the available information. If it is exactly the same information, it should just be
ignored. You may define more than one nickname for the same person; therefore
same element data may be stored with different keys. If you want to update addr
17-12 CORBAservices July 1997

17

 To

wo

hat

As

t

ion to

 and

o
se, and

duct.

t
information for a given nickname, use the replace_element_with_key() operation.
create a new nickname file from two existing files, use a union operation which
assumes element equality to be defined.

Relation, SortedRelation

A Relation is an unordered collection of zero or more elements with a key. Multiple
keys are supported. As defined element equality is assumed, test for equality of t
collections is offered as well as the set theoretical operations.

A SortedRelation is sorted by key. In addition to the operations supported for a
Relation, all operations related to ordering are offered. For example, operations t
exploit ordering such as “set_to_previous / set_to_next” and “access via position” are
supported.

A SortedRelation may be used in the text file compression algorithm mentioned
previously in the Bag, Sorted Bag example to find the 255 words with the highest
frequency. The key is the word count and the additional element data is the word.
words may have equal counts, multiple keys have to be supported. The ordering with
respect to the key is used to find the 255 highest keys.

Set, SortedSet

A set is an unordered collection of zero or more elements without a key. Elemen
equality is supported; therefore, operations that require the capability “test on element
equality” such as intersection or union can be offered.

A SortedSet is sorted with respect to a user-defined element comparison. In addit
the operations supported for a Set, all operations related to ordering are offered. For
example, operations that exploit ordering such as “set_to_previous / set_to_next”
“access via position” are supported.

Example: A program that creates a packing list for a box of free samples to be sent t
a warehouse customer. The program searches a database of in-stock merchandi
selects ten items at random whose price is below a threshold level. Each item is added
to the set. The set does not allow an item to be added if it already is present in the
collection; this ensures that a customer does not get two samples of a single pro

Sequence

A Sequence is an ordered collection of elements without a key. There is a first and a
last element. Each element (except the last one) has a next element and each element
(except the first one) has a previous element. No element equality is supported;
therefore, multiples may occur and access to elements via the element value is no
possible. Access to elements is possible via position/index.
Object Collection Service: v1.0 Combined Collections July 1997 17-13

17

ssed

cific

n.

 no

 fi

ot

til
lts

to
m
Example: A music editor. The Sequence is used to maintain tokens representing the
recognized notes. The order of the notes is obviously important for further processing
of the melody. A note may occur more than once. During editing, notes are acce
by position and are removed, added, or replaced at a given position. To print the result,
you may iterate over the sequence and print note by note.

A Sequence may also be used to represent how a book is constructed from diverse
documents. It is obvious that ordering is important. It may be the case that a spe
document is used multiple times within the same book (for example, a specific
graphic). Reading the book, you may want to access a specific document by positio

17.4 Restricted Access Collections

17.4.1 Restricted Access Collections Usage Samples

Deque

A double ended queue may be considered as a sequence with restricted access. It is an
ordered collection of elements without a key and no element equality. As there is
element equality, an element value may occur multiple times. There is a first and a last
element. You can only add an element as first or last element and only remove therst
or the last element from the Deque.

A Deque may be used in the implementation of a pattern matching algorithm where
patterns are expressed as regular expressions. Such an algorithm can be described as a
non-deterministic finite state machine constructed from the regular expression. The
implementation of the regular-pattern matching machine may use a deque to keep track
of the states under consideration. Processing a null state requires a stack-like data
structure - one of two things to be done is postponed and put at the front of the n
being postponed forever list. Processing the other states requires a queue-like data
structure, since you do not want to examine a state for the next given character un
you are finished with the current character. Combining the two characteristics resu
in a Deque.

PriorityQueue

A PriorityQueue may be considered as a KeySortedBag with restricted access. It is an
ordered collection with zero or more elements. Multiple key values are supported. As
no element equality is defined, multiple element values may occur. Access to elements
is via key only and sorting is maintained by key. Accessing a PriorityQueue is
restricted. You can add an element relative to the ordering relation defined for keys
and remove only the first element (e.g., the one with highest priority).

PriorityQueues may be used for implementing a printer queue. A print job’s priority
may depend on the number of pages, time of queuing, and other characteristics. This
priority is the key of the print job. When a user adds a print job it is added relative
its priority. The printer daemon always removes the job with the highest priority fro
the queue.
17-14 CORBAservices July 1997

17

s they
ueues

r
sion.

ration

.

PriorityQueues also may be used as special queues in workflow management to
prioritize work items.

Queue

A queue may be considered as a sequence with restricted access. It is an ordered
collection of elements with no key and no element equality. There is a first and a last
element. You can only add (enque) an element as last element and only remove
(deque) the first element from the Queue. That is, a queue exposes FIFO behavior.

You would use a queue in tree traversal to implement a breadth first search algorithm.

Queues may be used for the implementation of all kinds of buffered communication
where it is important that the receiving side handles messages in the same order a
were sent. Queues may be used in workflow management environments where q
collect messages waiting for processing.

Stack

A Stack may be considered as a sequence with restricted access. It is an ordered
collection of elements with no key and no element equality. There is a first and a last
element. You can only add (push) an element as last element (at the top) and only
remove (pop) the last element from the Stack (from the top). That is, a Stack exposes
LIFO behavior. The classical application for a stack is the simulation of a calculato
with Reverse Polish Notation. The calculator engine may get an arithmetic expres
Parsing the expression operands are pushed on to the stack. When an operator is
encountered, the appropriate number of operands is popped off the stack, the ope
performed, and the result pushed on the stack.

A Stack also may be used in the implementation of a window manager to maintain the
order in which the windows are superimposed.

17.5 The CosCollection Module

17.5.1 Interface Hierarchies

Collection Interface Hierarchies

The collection interfaces of the Collection Services are organized in two separate
hierarchies, as shown in Figure 17-1 on page 17-17 and Figure 17-2 on page 17-17
The inner nodes of the hierarchy may be thought of as abstract views. They represent
the basic properties and their combinations. Leaf nodes may be thought of as concrete
interfaces for which implementations are provided and from which instances can be
created via a collection factory. The organization of the interfaces as a hierarchy
enables reuse and the polymorphic usage of the collections from typed languages such
as C++.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-15

17

ts,

ted

Each abstract view is defined in terms of operations and their behavior. The most
abstract view of a collection is a container without any ordering or any specific
element or key properties. This view allows adding elements to and iterating over the
collection.

In addition to the common collection operations, collections whose elements define
equality or key equality provide operations for locating and retrieving elements by a
given element or key value.

Ordered collections provide the notion of well-defined explicit positioning of elemen
either by element key ordering relation or by positional element access.

Sorted collections provide no further operations, but introduce a new semantics;
namely, that their elements are sorted by element or key value. These properties are
combined through multiple inheritance.

The fourth property, uniqueness/multiplicity of elements and keys, is not represen
by a separate abstract view for combination with other properties. This was done to
reduce the complexity of the hierarchy. Instead, operations related to multiplicity are
provided in the base interface from which the interface specializations with
multiplicity are derived.
17-16 CORBAservices July 1997

17
Figure 17-1 Collections Interfaces Hierarchy

The restricted access collections form their own hierarchy as shown in Figure 17-2 on
page 17-17. This abstract view defines the operations that all restricted access
collections have in common.

Figure 17-2 Restricted Access Collections Interface Hierarchy

Collection

Equality
Collection

Sorted
Collection

Ordered
Collection

Sequential
Collection

Equality
Key

Collection

EqualityKey Sorted
 Collection Sorted

Collection

Equality
Key Sorted
Collection

Key Set Map

Key Bag Relation

Set

Bag

Key Sorted
Set

KeySorted
Bag

Sorted

Sorted
Relation

Sorted Set

Sorted Bag
Equality

Sequence

Heap Sequence Map

Key
Collection

Equality
Sequential
 Collection

Stack Queue Priority
Queue

Restricted

Collection

Deque

Access
Object Collection Service: v1.0 The CosCollection Module July 1997 17-17

17

 in
f

erator

ns

ition.
Iterator Hierarchy

The iterator interface hierarchy parallels the Collection interface hierarchy shown
Figure 17-3 on page 17-18. The defined interfaces support the fine-grain processing o
very large collections via an iterator only and support a generic programming model
similar to what was introduced with ANSI STL to the C++ world. Concepts like
constness of iterators, reverse iterators, bulk and combined operations are offered to
strengthen the support for the generic programming model.

Figure 17-3 Iterator Interface Hierarchy

The top level Iterator interface represents a generic iterator that can be used for
iteration over and manipulation of all collections independent of their type. The top
level iterator allows you to add, retrieve, replace, and remove elements. There are
operations to clone, assign, and test iterators for equality. There are tests on the it
state and you can check whether an iterator is const, created for a given collection, or
created for the same collection as another iterator.

The OrderedIterator interface adds those operations which are useful on collectio
with an explicit notion of ordering (all those collections inheriting from the
OrderedCollection interface). An ordered iterator can be moved forward and
backward, set to a position, and its position can be computed. Only ordered iterators
can be used with “reverse” semantics. The SequentialIterator is used with
sequentially ordered collections where it is possible to add elements at a user-defined
position so that the iterator offers the capability to add elements relative to its pos

Iterator

Equality
Iterator

Sorted
Iterator

Ordered
Iterator

Sequential

Equality
Key

Iterator

EqualityKey Sorted Sorted
Iterator

Equality
Key Sorted

Key
Iterator

Equality
Sequential
 Iterator

 Iterator

Iterator

Iterator
17-18 CORBAservices July 1997

17

isted
The KeyIterator and EqualityIterator interface add operations for positioning an
iterator by key or element value. The sorted versions of these interfaces add respective
backward movements and the capability to define lower and upper bounds in sorted
collections.

An iterator is always created for a collection using the collection as iterator factory.
Each iterator type is supported by each collection type. The Iterators and the
Collections that are supported by all interfaces derived from those collections are l
in Table 17-2 on page 17-19.

Table 17-2 Iterators and Collections

17.5.2 Exceptions and Type Definitions

The following exceptions are used by the subsequently defined interfaces.

module CosCollection {

// Type definitions

typedef sequence<any> AnySequence;

typedef string Istring;

struct NVPair {Istring name; any value;};

typedef sequence<NVPair> ParameterList;

// Exceptions

exception EmptyCollection{};

Supported by all interfaces derived from:

Iterator Collection

OrderedIterator OrderedCollection

SequentialIterator SequentialCollection

EqualitySequentialIterator EqualitySequentialCollection

KeyIterator KeyCollection

EqualityIterator EqualityCollection

EqualityKeyIterator EqualityKeyCollection

SortedIterator SortedCollection

KeySortedIterator KeySortedCollection

EqualitySortedIterator EqualitySortedCollection

EqualityKeySortedIterator EqualityKeySortedCollection
Object Collection Service: v1.0 The CosCollection Module July 1997 17-19

17

in
exception PositionInvalid{};

enum IteratorInvalidReason {is_invalid, is_not_for_collection,
is_const};

exception IteratorInvalid {IteratorInvalidReason why;};

exception IteratorInBetween{};

enum ElementInvalidReason {element_type_invalid,
positioning_property_invalid, element_exists};

exception ElementInvalid {ElementInvalidReason why;};

exception KeyInvalid {};

exception ParameterInvalid {unsigned long which; Istring why;};

AnySequence

A type definition for a sequence of values of type any used in bulk operations.

Istring

A type definition used as place holder for a future IDL internationalized string data
type.

ParameterList

A sequence of name-value pairs of type NVPair and used as a generic parameter list
a generic collection creation operation.

EmptyCollection

Raised when an operation to remove an element is invoked on an empty collection.

PositionInvalid

Raised when an operation on an ordered collection passes a position out of the allowed
range, that is less than 1 or greater than the number of elements in the collections.

IteratorInvalid

Raised when an operation uses an iterator pointing to nothing, that is, using an invalid
iterator (in_valid) or when an operation uses an iterator which was not created for the
collection (is_not_for_collection) or if one tries to modify a collection via an iterator
that is created with const designation (is_const).

IteratorInBetween

Raised when an operation uses an iterator in a way that does not allow the state in-
between such as all “..._at” operations.
17-20 CORBAservices July 1997

17

.

ons

ntics
ElementInvalid

Raised when one of the operations passes an element that is for one of several reasons
invalid. It is raised

• when the element is not of the expected element type (element_type_invalid).

• if one tries to replace an element by another element changing the positioning
property (positioning_property_invalid).

• when an element is added to a Map and the key already exists (element_exists).

KeyInvalid

Raised when one of the operations passes a key that is not of the expected type

Paramete rInvalid

Raised when a parameter passed to the generic collection creation operation of the
generic CollectionFactory is invalid.

17.5.3 Abstract Collection Interfaces

The Collection Interface

The Collection interface represents the most abstract view of a collection. Operati
defined in this top level interface can be supported by all collection interfaces in the
hierarchy. Each concrete collection interface offers the appropriate operation sema
dependent on the collection properties. It defines operations for:

• adding elements

• removing elements

• replacing elements

• retrieving elements

• inquiring collection information

• creating iterators

// Collection

interface Iterator;

interface Command;

interface Collection {

// element type information

readonly attribute CORBA::TypeCode element_type;
Object Collection Service: v1.0 The CosCollection Module July 1997 17-21

17
// adding elements

boolean add_element (in any element) raises (ElementInvalid);

boolean add_element_set_iterator (in any element, in Iterator where)
raises (IteratorInvalid, ElementInvalid);

void add_all_from (in Collection collector) raises (ElementInvalid);

// removing elements

void remove_element_at (in Iterator where) raises (IteratorInvalid,
IteratorInBetween);

unsigned long remove_all ();

// replacing elements

void replace_element_at (in Iterator where, in any element)
raises(IteratorInvalid, IteratorInBetween, ElementInvalid);

// retrieving elements

boolean retrieve_element_at (in Iterator where, out any element)
raises (IteratorInvalid, IteratorInBetween);

// iterating over the collection

boolean all_elements_do (in Command what) ;

// inquiring collection information

unsigned long number_of_elements ();

boolean is_empty ();

// destroying collection

void destroy();

// creating iterators

Iterator create_iterator (in boolean read_only);

};

Type checking information

readonly attribute CORBA::TypeCode element_type;

Specifies the element type expected in the collection. See also “The Operations
Interface” on page 17-118.
17-22 CORBAservices July 1997

17

ady

n
e

ady

n
e
Adding elements

boolean add_element (in any element) raises (ElementInvalid);

Description

Adds an element to the collection. The exact semantics of the add operations
depends on the properties of the concrete interface derived from the Collection that
the collection is an instance of.

If the collection supports unique elements or keys and the element or key is alre
contained in the collection, adding is ignored. In sequential collections, the element
is always added as last element. In sorted collections, the element is added at a
position determined by the element or key value.

If the collection is a Map and contains an element with the same key as the give
element, then this element has to be equal to the given element; otherwise, th
exception ElementInvalid is raised.

Return value

Returns true if the element is added.

Exceptions

The element must be of the expected type; otherwise, the exception ElementInvalid
is raised.

Side effects

All iterators keep their state.

boolean add_element_set_iterator(in any element, in Iterator where) raises
(IteratorInvalid, ElementInvalid);

Description

Adds an element to the collection and sets the iterator to the added element. The
exact semantics of the add operations depends on the properties of the concrete
interface derived from the Collection that the collection is an instance of.

If the collection supports unique elements or keys and the element or key is alre
contained in the collection, adding is ignored and the iterator is just set to the
element or key already contained. In sequential collections, the element is always
added as last element. In sorted collections, the element is added at a position
determined by the element or key value.

If the collection is a Map and contains an element with the same key as the give
element, then this element has to be equal to the given element; otherwise, th
exception ElementInvalid is raised.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-23

17
Return value

Returns true if the element is added.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

The given iterator must belong to the collection; otherwise, the exception
IteratorInvalid is raised.

Side effects

All other iterators keep their state.

 void add_all_from (in Collection elements) raises (ElementInvalid);

Adds all elements of the given collection to this collection. The elements are added in
the iteration order of the given collection and consistent with the semantics of the add
operation. Essentially, this operation is a sequence of add operations.

Removing elements

void remove_element_at (in Iterator where) raises(IteratorInvalid);

Description

Removes the element pointed to by the given iterator. The given iterator is set to in-
between.

Exceptions

The iterator must belong to the collection and must point to an element of the
collection; otherwise, the exception IteratorInvalid is raised.

Side effects

Iterators pointing to the removed element go in-between. Iterators which do not
point to the removed element keep their state.

 unsigned long void remove_all();

Description

Removes all elements from the collection.

Return value

Returns the number of elements removed.
17-24 CORBAservices July 1997

17

al to

laced

tput
Side effects

Iterators pointing to removed elements go in-between. All other iterators keep their
state.

Replacing elements

void replace_element_at (in Iterator where, in any element) raises
(IteratorInvalid, IteratorInBetween, ElementInvalid)

Description

Replaces the element pointed to by the iterator by the given element. The given
element must have the same positioning property as the replaced element.

• For collections organized according to element properties such as ordering
relation, the replace operation must not change this element property.

• For key collections, the new key must be equal to the key replaced.

• For non-key collections with element equality, the new element must be equ
the replaced element as defined by the element equality relation.

Sequential collections have a user-defined positioning property and heaps do not
have positioning properties. Element values in sequences and heaps can be rep
freely.

Exceptions

The given element must not change the positioning property; otherwise, the
exception ElementInvalid is raised.

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

The iterator must belong to the collection and must point to an element of the
collection; otherwise, the exception IteratorInvalid or IteratorInBetween is raised.

Retrieving elements

boolean retrieve_element_at (in Iterator where, out any element) raises
(IteratorInvalid, IteratorInBetween);

Description

Retrieves the element pointed to by the given iterator and returns it via the ou
parameter element.

Return value

Returns true if an element is retrieved.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-25

17

 the

e
nt is
y of

).

 a

ng
Exceptions

The given iterator must belong to the collection and must point to an element of
collection; otherwise, the exception IteratorInvalid or IteratorInBetween is raised.

Note – Whether a copy of the element is returned or the element itself depends on the
element type represented by the any. If it is an object, a reference to the object in th
collection is returned. If the element type is a non-object type, a copy of the eleme
returned. In case of element type object, do not manipulate the element or the ke
the element in the collection in a way that changes the positioning property of the
element.

Iterating over a collection

boolean all_elements_do (in Command what);

Description

Calls the “do_on()” operation of the given Command for each element of the
collection until the “do_on()” operation returns false. The elements are visited in
iteration order (see “The Command and Comparator Interface” on page 17-122

• The “do_on()” operation must not remove elements from or add elements to the
collection.

• The “do_on()” operation must not manipulate the element in the collection in
way that changes the positioning property of the element.

Return value

Returns true if the “do_on()” operation returns true for each element it is applied
to.

Inquiring collection information

The collection operations do have preconditions which when violated raise exceptions.
There are operations for testing those preconditions to enable the user to avoid raisi
exceptions.

 unsigned long number_of_elements ();

Return value

Returns the number of elements contained in the collection.

boolean is_empty ();

Return value

Returns true if the collection is empty.
17-26 CORBAservices July 1997

17

 not
Destroying a collection

void destroy();

Description

Destroys the collection. This includes:

• removing all elements from the collection

• destroying all iterators created for this collection

• destroying the instance of Operations passed at creation time to the collection
implementation.

Note – Removing elements in case of objects means removing object references,
destroying the collected objects.

Object references to iterators of the collections become invalid.

Creating iterators

Iterator create_iterator (in boolean read_only);

Creates and returns an iterator instance for this collection. The type of iterator that is
created depends on the interface type of this collection. The following table describes
the type of iterator that is created for the type of concrete collection.

Table 17-3Collection interfaces and the iterator interfaces supported

Ordered Collection Interfaces Supported Iterator Interface

Bag EqualityIterator

yes SortedBag EqualitySortedIterator

yes EqualitySequence EqualitySequentialIterator

Heap Iterator

KeyBag KeyIterator

yes KeySortedBag KeySortedIterator

KeySet KeyIterator

yes KeySortedSet KeySortedIterator

Map EqualityKeyIterator

yes SortedMap EqualityKeySortedIterator

Relation EqualityKeyIterator

yes Sequence SequentialIterator
Object Collection Service: v1.0 The CosCollection Module July 1997 17-27

17

tance
After creation, the iterator is initialized with the state invalid, that is, “pointing to
nothing.”

If the given parameter read_only is true, the iterator is created with const designation
(i.e., a trial to modify the collection content via this iterator is rejected and raises the
exception IteratorInvalid).

Note – Collections serve as factories for their iterator instances. An iterator is created
in the same address space as the collection for which it is created. An iterator ins
can only point to elements of the collection for which it was created.

The OrderedCollection Interface

interface OrderedIterator;

// OrderedCollection

interface OrderedCollection: Collection {

// removing elements

void remove_element_at_position (in unsigned long position) raises
(PositionInvalid);

void remove_first_element () raises (EmptyCollection);

void remove_last_element () raises (EmptyCollection);

// retrieving elements

boolean retrieve_element_at_position (in unsigned long position, out
any element) raises (PositionInvalid);

boolean retrieve_first_element (out any element) raises
(EmptyCollection);

boolean retrieve_last_element (out any element) raises
(EmptyCollection);

// creating iterators

OrderedIterator create_ordered_iterator(in boolean read_only, in
boolean reverse_iteration);

};

yes SortedRelation EqualityKeySortedIterator

Set EqualityIterator

yes SortedSet EqualitySortedIterator

Table 17-3Collection interfaces and the iterator interfaces supported

yes Sequence SequentialIterator
17-28 CORBAservices July 1997

17

l
Ordered collections expose the ordering of elements in their interfaces. Elements can
be accessed at a position and forward and backward movements are possible (i.e.,
ordered collection can support ordered iterators). Ordering can be implicitly defined
via the ordering relationship of the elements or keys (as in sorted collections) or
ordering can be user-controlled (as in sequential collections).

In addition to those inherited from the Collection Interface, which all ordered
collections have in common, the OrderedCollection interface provides operations for

• removing elements,

• retrieving elements, and

• creating ordered iterators.

Removing elements

void remove_element_at_position (in unsigned long position) raises
(PositionInvalid);

Description

Removes the element from the collection at a given position. The first element of
the collection has position 1.

Exceptions

The value of "position" must be a valid position in the collection; otherwise, the
exception PositionInvalid is raised. A position is valid if it is greater than or equa
to 1 and less than or equal to number_of_elements().

Side effects

All iterators pointing to the removed element go in-between. Iterators that do not
point to the removed element keep their state.

void remove_first_element () raises (EmptyCollection);

Description

Removes the first element from the collection.

Exceptions

The collection must not be empty; otherwise, the exception EmptyCollection is
raised.

Side effects

All iterators pointing to the removed element go in-between. Iterators that do not
point to the removed element keep their state.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-29

17

he

eter
void remove_last_element () raises (EmptyCollection);

Description

Removes the last element from the collection.

Exceptions

The collection must not be empty; otherwise, the exception EmptyCollection is
raised.

Side effects

All iterators pointing to the removed element go in-between. Iterators that do not
point to the removed element keep their state.

Retrieving elements

boolean retrieve_element_at_position (in unsigned long position, out any
element) raises (PositionInvalid);

Description

Retrieves the element at the given position in the collection and returns it via t
output parameter element. Position 1 specifies the first element.

Return value

Returns true if an element is retrieved.

Exceptions

The value of "position" must be a valid position in the collection; otherwise, the
exception PositionInvalid is raised.

boolean retrieve_first_element (out any element) raises (EmptyCollection);

Description

Retrieves the first element in the collection and returns it via the output param
element.

Return value

Returns true if an element is retrieved.

Exceptions

The collection must not be empty; otherwise, the exception EmptyCollection is
raised.
17-30 CORBAservices July 1997

17

or is

boolean retrieve_last_element (out any element) raises (EmptyCollection);

Description

Retrieves the last element in the collection and returns it via the output
parameter element.

Return value

Returns true if an element is retrieved.

Exceptions

The collection must not be empty; otherwise, the exception EmptyCollection is
raised.

Creating iterators

OrderedIterator create_ordered_iterator (in boolean read_only, in boolean
reverse_iteration);

Description

Creates and returns an ordered iterator instance for this collection.

Which type of ordered iterator actually is created depends on the interface type of
this collection. Table 17-1 on page 17-4 describes which type of ordered iterat
created for which type of concrete ordered collection.

After creation, the iterator is initialized with the state invalid, that is, “pointing to
nothing.”

Exceptions

If the given parameter read_only is true, the iterator is created with const
designation (i.e., a trial to modify the collection content via this iterator is
rejected and raises the exception IteratorInvalid).

Side effects

If the given parameter reverse_iteration is true, the iterator is created with reverse
iteration semantics. Only ordered iterators can be created with reverse semantics.

The SequentialCollection Interface

interface Comparator;

interface SequentialCollection: OrderedCollection {

// adding elements

void add_element_as_first (in any element) raises (ElementInvalid);
Object Collection Service: v1.0 The CosCollection Module July 1997 17-31

17

is
void add_element_as_first_set_iterator (in any element, in Iterator
where) raises (ElementInvalid, IteratorInvalid);

void add_element_as_last (in any element) raises (ElementInvalid);

void add_element_as_last_set_iterator (in any element, in Iterator
where) raises (ElementInvalid, IteratorInvalid);

void add_element_as_next (in any element, in Iterator where) raises
(ElementInvalid, IteratorInvalid);

void add_element_as_previous (in any element, in Iterator where)
raises (ElementInvalid,IteratorInvalid);

void add_element_at_position (in unsigned long position, in any
element) raises(PositionInvalid, ElementInvalid);

void add_element_at_position_set_iterator (in unsigned long
position, in any element, in Iterator where) raises
(PositionInvalid, ElementInvalid, IteratorInvalid);

// replacing elements

void replace_element_at_position (in unsigned long position, in any
element) raises (PositionInvalid, ElementInvalid);

void replace_first_element (in any element) raises (ElementInvalid,
EmptyCollection);

void replace_last_element (in any element) raises (ElementInvalid,
EmptyCollection);

// reordering elements

void sort (in Comparator comparison);

void reverse();

};

Sequential collections expose user-controlled sequential ordering. Determine where
elements are added by comparing to sorted collections where the “where an element
added“ is determined implicitly by the defined element or key comparison.

The SequentialCollection interface adds all those operations to the
OrderedCollection interface. “The SequentialCollection Interface” on page 17-31
describes operators that are unique for positional element access for

• adding elements,

• replacing elements, and

• re-ordering elements.

Adding elements

void add_element_as_first (in any element) raises (ElementInvalid);
17-32 CORBAservices July 1997

17
Description

Adds the element to the collection as the first element in sequential order.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

Side effects

All iterators keep their state.

void add_element_as_first_set_iterator (in any element, in Iterator where)
raises (ElementInvalid,IteratorInvalid);

Description

Adds the element to the collection as the first element in sequential order and
sets the iterator to the added element.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

The given iterator must belong to the collection; otherwise, the exception
IteratorInvalid is raised.

Side effects

All iterators keep their state.

void add_element_as_last (in any element) raises (ElementInvalid);

Description

 Adds the element to the collection as the last element in sequential order.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

Side effects

All iterators keep their state.

void add_element_as_last_set_iterator (in any element, in Iterator where)
raises (ElementInvalid,IteratorInvalid);
Object Collection Service: v1.0 The CosCollection Module July 1997 17-33

17

ator.

ed to

Description

Adds the element to the collection as the last element in sequential order. Sets the
iterator to the added element.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

The given iterator must belong to the collection; otherwise, the exception
IteratorInvalid is raised.

Side effects

All other iterators keep their state.

void add_element_as_next(in any element, in Iterator where) raises
(ElementInvalid, IteratorInvalid);

Description

Adds the element to the collection after the element pointed to by the given iter
Sets the iterator to the added element. If the iterator is in the state in-between, the
element is added before the iterator’s “potential next” element.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

The iterator must belong to the collection and be valid; otherwise, the exception
IteratorInvalid is raised.

Side effects

All iterators keep their state.

void add_element_as_previous (in any element, in Iterator where) raises
(IteratorInvalid, ElementInvalid);

Description

Adds the element to the collection as the element previous to the element point
by the given iterator. Sets the iterator to the added element. If the iterator is in the
state in-between, the element is added after the iterator’s “potential previous”
element.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.
17-34 CORBAservices July 1997

17

t the
g

The iterator must belong to the collection and must be valid; otherwise, the
exception IteratorInvalid is raised.

Side effects

All iterators keep their state.

void add_element_at_position (in unsigned long position, in any element)
raises(PositionInvalid, ElementInvalid);

Description

Adds the element at the given position to the collection. If an element exists a
given position, the new element is added as the element preceding the existin
element.

Exceptions

The position must be valid (i.e., greater than or equal to 1 and less than or equal to
number_of_elements() +1); otherwise, the exception PositionInvalid is raised.

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

Side effects

All iterators keep their state.

void add_element_at_position_set_iterator (in unsigned long position, in any
element, in Iterator where) raises (PositionInvalid, ElementInvalid
IteratorInvalid);

Description

Adds the element at the given position to the collection and sets the iterator to the
added element. If an element exists at the given position, the new element is added
as the element preceding the existing element.

Exceptions

The position must be valid (i.e., greater than or equal to 1 and less than or equal to
number_of_elements() +1); otherwise, the exception PositionInvalid is raised.

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

The iterator must belong to the collection; otherwise, the exception IteratorInvalid
is raised.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-35

17
Side effects

All iterators keep their state.

Replacing elements

void replace_element_at_position (in unsigned long position, in any
element) raises (PositionInvalid, ElementInvalid);

Description

Replaces the element at a given position with the given element. The given position
must be valid (i.e., greater than or equal to 1 and less than or equal to
number_of_elements()).

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

void replace_first_element (in any element) raises (ElementInvalid,
EmptyCollection);

Description

Replaces the first element with the given element.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

The collection must not be empty; otherwise, the exception EmptyCollection is
raised.

void replace_last_element (in any element) raises (ElementInvalid,
EmptyCollection);

Description

Replaces the last element with the given element.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

The collection must not be empty; otherwise, the exception EmptyCollection is
raised.
17-36 CORBAservices July 1997

17

n of

Re-ordering elements

void sort (in Comparator comparison);

Description

Sorts the collection so that the elements occur in ascending order. The relatio
two elements is defined by the “compare” method, which a user provides when
implementing an interface derived from Comparator. See “The Command and
Comparator Interface” on page 17-122.

Side effects

All iterators in the state in-between go invalid.

All other iterators keep their state.

void reverse ();

Description

Orders elements in reverse order.

Side effects

All iterators in the state in-between go invalid.

All other iterators keep their state.

The SortedCollection Interface

interface SortedCollection: OrderedCollection{};

Sorted collections currently do not provide further operations but define a more
specific behavior; namely, that the elements or their keys are sorted with respect to a
user-defined element or key compare. See “The OrderedCollection Interface” on
page 17-28.

The EqualityCollection Interface

interface EqualityCollection: Collection {

// testing element containment

boolean contains_element (in any element) raises(ElementInvalid);

boolean contains_all_from (in Collection collector)
raises(ElementInvalid);

// adding elements
Object Collection Service: v1.0 The CosCollection Module July 1997 17-37

17

alue

boolean locate_or_add_element (in any element) raises
(ElementInvalid);

boolean locate_or_add_element_set_iterator (in any element, in
Iterator where) raises (ElementInvalid, IteratorInvalid);

// locating elements

boolean locate_element (in any element, in Iterator where) raises (
ElementInvalid, IteratorInvalid);

boolean locate_next_element (in any element, in Iterator where)
raises (ElementInvalid, IteratorInvalid);

boolean locate_next_different_element (in Iterator where) raises
(IteratorInvalid, IteratorInBetween);

// removing elements

boolean remove_element (in any element) raises (ElementInvalid);

unsigned long remove_all_occurrences (in any element) raises
(ElementInvalid);

// inquiring collection information

unsigned long number_of_different_elements ();

unsigned long number_of_occurrences (in any element)
raises(ElementInvalid);

};

Collections whose elements define equality introduce operations which exploit the
defined element equality. These operations are for finding elements by element v
(and adding if not found), for testing containment of a given element, and inquiring the
collection about how many elements of a given value were collected.

Testing element containment

boolean contains_element (in any element) raises (ElementInvalid);

Return value

Returns true if the collection contains an element equal to the given element.

Exceptions

The given elements must be of the expected type; otherwise, the exception
ElementInvalid is raised.

boolean contains_all_from (in Collection collector) raises (ElementInvalid);
17-38 CORBAservices July 1997

17

uch
Return value

Returns true if all the elements of the given collection are contained in the
collection. The definition of containment is given in “contains_element.”

Exceptions

The elements in the given collection must be of the expected type; otherwise, the
exception ElementInvalid is raised.

Adding elements

boolean locate_or_add_element (in any element) raises (ElementInvalid);

Description

Locates an element in the collection that is equal to the given element. If no s
element is found, the element is added as described in add.

Return value

Returns true if the element was found.

Returns false if the element had to be added.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

Side effects

All iterators keep their state.

boolean locate_or_add_element_set_iterator (in any element, in Iterator where)
raises (ElementInvalid, IteratorInvalid);

Description

Locates an element in the collection that is equal to the given element. If no
such element is found, the element is added as described in add. The iterator is
set to the found or added element.

Return value

Returns true if the element was found.

Returns false if the element had to be added.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-39

17

e

d
ent
Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

The given iterator must belong to the collection; otherwise, the exception
IteratorInvalid is raised.

Side effects

All other iterators keep their state.

Locating elements

boolean locate_element (in any element, in Iterator where) raises
(ElementInvalid, IteratorInvalid);

Description

Locates an element in the collection that is equal to the given element. Sets th
iterator to point to the element in the collection, or invalidates the iterator if no such
element exists. If the collection contains several such elements, the first element in
iteration order is located.

Return value

Returns true if an element is found.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

The iterator must belong to the collection; otherwise, the exception IteratorInvalid
is raised.

Side effects

All iterators keep their state.

boolean locate_next_element (in any element, in Iterator where) raises
(ElementInvalid, IteratorInvalid);

Description

Locates the next element in iteration order in the collection that is equal to the
given element, starting at the element next to the one pointed to by the given
iterator. Sets the iterator to point to the located element. The iterator is invalidate
if the end of the collection is reached and no more occurrences of the given elem
are left to be visited. If the iterator is in the state in-between, locating is started at
the iterator’s “potential next” element.
17-40 CORBAservices July 1997

17

nted

;

h
Return value

Returns true if an element was found.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

The iterator must belong to the collection and must be valid; otherwise, the
exception IteratorInvalid is raised.

boolean locate_next_different_element (in Iterator where) raises
(IteratorInvalid, IteratorInBetween);

Description

Locates the next element in iteration order that is different from the element poi
to by the given iterator. If no more elements are left to be visited, the given iterator
will no longer be valid.

Return value

Returns true if the next different element was found.

Exception

The iterator must belong to the collection and point to an element of the collection
otherwise, the exception IteratorInvalid or IteratorInBetween is raised.

Removing elements

boolean remove_element (in any element) raises (ElementInvalid);

Description

Removes an element in the collection that is equal to the given element. If no suc
element exists, the collection remains unchanged. In collections with non-unique
elements, an arbitrary occurrence of the given element will be removed.

Return value

Returns true if an element was removed.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

Side effects

If an element was removed, all iterators pointing to this element go in-between.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-41

17
All other iterators keep their state.

unsigned long remove_all_occurrences (in any element) raises
(ElementInvalid);

Description

Removes all elements from the collection that are equal to the given element and
returns the number of elements removed.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

Side effects

All iterators pointing to elements removed go in-between.

All iterators keep their state.

Inquiring collection information

unsigned long number_of_different_elements ();

Return value

Returns the number of different elements in the collection.

unsigned long number_of_occurrences (in any element) raises
(ElementInvalid);

Return value

Returns the number of occurrences of the given element in the collection.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

The KeyCollection Interface

interface KeyCollection: Collection {

// Key type information

readonly attribute CORBA::TypeCode key_type;

// testing containment
17-42 CORBAservices July 1997

17
boolean contains_element_with_key (in any key) raises(KeyInvalid);

boolean contains_all_keys_from (in KeyCollection collector)
raises(KeyInvalid);

// adding elements

boolean locate_or_add_element_with_key (in any element)
raises(ElementInvalid);

boolean locate_or_add_element_with_key_set_iterator (in any
element, in Iterator where) raises (ElementInvalid,
IteratorInvalid);

// adding or replacing elements

boolean add_or_replace_element_with_key (in any element)
raises(ElementInvalid);

boolean add_or_replace_element_with_key_set_iterator (in any
element, in Iterator where) raises (ElementInvalid,
IteratorInvalid);

// removing elements

boolean remove_element_with_key(in any key) raises(KeyInvalid);

unsigned long remove_all_elements_with_key (in any key)
raises(KeyInvalid);

// replacing elements

boolean replace_element_with_key (in any element)
raises(ElementInvalid);

boolean replace_element_with_key_set_iterator (in any element, in
Iterator where) raises (ElementInvalid, IteratorInvalid);

// retrieving elements

boolean retrieve_element_with_key (in any key, out any element)
raises (KeyInvalid);

// computing the keys

void key (in any element, out any key) raises (ElementInvalid);

void keys (in AnySequence elements, out AnySequence keys) raises
(ElementInvalid);

// locating elements

boolean locate_element_with_key (in any key, in Iterator where)
raises (KeyInvalid, IteratorInvalid);

boolean locate_next_element_with_key (in any key, in Iterator where)
raises (KeyInvalid, IteratorInvalid);

boolean locate_next_element_with_different_key (in Iterator where)
raises (IteratorInBetween, IteratorInvalid);
Object Collection Service: v1.0 The CosCollection Module July 1997 17-43

17

 a

ent

n

on.
// inquiring collection information

unsigned long number_of_different_keys ();

unsigned long number_of_elements_with_key (in any key)
raises(KeyInvalid);

};

A KeyCollection is a collection which offers associative access to its elements via
key. All elements of such a collection are keyed elements (i.e., they do have a key
which is computed from the element value). How to compute the key from an elem
value is user-defined. A user specializes the Operations interface and implements the
operation key() as desired (see “The Operations Interface” on page 17-118). This
information is passed to the collection at creation time.

Type checking information

readonly attribute CORBA::TypeCode key_type;

Specifies the key type expected in the collection. See also “The Operations Interface”
on page 17-118.

Testing containment

boolean contains_element_with_key (in any key) raises (KeyInvalid);

Return value

Returns true if the collection contains an element with the same key as the give
key.

Exceptions

The given key has to be of the expected type; otherwise, the exception KeyInvalid
is raised.

boolean contains_all_keys_from (in KeyCollection collector) raises(KeyInvalid);

Return value

Returns true if all of the keys of the given collection are contained in the collecti

Exceptions

The keys of the given collection have to be of the expected type of this collection;
otherwise, the exception KeyInvalid is raised.
17-44 CORBAservices July 1997

17

uch

ts the
Adding elements

boolean locate_or_add_element_with_key (in any element)
raises(ElementInvalid);

Description

Locates an element with the same key as the key in the given element. If no s
element exists the element is added; otherwise, the collection remains unchanged.

Return value

Returns true if the element is located.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

Side effects

All iterators keep their state.

boolean locate_or_add_element_with_key_set_iterator (in any element, in
Iterator where) raises (ElementInvalid, IteratorInvalid);

Description

Locates an element with the same key as the key in the given element and se
iterator to the located elements (see locate_element_with_key()). If no such
element exists, the element is added and the iterator is set to the element added.

Return value

Returns true if the element is located.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

The given iterator must belong to the collection; otherwise, the exception
IteratorInvalid is raised.

Side effects

All iterators keep their state.

boolean add_or_replace_element_with_key (in any element) raises
(ElementInvalid);
Object Collection Service: v1.0 The CosCollection Module July 1997 17-45

17

given

Description

If the collection contains an element with the key equal to the key in the given
element, the element is replaced with the given element; otherwise, the given
element is added to the collection.

Return value

Returns true if the element was added.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

Side effects

All iterators keep their state.

boolean add_or_replace_element_with_key_set_iterator (in any element, in
Iterator where) raises (ElementInvalid, IteratorInvalid);

Description

If the collection contains an element with the key equal to the key in the given
element, the iterator is set to that element and the element is replaced with the
element; otherwise, the given element is added to the collection, and the iterator set
to the added element.

Return value

Returns true if the element was added.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

The given iterator must belong to the collection; otherwise, the exception
IteratorInvalid is raised.

Side effects

All iterators keep their state.

Removing elements

boolean remove_element_with_key (in any key) raises (KeyInvalid);
17-46 CORBAservices July 1997

17

f no

ment.
Description

Removes an element from the collection with the same key as the given key. I
such element exists, the collection remains unchanged. In collections with non-
unique elements, an arbitrary occurrence of such an element will be removed.

Exceptions

The given key must be of the expected type; otherwise, the exception KeyInvalid is
raised.

 Side effects

If an element was removed, all iterators pointing to the element go in-between.

All other iterators keep their state.

unsigned long remove_all_elements_with_key (in any key) raises(KeyInvalid);

Description

Removes all elements from the collection with the same key as the given key.

Exceptions

The given key must be of the expected type; otherwise, the exception KeyInvalid is
raised.

Side effects

Iterators pointing to elements removed go in-between.

All other iterators keep their state.

Replacing elements

boolean replace_element_with_key (in any element) raises (ElementInvalid);

Description

Replaces an element with the same key as the given element by the given ele
If no such element exists, the collection remains unchanged. In collections with
non-unique elements, an arbitrary occurrence of such an element will be replaced.

Return value

Returns true if an element was replaced.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-47

17

ment,

meter
boolean replace_element_with_key_set_iterator (in any element, in Iterator
where) raises (ElementInvalid, IteratorInvalid);

Description

Replaces an element with the same key as the given element by the given ele
and sets the iterator to this element. If no such element exists, the iterator is
invalidated and the collection remains unchanged. In collections with non-unique
elements, an arbitrary occurrence of such an element will be replaced.

Return value

Returns true if an element was replaced.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

The given iterator must belong to the collection; otherwise, the exception
IteratorInvalid is raised.

Computing keys

void key (in any element, out any key) raises(ElementInvalid);

Description

Computes the key of the given element and returns it via the output parameterkey.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

void keys (in Any Sequence elements, out Any Sequence keys)
raises(ElementInvalid);

Description

Computes the keys of the given elements and returns them via the output para
keys.

Exceptions

The given elements must be of the expected type; otherwise, the exception
ElementInvalid is raised.
17-48 CORBAservices July 1997

17

 the

nt are
Side effects

An implementation may rely on the key operation of a user supplied interface
derived from Operations. An instance of this interface is passed to a collection
at creation time and can be used in the collection implementation.

Locating elements

boolean locate_element_with_key (in any key, in Iterator where) raises
(KeyInvalid, IteratorInvalid);

Description

Locates an element in the collection with the same key as the given key. Sets
iterator to point to the element in the collection, or invalidates the iterator if no such
element exists.

If the collection contains several such elements, the first element in iteration order
is located.

Return value

Returns true if an element was found.

Exceptions

The given key must be of the expected type; otherwise, the exception KeyInvalid is
raised.

The given iterator must belong to the collection; otherwise, the exception
IteratorInvalid is raised.

boolean locate_next_element_with_key (in any key, in Iterator where) raises
(KeyInvalid, IteratorInvalid);

Description

Locates the next element in iteration order with the key equal to the given key,
starting at the element next to the one pointed to by the given iterator. Sets the
iterator to point to the element in the collection. The given iterator is invalidated if
the end of the collection is reached and no more occurrences of such an eleme
left to be visited. If the iterator is in the in-between state, locating starts at the
iterator’s “potential next” element.

Return value

Returns true if an element was found.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-49

17

t
Exceptions

The given key must be of the expected type; otherwise, the exception KeyInvalid is
raised.

The given iterator must belong to the collection and must be valid; otherwise, the
exception IteratorInvalid is raised.

boolean locate_next_element_with_different_key (in Iterator where)
raises(IteratorInvalid, IteratorInBetween)

Description

Locates the next element in the collection in iteration order with a key different
from the key of the element pointed to by the given iterator. If no such elemen
exists, the given iterator is no longer valid.

Return value

Returns true if an element was found.

Exceptions

The given iterator must belong to the collection and must point to an element;
otherwise, the exception IteratorInvalid respectively IteratorInBetween is raised.

Inquiring collection information

unsigned long number_of_different_keys ();

Return value

Returns the number of different keys in the collection.

unsigned long number_of_elements_with_key (in any key) raises(KeyInvalid);

Return value

Returns the number elements with key specified.

Exceptions

The key must be of the expected type; otherwise, the exception KeyInvalid is
raised.

The EqualityKeyCollection Interface

interface EqualityKeyCollection : EqualityCollection, KeyCollection{};
17-50 CORBAservices July 1997

17

 the
Description

This interface combines the interfaces representing the properties “key access” and
“element equality.” See “The EqualityCollection Interface” on page 17-37 and
“The KeyCollection Interface” on page 17-42.

The KeySortedCollection Interface

interface KeySortedCollection : KeyCollection, SortedCollection {

// locating elements

boolean locate_first_element_with_key (in any key, in Iterator
where) raises (KeyInvalid, IteratorInvalid);

boolean locate_last_element_with_key(in any key, in Iterator where)
raises (KeyInvalid, IteratorInvalid);

boolean locate_previous_element_with_key (in any key, in Iterator
where) raises (KeyInvalid, IteratorInvalid);

boolean locate_previous_element_with_different_key(in Iterator
where) raises (IteratorInBetween, IteratorInvalid);

};

This interface combines the interfaces representing the properties “key access” and
“ordering.” See “The KeyCollection Interface” on page 17-42 and “The
SortedCollection Interface” on page 17-37.

Locating elements

boolean locate_first_element_with_key (in any key, in Iterator where)
raises (KeyInvalid, IteratorInvalid);

Description

Locates the first element in iteration order in the collection with the same key as
given key. Sets the iterator to the located element, or invalidates the iterator if no
such element exists.

Return value

Returns true if an element was found.

Exceptions

The given key must be of the expected type; otherwise, the exception KeyInvalid is
raised.

The given iterator must belong to the collection; otherwise, the exception
IteratorInvalid is raised.

boolean locate_last_element_with_key(in any key, in Iterator where) raises
(KeyInvalid, IteratorInvalid);
Object Collection Service: v1.0 The CosCollection Module July 1997 17-51

17

s the
tor if

ey,

 and

Description

Locates the last element in iteration order in the collection with the same key a
given key. Sets the given iterator to the located element, or invalidates the itera
no such element exists.

Return value

Returns true if an element was found.

Exceptions

The given key must be of the expected type; otherwise, the exception KeyInvalid is
raised.

The given iterator must belong to the collection; otherwise, the exception
IteratorInvalid is raised.

boolean locate_previous_element_with_key (in any key, in Iterator where)
raises (KeyInvalid, IteratorInvalid);

Description

Locates the previous element in iteration order with a key equal to the given k
beginning at the element previous to the one specified by the given
iterator and moving in reverse iteration order through the elements. Sets the
iterator to the located element or invalidates the iterator if no such element
exists. If the iterator is in the state in-between, locating begins at the iterator’s
“potential previous” element.

Return value

Returns true if an element was found.

Exceptions

The given key must be of the expected type; otherwise, the exception KeyInvalid is
raised.

The given iterator must belong to the collection and be valid; otherwise, the
exception IteratorInvalid is raised.

boolean locate_previous_element_with_different_key(in Iterator where) raises
(IteratorInBetween, IteratorInvalid);

Description

Locates the previous element in iteration order with a key different from the key of
the element pointed to, beginning at the element previous to the one pointed to
moving in reverse iteration order through the elements. Sets the iterator to the
located element, or invalidates the iterator if no such element exists.
17-52 CORBAservices July 1997

17

lity”

f
Return value

Returns true if an element was found.

Exceptions

The given key must be of the expected type; otherwise, the exception KeyInvalid is
raised.

The given iterator must point to an element; otherwise, the exception
IteratorInBetween or IteratorInvalid is raised.

The EqualitySortedCollection Interface

This interface combines the interfaces representing the properties “element equa
and “ordering.” See “The EqualityCollection Interface” on page 17-37 and “The
SortedCollection Interface” on page 17-37. It adds those methods which exploit the
combination of both properties.

interface EqualitySortedCollection : EqualityCollection,
SortedCollection {

// locating elements

boolean locate_first_element (in any element, in Iterator where)
raises (ElementInvalid, IteratorInvalid);

boolean locate_last_element (in any element, in Iterator where)
raises (ElementInvalid, IteratorInvalid);

boolean locate_previous_element (in any element, in Iterator where)
raises
(ElementInvalid, IteratorInvalid);

boolean locate_previous_different_element (in Iterator where) raises
(IteratorInvalid);

};

Locating elements

boolean locate_first_element (in any element, in Iterator where) raises
(ElementInvalid, IteratorInvalid);

Description

Locates the first element in iteration order in the collection that is equal to the
given element. Sets the iterator to the located element or invalidates the iterator i
no such element exists.

Return value

Returns true if an element was found.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-53

17

f
Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

The given iterator must belong to the collection; otherwise, the exception
IteratorInvalid is raised.

boolean locate_last_element (in any element, in Iterator where) raises
(ElementInvalid, IteratorInvalid);

Description

Locates the last element in iteration order in the collection that is equal to the
given element. Sets the iterator to the located element or invalidates the iterator i
no such element exists.

Return value

Returns true if an element was found.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

The given iterator must belong to the collection; otherwise, the exception
IteratorInvalid is raised.

boolean locate_previous_element (in any element, in Iterator where) raises
(ElementInvalid, IteratorInvalid);

Description

Locates the previous element in iteration order that is equal to the given
element, beginning at the element previous to the one specified by the given
iterator and moving in reverse iteration order through the elements. Sets the
iterator to the located element, or invalidates the iterator if no such element
exists. If the iterator is in the state in-between, the search begins at the iterator’s
“potential previous” element.

Return value

Returns true if an element was found.

Exceptions

The given element must be of the expected type otherwise the exception
ElementInvalid is raised.

The given iterator must belong to the collection; otherwise, the exception
IteratorInvalid is raised.
17-54 CORBAservices July 1997

17

ty,”

ty”
boolean locate_previous_different_element (in Iterator where) raises
(IteratorInBetween, IteratorInvalid);

Description

Locates the previous element in iteration order with a value different from the
element pointed to, beginning at the element previous to the one
pointed to and moving in reverse iteration order through the elements. Sets the
iterator to the located element or invalidates the iterator if no such element
exists.

Return value

Returns true if an element was found.

Exceptions

The given iterator must point to an element; otherwise, the exception
IteratorInBetween or IteratorInvalid is raised.

The EqualityKeySortedCollection Interface

interface EqualityKeySortedCollection: EqualityCollection, KeyCollection,
SortedCollection {};

This interface combines the interface representing the properties “element equali
“key access,” and “ordering.”

The EqualitySequentialCollection Interface

This interface combines the interface representing the properties “element equali
and “(sequential) ordering” and offers additional operations which exploit this
combination.

interface EqualitySequentialCollection: EqualityCollection,
SequentialCollection
{

// locating elements

boolean locate_first_element_with_value (in any element, in Iterator
where) raises (ElementInvalid, IteratorInvalid);

boolean locate_last_element_with_value (in any element, in Iterator
where) raises (ElementInvalid, IteratorInvalid);

boolean locate_previous_element_with_value (in any element, in
Iterator where) raises (ElementInvalid, IteratorInvalid);

};
Object Collection Service: v1.0 The CosCollection Module July 1997 17-55

17

f

f
Locating elements

boolean locate_first_element_with_value (in any element, in Iterator where)
raises (ElementInvalid, IteratorInvalid);

Description

Locates the first element in iteration order in the collection that is equal to the
given element. Sets the iterator to the located element or invalidates the iterator i
no such element exists.

Return value

Returns true if an element was found.

Exceptions

The element must be of the expected type; otherwise, the exception ElementInvalid
is raised.

The given iterator must belong to the collection; otherwise, the exception
IteratorInvalid is raised.

boolean locate_last_element_with_value (in any element, in Iterator where)
raises (ElementInvalid, IteratorInvalid);

Description

Locates the last element in iteration order in the collection that is equal to the
given element. Sets the iterator to the located element or invalidates the iterator i
no such element exists.

Return value

Returns true if an element was found.

Exceptions

The element must be of the expected type; otherwise, the exception ElementInvalid
is raised.

The iterator must belong to the collection; otherwise, the exception IteratorInvalid
is raised.

boolean locate_previous_element_with_value (in any element, in Iterator
where) raises (ElementInvalid, IteratorInvalid);
17-56 CORBAservices July 1997

17
Description

Locates the previous element in iteration order that is equal to the given
element, beginning at the element previous to the one specified by the given
iterator and moving in reverse iteration order through the elements. Sets the
iterator to the located element or invalidates the iterator if no such element
exists. If the iterator is in the state in-between, locating begins at the iterators
“potential previous” element.

Return value

Returns true if an element was found.

Exceptions

The element must be of the expected type; otherwise, the exception ElementInvalid
is raised.

The iterator must belong to the collection and be valid; otherwise, the exception
IteratorInvalid is raised.

17.5.4 Concrete Collections Interfaces

The previously listed “abstract views” on collections combine the properties “key
access,” “ element equality,” and “ordering relationship” on elements. The
subsequent interfaces add “uniqueness” support for “multiples.” To reduce the
complexity of the hierarchy, this fourth property is not represented by a separate
interface.

The KeySet Interface

interface KeySet: KeyCollection {};

The KeySet offers an interface representing the property “key access” with the
semantics of “unique keys required.” See “The KeyCollection Interface” on
page 17-42.

The KeyBag Interface

interface KeyBag: KeyCollection {};

The KeyBag offers the interface representing the property “key access” with multiple
keys allowed. See “The KeyCollection Interface” on page 17-42.

The Map Interface

interface Map : EqualityKeyCollection {

// set theoretical operations

void difference_with (in Map collector) raises (ElementInvalid);

void add_difference (in Map collector1, in Map collector2)raises
(ElementInvalid);
Object Collection Service: v1.0 The CosCollection Module July 1997 17-57

17

ent
ed”

;
void intersection_with (in Map collector) raises (ElementInvalid);

void add_intersection (in Map collector1, in Map collector2) raises
(ElementInvalid);

void union_with (in Map collector) raises (ElementInvalid);

void add_union (in Map collector1, in Map collector2)raises
(ElementInvalid);

// testing equality

boolean equal (in Map collector) raises (ElementInvalid);

boolean not_equal (in Map collector) raises(ElementInvalid);

};

The Map offers the interface representing the combination of the properties “elem
equality testable” and “key access” and supports the semantics “unique keys requir
(which implies unique elements). See “The EqualityKeyCollection Interface” on
page 17-50.

With element equality defined, a test on equality for collections of the same type is
possible as well as a meaningful definition of the set theoretical operations.

Set theoretical operations

void difference_with (in Map collector) raises(ElementInvalid);

Description

Makes this collection the difference between this collection and the given
collection. The difference of A and B (A minus B) is the set of elements that are
contained in A but not in B.

The same operation is defined for other collections, too. The following rule applies
for collections with multiple elements: If collection P contains the element X m
times and collection Q contains the element X n times, the difference of P and Q
contains the element X m-n times if “m > n,” and zero times if “m <= n.”

Exceptions

Elements of the given collection must have the expected type of this collection
otherwise, the exception ElementInvalid is raised.

Side effects

Valid iterators pointing to removed elements go in-between. All other iterators keep
their state.

void add_difference (in Map collector1, in Map collector2) raises
(ElementInvalid);
17-58 CORBAservices July 1997

17

 to

n;

d B.

;

 this

n;
Description

Creates the difference between the two given collections and adds the difference
this collection.

Exceptions

Elements of the given collections must be of the expected type in this collectio
otherwise, the exception ElementInvalid is raised.

Side effects

Adding the difference takes place one by one so the semantics for add applies here
for raised exceptions and iterator state.

void intersection_with (in Map collector) raises (ElementInvalid);

Description

Makes this collection the intersection of this collection and the given collection.
The intersection of A and B is the set of elements that is contained in both A an

The same operation is defined for other collections, too. The following rule applies
for collections with multiple elements: If collection P contains the element X m
times and collection Q contains the element X n times, the intersection of P and Q
contains the element X “MIN(m,n)” times.

Exceptions

Elements of the given collection must have the expected type of this collection
otherwise, the exception ElementInvalid is raised.

Side effects

Valid iterators of this collection pointing to removed elements go in-between.

All other iterators keep their state.

void add_intersection (in Map collector1, in Map collector2) raises
(ElementInvalid);

Description

Creates the intersection of the two given collections and adds the intersection to
collection.

Exceptions

Elements of the given collections must have the expected type of this collectio
otherwise, the exception ElementInvalid is raised.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-59

17

;

.

n;
Side effects

Adding the intersection takes place one by one so the semantics for add apply here
for raised exceptions and iterator state.

void union_with (in Map collector) raises (ElementInvalid);

Description

Makes this collection the union of this collection and the given collection. The
union of A and B are the elements that are members of A or B or both.

The same operation is defined for other collections, too. The following rule applies
for collections with multiple elements: If collection P contains the element X m
times and collection Q contains the element X n times, the union of P and Q
contains the element X m+n times.

Exceptions

Elements of the given collection must have the expected type of this collection
otherwise, the exception ElementInvalid is raised.

Side effects

Adding takes place one by one so the semantics for add applies here for raised
exceptions and iterator state.

void add_union (in Map collector1, in Map collector2) raises (ElementInvalid);

Description

Creates the union of the two given collections and adds the union to the collection

Exceptions

Elements of the given collections must have the expected type of this collectio
otherwise, the exception ElementInvalid is raised.

Side effects

Adding the intersection takes place one by one; therefore, the semantics for add
applies here for validity of iterators and raised exceptions.

Testing equality

boolean equal (in Map collector) raises(ElementInvalid);

Return value

Returns true if the given collection is equal to the collection.
17-60 CORBAservices July 1997

17

ns

y

e

f the

n;
This operation is defined for other collections, too. Two collections are equal if the
number of elements in each collection is the same and if the following conditio
(depending on the collection properties) are fulfilled.

• Collections with unique elements: If the collections have unique elements, an
element that occurs in one collection must occur in the other collections, too.

• Collections with non-unique elements: If an element has n occurrences in on
collection, it must have exactly n occurrences in the other collection.

• Sequential collections: They are sequential collections if they are
lexicographically equal based on element equality defined for the elements o
sequential collection.

Exceptions

Elements of the given collections must have the expected type of this collectio
otherwise, the exception ElementInvalid is raised.

boolean not_equal (in Map collector) raises (ElementInvalid);

Return value

Returns true if the given collection is not equal to this collection.

The Relation Interface

interface Relation : EqualityKeyCollection {

// equal, not_equal, and the set-theoretical operations as defined
for Map

};

The Relation interface offers the interface representing the combination of the
properties “element equality testable” and “key access” and supports the semantics
“multiple elements allowed.” See “The EqualityKeyCollection Interface” on
page 17-50. For a definition of the set-theoretical operation see “The Map Interface”
on page 17-57.

The Set Interface

interface Set : EqualityCollection {

// equal, not_equal, and the set theoretical operations as defined
for Map

};

The Set offers the interface representing the property “element equality testable” with
the semantics of “unique elements required.” See “The EqualityCollection Interface”
on page 17-37.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-61

17

f

r
The Bag Interface

interface Bag : EqualityCollection {

// equal, not_equal, and the set theoretical operations as defined
for Map

};

The Bag offers the interface representing the property “element equality testable” with
the semantics of “multiples allowed.” See “The EqualityCollection Interface” on
page 17-37.

The KeySortedSet Interface

interface KeySortedSet : KeySortedCollection {

long compare (in KeySortedSet collector, in Comparator comparison);

};

The KeySortedSet offers the sorted variant of KeySet. See “The
KeySortedCollection Interface” on page 17-51.

The sorted variant of KeySet introduces a new operation compare which can be
supported only when there is “ordering.” This operation takes an instance of a user-
defined Comparator as given parameter. See “The Command and Comparator
Interface” on page 17-122.

The Comparator defines the comparison to be used for the elements in the context o
this compare operation. Comparison on two KeySortedSets then is a lexicographical
comparison based on this element comparison.

long compare (in KeySortedSet collector, in Comparator comparison) raises
(ElementInvalid);

Description

Compares this collection with the given collection. Comparison yields:

• <0 if this collection is less than the given collection,

• 0 if the collection is equal to the given collection, and

• >0 if the collection is greater than the given collection.

Comparison is defined by the first pair of corresponding elements, in both
collections, that are not equal. If such a pair exists, the collection with the greate
element is the greater one. If such a pair does not exist, the collection with more
elements is the greater one.

The “compare” operation of the user’s comparator (interface derived from
Comparator) must return a result according to the following rules:

>0 if (element1 > element2)

 0 if (element1 = element2)
17-62 CORBAservices July 1997

17
<0 if (element1 < element2)

Return value

Returns the result of the collection comparison.

The KeySortedBag Interface

interface KeySortedBag : KeySortedCollection {

long compare (in KeySortedBag collector, in Comparator comparison);

};

The KeySortedBag is the sorted variant of the KeyBag. See “The
KeySortedCollection Interface” on page 17-51 The additional operation compare is
offered. See “The KeySortedSet Interface” on page 17-62.

The SortedMap Interface

interface SortedMap : EqualityKeySortedCollection {

// equal, not_equal, and the set theoretical operations

long compare (in SortedMap collector, in Comparator comparison);

};

The SortedMap interface is the sorted variant of a Map. See “The
EqualityKeySortedCollection Interface” on page 17-55. The additional operation
compare is offered. See “The KeySortedSet Interface” on page 17-62.

The SortedRelation Interface

interface SortedRelation : EqualityKeySortedCollection {

// equal, not_equal, and the set theoretical operations

long compare (in SortedRelation collector, in Comparator
comparison);

};

The SortedRelation interface is the sorted variant of a Relation. See “The
EqualitySortedCollection Interface” on page 17-53. The additional operation
compare is offered. See “The KeySortedSet Interface” on page 17-62.

The SortedSet Interface

interface SortedSet : EqualitySortedCollection {

// equal, not_equal, and the set theoretical operations

long compare (in SortedSet collector, in Comparator comparison);

};

The SortedSet interface is the sorted variant of a Set. The additional operation
compare is offered. See “The KeySortedSet Interface” on page 17-62.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-63

17
The SortedBag Interface

interface SortedBag: EqualitySortedCollection {

// equal, not_equal, and the set theoretical operations

long compare (in SortedBag collector, in Comparator comparison);

};

The SortedBag interface is the sorted variant of a Bag. See “The
EqualitySortedCollection Interface” on page 17-53. The additional operation
compare is offered. See “The KeySortedSet Interface” on page 17-62.

The Sequence Interface

interface Sequence : SequentialCollection {

// Comparison

long compare (in Sequence collector, in Comparator comparison);

};

The Sequence supports the interface representing the property “sequential ordering.”
This property enables the definition of comparison on two Sequences; therefore, the
operation compare is offered. See “The SequentialCollection Interface” on
page 17-31.

The EqualitySequence Interface

interface EqualitySequence : EqualitySequentialCollection {

// test on equality

boolean equal (in EqualitySequence collector);

boolean not_equal (in EqualitySequence collector);

// comparison

long compare (in EqualitySequence collector, in Comparator
comparison);

};

The EqualitySequence supports the combination of the properties “sequential
ordering” and “element equality testable.” See “The EqualitySequentialCollection
Interface” on page 17-55. This allows the operations equal, not_equal and compare.

The Heap Interface

interface Heap : Collection {};

The Heap does not support any property at all. It just delivers the basic Collection
interface. See “The Collection Interface” on page 17-21.
17-64 CORBAservices July 1997

17
17.5.5 Restricted Access Collection Interfaces

Common data structures, such as a stack, may restrict access to the elements of a
collection. The restricted access collections support these data structures. Stack,
Queue, and Dequeue are essentially restricted access Sequences. PriorityQueue is
essentially a restricted access KeySortedBag. For convenience, these interfaces offer
the commonly used operation names such as push, pop, etc. rather than
add_element, remove_element_at. Although the restricted access collections form
their own hierarchy, the naming was formed in a way that allows mixing-in with the
hierarchy of the combined property collections.

This may be useful to support several views on the same instance of a collection. For
example, a “user view” to a job queue with restricted access of a PriorityQueue and
an “administrator view” to the same print job queue with the full capabilities of a
KeySortedBag.

17.5.6 Abstract RestrictedAccessCollection Interface

The RestrictedAccessCollection Interface

// Restricted Access Collections

interface RestrictedAccessCollection {

// getting information on collection state

boolean unfilled ();

unsigned long size ();

// removing elements

void purge ();

};

boolean unfilled ();

Return value

Returns true if the collection is empty.

unsigned long size ();

Return value

Returns the number of elements in the collection.

void purge ();
Object Collection Service: v1.0 The CosCollection Module July 1997 17-65

17

Description

Removes all elements from the collection. See “The Collection Interface” on
page 17-21.

17.5.7 Concrete Restricted Access Collection Interfaces

The Queue Interface

interface Queue : RestrictedAccessCollection {

// adding elements

void enqueue (in any element) raises (ElementInvalid);

// removing elements

void dequeue () raises (EmptyCollection);

boolean element_dequeue (out any element) raises (EmptyCollection);

};

A Queue may be considered as a restricted access Sequence. Elements are added at
the end of the queue only and removed from the beginning of the queue. FIFO
behavior is delivered.

Adding elements

void enqueue (in any element) raises (ElementInvalid);

Description

Adds the element as last element to the Queue.

Exceptions

The given element must be the expected type; otherwise, the exception
ElementInvalid is raised.

Removing elements

void dequeue () raises (EmptyCollection);

Description

Removes the first element from the queue.

Exceptions

The queue must not be empty; otherwise, the exception EmptyCollection is raised.
17-66 CORBAservices July 1997

17

the
boolean element_dequeue(out any element) raises (EmptyCollection);

Description

Retrieves the first element in the queue, returns it via the output parameter
element, and removes it from the queue.

Return value

Returns true if an element was retrieved.

Exceptions

The queue must not be empty; otherwise, the exception EmptyCollection is raised.

The Dequeue Interface

interface Deque : RestrictedAccessCollection {

// adding elements

void enqueue_as_first (in any element) raises (ElementInvalid);

void enqueue_as_last (in any element) raises(ElementInvalid);

// removing elements

void dequeue_first () raises (EmptyCollection);

boolean element_dequeue_first (out any element) raises
(EmptyCollection);

void dequeue_last () raises (EmptyCollection);

boolean element_dequeue_last (out any element) raises
(EmptyCollection);

};

The Dequeue may be considered as a restricted access Sequence. Adding and
removing elements is only allowed at both ends of the double-ended queue. The
semantics of the Dequeue operation is comparable to the operations described for
Queue interface. See “The Queue Interface” on page 17-66.

The Stack Interface

interface Stack: RestrictedAccessCollection {

// adding elements

void push (in any element) raises (ElementInvalid);

// removing and retrieving elements

void pop () raises (EmptyCollection);

boolean element_pop (out any element) raises (EmptyCollection);
Object Collection Service: v1.0 The CosCollection Module July 1997 17-67

17
boolean top (out any element) raises (EmptyCollection);

};

The Stack may be considered as a restricted access Sequence. Adding and removing
elements is only allowed at the end of the queue. LIFO behavior is delivered.

Adding elements

void push (in any element) raises (ElementInvalid);

Description

Adds the element to the stack as the last element.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

Removing elements

void pop () raises (EmptyCollection);

Description

Removes the last element from the stack.

Exceptions

The stack must not be empty; otherwise, the exception EmptyCollection is raised.

boolean element_pop (out any element) raises (EmptyCollection);

Description

Retrieves the last element from the stack and returns it via the output parameter
element and removes it from the stack.

Return value

Returns true if an element is retrieved.

Exceptions

The stack must not be empty; otherwise, the exception EmptyCollection is raised.

Retrieving elements

boolean top (out any element) raises (EmptyCollection);
17-68 CORBAservices July 1997

17
Description

Retrieves the last element from the stack and returns it via the output parameter
element.

Return value

Returns true if an element is retrieved.

Exceptions

The stack must not be empty; otherwise, the exception EmptyCollection is raised.

The PriorityQueue Interface

interface PriorityQueue: RestrictedAccessCollection {

// adding elements

void enqueue (in any element) raises (ElementInvalid);

// removing elements

void dequeue () raises (EmptyCollection);

boolean element_dequeue (out any element) raises (EmptyCollection);

};

The PriorityQueue may be considered as a restricted access KeySortedBag. The
interface is identical to that of an ordinary Queue, with a slightly different semantics
for adding elements.

Adding elements

void enqueue (in any element) raises (ElementInvalid);

Description

Adds the element to the priority queue at a position determined by the ordering
relation provided for the key type.

Exceptions

The Element must be the expected type; otherwise, the exception ElementInvalid is
raised.

Removing elements

void dequeue () raises (EmptyCollection);

Description

Removes the first element from the collection.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-69

17

 For
test

uld
.

n

ray

nts,
Exceptions

The priority queue must be not be empty; otherwise, the exception
EmptyCollection is raised.

boolean element_dequeue (out any element) raises (EmptyCollection);

Description

Retrieves the first element in the priority queue and returns it via the output
parameter element, removes it from the priority queue, and returns the copy to the
user.

Return value

Returns true if an element is retrieved.

Exceptions

The priority queue must not be empty; otherwise, the exception EmptyCollection is
raised.

17.5.8 Collection Factory Interfaces

There is one collection factory defined per concrete collection interface which offers a
typed operation for the creation of collection instances supporting the respective
collection interface as its principal interface.

The information passed to a collection implementation at creation time is:

1. Element type specific information required to implement the correct semantics.
example, to implement Set semantics one has to pass the information how to
the equality of elements.

2. Element type specific information that can be exploited by the specific
implementation variants. For example, a hashtable implementation of a Set wo
exploit the information how the hash value for collected elements is computed

This element type specific information is passed to the collection implementatio
via an instance of a user-defined specialization of the Operations interface.

3. An implementation hint about the expected number of elements collected. An ar
based implementation may use this hint as an estimate for the initial size of the
implementation array.

To enable the support for, and a user-controlled selection of implementation varia
there is a generic extensible factory defined. This allows for registration of
implementation variants and their user-defined selection at creation time.
17-70 CORBAservices July 1997

17

nts to

e
ests

to the
The CollectionFactory and CollectionFactories Interfaces

interface Operations;

interface CollectionFactory {

Collection generic_create (in ParameterList parameters) raises
(ParameterInvalid);

};

CollectionFactory defines a generic collection creation operation which enables
extensibility and supports the creation of collection instances with the very basic
capabilities.

Collection generic_create (in ParameterList parameters) raises
(ParameterInvalid);

Returns a new collection instance which supports the interface Collection and does not
offer any type checking. A sequence of name-value pairs is passed to the create
operation. The only processed parameter in the given list is “expected_size,” of type
“ unsigned long.”

This parameter is optional and gives an estimate of the expected number of eleme
be collected.

Note – All collection interface specific factories defined in this specification inherit
from the interface CollectionFactory to enable their registration with the extensible
generic CollectionFactories factory specified below.

interface CollectionFactories : CollectionFactory {

boolean add_factory (in Istring collection_interface, in Istring
impl_category, in Istring impl_interface, in CollectionFactory
factory);

boolean remove_factory (in Istring collection_interface, in Istring
impl_category, in Istring impl_interface);

};

The interface CollectionFactories specifies a generic extensible collection creation
capability. It maintains a registry of collection factories. The create operation of th
CollectionFactories does not create collection instances itself, but passes the requ
through to an appropriate factory registered with it and passes the result through
caller. Note that only factories derived from CollectionFactory can be registered with
CollectionFactories.

boolean add_factory (in Istring collection_interface, in Istring impl_category, in
Istring impl_interface, in CollectionFactory factory);

Registers the factory with three pieces of information:
Object Collection Service: v1.0 The CosCollection Module July 1997 17-71

17

d

d

 to
 A

n

it

 the
1. collection_interface specifies the collection interface (directly or indirectly derive
from Collection) supported by the given factory. That is, a collection instance
created via the given factory has to support the given interface
collection_interface.

2. impl_interface specifies the implementation interface (directly or indirectly derive
from the interface specified in collection_interface) supported by the registered
factory. Collection instances created via this factory are instances of this
implementation interface.

3. impl_category specifies a named group of equivalent implementation interfaces
which the implementation interface supported by the registered factory belongs.
group of implementation interfaces of a given collection interface are equivalent if
they:

• rely on the same user-defined implementation support, that is, the same
operations defined in the user-defined specialization of the Operations interface.

• are based on essentially the same data structure and deliver comparable
performance characteristics.

The following table lists examples of implementation categories (representing commo
implementations).

Table 17-4Implementation Category Examples

The operation does not check the validity of the registration request in the sense that
checks any of the restrictions on the parameters described above, but just registers the
given information with the factory. It is the responsibility of the user to ensure that
registration is valid.

Implementation
Category

Description

ArrayBased User-defined implementation specific operations do not have to be
defined. The basic data structure used is an array.

LinkedListBased User-defined implementation specific operations do not have to be
defined. The basic data structure used is a simple linked list.

SkipListsBased A compare operation has to be defined for the key element values
that depend on whether or not the collection is a KeyCollection
derived from KeyCollection. The basic data structure are skip lists.

HashTableBased A hash-function has to be defined for key element values that
depend on whether or not the interface implemented is a
KeyCollection derived from KeyCollection. The basic data
structure is a hashtable based on the hash-function defined.

AVLTreeBased A compare operation has to be defined for the key element values
that depend on whether or not the collection is a KeyCollection
derived from KeyCollection. The basic data structure is an AVL
tree.

BStarTreeBased A compare operation has to be defined for key values. The basic
data structure is a B*tree.
17-72 CORBAservices July 1997

17

ory is
The entry is added if there is not already a factory registered with the same three
pieces of information; otherwise, the registration is ignored. Returns true if the factory
is added.

boolean remove_factory (in Istring collection_interface, in Istring impl_category,
in Istring impl_interface)

Description

Removes the factory registered with the given three pieces of information from the
registry.

Return value

Returns true if an entry with that name exists and is removed.

create (ParameterList parameters) raises (ParameterInvalid)

The create operation of the CollectionFactories interface does not create instances
itself, but passes through creation requests to factories registered with it. The fact
passed a sequence of name-value pairs of which the only mandatory one is
collection_interface” of type Istring.

collection_interface” of type
Istring

A string which specifies the name of the
collection interface (directly or indirectly
derived from Collection) the collection
instance created has to support.

This name-value pair corresponds to the
collection_interface parameter of the
add_factory() operation.

The following name-value pairs are optional:

“ impl_category” of type Istring A string which denotes the desired
implementation category. This name-value
pair corresponds to the impl_category
parameter of the add_factory() operation.

“ impl_interface” of type Istring A string which specifies a desired
implementation interface. This name-value
pair corresponds to the impl_interface
parameter of the add_factory() operation.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-73

17

hing

 a

ith

the
If one or both of these name-value pairs are given, it is searched for a best matc
entry in the factory registry and the request is passed through to the respective factory.
“Best matching” means that if an implementation interface is given, it is searched for
factory supporting an exact matching implementation interface first. If no factory
supporting the desired implementation interface is registered, it is searched for a
factory supporting an implementation interface of the same implementation category.

If none of the two name-value pairs are given, the request is passed to a factory
registered as default factory for a given “collection_interface.” For each concrete
collection interface specified in this specification, there is one collection specific
factory defined which serves as default factory and is assumed to be registered w
CollectionFactories.

There must be a name-value pair with name “collection_interface” given and a
factory must be registered for “collection_interface;” otherwise, the
exception ParameterInvalid is raised.

If a desired implementation interface and/or an implementation category is given, a
factory with matching characteristics must be registered; otherwise, the exception
ParameterInvalid is raised.

For factories specified for each concrete collection interface in this specification,
following additional name-value pairs are relevant:

Those parameters are not processed by the create operation of CollectionFactories
itself, but just passed through to a registered factory.

The RACollectionFactory and RACollectionFactories Interfaces

interface RACollectionFactory {

RestrictedAccessCollection generic_create (in ParameterList
parameters) raises (ParameterInvalid);

};

The interface RACollectionFactory corresponds to the interface
CollectionFactory, but defines an abstract interface.

interface RACollectionFactories : RACollectionFactory {

“ operations” of type
Operations

An instance of a user-defined specialization of
Operations which specifies element- and/or
key-type specific operations.

“ expected_size” of type
unsigned long

is an unsigned long and gives an estimate
about the expected number of elements to be
collected.
17-74 CORBAservices July 1997

17
boolean add_factory (in Istring collection_interface, in Istring
impl_category, in Istring impl_interface, in RACollectionFactory
factory);

boolean remove_factory (in Istring collection_interface, in Istring
impl_category, in Istring impl_interface);

};

The interface RACollectionFactories corresponds to the CollectionFactories
interface. It enables the registration and deregistration of collections with restricted
access as well as control over the implementation choice for a given restricted access
collection at creation time.

The KeySetFactory Interface

interface KeySetFactory : CollectionFactory {

KeySet create (in Operations ops, in unsigned long expected_size);

};

KeySet create (in Operations ops, in unsigned long expected_size);

Creates and returns an instance of KeySet. The given instance of Operations passes
user-defined element and key-type specific information to the collection
implementation. The following table defines the requirements for the element key
operations to be implemented.

The KeyBagFactory Interface

interface KeyBagFactory : CollectionFactory {

KeyBag create (in Operations ops, in unsigned long expected_size);

};

KeyBag create (in Operations ops, in unsigned long expected_size);

Table 17-5Required element and key-type specific user-defined information for
KeySetFactory. []- implied by key_compare.

KeySet

equal compare hash key key_equal key_compare key_hash

x [x] x
Object Collection Service: v1.0 The CosCollection Module July 1997 17-75

17
Creates and returns an instance of KeyBag. The given instance of Operations passes
user-defined element and key-type specific information to the collection
implementation. The following table defines the requirements for the element key
operations to be implemented.

The MapFactory Interface

interface MapFactory : CollectionFactory {

Map create (in Operations ops, in unsigned long expected_size);

};

Map create (in Operations ops, in unsigned long expected_size);

Creates and returns an instance of Map. The given instance of Operations passes
user-defined element and key-type specific information to the collection
implementation. The following table defines the requirements for the element key
operations to be implemented.

The RelationFactory Interface

interface RelationFactory : CollectionFactory {

Relation create (in Operations ops, in unsigned long expected_size);

};

Relation create (in Operations ops, in unsigned long expected_size);

Table 17-6Required element and key-type specific user-defined information for
KeyBagFactory. []- implied by key_compare.

KeyBag

equal compare hash key key_equal key_compare key_hash

x [x] x

Table 17-7Required element and key-type specific user-defined information for
MapFactory. []- implied by key_compare.

Map

equal compare hash key key_equal key_compare key_hash

x x [x] x
17-76 CORBAservices July 1997

17

.[]-
Creates and returns an instance of Relation. The given instance of Operations passes
user-defined element and key-type specific information to the collection
implementation. The following table defines the requirements for the element key
operations to be implemented.

The SetFactory Interface

interface SetFactory : CollectionFactory {

Set create (in Operations ops, in unsigned long expected_size);

};

Set create (in Operations ops, in unsigned long expected_size);

Creates and returns an instance of Set. The given instance of Operations passes user-
defined element and key-type specific information to the collection implementation.

The following table defines the requirements for the element key operations to be
implemented.

The BagFactory Interface

interface BagFactory {

Bag create (in Operations ops, in unsigned long expected_size);

};

Bag create (in Operations ops, in unsigned long expected_size);

Table 17-8Required element and key-type specific user-defined information for
RelationFactory.[]- implied by key_compare.

Relation

equal compare hash key key_equal key_compare key_hash

x x [x] x

Table 17-9Required element and key-type specific user-defined information for SetFactory
implied by compare.

Set

equal compare hash key key_equal key_compare key_hash

[x] x
Object Collection Service: v1.0 The CosCollection Module July 1997 17-77

17

Creates and returns an instance of Bag. The given instance of Operations passes user-
defined element and key-type specific information to the collection implementation.
The following table defines the requirements for the element key operations to be
implemented.

The KeySortedSetFactory Interface

interface KeySortedSetFactory {

KeySortedSet create (in Operations ops, in unsigned long
expected_size);

};

KeySortedSet create (in Operations ops, in unsigned long expected_size)

Creates and returns an instance of KeySortedSet. The given instance of Operations
passes user-defined element and key-type specific information to the collection
implementation. The following table defines the requirements for the element key
operations to be implemented.

The KeySortedBagFactory Interface

interface KeySortedBagFactory : CollectionFactory {

KeySortedBag create (in Operations ops, in unsigned long
expected_size);

};

KeySortedBag create (in Operations ops, in unsigned long expected_size);

Creates and returns an instance of KeySortedBag. The given instance of Operations
passes user-defined element and key-type specific information to the collection
implementation.

Table 17-10 Required element and key-type specific user-defined information for
 BagFactory.[]- implied by compare.

Bag

equal compare hash key key_equal key_compare key_hash

[x] x

Table 17-11 Required element and key-type specific user-defined information for
 KeySortedSetFactory.[]- implied by key_compare.

KeySortedSet

equal compare hash key key_equal key_compare key_hash

x [x] x
17-78 CORBAservices July 1997

17

The following table defines the requirements for the element key operations to be
implemented.

The SortedMapFactory Interface

interface SortedMapFactory : CollectionFactory {

SortedMap create (in Operations ops, in unsigned long
expected_size);

};

SortedMap create (in Operations ops, in unsigned long expected_size);

Creates and returns an instance of SortedMap. The given instance of Operations
passes user-defined element and key-type specific information to the collection
implementation. The following table defines the requirements for the element key
operations to be implemented.

The SortedRelationFactory Interface

interface SortedRelationFactory : CollectionFactory {

SortedRelation create (in Operations ops, in unsigned long
expected_size);

};

SortedRelation create (in Operations ops, in unsigned long expected_size);

Table 17-12 Required element and key-type specific user-defined information for
 KeySortedBagFactory.[]- implied by key_compare.

KeySortedBag

equal compare hash key key_equal key_compare key_hash

x [x] x

Table 17-13 Required element and key-type specific user-defined information for
SortedMapFactory.[]- implied by key_compare.

SortedMap

equal compare hash key key_equal key_compare key_hash

x x [x] x
Object Collection Service: v1.0 The CosCollection Module July 1997 17-79

17
Creates and returns an instance of SortedRelation. The given instance of Operations
passes user-defined element and key-type specific information to the collection
implementation. The following table defines the requirements for the element key
operations to be implemented.

The SortedSetFactory Interface

interface SortedSetFactory : CollectionFactory {

SortedSet create (in Operations ops, in unsigned long
expected_size);

};

SortedSet create (in Operations ops, in unsigned long expected_size);

Creates and returns an instance of SortedSet. The given instance of Operations
passes user-defined element and key-type specific information to the collection
implementation. The following table defines the requirements for the element key
operations to be implemented.

The SortedBagFactory Interface

interface SortedBagFactory {

SortedBag create (in Operations ops, in unsigned long
expected_size);

};

SortedBag create (in Operations ops, in unsigned long expected_size);

Creates and returns an instance of SortedBag. The given instance of Operations
passes user-defined element and key-type specific information to the collection
implementation.

Table 17-14 Required element and key-type specific user-defined information for
 SortedRelationFactory.[]- implied by key_compare.

SortedRelation

equal compare hash key key_equal key_compare key_hash

x x [x] x

Table 17-15 Required element and key-type specific user-defined information for
 SortedSetFactory. []- implied by compare.

SortedSet

equal compare hash key key_equal key_compare key_hash

[x] x
17-80 CORBAservices July 1997

17

r at

The following table defines the requirements for the element key operations to be
implemented.

The SequenceFactory Interface

interface SequenceFactory : CollectionFactory {

Sequence create (in Operations ops, in unsigned long expected_size);

};

Sequence create (in Operations ops, in unsigned long expected_size);

Creates and returns an instance of Sequence. No requirements on the element
respectively key operations to be implemented is specified for a Sequence.
Nevertheless one still has to pass an instance of Operations as type checking
information has to be passed to the collection implementation.

Note – As the Sequence interface represents array as well as linked list
implementation of sequentially ordered collections, a service provider should offe
least two implementations to meet the performance requirements of the two most
common access patterns. That is, a service provider should offer an array based
implementation and a linked list based implementation.

The EqualitySequence Factory Interface

interface EqualitySequenceFactory : CollectionFactory {

EqualitySequence create (in Operations ops, in unsigned long
expected_size);

};

EqualitySequence create (in Operations ops, in unsigned long expected_size);

Table 17-16 Required element and key-type specific user-defined information for
 SortedBagFactory. []- implied by compare.

SortedBag

equal compare hash key key_equal key_compare key_hash

[x] x
Object Collection Service: v1.0 The CosCollection Module July 1997 17-81

17

r at

e
 of

be
Creates and returns an instance of EqualitySequence. The given instance of
Operations passes user-defined element and key-type specific information to the
collection implementation. The following table defines the requirements for the
element key operations to be implemented.

Note – As the EqualitySequence interface represents array as well as linked list
implementations of sequentially ordered collections, a service provider should offe
least two implementations to meet the performance requirements of the two most
common access patterns. That is, a service provider should offer an array based
implementation and a linked list based implementation.

The HeapFactory Interface

interface HeapFactory : CollectionFactory {

Heap create (in Operations ops, in unsigned long expected_size);

};

Heap create (in Operations ops, in unsigned long expected_size);

Returns an instance of a Heap. No requirements for the element key operations to b
implemented is specified for a Heap. Nevertheless, one still has to pass an instance
Operations as type checking information must pass to the collection implementation.

The QueueFactory Interface

interface QueueFactory : RACollectionFactory {

Queue create (in Operations ops, in unsigned long expected_size);

};

Queue create (in Operations ops, in unsigned long expected_size);

Returns an instance of a Queue. No requirements for the element key operations to
implemented is specified for a Queue. Nevertheless, one still has to pass an instance
of Operations as type checking information must pass to the collection
implementation.

Table 17-17 Required element and key-type specific user-defined information for
EqualitySequenceFactory.

Equality
Sequence

equal compare hash key key_equal key_compare key_hash

x

17-82 CORBAservices July 1997

17

e

be
e
The StackFactory Interface

interface StackFactory : RACollectionFactory {

Stack create (in Operations ops, in unsigned long expected_size);

};

Stack create (in Operations ops, in unsigned long expected_size);

Returns an instance of a Stack. No requirements for the element key operations to b
implemented is specified for a Stack. Nevertheless, one still has to pass an instance of
Operations as type checking information must pass to the collection implementation.

The DequeFactory Interface

interface DequeFactory : RACollectionFactory {

Deque create (in Operations ops, in unsigned long expected_size);

};

Deque create (in Operations ops, in unsigned long expected_size);

Returns an instance of a Deque. No requirements on the element key operations to
implemented is specified for a Deque. Nevertheless, one still has to pass an instanc
of Operations as type checking information must pass to the collection
implementation.

The PriorityQueueFactory Interface

interface PriorityQueueFactory : RACollectionFactory {

PriorityQueue create (in Operations ops, in unsigned long
expected_size);

};

PriorityQueue create (in Operations ops, in unsigned long expected_size);

Returns an instance of a PriorityQueue. The given instance of Operations passes
user-defined element and key-type specific information to the collection
implementation. The following table defines the requirements for the element key
operations to be implemented.

Table 17-18 Required element and key-type specific user-defined information for
PriorityQueueFactory. [] - implied by key_compare.

PriorityQueue

equal compare hash key key_equal key_compare key_hash

x [x] x
Object Collection Service: v1.0 The CosCollection Module July 1997 17-83

17

ter

 only

alue,

ment

ment
rder.

r the

in

ric
17.5.9 Iterator Interfaces

Iterators as pointer abstraction

An iterator is in a first approximation of a pointer abstraction. It is a movable poin
to elements of a collection. Iterators are tightly intertwined with collections. An
iterator cannot exist independently of a collection (i.e., the iterator life time cannot
exceed that of the collection for which it is created). A collection is the factory for its
iterators. An iterator is created for a given collection and can be used for this and
this collection.

The iterators specified in this specification form an interface hierarchy which parallels
the collection interface hierarchy. The supported iterator movements reflect the
capabilities of the corresponding collection type.

The top level Iterator interface defines a generic iterator usable for iteration over all
types of collections. It can be set to a start position for iteration and moved via a series
of forward movements through the collection visiting each element exactly once.

The OrderedIterator is supported by ordered collections only. It “knows about
ordering;" therefore, it can be moved in forward and backward direction.

The KeyIterator exploits the capabilities of key collections. It can be moved to an
element with a given key value, advanced to the next element with the same key v
or advanced to the next element with a different key value in iteration order.

The KeySortedIterator is created for key collections sorted by key. The iterator can
be advanced to the previous element with the same key value or the previous ele
with a different key value.

The EqualityIterator exploits the capabilities of equality collections. It can be moved
to an element with a given value, advanced to the next element with the same ele
value, or advanced to the next element with a different element value in iteration o

The EqualitySortedIterator is created for equality collections sorted by element
value. The iterator can be advanced to the previous element with the same value o
previous element with a different value.

Iterators and support for generic programming

Iterators go far beyond being simple “pointing devices.” There are essentially two
reasons to extend the capabilities of iterators.

1. To support the processing of very large collections which allows for delayed
instantiation or incremental query evaluation in case of very large query results.
These are scenarios where the collection itself may never exist as instantiated ma
memory collection but is processed in “finer grains” via an iterator passed to a
client.

2. To enrich the iterator with more capabilities strengthens the support for the gene
programming model, as introduced with ANSI STL to the C++ world.
17-84 CORBAservices July 1997

17

d

or

 of
re

aged

ents

 the

an
 in a
You can retrieve, replace, remove, and add elements via an iterator. You can test
iterators for equality, compare ordered iterators, clone an iterator, assign iterators, an
destroy them. Furthermore an iterator can have a const designation which is set when
created. A const iterator can be used for access only.

The reverse iterator semantics is supported. No extra interfaces are specified to
support this, but a reverse designation is set at creation time. An ordered iterator f
which the reverse designation is set reinterprets the operations of a given iterator type
to work in reverse.

Iterators and performance

To reduce network traffic, combined operations and batch or bulk operations are
offered.

Combined operations are combinations of simple iterator operations often used in
loops. These combinations support generic algorithms. For example, a typical
combination is “test whether range end is reached; if not retrieve_element, advance
iterator to next element.”

Batch or bulk operations support the retrieval, replacement, addition, and removal
many elements within one operation. In these operations, the “many elements” a
always passed as a CORBA::sequence of elements.

The Managed Iterator Model

All iterators are managed. The real benefit of being managed is that these iterators
never become undefined. Note that “undefined” is different from “invalid.” While
“invalid” is a testable state and means the iterator points to nothing, “undefined”
means you do not know where the iterator points to and cannot inquiry it. Changing
the contents of a collection by adding or deleting elements would cause an unman
iterator to become “undefined.” The iterator may still point to the same element, but it
may also point to another element or even “outside” the collection. As you do not
know the iterator state and cannot inquiry which state the iterator has, you are forced
to newly position the unmanaged iterator, for example, via a set_to_first_element().

This kind of behavior, common in collection class libraries today, seems unacceptable
in a distributed multi-user environment. Assume one client removes and adds elem
from a collection with side effects on the unmanaged iterators of another client. The
other client is not able to test whether there have been side effects on its unmanaged
iterators, but would only notice them indirectly when observing strange behavior of
application.

Managed iterators are intimately related to the collection they belong to, and thus, c
be informed about the changes taking place within the collection. They are always
defined state which allows them to be used even though elements have been added or
removed from the collection. An iterator may be in the state invalid, that is pointing to
nothing. Before it can be used it has to be set to a valid position. An iterator in the
Object Collection Service: v1.0 The CosCollection Module July 1997 17-85

17

r

ss,
s)

t, it

ns

s

it.

ion
state valid may either point to an element (and be valid for all operations on it) or it
may be in the state in-between, that is, not pointing to an element but still
“remembering" enough state to be valid for most operations on it.

A valid managed iterator remains valid as long as the element it points to remains in
the collection. As soon as the element is removed, the according managed iterato
enters a so-called in-between state. The in-between state can be viewed as a vacuum
within the collection. There is nothing the managed iterator can point to. Neverthele
managed iterators remember the next (and for ordered collection, also the previou
element in iteration order. It is possible to continue using the managed iterator (in a
set_to_next_element() for example) without resetting it first.

There are some limitations. Once a managed iterator no longer points to an elemen
remembers the iteration order in which the element stood before it was deleted.
However, it does not remember the element itself. Thus, there are some operatio
which cannot be performed even though a managed iterator is used.

Consider an iteration over a Bag, for example. If you iterate over all different element
with the iterator operation set_to_next_different_element(), then removing the
element the iterator points to leads to an undefined behavior of the collection later on.
By removing the element, the iterator becomes in-between. The
set_to_next_different_element() operation then has no chance to find the next
different element as the collection does not know what is different in terms of the
current iterator state. Likewise, for a managed iterator in the state in-between all
operations ending with “..._at” are not defined. The reason is simple: There is no
element at the iterator’s position - nothing to retrieve, to replace, or to remove in
This situation is handled by raising an exception IteratorInvalid.

Additionally, all operations that (potentially) destroy the iteration order of a collect
invalidate the corresponding managed iterators that have been in the state in-between
before the operation was invoked. These are the sort() and the reverse() operation.

The Iterator Interface

// Iterators

interface Iterator {

// moving iterators

boolean set_to_first_element ();

boolean set_to_next_element() raises (IteratorInvalid);

boolean set_to_next_nth_element (in unsigned long n) raises
(IteratorInvalid);

// retrieving elements

boolean retrieve_element (out any element) raises (IteratorInvalid,
IteratorInBetween);
17-86 CORBAservices July 1997

17
boolean retrieve_element_set_to_next (out any element, out boolean
more) raises (IteratorInvalid, IteratorInBetween);

boolean retrieve_next_n_elements (in unsigned long n, out
AnySequence result, out boolean more) raises (IteratorInvalid,
IteratorInBetween);

boolean not_equal_retrieve_element_set_to_next (in Iterator test,
out any element) raises (IteratorInvalid, IteratorInBetween);

// removing elements

void remove_element() raises (IteratorInvalid, IteratorInBetween);

boolean remove_element_set_to_next() raises (IteratorInvalid,
IteratorInBetween);

boolean remove_next_n_elements (in unsigned long n, out unsigned
long actual_number) raises (IteratorInvalid, IteratorInBetween);

boolean not_equal_remove_element_set_to_next (in Iterator test)
raises (IteratorInvalid, IteratorInBetween);

// replacing elements

void replace_element (in any element) raises (IteratorInvalid,
IteratorInBetween, ElementInvalid);

boolean replace_element_set_to_next (in any element)
raises(IteratorInvalid, IteratorInBetween, ElementInvalid);

boolean replace_next_n_elements (in AnySequence elements, out
unsigned long actual_number) raises (IteratorInvalid,
IteratorInBetween, ElementInvalid);

boolean not_equal_replace_element_set_to_next (in Iterator test, in
any element) raises(IteratorInvalid,IteratorInBetween,
ElementInvalid);

// adding elements

boolean add_element_set_iterator (in any element)raises
(ElementInvalid);

boolean add_n_elements_set_iterator (in AnySequence elements, out
unsigned long actual_number) raises (ElementInvalid);

// setting iterator state

void invalidate ();

// testing iterators

boolean is_valid ();

boolean is_in_between ();

boolean is_for(in Collection collector);

boolean is_const ();

boolean is_equal (in Iterator test) raises (IteratorInvalid);

// cloning, assigning, destroying an iterators
Object Collection Service: v1.0 The CosCollection Module July 1997 17-87

17

ates

Iterator clone ();

void assign (in Iterator from_where) raises (IteratorInvalid);

void destroy ();

};

Moving iterators

boolean set_to_first_element ();

Description

The iterator is set to the first element in iteration order of the collection it belongs
to. If the collection is empty, that is, if no first element exists, the iterator is
invalidated.

Return value

Returns true if the collection it belongs to is not empty.

boolean set_to_next_element () raises (IteratorInvalid);

Description

Sets the iterator to the next element in the collection in iteration order or invalid
the iterator if no more elements are to be visited. If the iterator is in the state in-
between, the iterator is set to its “potential next” element.

Return value

Returns true if there is a next element.

Exceptions

The iterator must be valid; otherwise, the exception IteratorInvalid is raised.

boolean set_to_next_nth_element (in unsigned long n) raises (IteratorInvalid);

Description

Sets the iterator to the element n movements away in collection iteration order or
invalidates the iterator if there is no such element. If the iterator is in the state in-
between the movement to the “potential next” element is the first of the n
movements.

Return value

 Returns true if there is such an element.
17-88 CORBAservices July 1997

17

n

e
nt is
y of
Exceptions

The iterator must be valid; otherwise, the exception IteratorInvalid is raised.

Retrieving elements

boolean retrieve_element (out any element) raises (IteratorInvalid,
IteratorInBetween);

Description

Retrieves the element pointed and returns it via the output parameter element.

Return value

Returns true if an element was retrieved.

Exceptions

The iterator must point to an element of the collection; otherwise, the exceptio
IteratorInvalid or IteratorInBetween is raised.

Note – Whether a copy of the element is returned or the element itself depends on the
element type represented by the any. If it is an object, a reference to the object in th
collection is returned. If the element type is a non-object type, a copy of the eleme
returned. In case of element type object, do not manipulate the element or the ke
the element in the collection in a way that changes the positioning property of the
element.

boolean retrieve_element_set_to_next (out any element) raises (IteratorInvalid,
IteratorInBetween);

Description

Retrieves the element pointed to and returns it via the output parameter element.
The iterator is moved to the next element in iteration order. If there is a next
element more is set to true. If there are no more next elements, the iterator is
invalidated and more is set to false.

Return value

Returns true if an element was retrieved.

Exceptions

The iterator must be valid and point to an element; otherwise, the exception
IteratorInvalid or IteratorInBetween is raised.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-89

17

here

boolean retrieve_next_n_elements (in unsigned long n, out AnySequence
result, out boolean more) raises (IteratorInvalid, IteratorInBetween);

Description

Retrieves at most the next n elements in iteration order of the iterator’s collection
and returns them as sequence of anys via the output parameter result. Counting
starts with the element the iterator points to. The iterator is moved behind the last
element retrieved. If there is an element behind the last element retrieved, more is
set to true. If there are no more elements behind the last element retrieved or t
are less than n elements for retrieval, the iterator is invalidated and more is set to
false. If the value of n is 0, all elements in the collection are retrieved until the end
is reached.

Return value

Returns true if at least one element is retrieved.

Exceptions

The iterator must be valid and point to an element; otherwise, the exception
IteratorInvalid or IteratorInBetween is raised.

boolean not_equal_retrieve_element_set_to_next (in Iterator test, out
any element) raises (IteratorInvalid, IteratorInBetween);

Description

Compares the given iterator test with this iterator.

• If they are not equal, the element pointed to by this iterator is retrieved and
returned via the output parameter element, the iterator is moved to the next
element, and true is returned.

• If they are equal, the element pointed to by this iterator is retrieved and
returned via the output parameter element, the iterator is not moved to the
next element, and false is returned.

Return value

Returns true if this iterator is not equal to the test iterator at the beginning of the
operation.

Exceptions

The iterator and the given iterator test each must be valid and point to an element;
otherwise, the exception IteratorInvalid or IteratorInBetween is raised.

Removing elements

void remove_element () raises (IteratorInvalid, IteratorInBetween);
17-90 CORBAservices July 1997

17

ehind
Description

Removes the element pointed to by this iterator and sets the iterator in-between.

Exceptions

The iterator must be valid and point to an element of the collection; otherwise, the
exception IteratorInvalid or IteratorInBetween is raised.

The iterator must not have the const designation; otherwise, the exception
IteratorInvalid is raised.

Side effects

Other valid iterators pointing to the removed element go in-between.

All other iterators keep their state.

boolean remove_element_set_to_next() (IteratorInvalid, IteratorInBetween);

Description

Removes the element pointed to by this iterator and moves the iterator to the next
element.

Return value

Returns true if a next element exists.

Exceptions

The iterator must be valid and point to an element of the collection; otherwise, the
exception IteratorInvalid is raised.

The iterator must not have the const designation; otherwise, the exception
IteratorInvalid is raised.

Side effects

Other valid iterators pointing to the removed element go in-between.

All other iterators keep their state.

boolean remove_next_n_elements (in unsigned long n, out unsigned long
actual_number) raises (IteratorInvalid, IteratorInBetween);

Description

Removes at most the next n elements in iteration order of the iterator’s collection.
Counting starts with the element the iterator points to. The iterator is moved to the
next element behind the last element removed. If there are no more elements b
the last element removed or there are less than n elements for removal, the iterator
Object Collection Service: v1.0 The CosCollection Module July 1997 17-91

17

t
is invalidated. If the value of n is 0, all elements in the collection are removed until
the end is reached. The output parameter actual_number is set to the actual
number of elements removed. If the value of n is 0, all elements in the collection
are removed until the end is reached.

Return value

Returns true if the iterator is not invalidated.

Exceptions

The iterator must be valid and point to an element; otherwise, the exception
IteratorInvalid or IteratorInBetween is raised.

The iterator must not have the const designation; otherwise, the exception
IteratorInvalid is raised.

Side effects

Other valid iterators pointing to removed elements go in-between.

All other iterators keep their state.

boolean not_equal_remove_element_set_to_next(in iterator test)
(IteratorInvalid, IteratorInBetween);

Description

Compares this iterator with the given iterator test. If they are not equal the elemen
this iterators points to is removed and the iterator is set to the next element, and
true is returned. If they are equal the element pointed to is removed, the iterator is
set in-between, and false is returned.

Return value

Returns true if this iterator and the given iterator test are not equal when the
operations starts.

Exception

This iterator and the given iterator test must be valid otherwise the exception
IteratorInvalid or IteratorInBetween is raised.

This iterator and the given iterator test must not have a const designation
otherwise the exception IteratorInvalid is raised.

Side effects

Other valid iterators pointing to removed elements go in-between.

All other iterators keep their state.
17-92 CORBAservices July 1997

17
Replacing elements

void replace_element (in any element) raises (IteratorInvalid,
IteratorInBetween, ElementInvalid);

Description

Replaces the element pointed to by the given element.

Exceptions

The iterator must be valid and point to an element; otherwise, the exception
IteratorInvalid or IteratorInBetween is raised.

The iterator must not have a const designation; otherwise, the exception
IteratorInvalid is raised.

The element must be of the expected element type; otherwise, the ElementInvalid
exception is raised.

The given element must have the same positioning property as the replaced
element; otherwise, the exception ElementInvalid is raised.

For positioning properties, see “The Collection Interface” on page 17-21.

boolean replace_element_set_to_next(in any element) raises (IteratorInvalid,
IteratorInBetween, ElementInvalid);

Description

Replaces the element pointed to by this iterator by the given element and sets the
iterator to the next element. If there are no more elements, the iterator is
invalidated.

Return value

 Returns true if there is a next element.

Exceptions

The iterator must be valid and point to an element; otherwise, the exception
IteratorInvalid or IteratorInBetween is raised.

The iterator must not have a const designation; otherwise, the exception
IteratorInvalid is raised.

The element must be of the expected element type; otherwise, the ElementInvalid
exception is raised.

The given element must have the same positioning property as the replaced
element; otherwise, the exception ElementInvalid is raised.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-93

17

 are
nts
s

in

t

is
For positioning properties, see“The Collection Interface” on page 17-21.

boolean replace_next_n_elements(in AnySequence elements, out unsigned
long actual_number) raises (IteratorInvalid, IteratorInBetween, ElementInvalid);

Description

Replaces at most as many elements in iteration order as given in elements by the
given elements. Counting starts with the element the iterator points to. If there
less elements in the collection left to be replaced than the given number of eleme
as many elements as possible are replaced and the actual number of element
replaced is returned via the output parameter actual_number.

The iterator is moved to the next element behind the last element replaced. If there
are no more elements behind the last element replaced or the number of elements
the collection to be replaced is less than the number given elements, the iterator is
invalidated.

Return value

Returns true if there is another element behind the last element replaced.

Exceptions

The iterator must be valid and point to an element; otherwise, the exception
IteratorInvalid or IteratorInBetween is raised.

The elements given must be of the expected type; otherwise, the exception
ElementInvalid is raised.

For each element the positioning property of the replaced element must be the same
as that of the element replacing it; otherwise, the exception ElementInvalid is
raised.

For positioning property see “The Collection Interface” on page 17-21.

boolean not_equal_replace_element_set_to_next (in Iterator test, in any
element) raises (IteratorInvalid,IteratorInBetween, ElementInvalid);

Description

Compares this iterator and the given iterator test. If they are not equal, the elemen
pointed to by this iterator is replaced by the given element, the iterator is set to the
next element, and true is returned. If they are equal, the element pointed to by th
iterator is replaced by the given element, the iterator is not set to the next element,
and false is returned.

Return value

Returns true if this iterator and the given iterator test are not equal before the
operations starts.
17-94 CORBAservices July 1997

17

ady

e

n
e
Exceptions

This iterator and the given iterator must be valid and point to an element each;
otherwise, the exception IteratorInvalid or IteratorInBetween is raised.

This iterator must not have a const designation; otherwise, the exception
IteratorInvalid is raised.

The element must be of the expected element type; otherwise, the ElementInvalid
exception is raised.

The given element must have the same positioning property as the replaced
element; otherwise, the exception ElementInvalid is raised.

For positioning property, see “The Collection Interface” on page 17-21.

Adding elements

boolean add_element_set_iterator (in any element) (ElementInvalid);

Description

Adds an element to the collection that this iterator points to and sets the iterator to
the added element. The exact semantics depends on the properties of the collection
for which this iterator is created.

If the collection supports unique elements or keys and the element or key is alre
contained in the collection, adding is ignored and the iterator is just set to the
element or key already contained. In sequential collections, the element is always
added as last element. In sorted collections, the element is added at a position
determined by the element or key value.

Return value

Returns true if the element was added. The element to be added must be of th
expected type; otherwise, the exception ElementInvalid is raised.

Exceptions

If the collection is a Map and contains an element with the same key as the give
element, then this element has to be equal to the given element; otherwise, th
exception ElementInvalid is raised.

Side effects

All other iterators keep their state.

void add_n_elements_set_iterator (in AnySequence elements, out unsigned
long actual_number) (ElementInvalid);
Object Collection Service: v1.0 The CosCollection Module July 1997 17-95

17

antics

r
Description

Adds the given elements to the collection that this iterator points to. The elements
are added in the order of the input sequence of elements and the delivered sem
is consistent with the semantics of the add_element_set_iterator operation. It is
essentially a sequence of add_element_set_iterator operations. The output
parameter actual_number is set to the number of elements added.

Setting iterator state

void invalidate ();

Description

Sets the iterator to the state invalid, that is, “pointing to nothing.” You may also say
that the iterator, in some sense, is set to “NULL.”

Testing iterators

Whenever there is a precondition for an iterator operation to be checked, there is a test
operation provided that enables the user to avoid raising an exception.

boolean is_valid ();

Return value

Returns true if the Iterator is valid, that is points to an element of the collection o
is in the state in-between.

boolean is_for (in Collection collector);

Return value

Returns true if this iterator can operate on the given collection.

boolean is_const ();

Return value

Returns true if this iterator is created with “const” designation.

boolean is_in_between ();

Return value

Returns true if the iterator is in the state in-between.
17-96 CORBAservices July 1997

17

ise,
boolean is_equal (in Iterator test) raises (IteratorInvalid);

Return value

Returns true if the given iterator points to the identical element as this iterator.

Exceptions

The given iterator must belong to the same collection as the iterator; otherwise, the
exception IteratorInvalid is raised.

Cloning, Assigning, Destroying iterators

Iterator clone();

Description

Creates a copy of this iterator.

void assign (in Iterator from_where) raises (IteratorInvalid)

Description

Assigns the given iterator to this iterator.

Exceptions

The given iterator must be created for the same collection as this iterator; otherw
the exception IteratorInvalid is raised.

void destroy();

Description

Destroys this iterator.

The OrderedIterator Interface

interface OrderedIterator: Iterator {

// moving iterators

boolean set_to_last_element ();

boolean set_to_previous_element() raises (IteratorInvalid);

boolean set_to_nth_previous_element(in unsigned long n) raises
(IteratorInvalid);
Object Collection Service: v1.0 The CosCollection Module July 1997 17-97

17
void set_to_position (in unsigned long position) raises
(PositionInvalid);

// computing iterator position

unsigned long position () raises (IteratorInvalid);

// retrieving elements

boolean retrieve_element_set_to_previous(out any element, out
boolean more) raises (IteratorInvalid, IteratorInBetween);

boolean retrieve_previous_n_elements (in unsigned long n, out
AnySequence result, out boolean more) raises (IteratorInvalid,
IteratorInBetween);

boolean not_equal_retrieve_element_set_to_previous (in Iterator
test, out any element) raises (IteratorInvalid, IteratorInBetween);

// removing elements

boolean remove_element_set_to_previous() raises (IteratorInvalid,
IteratorInBetween);

boolean remove_previous_n_elements (in unsigned long n, out unsigned
long actual_number) raises (IteratorInvalid, IteratorInBetween);

boolean not_equal_remove_element_set_to_previous(in Iterator test)
raises (IteratorInvalid, IteratorInBetween);

// replacing elements

boolean replace_element_set_to_previous(in any element) raises
(IteratorInvalid, IteratorInBetween, ElementInvalid);

boolean replace_previous_n_elements(in AnySequence elements, out
unsigned long actual_number) raises (IteratorInvalid,
IteratorInBetween, ElementInvalid);

boolean not_equal_replace_element_set_to_previous (in Iterator
test, in any element) raises (IteratorInvalid,IteratorInBetween,
ElementInvalid);

// testing iterators

boolean is_first ();

boolean is_last ();

boolean is_for_same (in Iterator test);

boolean is_reverse ();

};

Moving iterators

boolean set_to_last_element();
17-98 CORBAservices July 1997

17

rator

the
he

irst
Description

Sets the iterator to the last element of the collection in iteration order. If the
collection is empty (if no last element exists) the given iterator is invalidated.

Return value

Returns true if the collection is not empty.

boolean set_to_previous_element() raises (IteratorInvalid);

Description

Sets the iterator to the previous element in iteration order, or invalidates the ite
if no such element exists. If the iterator is in the state in-between, the iterator is set
to its “potential previous” element.

Return value

Returns true if a previous element exists.

Exceptions

The iterator must be valid; otherwise, the exception IteratorInvalid is raised.

boolean set_to_nth_previous_element (in unsigned long n) raises
(IteratorInvalid);

Description

Sets the iterator to the element n movements away in reverse collection iteration
order or invalidates the iterator if there is no such element. If the iterator is in
state in-between, the movement to the “potential previous” element is the first of t
n movements.

Return value

Returns true if there is such an element.

Exceptions

The iterator must be valid; otherwise, the exception IteratorInvalid is raised.

void set_to_position (in unsigned long position) raises (PositionInvalid);

Description

Sets the iterator to the element at the given position. Position 1 specifies the f
element.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-99

17

us
 is
Exceptions

Position must be a valid position (i.e., greater than or equal to 1 and less than or
equal to number_of_elements()); otherwise, the exception PositionInvalid is
raised.

Computing iterator position

unsigned long position () raises (IteratorInvalid, IteratorInBetween);

Description

Determines and returns the current position of the iterator. Position 1 specifies the
first element.

Exceptions

The iterator must be pointing to an element of the collection; otherwise, the
exception IteratorInvalid respectively IteratorInBetween is raised.

Retrieving elements

boolean retrieve_element_set_to_previous (out any element, out boolean
more) raises (IteratorInvalid, IteratorInBetween);

Description

Retrieves the element pointed to and returns it via the output parameter element.
The iterator is set to the previous element in iteration order. If there is a previo
element, more is set to true. If there are no more previous elements, the iterator
invalidated and more is set to false.

Return value

Returns true if an element was returned.

Exceptions

The iterator must be valid and point to an element; otherwise, the exception
IteratorInvalid or IteratorInBetween is raised.

boolean retrieve_previous_n_elements(in unsigned long n, out AnySequence
result, out boolean more) raises (IteratorInvalid, IteratorInBetween);
17-100 CORBAservices July 1997

17

less

t;
Description

Retrieves at most the n previous elements in iteration order of this iterator’s
collection and returns them as sequence of anys via the output parameter result.
Counting starts with the element the iterator is pointing to. The iterator is moved to
the element before the last element retrieved.

• If there is an element before the last element retrieved, more is set to true.

• If there are no more elements before the last element retrieved or there are
than n elements for retrieval, the iterator is invalidated and more is set to false.

• If the value of n is 0, all elements in the collection are retrieved until the end is
reached.

Return value

Returns true if at least one element is retrieved.

Exceptions

The iterator must be valid and pointing to an element; otherwise, the exception
IteratorInvalid or IteratorInBetween is raised.

boolean not_equal_retrieve_element_set_to_previous (in Iterator test, out any
element) raises (IteratorInvalid, IteratorInBetween);

Description

Compares the given iterator test with this iterator.

• If they are not equal, the element pointed to by this iterator is retrieved and
returned via the output parameter element, the iterator is moved to the previous
element, and true is returned.

• If they are equal, the element pointed to by this iterator is retrieved and
returned via the output parameter element, the iterator is not moved to the
previous element, and false is returned.

Return value

Returns true if this iterator is not equal to the test iterator at the beginning of the
operation.

Exceptions

The iterator and the given iterator test each must be valid and point to an elemen
otherwise, the exception IteratorInvalid or IteratorInBetween is raised.

Replacing elements

boolean replace_element_set_to_previous(in any element) raises
(IteratorInvalid, IteratorInBetween, ElementInvalid);
Object Collection Service: v1.0 The CosCollection Module July 1997 17-101

17

 is

s

placed

re no
e
r is
Description

Replaces the element pointed to by this iterator by the given element and sets the
iterator to the previous element. If there are no previous elements, the iterator
invalidated.

Return value

Returns true if there is a previous element.

Exceptions

The iterator must be valid and point to an element; otherwise, the exception
IteratorInvalid or IteratorInBetween is raised.

The iterator must not have a const designation; otherwise, the exception
IteratorInvalid is raised.

The element must be the expected element type; otherwise, the ElementInvalid
exception is raised.

The given element must have the same positioning property as the replaced
element; otherwise, the exception ElementInvalid is raised.

For positioning properties, see“The Collection Interface” on page 17-21.

boolean replace_previous_n_elements(in AnySequence elements, out
unsigned long actual_number) raises (IteratorInvalid, IteratorInBetween,
ElementInvalid);

Description

At most, replaces as many elements in reverse iteration order as given in
elements. Counting starts with the element the iterator points to. If there are les
elements in the collection left to be replaced than the given number of elements as
many elements as possible are replaced and the actual number of elements re
is returned via the output parameter actual_number.

The iterator is moved to the element before the last element replaced. If there a
more elements before the last element replaced or the number of elements in th
collection to be replaced is less than the number of given elements, the iterato
invalidated.

Return value

Returns true if there is an element before the last element replaced.

Exceptions

The iterator must be valid and point to an element; otherwise, the exception
IteratorInvalid or IteratorInBetween is raised.
17-102 CORBAservices July 1997

17

ven
The elements given must be of the expected type; otherwise, the exception
ElementInvalid is raised.

For each element the positioning property of the replaced element must be the same
as that of the element replacing it; otherwise, the exception ElementInvalid is
raised.

For positioning property, see “The Collection Interface” on page 17-21.

boolean not_equal_replace_element_set_to_previous (in Iterator test, in any
element) raises (IteratorInvalid,IteratorInBetween, ElementInvalid);

Description

Compares this iterator and the given iterator test.
• If they are not equal, the element pointed to by this iterator is replaced by the

given element, the iterator is set to the previous element, and true is returned.

• If they are equal, the element pointed to by this iterator is replaced by the gi
element, the iterator is not set to the previous element, and false is returned.

Return value

Returns true if this iterator and the given iterator test are not equal before the
operations starts.

Exceptions

This iterator and the given iterator each must be valid and point to an element;
otherwise, the exception IteratorInvalid or IteratorInBetween is raised.

This iterator must not have a const designation; otherwise, the exception
IteratorInvalid is raised.

The element must be of the expected element type; otherwise, the ElementInvalid
exception is raised.

The given element must have the same positioning property as the replaced
element; otherwise, the exception ElementInvalid is raised.

For positioning property, see “The Collection Interface” on page 17-21.

Removing elements

boolean remove_element_set_to_previous() raises (IteratorInvalid,
IteratorInBetween);

Description

Removes the element pointed to by this iterator and moves the iterator to the
previous element.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-103

17

’s

less
Return value

Returns true if a previous element exists.

Exceptions

The iterator must be valid and point to an element of the collection; otherwise, the
exception IteratorInvalid is raised.

The iterator must not have the const designation; otherwise, the exception
IteratorInvalid is raised.

Side effects

Other valid iterators pointing to the removed element go in-between.

All other iterators keep their state.

boolean remove_previous_n_elements (in unsigned long n, out unsigned long
actual_number) raises (IteratorInvalid, IteratorInBetween);

Description

Removes at most the previous n elements in reverse iteration order of the iterator
collection. Counting starts with the element the iterator points to. The iterator is
moved to the element before the last element removed.

• If there are no more elements before the last element removed or there are
than n elements for removal, the iterator is invalidated.

• If the value of n is 0, all elements in the collection are removed until the
beginning is reached. The output parameter actual_number is set to the actual
number of elements removed.

Return value

Returns true if the iterator is not invalidated.

Exceptions

The iterator must be valid and point to an element; otherwise, the exception
IteratorInvalid or IteratorInBetween is raised.

The iterator must not have the const designation; otherwise, the exception
IteratorInvalid is raised.

Side effects

Other valid iterators pointing to removed elements go in-between.

All other iterators keep their state.

boolean not_equal_remove_element_set_to_previous(in Iterator test) raises
(IteratorInvalid, IteratorInBetween);
17-104 CORBAservices July 1997

17

or is
Description

Compares this iterator with the given iterator test.

• If they are not equal, the element this iterator points to is removed, the iterat
set to the previous element, and true is returned.

• If they are equal, the element pointed to is removed, the iterator is set in-between,
and false is returned.

Return value

Returns true if this iterator and the given iterator test are equal when the operation
starts.

Exceptions

This iterator and the given iterator test must be valid; otherwise, the exception
IteratorInvalid or IteratorInBetween is raised.

This iterator and the given iterator test must not have a const designation;
otherwise, the exception IteratorInvalid is raised.

Side effects

Other valid iterators pointing to the removed element go in-between.

All other iterators keep their state.

Testing iterators

boolean is_first ();

Return value

Returns true if the iterator points to the first element of the collection it belongs to.

boolean is_last ();

Return value

Returns true if the iterator points to the last element of the collection it belongs to.

boolean is_for_same (in Iterator test);

Return value

Returns true if the given iterator is for the same collection as this.

boolean is_reverse();
Object Collection Service: v1.0 The CosCollection Module July 1997 17-105

17

l
Return value

Returns true if the iterator is created with “reverse” designation.

The SequentialIterator Interface

interface SequentialIterator : OrderedIterator {

// adding elements

boolean add_element_as_next_set_iterator (in any element)
raises(IteratorInvalid, ElementInvalid);

void add_n_elements_as_next_set_iterator(in AnySequence elements)
raises(IteratorInvalid, ElementInvalid);

boolean add_element_as_previous_set_iterator(in any element)
raises(IteratorInvalid, ElementInvalid) ;

void add_n_elements_as_previous_set_iterator(in AnySequence
elements) raises(IteratorInvalid, ElementInvalid);

};

Adding elements

boolean add_element_as_next_set_iterator (in any element)
raises(IteratorInvalid, ElementInvalid);

Description

Adds the element to the collection that this iterator points to (in iteration order)
behind the element this iterator points to and sets the iterator to the element added.
If the iterator is in the state in-between, the element is added before the “potentia
next” element.

Return value

Returns true if the element is added.

Exceptions

The iterator must be valid; otherwise, the exception IteratorInvalid is raised.

The element added must be of the expected type; otherwise, the exception
ElementInvalid is raised.

Side effects

All other iterators keep their state.

void add_n_elements_as_next_set_iterator(in AnySequence elements)
raises(IteratorInvalid, ElementInvalid);
17-106 CORBAservices July 1997

17

ial

nt

e

ial
Description

Adds the given elements to the collection that this iterator points to behind the
element the iterator points to. The behavior is the same as n times calling the
operation add_element_as_next_set_iterator().

If the iterator is in the state in-between, the elements are added before the “potent
next” element.

The elements are added in the order given in the input sequence.

boolean add_element_as_previous_set_iterator(in any element)
raises(IteratorInvalid, ElementInvalid)

Description

Adds the element to the collection that this iterator points to (in iteration order)
before the element that this iterator points to and sets the iterator to the eleme
added. If the iterator is in the state in-between, the element is added after the
“potential previous” element.

Return value

Returns true if the element is added.

Exceptions

The iterator must be valid; otherwise, the exception IteratorInvalid is raised.

The element added must be of the expected type; otherwise, the exception
ElementInvalid is raised.

Side effects

All other iterators keep their state.

void add_n_elements_as_previous_set_iterator(in AnySequence elements)
raises(IteratorInvalid, ElementInvalid);

Description

Adds the given elements to the collection that this iterator points to previous to th
element the iterator points to. The behavior is the same as n times calling the
operation add_element_as_previous_set_to_next().

If the iterator is in the state in-between, the elements are added behind the “potent
previous” element.

The elements are added in the reverse order given in the input sequence.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-107

17

 the

ts the
The KeyIterator Interface

interface KeyIterator : Iterator {

// moving the iterators

boolean set_to_element_with_key (in any key) raises(KeyInvalid);

boolean set_to_next_element_with_key (in any key)
raises(IteratorInvalid, KeyInvalid);

boolean set_to_next_element_with_different_key() raises
(IteratorInBetween, IteratorInvalid);

// retrieving the keys

boolean retrieve_key (out any key) raises (IteratorInBetween,
IteratorInvalid);

boolean retrieve_next_n_keys (out AnySequence keys) raises
(IteratorInBetween, IteratorInvalid);

};

 Moving iterators

boolean set_to_element_with_key (in any key) raises (KeyInvalid);

Description

Locates an element in the collection with the same key as the given key. Sets
iterator to the element located or invalidates the iterator if no such element exists.

If the collection contains several such elements, the first element in iteration order
is located.

Return value

Returns true if an element was found.

Exceptions

The key must be of the expected type; otherwise, the exception KeyInvalid is
raised.

boolean set_to_next_element_with_key (in any key) raises (IteratorInvalid,
KeyInvalid);

Description

Locates the next element in iteration order with the same key value as the given
key, starting search at the element next to the one pointed to by the iterator. Se
iterator to the element located.

• If there is no such element, the iterator is invalidated.
17-108 CORBAservices July 1997

17

• If the iterator is in the state in-between, locating starts at the iterator’s “potential
next” element.

Return value

Returns true if an element was found.

Exceptions

The iterator must be valid; otherwise, the exception IteratorInvalid is raised.

The key must be of the expected type; otherwise, the exception KeyInvalid is
raised.

boolean set_to_next_element_with_different_key () raises (IteratorInBetween,
IteratorInvalid)

Description

Locates the next element in iteration order with a key different from the key of the
element pointed to by the iterator, starting the search with the element next to the
one pointed to by the iterator. Sets the iterator to the located element.

If no such element exists, the iterator is invalidated.

Return value

Returns true if an element was found.

Exceptions

The iterator must be valid and point to an element; otherwise, the exception
IteratorInBetween respectively IteratorInvalid is raised.

Retrieving keys

boolean key (out any key) raises(IteratorInvalid,IteratorInBetween);

Description

Retrieves the key of the element this iterator points to and returns it via the output
parameter key.

Exceptions

The iterator must be valid and point to an element; otherwise, the exception
IteratorInvalid or IteratorInBetween is raised.

boolean retrieve_next_n_keys (in unsigned long n, out AnySequence keys)
raises(IteratorInvalid, IteratorInbetween)
Object Collection Service: v1.0 The CosCollection Module July 1997 17-109

17

rs

e
ts. If
Description

Retrieves the keys of at most the next n elements in iteration order, sets the iterato
to the element behind the last element from which a key is retrieved, and returns
them via the output parameter keys. Counting starts with the element this iterator
points to.

• If there is no element behind the last element from which a key is retrieved or
there are less then n elements to retrieve keys from the iterator is invalidated.

• If the value of n is 0, the keys of all elements in the collection are retrieved until
the end is reached.

Return value

Returns true if at least one key is retrieved.

Exceptions

The iterator must be valid and point to an element; otherwise, the exception
IteratorInvalid or IteratorInBetween is raised.

The EqualityIterator Interface

interface EqualityIterator : Iterator {

// moving the iterators

boolean set_to_element_with_value(in any element)
raises(ElementInvalid);

boolean set_to_next_element_with_value(in any element)
raises(IteratorInvalid, ElementInvalid);

boolean set_to_next_element_with_different_value() raises
(IteratorInBetween, IteratorInvalid);

};

Moving iterators

boolean set_to_element_with_value (in any element) raises(ElementInvalid);

Description

Locates an element in the collection that is equal to the given element. Sets th
iterator to the located element or invalidates the iterator if no such element exis
the collection contains several such elements, the first element in iteration order is
located.

Return value

Returns true if an element is found.
17-110 CORBAservices July 1997

17

nted
Exceptions

The element must be of the expected type; otherwise, the expected ElementInvalid
is raised.

boolean set_to_next_element_with_value(in any element) raises
(IteratorInvalid, ElementInvalid);

Description

Locates the next element in iteration order in the collection that is equal to the
given element, starting at the element next to the one pointed to by the iterator. Sets
the iterator to the located element in the collection.

• If there is no such element, the iterator is invalidated.

• If the iterator is in the state in-between, locating is started at the iterator’s
“potential next” element.

Return value

Returns true if an element was found.

Exceptions

The iterator must be valid; otherwise, the exception IteratorInvalid is raised.

The element must be of the expected type; otherwise, the exception ElementInvalid
is raised.

boolean set_to_next_different_element () raises (IteratorInvalid,
IteratorInBetween);

Description

Locates the next element in iteration order that is different from the element poi
to. Sets the iterator to the located element, or if no such element exists, the iterator
is invalidated.

Return value

Returns true if the next different element was found.

Exceptions

The iterator must be valid and point to an element of the collection; otherwise, the
exception IteratorInvalid or IteratorInBetween is raised.

The EqualityKeyIterator Interface

interface EqualityKeyIterator : EqualityIterator, KeyIterator {};
Object Collection Service: v1.0 The CosCollection Module July 1997 17-111

17

ment
This interface just combines the two interfaces EqualityIterator (see “The
EqualityIterator Interface” on page 17-110) and KeyIterator (see “The KeyIterator
Interface” on page 17-108).

The SortedIterator Interface

interface SortedIterator : OrderedIterator {};

This interface does not add any new operations but new semantics to the
operations.

The KeySortedIterator Interface

// enumeration type for specifying ranges

enum LowerBoundStyle {equal_lo, greater, greater_or_equal};

enum UpperBoundStyle {equal_up, less, less_or_equal};

interface KeySortedIterator : KeyIterator, SortedIterator

{

// moving the iterators

boolean set_to_first_element_with_key (in any key, in
LowerBoundStyle style) raises(KeyInvalid);

boolean set_to_last_element_with_key (in any key, in UpperBoundStyle
style) raises (KeyInvalid);

boolean set_to_previous_element_with_key (in any key)
raises(IteratorInvalid, KeyInvalid);

boolean set_to_previous_element_with_different_key() raises
(IteratorInBetween, IteratorInvalid);

// retrieving keys

boolean retrieve_previous_n_keys(out AnySequence keys) raises
(IteratorInBetween, IteratorInvalid);

};

Moving iterators

boolean set_to_first_element_with_key (in any key, in LowerBoundStyle style)
raises (KeyInvalid);

Description

Locates the first element in iteration order in the collection with key:

• equal to the given key, if style is equal_lo

• greater or equal to the given key, if style is greater_or_equal

• greater than the given key, if style is greater

Sets the iterator to the located element, or invalidates the iterator if no such ele
exists.
17-112 CORBAservices July 1997

17

ment

ey,

Return value

Returns true if an element was found.

Exceptions

The key must be of the expected type; otherwise, the exception KeyInvalid is
raised.

boolean set_to_last_element_with_key(in any key, in UpperBoundStyle style);

Description

Locates the last element in iteration order in the collection with key:

• equal to the given key, if style is equal_up

• less or equal to the given key, if style is less_or_equal

• less than the given key, if style is less

Sets the iterator to the located element, or invalidates the iterator if no such ele
exists.

Return value

Returns true if an element was found.

Exceptions

The key must be of the expected type; otherwise, the exception KeyInvalid is
raised.

boolean set_to_previous_element_with_key (in any key) raises(IteratorInvalid,
KeyInvalid);

Description

Locates the previous element in iteration order with a key equal to the given k
beginning at the element previous to the one pointed to and moving in reverse
iteration order through the elements. Sets the iterator to the located element, or
invalidates the iterator if no such element exists. If the iterator is in the state in-
between, the search begins at the iterator’s “potential previous” element.

Return value

Returns true if an element was found.

Exceptions

The iterator must be valid; otherwise, the exception IteratorInvalid is raised.

The key must be of the expected type; otherwise, the exception KeyInvalid is
raised.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-113

17

inted

boolean set_to_previous_element_with_different_key() raises
(IteratorInBetween, IteratorInvalid);

Description

Locates the previous element in iteration order with a key different from the key of
the element pointed to, beginning search at the element previous to the one po
to and moving in reverse iteration order through the elements. Sets the iterator to
the located element, or invalidates the iterator if no such element exists.

Return value

Returns true if an element was found.

Exceptions

The iterator must be valid and point to an element; otherwise, the exception
IteratorInBetween or IteratorInvalid is raised.

Retrieving keys

boolean retrieve_previous_n_keys (in unsigned long n, out AnySequence keys)
raises(IteratorInvalid, IteratorInbetween)

Description

Retrieves the keys of at most the previous n elements in iteration order, sets the
iterators to the element before the last element from which a key is retrieved, and
returns them via the output parameter keys. Counting starts with the element this
iterator points to.

• If there is no element previous the one from which the nth key is retrieved or if
there are less than n elements to retrieve keys from, the iterator is invalidated.

• If the value of n is 0, the keys of all elements in the collection are retrieved until
the beginning is reached.

Return value

Returns true if at least one key is retrieved.

Exceptions

The iterator must be valid and point to an element; otherwise, the exception
IteratorInvalid or IteratorInBetween is raised.

The EqualitySortedIterator Interface

interface EqualitySortedIterator : EqualityIterator, SortedIterator
{

// moving the iterator
17-114 CORBAservices July 1997

17

ment

ment
boolean set_to_first_element_with_value (in any element, in
LowerBoundStyle style) raises (ElementInvalid);

boolean set_to_last_element_with_value (in any element, in
UpperBoundStyle style) raises (ElementInvalid);

boolean set_to_previous_element_with_value (in any elementally)
raises (IteratorInvalid, ElementInvalid);

boolean set_to_previous_element_with_different_value() raises
(IteratorInBetween, IteratorInvalid);

};

Moving iterators

boolean set_to_first_element_with_value (in any element, in LowerBoundStyle
style) raises(ElementInvalid);

Description

Locates the first element in iteration order in the collection with value:

• equal to the given element value, if style is equal_lo

• greater or equal to the given element value, if style is greater_or_equal

• greater than the given element value, if style is greater

Sets the iterator to the located element, or invalidates the iterator if no such ele
exists.

Return value

Returns true if an element was found.

Exceptions

The element must be of the expected type; otherwise, the exception ElementInvalid
is raised.

boolean set_to_last_element_with_value(in any element, in UpperBoundStyle
style) raises (ElementInvalid);

Description

Locates the last element in iteration order in the collection with value:

• equal to the given element value, if style is equal_up

• less or equal to the given element value, if style is less_or_equal

• less than the given element value, if style is less

Sets the iterator to the located element, or invalidates the iterator if no such ele
exists.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-115

17

 and

ator

lue

ists.
Return value

Returns true if an element was found.

Exceptions

The element must be of the expected type; otherwise, the exception ElementInvalid
is raised.

boolean set_to_previous_element_with_value(in any element)
raises(IteratorInvalid, ElementInvalid);

Description

Locates the previous element in iteration order with a value equal to the given
element value, beginning search at the element previous to the one pointed to
moving in reverse iteration order through the elements. Sets the iterator to the
located element, or invalidates the iterator if no such element exists. If the iter
is in the state in-between, the search begins at the iterator’s “potential previous”
element.

Return value

Returns true if an element was found.

Exceptions

The iterator must be valid; otherwise, the exception IteratorInvalid is raised.

The element must be of the expected type; otherwise, the exception ElementInvalid
is raised.

boolean set_to_previous_element_with_different_value() raises
(IteratorInBetween, IteratorInvalid);

Description

Locates the previous element in iteration order with a value different from the va
of the element pointed to, beginning search at the element previous to the one
pointed to and moving in reverse iteration order through the elements. Sets the
iterator to the located element, or invalidates the iterator if no such element ex

Return value

Returns true if an element was found.

Exceptions

The iterator must be valid and point to an element; otherwise, the exception
IteratorInBetween or IteratorInvalid is raised.
17-116 CORBAservices July 1997

17

l
The EqualityKeySortedIterator Interface

interface EqualityKeySortedIterator: EqualitySortedIterator,
KeySortedIterator {};

This interface combines the interfaces KeySortedIterator and
EqualitySortedIterator. This interface does not add any new operations, but new
semantics.

The EqualitySequentialIterator Interface

interface EqualitySequentialIterator : EqualityIterator,
SequentialIterator
{

// locating elements

boolean set_to_first_element_with_value (in any element) raises
(ElementInvalid);

boolean set_to_last_element_with_value (in any element) raises
(ElementInvalid);

boolean set_to_previous_element_with_value (in any element) raises
(ElementInvalid);

};

Moving Iterators

boolean set_to__first_element_with_value (in any element)
raises(ElementInvalid);

Description

Sets the iterator to the first element in iteration order in the collection that is equa
to the given element or invalidates the iterator if no such element exists.

Return value

Returns true if an element was found.

Exceptions

The element must be of the expected type; otherwise, the exception ElementInvalid
is raised.

boolean set_to_last_element (in any element) raises(ElementInvalid);

Description

Sets the iterator to the last element in iteration order in the collection that is equal
to the given element or invalidates the iterator if no such element exists.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-117

17

iven

Return value

Returns true if an element was found.

Exceptions

The element must be of the expected type; otherwise, the exception ElementInvalid
is raised.

boolean set_to_previous_element_with_value (in any element) raises
(IteratorInvalid, ElementInvalid);

Description

Sets the iterator to the previous element in iteration order that is equal to the g
element, beginning search at the element previous to the one specified by the
iterator and moving in reverse iteration order through the elements. Sets the iterator
to the located element or invalidates the iterator if no such element exists. If the
iterator is in the state in-between, search starts at the “potential precious” element.

Return value

Returns true if an element was found.

Exceptions

The iterator must be valid; otherwise, the exception IteratorInvalid is raised.

The element must be of the expected type; otherwise, the exception ElementInvalid
is raised.

17.5.10 Function Interfaces

The Operations Interface

Interface Operations {

// element type specific information

readonly attribute CORBA::TypeCode element_type;

boolean check_element_type (in any element);

boolean equal (in any element1, in any element2);

long compare (in any element1, in any element2);

unsigned long hash (in any element, in unsigned long value);

// key retrieval

any key (in any element);

// key type specific information
17-118 CORBAservices July 1997

17

.

t or

a

age
readonly attribute CORBA::TypeCode key_type;

boolean check_key_type (in any key);

boolean key_equal (in any key1, in any key2);

long key_compare (in any key1, in any key2);

unsigned long key_hash (in any thisKey, in unsigned long value);

// destroying

void destroy();

};

The function interface Operations is used to pass a number of other user-
defined element type specific information to the collection implementation.

The first kind of element type specific information passed is used for typechecking.
There are attributes specifying the element and key type expected in a given collection
In addition to the type information there are two typechecking operations which allow
customizing the typechecking in a user-defined manner. The “default semantics” of
these operations is a simple check on whether the type code of the given elemen
key exactly matches the type code specified in the element key type attribute.

Dependent on the properties as represented by a collection interface the respective
implementation relies on some element type specific or key type specific information
to be passed to it. For example one has to pass the information “element comparison”
to implementation of a SortedSet or “key equality” to the implementation of a
KeySet to guarantee uniqueness of keys. To pass this information, the Operations
interface is used.

The third use of this interface is to pass element or key type specific
information relevant for different categories of implementations. (Performing)
implementations of associative collections essentially can be partitioned into the
categories comparison-based or hashing-based. An AVL-tree implementation for
KeySet (for example) is key-comparison-based; therefore, it relies on key comparison
defined and a hash table implementation of KeySet hashing-based (which relies on the
information how a hash key values). Passing this information is the third kind of us
of the Operations interface.

The operations defined in the Operations interface are in summary:

• element type checking and key type checking

• element equality and the ordering relationship on elements

• key equality and ordering relationship on keys

• key access

• hash information on elements and keys
Object Collection Service: v1.0 The CosCollection Module July 1997 17-119

17

t

t

ed
In order to pass this information to the collection, a user has to derive and implement
an interface from the interface Operations. Which operations you have to implemen
depends on the collection interface and the implementation category you want to use.
An instance of this interface is passed to a collection at creation time and then can be
used by the implementation.

Ownership for an Operations instance is passed to the collection at creation
time. That is, the same instance of Operations respectively a derived interface canno
be used in another collection instance. The collection is responsible for destroying the
Operations instance when the collection is destroyed.

Operations only defines an abstract interface. Specialization and implementation are
part of the application development as is the definition and implementation of
respective factories and are not listed in this specification.

Element type specific operations

readonly attribute CORBA::TypeCode element_type;

Description

Specifies the type of the element to be collected.

boolean check_element_type (in any element);

Description

A collection implementation may rely on this operation being defined to use it
for its type checking. A default implementation may be a simple test whether
the type code of the given element exactly matches element_type. For object
references, sometimes a check on equality of the type codes is not desired but a
check on whether the type of the given element is a specialization of the
element_type.

Return value

Returns true if the given element passed the user-defined element type-
checking.

boolean equal (in any element1, in any element2);

Return value

Returns true if element1 is equal to element2 with respect to the user-defined
semantics of element equality.

Note – If case compare is defined, the equal operation has to be consistently defin
(i.e., is implied by the defined element comparison).
17-120 CORBAservices July 1997

17

less
long compare (in any element1, in any element2);

Return value

Returns a value less than zero if element1 < element2, zero if the values are
equal, and a value greater than zero if element1 > element2 with respect to the
user-defined ordering relationship on elements.

unsigned long hash (in any element, in unsigned long value);

Return value

Returns a user-defined hash value for the given element. The given value specifies
the size of the hashtable. This information can be used for the implementation of
more or less sophisticated hash functions. Computed hash values have to be
than value.

Note – The definition of the hash function has to be consistent with the defined
element equality (i.e., if two elements are equal with respect to the user-defined
element equality they have to be hashed to the same hash value).

Computing the key

any key (in any element);

Description

Computes the (user-defined) key of the given element.

Key type specific information

readonly attribute CORBA::TypeCode key_type;

Description

Specifies the type of the key of the elements to be collected.

boolean check_key_type (in any key);

Return value

Returns true if the given key passed the user-defined element type-checking.

boolean key_equal (in any key1, in any key2);
Object Collection Service: v1.0 The CosCollection Module July 1997 17-121

17

f

at

an

y
t
Return value

Returns true if key1 is equal to key2 with respect to the user-defined semantics o
key equality.

Note – If case key_compare is defined, the key_equal operation has to be
consistently defined (i.e., is implied by the defined key comparison). When both key
and element equality are defined, the definitions have to be consistent in the sense th
element equality has to imply key equality.

key_compare (in any key1, in any key2);

Return value

Returns a value less than zero if key1 < key2, zero if the values are equal, and a
value greater than zero if key1 > key2 with respect to the user-defined ordering
relationship on keys.

unsigned long key_hash (in any key, in unsigned long value);

Return value

Returns a user defined hash value for the given key. The given value specifies the
size of the hashtable. This information can be used for the implementation of more
or less sophisticated hash functions. Computed hash values have to be less th
value.

Note – The definition of the hash function has to be consistent with the defined ke
equality (i.e., if two elements are equal with respected to the user defined elemen
equality they have to be hashed to the same hash value).

Destroying the Operations instance

void destroy();

Destroys the operations instance.

The Command and Comparator Interface

Command and Comparator are auxiliary interfaces.
17-122 CORBAservices July 1997

17
A collection service provider may either provide the interfaces only or a default
implementation that raises an exception whenever an operation of these interfaces is
called. In either case, a user is forced to provide his/her implementation of either the
interfaces or a derived interface to make use of them in the operations
all_elements_do, and sort.

The Command Interface

An instance of an interface derived from Command is passed to the operation
all_elements_do to be applied to all elements of the collection.

interface Command {

boolean do_on (in any element);

};

The Comparator Interface

An instance of a user defined interface derived from Comparator is
passed to the operation sort as sorting criteria.

interface Comparator {

long compare (in any element1, in any element2);

};

The compare operation of the user’s comparator (interface derived from
Comparator) must return a result according to the following rules:

>0 if (element1 > element2)

 0 if (element1 = element2)

<0 if (element1 < element2)
Object Collection Service: v1.0 The CosCollection Module July 1997 17-123

17

ery

the

s

e fact
 is

e
 Appendix A OMG Object Query Service

 A.1 Object Query Service Differences

Identification and Justification of Differences

The relationship between the Object Collection Service (OCS) and the Object Qu
Service (OQS) is two-fold. The Object Query Service uses collections as query result
and as scope of query evaluation.

The get_result operation of CosQuery::Query for example and the evaluate
operation of CosQuery::QueryEvaluator may return a collection as result or may
return an iterator to the query result.

There may be a QueryEvaluator implementation that takes a collection instance
passed as input parameter to evaluate a query on this collection which specifies
scope of evaluation. The query evaluator implementation relies on the Collection
interface and the generic Iterator being supported by the collection passed.

A CosQuery::QueryableCollection is a special case of query evaluator which allow
a collection to serve directly as the scope to which a query may be applied. As
QueryableCollection is derived from Collection a respective instance can serve to
collect a query result to which further query evaluation is applied.

Both usages of collections - as query result and as scope of evaluation - rely on th
that a minimum collection interface representing a generic aggregation capability
supported as a common root for all collections. Further, they rely on a generic iterator
that can be used on collections independent of their type.

Summarizing, Object Query Service essentially depends on a generic collection servic
matching some minimal requirements. As Object Query Service was defined when
there was not yet any Object Collection Service specification available a generic
collection service was defined as part of the Query Service specification.

The CosQueryCollection module defines three interfaces:

• CollectionFactory: provides a generic creation capability

• Collection: defines a generic aggregation capability

• Iterator: offers a minimal interface to traverse a collection.

Those interfaces specify the minimal requirements of OQS to a generic collection
service. The following discusses whether it is possible to replace CosQueryCollection
module by respective interfaces in the CosCollection module as defined in this
specification. Differences are identified and justified.

In anticipation of the details given in the next paragraph we can summarize:
17-124 CORBAservices July 1997

17

n

ified

t

ss,

e.

tion
• The CosCollection::Collection top level collection interface matches the
CosQueryCollection::Collection interface except for minor differences.
Collections as defined in the CosCollection module can be used with Query
Service.

• The CosCollection::Collection top level collection interface proposes an operatio
which one may consider as an overlap with the Object Query Service function. The
operation all_elements_do which can be considered a special case of query
evaluation.

• The CosCollection::Iterator top level iterator interface is consistent with
CosQueryCollection::Iterator interface in the sense that operations defined in
CosQueryCollecton::Iterator are supported in CosCollection::Iterator. In
addition a managed iterator semantics is defined which is reflected in the spec
side effects on iterators for modifying collection operations. This differs from the
iterator semantics defined in the Object Query Service specification but is
considered a requirement in a distributed environment.

• There are a number of operations in the CosCollection::Iterator interface you do
not find in the CosQueryCollection::Iterator interface. They are defined in the
CosCollection::Iterator interface to provide support for performing distributed
processing of very large collections and to support the generic programming model
as introduced with ANSI STL to the C++ world.

• The restricted access collections which are part of this proposal do not inherit from
the top level CosCollection::Collection interface. They cannot be used with Objec
Query Service as they are. But this is in the inherent nature of the restricted access
semantics of these collections and is not considered to be a problem. Neverthele
the interfaces of the restricted access collections allow combining them with the
collections of the combined property collections hierarchy via multiple inheritance
to enable usage of restricted access collections within the Object Query ServicIn
doing so, the restricted access collections lose the guarantee for restricted access,
but only support interfaces offering the commonly used operation names for
convenience.

• The CosQueryCollection::CollectionFactory defines the exact same interface as
CosCollection::CollectionFactory.

Replacing the interfaces defined in the Object Query Service CosQuery::Collection
module by the respective interface defined in this specification, the Object Collec
Service enables the following inheritance relationship:
Object Collection Service: v1.0 The CosCollection Module July 1997 17-125

17

 the
Figure 17-4 Inheritance Relationships

A detailed comparison of the interfaces is given in the following sections and is
outlined along the CosQueryCollection module definitions.

CosQueryCollection Module Detailed Comparison

Exception Definitions

The following mapping of exceptions holds true:

• CosQueryCollection::ElementInvalid maps to CosCollection::ElementInvalid

• CosQueryCollection::IteratorInvalid maps to CosCollection::IteratorInvalid
(with IteratorInvalidReason not_for_collection)

• CosQueryCollection::PositionInvalid maps to CosCollection::IteratorInvalid
(with IteratorInvalidReason is_invalid) and CosCollection::IteratorInBetween

Type Definitions

There are a number of type definitions in the CosQueryCollection module for the
mapping of SQL data types and for defining the type Record. These types are Object
Query Service specific; therefore, they are not part of the Object Collection Service
defined in this specification. Object Query Service may move these definitions to
CosQuery module.

OCS

Collection

OQS
Queryable
Collection

OCS Collection
Any

Any
Queryable

OCS Collection
17-126 CORBAservices July 1997

17

s

this

face
pe
CollectionFactory Interface

The CosQueryCollection::CollectionFactory interface defines the same interface a
CosCollection::CollectionFactory and with it the same generic creation capability.

While the generic create operations of CosQueryCollection::CollectionFactory do
not raise any exceptions, the respective operation in the
CosCollection::CollectionFactory raises exception “ParameterInvalid.”

Collection Interface

The CosQueryCollection::Collection interface defines a basic collection interface,
without restricting specializations to any particular type such as equality collections or
ordered collections.

Collection Element Type

The element type of Object Query Service collections is a CORBA any to meet the
general requirement that collections have to be able to collect elements of arbitrary
type. The same holds true for the proposed Object Collection Service defined in
specification.

Using the CORBA any as element type implies the loss of compile time type
checking. The Object Collection Service as defined here-in considers support for run-
time type checking as important; therefore, it offers respective support. In the inter
Collection this is reflected by introducing a read-only attribute “element_type” of ty
TypeCode which enables a client to inquiry the element type expected.

This differs from Object Query Service collections which do not define any type
checking specific support.

Collection Attributes

The following attribute is defined in the OQS Collection interface:

cardinality

This read-only attribute maps to the operation number_of_elements() in
CosCollection::Collection. This is semantically equivalent. The name of the
operation was chosen consistently with the overall naming scheme of the Collection
Service.

Collection Operations

The following operations are defined in the Object Query Service Collection interface.

void add_element (in any element) raises (ElementInvalid)

This operation maps - except for side effects on iterators due to managed iterator
semantics - to

boolean add_element(in any element) raises (ElementInvalid)
Object Collection Service: v1.0 The CosCollection Module July 1997 17-127

17

void add_all_elements (in Collection elements) raises (ElementInvalid)

This operation maps - except for side effects on iterators due to managed iterator
semantics - to

void add_all_from (in Collection collector) raises (ElementInvalid).

void insert_element_at (in any element, in Iterator where) raises
(IteratorInvalid, ElementInvalid)

This operation maps - except for side effects on iterators due to managed iterator
semantics - to

boolean add_element_set_iterator(in any element, in Iterator where) raises
(IteratorInvalid, ElementInvalid).

void replace_element_at (in any element, in Iterator where) raises
(IteratorInvalid, PositionInvalid, ElementInvalid);

This operations maps to

void replace_element_at (in Iterator where, in any element) raises
(IteratorInvalid, IteratorInBetween,ElementInvalid).

void remove_element_at (in Iterator where) raises (IteratorInvalid,
PositionInvalid)

This operation maps - except for side effects on iterators due to managed iterator
semantics - to

void remove_element_at (in Iterator where) raises (IteratorInvalid,
IteratorInBetween).

void remove_all_elements ()

This operation maps - except for side effects on iterators due to managed iterator
semantics - to

unsigned long remove_all ().
17-128 CORBAservices July 1997

17

d

in

 that

rt

d to
any retrieve_element_at (in Iterator where) raises (IteratorInvalid,
PositionInvalid)

This operation maps to

boolean retrieve_element_at (in Iterator where, out any element) raises
(IteratorInvalid, IteratorInBetween).

Iterator create_iterator ()

This operation maps to

Iterator create_iterator (in boolean read_only).

The parameter “read_only“ parameter is used to support const iterators. This is
introduced to support the iterator centric ANSI STL like programming model.

Where different operation names are used in the Object Collection Service defined
here-in this is done to maintain consistency with the Collection Service overall naming
scheme.

Side effects to iterators specified differ from those specified in the Query Service
collection module as the Object Collection Service defined here-in specifies a manage
iterator model which we consider necessary in a distributed environment. For more
details in the managed iterator semantics see chapter “Iterator Interfaces.”

The top-level CosCollection::Collection interface proposes all the methods defined
CosQueryCollection::Collection. There are some few additional operations defined
in CosCollection::Collection:

boolean is_empty()

This operation is provided as there are collection operations with the precondition
the collection must not be empty. To avoid an exception, the user should have the
capability to test whether the collection is empty.

void destroy()

This operation is defined for destroying a collection instance without having to suppo
the complete LifeCycleObject interface.

void all_elements_do(in Command command)

This operation is added for convenience; however, it seems to be an overlap with OQS
functionality. This frequently used trivial query should be part of the collection service
itself. A typical usage of this operation may be, for example, iterating over the
collection to print all element values. Note that the Command functionality is very
restricted to enable an efficient implementation. That is, the command is not allowe
change the positioning property of the element applied to and must not remove the
element.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-129

17

and

r

f
Iterator Interface

The CosQueryCollection::Iterator corresponds to CosCollection::Iterator.
CosCollection::Iterator is supported for all collection interfaces of the Object
Collection Service derived from Collection. The Object Collection Service iterator
interfaces defined in this specification are designed to support an iterator centric
generic programming model as introduced with ANSI STL. This implies very powerful
iterators which go far beyond simple pointing devices as one needs to be able to
retrieve, add, remove elements from/to a collection via an iterator. In addition iterato
interfaces are enriched with bulk and combined operations to enable an efficient
processing of collections in distributed scenarios. Subsequently, the
CosCollection::Iterator is much more powerful than the
CosQueryCollection::Iterator.

Iterator Operations

The following operations are defined in the CosQueryCollection::Iterator interface:

• any next () raises (IteratorInvalid, PositionInvalid)

This operation maps to

boolean retrieve_element_set_to_next (out any element) raises (IteratorInvalid,
IteratorInBetween)

• void reset ()

This operation maps to

boolean set_to_first_element() of the Object Collection Service Iterator interface.

• boolean more ()

This operation maps to

boolean is_valid() && ! is_inbetween()

Due to the support for iterator centric and generic programming there are number o
additional operations in the CosCollection::Iterator interface:

• set_to_next_element, set_to_next_nth_element

• retrieve_element, retrieve_next_n_elements,
not_equal_retrieve_element_set_to_next

• remove_element, remove_element_set_to_next, remove_next_n_elements,
not_equal_remove_element_set_to_next

• replace_element, replace_element_set_to_next, replace_next_n_elements,
not_equal_replace_element_set_to_next

• add_element_set_iterator, add_n_elements_set_iterator

• invalidate

• is_in_between, is_for, is_const, is_equal

• clone, assign, destroy
17-130 CORBAservices July 1997

17

t

or

es.

n

s in

ct

rvice

its

,

g
e

ink

e
r that
Most of the operations can be implemented as combinations of other basic iterator
operations so that the burden put on Object Query Service providers who implemen
such an interface should not be too high.

 A.2 Other OMG Object Services Defining Collections

There are several object services that define collections, that is Naming Service,
Property Service, and the OMG RFC "System Management: Common Management
Facility, Volume 1" submission, for example.

These services define very application specific collections. The Naming Service f
example defines the interface NamingContext or the Property Service an interface
PropertySet. Both are very application specific collections and may be implemented
using the Object Collection Service probably wrappering an appropriate Object
Collection Service collection rather than specializing one of those collection interfac

The collections defined in the System Management RFC form a generic collectio
service. But the service defines collection members that need to maintain back
references to collections in which they are contained to avoid dangling reference
collections. This was considered as inappropriate heavyweight for a general object
collection service. The collections in the System Management RFC may use Obje
Collection Service collections for their implementation up to some extent even reuse
interfaces.

 A.3 OMG Persistent Object Services

Collections as persistent objects in the sense defined by the Persistent Object Se

• may support the CosPersistencePO::PO interface. This interface enables a client
being aware of the persistent state to explicitly control the PO’s relationship with
persistent data (connect/disconnect/store/restore)

• may support the CosPersistence::SD interface which allows objects to synchronize
their transient and persistent data

• have to support one of protocols used to get persistent data in and out of an object
like DA, ODMG, or DDO.

Support for these interfaces does not effect the collection interface.

Persistent queryable collections may request index support for collections. “Indexin
of collections” enables to exploit underlying indices for efficient query evaluation. W
do not consider “indexed collections” as part of the Object Collection Service but th
that indexing support can be achieved via composing collections defined in the Object
Collection Service proposed.

 A.4 OMG Object Concurrency Service

Any implementation of the Object Collection Service probably will have to implement
concurrency support. But we did not define any explicit concurrency support in th
collection interfaces as part of the Object Collection Service because we conside
Object Collection Service: v1.0 The CosCollection Module July 1997 17-131

17

low
as an implementation issue that can be solved by specialization. This also would al
to reuse the respective interfaces of the Object Concurrency Service rather than
introducing a collection specific support for concurrency.
17-132 CORBAservices July 1997

17

s
ms

iners

 of

.

ers a

t

 of
 Appendix B Relationship to Other Relevant Standards

 B.1 ANSI Standard Template Library

The ISO/ANSI C++ standard, as defined by ANSI X3J16 and OSI WG21, contain
three sections defining the Containers library, the Iterators library and the Algorith
library, which form the main part of the Standard Template L ibrary. Each section
describes in detail the class structure, mandatory methods and performance
requirements.

Containers

The standard describes two kinds of container template classes, sequence conta
and so called associative containers. There is no inheritance structure relating the
container classes.

Sequence containers organize the elements of a collection in a strictly linear
arrangement. The following sequence containers are defined

• vector: Is a generalization of the concept of an ordinary C++ array the size of
which can be dynamically changed. It’s an indexed data structure, which allows
fast, that is, constant time random access to its elements. Insertion and deletion
an element at the end of a vector can be done in constant time. Insertion and
deletion of an element in the middle of the data structure may take linear time

• deque: Like a vector it is an indexed structure of varying size, allowing fast, that
is, constant time random access to its elements. In addition to what a vector off
deque also offers constant time insertion and deletion of an element at the
beginning.

• list: Is a sequence of varying size. Insertion and deletion of an element at any
position can be done in constant time. But only linear-time access to an element a
an arbitrary position is offered.

Associative containers provide the capability for fast, O(log n), retrieval of elements
from the collections by “contents”, that is, key value. The following associative
containers are provided:

• set: Is a collection of unique elements which supports fast access, O(log n), to
elements by element value.

• multiset: Allows multiple occurrences of the same element and supports fast access,
O(log n), to elements by value.

• map: Is a collection of (key, value) pairs which supports unique keys.It is an
indexed data structure which offers fast, O(log n), access to values by key.

• multimap: Is a collection of (key, value) pairs which allows multiple occurrences
the same key.

Container adapters are the well known containers with restricted access, that is:

• stack
Object Collection Service: v1.0 The CosCollection Module July 1997 17-133

17

e

SI

one

er
• queue

• priority_queue

As roughly sketched ANSI STL specifies performance requirements for container
operations. Those enforce up to some extent the kind of implementation. If you look at
the performance requirements for vector, deque and list they correspond to array and
list like implementations.

This differs from what the here-in discussed Object Collection Service proposes. The
collection classes vector, deque, and list all map to the same interface Sequence. The
different performance profiles are delivered via the implementation choice.

Algorithms

Different from other container libraries ANSI STL containers offer a very limited set
of operations at the containers themselves. Instead, all higher level operations lik
union, find, sort, and so on are offered as so called generic algorithms. A generic
algorithm is a global template function that operates on all containers - supporting the
appropriate type of iterator. There are approximately 50 algorithms offered in AN
STL.

There are:

• non-mutating sequence algorithms

• mutating sequence algorithms

• sorting and related algorithms

• generalized numeric algorithms

The basic concept here is the separation of data structures and algorithms. Instead of
implementing an algorithm for each container in the library you provide a generic
operating on all containers.

If one implements a new container and ensures that an appropriate iterator type is
supported one gets the respective algorithms “for free”. One may also implement new
generic algorithms working on iterators only which will apply to all containers
supporting the iterator type.

In addition, because the algorithms are coded as C++ global template functions,
reduction of library and executable size is achieved (selective binding).

Iterators

The key concept in ANSI STL that enables flexibility of STL are Iterator classes.
Iterator classes in ANSI STL are C++ pointer abstractions. They allow iteration ov
the elements of a container.
17-134 CORBAservices July 1997

17

he
re

ass

n

ic

ry
s via

eneric
Their design ensures, that all template algorithms work not only on containers in the
library but also on built-in C++ data type array. Algorithms work on iterators rather
then on the containers themselves. An algorithms does not even “know” whether it is
working with an ordinary C++ pointer or an iterator created for a container of the
library.

There are:

• input iterator, output iterator

• forward iterator

• bidirectional iterator

• random access iterator

• const, reverse, insert iterators

Consideration on choice

The collection class concept as defined by the ANSI standard is designed for optimal,
local use within programs written in C++. In some sense they are extensions of t
language and heavily exploit C++ language features. No considerations, of course, a
given to distribution of objects or language neutrality.

Some of the advantages clearly visible in a local C++ environment cannot be carried
over into a distributed and language neutral environment. Some of them are even
counterproductive.

In summary, the following list of issues are the reason why the ANSI collection cl
standard has not been considered as a basis for this proposal:

• Aiming with its design at high performance and small code size of C++
applications ANSI STL seems to have avoided inheritance and virtual
functions. As no inheritance is defined, polymorphic use of the defined collectio
classes is not possible.

• The ANSI STL programming model of generic programming is very C++ specif
one. ANSI STL containers, iterators, and algorithms are designed as C++ language
extension. Containers are smooths extensions of the built-in data type array and
iterators are smooth extensions of ordinary C++ pointers. Container in the libra
are processed by generic algorithms via iterators in the same way as C++ array
ordinary pointers. Rather then subclassing and adding operations to a container one
extends a container by writing a new generic algorithm. This is a programming
model just introduced to the C++ world with ANSI STL and for sure not the
programming model Smalltalk programmers are used to.

• As a consequence of the separation of data structures and algorithms containers in
ANSI STL up to some extent expose implementation. As an
example consider the two sequential containers list and vector. The
algorithms sort and merge are methods of the list container. vector
on the other hand can support efficient random access and therefore use the g
Object Collection Service: v1.0 The CosCollection Module July 1997 17-135

17

d
sed.

 is

r
ry

ch

an

algorithms sort and merge. Subsequently you do not find them as methods in the
vector interface. This requires rework of clients when server implementations
changes from list to vector or deque because of changing access patterns.

• The IDL concept has no notion of global (template) functions. The only conceivable
way to organize the algorithms is by collecting them in artificial algorithm
object(s). The selective binding advantage is lost in a CORBA environment an
careful placement of the algorithm object(s) near the collection must be exerci

• In the ANSI STL approach the reliance on generic programming as algorithms
substantial. We believe that this concept is not scalable. It is difficult to imagine a
generic sort in a CORBA environment is effective without the knowledge of
underlying data structures. Each access to a container has to go via an iterato
mediated somehow by the underlying request broker, which is not a satisfacto
situation.Object Collection Services will be used in an wide variety of
environments, ranging from simple telephone lists up to complex large stores using
multiple indices, exhibiting persistent behavior and concurrently accessed via
Object Query Service. We do not believe that generic algorithms scale up in su
environments.

 B.1.1 ODMG-93

Release 1.1 of the ODMG specification defines a set of collection templates and
iterator template class.

An abstract base class Collection<T> is defined from which all concrete collections
classes are derived. The concrete collection classes supported are Set<T>, Bag<T>,
List<T>, Varray<T>. In addition an Iterator class Iterator<T> is defined for iteration
over the elements of the collection.

Set and Bag are unordered collections and Bag allows multiples. List is an ordered
collection that allows multiples. The Varray<T> is a one dimensional array of varying
length.

Collection<T> offers the test empty() and allows to ask for the current number of
elements, cardinality(). Further the tests is_ordered() and allows_duplicates() are
offered.There is a test on whether an element is contained in a given collection.
Operations for insertion, insert_element(), and removal, remove_element() are
provided. Last not least there is a remove_all() operation.

Each of the derived classes provides an operator== and an operator!= and an
operation create_iterator().

A Set<T> is derived from Collection<T> and offers in addition operations
is_subset_off(), is_proper_subset_of(), is_superset_of(), or is
proper_superset_of() a suite of set-theoretical operations to form the union,
difference, intersection of two sets.

A Bag<T> offers the same interface as Set<T> but allows multiples.
17-136 CORBAservices July 1997

17

.

e

med

 the
A List<T> offers specific operations to retrieve or remove the first respectively last
element in the list or to insert an element as first respectively last element. Retrieving,
removing, and replacing an element at a given position is supported. Inserting an
element before or after a given position is possible.

Varray<T> exposes the characteristics of a one dimensional array of varying length
An array can be explicitly re-sized. The operator[] is supported. The operations to
find, remove, retrieve, and replace an element at a given position are supported.

An instance Iterator<T> is created to iterate over a given collection.The operator=
and operator == are defined. There is a reset() operation moving an iterator to the
beginning of the collection. There is an operation advance() and overloaded the
operator++ to move the iterator to the next element. Retrieving and replacing the
element currently “pointed to” is possible. A check on whether iteration is not yet
finished is offered, not_done().For convenience in iteration there is an operation
next(), combining “check end of iteration, retrieval of an element, and moving to the
next element”.

ODMG-93 structure is very similar to the proposed Object Collections Service.
ODMG-93 Set <T> and Bag<T> correspond very well to Set and Bag as defined
herein. List<T> maps one-to-one to an EqualitySequence. A Varray<T> maps to an
EqualitySequence too. That the interfaces List<T> and Varray <T> map to the sam
interface in the Object Collection Service proposed reflects that List<T> and
Varray<T> somehow expose the underlying kind of implementation structure assu
- namely a list like structure respectively a table like structure. In the Object Collection
Service proposed the different kinds of implementation of a sequence like interface are
not reflected in the interface but only in the delivered performance profile. This is
reason why List<T> and Varrary<T> map to the same interface EqualitySequence.
The Iterator interface maps to the top level Iterator interface of the iterator hierarchy
of the Object Collection Service.

In summary the Object Collection Service proposed is a superset of the ODMG-93
proposed collections and iterators.
Object Collection Service: v1.0 The CosCollection Module July 1997 17-137

17
 Appendix C References

 C.1 List of References

OMG, CORBAservices: Common Object Services Specification, Volume 1, March
1996.
17-138 CORBAservices July 1997

Index
A
abort

see rollback
absolute_time14-9
Abstract Collection Interfaces17-21
Abstract interface hierarchy17-4
Abstract Interfaces16-28
Abstract RestrictedAccessCollection Interface17-65
Access by key17-3
Access Control15-109
access control15-3
Access Control Interceptor15-152
Access Control Model15-19
Access Decision Object15-158
Access Decision Policies15-160
Access Decision Time15-152
access identity15-14
Access Policies15-20, 15-127
Access Policies Supported by This Specification15-22
AccessDecision Use of AccessPolicy and RequiredRights15-132
accountability15-2
Add Type Operation16-63
Add_Link Operation16-51
Additional ObjectID 16-4
adjudication15-69
Admin Interface16-70
Administering Security Policy15-109
Administration of security information15-3
Administration of Time14-19
administrative interfaces15-49
Administrative Model15-69
Administrator’s Interfaces15-121
Administrator’s View 15-42
AlreadyBound3-9, 3-11
ANSI Standard Template Library17-133
Application Access Policies15-61
Application Access Policy15-20
application access policy15-19
Application Activities 15-62
application audit policies15-22
Application Components15-45
Application Developer View15-42
Application Developer’s Interfaces15-82
Application Interfaces - Security Functionality Level 115-198
Application Interfaces - Security Functionality Level 215-198
Application Interfaces for Non-repudiation15-203
application objectxlii, 4-1
Asymmetric key technology15-37
atomicity 10-49, 10-52, 10-57

glossary definition10-85
Attribute status14-16
Attributes and Set Operations16-48
Audit Administration Interfaces15-136
Audit Channel Objects15-160
Audit Decision Objects15-159
Audit Event Families and Types15-211
audit identity 15-14
audit objects15-159
Audit Policies 15-136
Audit Services15-161
audit_channel15-108

audit_needed15-107
audit_write 15-108
Auditing 15-22
Auditing Application Activities 15-62
authenticate15-91
authentication15-3
Authentication of principals15-90
Authorization 15-3
authorization_service Field15-185
availability 15-2

B
Bag Interface17-62
Bag, SortedBag17-10
BagFactory Interface17-77
Basic Time Service14-4
Bind Time 15-152
Bind Time - Client Side15-150
Bind Time - Target Side15-151
Binding 15-216
binding 15-47
Binding and Interceptor15-217
Binding Handle15-191
BindingIterator interface3-12

next_n operation3-12
next_one operation3-12

Bindings and Object Reference15-46
Bridges 15-168

C
callback interface

described2-4
call-back object8-25
cancel_timer14-16
CannotProceed3-10
Changes to Support the Current Pseudo-Object15-226
CLI 5-34
Client and Target Invoke15-220
Client Side15-172
ClientSecureInvocation15-139
Client-Target Binding15-216
Collectible elements and the operations interface17-7
Collectible elements and type safety17-7
Collectible elements of key collections17-8
collection 11-4, 11-10

model 11-12
Collection factories17-2, 17-5
Collection Factory Interfaces17-70
Collection Interface17-21
Collection interface11-14

add_all_elements operation11-17
add_element operation11-16
create_iterator operation11-18
insert_element_at operation11-17
remove_all_elements11-18
remove_element_at operation11-17
replace_element_at operation11-17
retrieve_element_at operation11-18

Collection Interface Hierarchies17-15
Collection interfaces17-2
CollectionFactory and CollectionFactories Interfaces17-71
CORBAservices November 1997 Index-1

Index
CollectionFactory interface11-14
Collections 17-2
Combined Collections17-10
combined privileges delegation15-28
Command and Comparator Interface17-122
Common collection types17-2
Common Facilities15-230
common facilitiesxlii
compare_time14-10
Complete evidence15-65
Component Protection15-50
Components15-185
composite delegation15-28
compound copy request6-27
compound externalization2-10, 8-26
compound life cycle2-9, 9-36, 9-37

and containment roles6-42
and relationship service6-37, 6-39, 6-41
copy operation example6-27–6-30
copying, moving relationships6-39–6-41
copying, moving roles6-37–6-39
copying, moving, removing nodes6-35–6-37
copying, moving, removing objects6-33–6-35

compound name3-1, 3-2, 3-11, 3-17
compound object2-2
compound operations9-36

propagation9-37
Concepts15-122
concepts of2-1
Concrete Restricted Access Collection Interfaces17-66
concurrency control service

overview 1-3, 7-1
ConcurrencyControl module

OMG IDL 7-8–7-9
Confidentiality 15-17
confidentiality 15-1
Conformance Criteria16-69
Conformance Details15-231
Conformance Requirements for Implementation Conformance

Classes16-71
Conformance Requirements for Trading Interfaces as Server16-69
connect4-18
Connection interface5-37

operations5-37
ConnectionFactory interface5-37

operations5-37
Consolidated OMG IDL14-21, 15-193, 16-74, 16-93, 16-99
Constraint Language16-93
Constraint Language BNF16-95
Constraint Recipe Languag16-99
consumer4-2
ConsumerAdmin interface4-16, 4-17, 4-26

for_consumers operation4-16
obtain_pull_supplier operation4-17
obtain_push_supplier operation4-17

ContainedInRole interface8-27
containment relationship9-1, 9-9

defining 9-49–9-50
example9-23
overview 9-47

ContainsRole interface8-27

ContextId 15-175
continue_authentication15-92
Control Attributes15-21
Control interface10-22
control object10-21, 10-29, 10-61
Control of privileges delegated15-26
Control of privileges used15-27
Control of target restrictions15-27
Controls Used Before Initiating Object Invocations15-26
Coordinator interface10-24

create_subtransaction operation10-28
get_parent_status operation10-26
get_status operation10-25
get_top_level_status operation10-26
get_transaction_name operation10-28
hash_top_level_tran operation10-27
hash_transaction operation10-27
is_ancestor_transaction operation10-26
is_descendant_transacation operation10-26
is_related_transaction operation10-27
is_same_transaction operation10-26
is_top_level_transaction operation10-27
register_resource operation10-27
register_subtran_aware operation10-28
rollback_only operation10-28

coordinator object10-30, 10-33, 10-41, 10-42, 10-53, 10-61
glossary definition10-86

copy 15-94
CORBA 2-1

documentation setxliii
object references2-10
standard requests4-1

CORBA Interoperable Object Reference with Security15-168
CORBA Module Changes for Replaceability Conformance15-225
CORBA Module Changes to Support Security Level 115-222
CORBA Module Changes to Support Security Level 215-223
CORBA Module Deprecated Interfaces15-227
CORBA OMG IDL based Specification of the Trading

Function 16-74
CosCompoundExternalization

Node interface8-6
CosCompoundExternalization module

OMG IDL 8-21–8-22
CosCompoundExternalizationNode interface8-5
CosCompoundLifeCycle module

OMG IDL 6-30–6-33
CosCompoundLifeCycleOperations interface6-26
CosConcurrencyControl module

overview 7-7
CosContainment module

attributes and operations9-49–9-50
OMG IDL 9-48

CosEventChannelAdmin module
OMG IDL 4-15–4-16

CosEventComm module
OMG IDL 4-8

CosExternalization module
OMG IDL 8-12

CosExternalizationContainment module
OMG IDL 8-27
Index-2 CORBAservices November 1997

Index
see also CosCompoundExternalization module8-27
see also CosContainment module8-27

CosExternalizationReference module
OMG IDL 8-28
see also CosCompoundExternalization module8-28
see also CosReference module8-28

CosGraphs

TraversalCriteria interface6-41
CosGraphs module8-25

OMG IDL 9-39–9-41
CosLicensingManager module

OMG IDL for 12-17
CosLifeCycle module

OMG IDL 6-10–6-11
CosLifeCycleContainment module

andCosCompoundLifeCycle and CosContainment modules6-42
OMG IDL 6-42

CosLifeCycleLifeCycleObject interface6-37
CosLifeCycleReference module

OMG IDL 6-44
CosNaming module

OMG IDL 3-6–3-8
CosPersistenceDDO module5-31–5-33

OMG IDL 5-31
CosPersistenceDS_CLI module

OMG IDL 5-35–5-36
CosPersistencePDS module

OMG IDL 5-20
CosPersistencePDS_DA module5-21–5-29

OMG IDL 5-22
CosPersistencePID module

OMG IDL 5-9
CosPersistencePO module

OMG IDL 5-12
CosPropertyService13-4
CosQuery module

OMG IDL for 11-23
CosQueryCollection module

OMG IDL for 11-14
CosReference module

attributes and operations9-50–9-51
CosRelationships module

OMG IDL 9-20–9-23
CosStream module

OMG IDL 8-15–8-18
CosTime 14-4, 14-5
CosTransactions module

datatypes defined by10-15
OMG IDL 10-69

CosTSInteroperation module
PIDL 10-62, 10-73

CosTypedEventComm module
OMG IDL 4-22

Creating iterators17-27
Credentials15-54, 15-94
cryptographic keys15-4
Curren 15-213
Current 15-54
Current interface10-41
Cursor interface5-38

operations5-38
CursorFactory interface5-38

operations5-38

D
DA protocol 5-19

compared to ODMG-93 protocol5-30
DADO 5-26
DAObject interface5-24

boolean dado_same (inDAObject d) operation5-24
DataObjectID dado_oid() operation5-24
PID_DA dado_pid() operation5-24
void dado_free() operation5-24
void dado_remove() operation5-24

DAObjectFactory interface5-24
DAObjectFactory create() operation5-25

DAObjectFactoryFinder interface5-25
find_factory operation5-25

Data Definition Language
see DDL

data objects5-27, 5-28
and dynamic access to attributes5-28

Data Types15-84
datastore5-7, 5-13, 5-17, 5-18, 5-26, 5-34, 5-43

and DDO protocol5-31
Datastore_CLI interface5-40

and CLI 5-43
operations5-41–5-43

DCE Association Options Reduction Algorithm15-190
DCE Authorization Services15-188
DCE RPC Authentication Services15-189
DCE RPE Protection Levels15-189
DCE Security Parameters15-190
DCE Security Services15-188
DCEAuthorizationDCE15-188
DCEAuthorizationName15-188
DCEAuthorizationNone15-188
DCE-CIOP 15-183
DCE-CIOP Operational Semantic15-189
DCE-CIOP with Security15-182
DDL 5-21, 5-26, 5-27, 5-28
DDO

storing,restoring,deleting5-40
DDO interface

attributes5-32
short add_data() operation5-32
short add_data_property (in short data_id) operation5-32
short get_data_count() operation5-32
short get_data_property_count (in short data_id) operation5-33
void get_data operation5-33
void get_data_property operation5-33
void set_data operation5-33
void set_data_property operation5-33

DDO protocol 5-19, 5-30
define 13-10, 13-16
Defining 13-9, 13-15
defining and modifying properties13-9
Delegation15-24, 15-111
Delegation Options15-29
Delegation Policies15-138
Delegation Schemes15-26
CORBAservices November 1997 Index-3

Index
Delegation State15-132
delete 9-30, 13-12, 13-13
Deleting 13-12
deleting properties13-12
Deque 17-14
DequeFactory Interface17-83
Dequeue Interface17-67
Describe Link Operation16-52
Describe Operation16-41
Describe Proxy Operation16-59
Describe Type Operation16-65
design goals, of event service interfaces1-2
destroy 3-18
destroy operation3-13
Destroying 13-21
Destroying a collection17-27
destroying the iterator13-20, 13-21
Determining 13-14
determining defined property13-14
direct access protocol

see PDS_DA protocol
direct attribute protocol

see DA protocol
distributed objects6-3
Domain 15-214
Domain Management15-123
Domain Manager15-124
Domain Managers15-72
Domain objects15-48
DomainAccessPolicy15-130, 15-134
DomainAccessPolicy Use of Privilege Attributes15-131
DomainAccessPolicy Use of Rights and Rights Families15-132
Domains 15-32, 15-130
Domains and Interoperability15-37
Domains at Object Creation15-71
dynamic data object protocol

see DDO protocol
Dynamic Property Evaluation interface16-67
Dynamic Property Module16-88
DynamicAttributeAccess interface5-28

any attribute_get(in string name) operation5-28
AttributeNames attribute_names() operation5-28
void attribute_set(in string name, in any value) operation 5-28

E
edge structure9-46
EdgeIterator interface9-47

destroy operation9-47
next_n operation9-47
next_one operation9-47

encryption 15-17
End User View15-41
Enhancements to the CORBA Module15-222
Enterprise Management View15-41
Enum ComparisonType14-7
Enum EventStatus14-15
Enum OverlapType14-7
Enum TimeComparison14-7
Enum TimeType14-14
Environment Domains15-50
Equality collection17-3

EqualityCollection Interface17-37
EqualityIterator Interface17-110
EqualityKeyCollection Interface17-50
EqualityKeyIterator Interface17-111
EqualityKeySortedCollection Interface17-55
EqualityKeySortedIterator Interface17-117
EqualitySequence17-11
EqualitySequence Factory Interface17-81
EqualitySequence Interface17-64
EqualitySequentialCollection Interface17-55
EqualitySequentialIterator Interface17-117
EqualitySortedCollection Interface17-53
EqualitySortedIterator Interface17-114
Establishing a Security Association15-165
Establishing Credentials15-53
Establishing the Binding and Interceptors15-217
event channel1-2, 2-2, 2-3, 4-5, 4-13

adding consumers4-16
adding consumers to4-17
adding consumers to typed4-26
adding pull consumer to typed4-28
adding pull consumers to4-18
adding pull suppliers to4-18
adding push consumers to4-19
adding push suppliers to4-17
adding push suppliers to typed4-28
adding suppliers4-16
adding suppliers to4-17
adding suppliers to typed4-27
and CORBA requests4-10
decoders4-31
defined 4-2, 4-10
encoders4-31
filtering 4-28–4-29
implementing typed4-30–4-31
sample use4-32–4-33

event communication
mixed 4-11
multiple 4-12
pull model 1-2, 4-2, 4-7, 4-11
push model1-2, 4-2, 4-6, 4-10
typed pull model4-20
typed push model4-19

event consumer4-2, 4-6, 4-10
proxy 4-13

Event Service15-229
event service

and CORBA scoping4-5
and license service12-14, 12-15
design goal of interfaces1-2
overview 1-2, 4-1

event supplier4-2, 4-6, 4-10
proxy 4-13

event_time14-17
EventChannel interface2-2, 4-13, 4-16
exception4-27
Exceptions16-23

Additional Exceptions for Link Interface16-26
Additional Exceptions for Lookup Interface16-24
Additional Exceptions for Proxy Offer Interface16-27
Additional Exceptions For Register Interface16-25
Index-4 CORBAservices November 1997

Index
For CosTrading module16-23
exceptions

described2-4
InvalidName 3-10

Exceptions and Type Definitions17-19
export 16-2
Export Operation16-39
Export Proxy Operation16-56
Exporter 16-4
Exporter Policies16-18
Extended Time Service14-27
Extension to the Use of Current15-213
Extensions to CORBA for Domains and Policies15-214
Extensions to Object Interfaces for Security15-214
Extensions to the Object Interface15-125
External Security Services15-161
externalization

defined 8-1
externalization service

and compound life cycle8-6
and inheritance and use of objects8-7
and life cycle service2-10
and persistent object service8-18
and relationship service2-10, 8-5, 8-25
and transaction service8-18
interface summary8-10
overview 1-4

externalizing a node8-23
externalizing a relationship8-25
externalizing a role8-24

F
Facilities Used on Accepting Object Invocations15-29
factory finder 6-7, 6-13, 6-21, 8-3
factory keys

and kind field 6-14, 6-16
factory object1-2, 6-4

definition 6-18
FactoryFinder interface6-8, 6-13–6-14

find_factories operation6-13
Features (security)15-90
Federated Policy Domains15-34
Federated query example16-19
FileStreamFactory interface8-8, 8-12, 8-13

create operation8-13
Final target15-25
Finding Domain Managers15-72
Finding the Policies15-72
Finding What Security Facilities Are Supported15-213
framework 11-10
Friendly Time Object14-27
Full-service Trader16-73
Fully Describe Type Operation16-65
Function Interfaces17-3, 17-118
Functional Interfaces16-30

G
General Security Data Module15-193
generic factory

criteria parameters6-17–6-18
generic factory interface6-5

GenericFactory interface6-14–6-18, 6-22
and criteria parameter6-17
and criteria parameters6-17
create_object operation6-15, 6-17
supports operation6-16

get 13-11, 13-12, 13-15, 13-18
get_active_credentials15-100
get_all_properties13-12
get_all_property_names13-11
get_attributes15-97, 15-103
get_component operation3-16
get_credentials15-105
get_number_of_properties13-11
get_policy 15-101, 15-106
get_properties13-11
get_property_value13-11
get_security_features15-95, 15-100
get_security_mechanisms15-101
get_security_names15-102
Getting 13-17
global identifier 2-4
Goals

Consistency15-4
Scalability 15-4

Goals of Secure DCE-CIOP15-182
graphical notation2-3
graphs of related objects

copying to 6-33
creating traversal criteria for8-25
destroying6-35
examples9-33
moving 6-34
removing 6-34
traversal of9-35, 9-37
traversing9-36

Guidelines for a Trustworthy System15-241

H
Handling Multiple Credentials15-55
Heap 17-11
Heap Interface17-64
HeapFactory Interface17-82

I
IDAPI standard5-34
Identification 15-3
Identity domains15-36
Immediate invoker15-25
Implementation-Level Security Object Interfaces15-152
Implementor’s Security Interfaces15-145
Implementor’s View of Secure Invocations15-74
Implementor’s View of Secure Object Creation15-79
Implications of Assurance15-222
import 16-2
ImportAttributes 16-29
Importer 16-4
Importer Policies16-17
Initiator 15-25
Integrity 15-17
integrity 15-1
Interceptor15-146
CORBAservices November 1997 Index-5

Index
Interceptor Interfaces15-147, 15-219
Interceptors15-215, 15-217
Interface Changes Required for Interceptors15-221
Interface Hierarchies17-15
interface inheritance.see subtyping
interface repository2-7
Interfaces15-90
Intermediate15-25
Intermediate Objects in a Chain of Objects15-58
internalization

object’s model8-5
internalizing a node8-23
internalizing a relationship8-25
internalizing a role8-24
Interoperability 15-221
Interoperability Model15-163
Interoperating between ORB Technology Domains15-38
Interoperating between Security Policy Domains15-167
Interoperating between Security Technology Domains15-38
Interoperating between Underlying Security Services15-167
Interoperating with Multiple Security Mechanisms15-166
interval 14-10
InvalidName exception3-10
Invocation Delegation Policy15-142
Invocation Time Policies15-149
IOR Security Components for DCE-CIOP15-183
is_valid 15-97
Iterating over a collection17-26
Iterator Hierarchy17-18
Iterator interface11-14

any next operation11-18
boolean more operation11-19
void reset operation11-19

Iterator Interfaces17-3, 17-84
Iterators 17-5
Iterators and performance17-6, 17-85
Iterators and support for generic programming17-84
Iterators as pointer abstraction17-84

K
Key collection 17-3
Key collections17-8
KeyBag Interface17-57
KeyBag, KeySortedBag17-11
KeyBagFactory Interface17-75
KeyIterator Interface17-108
KeySet Interface17-57
KeySet, KeySortedSet17-12
KeySetFactory Interface17-75
KeySortedBag Interface17-63
KeySortedBagFactory Interface17-78
KeySortedCollection Interface17-51
KeySortedIterator Interface17-112
KeySortedSet Interface17-62
KeySortedSetFactory Interface17-78

L
Legal Property Value Types16-94
library names

PIDL operations3-18
license service

and event service12-14, 12-15
and life cycle service12-19
and properties service12-24
and relationship service12-27
and security service12-27
example implementation12-28
exceptions12-19
overview 12-8
sample implementation12-15

LicenseServiceManager interface12-13, 12-17
check_use operation12-13
end_use operation12-13
obtain_producer_specific_license_service operation12-19, 12-

28
start_use operation12-13

licensing attributes
examples of12-25

life cycle service
and license service12-19
and naming service2-9, 6-15
and relationship service2-9
client’s model6-4
overview 1-2, 6-1, 6-21

LifeCycleObject interface1-2, 6-6, 6-11–6-13, 6-22, 6-25
and crieteria parameter6-17
copy operation6-11
move operation6-12
NoFactory exception for copy operation6-11
remove operation6-13

Link 16-49
Link Creation Policies16-18
Link Interface 16-71
Link Traversal Control16-18
LinkAttributes 16-30
Linked Trader16-73
Linking to External Security Services15-161
Linking Traders16-3
Links 16-11
List Offers Operation16-48
List Proxies Operation16-49
List Types Operation16-64
Listing 13-11
listing and getting properties13-11
LName interface3-3, 3-15

delete_component operation3-17
destroy operation3-16
equal operation3-17
insert_component operation3-16
less_than operation3-17
num_components operation3-17

LNameComponent interface3-3, 3-13, 3-15
get_id operation3-15
get_kind attribute3-3
get_kind operation3-15
set_id operation3-15
set_kind operation3-15

LockCoordinator interface7-9
drop_locks operation7-10

locks 1-4, 2-7, 7-1, 7-2–7-7
and nested transactions7-6
intention read and write7-4
Index-6 CORBAservices November 1997

Index
mode compatibility7-5
multiple possession semantics7-5
read,write,upgrade7-4
transaction-duration7-6

LockSet interface7-9, 7-10–7-11
change_model operation7-11
get_coordinator operation7-11
lock operation7-11
try_lock 7-11
unlock operation7-11

LockSetFactory interface7-13
create operation7-13
create_related operation7-13
create_transactional operation7-13
create_transactional_related operation7-13

Lookup 16-30
Lookup Interface16-70

M
Making a Secure Invocation15-57
Managed Iterator Model17-85
Managed iterators17-6
Managing Security Environment Domains15-39
Managing Security Policy Domains15-38
Managing Security Technology Domains15-39
Map Interface17-57
Map, SortedMap17-12
MapFactory Interface17-76
Mask Type Operation16-66
MD5 message digest algorithm12-31
Message Definitions15-176
Message Protection15-17, 15-151
Message protection domains15-36
Message-Level Interceptors15-147, 15-219
Messages15-18, 15-165
messages15-68
meta-policy 15-13
Modify Link Operation 16-53
Modify Operation16-42
MTCompleteEstablishContext15-176
MTContinueEstablishContext15-177
MTDiscardContext15-177
MTEstablishContext15-176
MTMessageError15-178
MTMessageInContext15-178
Multiple Credentials15-55
Multiple Security Mechanisms15-166

N
name 3-2

binding 3-1
binding operations3-8
component attributes3-2
components3-2
compound3-2
resolution 3-1
simple 3-2
structure3-18

name binding3-1
name component

attributes3-15

names library1-1, 3-3, 3-13
PIDL 3-13–3-14

namespace adminstration3-5
name-to-object association3-1
naming context1-1, 3-1, 3-5, 3-6

and property lists2-5
deleting 3-11

naming graph3-1
example3-2

Naming Service15-229
naming service

and internationalization3-3, 3-6
design of3-4
overview 1-1

NamingContext interface3-8, 3-13, 3-18
bind operation3-8
bind_context operation3-9
bind_new_context operation3-11
destroy operation3-11
list operation3-12
new_context operation3-11
rebind operation3-8
rebind_context operation3-9
resolve operation3-9
unbind operation3-10

nested queries11-20
nested transaction2-10
new_interval14-13
new_universal_time14-12
next 13-19, 13-20
no delegation15-27
Node interface6-35, 9-35, 9-44

add_role operation9-45
copy operation6-35
externalize_node operation8-23
internalize_node operation8-23
move operation6-36
related_object attribute9-45
remove operation6-37
remove_role operation9-46
roles_of_node attribute9-45
roles_of_type operation9-45

NodeFactory interface9-46
create_node operation9-46

nodes
creating 9-46

NoFactory 6-40
Non-repudiation15-3, 15-30, 15-64, 15-113, 15-160
Non-repudiation credentials and policies15-64
non-repudiation evidence15-30
non-repudiation for receipt of messages15-68
non-repudiation policy15-30
Non-repudiation Policy Management15-143
Non-repudiation Service Data Types15-114
Non-repudiation Service Operations15-115
Non-repudiation services15-31
non-repudiation services15-65
non-repudiation services for adjudication15-69
NoProtection15-188
NotCopyable6-40
NotMovable 6-40
CORBAservices November 1997 Index-7

Index
NotRemovable6-37

O
Object Interfaces for Securit15-214
Object Invocation Access Policy15-19
Object Management Groupxli

address ofxliii
object modelxliii
Object Reference15-98
object request brokerxlii
Object Security Services15-48
object service

context xlii
specification definedxliii

Object System Implementor’s View15-43
Objects 15-58
ODBC standard5-34
ODMG-93 17-136
ODMG-93 protocol5-19, 5-30, 5-43, 10-83

integration with transaction service10-84
Offer Id Iterator 16-45
Offer Identifier 16-9
Offer Iterator 16-35
Offer Selection16-9
OMG 13-3
OMG Constraint Language BNF16-93
OMG Constraint Recipe Language16-99
OMG IDL xliii, 2-2, 3-3
OMG Trading Function Module16-74
Operation Access15-73
operational interfaces15-49
Operational Semantics15-172
OperationFactory interface

create_compound_operations operation6-33
operations3-15
Operations Interface17-7, 17-118
Operations interface6-33

copy operation6-33
destroy operation6-35
move operation6-34
remove operation6-34

OperationsFactory interface6-33
Operator Restrictions16-94
OQL-93 Basic Query Language11-7
OQL-93 Query Language11-6
ORB Core and ORB Services15-215
ORB Interoperability15-221
ORB Security Services15-74
ORB Services15-45, 15-215
ORB Services and Interceptors15-146
Ordering of elements17-3
OSI TP protocol10-80

exported transactions10-82
imported transactions10-81
transaction identifiers10-81

Overlapping Policy Domains15-35
overlaps14-11
override_default_credentials15-99
override_default_mechanism15-101
override_default_QOP15-99

P
PDS 5-43

see persistent data service
PDS interface5-19–5-20

and DA protocol5-25
PDS connect operation5-20
void delete operation5-20
void disconnect operation5-20
void restore operation5-20
void store operation5-20

PDS_ClusteredDA interface5-29
ClusterID cluster_id() operation5-29
ClusterIDs clusters_of() operation5-29
PDS_ClusteredDA copy_cluster(in PDS_DA source)

operation5-29
PDS_ClusteredDA create_cluster(in string kind) operation5-29
PDS_ClusteredDA open_cluster(in ClusterID cluster)

operation5-29
string cluster_kind() operation5-29

PDS_DA interface5-21, 5-25
and ODMG-93 protocol5-30
DAObject get_data() operation5-25
DAObject lookup(in DAObjectID id) operation5-25
DAObjectFactoryFinder data_factories() operation5-26
PID_DA get_object_pid(in DAObject dao) operation5-25
PID_DA get_pid() operation5-25
void set_data(in DAObject new_data) operation5-25

PDS_DA protocol5-21, 5-25
and data objects5-26

persistent data service5-7, 5-17, 5-26, 5-27
overview 5-18

persistent data service interface
see PDS interface

persistent identifier5-7
compared to CORBA object reference5-9

persistent object interface
see PO interface

persistent object manager5-11
and PO interface5-13
purpose of5-17

Persistent Object Service15-229
persistent object service

and clients5-5
and CORBA accessor operations5-27
and CORBA Dynamic Invocation interface5-28
and CORBA persistent reference handling5-2, 5-3
and datastore5-6
and factory finders5-25
and factory objects5-24
and object implementation5-6
and persistent data service5-6
and query service5-42
and transaction service5-42
overview 1-3

PID
see persistent identifier

PID interface5-8
PID_CLI interface5-38

attributes5-39
PID_DA interface5-23

DAObjectID attribute5-23
Index-8 CORBAservices November 1997

Index
PIDL 2-13, 3-3
PO interface5-12–5-13

... connect operation5-13
void delete operation5-13
void disconnect operation5-13
void restore operation5-13
void store operation5-13

Policies 15-72, 15-214
Policy Details15-72
Policy Domain Hierarchies15-33
Policy domain managers15-49
Policy Domains15-122
POM interface

...connect operation5-16
OMG IDL 5-16
void delete operation5-16
void disconnect operation5-16
void restore operation5-16
void store operation5-16

Preferences16-10
Principal Authentication15-160
Principal authenticator15-54
principal_authenticator15-106
Principals 15-90
Principals and Their Security Attributes15-14
PriorityQueue17-14
PriorityQueue Interface17-69
PriorityQueueFactory Interface17-83
Privilege Attributes15-21, 15-131
Privilege Delegation15-25
privilege delegation15-24
ProducerSpecificLicenseService interface12-13, 12-14, 12-17

check_use operation12-20, 12-21, 12-28
end_use operation12-20, 12-28
start_use operation12-20, 12-28

proof of delivery 15-31
proof of origin 15-31
propagation10-34–10-38, 10-41, 10-44, 10-60, 10-63, 10-65, 10-

66
deep 9-37
glossary definition10-88
none 9-38
shallow 9-37

propagation context2-13
PropagationCriteriaFactory interface8-25–8-26

create operation6-41, 8-26
Properties16-7

Dynamic 16-8
modifiable 16-8

properties
defining and modifying with modes13-15

properties service
and license service12-24

PropertiesIterator13-19
PropertiesIterator interface13-19
Property 13-23
property list 4-1, 12-24
property modes

getting and setting13-17
property service

object classification13-1

object usage count13-1
Property service IDL13-23
PropertyNamesIterator13-20
PropertyNamesIterator interface13-20
PropertySet13-9
PropertySetDef13-14
PropertySetDef interface13-14
PropertySetDefFactory13-22
PropertySetDefFactory interface13-22
PropertySetFactory13-21
PropertySetFactory interface13-21
Protecting Messages15-165
Protection boundaries15-51
Protocol Enhancements15-168
proxies and Time14-24
Proxy 16-54
Proxy Interface16-71
Proxy Trader16-73
ProxyPullConsumer interface4-18

connect_pull_supplier operation4-18
ProxyPullSupplier4-18
ProxyPullSupplier interface4-3, 4-18

connect_pull_consumer operation4-18
ProxyPushConsumer interface4-3, 4-17

connect_push_supplier operation4-18
disconnect_push_supplier operation4-18

ProxyPushSupplier interface4-19
connect_push_consumer operation4-19

pseudo object2-13, 3-3, 3-13, 3-18
creating library name3-14

Public 15-14
Public key technology15-37
PullConsumer interface4-3, 4-10, 4-21

disconnect_pull_consumer operation4-7
PullSupplier interface2-2, 4-7, 4-9

disconnect_pull_supplier operation4-7, 4-10
pull operation4-9
try_pull operation4-9

PushConsumer interface2-2, 4-6, 4-8, 12-28
disconnect_push_consumer operation4-9
push operation4-8

PushSupplier interface4-3, 4-9
disconnect_push_supplier operation4-7, 4-9

Q
quality of service2-2, 4-3, 4-4, 4-6, 4-12
query collection11-10
query evaluator11-3

defined 11-19
Query Example16-19
query framework11-10
query framework interfaces

overview of 11-10
Query interface

execute operation11-26
get_result operation11-27
get_status operation11-27
prepare operation11-26
readonly attribute11-26

query object
defined 11-21
CORBAservices November 1997 Index-9

Index
Query Operation16-31
query service

and transaction service11-2
list of interfaces for11-23

Query Trader16-72
queryable collection

defined 11-20
QueryableCollection interface11-25
QueryEvaluator interface

attributes for11-25
QueryManager interface

create operation11-26
Queue17-15
Queue Interface17-66
QueueFactory Interface17-82

R
RACollectionFactory and RACollectionFactories Interfaces17-74
Readonly attribute inaccuracy14-9
Readonly attribute tdf14-9
Readonly attribute time14-9
Readonly attribute time_interval14-10
Readonly attribute utc_time14-9
received_credentials15-105
received_security_features15-105
Recipe Syntax16-99
recoverable object10-5

and nested transactions10-33
recoverable server10-6, 10-42

glossary definition10-88
implementing10-38–10-39

RecoveryCoordinator interface10-29
replay_completion operation10-29

reference modelxlii
reference relationship9-1, 9-9

defining 9-50–9-51
overview 9-47

reference restriction15-25
refresh 15-97
Register16-36
register 14-17
Register Interface16-70
Relation Interface17-61
Relation, SortedRelation17-13
RelationFactory Interface17-76
relationship

and nodes, defined9-35
creating 9-24
destroying9-26
determining roles9-26

Relationship between implementation objects for associations15-
78

relationship between main objects15-80
relationship factory attributes6-42, 6-45
Relationship interface6-39, 8-24, 8-27, 9-25

copy operation6-39
destroy operation9-26
externalize_role operation8-25
internalize_relationship operation8-25
life_cycle_propagation operation6-41
move operation6-40

named_roles attribute9-26
propagation_for operation8-25

relationship service
and base level operations9-17
and cardinality9-2, 9-18
and containment relationship9-47–9-48
and CORBA object references2-10
and degree9-2
and entity9-2
and levels of service9-3, 9-7–9-10
and license service12-27
and reference relationship9-47–9-48
and semantics9-2
and type9-1, 9-14
attribute and operation rationale9-15
interface summary9-11–9-13
overview 1-4

Relationship to Object Services and Common Facilities15-228
Relationship to Other Relevant Standards17-133
RelationshipFactory interface9-23

create operation9-24
degree attribute9-25
named_role_types attribute9-25
relationship_type attribute9-25

RelationshipIterator interface9-32
destroy operation9-32
next_n operation9-32
next_one operation9-32

relationships
and defining role attributes9-30
and operations on roles9-26–9-30
containment8-26
reference8-26

Remove Link Operation16-52
Remove Type Operation16-64
Replaceable Security Service15-160
Replaceable Security Services15-76
Replacing Access Decision Policies15-160
Replacing Audit Services15-161
Representation of Literals16-95
representation of Time14-1
Request-Level Interceptors15-146, 15-218
required_rights_object15-106
RequiredRights15-132
RequiredRights Interface15-128
Resetting13-19
resetting

position in an iterator13-20
resetting position in iterator13-20
Resetting the position in an iterator13-19
Resolve Operation16-45
Resource interface10-29

commit operation10-31
commit_one_phase operation10-31
forget operation10-32
prepare operation10-30
rollback operation10-31

resource manager10-9, 10-68, 10-78
mappings to10-76

resource object
defined 10-6
Index-10 CORBAservices November 1997

Index
Restricted Access Collection Interfaces17-65
Restricted Access Collections17-4, 17-14
RestrictedAccessCollection Interface17-65
Retrieval 13-15
retrieval of PropertySet constraints13-15
Rights 15-22, 15-127
Rights Families15-128, 15-132
Rights Families and Values15-211
RM

see resource manager
role factory attributes6-43, 6-45
Role interface6-37, 8-24, 9-26, 9-46

check_minimum_cardinality operation9-29
copy operation6-38
destroy operation9-29
destroy_relationships operation9-28
externalize_propagation operation8-24
externalize_role operation8-24
get_edges operation9-47
get_other_related_object operation9-27
get_other_role operation9-27
get_relationships operation9-28
how_many operation9-28
internalize_role operation8-24
life_cycle_propagation operation6-39
link operation9-29
move operation6-38
related_object attribute9-27
unlink operation9-30

RoleFactory interface9-27, 9-30
and max_cardinality attribute9-31
and min_cardinality attribute9-31
and role_type attribute9-31
create_role operation9-30
related_object_type attribute9-32

roles
and cardinality9-29, 9-31

rollback
glossary definition10-88

S
Scoping Policies16-13
SD interface5-11
SECIOP 15-175
SECIOP Message Header15-174
SECIOP Protocol State Tables15-179
Secure DCE-CIOP15-183
Secure DCE-CIOP Operational Semantics15-189
Secure Interoperability15-239
Secure Interoperability Bridges15-168
Secure Inter-ORB Protocol (SECIOP)15-174
Secure Invocation and Delegation Policies15-138
Secure Invocation Interceptor15-150
Secure Object Invocations15-15, 15-165
Secure Time14-19
secure_universal_time14-12, 14-18
SecureUniversalTime14-3
Securing the Binding Handle to the Target15-191
Security 15-1

Goals 15-3
Security Administration Interfaces15-201

Security and Interoperability15-162
Security Architecture15-40
Security Association15-165
security association15-16
Security at the Target15-57
Security Attributes15-55
Security Audit 15-107
Security auditing15-3
Security Components of the IOR15-169
Security context15-78
Security Context Object15-155
Security Data Modul15-193
security domains15-4
Security environment domain15-32
Security Environment Domains15-35, 15-39
Security Facilities15-213
Security Features15-3, 15-90
Security Functionality Conformance15-83
Security Functionality Level 115-83, 15-232
Security Functionality Level 215-83, 15-234
Security Information in the Object Reference15-164
Security Interceptors15-147
Security Mechanism Types15-166
Security Mechanisms15-61, 15-212
Security Mechanisms for Secure Object Invocations15-165
security name15-15
Security Object Models15-52
Security of communication15-3
Security Operations on Current15-102
Security Policies15-63, 15-69, 15-123, 15-126
Security policies and domain objects15-48
Security Policy15-74
Security Policy Domains15-33, 15-38, 15-167
Security Reference Model15-12
Security Replaceability15-237
Security Replaceability Ready15-83
Security Replaceable Service Interfaces15-206
Security Service15-1
security service

and license service12-27
security specification15-2
Security Technology15-49
Security technology domain15-32
Security Technology Domains15-36, 15-39
see also data objects
Selecting Security Attributes15-55
Selection of ORB Services15-46
Send and Receive Message15-220
sending Time across the network14-24
Sequence17-13
Sequence Interface17-64
SequenceFactory Interface17-81
SequentialCollection Interface17-31
Service Offers16-7
Service Type Repository16-59
Service Type Repository Module16-89
set 13-18, 13-19
set _security_features15-95
Set, SortedSet17-13
set_credentials15-104
set_data14-16
CORBAservices November 1997 Index-11

Index
set_privileges15-56, 15-96
set_security_features15-56
set_timer14-16
SetFactory Interface17-77
Setting Security Policy Details15-72
simple delegation15-27
simple name3-2
Simple Trader16-72
SNA LU protocol 10-80, 10-82

incoming communication10-83
outgoing communication10-83
transaction identifiers10-82

SortedBag Interface17-64
SortedCollection Interface17-37
SortedIterator Interface17-112
SortedMap Interface17-63
SortedMapFactory Interface17-79
SortedRelation Interface17-63
SortedRelationFactory Interface17-79
SortedSet Interface17-63
SortedSetFactory Interface17-80
source of Time14-2
spans14-11
Specific ORB Security Services and Replaceable Security

Services15-76
Specifying Delegation Options15-29
Specifying Use of Rights for Operation Access15-73
SQL Query Language11-6
Stack 17-15
Stack Interface17-67
StackFactory Interface17-83
Stand-alone Trader16-72
Standard Data Type15-209
Standardized Capability Supported Policies16-15
Stream interface8-12, 8-13

begin_context operation8-14
end_context operation8-14
externalize operation8-13
flush operation8-14
internalize operation8-13, 8-14
internalize_from_stream operation8-15

stream object
creating 8-12, 8-13
data format8-29–8-31
externalizing8-13
externalizing group8-14
internalizing 8-13, 8-14

stream service8-3
and begin_context request8-3
and externalize_to_stream request8-3, 8-4
and internalize_from_stream request8-3
and readonly key attribute8-3

Streamable interface8-4, 8-7, 8-18
externalize_to_stream operation8-19
internalize_from_stream8-20
is_identical operation8-19

streamable object
and inheritance8-19
creating

StreamableFactory interface

create_uninitialized operation8-21
creation key8-19

StreamableFactory interface8-21
StreamFactory interface8-8, 8-12

create operation8-12
StreamIO interface8-4, 8-8, 8-18

read_ operation8-20
read_object operation8-20
read_t operation8-18
write_ operation8-19, 8-30
write_object operation8-19
write_operation8-18

SubtransactionAwareResource interface10-33
commit_substransaction operation10-33
commit_subtransaction operation10-33

subtransactions10-7, 10-12, 10-56, 10-58, 10-60, 10-63, 10-67
subtyping 2-1, 2-5
Summary of CORBA 2 Core Changes15-213
supplier 4-2
SupplierAdmin interface4-3, 4-16, 4-17

for_suppliers operation4-16
obtain_pull_consumer operation4-17
obtain_push_consumer operation4-17

SupportAttributes16-29
Symmetric key technology15-37
synchronization of Time14-19
synchronized data interface

see SD interface
System- and Application-Enforced Policies15-34
system audit policies15-22

T
TAG_ASSOCIATION_OPTIONS15-190
Target 15-57
Target Side15-173
target_requires field15-187
target_supports field15-186
TargetSecureInvocation15-139
Technology Support for Delegation Options15-29
Terminator interface

rollback operation10-24
terminator object10-41
Threats in a Distributed Object System15-2
time 14-11
Time Interval Object (TIO)14-10
Time Interval Objects (TIOs)14-3
Time Service15-229
Time Service interface14-11
Time Service Requirements14-1
Time Service requirements14-1
time_set14-16
time_to_interval14-10
TimeBase14-4, 14-5
Timer Event Handler14-3, 14-15
Timer Event Service14-3, 14-4, 14-13, 14-16, 14-23
TimeUnavailable14-4, 14-8
traced delegation15-28
Trader Attributes16-21
Trader Policies16-16
trading object service16-2
transacations
Index-12 CORBAservices November 1997

Index
resource manager10-68
transaction abort

see Resource interface
rollback operation10-31

transaction context10-19
management of10-22
propagation of10-22

transaction originator10-13, 10-19, 10-23, 10-47
glossary definition10-90

Transaction Service15-228
transaction service

and concurrency control service2-10
and orb interoperability2-12
and persistent object service2-11
application use of10-34

transactional client10-4, 10-38
glossary defintion10-89

transactional object10-4
example10-43

transactional server
defined 10-6

TransactionalLockSet interface7-9
TransactionalLockSet interface operations7-12
TransactionalObject interface10-34
TransactionFactory interface10-41
transactions

checked10-36–10-38, 10-40
consistency property10-58
consistency property,glossary definition10-86
coordinator object10-30, 10-33, 10-41, 10-42, 10-53, 10-61
distributed 10-40
durability 10-57
durability, glossary definition10-86
flat 10-6, 10-7, 10-9, 10-39
flat,glossary definition10-86
implicit propagation10-41
interposition 10-49, 10-60, 10-63
interposition, glossary defintion10-87
isolation 10-7, 10-9, 10-13, 10-24
isolation, glossary definition10-87
propagation10-34–10-38, 10-41, 10-44, 10-60, 10-63, 10-65,

10-66, 10-88
propagation to resource manager10-78
recoverable object10-5, 10-33
recoverable server10-6, 10-38–10-39
recoverable server, glossary defintion10-88
recoverable server,example10-42
resource manager10-9, 10-78
terminator object10-41
two-phase commit protocol2-11, 10-12, 10-29, 10-49, 10-52,

10-58, 10-62, 10-68, 10-80, 10-83
two-phase commit, glossary definition10-90

TraveralCriteria interface
next_n operation9-44

traversal criteria
creating 6-41, 9-36
example of9-37

Traversal interface
destroy operation9-43
next_n operation9-43
next_one operation9-42

ScopedEdge structure9-42
traversal object9-35, 9-36

creating 9-41
TraversalCriteria interface9-36, 9-43

destroy operation9-44
next_one operation9-43
visit_node operation9-44
Weighted_Edge structure9-43

TraversalFactory interface9-41
create_traversal_on operation9-42

Trusted Computing Base15-51
Trustworthy System15-241
Type checking information17-22
Type Definitions17-19
Type InaccuracyT14-6
Type IntervalT14-6
Type safety17-7
Type TdfT 14-6
Type TimerEventT14-15
Type TimeT 14-6
Type UtcT 14-6
TypedConsumerAdmin interface

obtain_typed_pull_supplier operation4-26
obtain_typed_push_supplier operation4-26

TypedProxyPullSupplier interface4-28
TypedProxyPushConsumer interface4-28
TypedPullSupplier interface4-21
TypedPushConsumer interface4-20
TypedSupplierAdmin interface4-27

obtain_typed_pull_consumer operation4-27
obtain_typed_push_consumer operation4-27

U
Unique entries (collections)17-4
universal object identity2-5
Universal Time Coordinated (UTC)14-1
Universal Time Object (UTO)14-8
Universal Time Objects (UTOs)14-3
universal_time14-4, 14-12
UniversalTime14-3
Unmask Type Operation16-66
unregister14-17
Use of AccessPolicy and RequiredRights15-132
Use of Interfaces for Access Control15-109
Use of Interfaces for Delegation15-111
Use of Privilege Attributes15-131
Use of Rights and Rights Families15-132
User sponsor15-53
UserEnvironment interface

operations5-37
Users’ View of the Security Model15-40
Using Interceptors15-218
uto_from_utc14-12

V
Values for Standard Data Types15-209
Vault 15-77, 15-153
View of the Security Model15-40

W
Withdraw Operation16-41
CORBAservices November 1997 Index-13

Index
Withdraw Proxy Operation16-58
Withdraw Using Constraint Operation16-44

X
X/Open xlii

X/Open CLI standard5-34
X/Open TX interface10-74–10-76
X/Open XA interface10-68
Index-14 CORBAservices November 1997

CORBAservices: Common
Object Services Specification

NOTE: This revision of the Transaction Service makes use of
the Current interface defined in the CORBA 2.2 Portable
Object Adaptor chapter. At the time of writing, the CORBA 2.2
specification was in the latter stages of technical editing, and is
expected to be generally available by the end of 1997. In the
interim, the definition of the Current interface can be found in
documents orbos/97-04-11 and orbos/97-04-04.

TO: CORBAservices Readers

FROM: OMG Headquarters

RE: Update package for CORBAservices

DATE: November 25, 1997

Pages to remove from CORBA
services (footer reads July 1997)

Pages to add from this update
package (footer reads November
1997)

Title and copyright Title and copyright

Table of Contents (footer reads
July 1997)

Table of Contents (footer reads
November 1997)

List of Figures (footer reads July
1997)

List of Figures (footer reads Novem-
ber 1997)

List of Tables (footer reads July
1997)

List of Tables (footer reads Novem-
ber 1997)

Chapter 10 - Transaction Service
(footer reads March 1995)

Chapter 10 - Ttransaction Service
(footer reads November 1997)

Index (footer reads July 1997) Index (footer reads November 1997)

	Preface
	1. Overview
	1.1 Summary of Key Features
	1.1.1 Naming Service
	1.1.2 Event Service
	1.1.3 Life Cycle Service
	1.1.4 Persistent Object Service
	1.1.5 Transaction Service
	1.1.6 Concurrency Control Service
	1.1.7 Relationship Service
	1.1.8 Externalization Service
	1.1.9 Query Service
	1.1.10 Licensing Service
	1.1.11 Property Service
	1.1.12 Time Service
	1.1.13 Security Service
	1.1.14 Object Trader Service
	1.1.15 Object Collections Service

	2. General Design Principles
	2.1 Service Design Principles
	2.1.1 Build on CORBA Concepts
	2.1.2 Basic, Flexible Services
	2.1.3 Generic Services
	2.1.4 Allow Local and Remote Implementations
	2.1.5 Quality of Service is an Implementation Char...
	2.1.6 Objects Often Conspire in a Service
	2.1.7 Use of Callback Interfaces
	2.1.8 Assume No Global Identifier Spaces
	2.1.9 Finding a Service is Orthogonal to Using It

	2.2 Interface Style Consistency
	2.2.1 Use of Exceptions and Return Codes
	2.2.2 Explicit Versus Implicit Operations
	2.2.3 Use of Interface Inheritance

	2.3 Key Design Decisions
	2.3.1 Naming Service: Distinct from Property and T...
	2.3.2 Universal Object Identity

	2.4 Integration with Future Object Services
	2.4.1 Archive Service
	2.4.2 Backup/Restore Service
	2.4.3 Change Management Service
	2.4.4 Data Interchange Service
	2.4.5 Internationalization Service
	2.4.6 Implementation Repository
	2.4.7 Interface Repository
	2.4.8 Logging Service
	2.4.9 Recovery Service
	2.4.10 Replication Service
	2.4.11 Startup Service
	2.4.12 Data Interchange Service

	2.5 Service Dependencies
	2.5.1 Event Service
	2.5.2 Life Cycle Service
	2.5.3 Persistent Object Service
	2.5.4 Relationship Service
	2.5.5 Externalization Service
	2.5.6 Transaction Service
	2.5.7 Concurrency Control Service
	2.5.8 Query Service
	2.5.9 Licensing Service
	2.5.10 Property Service
	2.5.11 Time Service
	2.5.12 Security Service
	2.5.13 Trader Service
	2.5.14 Collections Service

	2.6 Relationship to CORBA
	2.6.1 ORB Interoperability Considerations: Transac...
	2.6.2 Life Cycle Service
	2.6.3 Naming Service
	2.6.4 Relationship Service
	2.6.5 Persistent Object Service
	2.6.6 General Interoperability Requirements

	2.7 Relationship to Object Model
	2.8 Conformance to Existing Standards

	3. Naming Service Specification
	3.1 Service Description
	3.1.1 Overview
	3.1.2 Names
	3.1.3 Names Library
	3.1.4 Example Scenarios
	3.1.5 Design Principles
	3.1.6 Resolution of Technical Issues

	3.2 The CosNaming Module
	3.2.1 Binding Objects
	3.2.2 Resolving Names
	3.2.3 Unbinding Names
	3.2.4 Creating Naming Contexts
	3.2.5 Deleting Contexts
	3.2.6 Listing a Naming Context
	3.2.7 The BindingIterator Interface

	3.3 The Names Library
	3.3.1 Creating a Library Name Component
	3.3.2 Creating a Library Name
	3.3.3 The LNameComponent Interface
	3.3.4 The LName Interface

	4. Event Service Specification
	4.1 Service Description
	4.1.1 Overview
	4.1.2 Event Communication
	4.1.3 Example Scenario
	4.1.4 Design Principles
	4.1.5 Resolution of Technical Issues
	4.1.6 Quality of Service

	4.2 Generic Event Communication
	4.2.1 Push Model
	4.2.2 Pull Model

	4.3 The CosEventComm Module
	4.3.1 The PushConsumer Interface
	4.3.2 The PushSupplier Interface
	4.3.3 The PullSupplier Interface
	4.3.4 The PullConsumer Interface

	4.4 Event Channels
	4.4.1 Push-Style Communication with an Event Chann...
	4.4.2 Pull-Style Communication with an Event Chann...
	4.4.3 Mixed Style Communication with an Event Chan...
	4.4.4 Multiple Consumers and Multiple Suppliers
	4.4.5 Event Channel Administration

	4.5 The CosEventChannelAdmin Module
	4.5.1 The EventChannel Interface
	4.5.2 The ConsumerAdmin Interface
	4.5.3 The SupplierAdmin Interface
	4.5.4 The ProxyPushConsumer Interface
	4.5.5 The ProxyPullSupplier Interface
	4.5.6 The ProxyPullConsumer Interface
	4.5.7 The ProxyPushSupplier Interface

	4.6 Typed Event Communication
	4.6.1 Typed Push Model
	4.6.2 Typed Pull Model

	4.7 The CosTypedEventComm Module
	4.7.1 The TypedPushConsumer Interface
	4.7.2 The TypedPullSupplier Interface

	4.8 Typed Event Channels
	4.9 The CosTypedEventChannelAdmin Module
	4.9.1 The TypedEventChannel Interface
	4.9.2 The TypedConsumerAdmin Interface
	4.9.3 The TypedSupplierAdmin Interface
	4.9.4 The TypedProxyPushConsumer Interface
	4.9.5 The TypedProxyPullSupplier Interface

	4.10 Composing Event Channels and Filtering
	4.11 Policies for Finding Event Channels

	5. Persistent Object Service Specification
	5.1 Introduction
	5.2 Goals and Properties
	5.2.1 Basic Capabilities
	5.2.2 Object-oriented Storage
	5.2.3 Open Architecture
	5.2.4 Views of Service

	5.3 Service Structure
	5.4 The CosPersistencePID Module
	5.4.1 PID Interface
	5.4.2 Example PIDFactory Interface

	5.5 The CosPersistencePO Module
	5.5.1 The PO Interface
	5.5.2 The POFactory Interface
	5.5.3 The SD Interface

	5.6 The CosPersistencePOM Module
	5.7 Persistent Data Service (PDS) Overview
	5.8 The CosPersistencePDS Module
	5.9 The Direct Access (PDS_DA) Protocol
	5.10 The CosPersistencePDS_DA Module
	5.10.1 The PID_DA Interface
	5.10.2 The Generic DAObject Interface
	5.10.3 The DAObjectFactory Interface
	5.10.4 The DAObjectFactoryFinder Interface
	5.10.5 The PDS_DA Interface
	5.10.6 Defining and Using DA Data Objects
	5.10.7 The DynamicAttributeAccess Interface
	5.10.8 The PDS_ClusteredDA Interface

	5.11 The ODMG-93 Protocol
	5.12 The Dynamic Data Object (DDO) Protocol
	5.13 The CosPersistenceDDO Module
	5.14 Other Protocols
	5.15 Datastores: CosPersistenceDS_CLI Module
	5.15.1 The UserEnvironment Interface
	5.15.2 The Connection Interface
	5.15.3 The ConnectionFactory Interface
	5.15.4 The Cursor Interface
	5.15.5 The CursorFactory Interface
	5.15.6 The PID_CLI Interface
	5.15.7 The Datastore_CLI Interface

	5.16 Other Datastores
	5.17 Standards Conformance
	5.18 References

	6. Life Cycle Service Specification
	6.1 Service Description
	6.1.1 Overview
	6.1.2 Organization of this Chapter
	6.1.3 Client’s Model of Object Life Cycle
	6.1.4 Factory Finders
	6.1.5 Design Principles
	6.1.6 Resolution of Technical Issues

	6.2 The CosLifeCycle Module
	6.2.1 The LifeCycleObject Interface
	6.2.2 The FactoryFinder Interface
	6.2.3 The GenericFactory Interface
	6.2.4 Criteria

	6.3 Implementing Factories
	6.3.1 Minimal Factories
	6.3.2 Administered Factories

	6.4 Target’s Use of Factories and Factory Finders
	6.5 Summary of Life Cycle Service
	6.5.1 Summary of Life Cycle Service Structure

	7. Concurrency Control Service
	7.1 Service Description
	7.1.1 Basic Concepts of Concurrency Control

	7.2 Locking Model
	7.2.1 Lock Modes
	7.2.2 Multiple Possession Semantics

	7.3 Two-Phase Transactional Locking
	7.4 Nested Transactions
	7.5 CosConcurrencyControl Module
	7.5.1 Types and Exceptions
	7.5.2 LockCoordinator Interface
	7.5.3 LockSet Interface
	7.5.4 TransactionalLockSet Interface
	7.5.5 LockSetFactory Interface

	8. Externalization Service Specification
	8.1 Service Description
	8.2 Service Structure
	8.2.1 Client’s Model of Object Externalization
	8.2.2 Stream’s Model of Object Externalization
	8.2.3 Object’s Model of Externalization
	8.2.4 Object’s Model of Internalization

	8.3 Object and Interface Hierarchies
	8.4 Interface Summary
	8.5 CosExternalization Module
	8.5.1 StreamFactory Interface
	8.5.2 FileStreamFactory Interface
	8.5.3 Stream Interface

	8.6 CosStream Module
	8.6.1 Standard Stream Data Format
	8.6.2 The StreamIO Interface
	8.6.3 The Streamable Interface
	8.6.4 The StreamableFactory Interface

	8.7 CosCompound Externalization Module
	8.7.1 The Node Interface
	8.7.2 The Role Interface
	8.7.3 The Relationship Interface
	8.7.4 The PropagationCriteriaFactory Interface

	8.8 Specific Externalization Relationships
	8.9 The CosExternalizationContainment Module
	8.10 The CosExternalizationReference Module
	8.11 Standard Stream Data Format
	8.11.1 OMG Externalized Object Data
	8.11.2 Externalized Repeated Reference Data
	8.11.3 Externalized NIL Data

	8.12 References

	9. Relationship Service Specification
	9.1 Service Description
	9.1.1 Key Features of the Relationship Service
	9.1.2 The Relationship Service vs. CORBA Object Re...
	9.1.3 Resolution of Technical Issues

	9.2 Service Structure
	9.2.1 Levels of Service
	9.2.2 Hierarchy of Relationship Interface
	9.2.3 Hierarchy of Role Interface
	9.2.4 Interface Summary

	9.3 The Base Relationship Model
	9.3.1 Relationship Attributes and Operations
	9.3.2 Higher Degree Relationships
	9.3.3 Operations
	9.3.4 Consistency Constraints
	9.3.5 Implementation Strategies
	9.3.6 The CosObjectIdentity Module
	9.3.7 The CosRelationships Module

	9.4 Graphs of Related Objects
	9.4.1 Graph Architecture
	9.4.2 Traversing Graphs of Related Objects
	9.4.3 Compound Operations
	9.4.4 An Example Traversal Criteria
	9.4.5 The CosGraphs Module

	9.5 Specific Relationships
	9.5.1 Containment and Reference
	9.5.2 The CosContainment Module
	9.5.3 The CosReference Module

	9.6 References

	10.Transaction Service Specification
	10.1 Service Description
	10.1.1 Overview of Transactions
	10.1.2 Transactional Applications
	10.1.3 Definitions
	10.1.4 Transaction Service Functionality
	10.1.5 Principles of Function, Design, and Perform...

	10.2 Service Architecture
	10.2.1 Typical Usage
	10.2.2 Transaction Context
	10.2.3 Context Management
	10.2.4 Datatypes
	10.2.5 Structures
	10.2.6 Exceptions

	10.3 Transaction Service Interfaces
	10.3.1 Current Interface
	10.3.2 TransactionFactory Interface
	10.3.3 Control Interface
	10.3.4 Terminator Interface
	10.3.5 Coordinator Interface
	10.3.6 Recovery Coordinator Interface
	10.3.7 Resource Interface
	10.3.8 Synchronization Interface
	10.3.9 Subtransaction Aware Resource Interface
	10.3.10 TransactionalObject Interface

	10.4 The User’s View
	10.4.1 Application Programming Models
	10.4.2 Interfaces
	10.4.3 Checked Transaction Behavior
	10.4.4 X/Open Checked Transactions
	10.4.5 Implementing a Transactional Client: Heuris...
	10.4.6 Implementing a Recoverable Server
	10.4.7 Application Portability
	10.4.8 Distributed Transactions
	10.4.9 Applications Using Both Checked and Uncheck...
	10.4.10 Examples
	10.4.11 Model Interoperability
	10.4.12 Failure Models

	10.5 The Implementers’ View
	10.5.1 Transaction Service Protocols
	10.5.2 ORB/TS Implementation Considerations
	10.5.3 Model Interoperability

	10.6 The CosTransactions Module
	10.6.1 The CosTSPortability Module

	11.Query Service Specification
	11.1 Service Description
	11.1.1 Overview
	11.1.2 Design Principles
	11.1.3 Architecture
	11.1.4 Query Languages
	11.1.5 Key Features

	11.2 Service Structure
	11.2.1 Overview
	11.2.2 Collection Interface Structure
	11.2.3 Query Framework Interface Hierarchy/Structu...
	11.2.4 Interface Overview

	11.3 The Collection Model
	11.3.1 Common Types of Collections
	11.3.2 Iterators

	11.4 The CosQueryCollection Module
	11.4.1 The CollectionFactory Interface
	11.4.2 The Collection Interface
	11.4.3 The Iterator Interface

	11.5 The Query Framework Model
	11.5.1 Query Evaluators
	11.5.2 Queryable Collections
	11.5.3 Query Managers
	11.5.4 Query Objects

	11.6 The CosQuery Module
	11.6.1 The QueryLanguageType Interfaces
	11.6.2 The QueryEvaluator Interface
	11.6.3 The QueryableCollection Interface
	11.6.4 The QueryManager Interface
	11.6.5 The Query Interface

	11.7 References

	12.Licensing Service Specification
	12.1 Existing License Management Products
	12.1.1 Business Policy
	12.1.2 License Types
	12.1.3 A History of License Types
	12.1.4 Asset Management
	12.1.5 License Usage Practices
	12.1.6 Scalability
	12.1.7 Reliability
	12.1.8 Legacy Applications
	12.1.9 Security
	12.1.10 Client/Server Authentication
	12.1.11 Example: Application Acquiring and Releasi...

	12.2 Service Description
	12.2.1 Overview
	12.2.2 Key Components of a Licensing System
	12.2.3 Licensing in the CORBA Environment
	12.2.4 Design Principles
	12.2.5 Licensing Service Interfaces
	12.2.6 Licensing Event Trace Diagram

	12.3 The CosLicensing Module
	12.3.1 LicenseServiceManager Interface
	12.3.2 ProducerSpecificLicenseService Interface

	12.4 References

	13.Property Service
	13.1 Overview
	13.1.1 Service Description
	13.1.2 OMG IDL Interface Summary
	13.1.3 Summary of Key Features

	13.2 Service Interfaces
	13.2.1 CosPropertyService Module
	13.2.2 PropertySet Interface
	13.2.3 PropertySetDef Interface
	13.2.4 PropertiesIterator Interface
	13.2.5 PropertyNamesIterator Interface
	13.2.6 PropertySetFactory Interface
	13.2.7 PropertySetDefFactory Interface

	14.Time Service Specification
	14.1 Introduction
	14.1.1 Time Service Requirements
	14.1.2 Representation of Time
	14.1.3 Source of Time
	14.1.4 General Object Model
	14.1.5 Conformance Points

	14.2 Basic Time Service
	14.2.1 Object Model
	14.2.2 Data Types
	14.2.3 Exceptions
	14.2.4 Universal Time Object (UTO)
	14.2.5 Time Interval Object (TIO)
	14.2.6 Time Service

	14.3 Timer Event Service
	14.3.1 Object Model
	14.3.2 Usage
	14.3.3 Data Types
	14.3.4 Exceptions
	14.3.5 Timer Event Handler
	14.3.6 Timer Event Service

	14.4 Conformance

	15.Security Service Specification
	15.1 Introduction to Security
	15.1.1 Why Security?
	15.1.2 What Is Security?
	15.1.3 Threats in a Distributed Object System
	15.1.4 Summary of Key Security Features
	15.1.5 Goals

	15.2 Introduction to the Specification
	15.2.1 Conformance to CORBA Security
	15.2.2 Specification Structure

	15.3 Security Reference Model
	15.3.1 Definition of a Security Reference Model
	15.3.2 Principals and Their Security Attributes
	15.3.3 Secure Object Invocations
	15.3.4 Access Control Model
	15.3.5 Auditing
	15.3.6 Delegation
	15.3.7 Non-repudiation
	15.3.8 Domains
	15.3.9 Security Management and Administration
	15.3.10 Implementing the Model

	15.4 Security Architecture
	15.4.1 Different Users’ View of the Security Model...
	15.4.2 Structural Model
	15.4.3 Security Technology
	15.4.4 Basic Protection and Communications
	15.4.5 Security Object Models

	15.5 Application Developer’s Interfaces
	15.5.1 Introduction
	15.5.2 Finding Security Features
	15.5.3 Authentication of Principals
	15.5.4 Credentials
	15.5.5 Object Reference
	15.5.6 Security Operations on Current
	15.5.7 Security Audit
	15.5.8 Administering Security Policy
	15.5.9 Use of Interfaces for Access Control
	15.5.10 Use of Interfaces for Delegation
	15.5.11 Non-repudiation

	15.6 Administrator’s Interfaces
	15.6.1 Concepts
	15.6.2 Domain Management
	15.6.3 Security Policies Introduction
	15.6.4 Access Policies
	15.6.5 Audit Policies
	15.6.6 Secure Invocation and Delegation Policies
	15.6.7 Non-repudiation Policy Management

	15.7 Implementor’s Security Interfaces
	15.7.1 Generic ORB Services and Interceptors
	15.7.2 Request-Level Interceptors
	15.7.3 Security Interceptors
	15.7.4 Implementation-Level Security Object Interf...
	15.7.5 Replaceable Security Services

	15.8 Security and Interoperability
	15.8.1 Interoperability Model
	15.8.2 Protocol Enhancements
	15.8.3 CORBA Interoperable Object Reference with S...
	15.8.4 Secure Inter-ORB Protocol (SECIOP)
	15.8.5 DCE-CIOP with Security

	16.Trading Object Service Specification
	16.1 Overview
	16.1.1 Diversity and Scalability
	16.1.2 Linking Traders
	16.1.3 Policy
	16.1.4 Additional ObjectID

	16.2 Concepts and Data Types
	16.2.1 Exporter
	16.2.2 Importer
	16.2.3 Service Types
	16.2.4 Properties
	16.2.5 Service Offers
	16.2.6 Offer Identifier
	16.2.7 Offer Selection
	16.2.8 Interworking Mechanisms
	16.2.9 Trader Attributes

	16.3 Exceptions
	16.3.1 For CosTrading module
	16.3.2 For CosTradingDynamic module
	16.3.3 For CosTradingRepos module

	16.4 Abstract Interfaces
	16.4.1 TraderComponents
	16.4.2 SupportAttributes
	16.4.3 ImportAttributes
	16.4.4 LinkAttributes

	16.5 Functional Interfaces
	16.5.1 Lookup
	16.5.2 Offer Iterator
	16.5.3 Register
	16.5.4 Offer Id Iterator
	16.5.5 Admin
	16.5.6 Link
	16.5.7 Proxy

	16.6 Service Type Repository
	16.7 Dynamic Property Evaluation interface
	16.8 Conformance Criteria
	16.8.1 Conformance Requirements for Trading Interf...
	16.8.2 Conformance Requirements for Implementation...

	17.Object Collection Specification
	17.1 Overview
	17.2 Service Structure
	17.2.1 Combined Property Collections
	17.2.2 Iterators
	17.2.3 Function Interfaces
	17.2.4 List of Interfaces Defined

	17.3 Combined Collections
	17.3.1 Combined Collections Usage Samples

	17.4 Restricted Access Collections
	17.4.1 Restricted Access Collections Usage Samples...

	17.5 The CosCollection Module
	17.5.1 Interface Hierarchies
	17.5.2 Exceptions and Type Definitions
	17.5.3 Abstract Collection Interfaces
	17.5.4 Concrete Collections Interfaces
	17.5.5 Restricted Access Collection Interfaces
	17.5.6 Abstract RestrictedAccessCollection Interfa...
	17.5.7 Concrete Restricted Access Collection Inter...
	17.5.8 Collection Factory Interfaces
	17.5.9 Iterator Interfaces
	17.5.10 Function Interfaces

	Index

