
The Common Object Request Broker:
Architecture and Specification

Revision 2.0, July 1995
Updated: July 1996
Revision 2.1, August 1997
Revision 2.2, February 1998

t in
g
Copyright 1995, 1996 BNR Europe Ltd.
Copyright 1991, 1992, 1995, 1996 by Digital Equipment Corporation
Copyright 1995, 1996 Expersoft Corporation
Copyright FUJITSU LIMITED 1996, 1997
Copyright 1996 Genesis Development Corporation
Copyright 1989, 1990, 1991, 1992, 1995, 1996 by Hewlett-Packard Company
Copyright 1991, 1992, 1995, 1996 by HyperDesk Corporation
Copyright International Business Machines Corporation 1996, 1997
Copyright 1995, 1996 ICL, plc
Copyright International Computers Limited 1996, 1997
Copyright 1995, 1996 IONA Technologies, Ltd.
Copyright Micro Focus Limited 1996, 1997
Copyright 1991, 1992, 1995, 1996 by NCR Corporation
Copyright 1995, 1996 Novell USG
Copyright 1991,1992, 1995, 1996 by Object Design, Inc.
Copyright 1991, 1992, 1995, 1996 Object Management Group, Inc.
Copyright 1996 Siemens Nixdorf Informationssysteme AG
Copyright 1991, 1992, 1995, 1996 by Sun Microsystems, Inc.
Copyright 1995, 1996 SunSoft, Inc.
Copyright 1996 Sybase, Inc.
Copyright 1998 Telefónica Investigación y Desarrollo S.A. Unipersonal
Copyright 1998 Visigenic Software, Inc.
Copyright 1996 Visual Edge Software, Ltd.

BNR Europe Ltd., Expersoft Corporation, FUJITSU LIMITED, Genesis Development Corporation, IBM Corporation,
ICL plc, IONA Technologies Ltd., Digital Equipment Corporation, Hewlett-Packard Company, HyperDesk Corpora-
tion, NCR Corporation, Novell USG, Object Design, Inc., Siemens Nixdorf Informationssysteme AG, Sun Microsys-
tems, Inc., SunSoft, Inc., Sybase, Inc., Telefónica Investigación y Desarrollo S.A. Unipersonal, Visigenic Software, Inc.,
and Visual Edge Software, Ltd., hereby grant to the Object Management Group, Inc. a nonexclusive, royalty-free, paid
up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the
modified version.

Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyrigh
the included material of any such copyright holder by reason of having used the specification set forth herein or havin
conformed any computer software to the specification.

NOTICE

The information contained in this document is subject to change without notice.

The material in this document details an Object Management Group specification in accordance with the license and
notices set forth on this page. This document does not represent a commitment to implement any portion of this specifi-
cation in any companies' products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE,
THE OBJECT MANAGEMENT GROUP, DIGITAL EQUIPMENT CORPORATION, FUJITSU LTD, GENESIS
DEVELOPMENT CORPORATION, HEWLETT-PACKARD COMPANY, HYPERDESK CORPORATION, NCR
CORPORATION, OBJECT DESIGN, INC., SIEMENS NIXDORF INFORMATIONSSYTEME AG, SYBASE INC.,
SUN MICROSYSTEMS, INC., VISIGENIC SOFTWARE, INC., VISUAL EDGE SOFTWARE LTD, AND X/OPEN
CO. LTD. MAKE NO WARRANTY OF ANY KIND WITH REGARDS TO THIS MATERIAL INCLUDING, BUT

ers to
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE. The aforementioned copyright holders shall not be liable for errors contained herein or for incidental
or consequential damages in connection with the furnishing, performance, or use of this material.
The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its desig-
nees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software
to use certification marks, trademarks or other special designations to indicate compliance with these materials.

This document contains information which is protected by copyright. All Rights Reserved. No part of this work covered
by copyright herein may be reproduced or used in any form or by any means—graphic, electronic or mechanical,
including photocopying, recording, taping, or information storage and retrieval systems—without permission of the
copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth
in subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013.

OMG and Object Management are registered trademarks of the Object Management Group, Inc.
Object Request Broker, OMG IDL, ORB CORBA, CORBAfacilities, and CORBAservices are trademarks of the Object
Management Group.

Hewlett-Packard Company is a trademark of Hewlett-Packard Company.
HyperDesk is a trademark of HyperDesk Corporation.
Microsoft and Visual Basic are registered trademarks of Microsoft Corporation.
Smalltalk/V is a registered trademark of Digitalk, Inc.
SunSoft is a trademark of Sun Microsystems, Inc., licensed to SunSoft, Inc.
Telefónica Investigación y Desarrollo S.A. Unipersonal is a registered trademark of Telefónica.
X/Open and the "X" symbol are trademarks of X/Open Company Limited.
VisualAge is a trademark of International Business Machines Corporation.
VisualWorks is registered trademark of ParcPlace Systems, Inc.

Other names, products, and services may be the trademarks or registered trademarks of their respective holders.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage read
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the issue reporting form at
http://www.omg.org/library/issuerpt.htm.

Contents

xvii

vii
vii
iii

viii

viii

xxix

x

xxi

xiii

xxiv

-1

1-1

1-2
1-3
1-3

1-4
-5
-6
-7

1-8
-8
8

-1

2-2
2-6
2-7
-7
2-8
8

2-8
2-9
-9
9

Preface . x

0.1 About This Document . xx
0.1.1 Object Management Group. xx
0.1.2 X/Open . xxv

0.2 Intended Audience . xx

0.3 Context of CORBA . xx

0.4 Associated Documents .

0.5 Definition of CORBA Compliance. xx

0.6 Structure of This Manual . x

0.7 Acknowledgements . xx

0.8 References . x

1. The Object Model . 1

1.1 Overview .

1.2 Object Semantics .
1.2.1 Objects .
1.2.2 Requests .
1.2.3 Object Creation and Destruction 1-4
1.2.4 Types .
1.2.5 Interfaces . 1
1.2.6 Operations . 1
1.2.7 Attributes . 1

1.3 Object Implementation. .
1.3.1 The Execution Model: Performing Services . . . 1
1.3.2 The Construction Model 1-

2. CORBA Overview . 2

2.1 Structure of an Object Request Broker
2.1.1 Object Request Broker
2.1.2 Clients .
2.1.3 Object Implementations 2
2.1.4 Object References. .
2.1.5 OMG Interface Definition Language 2-
2.1.6 Mapping of OMG IDL to Programming

Languages .
2.1.7 Client Stubs .
2.1.8 Dynamic Invocation Interface. 2
2.1.9 Implementation Skeleton 2-
2.1.10 Dynamic Skeleton Interface2-10
2.1.11 Object Adapters .2-10
CORBA V2.2 February 1998 i

Contents

0

-13

-17

-18

1

3-2

3-3
3-6
-6
-6
-7
-7

3-9

-10

14
4

27
9

2.1.12 ORB Interface. 2-1
2.1.13 Interface Repository .2-11
2.1.14 Implementation Repository 2-11

2.2 Example ORBs. .2-11
2.2.1 Client- and Implementation-resident ORB2-11
2.2.2 Server-based ORB .2-12
2.2.3 System-based ORB. .2-12
2.2.4 Library-based ORB .2-12

2.3 Structure of a Client .2-12

2.4 Structure of an Object Implementation 2

2.5 Structure of an Object Adapter. .2-15

2.6 CORBA Required Object Adapter. 2
2.6.1 Portable Object Adapter2-17

2.7 The Integration of Foreign Object Systems 2

3. OMG IDL Syntax and Semantics. 3-

3.1 Overview .

3.2 Lexical Conventions. .
3.2.1 Tokens .
3.2.2 Comments. 3
3.2.3 Identifiers . 3
3.2.4 Keywords . 3
3.2.5 Literals . 3

3.3 Preprocessing .

3.4 OMG IDL Grammar. 3

3.5 OMG IDL Specification . 3-
3.5.1 Module Declaration . 3-1
3.5.2 Interface Declaration .3-15

3.6 Inheritance .3-16

3.7 Constant Declaration .3-18
3.7.1 Syntax. .3-18
3.7.2 Semantics .3-20

3.8 Type Declaration .3-22
3.8.1 Basic Types. .3-23
3.8.2 Constructed Types .3-25
3.8.3 Template Types. 3-
3.8.4 Complex Declarator . 3-2
3.8.5 Native Types .3-29

3.9 Exception Declaration .3-30
ii CORBA V2.2 February 1998

Contents

-33

35

4-1

4-1

4-4

4-5
-5
-5
-6
-6

7

-8

8

-8

-10

-12

-12

4-19
3.10 Operation Declaration .3-31
3.10.1 Operation Attribute. .3-31
3.10.2 Parameter Declarations.3-32
3.10.3 Raises Expressions .3-32
3.10.4 Context Expressions .3-33

3.11 Attr ibute Declaration . 3

3.12 CORBA Module. .3-34

3.13 Names and Scoping . 3-

3.14 Differences from C++ .3-37

3.15 Standard Exceptions. .3-37
3.15.1 Standard Exceptions Definitions3-38
3.15.2 Object Non-Existence.3-39
3.15.3 Transaction Exceptions.3-39

4. ORB Interface. .

4.1 Overview .
4.1.1 Converting Object References to Strings 4-3
4.1.2 Getting Service Information 4-3

4.2 Object Reference Operations .
4.2.1 Determining the Object Interface 4-4
4.2.2 Duplicating and Releasing Copies of Object

References .
4.2.3 Nil Object References. 4
4.2.4 Equivalence Checking Operation 4
4.2.5 Probing for Object Non-Existence 4
4.2.6 Object Reference Identity. 4
4.2.7 Getting Policy Associated with the Object 4-
4.2.8 Getting the Domain Managers Associated with

the Object . 4

4.3 ORB and OA Initialization and Initial References 4-

4.4 ORB Initialization . 4

4.5 Obtaining Initial Object References 4

4.6 Current Object . 4

4.7 Policy Object . 4

4.8 Management of Policy Domains .4-14
4.8.1 Basic Concepts .4-14
4.8.2 Domain Management Operations 4-16

4.9 Thread-related operations .
4.9.1 work_pending .4-19
CORBA V2.2 February 1998 iii

Contents

9

20

1

5-2
2
5-4
-4

5-5
5-5
-7
-8

5-8

5-8
5-8
9

-11

3

3

-14
15

-1

6-1

6-2
4.9.2 perform_work . 4-1
4.9.3 run .4-20
4.9.4 shutdown . 4-

5. Dynamic Invocation Interface . 5-

5.1 Overview .
5.1.1 Common Data Structures 5-
5.1.2 Memory Usage .
5.1.3 Return Status and Exceptions 5

5.2 Request Operations .
5.2.1 create_request. .
5.2.2 add_arg . 5
5.2.3 invoke . 5
5.2.4 delete .

5.3 Deferred Synchronous Operations
5.3.1 send .
5.3.2 send_multiple_requests 5-
5.3.3 get_response .5-10
5.3.4 get_next_response .5-10

5.4 List Operations. 5
5.4.1 create_list .5-12
5.4.2 add_item. .5-12
5.4.3 free .5-12
5.4.4 free_memory . 5-1
5.4.5 get_count .5-13
5.4.6 create_operation_list . 5-1

5.5 Context Objects .5-13

5.6 Context Object Operations . 5
5.6.1 get_default_context . 5-
5.6.2 set_one_value .5-16
5.6.3 set_values .5-16
5.6.4 get_values. .5-16
5.6.5 delete_values .5-17
5.6.6 create_child .5-17
5.6.7 delete .5-17

5.7 Native Data Manipulation .5-17

6. Dynamic Skeleton Interface. 6

6.1 Introduction .

6.2 Overview .
iv CORBA V2.2 February 1998

Contents

6-3

-3

4

6-4

-1

7-2

7-3
7-5
-5
7

7-14

-1

8-1

8-2

8-4
-5

8-6

8-6
-7

8-9
9

13
6.3 ServerRequestPseudo-Object .
6.3.1 ExplicitRequest State: ServerRequestPseudo-

Object . 6

6.4 DSI: Language Mapping . 6-
6.4.1 ServerRequest’s Handling of Operation

Parameters .
6.4.2 Registering Dynamic Implementation Routines 6-5

7. Dynamic management of Any values 7

7.1 Overview .

7.2 DynAny API .
7.2.1 Locality and usage constraints
7.2.2 Creating a DynAny object 7
7.2.3 The DynAny interface 7-
7.2.4 The DynFixed interface 7-10
7.2.5 The DynEnum interface7-10
7.2.6 The DynStruct interface7-11
7.2.7 The DynUnion interface7-12
7.2.8 The DynSequence interface 7-13
7.2.9 The DynArray interface7-13

7.3 Usage in C++ language .
7.3.1 Dynamic creation of CORBA::Any values7-14
7.3.2 Dynamic interpretation of CORBA::Any values 7-15

8. The Interface Repository . 8

8.1 Overview .

8.2 Scope of an Interface Repository .

8.3 Implementation Dependencies .
8.3.1 Managing Interface Repositories 8

8.4 Basics .
8.4.1 Names and Identifiers . 8-6
8.4.2 Types and TypeCodes .
8.4.3 Interface Objects. 8
8.4.4 Structure and Navigation of Interface Objects . 8-7

8.5 Interface Repository Interfaces .
8.5.1 Supporting Type Definitions. 8-
8.5.2 IRObject .8-10
8.5.3 Contained .8-11
8.5.4 Container . 8-
8.5.5 IDLType .8-17
8.5.6 Repository .8-17
CORBA V2.2 February 1998 v

Contents

29

-31

4

1

9-1

9-2
-2
4
-6

9-7
-8
9-9

0
1

8.5.7 ModuleDef .8-19
8.5.8 ConstantDef Interface.8-19
8.5.9 StructDef .8-20
8.5.10 UnionDef .8-21
8.5.11 EnumDef .8-22
8.5.12 AliasDef .8-22
8.5.13 PrimitiveDef .8-23
8.5.14 StringDef .8-23
8.5.15 WstringDef .8-24
8.5.16 FixedDef .8-24
8.5.17 SequenceDef. .8-24
8.5.18 ArrayDef. .8-25
8.5.19 ExceptionDef .8-26
8.5.20 AttributeDef .8-26
8.5.21 OperationDef .8-27
8.5.22 InterfaceDef . 8-

8.6 RepositoryIds . 8
8.6.1 OMG IDL Format. .8-31
8.6.2 DCE UUID Format. .8-31
8.6.3 LOCAL Format .8-32
8.6.4 Pragma Directives for RepositoryId 8-32
8.6.5 For More Information . 8-3
8.6.6 RepositoryIDs for OMG-Specified Types. 8-34

8.7 TypeCodes .8-35
8.7.1 The TypeCode Interface8-36
8.7.2 TypeCode Constants .8-40
8.7.3 Creating TypeCodes .8-41

8.8 OMG IDL for Interface Repository8-44

9. The Portable Object Adaptor . 9-

9.1 Overview .

9.2 Abstract Model Description .
9.2.1 Model Components . 9
9.2.2 Model Architecture. 9-
9.2.3 POA Creation . 9
9.2.4 Reference Creation .
9.2.5 Object Activation States 9
9.2.6 Request Processing. .
9.2.7 Implicit Activation . 9-1
9.2.8 Multi-threading . 9-1
vi CORBA V2.2 February 1998

Contents

13

9-13

0

0
38

-38

9-47

48
9

57

1

-1
2

-4

-5
9.2.9 Dynamic Skeleton Interface9-12
9.2.10 Location Transparency 9-

9.3 Interfaces .
9.3.1 The Servant IDL Type 9-14
9.3.2 POAManager Interface9-14
9.3.3 AdapterActivator Interface9-19
9.3.4 ServantManager Interface. 9-2
9.3.5 ServantActivator Interface 9-21
9.3.6 ServantLocator Interface 9-24
9.3.7 POA Policy Objects .9-25
9.3.8 POA Interface. 9-3
9.3.9 Current operations . 9-

9.4 IDL for PortableServer module . 9

9.5 UML Description of PortableServer.9-46

9.6 Usage Scenarios .
9.6.1 Getting the root POA .9-48
9.6.2 Creating a POA. .9-48
9.6.3 Explicit Activation with POA-assigned

Object Ids . 9-
9.6.4 Explicit activation with user assigned Object Ids 9-4
9.6.5 Creating references before activation9-50
9.6.6 Servant Manager Definition and Creation 9-51
9.6.7 Object activation on demand 9-52
9.6.8 Persistent objects with POA-assigned Ids.9-54
9.6.9 Multiple Object Ids Mapping to a Single Servant9-54
9.6.10 One Servant for all Objects.9-54
9.6.11 Single Servant, many objects and types,

using DSI . 9-

10. Interoperability Overview . 10-

10.1 Elements of Interoperability. 10
10.1.1 ORB Interoperability Architecture 10-
10.1.2 Inter-ORB Bridge Support 10-2
10.1.3 General Inter-ORB Protocol (GIOP) 10-3
10.1.4 Internet Inter-ORB Protocol (IIOP) 10-3
10.1.5 Environment-Specific Inter-ORB Protocols

 (ESIOPs) . 10

10.2 Relationship to Previous Versions of CORBA 10-4

10.3 Examples of Interoperability Solutions 10
10.3.1 Example 1. .10-5
10.3.2 Example 2. .10-5
CORBA V2.2 February 1998 vii

Contents

10

5

-8
10.3.3 Example 3. .10-5
10.3.4 Interoperability Compliance10-5

10.4 Motivating Factors .10-8
10.4.1 ORB Implementation Diversity 10-8
10.4.2 ORB Boundaries. .10-8
10.4.3 ORBs Vary in Scope, Distance, and Lifetime. .10-9

10.5 Interoperability Design Goals .10-9
10.5.1 Non-Goals . 10-

11. ORB Interoperability Architecture 11-1

11.1 Overview .11-1
11.1.1 Domains .11-2
11.1.2 Bridging Domains .11-2

11.2 ORBs and ORB Services .11-3
11.2.1 The Nature of ORB Services 11-3
11.2.2 ORB Services and Object Requests11-3
11.2.3 Selection of ORB Services11-4

11.3 Domains .11-5
11.3.1 Definition of a Domain. 11-
11.3.2 Mapping Between Domains: Bridging 11-6

11.4 Interoperability Between ORBs .11-7
11.4.1 ORB Services and Domains11-7
11.4.2 ORBs and Domains .11-7
11.4.3 Interoperability Approaches 11
11.4.4 Policy-Mediated Bridging 11-10
11.4.5 Configurations of Bridges in Networks 11-11

11.5 Object Addressing . 11-11
11.5.1 Domain-relative Object Referencing 11-12
11.5.2 Handling of Referencing Between Domains. . . 11-12

11.6 An Information Model for Object References 11-14
11.6.1 What Information Do Bridges Need? 11-14
11.6.2 Interoperable Object References: IORs 11-14
11.6.3 Standard IOR Components 11-17
11.6.4 Profile and Component Composition in IORs . 11-18
11.6.5 IOR Creation and Scope 11-19
11.6.6 Stringified Object References. 11-19
11.6.7 Object Service Context. 11-20

11.7 Code Set Conversion . 11-22
11.7.1 Character Processing Terminology 11-22
viii CORBA V2.2 February 1998

Contents

ode

34

1

-1

3-2

4

11.7.2 . C
Set Conversion Framework. 11-25

11.7.3 Mapping to Generic Character Environments. . 11-33

11.8 Example of Generic Environment Mapping 11-
11.8.1 Generic Mappings . 11-35
11.8.2 Interoperation and Generic Mappings 11-35

11.9 Relevant OSFM Registry Interfaces 11-35
11.9.1 Character and Code Set Registry 11-35
11.9.2 Access Routines . 11-36

12. Building Inter-ORB Bridges . 12-

12.1 In-Line and Request-Level Bridging 12-2
12.1.1 In-line Bridging .12-3
12.1.2 Request-level Bridging 12-3
12.1.3 Collocated ORBs .12-4

12.2 Proxy Creation and Management .12-5

12.3 Interface-specific Bridges and Generic Bridges12-6

12.4 Building Generic Request-Level Bridges.12-6

12.5 Bridging Non-Referencing Domains12-7

12.6 Bootstrapping Bridges .12-7

13. General Inter-ORB Protocol. 13

13.1 Goals of the General Inter-ORB Protocol 13-2

13.2 GIOP Overview . 1
13.2.1 Common Data Representation (CDR) 13-3
13.2.2 GIOP Message Overview 13-3
13.2.3 GIOP Message Transfer 13-

13.3 CDR Transfer Syntax .13-4
13.3.1 Primitive Types. .13-5
13.3.2 OMG IDL Constructed Types. 13-10
13.3.3 Encapsulation . 13-12
13.3.4 Pseudo-Object Types . 13-13
13.3.5 Object References. 13-18

13.4 GIOP Message Formats . 13-19
13.4.1 GIOP Message Header 13-19
13.4.2 Reply Message . 13-24
13.4.3 CancelRequest Message 13-26
13.4.4 LocateRequest Message 13-27
13.4.5 LocateReply Message. 13-28
13.4.6 CloseConnection Message 13-29
CORBA V2.2 February 1998 ix

Contents

2

3

4
7

4-1

-5
-6

-22
13.4.7 MessageError Message. 13-29
13.4.8 Fragment Message . 13-29

13.5 GIOP Message Transport . 13-30
13.5.1 Connection Management 13-30
13.5.2 Message Ordering. 13-3

13.6 Object Location . 13-32

13.7 Internet Inter-ORB Protocol (IIOP) 13-3
13.7.1 TCP/IP Connection Usage 13-34
13.7.2 IIOP IOR Profiles . 13-3
13.7.3 IIOP IOR Profile Components 13-3

13.8 OMG IDL. 13-37
13.8.1 GIOP Module . 13-37
13.8.2 IIOP Module. 13-39

14. The DCE ESIOP. 1

14.1 Goals of the DCE Common Inter-ORB Protocol14-1

14.2 DCE Common Inter-ORB Protocol Overview14-2
14.2.1 DCE-CIOP RPC .14-2
14.2.2 DCE-CIOP Data Representation 14-3
14.2.3 DCE-CIOP Messages .14-4
14.2.4 Interoperable Object Reference (IOR) 14-5

14.3 DCE-CIOP Message Transport . 14
14.3.1 Pipe-based Interface . 14
14.3.2 Array-based Interface .14-8

14.4 DCE-CIOP Message Formats. 14-11
14.4.1 DCE_CIOP Invoke Request Message. 14-11
14.4.2 DCE-CIOP Invoke Response Message 14-12
14.4.3 DCE-CIOP Locate Request Message 14-14
14.4.4 DCE-CIOP Locate Response Message 14-15

14.5 DCE-CIOP Object References . 14-16
14.5.1 DCE-CIOP String Binding Component 14-17
14.5.2 DCE-CIOP Binding Name Component 14-18
14.5.3 DCE-CIOP No Pipes Component 14-19
14.5.4 Complete Object Key Component 14-19
14.5.5 Endpoint ID Position Component 14-20
14.5.6 Location Policy Component 14-20

14.6 DCE-CIOP Object Location. 14
14.6.1 Location Mechanism Overview 14-22
14.6.2 Activation . 14-23
14.6.3 Basic Location Algorithm 14-23
x CORBA V2.2 February 1998

Contents

1

2

9

-32

3

-34
14.6.4 Use of the Location Policy and the Endpoint ID14-24

14.7 OMG IDL for the DCE CIOP Module 14-25

14.8 References for this Chapter . 14-26

15. Interworking Architecture. 15-

15.1 Purpose of the Interworking Architecture 15-
15.1.1 Comparing COM Objects to CORBA Objects .15-2

15.2 Interworking Object Model .15-3
15.2.1 Relationship to CORBA Object Model.15-3
15.2.2 Relationship to the OLE/COM Model 15-4
15.2.3 Basic Description of the Interworking Model. . 15-4

15.3 Interworking Mapping Issues .15-8

15.4 Interface Mapping .15-8
15.4.1 CORBA/COM .15-9
15.4.2 CORBA/Automation . 15-
15.4.3 COM/CORBA . 15-10
15.4.4 Automation/CORBA . 15-10

15.5 Interface Composition Mappings . 15-11
15.5.1 CORBA/COM . 15-11
15.5.2 Detailed Mapping Rules 15-13
15.5.3 Example of Applying Ordering Rules 15-14
15.5.4 Mapping Interface Identity 15-16

15.6 Object Identity, Binding, and Life Cycle 15-18
15.6.1 Object Identity Issues . 15-18
15.6.2 Binding and Life Cycle 15-20

15.7 Interworking Interfaces . 15-23
15.7.1 SimpleFactory Interface 15-23
15.7.2 IMonikerProvider Interface and Moniker Use . 15-23
15.7.3 ICORBAFactory Interface 15-24
15.7.4 IForeignObject Interface. 15-26
15.7.5 ICORBAObject Interface 15-27
15.7.6 IORBObject Interface. 15-28
15.7.7 Naming Conventions for View Components. . . 15-29

15.8 Distribution . 15
15.8.1 Bridge Locality. 15-32
15.8.2 Distribution Architecture 15-3

15.9 Interworking Targets . 15

15.10 Compliance to COM/CORBA Interworking 15-34
15.10.1 Products Subject to Compliance. 15-34
CORBA V2.2 February 1998 xi

Contents

1

-1

3

5

3

3

15.10.2 Compliance Points . 15-36

16. Mapping: COM and CORBA . 16-

16.1 Data Type Mapping . 16

16.2 CORBA to COM Data Type Mapping16-2
16.2.1 Mapping for Basic Data Types16-2
16.2.2 Mapping for Constants16-2
16.2.3 Mapping for Enumerators. 16-
16.2.4 Mapping for String Types.16-4
16.2.5 Mapping for Struct Types 16-
16.2.6 Mapping for Union Types.16-6
16.2.7 Mapping for Sequence Types16-8
16.2.8 Mapping for Array Types16-9
16.2.9 Mapping for the any Type. 16-10
16.2.10 Interface Mapping . 16-11
16.2.11 Inheritance Mapping. 16-25
16.2.12 Mapping for Pseudo-Objects 16-28
16.2.13 Interface Repository Mapping 16-31

16.3 COM to CORBA Data Type Mapping 16-32
16.3.1 Mapping for Basic Data Types 16-32
16.3.2 Mapping for Constants 16-33
16.3.3 Mapping for Enumerators. 16-3
16.3.4 Mapping for String Types. 16-34
16.3.5 Mapping for Structure Types 16-36
16.3.6 Mapping for Union Types. 16-37
16.3.7 Mapping for Array Types 16-39
16.3.8 Mapping for VARIANT 16-40
16.3.9 Mapping for Pointers . 16-4
16.3.10 Interface Mapping . 16-43
16.3.11 Mapping for Read-Only Attributes. 16-48
16.3.12 Mapping for Read-Write Attributes 16-48

17. Mapping: OLE Automation and CORBA 17-1

17.1 Mapping CORBA Objects to OLE Automation17-2
17.1.1 Architectural Overview 17-2
17.1.2 Main Features of the Mapping17-3
17.1.3 Mapping for Interfaces17-3
17.1.4 Mapping for Basic Data Types17-9
17.1.5 Special Cases of Basic Data Type Mapping . . . 17-11
17.1.6 Mapping for Strings . 17-11
xii CORBA V2.2 February 1998

Contents

-12
6

-27

29

6

36

-43
6

7

17.1.7 A Complete IDL to ODL Mapping for the Basic
Data Types . 17

17.1.8 Mapping for Object References 17-1
17.1.9 Mapping for Enumerated Types 17-18
17.1.10 Mapping for Arrays and Sequences 17-19
17.1.11 Mapping for CORBA Complex Types 17-20
17.1.12 Mapping for TypeCodes 17-23
17.1.13 Mapping for anys . 17-24
17.1.14 Mapping for Typedefs 17-25
17.1.15 Mapping for Constants 17-25
17.1.16 Getting Initial CORBA Object References 17-26
17.1.17 Creating Initial in Parameters for Complex

Types . 17
17.1.18 Mapping CORBA Exceptions to Automation

Exceptions . 17-
17.1.19 Conventions for Naming Components of the

Automation View . 17-3
17.1.20 Naming Conventions for Pseudo-Structs, Pseudo-

Unions, and Pseudo-Exceptions 17-36
17.1.21 Automation View Interface as a Dispatch Interface

 (Nondual) . 17-
17.1.22 Aggregation of Automation Views 17-37
17.1.23 DII and DSI . 17-37

17.2 Automation Objects as CORBA Objects 17-38
17.2.1 Architectural Overview 17-38
17.2.2 Main Features of the Mapping 17-39
17.2.3 Getting Initial Object References 17-39
17.2.4 Mapping for Interfaces 17-40
17.2.5 Mapping for Inheritance 17-40
17.2.6 Mapping for ODL Properties and Methods . . . 17-41
17.2.7 Mapping for Automation Basic Data Types . . . 17-42
17.2.8 Conversion Errors . 17-43
17.2.9 Special Cases of Data Type Conversion 17-43
17.2.10 A Complete OMG IDL to ODL Mapping for

the Basic Data Types . 17
17.2.11 Mapping for Object References 17-4
17.2.12 Mapping for Enumerated Types 17-47
17.2.13 Mapping for SafeArrays 17-4
17.2.14 Mapping for Typedefs 17-48
17.2.15 Mapping for VARIANTs 17-48
17.2.16 Mapping Automation Exceptions to CORBA. . 17-48
CORBA V2.2 February 1998 xiii

Contents

9

49

50

55

8-1

3

-5

6
7

9-1
17.3 Older OLE Automation Controllers 17-4
17.3.1 Mapping for OMG IDL Arrays and Sequences to

Collections . 17-

17.4 Example Mappings. 17-50
17.4.1 Mapping the OMG Naming Service to OLE

Automation. 17-
17.4.2 Mapping a COM Service to OMG IDL 17-51
17.4.3 Mapping an OMG Object Service to OLE

Automation. 17-

18. Interceptors . 1

18.1 Introduction. .18-1
18.1.1 ORB Core and ORB Services.18-2

18.2 Interceptors .18-2
18.2.1 Generic ORB Services and Interceptors18-2
18.2.2 Request-Level Interceptors 18-3
18.2.3 Message-Level Interceptors 18-
18.2.4 Selecting Interceptors .18-4

18.3 Client-Target Binding. .18-4
18.3.1 Binding Model . 18
18.3.2 Establishing the Binding and Interceptors 18-5

18.4 Using Interceptors .18-6
18.4.1 Request-Level Interceptors 18-
18.4.2 Message-Level Interceptors 18-

18.5 Interceptor Interfaces .18-7
18.5.1 Client and Target Invoke.18-8
18.5.2 Send and Receive Message.18-8

18.6 IDL for Interceptors .18-9

19. C Language Mapping . 1

19.1 Requirements for a Language Mapping 19-2
19.1.1 Basic Data Types .19-3
19.1.2 Constructed Data Types19-3
19.1.3 Constants .19-3
19.1.4 Objects .19-3
19.1.5 Invocation of Operations 19-4
19.1.6 Exceptions .19-4
19.1.7 Attributes .19-5
19.1.8 ORB Interfaces .19-5

19.2 Scoped Names .19-5

19.3 Mapping for Interfaces. .19-6
xiv CORBA V2.2 February 1998

Contents

12

-18

-18

31

42

44
19.4 Inheritance and Operation Names 19-8

19.5 Mapping for Attributes. .19-8

19.6 Mapping for Constants. 19-10

19.7 Mapping for Basic Data Types . 19-10

19.8 Mapping Considerations for Constructed Types. 19-11

19.9 Mapping for Structure Types . 19-

19.10 Mapping for Union Types . 19-12

19.11 Mapping for Sequence Types . 19-13

19.12 Mapping for Strings . 19-16

19.13 Mapping for Wide Strings . 19

19.14 Mapping for Fixed . 19

19.15 Mapping for Arrays . 19-19

19.16 Mapping for Exception Types . 19-20

19.17 Implicit Arguments to Operations 19-21

19.18 Interpretation of Functions with Empty Argument Lists . . 19-21

19.19 Argument Passing Considerations 19-21

19.20 Return Result Passing Considerations 19-22

19.21 Summary of Argument/Result Passing. 19-23

19.22 Handling Exceptions . 19-26

19.23 Method Routine Signatures . 19-29

19.24 Include Files. 19-29

19.25 Pseudo-objects . 19-29
19.25.1 ORB Operations . 19-30

19.26 Mapping for Object Implementations. 19-30
19.26.1 Operation-specific Details 19-31
19.26.2 PortableServer Functions 19-31
19.26.3 Mapping for PortableServer::Servant

Locator::Cookie . 19-
19.26.4 Servant Mapping . 19-32
19.26.5 Interface Skeletons . 19-33
19.26.6 Servant Structure Initialization 19-35
19.26.7 Application Servants. 19-37
19.26.8 Method Signatures . 19-39

19.27 Mapping of the Dynamic Skeleton Interface to C 19-40
19.27.1 Mapping of ServerRequest to C 19-40
19.27.2 Mapping of Dynamic Implementation

Routine to C . 19-

19.28 ORB Initialization Operations . 19-
CORBA V2.2 February 1998 xv

Contents

1

21
20. Mapping of OMG IDL to C++. 20-

20.1 Preliminary Information. .20-3
20.1.1 Overview .20-3
20.1.2 Scoped Names .20-4
20.1.3 C++ Type Size Requirements20-5
20.1.4 CORBA Module .20-5

20.2 Mapping for Modules. .20-5

20.3 Mapping for Interfaces. .20-6
20.3.1 Object Reference Types20-6
20.3.2 Widening Object References 20-7
20.3.3 Object Reference Operations20-8
20.3.4 Narrowing Object References.20-9
20.3.5 Nil Object Reference . 20-10
20.3.6 Object Reference Out Parameter 20-10
20.3.7 Interface Mapping Example 20-11

20.4 Mapping for Constants. 20-13

20.5 Mapping for Basic Data Types . 20-15

20.6 Mapping for Enums . 20-16

20.7 Mapping for String Types. 20-17

20.8 Mapping for Wide String Types . 20-20

20.9 Mapping for Structured Types . 20-
20.9.1 T_var Types . 20-22
20.9.2 T_out Types . 20-25

20.10 Mapping for Struct Types. 20-27

20.11 Mapping for Fixed . 20-29
20.11.1 Fixed T_var and T_out Types 20-31

20.12 Mapping for Union Types . 20-31

20.13 Mapping for Sequence Types . 20-35
20.13.1 Sequence Example . 20-38
20.13.2 Using the “release” Constructor Parameter . . . 20-39
20.13.3 Additional Memory Management Functions . . 20-40
20.13.4 Sequence T_var and T_out Types 20-41

20.14 Mapping For Array Types . 20-41

20.15 Mapping For Typedefs . 20-44

20.16 Mapping for the Any Type . 20-46
20.16.1 Handling Typed Values. 20-46
20.16.2 Insertion into any . 20-46
20.16.3 Extraction from any . 20-49
xvi CORBA V2.2 February 1998

Contents

52

-57

-71

-73

0

20.16.4 Distinguishing boolean, octet, char, wchar, bounded
string, and bounded wstring 20-

20.16.5 Widening to Object. 20-55
20.16.6 Handling Untyped Values. 20-56
20.16.7 Any Constructors, Destructor, Assignment

Operator . 20
20.16.8 The Any Class . 20-57
20.16.9 The Any_var Class . 20-57

20.17 Mapping for Exception Types . 20-58

20.18 Mapping For Operations and Attributes 20-61

20.19 Implicit Arguments to Operations 20-62

20.20 Argument Passing Considerations 20-62
20.20.1 Operation Parameters and Signatures 20-65

20.21 Mapping of Pseudo Objects to C++ 20-68

20.22 Usage . 20-69

20.23 Mapping Rules . 20-69

20.24 Relation to the C PIDL Mapping . 20-70

20.25 Environment. 20
20.25.1 Environment Interface 20-71
20.25.2 Environment C++ Class 20-72
20.25.3 Differences from C-PIDL 20-72
20.25.4 Memory Management. 20-72

20.26 NamedValue . 20-72
20.26.1 NamedValue Interface 20-73
20.26.2 NamedValue C++ Class 20-73
20.26.3 Differences from C-PIDL 20-73
20.26.4 Memory Management. 20-73

20.27 NVList . 20
20.27.1 NVList Interface. 20-74
20.27.2 NVList C++ Class . 20-74
20.27.3 Differences from C-PIDL 20-75
20.27.4 Memory Management. 20-75

20.28 Request. 20-75
20.28.1 Request Interface . 20-77
20.28.2 Request C++ Class . 20-78
20.28.3 Differences from C-PIDL 20-79
20.28.4 Memory Management. 20-80

20.29 Context. 20-80
20.29.1 Context Interface . 20-8
CORBA V2.2 February 1998 xvii

Contents

83

-88

00
20.29.2 Context C++ Class . 20-81
20.29.3 Differences from C-PIDL 20-81
20.29.4 Memory Management. 20-81

20.30 TypeCode . 20-81
20.30.1 TypeCode Interface. 20-82
20.30.2 TypeCode C++ Class . 20-82
20.30.3 Differences from C-PIDL 20-83
20.30.4 Memory Management. 20-83

20.31 ORB. 20-83
20.31.1 ORB Interface. 20-
20.31.2 ORB C++ Class . 20-84
20.31.3 Differences from C-PIDL 20-85
20.31.4 Mapping of ORB Initialization Operations. . . . 20-85

20.32 Object. 20-86
20.32.1 Object Interface . 20-87
20.32.2 Object C++ Class . 20-87

20.33 Server-Side Mapping . 20

20.34 Implementing Interfaces. 20-89
20.34.1 Mapping of PortableServer::Servant. 20-89
20.34.2 Skeleton Operations . 20-90
20.34.3 Inheritance-Based Interface Implementation . . 20-91
20.34.4 Delegation-Based Interface Implementation. . . 20-93

20.35 Implementing Operations. 20-97
20.35.1 Skeleton Derivation From Object 20-99

20.36 Mapping of Dynamic Skeleton Interface to C++ 20-99
20.36.1 Mapping of ServerRequest to C++ 20-99
20.36.2 Handling Operation Parameters and Results. 20-100
20.36.3 Mapping of PortableServer Dynamic

Implementation Routine 20-1

20.37 PortableServer Functions . 20-101

20.38 Mapping for PortableServer::ServantManager 20-102
20.38.1 Mapping for Cookie 20-102
20.38.2 ServantManagers and AdapterActivators . . . 20-102

20.39 C++ Definitions for CORBA . 20-103
20.39.1 Primitive Types. 20-103
20.39.2 String_var and String_out Class 20-104
20.39.3 WString_var and WString_out 20-104
20.39.4 Any Class . 20-105
20.39.5 Any_var Class . 20-107
xviii CORBA V2.2 February 1998

Contents

11
12

15

-3

-5
20.39.6 Exception Class . 20-108
20.39.7 SystemException Class. 20-108
20.39.8 UserException Class. 20-108
20.39.9 UnknownUserException Class 20-109
20.39.10release and is_nil . 20-109
20.39.11Object Class . 20-110
20.39.12Environment Class . 20-111
20.39.13NamedValue Class . 20-111
20.39.14NVList Class . 20-1
20.39.15ExceptionList Class 20-1
20.39.16ContextList Class . 20-112
20.39.17Request Class. 20-112
20.39.18Context Class . 20-113
20.39.19TypeCode Class . 20-113
20.39.20ORB Class . 20-114
20.39.21ORB Initialization . 20-1
20.39.22General T_out Types 20-115

20.40 Alternative Mappings For C++ Dialects. 20-116
20.40.1 Without Namespaces 20-116
20.40.2 Without Exception Handling 20-116

20.41 C++ Keywords . 20-118

21. Mapping of OMG IDL to Smalltalk. 21-1

21.1 Mapping Summary. 21

21.2 Key Design Decisions .21-4
21.2.1 Consistency of Style, Flexibility and Portability

of Implementation . 21

21.3 Implementation Constraints .21-5
21.3.1 Avoiding Name Space Collisions21-5
21.3.2 Limitations on OMG IDL Types.21-6

21.4 Smalltalk Implementation Requirements21-6

21.5 Conversion of Names to Smalltalk Identifiers 21-7

21.6 Mapping for Interfaces. .21-8

21.7 Memory Usage .21-8

21.8 Mapping for Objects .21-8

21.9 Invocation of Operations .21-8

21.10 Mapping for Attributes. .21-9
21.10.1 Mapping for Constants 21-10

21.11 Mapping for Basic Data Types . 21-10
CORBA V2.2 February 1998 xix

Contents

23

1

21.12 Mapping for the Any Type . 21-12

21.13 Mapping for Enums . 21-12

21.14 Mapping for Struct Types. 21-13

21.15 Mapping for Fixed Types . 21-14

21.16 Mapping for Union Types . 21-14
21.16.1 Implicit Binding . 21-14
21.16.2 Explicit Binding . 21-15

21.17 Mapping for Sequence Types . 21-15

21.18 Mapping for String Types. 21-15

21.19 Mapping for Wide String Types . 21-15

21.20 Mapping for Array Types . 21-15

21.21 Mapping for Exception Types . 21-15

21.22 Mapping for Operations . 21-16

21.23 Implicit Arguments to Operations 21-16

21.24 Argument Passing Considerations 21-17

21.25 Handling Exceptions . 21-17

21.26 Exception Values . 21-18
21.26.1 The CORBAExceptionValue Protocol 21-19

21.27 CORBA::Request . 21-19

21.28 CORBA::Context . 21-20

21.29 CORBA::Object . 21-21

21.30 CORBA::ORB . 21-21

21.31 CORBA::NamedValue . 21-22

21.32 CORBA::NVList . 21-

22. Mapping of OMG IDL to Cobol . 22-

22.1 Overview .22-2

22.2 Mapping of IDL to COBOL. .22-2
22.2.1 Mapping of IDL Identifiers to COBOL 22-2

22.3 Scoped Names .22-3

22.4 Memory Management .22-4

22.5 Mapping for Interfaces. .22-5
22.5.1 Object References. .22-5
22.5.2 Object References as Arguments 22-5
22.5.3 Inheritance and Interface Names 22-6

22.6 Mapping for Attributes. .22-6

22.7 Mapping for Constants. .22-7
xx CORBA V2.2 February 1998

Contents

-18

-27

41
22.8 Mapping for Basic Data Types .22-7
22.8.1 Boolean .22-8
22.8.2 enum. .22-8
22.8.3 any .22-9

22.9 Mapping for Fixed Types . 22-10

22.10 Mapping for Struct Types. 22-10

22.11 Mapping for Union Types . 22-10

22.12 Mapping for Sequence Types . 22-11
22.12.1 Bounded Sequence . 22-11
22.12.2 Unbounded Sequence . 22-12
22.12.3 Sequence Element Accessor Functions. 22-12
22.12.4 Nested Sequences . 22-13
22.12.5 Sequence parameter passing considerations . . . 22-14

22.13 Mapping for Strings . 22-15
22.13.1 How string is mapped to COBOL. 22-15
22.13.2 How wstring is mapped to COBOL 22-16
22.13.3 string / wstring argument passing

considerations. 22

22.14 Mapping for Arrays . 22-19

22.15 Mapping for Exception Types . 22-19

22.16 Argument Conventions. 22-19
22.16.1 Implicit Arguments to Operations 22-19
22.16.2 Argument passing Considerations 22-20
22.16.3 Summary of Argument/Result Passing 22-22

22.17 Memory Management . 22-23
22.17.1 Summary of Parameter Storage

Responsibilities . 22-23

22.18 Handling Exceptions . 22-25
22.18.1 Passing Exception details back to the caller . . . 22-25
22.18.2 Exception Handling Functions 22-26
22.18.3 Example of how to handle the CORBA-

Exception parameter . 22

22.19 Pseudo Objects. 22-29
22.19.1 Mapping Pseudo Objects to COBOL 22-29
22.19.2 Pseudo-Object mapping example 22-30

22.20 Mapping of the Dynamic Skeleton Interface to COBOL . . 22-39
22.20.1 Mapping of the ServerRequest to COBOL 22-40
22.20.2 Mapping of Dynamic Implementation Routine

to COBOL . 22-
CORBA V2.2 February 1998 xxi

Contents

44

47

7

1

-2
22.21 ORB Initialization Operations . 22-

22.22 Operations for Obtaining Initial Object References 22-45

22.23 ORB Supplied Functions for Mapping 22-46
22.23.1 Memory Management routines 22-46

22.24 Accessor Functions . 22-
22.24.1 CORBA-sequence-element-get and CORBA-

sequence-element-set . 22-4
22.24.2 CORBA-string-get and CORBA-string-set 22-48
22.24.3 CORBA-wstring-get & CORBA-wstring-set . . 22-49

22.25 Extensions to COBOL 85. 22-49
22.25.1 Untyped Pointers and Pointer manipulation . . . 22-50
22.25.2 Pointer Manipulation . 22-50
22.25.3 Floating point . 22-50
22.25.4 Constants . 22-51
22.25.5 Typedefs . 22-51

22.26 References . 22-53

23. Mapping of OMG IDL to Ada . 23-

23.1 Overview .23-1
23.1.1 Ada Implementation Requirements 23-2

23.2 Mapping Summary. 23
23.2.1 Interfaces and Tagged Types. 23-2
23.2.2 Operations .23-3
23.2.3 Attributes .23-3
23.2.4 Inheritance .23-4
23.2.5 Data Types .23-4
23.2.6 Exceptions .23-4
23.2.7 Names and Scoping .23-5

23.3 Other Mapping Requirements .23-5
23.3.1 Implementation Considerations 23-5
23.3.2 Calling Convention. .23-5
23.3.3 Memory Management.23-5
23.3.4 Tasking .23-5

23.4 Lexical Mapping .23-6
23.4.1 Mapping of Identifiers 23-6
23.4.2 Mapping of Literals .23-6
23.4.3 Mapping of Constant Expressions 23-8

23.5 Mapping of IDL to Ada . 23-10
23.5.1 Names. 23-10
23.5.2 IDL Files . 23-11
xxii CORBA V2.2 February 1998

Contents

5

-43
23.5.3 CORBA Subsystem . 23-12
23.5.4 Mapping Modules. 23-12
23.5.5 Mapping for Interfaces (Client-Side Specific) . 23-12
23.5.6 Mapping for Types . 23-20
23.5.7 Mapping for Any Type 23-29
23.5.8 Mapping for Exception Types. 23-30
23.5.9 Mapping for Operations and Attributes

(Client-Side Specific) . 23-3
23.5.10 Argument Passing Considerations 23-36
23.5.11 Tasking Considerations. 23-36

23.6 Mapping of Pseudo-Objects to Ada 23-36
23.6.1 NamedValue . 23-37
23.6.2 NVList . 23-37
23.6.3 Request . 23-38
23.6.4 Context . 23-39
23.6.5 Principal . 23-40
23.6.6 TypeCode . 23-40
23.6.7 ORB . 23-42
23.6.8 Object . 23-42
23.6.9 Environment . 23-43

23.7 Server-Side Mapping . 23
23.7.1 Implementing Interfaces 23-44
23.7.2 Implementing Operations and Attributes 23-44
23.7.3 Examples . 23-44

23.8 Predefined Language Environment: Subsystem CORBA. . 23-45
23.8.1 Package CORBA . 23-45
23.8.2 Package CORBA.Bounded_Strings;. 23-50
23.8.3 Package CORBA.Context. 23-50
23.8.4 Package CORBA.Environment 23-51
23.8.5 Package CORBA.Forward 23-51
23.8.6 Package CORBA.Iterate_Over_Any_Elements 23-51
23.8.7 Package CORBA.NVList 23-52
23.8.8 Package CORBA.Object. 23-52
23.8.9 Package CORBA.ORB 23-53
23.8.10 Package CORBA.Principal 23-54
23.8.11 Package CORBA.Request. 23-54
23.8.12 Package CORBA.Sequences. 23-55
23.8.13 Package CORBA.Sequences.Bounded 23-56
23.8.14 Package CORBA.Sequences.Unbounded 23-61

23.9 Glossary of Ada Terms. 23-65
CORBA V2.2 February 1998 xxiii

Contents

1
24. Mapping of OMG IDL to Java . 24-

24.1 Names .24-2
24.1.1 Reserved Names .24-2

24.2 Mapping of Module .24-3
24.2.1 Example .24-3

24.3 Mapping for Basic Types .24-3
24.3.1 Introduction .24-3
24.3.2 Boolean .24-8
24.3.3 Character Types .24-8
24.3.4 Octet .24-8
24.3.5 String Types .24-8
24.3.6 Integer Types .24-8
24.3.7 Floating Point Types. .24-8
24.3.8 Future Fixed Point Types24-9
24.3.9 Future Long Double Types24-9

24.4 Helper Classes .24-9
24.4.1 Examples . 24-10

24.5 Mapping for Constant . 24-10
24.5.1 Constants Within An Interface 24-10
24.5.2 Constants Not Within An Interface. 24-11

24.6 Mapping for Enum . 24-11
24.6.1 Example . 24-13

24.7 Mapping for Struct . 24-13
24.7.1 Example . 24-14

24.8 Mapping for Union. 24-14
24.8.1 Example . 24-16

24.9 Mapping for Sequence . 24-17
24.9.1 Example . 24-17

24.10 Mapping for Array . 24-18
24.10.1 Example . 24-18

24.11 Mapping for Interface . 24-19
24.11.1 Basics . 24-19
24.11.2 Parameter Passing Modes 24-21

24.12 Mapping for Exception. 24-22
24.12.1 User Defined Exceptions 24-23
24.12.2 System Exceptions . 24-24

24.13 Mapping for the Any Type . 24-26

24.14 Mapping for Certain Nested Types. 24-29
24.14.1 Example . 24-29
xxiv CORBA V2.2 February 1998

Contents

4

6

-42
46
-47
-47

-48
24.15 Mapping for Typedef . 24-30
24.15.1 Simple IDL types . 24-30
24.15.2 Complex IDL types . 24-30

24.16 Mapping Pseudo Objects to Java. 24-31
24.16.1 Introduction . 24-31
24.16.2 Certain Exceptions . 24-32
24.16.3 Environment . 24-32
24.16.4 NamedValue . 24-33
24.16.5 NVList . 24-34
24.16.6 ExceptionList . 24-3
24.16.7 Context . 24-35
24.16.8 ContextList . 24-3
24.16.9 Request . 24-37
24.16.10ServerRequest and Dynamic Implementation . 24-38
24.16.11TypeCode . 24-39
24.16.12ORB. 24
24.16.13CORBA::Object . 24-
24.16.14Current . 24
24.16.15Principal. 24

24.17 Server-Side Mapping . 24
24.17.1 Introduction . 24-48
24.17.2 Transient Objects . 24-48

24.18 Java ORB Portability Interfaces . 24-49
24.18.1 Introduction . 24-49
24.18.2 Architecture . 24-50
24.18.3 Streamable APIs . 24-52
24.18.4 Streaming APIs. 24-52
24.18.5 Portability Stub Interfaces 24-55
24.18.6 Delegate . 24-57
24.18.7 Skeleton . 24-58
24.18.8 ORB Initialization . 24-58
CORBA V2.2 February 1998 xxv

Contents
xxvi CORBA V2.2 February 1998

Preface
ss at

 by
 and

rted

d

 a

p a
0.1 About This Document

Under the terms of the collaboration between OMG and X/Open Co Ltd., this
document is a candidate for endorsement by X/Open, initially as a Preliminary
Specification and later as a full CAE Specification. The collaboration between OMG
and X/Open Co Ltd. ensures joint review and cohesive support for emerging object-
based specifications.

X/Open Preliminary Specifications undergo close scrutiny through a review proce
X/Open before publication and are inherently stable specifications. Upgrade to full
CAE Specification, after a reasonable interval, takes place following further review
X/Open. This further review considers the implementation experience of members
the full implications of conformance and branding.

0.1.1 Object Management Group

The Object Management Group, Inc. (OMG) is an international organization suppo
by over 800 members, including information system vendors, software developers and
users. Founded in 1989, the OMG promotes the theory and practice of object-oriente
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to provide
common framework for application development. Primary goals are the reusability,
portability, and interoperability of object-based software in distributed, heterogeneous
environments. Conformance to these specifications will make it possible to develo
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG's objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are based.
 CORBA V2.2 February 1998 xxvii

 the

rried

G

vides

ive

g,

d in
0.1.2 X/Open

X/Open is an independent, worldwide, open systems organization supported by most of
the world's largest information system suppliers, user organizations and software
companies. Its mission is to bring to users greater value from computing, through
practical implementation of open systems. X/Open’s strategy for achieving its mission
is to combine existing and emerging standards into a comprehensive, integrated
systems environment called the Common Applications Environment (CAE).

The components of the CAE are defined in X/Open CAE specifications. These contain,
among other things, an evolving portfolio of practical application programming
interfaces (APIs), which significantly enhance portability of application programs at
the source code level. The APIs also enhance the interoperability of applications by
providing definitions of, and references to, protocols and protocol profiles.

The X/Open specifications are also supported by an extensive set of conformance tests
and by the X/Open trademark (XPG brand), which is licensed by X/Open and is ca
only on products that comply with the CAE specifications.

0.2 Intended Audience

The architecture and specifications described in this manual are aimed at software
designers and developers who want to produce applications that comply with OM
standards for the Object Request Broker (ORB). The benefit of compliance is, in
general, to be able to produce interoperable applications that are based on distributed,
interoperating objects. As defined by the Object Management Group (OMG) in the
Object Management Architecture Guide, the ORB provides the mechanisms by which
objects transparently make requests and receive responses. Hence, the ORB pro
interoperability between applications on different machines in heterogeneous
distributed environments and seamlessly interconnects multiple object systems.

0.3 Context of CORBA

The key to understanding the structure of the CORBA architecture is the Reference
Model, which consists of the following components:

• Object Request Broker, which enables objects to transparently make and rece
requests and responses in a distributed environment. It is the foundation for
building applications from distributed objects and for interoperability between
applications in hetero- and homogeneous environments. The architecture and
specifications of the Object Request Broker are described in this manual.

• Object Services, a collection of services (interfaces and objects) that support
basic functions for using and implementing objects. Services are necessary to
construct any distributed application and are always independent of application
domains. For example, the Life Cycle Service defines conventions for creatin
deleting, copying, and moving objects; it does not dictate how the objects are
implemented in an application. Specifications for Object Services are containe
CORBAservices: Common Object Services Specification.
xxviii CORBA V2.2 February 1998

,

zed

ards
G,

sts

only
• Common Facilities, a collection of services that many applications may share
but which are not as fundamental as the Object Services. For instance, a system
management or electronic mail facility could be classified as a common facility.
Information about Common Facilities will be contained in CORBAfacilities:
Common Facilities Architecture.

• Application Objects, which are products of a single vendor on in-house
development group which controls their interfaces. Application Objects
correspond to the traditional notion of applications, so they are not standardi
by OMG. Instead, Application Objects constitute the uppermost layer of the
Reference Model.

The Object Request Broker, then, is the core of the Reference Model. It is like a
telephone exchange, providing the basic mechanism for making and receiving calls.
Combined with the Object Services, it ensures meaningful communication between
CORBA-compliant applications.

0.4 Associated Documents

The CORBA documentation set includes the following books:

• Object Management Architecture Guide defines the OMG’s technical objectives
and terminology and describes the conceptual models upon which OMG stand
are based. It also provides information about the policies and procedures of OM
such as how standards are proposed, evaluated, and accepted.

• CORBA: Common Object Request Broker Architecture and Specification contains
the architecture and specifications for the Object Request Broker.

• CORBAservices: Common Object Services Specification contains specifications
for the Object Services.

• CORBAfacilities: Common Facilities Architecture contains the architecture for
Common Facilities.

OMG collects information for each book in the documentation set by issuing Reque
for Information, Requests for Proposals, and Requests for Comment and, with its
membership, evaluating the responses. Specifications are adopted as standards
when representatives of the OMG membership accept them as such by vote.

To obtain books in the documentation set, or other OMG publications, refer to the
enclosed subscription card or contact the Object Management Group, Inc. at:

OMG Headquarters
492 Old Connecticut Path
Framingham, MA 01701

USA
Tel: +1-508-820 4300
Fax: +1-508-820 4303

pubs@omg.org
http://www.omg.org
CORBA V2.2 Associated Documents February 1998 xxix

e,

ce”
0.5 Definition of CORBA Compliance

As described in the OMA Guide, the OMG’s Core Object Model consists of a core and
components. Likewise, the body of CORBA specifications is divided into core and
component-like specifications. The structure of this manual reflects that division.

The CORBA specifications are categorized as follows:

CORBA Core, as specified in Chapters 1-9

CORBA Interoperabi lity , as specified in Chapters 10-14

CORBA Interworking , as specified in Chapters 15, 16, and 17

Mapping of OMG IDL to the C programming language, as specified in Chapter 18

Mapping of OMG IDL to the C++ programming language, as specified in
Chapter 19

Mapping of OMG IDL to the Smalltalk programming language, as specified in
Chapter 20

Mapping of OMG IDL to the COBOL programming language, as specified in
Chapter 21

Mapping of OMG IDL to the Ada programming language, as specified in
Chapter 22

Mapping of OMG IDL to the Java programming language, as specified in
Chapter 23

The minimum required for a CORBA-compliant system is adherence to the
specifications in CORBA Core and one mapping. Each additional language mapping is
a separate, optional compliance point. Optional means users aren’t required to
implement these points if they are unnecessary at their site, but if implemented, they
must adhere to the CORBA specifications to be called CORBA-compliant. For instanc
if a vendor supports C++, their ORB must comply with the OMG IDL to C++ binding
specified in this manual.

Interoperability and Interworking are separate compliance points. For detailed
information about Interworking compliance, refer to “Products Subject to Complian
on page 15-34.
xxx CORBA V2.2 February 1998

e

lient

ot

es
is

es

d

B
0.6 Structure of This Manual

This manual is divided into the categories of Core, Interoperability, Interworking, and
individual Language Mappings. These divisions reflect the compliance points of
CORBA. In addition to this preface, CORBA: Common Object Request Broker
Architecture and Specification contains the following chapters:

Core

Chapter 1 -- The Object Model describes the computation model that underlies th
CORBA architecture.

Chapter 2 -- CORBA Overview describes the overall structure of the ORB
architecture and includes information about CORBA interfaces and implementations.

Chapter 3 -- OMG IDL Syntax and Semantics describes OMG interface definition
language (OMG IDL), which is the language used to describe the interfaces that c
objects call and object implementations provide.

Chapter 4-- ORB Interface describes the interface to the ORB functions that do n
depend on object adapters: these operations are the same for all ORBs and object
implementations.

Chapter 5-- The Dynamic Invocation Interface describes the DII, the client’s side of
the interface that allows dynamic creation and invocation of request to objects.

Chapter 6 -- The Dynamic Skeleton Interface describes the DSI, the server’s-side
interface that can deliver requests from an ORB to an object implementation that do
not have compile-time knowledge of the type of the object it is implementing. DSI
the server’s analogue of the client’s Dynamic Invocation Interface (DII).

Chapter 7 -- Dynamic Management of Any Values describes the interface for the
Dynamic Any type. This interface allows statically-typed programming languages such
as C and Java to create or receive values of type Any without compile-time knowledge
that the typer contained in the Any.

Chapter 8 -- Interface Repository describes the component of the ORB that manag
and provides access to a collection of object definitions.

Chapter 9-- Portable Object Adapter describes a group of IDL interfaces than an
implementation uses to access ORB functions.

Interoperability

Chapter 10-- Interoperability Overview explains the interoperability architecture an
introduces the subjects pertaining to interoperability: inter-ORB bridges; general and
Internet inter-ORB protocols (GIOP and IIOP); and environment-specific, inter-OR
protocols (ESIOPs).
CORBA V2.2 Structure of This Manual February 1998 xxxi

 of

++

 C++
Chapter 11 -- ORB Interoperability Architecture introduces the framework of ORB
interoperability, including information about domains; approaches to inter-ORB
bridges; what it means to be compliant with ORB interoperability; and ORB Services
and Requests.

Chapter 12 -- Building Inter-ORB Bridges explains how to build bridges for an
implementation of interoperating ORBs.

Chapter 13 -- General Inter-ORB Protocol describes the general inter-ORB protocol
(GIOP) and includes information about the GIOP’s goals, syntax, format, transport,
and object location. This chapter also includes information about the Internet inter-
ORB protocol (IIOP).

Chapter 14 -- DCE ESIOP - Environment-Specific Inter-ORB Protocol (ESIOP)
describes a protocol for the OSF DCE environment. The protocol is called the DCE
Environment Inter-ORB Protocol (DCE ESIOP).

Interworking

Chapter 15 -- Interworking Archi tecture describes the architecture for
communication between two object management systems: Microsoft’s COM (including
OLE) and the OMG’s CORBA.

Chapter 16 -- Mapping: COM and CORBA describes the data type and interface
mapping between COM and CORBA. The mappings are described in the context
both Win16 and Win32 COM.

Chapter 17 -- Mapping: OLE Automation and CORBA describes the two-way
mapping between OLE Automation (in ODL) and CORBA (in OMG IDL).

Note: Chapter 17 also includes an appendix describing solutions that vendors might
implement to support existing and older OLE Automation controllers and an appendix
that provides an example of how the Naming Service could be mapped to an OLE
Automation interface according to the Interworking specification.

Language Mappings

Chapter 18 -- C Language Mapping defines the mapping of OMG IDL to the C
programming language.

Chapter 19 -- Mapping of OMG IDL to C++ - Includes the following information:

• Mapping of OMG IDL to C++ maps the constructs of OMG IDL to the C++
programming language.

• Mapping of Pseudo Objects to C++ maps OMG IDL pseudo objects to the C
programming language.

• Server-Side Mapping explains the portability constraints for an object
implementation written in C++.

• The C++ language mapping also includes several appendices. One contains
definitions for CORBA, another contains alternate C++ mappings, and another
contains C++ keywords.
xxxii CORBA V2.2 February 1998

Chapter 20-- Mapping OMG IDL to Smalltalk - includes the following information:

• Mapping of OMG IDL to Smalltalk maps the constructs of OMG IDL to the
Smalltalk programming language.

• Mapping of Pseudo Objects to Smalltalk maps OMG IDL pseudo-objects to
Smalltalk.

Chapter 21 -- Mapping of OMG IDL to COBOL maps the constructs of OMG IDL
to the COBOL programming language.

Chapter 22 - Mapping of OMG IDL to Ada maps the constructs of OMG IDL to the
Ada programming language.

Chapter 23 - Mapping of OMG IDL to Java maps the constructs of OMG IDL to the
Java programming language.

Appendix A- contains OMG IDL tags that can identify an Object Service, a
component, or a profile.

0.7 Acknowledgements

The following companies submitted parts of the specifications that were approved by
the Object Management Group to become CORBA:

• BNR Europe Ltd.

• Defense Information Systems Agency

• Expersoft Corporation

• FUJITSU LIMITED

• Genesis Development Corporation

• Gensym Corporation

• IBM Corporation

• ICL plc

• IONA Technologies Ltd.

• Digital Equipment Corporation

• Hewlett-Packard Company

• HyperDesk Corporation

• Micro Focus Limited

• MITRE Corporation

• NCR Corporation

• Novell USG

• Object Design, Inc.

• Objective Interface Systems, Inc.

• OC Systems, Inc.

• Open Group - Open Software Foundation

• Siemens Nixdorf Informationssysteme AG

• Sun Microsystems Inc.

• SunSoft, Inc.

• Sybase, Inc.
CORBA V2.2 Acknowledgements February 1998 xxxiii

rk
• Telefónica Investigación y Desarrollo S.A. Unipersonal

• Visual Edge Software, Ltd.

In addition to the preceding contributors, the OMG would like to acknowledge Ma
Linton at Silicon Graphics and Doug Lea at the State University of New York at
Oswego for their work on the C++ mapping.

0.8 References

IDL Type Extensions RFP, March 1995. OMG TC Document 95-1-35.

The Common Object Request Broker: Architecture and Specification, Revision 2.1,
August 1997.

CORBAservices: Common Object Services Specification, Revised Edition, OMG TC
Document 95-3-31.

COBOL Language Mapping RFP, December 1995. OMG TC document 95-12-10.

COBOL 85 ANSI X3.23-1985 / ISO 1989-1985.

IEEE Standard for Binary Floating-Point Arithmetic, ANIS/IEEE Std 754-1985.

XDR: External Data Representation Standard, RFC1832, R. Srinivasan, Sun Micro-
systems, August 1995.

OSF Character and Code Set Registry, OSF DCE SIG RFC 40.1 (Public Version), S.
(Martin) O’Donnell, June 1994.

RPC Runtime Support For I18N Characters — Functional Specification, OSF DCE
SIG RFC 41.2, M. Romagna, R. Mackey, November 1994.

X/Open System Interface Definitions, Issue 4 Version 2, 1995.
xxxiv CORBA V2.2 February 1998

The Object Model 1
ject

This chapter describes the concrete object model that underlies the CORBA
architecture. The model is derived from the abstract Core Object Model defined by the
Object Management Group in the Object Management Architecture Guide.
(Information about the OMA Guide and other books in the CORBA documentation set
is provided in this document’s preface.)

Contents

This chapter contains the following sections.

1.1 Overview

The object model provides an organized presentation of object concepts and
terminology. It defines a partial model for computation that embodies the key
characteristics of objects as realized by the submitted technologies. The OMG ob
model is abstract in that it is not directly realized by any particular technology. The
model described here is a concrete object model. A concrete object model may differ
from the abstract object model in several ways:

Section Title Page

“Overview” 1-1

“Object Semantics” 1-2

“Object Implementation” 1-8
 CORBA V2.2 February 1998 1-1

1

s.

s

such

epts

 of the
e are

epts
uded
and

-
r

s a

ation

y the

ncepts
• It may elaborate the abstract object model by making it more specific, for
example, by defining the form of request parameters or the language used to
specify types.

• It may populate the model by introducing specific instances of entities defined by
the model, for example, specific objects, specific operations, or specific type

• It may restrict the model by eliminating entities or placing additional restriction
on their use.

An object system is a collection of objects that isolates the requestors of services
(clients) from the providers of services by a well-defined encapsulating interface. In
particular, clients are isolated from the implementations of services as data
representations and executable code.

The object model first describes concepts that are meaningful to clients, including
concepts as object creation and identity, requests and operations, types and signatures.
It then describes concepts related to object implementations, including such conc
as methods, execution engines, and activation.

The object model is most specific and prescriptive in defining concepts meaningful to
clients. The discussion of object implementation is more suggestive, with the intent of
allowing maximal freedom for different object technologies to provide different ways
of implementing objects.

There are some other characteristics of object systems that are outside the scope
object model. Some of these concepts are aspects of application architecture, som
associated with specific domains to which object technology is applied. Such conc
are more properly dealt with in an architectural reference model. Examples of excl
concepts are compound objects, links, copying of objects, change management,
transactions. Also outside the scope of the object model are the details of control
structure: the object model does not say whether clients and/or servers are single
threaded or multi-threaded, and does not specify how event loops are programmed no
how threads are created, destroyed, or synchronized.

This object model is an example of a classical object model, where a client send
message to an object. Conceptually, the object interprets the message to decide what
service to perform. In the classical model, a message identifies an object and zero or
more actual parameters. As in most classical object models, a distinguished first
parameter is required, which identifies the operation to be performed; the interpret
of the message by the object involves selecting a method based on the specified
operation. Operationally, of course, method selection could be performed either b
object or the ORB.

1.2 Object Semantics

An object system provides services to clients. A client of a service is any entity
capable of requesting the service.

This section defines the concepts associated with object semantics, that is, the co
relevant to clients.
1-2 CORBA V2.2 February 1998

1

f an

eate
e
ese

ct

an

t may
st. A

 for

n is

o

ed to
1.2.1 Objects

An object system includes entities known as objects. An object is an identifiable,
encapsulated entity that provides one or more services that can be requested by a
client.

1.2.2 Requests

Clients request services by issuing requests. A request is an event (i.e., something that
occurs at a particular time). The information associated with a request consists o
operation, a target object, zero or more (actual) parameters, and an optional request
context.

A request form is a description or pattern that can be evaluated or performed multiple
times to cause the issuing of requests. As described in the OMG IDL Syntax and
Semantics chapter, request forms are defined by particular language bindings. An
alternative request form consists of calls to the dynamic invocation interface to cr
an invocation structure, add arguments to the invocation structure, and to issue th
invocation (refer to the Dynamic Invocation Interface chapter for descriptions of th
request forms).

A value is anything that may be a legitimate (actual) parameter in a request. More
particularly, a value is an instance of an OMG IDL data type. There are non-obje
values, as well as values that reference objects.

An object reference is a value that reliably denotes a particular object. Specifically,
object reference will identify the same object each time the reference is used in a
request (subject to certain pragmatic limits of space and time). An object may be
denoted by multiple, distinct object references.

A request may have parameters that are used to pass data to the target object; i
also have a request context which provides additional information about the reque
request context is a mapping from strings to strings.

A request causes a service to be performed on behalf of the client. One possible
outcome of performing a service is returning to the client the results, if any, defined
the request.

If an abnormal condition occurs during the performance of a request, an exceptio
returned. The exception may carry additional return parameters particular to that
exception.

The request parameters are identified by position. A parameter may be an input
parameter, an output parameter, or an input-output parameter. A request may als
return a single return result value, as well as the results stored into the output and
input-output parameters.

The following semantics hold for all requests:

• Any aliasing of parameter values is neither guaranteed removed nor guarante
be preserved.

• The order in which aliased output parameters are written is not guaranteed.
CORBA V2.2 Object Semantics February 1998 1-3

1

ed as
client

d
• The return result and the values stored into the output and input-output
parameters are undefined if an exception is returned.

For descriptions of the values and exceptions that are permitted, see “Types” on
page 1-4 and “Exceptions” on page 1-7.

1.2.3 Object Creation and Destruction

Objects can be created and destroyed. From a client’s point of view, there is no special
mechanism for creating or destroying an object. Objects are created and destroy
an outcome of issuing requests. The outcome of object creation is revealed to the
in the form of an object reference that denotes the new object.

1.2.4 Types

A type is an identifiable entity with an associated predicate (a single-argument
mathematical function with a boolean result) defined over values. A value satisfies a
type if the predicate is true for that value. A value that satisfies a type is called a
member of the type.

Types are used in signatures to restrict a possible parameter or to characterize a
possible result.

The extension of a type is the set of values that satisfy the type at any particular time.

An object type is a type whose members are object references. In other words, an
object type is satisfied only by object references.

Constraints on the data types in this model are shown in this section.

Basic types:

• 16-bit, 32-bit, and 64-bit signed and unsigned 2’s complement integers.

• Single-precision (32-bit), double-precision (64-bit), and double-extended (a
mantissa of at least 64 bits, a sign bit and an exponent of at least 15 bits) IEEE
floating point numbers.

• Fixed-point decimal numbers of up to 31 significant digits.

• Characters, as defined in ISO Latin-1 (8859.1) and other single- or multi-byte
character sets.

• A boolean type taking the values TRUE and FALSE.

• An 8-bit opaque detectable, guaranteed to not undergo any conversion during
transfer between systems.

• Enumerated types consisting of ordered sequences of identifiers.

• A string type, which consists of a variable-length array of characters (a null
character is one whose character code is 0); the length of the string is a positive
integer, and is available at run-time.

• A container type “any,” which can represent any possible basic or constructe
type.

• Wide characters that may represent characters from any wide character set.
1-4 CORBA V2.2 February 1998

1

e)

he

hat

gal

st of
n

sfies
• Wide character strings, which consist of a length, available at runtime, and a
variable-length array of (fixed width) wide characters.

Constructed types:

• A record type (called struct), which consists of an ordered set of (name,valu
pairs.

• A discriminated union type, which consists of a discriminator (whose exact value
is always available) followed by an instance of a type appropriate to the
discriminator value.

• A sequence type, which consists of a variable-length array of a single type; t
length of the sequence is available at run-time.

• An array type, which consists of a fixed-shape multidimensional array of a single
type.

• An interface type, which specifies the set of operations which an instance of t
type must support.

Values in a request are restricted to values that satisfy these type constraints. The le
values are shown in Figure 1-1 on page 1-5. No particular representation for values is
defined.

Figure 1-1 Legal Values

1.2.5 Interfaces

An interface is a description of a set of possible operations that a client may reque
an object. An object satisfies an interface if it can be specified as the target object i
each potential request described by the interface.

An object type is a type that is satisfied by any object reference whose referent sati
an interface that describes the object type.

Short
Long
LongLong
UShort
Ulong
UlongLong
Float
Double
LongDouble
Fixed
Char
Wchar
String
Wstring
Boolean
Octet
Enum
Any

Struct
Sequence
Union
Array

Basic ValueValue

Constructed Value

Object Reference
CORBA V2.2 Object Semantics February 1998 1-5

1

he

st.

uest

rmly

IDL

ed

ned.

be

 is
Interfaces are specified in OMG IDL. Interface inheritance provides the composition
mechanism for permitting an object to support multiple interfaces. The principal
interface is simply the most-specific interface that the object supports, and consists of
all operations in the transitive closure of the interface inheritance graph.

1.2.6 Operations

An operation is an identifiable entity that denotes a service that can be requestedand
is identified by an operation identifier. An operation is not a value.

An operation has a signature that describes the legitimate values of request parameters
and returned results. In particular, a signature consists of:

• A specification of the parameters required in requests for that operation.

• A specification of the result of the operation.

• An identification of the user exceptions that may be raised by a request for t
operation.

• A specification of additional contextual information that may affect the reque

• An indication of the execution semantics the client should expect from a req
for the operation.

Operations are (potentially) generic, meaning that a single operation can be unifo
requested on objects with different implementations, possibly resulting in observably
different behavior. Genericity is achieved in this model via interface inheritance in
and the total decoupling of implementation from interface specification.

The general form for an operation signature is:

[oneway] <op_type_spec> <identifier> (p aram1, ..., paramL)
 [raises(except1,...,exceptN)] [context(name1, ..., nameM)]

where:
• The optional oneway keyword indicates that best-effort semantics are expect

of requests for this operation; the default semantics are exactly-once if the
operation successfully returns results or at-most-once if an exception is retur

• The <op_type_spec> is the type of the return result.

• The <identi fier> provides a name for the operation in the interface.

• The operation parameters needed for the operation; they are flagged with the
modifiers in , out , or inout to indicate the direction in which the information
flows (with respect to the object performing the request).

• The optional raises expression indicates which user-defined exceptions can
signaled to terminate a request for this operation; if such an expression is not
provided, no user-defined exceptions will be signaled.

• The optional context expression indicates which request context information
will be available to the object implementation; no other contextual information
required to be transported with the request.
1-6 CORBA V2.2 February 1998

1

fully.

tions

ct

, of

ents

pair
Parameters

A parameter is characterized by its mode and its type. The mode indicates whether the
value should be passed from client to server (in), from server to client (out), or both
(inout). The parameter’s type constrains the possible value which may be passed in
the directions dictated by the mode.

Return Result

The return result is a distinguished out parameter.

Exceptions

An exception is an indication that an operation request was not performed success
An exception may be accompanied by additional, exception-specific information.

The additional, exception-specific information is a specialized form of record. As a
record, it may consist of any of the types described in “Types” on page 1-4.

All signatures implicitly include the system exceptions; the standard system excep
are described in “Standard Exceptions” on page 3-37.

Contexts

A request context provides additional, operation-specific information that may affe
the performance of a request.

Execution Semantics

Two styles of execution semantics are defined by the object model:

• At-most-once: if an operation request returns successfully, it was performed
exactly once; if it returns an exception indication, it was performed at-most-once.

• Best-effort: a best-effort operation is a request-only operation, i.e. it cannot return
any results and the requester never synchronizes with the completion, if any
the request.

The execution semantics to be expected is associated with an operation. This prev
a client and object implementation from assuming different execution semantics.

Note that a client is able to invoke an at-most-once operation in a synchronous or
deferred-synchronous manner.

1.2.7 Attributes

An interface may have attributes. An attribute is logically equivalent to declaring a
of accessor functions: one to retrieve the value of the attribute and one to set the value
of the attribute.
CORBA V2.2 Object Semantics February 1998 1-7

1

e

ge the

gine.

f

An attribute may be read-only, in which case only the retrieval accessor function is
defined.

1.3 Object Implementation

This section defines the concepts associated with object implementation, i.e. the
concepts relevant to realizing the behavior of objects in a computational system.

The implementation of an object system carries out the computational activities needed
to effect the behavior of requested services. These activities may include computing
the results of the request and updating the system state. In the process, additional
requests may be issued.

The implementation model consists of two parts: the execution model and the
construction model. The execution model describes how services are performed. Th
construction model describes how services are defined.

1.3.1 The Execution Model: Performing Services

A requested service is performed in a computational system by executing code that
operates upon some data. The data represents a component of the state of the
computational system. The code performs the requested service, which may chan
state of the system.

Code that is executed to perform a service is called a method. A method is an
immutable description of a computation that can be interpreted by an execution en
A method has an immutable attribute called a method format that defines the set of
execution engines that can interpret the method. An execution engine is an abstract
machine (not a program) that can interpret methods of certain formats, causing the
described computations to be performed. An execution engine defines a dynamic
context for the execution of a method. The execution of a method is called a method
activation.

When a client issues a request, a method of the target object is called. The input
parameters passed by the requestor are passed to the method and the output and input-
output parameters and return result value (or exception and its parameters) are passed
back to the requestor.

Performing a requested service causes a method to execute that may operate upon an
object’s persistent state. If the persistent form of the method or state is not accessible
to the execution engine, it may be necessary to first copy the method or state into an
execution context. This process is called activation; the reverse process is called
deactivation.

1.3.2 The Construction Model

A computational object system must provide mechanisms for realizing behavior o
requests. These mechanisms include definitions of object state, definitions of methods,
and definitions of how the object infrastructure is to select the methods to execute and
1-8 CORBA V2.2 February 1998

1

ds.

ong
to select the relevant portions of object state to be made accessible to the metho
Mechanisms must also be provided to describe the concrete actions associated with
object creation, such as association of the new object with appropriate methods.

An object implementation—or implementation, for short—is a definition that provides
the information needed to create an object and to allow the object to participate in
providing an appropriate set of services. An implementation typically includes, am
other things, definitions of the methods that operate upon the state of an object. It also
typically includes information about the intended types of the object.
CORBA V2.2 Object Implementation February 1998 1-9

1

1-10 CORBA V2.2 February 1998

CORBA Overview 2
ures

The Common Object Request Broker Architecture (CORBA) is structured to allow
integration of a wide variety of object systems. The motivation for some of the feat
may not be apparent at first, but as we discuss the range of implementations, policies,
optimizations, and usages we expect to encompass, the value of the flexibility becomes
more clear.

Contents

This chapter contains the following sections.

Section Title Page

“Structure of an Object Request Broker” 2-2

“Example ORBs” 2-11

“Structure of a Client” 2-12

“Structure of an Object Implementation” 2-13

“Structure of an Object Adapter” 2-15

“CORBA Required Object Adapter” 2-17

“The Integration of Foreign Object Systems” 2-18
 CORBA V2.2 February 1998 2-1

2

e
 the

e

2.1 Structure of an Object Request Broker

Figure 2-1 on page 2-2 shows a request being sent by a client to an object
implementation. The Client is the entity that wishes to perform an operation on th
object and the Object Implementation is the code and data that actually implements
object.

Figure 2-1 A Request Being Sent Through the Object Request Broker

The ORB is responsible for all of the mechanisms required to find the object
implementation for the request, to prepare the object implementation to receive th
request, and to communicate the data making up the request. The interface the client
sees is completely independent of where the object is located, what programming
language it is implemented in, or any other aspect which is not reflected in the object’s
interface.

Figure 2-2 on page 2-3 shows the structure of an individual Object Request Broker
(ORB). The interfaces to the ORB are shown by striped boxes, and the arrows indicate
whether the ORB is called or performs an up-call across the interface.

Client Object Implementation

ORB

Request
2-2 CORBA V2.2 February 1998

2

e

G
n
s.

ects,
Figure 2-2 The Structure of Object Request Interfaces

To make a request, the Client can use the Dynamic Invocation interface (the sam
interface independent of the target object’s interface) or an OMG IDL stub (the specific
stub depending on the interface of the target object). The Client can also directly
interact with the ORB for some functions.

The Object Implementation receives a request as an up-call either through the OM
IDL generated skeleton or through a dynamic skeleton. The Object Implementatio
may call the Object Adapter and the ORB while processing a request or at other time

Definitions of the interfaces to objects can be defined in two ways. Interfaces can be
defined statically in an interface definition language, called the OMG Interface
Definition Language (OMG IDL). This language defines the types of objects according
to the operations that may be performed on them and the parameters to those
operations. Alternatively, or in addition, interfaces can be added to an Interface
Repository service; this service represents the components of an interface as obj
permitting run-time access to these components. In any ORB implementation, the
Interface Definition Language (which may be extended beyond its definition in this
document) and the Interface Repository have equivalent expressive power.

Client Object Impl ementation

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

A
A
A
A

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

Dynamic

Invocation

IDL
Stubs

ORB
Interface

Dynamic
Skeleton

Object
Adapter

ORB Core

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Interface identical for all ORB implementations

There may be multiple object adapters

There are stubs and a skeleton for each object type

ORB-dependent interface

Up-call interface

Normal call interface

Static IDL
Skeleton
CORBA V2.2 Structure of an Object Request Broker February 1998 2-3

2

ject

y

,
The client performs a request by having access to an Object Reference for an ob
and knowing the type of the object and the desired operation to be performed. The
client initiates the request by calling stub routines that are specific to the object or b
constructing the request dynamically (see Figure 2-3 on page 2-4).

Figure 2-3 A Client Using the Stub or Dynamic Invocation Interface

The dynamic and stub interface for invoking a request satisfy the same request
semantics, and the receiver of the message cannot tell how the request was invoked.

The ORB locates the appropriate implementation code, transmits parameters, and
transfers control to the Object Implementation through an IDL skeleton or a dynamic
skeleton (see Figure 2-4 on page 2-5). Skeletons are specific to the interface and the
object adapter. In performing the request, the object implementation may obtain some
services from the ORB through the Object Adapter. When the request is complete
control and output values are returned to the client.

Client

AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA

Dynamic

Invocation

IDL
Stubs

ORB Core

AAAA
AAAA

AAA
AAA Interface identical for all ORB implemen tations

There are stubs and a skeleton for each object type

ORB-dependent interface

R
eq

u es t

R
equ

es t
2-4 CORBA V2.2 February 1998

2

n is

Figure 2-4 An Object Implementation Receiving a Request

The Object Implementation may choose which Object Adapter to use. This decisio
based on what kind of services the Object Implementation requires.

Figure 2-5 on page 2-6 shows how interface and implementation information is made
available to clients and object implementations. The interface is defined in OMG IDL
and/or in the Interface Repository; the definition is used to generate the client Stubs
and the object implementation Skeletons.

Object Implementation

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Interface identical for all ORB implemen tations

There may be multiple object adapters

There are stubs and a skeleton for each object type

ORB-dependent interface

Up-call interface

Normal c all interface

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

A
A
A
A

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

ORB
Interface

Dynamic
Skeleton

Object
Adapter

ORB Core

Static IDL
Skeleton
CORBA V2.2 Structure of an Object Request Broker February 1998 2-5

2

in

nent,

ith
ices
s.

hich

bject

Figure 2-5 Interface and Implementation Repositories

The object implementation information is provided at installation time and is stored
the Implementation Repository for use during request delivery.

2.1.1 Object Request Broker

In the architecture, the ORB is not required to be implemented as a single compo
but rather it is defined by its interfaces. Any ORB implementation that provides the
appropriate interface is acceptable. The interface is organized into three categories:

1. Operations that are the same for all ORB implementations

2. Operations that are specific to particular types of objects

3. Operations that are specific to particular styles of object implementations

Different ORBs may make quite different implementation choices, and, together w
the IDL compilers, repositories, and various Object Adapters, provide a set of serv
to clients and implementations of objects that have different properties and qualitie

There may be multiple ORB implementations (also described as multiple ORBs) w
have different representations for object references and different means of performing
invocations. It may be possible for a client to simultaneously have access to two o

Client Object Implementation

IDL
Definitions

Interface
Repository

Stubs Skeletons

Implementation
Installation

Implementation
Repository
2-6 CORBA V2.2 February 1998

2

jects

ORB
s.

s

s
ient

age
ally
ts
ed
ject

vior
fects

,

s
references managed by different ORB implementations. When two ORBs are intended
to work together, those ORBs must be able to distinguish their object references. It is
not the responsibility of the client to do so.

The ORB Core is that part of the ORB that provides the basic representation of ob
and communication of requests. CORBA is designed to support different object
mechanisms, and it does so by structuring the ORB with components above the
Core, which provide interfaces that can mask the differences between ORB Core

2.1.2 Clients

A client of an object has access to an object reference for the object, and invoke
operations on the object. A client knows only the logical structure of the object
according to its interface and experiences the behavior of the object through
invocations. Although we will generally consider a client to be a program or proces
initiating requests on an object, it is important to recognize that something is a cl
relative to a particular object. For example, the implementation of one object may be a
client of other objects.

Clients generally see objects and ORB interfaces through the perspective of a langu
mapping, bringing the ORB right up to the programmer’s level. Clients are maxim
portable and should be able to work without source changes on any ORB that suppor
the desired language mapping with any object instance that implements the desir
interface. Clients have no knowledge of the implementation of the object, which ob
adapter is used by the implementation, or which ORB is used to access it.

2.1.3 Object Implementations

An object implementation provides the semantics of the object, usually by defining
data for the object instance and code for the object’s methods. Often the
implementation will use other objects or additional software to implement the beha
of the object. In some cases, the primary function of the object is to have side-ef
on other things that are not objects.

A variety of object implementations can be supported, including separate servers
libraries, a program per method, an encapsulated application, an object-oriented
database, etc. Through the use of additional object adapters, it is possible to support
virtually any style of object implementation.

Generally, object implementations do not depend on the ORB or how the client invoke
the object. Object implementations may select interfaces to ORB-dependent services
by the choice of Object Adapter.
CORBA V2.2 Structure of an Object Request Broker February 1998 2-7

2

 for
lent

ory,

nts

er to
e

t stub
2.1.4 Object References

An Object Reference is the information needed to specify an object within an ORB.
Both clients and object implementations have an opaque notion of object references
according to the language mapping, and thus are insulated from the actual
representation of them. Two ORB implementations may differ in their choice of Object
Reference representations.

The representation of an object reference handed to a client is only valid for the
lifetime of that client.

All ORBs must provide the same language mapping to an object reference (usually
referred to as an Object) for a particular programming language. This permits a
program written in a particular language to access object references independent of the
particular ORB. The language mapping may also provide additional ways to access
object references in a typed way for the convenience of the programmer.

There is a distinguished object reference, guaranteed to be different from all object
references, that denotes no object.

2.1.5 OMG Interface Definition Language

The OMG Interface Definition Language (OMG IDL) defines the types of objects by
specifying their interfaces. An interface consists of a set of named operations and the
parameters to those operations. Note that although IDL provides the conceptual
framework for describing the objects manipulated by the ORB, it is not necessary
there to be IDL source code available for the ORB to work. As long as the equiva
information is available in the form of stub routines or a run-time interface reposit
a particular ORB may be able to function correctly.

IDL is the means by which a particular object implementation tells its potential clie
what operations are available and how they should be invoked. From the IDL
definitions, it is possible to map CORBA objects into particular programming
languages or object systems.

2.1.6 Mapping of OMG IDL to Programming Languages

Different object-oriented or non-object-oriented programming languages may pref
access CORBA objects in different ways. For object-oriented languages, it may b
desirable to see CORBA objects as programming language objects. Even for non-
object-oriented languages, it is a good idea to hide the exact ORB representation of the
object reference, method names, etc. A particular mapping of OMG IDL to a
programming language should be the same for all ORB implementations. Language
mapping includes definition of the language-specific data types and procedure
interfaces to access objects through the ORB. It includes the structure of the clien
interface (not required for object-oriented languages), the dynamic invocation
interface, the implementation skeleton, the object adapters, and the direct ORB
interface.
2-8 CORBA V2.2 February 1998

2

the

nes

ess to
o

ing
ore.
 the
o

all or

m an

r.

nes

stub

ons
A language mapping also defines the interaction between object invocations and
threads of control in the client or implementation. The most common mappings
provide synchronous calls, in that the routine returns when the object operation
completes. Additional mappings may be provided to allow a call to be initiated and
control returned to the program. In such cases, additional language-specific routi
must be provided to synchronize the program’s threads of control with the object
invocation.

2.1.7 Client Stubs

For the mapping of a non–object–oriented language, there will be a programming
interface to the stubs for each interface type. Generally, the stubs will present acc
the OMG IDL-defined operations on an object in a way that is easy for programmers t
predict once they are familiar with OMG IDL and the language mapping for the
particular programming language. The stubs make calls on the rest of the ORB us
interfaces that are private to, and presumably optimized for, the particular ORB C
If more than one ORB is available, there may be different stubs corresponding to
different ORBs. In this case, it is necessary for the ORB and language mapping t
cooperate to associate the correct stubs with the particular object reference.

Object-oriented programming languages, such as C++ and Smalltalk, do not require
stub interfaces.

2.1.8 Dynamic Invocation Interface

An interface is also available that allows the dynamic construction of object
invocations, that is, rather than calling a stub routine that is specific to a particular
operation on a particular object, a client may specify the object to be invoked, the
operation to be performed, and the set of parameters for the operation through a c
sequence of calls. The client code must supply information about the operation to be
performed and the types of the parameters being passed (perhaps obtaining it fro
Interface Repository or other run-time source). The nature of the dynamic invocation
interface may vary substantially from one programming language mapping to anothe

2.1.9 Implementation Skeleton

For a particular language mapping, and possibly depending on the object adapter, there
will be an interface to the methods that implement each type of object. The interface
will generally be an up-call interface, in that the object implementation writes routi
that conform to the interface and the ORB calls them through the skeleton.

The existence of a skeleton does not imply the existence of a corresponding client
(clients can also make requests via the dynamic invocation interface).

It is possible to write an object adapter that does not use skeletons to invoke
implementation methods. For example, it may be possible to create implementati
dynamically for languages such as Smalltalk.
CORBA V2.2 Structure of an Object Request Broker February 1998 2-9

2

ation,

mic

 also

age

s

n

 for

ton,
2.1.10 Dynamic Skeleton Interface

An interface is available which allows dynamic handling of object invocations. That is,
rather than being accessed through a skeleton that is specific to a particular oper
an object’s implementation is reached through an interface that provides access to the
operation name and parameters in a manner analogous to the client side’s Dyna
Invocation Interface. Purely static knowledge of those parameters may be used, or
dynamic knowledge (perhaps determined through an Interface Repository) may be
used, to determine the parameters.

The implementation code must provide descriptions of all the operation parameters to
the ORB, and the ORB provides the values of any input parameters for use in
performing the operation. The implementation code provides the values of any output
parameters, or an exception, to the ORB after performing the operation. The nature of
the dynamic skeleton interface may vary substantially from one programming langu
mapping or object adapter to another, but will typically be an up-call interface.

Dynamic skeletons may be invoked both through client stubs and through the dynamic
invocation interface; either style of client request construction interface provides
identical results.

2.1.11 Object Adapters

An object adapter is the primary way that an object implementation accesses service
provided by the ORB. There are expected to be a few object adapters that will be
widely available, with interfaces that are appropriate for specific kinds of objects.
Services provided by the ORB through an Object Adapter often include: generatio
and interpretation of object references, method invocation, security of interactions,
object and implementation activation and deactivation, mapping object references to
implementations, and registration of implementations.

The wide range of object granularities, lifetimes, policies, implementation styles, and
other properties make it difficult for the ORB Core to provide a single interface that is
convenient and efficient for all objects. Thus, through Object Adapters, it is possible
for the ORB to target particular groups of object implementations that have similar
requirements with interfaces tailored to them.

2.1.12 ORB Interface

The ORB Interface is the interface that goes directly to the ORB which is the same
all ORBs and does not depend on the object’s interface or object adapter. Because most
of the functionality of the ORB is provided through the object adapter, stubs, skele
or dynamic invocation, there are only a few operations that are common across all
objects. These operations are useful to both clients and implementations of objects.
2-10 CORBA V2.2 February 1998

2

e

 is

B
2.1.13 Interface Repository

The Interface Repository is a service that provides persistent objects that represent th
IDL information in a form available at run-time. The Interface Repository information
may be used by the ORB to perform requests. Moreover, using the information in the
Interface Repository, it is possible for a program to encounter an object whose
interface was not known when the program was compiled, yet, be able to determine
what operations are valid on the object and make an invocation on it.

In addition to its role in the functioning of the ORB, the Interface Repository is a
common place to store additional information associated with interfaces to ORB
objects. For example, debugging information, libraries of stubs or skeletons, routines
that can format or browse particular kinds of objects, etc., might be associated with the
Interface Repository.

2.1.14 Implementation Repository

The Implementation Repository contains information that allows the ORB to locate
and activate implementations of objects. Although most of the information in the
Implementation Repository is specific to an ORB or operating environment, the
Implementation Repository is the conventional place for recording such information.
Ordinarily, installation of implementations and control of policies related to the
activation and execution of object implementations is done through operations on the
Implementation Repository.

In addition to its role in the functioning of the ORB, the Implementation Repository
a common place to store additional information associated with implementations of
ORB objects. For example, debugging information, administrative control, resource
allocation, security, etc., might be associated with the Implementation Repository.

2.2 Example ORBs

There are a wide variety of ORB implementations possible within the Common OR
Architecture. This section will illustrate some of the different options. Note that a
particular ORB might support multiple options and protocols for communication.

2.2.1 Client- and Implementation-resident ORB

If there is a suitable communication mechanism present, an ORB can be implemented
in routines resident in the clients and implementations. The stubs in the client either
use a location-transparent IPC mechanism or directly access a location service to
establish communication with the implementations. Code linked with the
implementation is responsible for setting up appropriate databases for use by clients.
CORBA V2.2 Example ORBs February 1998 2-11

2

ts to

th the

s a
e

ctual

 an
hat

al
2.2.2 Server-based ORB

To centralize the management of the ORB, all clients and implementations can
communicate with one or more servers whose job it is to route requests from clien
implementations. The ORB could be a normal program as far as the underlying
operating system is concerned, and normal IPC could be used to communicate wi
ORB.

2.2.3 System-based ORB

To enhance security, robustness, and performance, the ORB could be provided a
basic service of the underlying operating system. Object references could be mad
unforgeable, reducing the expense of authentication on each request. Because the
operating system could know the location and structure of clients and implementations,
it would be possible for a variety of optimizations to be implemented, for example,
avoiding marshalling when both are on the same machine.

2.2.4 Library-based ORB

For objects that are light-weight and whose implementations can be shared, the
implementation might actually be in a library. In this case, the stubs could be the a
methods. This assumes that it is possible for a client program to get access to the data
for the objects and that the implementation trusts the client not to damage the data.

2.3 Structure of a Client

A client of an object has an object reference that refers to that object. An object
reference is a token that may be invoked or passed as a parameter to an invocation on
a different object. Invocation of an object involves specifying the object to be invoked,
the operation to be performed, and parameters to be given to the operation or returned
from it.

The ORB manages the control transfer and data transfer to the object implementation
and back to the client. In the event that the ORB cannot complete the invocation,
exception response is provided. Ordinarily, a client calls a routine in its program t
performs the invocation and returns when the operation is complete.

Clients access object-type-specific stubs as library routines in their program (see
Figure 2-6 on page 2-13). The client program thus sees routines callable in the norm
way in its programming language. All implementations will provide a language-
specific data type to use to refer to objects, often an opaque pointer. The client then
passes that object reference to the stub routines to initiate an invocation. The stubs
2-12 CORBA V2.2 February 1998

2

eral

r

thod

en a
 on

o a
have access to the object reference representation and interact with the ORB to
perform the invocation. (See the C Language Mapping chapter for additional, gen
information on language mapping of object references.)

Figure 2-6 The Structure of a Typical Client

An alternative set of library code is available to perform invocations on objects, fo
example when the object was not defined at compile time. In that case, the client
program provides additional information to name the type of the object and the me
being invoked, and performs a sequence of calls to specify the parameters and initiate
the invocation.

Clients most commonly obtain object references by receiving them as output
parameters from invocations on other objects for which they have references. Wh
client is also an implementation, it receives object references as input parameters
invocations to objects it implements. An object reference can also be converted t
string that can be stored in files or preserved or communicated by different means and
subsequently turned back into an object reference by the ORB that produced the string.

2.4 Structure of an Object Implementation

An object implementation provides the actual state and behavior of an object. The
object implementation can be structured in a variety of ways. Besides defining the
methods for the operations themselves, an implementation will usually define

Client Program
Language-dependent object references

ORB object references

Dynamic Invocation
Interface

Stubs for
Interface A

Stubs for
Interface B
CORBA V2.2 Structure of an Object Implementation February 1998 2-13

2

bject

ble

t
 data

procedures for activating and deactivating objects and will use other objects or non-
object facilities to make the object state persistent, to control access to the object, as
well as to implement the methods.

The object implementation (see Figure 2-7 on page 2-14) interacts with the ORB in a
variety of ways to establish its identity, to create new objects, and to obtain ORB-
dependent services. It primarily does this via access to an Object Adapter, which
provides an interface to ORB services that is convenient for a particular style of o
implementation.

Figure 2-7 The Structure of a Typical Object Implementation

Because of the range of possible object implementations, it is difficult to be definitive
about how an object implementation is structured. See the chapters on the Porta
Object Adapter.

When an invocation occurs, the ORB Core, object adapter, and skeleton arrange that a
call is made to the appropriate method of the implementation. A parameter to tha
method specifies the object being invoked, which the method can use to locate the
for the object. Additional parameters are supplied according to the skeleton definition.
When the method is complete, it returns, causing output parameters or exception
results to be transmitted back to the client.

Object Implementation

ORB object references

Methods for
Interface A

Library Ro utines

Object data

Skeleton for

Interface A
Object adapter

routines

U
p

-c
al

l t
o

M
et

ho
d

Dynamic

Skeleton

br
2-14 CORBA V2.2 February 1998

2

nd

ely
tored

rvice,
em.

ect
When a new object is created, the ORB may be notified so that it knows where to fi
the implementation for that object. Usually, the implementation also registers itself as
implementing objects of a particular interface, and specifies how to start up the
implementation if it is not already running.

Most object implementations provide their behavior using facilities in addition to the
ORB and object adapter. For example, although the Portable Object Adapter provides
some persistent data associated with an object (its OID or Object ID), that relativ
small amount of data is typically used as an identifier for the actual object data s
in a storage service of the object implementation’s choosing. With this structure, it is
not only possible for different object implementations to use the same storage se
it is also possible for objects to choose the service that is most appropriate for th

2.5 Structure of an Object Adapter

An object adapter (see Figure 2-8 on page 2-16) is the primary means for an obj
implementation to access ORB services such as object reference generation. An object
adapter exports a public interface to the object implementation, and a private interface
to the skeleton. It is built on a private ORB-dependent interface.

Object adapters are responsible for the following functions:

• Generation and interpretation of object references

• Method invocation

• Security of interactions

• Object and implementation activation and deactivation

• Mapping object references to the corresponding object implementations

• Registration of implementations

These functions are performed using the ORB Core and any additional components
necessary. Often, an object adapter will maintain its own state to accomplish its tasks.
It may be possible for a particular object adapter to delegate one or more of its
responsibilities to the Core upon which it is constructed.
CORBA V2.2 Structure of an Object Adapter February 1998 2-15

2

For

ice

does
rage

is

e, an

d be

Figure 2-8 The Structure of a Typical Object Adapter

As shown in Figure 2-8 on page 2-16, the Object Adapter is implicitly involved in
invocation of the methods, although the direct interface is through the skeletons.
example, the Object Adapter may be involved in activating the implementation or
authenticating the request.

The Object Adapter defines most of the services from the ORB that the Object
Implementation can depend on. Different ORBs will provide different levels of serv
and different operating environments may provide some properties implicitly and
require others to be added by the Object Adapter. For example, it is common for
Object Implementations to want to store certain values in the object reference foreasy
identification of the object on an invocation. If the Object Adapter allows the
implementation to specify such values when a new object is created, it may be able to
store them in the object reference for those ORBs that permit it. If the ORB Core
not provide this feature, the Object Adapter would record the value in its own sto
and provide it to the implementation on an invocation. With Object Adapters, it is
possible for an Object Implementation to have access to a service whether or not it
implemented in the ORB Core—if the ORB Core provides it, the adapter simply
provides an interface to it; if not, the adapter must implement it on top of the ORB
Core. Every instance of a particular adapter must provide the same interface and
service for all the ORBs it is implemented on.

It is also not necessary for all Object Adapters to provide the same interface or
functionality. Some Object Implementations have special requirements, for exampl
object-oriented database system may wish to implicitly register its many thousands of
objects without doing individual calls to the Object Adapter. In such a case, it woul

Object Implementation

ORB Core

Interface A
Methods

Interface B
Methods

Object
Adapter
Interface

Dynamic
Skeleton

Interface A
Skeleton

Interface B
Skeleton
2-16 CORBA V2.2 February 1998

2

ject
s

to be
t

.
impractical and unnecessary for the object adapter to maintain any per-object state. By
using an object adapter interface that is tuned towards such object implementations, it
is possible to take advantage of particular ORB Core details to provide the most
effective access to the ORB.

2.6 CORBA Required Object Adapter

There are a variety of possible object adapters. However, since the object adapter
interface is something that object implementations depend on, it is desirable that there
be as few as practical. Most object adapters are designed to cover a range of ob
implementations, so only when an implementation requires radically different service
or interfaces should a new object adapter be considered. In this section, we briefly
describe the object adapter defined in this specification.

2.6.1 Portable Object Adapter

This specification defines a Portable Object Adapter that can be used for most ORB
objects with conventional implementations. (See the Portable Object Adapter chapter
for more information.) The intent of the POA, as its name suggests, is to provide an
Object Adapter that can be used with multiple ORBs with a minimum of rewriting
needed to deal with different vendors’ implementations.

This specification allows several ways of using servers but it does not deal with the
administrative issues of starting server programs. Once started, however, there can be a
servant started and ended for a single method call, a separate servant for each object, or
a shared servant for all instances of the object type. It allows for groups of objects
associated by means of being registered with different instances of the POA objecand
allows implementations to specify their own activation techniques. If the
implementation is not active when an invocation is performed, the POA will start one
The POA is specified in IDL, so its mapping to languages is largely automatic,
following the language mapping rules. (The primary task left for a language mapping
is the definition of the Servant type.)
CORBA V2.2 CORBA Required Object Adapter February 1998 2-17

2

ge

 be
y may

ear to

ject
 in
2.7 The Integration of Foreign Object Systems

The Common ORB Architecture is designed to allow interoperation with a wide ran
of object systems (see Figure 2-9 on page 2-18). Because there are many existing
object systems, a common desire will be to allow the objects in those systems to
accessible via the ORB. For those object systems that are ORBs themselves, the
be connected to other ORBs through the mechanisms described throughout this
manual.

Figure 2-9 Different Ways to Integrate Foreign Object Systems

For object systems that simply want to map their objects into ORB objects and receive
invocations through the ORB, one approach is to have those object systems app
be implementations of the corresponding ORB objects. The object system would
register its objects with the ORB and handle incoming requests, and could act like a
client and perform outgoing requests.

In some cases, it will be impractical for another object system to act like a POA ob
implementation. An object adapter could be designed for objects that are created
conjunction with the ORB and that are primarily invoked through the ORB. Another
object system may wish to create objects without consulting the ORB, and might
expect most invocations to occur within itself rather than through the ORB. In such a
case, a more appropriate object adapter might allow objects to be implicitly registered
when they are passed through the ORB.

ORB Core

Gateway

Object system as
another ORB

interoperating via a
gateway

Portable Object
Adapter

Special-purpose
Adapter

Object system as
a POA object

implementation

Object system as
an impleme ntation

with a special-purpose
object adapter
2-18 CORBA V2.2 February 1998

OMG IDL Syntax and Semantics 3
ives
This chapter describes OMG Interface Definition Language (IDL) semantics and g
the syntax for OMG IDL grammatical constructs.

Contents

This chapter contains the following sections.

Section Title Page

“Overview” 3-2

“Lexical Conventions” 3-3

“Preprocessing” 3-9

“OMG IDL Grammar” 3-10

“OMG IDL Specification” 3-14

“Inheritance” 3-16

“Constant Declaration” 3-18

“Type Declaration” 3-22

“Exception Declaration” 3-30

“Operation Declaration” 3-31

“Attribute Declaration” 3-33

“CORBA Module” 3-34

“CORBA Module” 3-34

“Differences from C++” 3-37

“Standard Exceptions” 3-37
 CORBA V2.2 February 1998 3-1

3

t

 in

 a

r

a
d by

3.1 Overview

The OMG Interface Definition Language (IDL) is the language used to describe the
interfaces that client objects call and object implementations provide. An interface
definition written in OMG IDL completely defines the interface and fully specifies
each operation’s parameters. An OMG IDL interface provides the information needed
to develop clients that use the interface’s operations.

Clients are not written in OMG IDL, which is purely a descriptive language, but in
languages for which mappings from OMG IDL concepts have been defined. The
mapping of an OMG IDL concept to a client language construct will depend on the
facilities available in the client language. For example, an OMG IDL exception might
be mapped to a structure in a language that has no notion of exception, or to an
exception in a language that does. The binding of OMG IDL concepts to several
programming languages is described in this manual.

OMG IDL obeys the same lexical rules as C++1, although new keywords are
introduced to support distribution concepts. It also provides full support for standard
C++ preprocessing features. The OMG IDL specification is expected to track relevan
changes to C++ introduced by the ANSI standardization effort.

The description of OMG IDL’s lexical conventions is presented in “Lexical
Conventions” on page 3-3. A description of OMG IDL preprocessing is presented
“Preprocessing” on page 3-9. The scope rules for identifiers in an OMG IDL
specification are described in “CORBA Module” on page 3-34.

The OMG IDL grammar is a subset of the proposed ANSI C++ standard, with
additional constructs to support the operation invocation mechanism. OMG IDL is
declarative language. It supports C++ syntax for constant, type, and operation
declarations; it does not include any algorithmic structures or variables. The gramma
is presented in “OMG IDL Grammar” on page3-10.

OMG IDL-specific pragmas (those not defined for C++) may appear anywhere in
specification; the textual location of these pragmas may be semantically constraine
a particular implementation.

A source file containing interface specifications written in OMG IDL must have an
“.idl” extension. The file orb.idl contains OMG IDL type definitions and is available on
every ORB implementation.

1. Ellis, Margaret A. and Bjarne Stroustrup, The Annotated C++ Reference Manual, Add-
ison-Wesley Publishing Company, Reading, Massachusetts, 1990, ISBN 0-201-51459-1
3-2 CORBA V2.2 February 1998

3

tion.

kens.
.

The description of OMG IDL grammar uses a syntax notation that is similar to
Extended Backus-Naur Format (EBNF). Table 3-1 lists the symbols used in this format
and their meaning.

3.2 Lexical Conventions

This section2 presents the lexical conventions of OMG IDL. It defines tokens in an
OMG IDL specification and describes comments, identifiers, keywords, and
literals—integer, character, and floating point constants and string literals.

An OMG IDL specification logically consists of one or more files. A file is
conceptually translated in several phases.

The first phase is preprocessing, which performs file inclusion and macro substitu
Preprocessing is controlled by directives introduced by lines having # as the first
character other than white space. The result of preprocessing is a sequence of to
Such a sequence of tokens, that is, a file after preprocessing, is called a translation unit

OMG IDL uses the ISO Latin-1 (8859.1) character set. This character set is divided
into alphabetic characters (letters), digits, graphic characters, the space (blank)
character and formatting characters. Table 3-2 shows the OMG IDL alphabetic
characters; upper- and lower-case equivalencies are paired.

Table 3-1 IDL EBNF

Symbol Meaning

::= Is defined to be

| Alternatively

<text> Nonterminal

“text” Literal

* The preceding syntactic unit can be repeated zero or more times

+ The preceding syntactic unit can be repeated one or more times

{} The enclosed syntactic units are grouped as a single syntactic unit

[] The enclosed syntactic unit is optional—may occur zero or one time

2. This section is an adaptation of The Annotated C++ Reference Manual, Chapter 2; it
differs in the list of legal keywords and punctuation.

Table 3-2 The 114 Alphabetic Characters (Letters)

Char. Description Char. Description

Aa Upper/Lower-case A Àà Upper/Lower-case A with grave accent

Bb Upper/Lower-case B Áá Upper/Lower-case A with acute accent

Cc Upper/Lower-case C Ââ Upper/Lower-case A with circumflex accent

Dd Upper/Lower-case D Ãã Upper/Lower-case A with tilde

Ee Upper/Lower-case E Ää Upper/Lower-case A with diaeresis

Ff Upper/Lower-case F Åå Upper/Lower-case A with ring above
CORBA V2.2 Lexical Conventions February 1998 3-3

3

Table 3-3 lists the decimal digit characters.

Table 3-4 shows the graphic characters.

Gg Upper/Lower-case G Ææ Upper/Lower-case dipthong A with E

Hh Upper/Lower-case H Çç Upper/Lower-case C with cedilla

Ii Upper/Lower-case I Èè Upper/Lower-case E with grave accent

Jj Upper/Lower-case J Éé Upper/Lower-case E with acute accent

Kk Upper/Lower-case K Êê Upper/Lower-case E with circumflex accent

Ll Upper/Lower-case L Ëë Upper/Lower-case E with diaeresis

Mm Upper/Lower-case M Ìì Upper/Lower-case I with grave accent

Nn Upper/Lower-case N Íí Upper/Lower-case I with acute accent

Oo Upper/Lower-case O Îî Upper/Lower-case I with circumflex accent

Pp Upper/Lower-case P Ïï Upper/Lower-case I with diaeresis

Qq Upper/Lower-case Q Ññ Upper/Lower-case N with tilde

Rr Upper/Lower-case R Òò Upper/Lower-case O with grave accent

Ss Upper/Lower-case S Óó Upper/Lower-case O with acute accent

Tt Upper/Lower-case T Ôô Upper/Lower-case O with circumflex accent

Uu Upper/Lower-case U Õõ Upper/Lower-case O with tilde

Vv Upper/Lower-case V Öö Upper/Lower-case O with diaeresis

Ww Upper/Lower-case W Øø Upper/Lower-case O with oblique stroke

Xx Upper/Lower-case X Ùù Upper/Lower-case U with grave accent

Yy Upper/Lower-case Y Úú Upper/Lower-case U with acute accent

Zz Upper/Lower-case Z Ûû Upper/Lower-case U with circumflex accent

Üü Upper/Lower-case U with diaeresis

 ß Lower-case German sharp S

 ÿ Lower-case Y with diaeresis

Table 3-3 Decimal Digits

0 1 2 3 4 5 6 7 8 9

Table 3-4 The 65 Graphic Characters

Char. Description Char. Description

! exclamation point ¡ inverted exclamation mark

" double quote ¢ cent sign

number sign £ pound sign

$ dollar sign ¤ currency sign

% percent sign ¥ yen sign

& ampersand broken bar

Table 3-2 The 114 Alphabetic Characters (Letters) (Continued)

Char. Description Char. Description
3-4 CORBA V2.2 February 1998

3

The formatting characters are shown in Table 3-5.

’ apostrophe § section/paragraph sign

(left parenthesis ¨ diaeresis

) right parenthesis © copyright sign

* asterisk ª feminine ordinal indicator

+ plus sign « left angle quotation mark

, comma ¬ not sign

- hyphen, minus sign soft hyphen

. period, full stop ® registered trade mark sign

/ solidus ¯ macron

: colon ° ring above, degree sign

; semicolon ± plus-minus sign

< less-than sign 2 superscript two

= equals sign 3 superscript three

> greater-than sign ´ acute

? question mark µ micro

@ commercial at ¶ pilcrow

[left square bracket • middle dot

\ reverse solidus ¸ cedilla

] right square bracket 1 superscript one

^ circumflex º masculine ordinal indicator

_ low line, underscore » right angle quotation mark

‘ grave vulgar fraction 1/4

{ left curly bracket vulgar fraction 1/2

| vertical line vulgar fraction 3/4

} right curly bracket ¿ inverted question mark

~ tilde × multiplication sign

÷ division sign

Table 3-5 The Formatting Characters

Description Abbreviation ISO 646 Octal Value

alert BEL 007

backspace BS 010

horizontal tab HT 011

newline NL, LF 012

vertical tab VT 013

form feed FF 014

carriage return CR 015

Table 3-4 The 65 Graphic Characters (Continued)

Char. Description Char. Description
CORBA V2.2 Lexical Conventions February 1998 3-5

3

to

e end

d,

”)
e

ge 3-3

d
3.2.1 Tokens

There are five kinds of tokens: identifiers, keywords, literals, operators, and other
separators. Blanks, horizontal and vertical tabs, newlines, formfeeds, and comments
(collective, “white space”), as described below, are ignored except as they serve
separate tokens. Some white space is required to separate otherwise adjacent
identifiers, keywords, and constants.

If the input stream has been parsed into tokens up to a given character, the next token
is taken to be the longest string of characters that could possibly constitute a token.

3.2.2 Comments

The characters /* start a comment, which terminates with the characters */. These
comments do not nest. The characters // start a comment, which terminates at th
of the line on which they occur. The comment characters //, /*, and */ have no special
meaning within a // comment and are treated just like other characters. Similarly, the
comment characters // and /* have no special meaning within a /* comment. Comments
may contain alphabetic, digit, graphic, space, horizontal tab, vertical tab, form fee
and newline characters.

3.2.3 Identifiers

An identifier is an arbitrarily long sequence of alphabetic, digit, and underscore (“_
characters. The first character must be an alphabetic character. All characters ar
significant.

Identifiers that differ only in case collide and yield a compilation error. An identifier
for a definition must be spelled consistently (with respect to case) throughout a
specification.

When comparing two identifiers to see if they collide:

• Upper- and lower-case letters are treated as the same letter. Table 3-2 on pa
defines the equivalence mapping of upper- and lower-case letters.

• The comparison does not take into account equivalences between digraphs an
pairs of letters (e.g., “æ” and “ae” are not considered equivalent) or equivalences
between accented and non-accented letters (e.g., “Á” and “A” are not considered
equivalent).

• All characters are significant.

There is only one namespace for OMG IDL identifiers. Using the same identifier for a
constant and an interface, for example, produces a compilation error.
3-6 CORBA V2.2 February 1998

3

)

of
3.2.4 Keywords

The identifiers listed in Table 3-6 are reserved for use as keywords and may not be
used otherwise.

Keywords obey the rules for identifiers (see“Identifiers” on page 3-6) and must be
written exactly as shown in the above list. For example, “boolean ” is correct;
“Boolean ” produces a compilation error. The keyword “Object ” can be used as a
type specifier.

OMG IDL specifications use the characters shown in Table 3-7 as punctuation.

In addition, the tokens listed in Table 3-8 are used by the preprocessor.

3.2.5 Literals

This section describes the following literals:

• Integer

• Character

• Floating-point

• String

• Fixed-point

Integer Literals

An integer literal consisting of a sequence of digits is taken to be decimal (base ten
unless it begins with 0 (digit zero). A sequence of digits starting with 0 is taken to be
an octal integer (base eight). The digits 8 and 9 are not octal digits. A sequence

Table 3-6 Keywords

any double interface readonly unsigned

attribute enum long sequence union

boolean exception module short void

case FALSE Object string wchar

char fixed octet struct wstring

const float oneway switch

context in out TRUE

default inout raises typedef

Table 3-7 Punctuation Characters

; { } : , = + - () < > []

' " \ | ^ & * / % ~

Table 3-8 Preprocessor Tokens

! || &&
CORBA V2.2 Lexical Conventions February 1998 3-7

3

 The
e of

elow in

ts

digits preceded by 0x or 0X is taken to be a hexadecimal integer (base sixteen). The
hexadecimal digits include a or A through f or F with decimal values ten through
fifteen, respectively. For example, the number twelve can be written 12, 014, or 0XC.

Character Literals

A character literal is one or more characters enclosed in single quotes, as in ’x’.
Character literals have type char.

A character is an 8-bit quantity with a numerical value between 0 and 255 (decimal).
The value of a space, alphabetic, digit, or graphic character literal is the numerical
value of the character as defined in the ISO Latin-1 (8859.1) character set standard
(See Table 3-2 on page 3-3, Table 3-3 on page 3-4, and Table 3-4 on page 3-4).
value of a null is 0. The value of a formatting character literal is the numerical valu
the character as defined in the ISO 646 standard (See Table 3-5 on page 3-5). The
meaning of all other characters is implementation-dependent.

Nongraphic characters must be represented using escape sequences as defined b
Table 3-9. Note that escape sequences must be used to represent single quote and
backslash characters in character literals.

If the character following a backslash is not one of those specified, the behavior is
undefined. An escape sequence specifies a single character.

The escape \ooo consists of the backslash followed by one, two, or three octal digi
that are taken to specify the value of the desired character. The escape \xhh consists of
the backslash followed by x followed by one or two hexadecimal digits that are taken
to specify the value of the desired character. A sequence of octal or hexadecimal digits

Table 3-9 Escape Sequences

Description Escape Sequence

newline \n

horizontal tab \t

vertical tab \v

backspace \b

carriage return \r

form feed \f

alert \a

backslash \\

question mark \?

single quote \'

double quote \"

octal number \ooo

hexadecimal
number

\xhh
3-8 CORBA V2.2 February 1998

3

,

 the

n e

ction
and

age

kept

,

part

; the

acro
is terminated by the first character that is not an octal digit or a hexadecimal digit
respectively. The value of a character constant is implementation dependent if it
exceeds that of the largest char.

Wide character and wide string literals are specified exactly like character and string
literals. All character and string literals, both wide and non-wide, may only be
specified (portably) using the characters found in the ISO 8859-1 character set, that is
interface names, operation names, type names, etc., will continue to be limited to
ISO 8859-1 character set.

Floating-point Literals

A floating-point literal consists of an integer part, a decimal point, a fraction part, a
or E, and an optionally signed integer exponent. The integer and fraction parts both
consist of a sequence of decimal (base ten) digits. Either the integer part or the fra
part (but not both) may be missing; either the decimal point or the letter e (or E)
the exponent (but not both) may be missing.

String Literals

A string literal is a sequence of characters (as defined in “Character Literals” on p
3-8) surrounded by double quotes, as in "...".

Adjacent string literals are concatenated. Characters in concatenated strings are
distinct. For example,

 "\xA" "B"

contains the two characters '\xA' and 'B' after concatenation (and not the single
hexadecimal character '\xAB').

The size of a string literal is the number of character literals enclosed by the quotes
after concatenation. The size of the literal is associated with the literal. Within a string,
the double quote character " must be preceded by a \.

A string literal may not contain the character '\0'.

Fixed-Point Literals

A fixed-point decimal literal consists of an integer part, a decimal point, a fraction
and a d or D. The integer and fraction parts both consist of a sequence of decimal (base
10) digits. Either the integer part or the fraction part (but not both) may be missing
decimal point (but not the letter d (or D)) may be missing.

3.3 Preprocessing

OMG IDL preprocessing, which is based on ANSI C++ preprocessing, provides m
substitution, conditional compilation, and source file inclusion. In addition, directives
are provided to control line numbering in diagnostics and for symbolic debugging, to
CORBA V2.2 Preprocessing February 1998 3-9

3

y

e
f the

e

 the

me
 not
generate a diagnostic message with a given token sequence, and to perform
implementation-dependent actions (the #pragma directive). Certain predefined names
are available. These facilities are conceptually handled by a preprocessor, which ma
or may not actually be implemented as a separate process.

Lines beginning with # (also called “directives”) communicate with this preprocessor.
White space may appear before the #. These lines have syntax independent of threst
of OMG IDL; they may appear anywhere and have effects that last (independent o
OMG IDL scoping rules) until the end of the translation unit. The textual location of
OMG IDL-specific pragmas may be semantically constrained.

A preprocessing directive (or any line) may be continued on the next line in a sourc
file by placing a backslash character (“\”), immediately before the newline at the end
of the line to be continued. The preprocessor effects the continuation by deleting
backslash and the newline before the input sequence is divided into tokens. A
backslash character may not be the last character in a source file.

A preprocessing token is an OMG IDL token (see “Tokens” on page 3-6), a file na
as in a #include directive, or any single character other than white space that does
match another preprocessing token.

The primary use of the preprocessing facilities is to include definitions from other
OMG IDL specifications. Text in files included with a #include directive is treated as
if it appeared in the including file. A complete description of the preprocessing
facilities may be found in The Annotated C++ Reference Manual. The #pragma
directive that is used to include RepositoryIds is described in Section 8.6,
“RepositoryIds,” on page 8-32.

3.4 OMG IDL Grammar
(1) <specification> ::= <definit ion> +

(2) <definition> ::= <type_dcl> “;”
| <const_dcl> “;”
| <except_dcl> “;”
| <interface> “;”
| <module> “;”

(3) <module> ::= “module” <identi fier> “{“ <definition> + “}”
(4) <interface> ::= <interfa ce_dcl>

| <forw ard_dcl>
(5) <inter face_dcl> ::= < interfa ce_header> “{” <interface_body> “}”
(6) <forward_dcl> ::= “interface” <identifier>
(7) <inter face_header> ::= “interface” <identifier> [<inheri tance_spec>]
(8) <interface _body> ::= <exp ort> *

(9) <export> ::= <type_dcl> “;”
| <const_dcl> “;”
| <except_dcl> “;”
| <attr_dcl> “;”
| <op_dcl> “;”

(10) <inheri tance_spec> ::= “:” <scoped_name> { “,” <sc oped_name> } *
3-10 CORBA V2.2 February 1998

3

(11) <scoped_name> ::= <identif ier>
| “::” <identifier>
| <scoped_ name> “::” <identif ier>

(12) <const_dcl> ::= “const” <const_type> <identifi er> “=”
<const_exp>

(13) <const_type> ::= <integer_type>
| <char_type>
| <wide_char_type>
| <boolean_type>
| <floating_pt_type>
| <string_type>
| <wide_string_type>
| <fixed_pt_const_type>
| <scoped_ name>

(14) <const_exp> ::= <or_expr>
(15) <or_expr> ::= <x or_expr>

| <or_expr> “|” <xor_expr>
(16) <xor_expr> ::= <and_expr>

| <xor_expr> “ ”̂ <and_expr>
(17) <and_expr> ::= <shift_expr>

| <and_expr> “&” <shift_expr>
(18) <shift_expr> ::= <add_expr>

| <shift_expr> “>>” <add_expr>
| <shift_expr> “<<” <add_expr>

(19) <add_expr> ::= < mult _expr>
| <add_expr> “+” <mul t_expr>
| <add_expr> “-” <m ult_expr>

(20) <mult_expr> ::= <unary_expr>
| <mult_expr> “*” <u nary_expr>
| <mult_expr> “/” <un ary_expr>
| <mult_expr> “%” <u nary_expr>

(21) <unary_expr> ::= <u nary_operat or> <prima ry_expr>
| <primary_expr>

(22) <un ary_oper ator> ::= “-”
| “+”
| “~”

(23) <primary_expr> ::= <s coped_ name>
| <literal>
| “(” <const_exp> “)”

(24) <literal> ::= <integer_literal>
| <string_literal>
| <wide_string_literal>
| <character_literal>
| <wide_character_literal>
| <fixed_pt_literal>
| <floating_pt_literal>
| <boolean_literal>
CORBA V2.2 OMG IDL Grammar February 1998 3-11

3

(25) <boolean_l iteral> ::= “TRUE”
| “FALSE”

(26) <positive_int_const> ::= <const_exp>
(27) <type_dcl> ::= “typedef” <type_dec larator>

| <struct_type>
| <union_type>
| <enum_type>
| “native” <simple_declarator>

(28) <type_declarator> ::= <type_spec> <declarators>
(29) <type_spec> ::= <simple_type_spec>

| <constr_type_spec>
(30) <simpl e_type_spec> ::= <base_type_spec>

| <template_type_spec>
| <scoped_ name>

(31) <base_type_spec> ::= < floating_pt_type>
| <integer_type>
| <char_type>
| <wide_char_type>
| <boolean_type>
| <octet_type>
| <any_type>
| <object_type>

(32) <templ ate_type_spec> ::= <sequence_type>
| <string_type>
| <wide_string_type>
| <fixed_pt_type>

(33) <constr_type_spec> ::= <struct_type>
| <union_type>
| <enum_type>

(34) <declarators> ::= <declarator> { “,” <declarator> } ∗

(35) <declarator> ::= <simple_declarator>
| <compl ex_dec larator>

(36) <simple_declarator> ::= <identif ier>
(37) <complex_declarator> ::= <array_declarator>
(38) <floatin g_pt_type> ::= “float”

| “double”
| “long” “double”

(39) <inte ger_type> ::= <signed_int>
| <unsigned_int>

(40) <signed_int> ::= <sign ed_short_int>
| <signed_long_int>
| <signed_longlong_int>

(41) <sig ned_sho rt_int> ::= “short”
(42) <sig ned_long_int> ::= “long”
(43) <sign ed_longlong_int> ::= “long” “long”
(44) <unsigned_int> ::= <unsigned_short_int>

| <unsigned_long_int>
3-12 CORBA V2.2 February 1998

3

| <unsigned_longlong_int>
(45) <unsig ned_sho rt_int> ::= “unsigned” “short”
(46) <unsig ned_long_int> ::= “unsigned” “long”
(47) <unsigned _longlong_int> ::= “unsigned” “long” “long”
(48) <char_type> ::= “char”
(49) <wide_char_type> ::= “wchar”
(50) <boolean_type> ::= “boolean”
(51) <octet_type> ::= “octet”
(52) <any_type> ::= “any”
(53) <object_type> ::= “Object”
(54) <struct_type> ::= “struct” <identif ier> “{” <member_list> “}”
(55) <member_list> ::= <member> +

(56) <member> ::= <type_spec> <declarators> “;”
(57) <union_type> ::= “union” <identif ier> “switch” “(”

<switch_type_spec> “)” “{” <swi tch_body>
“}”

(58) <switch_type_spec> ::= <integer_type>
| <char_type>
| <boolean_type>
| <enum_type>
| <scoped_ name>

(59) <switch _body> ::= <case> +

(60) <case> ::= <case_label> + <element_spec> “;”
(61) <case_label> ::= “case” <const_exp> “:”

| “default” “:”
(62) <element_ spec> ::= <type_spec> <declarator>
(63) <enum_type> ::= “enum” <identi fier> “{” <enumerator> { “,”

<enumerator> } ∗ “}”
(64) <enumerator> ::= <identif ier>
(65) <sequence_type> ::= “sequence” “<” <si mple_ty pe_spec> “,”

<positive_int_const> “>”
| “sequence” “<” <si mple_ty pe_spec> “>”

(66) <strin g_type> ::= “string” “<” <positive_int_const> “>”
| “string”

(67) <wide_string_type> ::= “w string” “<” <positive_int_c onst> “>”
| “wstring”

(68) <array_declarator> ::= <identif ier> <f ixed_array_size> +

(69) <fixed_ar ray_size> ::= “[” <positive_int_const> “]”
(70) <attr_dcl> ::= [“readonly”] “attribute”

<param_type_spec> <simple_declarator> {
“,” <simple_declarat or> }*

(71) <except_dcl> ::= “exception” <identifier> “{“ <member>* “}”
(72) <op_dcl> ::= [<op_attribute>] <op_type_spec> <identi-

fier> <parameter_dc ls> [<raises_expr>] [
<context_expr>]

(73) <op_attribute> ::= “oneway”
CORBA V2.2 OMG IDL Grammar February 1998 3-13

3

(74) <op_type_spec> ::= <param_typ e_spec>
| “void”

(75) <parameter_dcls> ::= “(” <param_dcl> { “,” <param_dcl> } ∗ “)”
| “(” “)”

(76) <param_dcl> ::= <param_attribute> <param_type_sp ec>
<simple_declarator>

(77) <param_attribute> ::= “in”
| “out”
| “inout”

(78) <raises_expr> ::= “raises” “(” <scoped_name> { “,”
<scoped_ name> } ∗ “)”

(79) <context_expr> ::= “context” “(” <str ing_lit eral> { “,”
<string_literal> } ∗ “)”

(80) <param_type_spec> ::= <b ase_type_spec>
| <string_type>
| <wide_string_type>
| <fixed_pt_type>
| <scoped_ name>

(81) <fixed_pt_type> ::= “fixed” “<“ <positive_int_const> “,”
<integer_literal> “>”

(82) <fixed_pt_const_type> ::= “fixed”

3.5 OMG IDL Specification

An OMG IDL specification consists of one or more type definitions, constant
definitions, exception definitions, or module definitions. The syntax is:

<specification>::=<definition> +

<definit ion>::=<type_dcl> “;”
| <const_dcl> “;”
| <except_dcl> “;”
| <interface> “;”
| <module> “;”

See “Constant Declaration” on page 3-18, “Type Declaration” on page 3-22, and
“Exception Declaration” on page3-30, respectively, for specifications of
<const_dcl> , <type_dcl> , and <except_dcl> .

3.5.1 Module Declaration

A module definition satisfies the following syntax:

<module>::=“module” <identif ier> “{“ <definition> + “}”

The module construct is used to scope OMG IDL identifiers; see “CORBA Module” on
page 3-34 for details.
3-14 CORBA V2.2 February 1998

3

nces
ce

3.5.2 Interface Declaration

An interface definition satisfies the following syntax:

<interface> ::= <interfa ce_dcl>
| <forw ard_dcl>

<interfa ce_dcl> ::= < interfa ce_header> “{” <interface_body> “}”

<forw ard_dcl> ::= “interface” <identif ier>

<interfa ce_header>::= “int erface” <identifier> [<inheri tance_spec>]

<interfa ce_body> ::= <exp ort> *

<export> ::= < type_dcl> “;”
 | <const_dcl> “;”

 | <except_dcl> “;”
 | <attr_dcl> “;”
 | <op_dcl> “;”

Interface Header

The interface header consists of two elements:

• The interface name. The name must be preceded by the keyword interface , and
consists of an identifier that names the interface.

• An optional inheritance specification. The inheritance specification is described in
the next section.

The <identifier> that names an interface defines a legal type name. Such a type name
may be used anywhere an <identifier> is legal in the grammar, subject to semantic
constraints as described in the following sections. Since one can only hold refere
to an object, the meaning of a parameter or structure member which is an interfa
type is as a reference to an object supporting that interface. Each language binding
describes how the programmer must represent such interface references.

Inheritance Specification

The syntax for inheritance is as follows:

<inheritance_spec>::= “:” <scoped_name> {“,” <scoped_name>}*
<scoped_ name> ::= <identifier>

| “::” <identif ier>
| <scoped_name> “::” <identifier>

Each <scoped_n ame> in an <inheritance_spec> must denote a previously defined
interface. See “Inheritance” on page 3-16 for the description of inheritance.
CORBA V2.2 OMG IDL Specification February 1998 3-15

3

ace
on

e
n

 and
ypes

” on

rface

hich
Interface Body

The interface body contains the following kinds of declarations:

• Constant declarations, which specify the constants that the interface exports;
constant declaration syntax is described in “Constant Declaration” on page 3-18.

• Type declarations, which specify the type definitions that the interface exports;
type declaration syntax is described in “Type Declaration” on page 3-22.

• Exception declarations, which specify the exception structures that the interf
exports; exception declaration syntax is described in “Exception Declaration”
page 3-30.

• Attribute declarations, which specify the associated attributes exported by th
interface; attribute declaration syntax is described in “Attribute Declaration” o
page 3-33.

• Operation declarations, which specify the operations that the interface exports
the format of each, including operation name, the type of data returned, the t
of all parameters of an operation, legal exceptions which may be returned as a
result of an invocation, and contextual information which may affect method
dispatch; operation declaration syntax is described in “Operation Declaration
page 3-31.

Empty interfaces are permitted (that is, those containing no declarations).

Some implementations may require interface-specific pragmas to precede the inte
body.

Forward Declaration

A forward declaration declares the name of an interface without defining it. This
permits the definition of interfaces that refer to each other. The syntax consists simply
of the keyword interface followed by an <identifier> that names the interface. The
actual definition must follow later in the specification.

Multiple forward declarations of the same interface name are legal.

3.6 Inheritance

An interface can be derived from another interface, which is then called a base
interface of the derived interface. A derived interface, like all interfaces, may declare
new elements (constants, types, attributes, exceptions, and operations). In addition,
unless redefined in the derived interface, the elements of a base interface can be
referred to as if they were elements of the derived interface. The name resolution
operator (“::”) may be used to refer to a base element explicitly; this permits reference
to a name that has been redefined in the derived interface.

A derived interface may redefine any of the type, constant, and exception names w
have been inherited; the scope rules for such names are described in “CORBA
Module” on page 3-34.
3-16 CORBA V2.2 February 1998

3

e
or

t is
An interface is called a direct base if it is mentioned in the <inheritance_spec> and
an indirect base if it is not a direct base but is a base interface of one of the interfaces
mentioned in the <inherita nce_spec> .

An interface may be derived from any number of base interfaces. Such use of more
than one direct base interface is often called multiple inheritance. The order of
derivation is not significant.

An interface may not be specified as a direct base interface of a derived interface more
than once; it may be an indirect base interface more than once. Consider the following
example:

interface A { ... }
interface B: A { ... }
interface C: A { ... }
interface D: B, C { ... }

The relationships between these interfaces is shown in Figure on page 3-17. This
“diamond” shape is legal.

Figure 3-1 Legal Multiple Inheritance Example

Reference to base interface elements must be unambiguous. Reference to a bas
interface element is ambiguous if the expression used refers to a constant, type,
exception in more than one base interface. (It is currently illegal to inherit from two
interfaces with the same operation or attribute name, or to redefine an operation or
attribute name in the derived interface.) Ambiguities can be resolved by qualifying a
name with its interface name (that is, using a <scoped_name>).

References to constants, types, and exceptions are bound to an interface when i
defined (i.e., replaced with the equivalent global <scoped_n ame>s). This guarantees
that the syntax and semantics of an interface are not changed when the interface is a
base interface for a derived interface. Consider the following example:

A

B C

D

CORBA V2.2 Inheritance February 1998 3-17

3

 be
on
urrent

const long L = 3;

interface A {
typedef float coord[L]):
void f (in coord s); // s has three floats

};

interface B {
const long L = 4;

};

interface C: B, A {}// what is f()’s signature?

The early binding of constants, types, and exceptions at interface definition guarantees
that the signature of operation f in interface C is

typedef float coord[3];
void f (in coord s);

which is identical to that in interface A. This rule also prevents redefinition of a
constant, type, or exception in the derived interface from affecting the operations and
attributes inherited from a base interface.

Interface inheritance causes all identifiers in the closure of the inheritance tree to
imported into the current naming scope. A type name, constant name, enumerati
value name, or exception name from an enclosing scope can be redefined in the c
scope. An attempt to use an ambiguous name without qualification is a compilation
error.

Operation names are used at run-time by both the stub and dynamic interfaces. As a
result, all operations that might apply to a particular object must have unique names.
This requirement prohibits redefining an operation name in a derived interface, as well
as inheriting two operations with the same name.

3.7 Constant Declaration

This section describes the syntax for constant declarations.

3.7.1 Syntax

The syntax for a constant declaration is:

<const_dcl> ::= “const” <const_type> <identifi er> “=”
 <const_exp>

<const_type> ::= <integer_type>
| <char_type>
| <boolean_type>
| <floating_pt_type>
3-18 CORBA V2.2 February 1998

3

| <string_type>
| <scoped_ name>

<const_exp> ::= <or_expr>

<or_expr> ::= <xor_expr>
| <or_expr> “|” <xor_expr>

<xor_expr> ::= <and_expr>
| <xor_expr> “ ”̂ <and_expr>

<and_expr> ::= <shift_expr>
| <and_expr> “&” <shift_expr>

<shift_expr> ::= <add_expr>
| <shift_expr> “>>” <add_expr>
| <shift_expr> “<<” <add_expr>

<add_expr> ::= < mult _expr>
| <add_expr> “+” <mul t_expr>
| <add_expr> “-” <m ult_expr>

<mult _expr> ::= <unary_expr>
| <mult_expr> “*” <u nary_expr>
| <mult_expr> “/” <un ary_expr>
| <mult_expr> “%” <u nary_expr>

<unary_expr> ::= <unary_operat or> <prima ry_expr>
| <primary_expr>

<unary_operator> ::= “-”
| “+”
| “~”

<primary_expr> ::= <s coped_ name>
| <literal>
| “(” <const_exp> “)”

<literal> ::= <integer_literal>
| <string_literal>
| <character_literal>
| <floating_pt_literal>
| <boolean_literal>

<boolean_literal> ::= “TRUE”
| “FALSE”

<positive_int_const> ::= <const_exp>
CORBA V2.2 Constant Declaration February 1998 3-19

3

se.

teral

or

 infix
3.7.2 Semantics

The <scoped_ name> in the <const_type> production must be a previously defined
name of an <integer_type> , <char_type> , <wide_ char_type> ,
<boolean_type> , <floating_pt_type> , <fixed_pt_const_type> , <strin g_type>,

or <wide_string_type> constant.

An infix operator can combine two integers, floats or fixeds, but not mixtures of the
Infix operators are applicable only to integer, float and fixed types.

If the type of an integer constant is long or unsigned long , then each subexpression
of the associated constant expression is treated as an unsigned long by default, or a
signed long for negated literals or negative integer constants. It is an error if any
subexpression values exceed the precision of the assigned type (long or unsigned
long), or if a final expression value (of type unsigned long) exceeds the precision of
the target type (long).

If the type of an integer constant is long long or unsigned long long , then each
subexpression of the associated constant expression is treated as an unsigned long
long by default, or a signed long long for negated literals or negative integer
constants. It is an error if any subexpression values exceed the precision of the
assigned type (long long or unsigned long long), or if a final expression value (of
type unsigned long long) exceeds the precision of the target type (long long).

If the type of a floating-point constant is double , then each subexpression of the
associated constant expression is treated as a double. It is an error if any
subexpression value exceeds the precision of double .

If the type of a floating-point constant is long double , then each subexpression of the
associated constant expression is treated as a long double . It is an error if any
subexpression value exceeds the precision of long double .

Fixed-point decimal constant expressions are evaluated as follows. A fixed-point li
has the apparent number of total and fractional digits, except that leading and trailing
zeros are factored out, including non-significant zeros before the decimal point. F
example, 0123.450d is considered to be fixed<5,2> and 3000.00 is fixed<1,-3> .
Prefix operators do not affect the precision; a prefix + is optional, and does not change
the result. The upper bounds on the number of digits and scale of the result of an
expression, fixed<d1,s1> op fixed<d2,s2> , are shown in the following table:

Op Result: fixed<d,s>

+ fixed<max(d1-s1,d2-s2) + max(s1,s2) + 1, max(s1,s2)>

- fixed<max(d1-s1,d2-s2) + max(s1,s2) + 1, max(s1,s2)>

* fixed<d1+d2, s1+s2>

/ fixed<(d1-s1+s2) + s inf , s inf>
3-20 CORBA V2.2 February 1998

3

t

n
d.

ion

e; if

t
A quotient may have an arbitrary number of decimal places, denoted by a scale ofs inf.
The computation proceeds pairwise, with the usual rules for left-to-right association,
operator precedence, and parentheses. If an individual computation between a pair of
fixed-point literals actually generates more than 31 significant digits, then a 31-digi
result is retained as follows:

fixed<d,s> => fixed<31, 31-d+s>

Leading and trailing zeros are not considered significant. The omitted digits are
discarded; rounding is not performed. The result of the individual computation the
proceeds as one literal operand of the next pair of fixed-point literals to be compute

Unary (+ -) and binary (* / + -) operators are applicable in floating-point and fixed-
point expressions. Unary (+ - ~) and binary (* / % + - << >> & | ^) operators are
applicable in integer expressions.

The “~” unary operator indicates that the bit-complement of the expression to which it
is applied should be generated. For the purposes of such expressions, the values are 2’s
complement numbers. As such, the complement can be generated as follows:

The “%” binary operator yields the remainder from the division of the first express
by the second. If the second operand of “%” is 0, the result is undefined; otherwise

 (a/b)*b + a%b

is equal to a. If both operands are nonnegative, then the remainder is nonnegativ
not, the sign of the remainder is implementation dependent.

The “<<”binary operator indicates that the value of the left operand should be shifted
left the number of bits specified by the right operand, with 0 fill for the vacated bits.
The right operand must be in the range 0 <= right operand < 64.

The “>>” binary operator indicates that the value of the left operand should be shifted
right the number of bits specified by the right operand, with 0 fill for the vacated bits.
The right operand must be in the range 0 <= right operand < 64.

The “&” binary operator indicates that the logical, bitwise AND of the left and righ
operands should be generated.

The “|” binary operator indicates that the logical, bitwise OR of the left and right
operands should be generated.

Integer Constant Expression Type Generated 2’s Complement Numbers

long long -(value+1)

unsigned long unsigned long (2**32-1) - value

long long long long -(value+1)

unsigned long long unsigned long (2**64-1) - value
CORBA V2.2 Constant Declaration February 1998 3-21

3

ft

ge-

data

d
The “^” binary operator indicates that the logical, bitwise EXCLUSIVE-OR of the le
and right operands should be generated.

<positive_int_const> must evaluate to a positive integer constant.

3.8 Type Declaration

OMG IDL provides constructs for naming data types; that is, it provides C langua
like declarations that associate an identifier with a type. OMG IDL uses the typedef
keyword to associate a name with a data type; a name is also associated with a
type via the struct , union , enum , and native declarations; the syntax is:

<type_dcl> ::= “typedef” <type_declarator>
| <struct_type>
| <union_type>
| <enum_type>
I “native” <simple_declarator>

<type_declarator> ::= <type_spec> <declarators>

For type declarations, OMG IDL defines a set of type specifiers to represent type
values. The syntax is as follows:
<type_spec> ::= <simple_type_spec>

| <constr_type_spec>

<simple_type_spec> ::= <base_type_spec>
| <template_type_spec>
| <scoped_ name>

<base_type_spec> ::= < floating_pt_type>
| <integer_type>
| <char_type>
| <wide_char_type>
| <boolean_type>
| <octet_type>
| <any_type>

<template_type_spec>::=<sequence_type>
| <string_type>
| <wide_string_type>
| <fixed_pt_type>

<constr_type_spec> ::= <struct_type>
| <union_type>
| <enum_type>

<declarators>::=<declarator> { “,” <declarator> } ∗

<declarator> ::= <simple_declarator>
| <compl ex_dec larator>

<simple_declarator> ::= <identif ier>

<compl ex_dec larator> ::= <array_declarator>
3-22 CORBA V2.2 February 1998

3

sign
cted

y

The <scoped_n ame> in <simple_type_spec> must be a previously defined type.

As seen above, OMG IDL type specifiers consist of scalar data types and type
constructors. OMG IDL type specifiers can be used in operation declarations to as
data types to operation parameters. The next sections describe basic and constru
type specifiers.

3.8.1 Basic Types

The syntax for the supported basic types is as follows:
<floating_pt_type> ::= “float”

| “double”
| “long” “double”

<integer_type>: := <signed_int>
| <unsigned_int>

<signed_int> ::= <signed_long_int
| <signed_short_int>
| <signed_longlong_int>

<signed_long_int> ::= “long”

<signed_short_int> ::= “short”

<signed_longlong_int> ::= “long” “long”

<unsigned_int> ::= <unsigned_long_int>
| <unsigned_short_int>
| <unsigned_longlong_int>

<unsigned_long_int> ::= “unsigned” “long”

<unsigned_short_int> ::= “unsigned” “short”

<unsigned_longlong_int>::= “unsigned” “long” “long”

<char_type> ::= “char”

<wide_char_type> ::= “wchar”

<boolean_type> ::= “boolean”

<octet_type> ::= “octet”

<any_type> ::= “any”

Each OMG IDL data type is mapped to a native data type via the appropriate language
mapping. Conversion errors between OMG IDL data types and the native types to
which they are mapped can occur during the performance of an operation invocation.
The invocation mechanism (client stub, dynamic invocation engine, and skeletons) ma
signal an exception condition to the client if an attempt is made to convert an illegal
value. The standard exceptions which are to be signalled in such situations are defined
in “Standard Exceptions” on page 3-37.
CORBA V2.2 Type Declaration February 1998 3-23

3

,

tion

 and

 a
al
Integer Types

OMG IDL integer types are short , unsigned short , long , unsigned long , long
long and unsigned long long , representing integer values in the range indicated
below in Table 3-10.

Floating-Point Types

OMG IDL floating-point types are float , double and long double . The float type
represents IEEE single-precision floating point numbers; the double type represents
IEEE double-precision floating point numbers.The long double data type represents
an IEEE double-extended floating-point number, which has an exponent of at least 15
bits in length and a signed fraction of at least 64 bits. See IEEE Standard for Binary
Floating-Point Arithmetic, ANSI/IEEE Standard 754-1985, for a detailed specification.

Char Type

OMG IDL defines a char data type that is an 8-bit quantity which (1) encodes a
single-byte character from any byte-oriented code set, or (2) when used in an array
encodes a multi-byte character from a multi-byte code set. In other words, an
implementation is free to use any code set internally for encoding character data,
though conversion to another form may be required for transmission.

The ISO 8859-1 (Latin1) character set standard defines the meaning and representa
of all possible graphic characters used in OMG IDL (i.e., the space, alphabetic, digit
and graphic characters defined in Table 3-2 on page 3-3, Table 3-3 on page 3-4,
Table 3-4 on page 3-4). The meaning and representation of the null and formatting
characters (see Table 3-5 on page 3-5) is the numerical value of the character as
defined in the ASCII (ISO 646) standard. The meaning of all other characters is
implementation-dependent.

During transmission, characters may be converted to other appropriate forms as
required by a particular language binding. Such conversions may change the
representation of a character but maintain the character’s meaning. For example,
character may be converted to and from the appropriate representation in internation
character sets.

Table 3-10Range of integer types

short -215 .. 215 - 1

long -231 .. 231 - 1

long long -263 .. 263 - 1

unsigned short 0 .. 216 - 1

unsigned long 0 .. 232 - 1

unsigned long long 0 .. 264 - 1
3-24 CORBA V2.2 February 1998

3

 may

Wide Char Type

OMG IDL defines a wchar data type which encodes wide characters from any
character set. As with character data, an implementation is free to use any code set
internally for encoding wide characters, though, again, conversion to another form
be required for transmission. The size of wchar is implementation-dependent.

Boolean Type

The boolean data type is used to denote a data item that can only take one of the
values TRUE and FALSE.

Octet Type

The octet type is an 8-bit quantity that is guaranteed not to undergo any conversion
when transmitted by the communication system.

Any Type

The any type permits the specification of values that can express any OMG IDL type.

3.8.2 Constructed Types

The constructed types are:
<constr_type_spec> ::= <struct_type>

 | <union_type>
 | <enum_type>

Although the IDL syntax allows the generation of recursive constructed type
specifications, the only recursion permitted for constructed types is through the use of
the sequence template type. For example, the following is legal:

struct foo {
long value;
seque nce<foo> chain;

}

See “Sequences” on page 3-27 for details of the sequence template type.

Structures

The structure syntax is:
<struct_type> ::= “struct” <identif ier> “{” <member_list> “}”

<member_list> ::= <member> +

<member> ::= <type_spec> <declarators> “;”

The <identifier> in <struct_type> defines a new legal type. Structure types may
also be named using a typedef declaration.
CORBA V2.2 Type Declaration February 1998 3-25

3

y

t
Name scoping rules require that the member declarators in a particular structure be
unique. The value of a struct is the value of all of its members.

Discriminated Unions

The discriminated union syntax is:
<union_type> ::= “union” <identif ier> “switch” “(”

 <switch_type_spec> “)”
“{” <switch_ body> “}”

<switch_type_spec> ::= <integer_type>
| <char_type>
| <boolean_type>
| <enum_type>
| <scoped_ name>

<switch_body> ::= <case> +

<case> ::= <case_label> + <element_spec> “;”

<case_label> ::= “case” <const_exp> “:”
| “default” “:”

<element_spec> ::= <type_spec> <declarator>

OMG IDL unions are a cross between the C union and switch statements. IDL
unions must be discriminated; that is, the union header must specify a typed tag field
that determines which union member to use for the current instance of a call. The
<identif ier> following the union keyword defines a new legal type. Union types ma
also be named using a typedef declaration. The <const_exp> in a <case_label>

must be consistent with the <switch_type_spec> . A default case can appear at mos
once. The <scoped_n ame> in the <switch_type_spec> production must be a
previously defined integer , char , boolean or enum type.

Case labels must match or be automatically castable to the defined type of the
discriminator. The complete set of matching rules are shown in Table 3-11.

Table 3-11Case Label Matching

Discriminator Type Matched By

long any integer value in the value range of long

long long any integer value in the range of long long

short any integer value in the value range of short

unsigned long any integer value in the value range of unsigned long

unsigned long long any integer value in the range of unsigned long long

unsigned short any integer value in the value range of unsigned short

char char

wchar wchar

boolean TRUE or FALSE

enum any enumerator for the discriminator enum type
3-26 CORBA V2.2 February 1998

3

e

lation.
d

Name scoping rules require that the element declarators in a particular union be
unique. If the <switch_type_spec> is an <enum_type> , the identifier for the
enumeration is in the scope of the union; as a result, it must be distinct from the
element declarators.

It is not required that all possible values of the union discriminator be listed in the
<switch_body> . The value of a union is the value of the discriminator together with
one of the following:

• If the discriminator value was explicitly listed in a case statement, the value of
the element associated with that case statement;

• If a default case label was specified, the value of the element associated with th
default case label;

• No additional value.

Access to the discriminator and the related element is language-mapping dependent.

Enumerations

Enumerated types consist of ordered lists of identifiers. The syntax is:
<enum_type> ::= “enum” <identi fier> “{” <enumerator> { “,”

<enumerator> } ∗ “}”

<enumerator > ::= <identif ier>

A maximum of 232 identifiers may be specified in an enumeration; as such, the
enumerated names must be mapped to a native data type capable of representing a
maximally-sized enumeration. The order in which the identifiers are named in the
specification of an enumeration defines the relative order of the identifiers. Any
language mapping which permits two enumerators to be compared or defines
successor/predecessor functions on enumerators must conform to this ordering re
The <identifier> following the enum keyword defines a new legal type. Enumerate
types may also be named using a typedef declaration.

3.8.3 Template Types

The template types are:
<template_type_spec> : := <s equence_type>

| <string_type>
| <wide_string_type>
| <fixed_pt_type>

Sequences

OMG IDL defines the sequence type sequence . A sequence is a one-dimensional
array with two characteristics: a maximum size (which is fixed at compile time) and a
length (which is determined at run time).
CORBA V2.2 Type Declaration February 1998 3-27

3

uence
ion
e set

value

 Prior

anner.
f the

 For

g”.

.

,

e

built-in

e
The syntax is:
<sequence_type> ::= “sequence” “<” <si mple_ty pe_spec> “,”
<positive_int_const> “>”

 | “sequence” “<” <si mple_ty pe_spec> “>”

The second parameter in a sequence declaration indicates the maximum size of the
sequence. If a positive integer constant is specified for the maximum size, the seq
is termed a bounded sequence. Prior to passing a bounded sequence as a funct
argument (or as a field in a structure or union), the length of the sequence must b
in a language-mapping dependent manner. After receiving a sequence result from an
operation invocation, the length of the returned sequence will have been set; this
may be obtained in a language-mapping dependent manner.

If no maximum size is specified, size of the sequence is unspecified (unbounded).
to passing such a sequence as a function argument (or as a field in a structure or
union), the length of the sequence, the maximum size of the sequence, and the address
of a buffer to hold the sequence must be set in a language-mapping dependent m
After receiving such a sequence result from an operation invocation, the length o
returned sequence will have been set; this value may be obtained in a language-
mapping dependent manner.

A sequence type may be used as the type parameter for another sequence type.
example, the following:

 typedef sequence< se quence< long> > Fred;

declares Fred to be of type “unbounded sequence of unbounded sequence of lon
Note that for nested sequence declarations, white space must be used to separate the
two “>” tokens ending the declaration so they are not parsed as a single “>>” token

Strings

OMG IDL defines the string type string consisting of all possible 8-bit quantities
except null. A string is similar to a sequence of char. As with sequences of any type,
prior to passing a string as a function argument (or as a field in a structure or union)
the length of the string must be set in a language-mapping dependent manner. The
syntax is:

<string_type> ::= “string” “<” <positive_int_const> “>”
| “string”

The argument to the string declaration is the maximum size of the string. If a positiv
integer maximum size is specified, the string is termed a bounded string; if no
maximum size is specified, the string is termed an unbounded string.

Strings are singled out as a separate type because many languages have special
functions or standard library functions for string manipulation. A separate string type
may permit substantial optimization in the handling of strings compared to what can b
done with sequences of general types.
3-28 CORBA V2.2 February 1998

3

nt
 total
re

er of

d as

type

Wide Char String Type

The wstring data type represents a null-terminated (note: a wide character null)
sequence of wchar . Type wstring is analogous to string , except that its element type
is wchar instead of char .

Fixed Type

The fixed data type represents a fixed-point decimal number of up to 31 significa
digits. The scale factor is normally a non-negative integer less than or equal to the
number of digits (note that constants with effectively negative scale, such as 10000, a
always permitted.). However, some languages and environments may be able to
accommodate types that have a negative scale or a scale greater than the numb
digits.

3.8.4 Complex Declarator

Arrays

OMG IDL defines multidimensional, fixed-size arrays. An array includes explicit sizes
for each dimension.

The syntax for arrays is:

<array_declarator> ::=<identif ier> <f ixed_array_size> +

<fixed_array_size> ::= “[” <positi ve_int_const> “]”

The array size (in each dimension) is fixed at compile time. When an array is passe
a parameter in an operation invocation, all elements of the array are transmitted.

The implementation of array indices is language mapping specific; passing an array
index as a parameter may yield incorrect results.

3.8.5 Native Types

OMG IDL provides a declaration for use by object adapters to define an opaque
whose representation is specified by the language mapping for that object adapter.

The syntax is:

<type_dcl> ::= "native" <simple_dec larator>
<simple_declarator> ::= <identifier>

This declaration defines a new type with the specified name. A native type is similar
to an IDL basic type. The possible values of a native type are language-mapping
dependent, as are the means for constructing them and manipulating them. Any
interface that defines a native type requires each language mapping to define how the
native type is mapped into that programming language.
CORBA V2.2 Type Declaration February 1998 3-29

3

at

of

he

e
d, no
A native type may be used to define operation parameters and results. However, there
is no requirement that values of the type be permitted in remote invocations, either
directly or as a component of a constructed type. Any attempt to transmit a value of a
native type in a remote invocation may raise the MARSHAL standard exception.

It is recommended that native types be mapped to equivalent type names in each
programming language, subject to the normal mapping rules for type names in th
language. For example, in a hypothetical Object Adapter IDL module

module HypotheticalObjectAdapter {
native Servant;
interface HOA {

Object activate_object(in Servant x);
};

};

the IDL type Servant would map to HypotheticalObjectAdapter::Servant in C++ and
the activate_object operation would map to the following C++ member function
signature:

CORBA::Object_ptr activate_object(
HypotheticalObjectAdapter::Servant x);

The definition of the C++ type HypotheticalObjectAdapter::Servant would be provided
as part of the C++ mapping for the HypotheticalObjectAdapter module.

Note – The native type declaration is provided specifically for use in object adapter
interfaces, which require parameters whose values are concrete representations
object implementation instances. It is strongly recommended that it not be used in
service or application interfaces. The native type declaration allows object adapters to
define new primitive types without requiring changes to the OMG IDL language or to
OMG IDL com

3.9 Exception Declaration

Exception declarations permit the declaration of struct-like data structures which may
be returned to indicate that an exceptional condition has occurred during the
performance of a request. The syntax is as follows:

<except_dcl>: :=“exception” <identifier> “{“ <member>* “}”

Each exception is characterized by its OMG IDL identifier, an exception type
identifier, and the type of the associated return value (as specified by the <member>
in its declaration). If an exception is returned as the outcome to a request, then t
value of the exception identifier is accessible to the programmer for determining which
particular exception was raised.

If an exception is declared with members, a programmer will be able to access th
values of those members when an exception is raised. If no members are specifie
additional information is accessible when an exception is raised.
3-30 CORBA V2.2 February 1998

3

tax

it is

 in

t
A set of standard exceptions is defined corresponding to standard run-time errors
which may occur during the execution of a request. These standard exceptions are
documented in “Standard Exceptions” on page 3-37.

3.10 Operation Declaration

Operation declarations in OMG IDL are similar to C function declarations. The syn
is:

<op_dcl> ::= [<op_attribute>] <op_type_spec> <identifier>
<parameter_dcls>

[<raises_expr>] [<context_expr>]
<op_type_spec>::=<param_type_spec>

| “void”

An operation declaration consists of:

• An optional operation attribute that specifies which invocation semantics the
communication system should provide when the operation is invoked. Operation
attributes are described in “Operation Attribute” on page 3-31.

• The type of the operation’s return result; the type may be any type which can be
defined in OMG IDL. Operations that do not return a result must specify the void
type.

• An identifier that names the operation in the scope of the interface in which
defined.

• A parameter list that specifies zero or more parameter declarations for the
operation. Parameter declaration is described in “Parameter Declarations” on page
3-32.

• An optional raises expression which indicates which exceptions may be raised as
a result of an invocation of this operation. Raises expressions are described
“Raises Expressions” on page 3-32.

• An optional context expression which indicates which elements of the reques
context may be consulted by the method that implements the operation. Context
expressions are described in “Context Expressions” on page 3-33.

Some implementations and/or language mappings may require operation-specific
pragmas to immediately precede the affected operation declaration.

3.10.1 Operation Attribute

The operation attribute specifies which invocation semantics the communication
service must provide for invocations of a particular operation. An operation attribute is
optional. The syntax for its specification is as follows:

<op_attribute>::=“oneway”

When a client invokes an operation with the oneway attribute, the invocation
semantics are best-effort, which does not guarantee delivery of the call; best-effort
implies that the operation will be invoked at most once. An operation with the oneway
CORBA V2.2 Operation Declaration February 1998 3-31

3

;

urns

tax:

the

lt
attribute must not contain any output parameters and must specify a void return type.
An operation defined with the oneway attribute may not include a raises expression
invocation of such an operation, however, may raise a standard exception.

If an <op_attribute> is not specified, the invocation semantics is at-most-once if an
exception is raised; the semantics are exactly-once if the operation invocation ret
successfully.

3.10.2 Parameter Declarations

Parameter declarations in OMG IDL operation declarations have the following syn

<parameter_dcls>::= “(” <param_dcl> { “,” <par am_dcl> } ∗ “)”
| “(” “)”

<param_dcl>::=<param_attribute> <param_type_spec> <simple_declarator>
<param_attribute>::=“in”

| “out”
| “inout”

<param_type_spec>::=<base_type_spec>
| <string_type>
| <scoped_ name>

A parameter declaration must have a directional attribute that informs the
communication service in both the client and the server of the direction in which
parameter is to be passed. The directional attributes are:

• in - the parameter is passed from client to server.

• out - the parameter is passed from server to client.

• inout - the parameter is passed in both directions.

It is expected that an implementation will not attempt to modify an in parameter. The
ability to even attempt to do so is language-mapping specific; the effect of such an
action is undefined.

If an exception is raised as a result of an invocation, the values of the return resuand
any out and inout parameters are undefined.

When an unbounded string or sequence is passed as an inout parameter, the
returned value cannot be longer than the input value.

3.10.3 Raises Expressions

A raises expression specifies which exceptions may be raised as a result of an
invocation of the operation. The syntax for its specification is as follows:

<raises_expr>::=“raises” “(” <scoped_name> { “,” <scope d_name> } ∗ “)”

The <scoped_n ame>s in the raises expression must be previously defined
exceptions.
3-32 CORBA V2.2 February 1998

3

ver,

the
ws:

n

t be
string.

f
In addition to any operation-specific exceptions specified in the raises expression,
there are a standard set of exceptions that may be signalled by the ORB. These
standard exceptions are described in “Standard Exceptions” on page 3-37. Howe
standard exceptions may not be listed in a raises expression.

The absence of a raises expression on an operation implies that there are no
operation-specific exceptions. Invocations of such an operation are still liable to
receive one of the standard exceptions.

3.10.4 Context Expressions

A context expression specifies which elements of the client’s context may affect
performance of a request by the object. The syntax for its specification is as follo

<context_expr>::=“context” “(” <string_literal> { “,” <string_literal> } ∗ “)”

The run-time system guarantees to make the value (if any) associated with each
<string_literal> in the client’s context available to the object implementation whe
the request is delivered. The ORB and/or object is free to use information in this
request context during request resolution and performance.

The absence of a context expression indicates that there is no request context
associated with requests for this operation.

Each string_literal is an arbitrarily long sequence of alphabetic, digit, period (“.”),
underscore (“_”), and asterisk (“*”) characters. The first character of the string mus
an alphabetic character. An asterisk may only be used as the last character of the
Some implementations may use the period character to partition the name space.

The mechanism by which a client associates values with the context identifiers is
described in the Dynamic Invocation Interface chapter.

3.11 Attribute Declaration

An interface can have attributes as well as operations; as such, attributes are defined as
part of an interface. An attribute definition is logically equivalent to declaring a pair o
accessor functions; one to retrieve the value of the attribute and one to set the value of
the attribute.

The syntax for attribute declaration is:

<attr_dcl> ::=[“readonly”] “attribute” <param_type_sp ec>
<simple_declarator>

{ “,” <simple_declarator> }*

The optional readonly keyword indicates that there is only a single accessor
function—the retrieve value function. Consider the following example:
CORBA V2.2 Attribute Declaration February 1998 3-33

3

 and

interface foo {
enum material_t {rubber, glass};
struct position_t {
float x, y;
};

attribute float radius;
attribute material_t material;
readonly attri bute position_t position;

• • •
};

The attribute declarations are equivalent to the following pseudo-specification
fragment:

• • •
float _get_radius ();
void _set_radius (in float r);
material_t _get_material ();
void _set_mater ial (in material_t m);
position_t _get_posi tion ();
• • •

The actual accessor function names are language-mapping specific. The C, C++,
Smalltalk mappings are described in separate chapters. The attribute name is subject to
OMG IDL’s name scoping rules; the accessor function names are guaranteed not to
collide with any legal operation names specifiable in OMG IDL.

Attribute operations return errors by means of standard exceptions.

Attributes are inherited. An attribute name cannot be redefined to be a different type.
See “CORBA Module” on page 3-34 for more information on redefinition constraints
and the handling of ambiguity.

3.12 CORBA Module

In order to prevent names defined in the CORBA specification from clashing with
names in programming languages and other software systems, all names defined in
CORBA are treated as if they were defined within a module named CORBA. In an
OMG IDL specification, however, OMG IDL keywords such as Object must not be
preceded by a “CORBA::” prefix. Other interface names such as TypeCode are not
OMG IDL keywords, so they must be referred to by their fully scoped names (e.g.,
CORBA::TypeCode) within an OMG IDL specification.
3-34 CORBA V2.2 February 1998

3

iers

l

alified
n
 name

in
3.13 Names and Scoping

An entire OMG IDL file forms a naming scope. In addition, the following kinds of
definitions form nested scopes:

• module

• interface

• structure

• union

• operation

• exception

Identifiers for the following kinds of definitions are scoped:

• types

• constants

• enumeration values

• exceptions

• interfaces

• attributes

• operations

An identifier can only be defined once in a scope. However, identifiers can be
redefined in nested scopes. An identifier declaring a module is considered to be
defined by its first occurrence in a scope. Subsequent occurrences of a module
declaration within the same scope reopen the module allowing additional definitions to
be added to it.

Due to possible restrictions imposed by future language bindings, OMG IDL identif
are case insensitive; that is, two identifiers that differ only in the case of their
characters are considered redefinitions of one another. However, all references to a
definition must use the same case as the defining occurrence. (This allows natura
mappings to case-sensitive languages.)

Type names defined in a scope are available for immediate use within that scope. In
particular, see “Constructed Types” on page 3-25 on cycles in type definitions.

A name can be used in an unqualified form within a particular scope; it will be
resolved by successively searching farther out in enclosing scopes. Once an unqu
name is used in a scope, it cannot be redefined (i.e., if one has used a name defined i
an enclosing scope in the current scope, one cannot then redefine a version of the
in the current scope). Such redefinitions yield a compilation error.

A qualified name (one of the form <scoped-name>::<identifier>) is resolved by first
resolving the qualifier <scoped-name> to a scope S, and then locating the definition of
<identifier> within S. The identifier must be directly defined in S or (if S is an
interface) inherited into S. The <identifier> is not searched for in enclosing scopes.

When a qualified name begins with “::”, the resolution process starts with the file
scope and locates subsequent identifiers in the qualified name by the rule described
the previous paragraph.
CORBA V2.2 Names and Scoping February 1998 3-35

3

nt
n
r
d.

lly the

o the

:

Every OMG IDL definition in a file has a global name within that file. The global
name for a definition is constructed as follows.

Prior to starting to scan a file containing an OMG IDL specification, the name of the
current root is initially empty (“”) and the name of the current scope is initially empty
(“”). Whenever a module keyword is encountered, the string “::” and the associated
identifier are appended to the name of the current root; upon detection of the
termination of the module , the trailing “::” and identifier are deleted from the name of
the current root. Whenever an interface , struct , union , or exception keyword is
encountered, the string “::” and the associated identifier are appended to the name of
the current scope; upon detection of the termination of the interface , struct , union ,
or exception , the trailing “::” and identifier are deleted from the name of the curre
scope. Additionally, a new, unnamed, scope is entered when the parameters of a
operation declaration are processed; this allows the parameter names to duplicate othe
identifiers; when parameter processing has completed, the unnamed scope is exite

The global name of an OMG IDL definition is the concatenation of the current root,
the current scope, a “::”, and the <identifier>, which is the local name for that
definition.

Note that the global name in an OMG IDL files corresponds to an absolute
ScopedName in the Interface Repository. (See “Supporting Type Definitions” on
page 8-9).

Inheritance produces shadow copies of the inherited identifiers; that is, it introduces
names into the derived interface, but these names are considered to be semantica
same as the original definition. Two shadow copies of the same original (as results
from the diamond shape in Figure 3-1 on page 3-17) introduce a single name int
derived interface and don’t conflict with each other.

Inheritance introduces multiple global OMG IDL names for the inherited identifiers.
Consider the following example:

interface A {
exception E {
long L;
};
void f() raises(E);
};

interface B: A {
void g() raises(E);
};

In this example, the exception is known by the global names ::A::E and ::B::E .

Ambiguity can arise in specifications due to the nested naming scopes. For example

interface A {
typedef string<128> string_t;
};
3-36 CORBA V2.2 February 1998

3

hat

n.

lared

tion

 to

es to
interface B {
typedef string<256> string_t;
};

interface C: A, B {
attribute string_t Ti tle;/* AMBI GUOUS!!! */
};

The attribute declaration in C is ambiguous, since the compiler does not know which
string_t is desired. Ambiguous declarations yield compilation errors.

3.14 Differences from C++

The OMG IDL grammar, while attempting to conform to the C++ syntax, is somew
more restrictive. The current restrictions are as follows:

• A function return type is mandatory.

• A name must be supplied with each formal parameter to an operation declaratio

• A parameter list consisting of the single token void is not permitted as a synonym
for an empty parameter list.

• Tags are required for structures, discriminated unions, and enumerations.

• Integer types cannot be defined as simply int or unsigned; they must be dec
explicitly as short or long .

• char cannot be qualified by signed or unsigned keywords.

3.15 Standard Exceptions

This section presents the standard exceptions defined for the ORB. These excep
identifiers may be returned as a result of any operation invocation, regardless of the
interface specification. Standard exceptions may not be listed in raises expressions.

In order to bound the complexity in handling the standard exceptions, the set of
standard exceptions should be kept to a tractable size. This constraint forces the
definition of equivalence classes of exceptions rather than enumerating many similar
exceptions. For example, an operation invocation can fail at many different points due
to the inability to allocate dynamic memory. Rather than enumerate several different
exceptions corresponding to the different ways that memory allocation failure causes
the exception (during marshalling, unmarshalling, in the client, in the object
implementation, allocating network packets, ...), a single exception corresponding
dynamic memory allocation failure is defined. Each standard exception includes a
minor code to designate the subcategory of the exception; the assignment of valu
the minor codes is left to each ORB implementation.
CORBA V2.2 Differences from C++ February 1998 3-37

3

ystem
ion
ay
Each standard exception also includes a completion_status code which takes one of
the values {COMPLETED_YES, COMPLETED_NO, COMPLETED_MAYBE}.
These have the following meanings:

3.15.1 Standard Exceptions Definitions

The standard exceptions are defined below. Clients must be prepared to handle s
exceptions that are not on this list, both because future versions of this specificat
may define additional standard exceptions, and because ORB implementations m
raise non-standard system exceptions.

#define ex_body {unsigned long minor; completion_status completed;}

enum completion_status {COMPL ETED_YES, COMPLETED_NO,
COMPLETED_MAY BE};
enum exception_type {NO_EXCEPTION, USER_EXCE PTION,
SYSTEM_EXCEPTION};
exception UNKNOWN ex_body; // the unknown exception
exception BAD_PARAM ex_body; // an in valid parameter was

// passed
exception NO_MEMORY ex_body; // dynamic memory allocation

// failure
exception IMP_LIMIT ex_body; // violated implementat ion limit
exception COMM_FAILURE ex_body; // communication failure
exception INV_OBJREF ex_body; // in valid object r eference
exception NO_PERMISSION ex_body; // no permission for attempted op.
exception INTERNAL ex_body; // ORB internal error
exception MARSHAL ex_body; // er ror marshalling param/result
exception INITIALIZE ex_body; // ORB initialization failure
exception NO_IMPLEMENT ex_body; // operation implementation
 // unavailable
exception BA D_TYPECODE ex_body; // bad typecode
exception BA D_OPERATION ex_body; // in valid operation
exception NO_RESOURCES ex_body; // insufficient resources for req.
exception NO_RESPONSE ex_body; // response to req. not yet

// available
exception PERSIST_STORE ex_body; // per sistent storage failure
exception BA D_INV_ORDER ex_body; // routine invocations out of order

COMPLETED_YES The object implementation has completed
processing prior to the exception being raised.

COMPLETED_NO The object implementation was never initiated
prior to the exception being raised.

COMPLETED_MAYBE The status of implementation completion is
indeterminate.
3-38 CORBA V2.2 February 1998

3

ed

old
rn

ull

ause

d
exception TRAN SIENT ex_body; // transient failure - reissue
// request

exception FREE_MEM ex_body; // cannot free memory
exception INV_IDENT ex_body; // in valid identifier syntax
exception INV_FLAG ex_body; // in valid flag was specified
exception INT F_REPOS ex_body; // er ror accessing interface

// repository
exception BAD_CON TEXT ex_body; // er ror processing cont ext object
exception OBJ_ ADAPTER ex_body; // failure detected by object

// adapter
exception DATA_ CONVERSION ex_body; // data conversion error
exception OBJECT_NO T_EXIST ex_body; // non-existent object, delete

// reference
exception TRAN SACTION_REQUIRED ex_body; // transact ion required
exception TRANSACTION_ROLLEDBACK ex_body; // transact ion rolled

// back
exception INVALID _TRANSACTION ex_body; // in valid transaction

3.15.2 Object Non-Existence

The OBJECT_NOT_EXIST exception is raised whenever an invocation on a delet
object was performed. It is an authoritative “hard” fault report. Anyone receiving it is
allowed (even expected) to delete all copies of this object reference and to perform
other appropriate “final recovery” style procedures.

Bridges forward this exception to clients, also destroying any records they may h
(for example, proxy objects used in reference translation). The clients could in tu
purge any of their own data structures.

3.5.3 Transaction Exceptions

The TRANSACTION_REQUIRED exception indicates that the request carried a n
transaction context, but an active transaction is required.

The TRANSACTION_ROLLE DBACK exception indicates that the transaction
associated with the request has already been rolled back or marked to roll back. Thus,
the requested operation either could not be performed or was not performed bec
further computation on behalf of the transaction would be fruitless.

The INVALID_TRANSACTION indicates that the request carried an invalid
transaction context. For example, this exception could be raised if an error occurre
when trying to register a resource.
CORBA V2.2 Standard Exceptions February 1998 3-39

3

3-40 CORBA V2.2 February 1998

 ORB Interface 4
object

ear to

ar
Contents

This chapter contains the following sections.

4.1 Overview

The ORB interface is the interface to those ORB functions that do not depend on
which object adapter is used. These operations are the same for all ORBs and all
implementations, and can be performed either by clients of the objects or
implementations. Some of these operations appear to be on the ORB, others app
be on the object reference. Because the operations in this section are implemented by
the ORB itself, they are not in fact operations on objects, although they may be
described that way and the language binding will, for consistency, make them appe

Section Title Page

“Overview” 4-1

“Object Reference Operations” 4-4

“ORB and OA Initialization and Initial References” 4-8

“ORB Initialization” 4-8

“Obtaining Initial Object References” 4-10

“Current Object” 4-12

“Policy Object” 4-12

“Management of Policy Domains” 4-14

“Thread-related operations” 4-19
 CORBA V2.2 February 1998 4-1

4

e

 in
that way. The ORB interface also defines operations for creating lists and determining
the default context used in the Dynamic Invocation Interface. Those operations ar
described in the Dynamic Invocation Interface chapter.

module CORBA {
typedef unsigned short ServiceType;
typedef unsigned long ServiceOption;
typedef unsigned long ServiceDetailType;

const ServiceType Security = 1;

struct ServiceDetail {
ServiceDetailType service_detail_type;
sequence <octet> service_detail;
};

struct ServiceInformation {
sequence <ServiceOption> service_options;
sequence <ServiceDetail> service_details;
};

interface ORB { // PIDL
string object_to_string (in Object obj);
Object string_to_object (in string str);

Status create_list (
in long count,
out NVList new_list

);
Status create_operation_list (
in OperationDef oper,
out NVList new_list

);

Status get_default_context (out Context ctx);
boolean get_service_information (
in ServiceType service_type;
out ServiceInformat ion service_information;
);
// get_current deprecated operation - should not be used by new code
// new code should use resolve_initial_reference operation instead
Current get_current();

};
};

All types defined in this chapter are part of the CORBA module. When referenced
OMG IDL, the type names must be prefixed by “CORBA::”.
4-2 CORBA V2.2 February 1998

4

19.

ent
ms

can

 that

B.
ions

A

is
).
The get_current operation is described in “Thread-related operations” on page 4-

4.1.1 Converting Object References to Strings

Because an object reference is opaque and may differ from ORB to ORB, the object
reference itself is not a convenient value for storing references to objects in persist
storage or communicating references by means other than invocation. Two proble
must be solved: allowing an object reference to be turned into a value that a client
store in some other medium, and ensuring that the value can subsequently be turned
into the appropriate object reference.

An object reference may be translated into a string by the operation
object_to_string. The value may be stored or communicated in whatever ways
strings may be manipulated. Subsequently, the string_to_object operation will
accept a string produced by object_to_string and return the corresponding object
reference.

To guarantee that an ORB will understand the string form of an object reference,
ORB’s object_to_string operation must be used to produce the string. For all
conforming ORBs, if obj is a valid reference to an object, then
string_to_object(object_to_string(obj)) will return a valid
reference to the same object, if the two operations are performed on the same OR
For all conforming ORB's supporting IOP, this remains true even if the two operat
are performed on different ORBs.

For a description of the create_list and create_operation_list operations, see “List
Operations” on page5-11. The get_default_context operation is described in the
section “get_default_context” on page5-15.

4.1.2 Getting Service Information

get_service_information

boolean get_service_infor mation (
in ServiceType service_type;
out ServiceInformation service_information;

);

The get_service_information operation is used to obtain information about CORB
facilities and services that are supported by this ORB. The service type for which
information is being requested is passed in as the in parameter service_type , the
values defined by constants in the CORBA module. If service information is available
for that type, that is returned in the out parameter service_information , and the
operation returns the value TRUE. If no information for the requested services type
available, the operation returns FALSE (i.e., the service is not supported by this ORB
CORBA V2.2 Overview February 1998 4-3

4

 in
on to
ect
ove,

an
4.2 Object Reference Operations

There are some operations that can be done on any object. These are not operations
the normal sense, in that they are implemented directly by the ORB, not passed
the object implementation. We will describe these as being operations on the obj
reference, although the interfaces actually depend on the language binding. As ab
where we used interface Object to represent the object reference, we will define
interface for Object:

module CORBA {

interface Object { // PIDL
ImplementationDef get_implementation (); //deprecated as of 2.2
InterfaceDef get_interface ();
boolean is_nil();
Object duplicate ();
void release ();
boolean is_a (in string logical_type_id);
boolean non_existent();
boolean is_equivalent (in Object other_object);
unsigned long hash(in unsigned long maximum);

Status create_request (
in Context ctx,
in Identifier operation,
in NVList arg_list,
inout NamedValue result,
out Request request,
in Flags req_flags

);
Policy get_policy (
in PolicyType policy_type
);
DomainManagersList get_domain_managers ();
};

};

The create_request operation is part of the Object interface because it creates a
pseudo-object (a Request) for an object. It is described with the other Request
operations in the section Section5.2, “Request Operations,” on page 5-5.

4.2.1 Determining the Object Interface

Note – The get_implementation operation is deprecated in this version of the
CORBA specification. No new code should make use of this interface and operation,
since they will be eliminated in a future version of the CORBA specification.
4-4 CORBA V2.2 February 1998

4

tory.

ients

t
y
An operation on the object reference, get_interface, returns an object in the Interface
Repository, which provides type information that may be useful to a program. See the
Interface Repository chapter for a definition of operations on the Interface Reposi
An operation on the Object called get_implementation will return an object in an
implementation repository that describes the implementation of the object.

InterfaceDef get_interface (); // PIDL
ImplementationDef get_implementation ();

4.2.2 Duplicating and Releasing Copies of Object References

Because object references are opaque and ORB-dependent, it is not possible for cl
or implementations to allocate storage for them. Therefore, there are operations
defined to copy or release an object reference.

Object duplicate (); // PIDL
void release ();

If more than one copy of an object reference is needed, the client may create a
duplicate. Note that the object implementation is not involved in creating the
duplicate, and that the implementation cannot distinguish whether the original or a
duplicate was used in a particular request.

When an object reference is no longer needed by a program, its storage may be
reclaimed by use of the release operation. Note that the object implementation is no
involved, and that neither the object itself nor any other references to it are affected b
the release operation.

4.2.3 Nil Object References

An object reference whose value is OBJECT_NIL denotes no object. An object
reference can be tested for this value by the is_nil operation. The object
implementation is not involved in the nil test.

boolean is_nil (); // PIDL

4.2.4 Equivalence Checking Operation

An operation is defined to facilitate maintaining type-safety for object references over
the scope of an ORB.

boolean is_a(in RepositoryID logical_type_id); // PIDL

The logical_type_id is a string denoting a shared type identifier (RepositoryId). The
operation returns true if the object is really an instance of that type, including if that
type is an ancestor of the “most derived” type of that object.
CORBA V2.2 Object Reference Operations February 1998 4-5

4

y

ther

joint

h
This operation exposes to application programmers functionality that must alread
exist in ORBs which support “type safe narrow” and allows programmers working in
environments that do not have compile time type checking to explicitly maintain type
safety.

4.2.5 Probing for Object Non-Existence

boolean non_existent (); // PIDL

The non_existent operation may be used to test whether an object (e.g., a proxy
object) has been destroyed. It does this without invoking any application level
operation on the object, and so will never affect the object itself. It returns true (ra
than raising CORBA::OBJECT_NOT_EXIST) if the ORB knows authoritatively
that the object does not exist; otherwise, it returns false.

Services that maintain state that includes object references, such as bridges, event
channels, and base relationship services, might use this operation in their “idle time” to
sift through object tables for objects that no longer exist, deleting them as they go, as a
form of garbage collection. In the case of proxies, this kind of activity can cascade,
such that cleaning up one table allows others then to be cleaned up.

4.2.6 Object Reference Identity

In order to efficiently manage state that include large numbers of object references,
services need to support a notion of object reference identity. Such services include not
just bridges, but relationship services and other layered facilities.

unsigned long hash(in unsigned long maximum); // PIDL
boolean is_equivalent(in Object other_object);

Two identity-related operations are provided. One maps object references into dis
groups of potentially equivalent references, and the other supports more expensive
pairwise equivalence testing. Together, these operations support efficient maintenance
and search of tables keyed by object references.

Hashing: Object Identifiers

Object references are associated with ORB-internal identifiers which may indirectly be
accessed by applications using the hash() operation. The value of this identifier does
not change during the lifetime of the object reference, and so neither will any hash
function of that identifier.

The value of this operation is not guaranteed to be unique; that is, another object
reference may return the same hash value. However, if two object references has
differently, applications can determine that the two object references are not identical.
4-6 CORBA V2.2 February 1998

4

l use

could
t

can

s

able.

hers

cy
The maximum parameter to the hash operation specifies an upper bound on the hash
value returned by the ORB. The lower bound of that value is zero. Since a typica
of this feature is to construct and access a collision chained hash table of object
references, the more randomly distributed the values are within that range, and the
cheaper those values are to compute, the better.

For bridge construction, note that proxy objects are themselves objects, so there
be many proxy objects representing a given “real” object. Those proxies would no
necessarily hash to the same value.

Equivalence Testing

The is_equivalent() operation is used to determine if two object references are
equivalent, so far as the ORB can easily determine. It returns TRUE if the target object
reference is known to be equivalent to the other object reference passed as its
parameter, and FALSE otherwise.

If two object references are identical, they are equivalent. Two different object
references which in fact refer to the same object are also equivalent.

ORBs are allowed, but not required, to attempt determination of whether two distinct
object references refer to the same object. In general, the existence of reference
translation and encapsulation, in the absence of an omniscient topology service,
make such determination impractically expensive. This means that a FALSE return
from is_equivalent() should be viewed as only indicating that the object reference
are distinct, and not necessarily an indication that the references indicate distinct
objects.

A typical application use of this operation is to match object references in a hash t
Bridges could use it to shorten the lengths of chains of proxy object references.
Externalization services could use it to “flatten” graphs that represent cyclical
relationships between objects. Some might do this as they construct the table, ot
during idle time.

4.2.7 Getting Policy Associated with the Object

The get_policy operation returns the policy object of the specified type (see “Poli
Object” on page 4-12), which applies to this object.

Policy get_policy (
in PolicyType poli cy_type

);

Parameters

policy_type The type of policy to be obtained.

Return Value

policy A policy object of the type specified by the poli cy_type
parameter.
CORBA V2.2 Object Reference Operations February 1998 4-7

4

4),

ain
ith at

BA

t the

to the
Exceptions

4.2.8 Getting the Domain Managers Associated with the Object

The get_domain_managers allows administration services (and applications) to
retrieve the domain managers (see “Management of Policy Domains” on page 4-1
and hence the security and other policies applicable to individual objects that are
members of the domain.

DomainManagersList get_domain_managers ();

Return Value

The list of immediately enclosing domain managers of this object. At least one dom
manager is always returned in the list since by default each object is associated w
least one domain manager at creation.

4.3 ORB and OA Initialization and Initial References

Before an application can enter the CORBA environment, it must first:

• Be initialized into the ORB and possibly the object adapter environments.

• Get references to ORB pseudo-object (for use in future ORB operations) and
perhaps other objects (including some Object Adapter objects).

CORBA V2.2 provides operations, specified in PIDL, to initialize applications and
obtain the appropriate object references. The following is provided:

• Operations providing access to the ORB. These operations reside in the COR
module, but not in the ORB interface and are described in “ORB Initialization” on
page 4-8.

• Operations providing access to Object Adapters, Interface Repository, Naming
Service, and other Object Services. These operations reside in the ORB interface
and are described in “Obtaining Initial Object References” on page 4-10.

In addition, this manual provides a mapping of the PIDL initialization and object
reference operations to several languages.

4.4 ORB Initialization

When an application requires a CORBA environment it needs a mechanism to ge
ORB pseudo-object reference and possibly an OA object reference. This serves two
purposes. First, it initializes an application into the ORB and OA environments.
Second, it returns the ORB pseudo-object reference and the OA object reference
application for use in future ORB and OA operations.

CORBA::BAD_PARAM raised when the value of policy type is not valid either
because the specified type is not supported by this ORB
or because a policy object of that type is not associated
with this Object.
4-8 CORBA V2.2 February 1998

4

 is

ld.

is
ces

ed

 This

e

all be
The ORB and OA initialization operations must be ordered with ORB occurring before
OA: an application cannot call OA initialization routines until ORB initialization
routines have been called for the given ORB. The operation to initialize an application
in the ORB and get its pseudo-object reference is not performed on an object. This
because applications do not initially have an object on which to invoke operations.The
ORB initialization operation is an application’s bootstrap call into the CORBA wor
The PIDL for the call (Figure 7-1) shows that the ORB_init call is part of the CORBA
module but not part of the ORB interface.

Applications can be initialized in one or more ORBs. When an ORB initialization
complete, its pseudo reference is returned and can be used to obtain other referen
for that ORB.

In order to obtain an ORB pseudo-object reference, applications call the ORB_init
operation. The parameters to the call comprise an identifier for the ORB for which the
pseudo-object reference is required, and an arg_list, which is used to allow
environment-specific data to be passed into the call. PIDL for the ORB initialization is
as follows:

// PIDL
module CORBA {

typedef string ORBid;
typedef sequence <string> arg_list;
ORB ORB_init (inout arg_list argv, in ORBid orb_identifier);

};

Figure 7-1

The identifier for the ORB will be a name of type CORBA::ORBid. All ORBid strings
other than the empty string are allocated by ORB administrators and are not manag
by the OMG. ORBid strings other than the empty string are intended to be used to
uniquely identify each ORB used within the same address space in a multi-ORB
application. These special ORBid strings are specific to each ORB implementation
and the ORB administrator is responsible for ensuring that the names are
unambiguous.

If an empty ORBid string is passed to ORB_init, then the arg_list arguments shall be
examined to determine if they indicate an ORB reference that should be returned.
is achieved by searching the arg_list parameters for one preceded by "-ORBid," for
example, "-ORBid example_orb" (the whitespace after the "-ORBid" tag is ignored) or
"-ORBidMyFavoriteORB" (with no whitespace following the "-ORBid" tag).
Alternatively, two sequential parameters with the first being the string "-ORBid"
indicates that the second is to be treated as an ORBid parameter. If an empty string is
passed and no arg_list parameters indicate the ORB reference to be returned, th
default ORB for the environment will be returned.

Other parameters of significance to the ORB can also be identified in arg_list, for
example, "Hostname," "SpawnedServer," and so forth. To allow for other parameters
to be specified without causing applications to be re-written, it is necessary to specify
the parameter format that ORB parameters may take. In general, parameters sh
formatted as either one single arg_list parameter:
CORBA V2.2 ORB Initialization February 1998 4-9

4

t, the

nce

t
list

ces.

nual;
s are

bject
f

–ORB<suffix><optional whitespace> <value>

or as two sequential arg_list parameters:

-ORB<suffix>

<value>

Regardless of whether an empty or non-empty ORBid string is passed to ORB_ini
arg_list arguments are examined to determine if any ORB parameters are given. If a
non-empty ORBid string is passed to ORB_init, all ORBid parameters in the arg_list
are ignored. All other -ORB<suffix> parameters in the arg_list may be of significa
during the ORB initialization process.

The ORB_init operation may be called any number of times and shall return the same
ORB reference when the same ORBid string is passed, either explicitly as an argumen
to ORB_init or through the arg_list. All other -ORB<suffix> parameters in the arg_
may be considered on subsequent calls to ORB_init.

4.5 Obtaining Initial Object References

Applications require a portable means by which to obtain their initial object referen
References are required for the root POA, POA Current, Interface Repository and
various Object Services instances. (The POA is described in Chapter 9 of this ma
The Interface Repository is described in Chapter 8 of this manual; Object Service
described in CORBAservices: Common Object Services Specification.) The
functionality required by the application is similar to that provided by the Naming
Service. However, the OMG does not want to mandate that the Naming Service be
made available to all applications in order that they may be portably initialized.
Consequently, the operations shown in this section provide a simplified, local version
of the Naming Service that applications can use to obtain a small, defined set of o
references which are essential to its operation. Because only a small well defined set o
objects are expected with this mechanism, the naming context can be flattened to be a
single-level name space. This simplification results in only two operations being
defined to achieve the functionality required.

Initial references are obtained via operations on the ORB pseudo-object interface,
providing facilities to list and resolve initial object references. The PIDL for these
operations is shown below.

// PIDL interface for getting initial object references

module CORBA {
interface ORB {
typedef string ObjectId;
typedef sequence <ObjectId> ObjectIdList;

exception InvalidName {};
4-10 CORBA V2.2 February 1998

4

e

 the

tain

is.
ugh

the

urns
ObjectIdList list_initial_services ();

Object resolve_initial_references (in ObjectId identifier)
 raises (InvalidName);
 }

}

The resolve_initial_references operation is an operation on the ORB rather than th
Naming Service’s NamingContext. The interface differs from the Naming Service’s
resolve in that ObjectId (a string) replaces the more complex Naming Service
construct (a sequence of structures containing string pairs for the components of
name). This simplification reduces the name space to one context.

ObjectIds are strings that identify the object whose reference is required. To main
the simplicity of the interface for obtaining initial references, only a limited set of
objects are expected to have their references found via this route. Unlike the ORB
identifiers, the ObjectId name space requires careful management. To achieve th
the OMG may, in the future, define which services are required by applications thro
this interface and specify names for those services.

Currently, reserved ObjectIds for CORBA Core are RootPOA, POACurrent , and
InterfaceRepository; for CORBA Services, they are NameService,
TradingService, SecurityCurrent , and TransactionCurrent .

To allow an application to determine which objects have references available via
initial references mechanism, the list_initial_services operation (also a call on the
ORB) is provided. It returns an ObjectIdList, which is a sequence of ObjectIds.
ObjectIds are typed as strings. Each object, which may need to be made available at
initialization time, is allocated a string value to represent it. In addition to defining the
id, the type of object being returned must be defined, i.e. "InterfaceRepository" ret
a object of type Repository, and “NameService" returns a CosNamingContext
object.

The application is responsible for narrowing the object reference returned from
resolve_initial_references to the type which was requested in the ObjectId. For
example, for InterfaceRepository the object returned would be narrowed to
Repository type.

In the future, specifications for Object Services (in CORBAservices: Common Object
Services Specification) will state whether it is expected that a service’s initial reference
be made available via the resolve_initial_references operation or not (i.e., whether
the service is necessary or desirable for bootstrap purposes).
CORBA V2.2 Obtaining Initial Object References February 1998 4-11

4

oose

d

.

ill

t
s

 do

4.6 Current Object

ORB and CORBA services may wish to provide access to information (context)
associated with the thread of execution in which they are running. This information is
accessed in a structured manner using interfaces derived from the Current interface
defined in the CORBA module.

Each ORB or CORBA service that needs its own context derives an interface from the
CORBA module's Current . Users of the service can obtain an instance of the
appropriate Current interface by invoking ORB::resolve_initial_references .
For example the Security service obtains the Current relevant to it by invoking

ORB::resolve_i niti al_references("SecurityCurrent")

A CORBA service does not have to use this method of keeping context but may ch
to do so.

module CORBA {
// interface for the Current object
interface Current {
};

};

Operations on interfaces derived from Current access state associated with the threa
in which they are invoked, not state associated with the thread from which the Current
was obtained. This prevents one thread from manipulating another thread's state, and
avoids the need to obtain and narrow a new Current in each method's thread context

Current objects must not be exported to other processes, or externalized with
ORB::object_to_string . If any attempt is made to do so, the offending operation w
raise a MARSHAL system exception. Current s are per-process singleton objects, so
no destroy operation is needed.

4.7 Policy Object

An ORB or CORBA service may choose to allow access to certain choices that affec
its operation. This information is accessed in a structured manner using interface
derived from the Policy interface defined in the CORBA module. A CORBA service
does not have to use this method of accessing operating options, but may choose to
so. As examples, in CORBA Core the PortableServer module uses this technique to
specify how the POA operates and The Security Service uses this technique for
associating Security Policy with objects in the system.
4-12 CORBA V2.2 February 1998

4

d are

n
module CORBA {
typedef unsigned long PolicyType;

// Basic IDL definition
interface Policy
{

readonly attri bute PolicyType policy_type;
Policy copy();
void destroy();

};

typedef sequence <Pol icy> PolicyList;
};

PolicyType defines the type of Policy object. The values of PolicyType s are
allocated by OMG. New values for PolicyType should be obtained from OMG by
sending mail to request@omg.org. In general the constant values that are allocate
defined in conjunction with the definition of the corresponding Policy object.

Copy

Policy copy();

Return Value

This operation copies the policy object. The copy does not retai
any relationships that the policy had with any domain, or object.

Destroy

void destroy();

This operation destroys the policy object. It is the responsibility of
the policy object to determine whether it can be destroyed.

Exceptions

Policy_type

readonly attri bute policy_type

Return Value

This readonly attribute returns the constant value of type
PolicyType that corresponds to the type of the Policy object.

CORBA::NO_PERMISSION raised when the policy object determines that it
cannot be destroyed.
CORBA V2.2 Policy Object February 1998 4-13

4

h

ribing

s) the

ain
add

in a
he

ach.

icy,

at

This
s to
4.8 Management of Policy Domains

4.8.1 Basic Concepts

This section describes how policies, such as security policies, are associated wit
objects that are managed by an ORB. The interfaces and operations that facilitate this
aspect of management is described in this section together with the section desc
Policy Objects.

Policy Domain

A policy domain is a set of objects to which the policy(ies) associated with that
domain applies. The objects are the domain members. The policy(ies) represent(
rules and criteria that constrain activities of the objects which belong to the domain.
On object creation, the ORB implicitly associates the object with one or more policy
domains. Policy domains provide leverage for dealing with the problem of scale in
policy management by allowing application of policy at a domain granularity rather
than at an individual object instance granularity.

Policy Domain Manager

A policy domain includes a unique object, one per policy domain, called the domain
manager, which has associated with it the policy objects for that domain. The dom
manager also records the membership of the domain and provides the means to
and remove members. The domain manager is itself a member of a domain, possibly
the domain it manages.

Policy Objects

A policy object encapsulates a policy of a specific type. The policy encapsulated
policy object is associated with the domain by associating the policy object with t
domain manager of the policy domain.

There may be several policies associated with a domain, with a policy object for e
There is at most one policy of each type associated with a policy domain. The policy
objects are thus shared between objects in the domain, rather than being associated
with individual objects. Consequently, if an object needs to have an individual pol
then must be a singleton member of a domain.

Object Membership of Policy Domains

An object can simultaneously be a member of more than one policy domain. In th
case the object is governed by all policies of its enclosing domains. The reference
model allows an object to be a member of multiple domains, which may overlap for
the same type of policy (for example, be subject to overlapping access policies).
would require conflicts among policies defined by the multiple overlapping domain
4-14 CORBA V2.2 February 1998

4

g

licy
in

 of

d to

never
be resolved. The specification does not include explicit support for such overlappin
domains and, therefore, the use of policy composition rules required to resolve
conflicts at policy enforcement time.

Policy domain managers and policy objects have two types of interfaces:

• The operational interfaces used when enforcing the policies. These are the
interfaces used by the ORB during an object invocation. Some policy objects may
also be used by applications, which enforce their own policies.

The caller asks for the policy of a particular type (e.g., the delegation policy), and
then uses the policy object returned to enforce the policy. The caller finding a po
and then enforcing it does not see the domain manager objects and the doma
structure.

• The administrative interfaces used to set policies (e.g., specifying which events to
audit or who can access objects of a specified type in this domain). The
administrator sees and navigates the domain structure, so is aware of the scope
what he is administering.

Note that this specification does not include any explicit interfaces for managing the
policy domains themselves: creating and deleting them; moving objects between them;
changing the domain structure and adding, changing and removing policies applie
the domains. Such interfaces are expected to be the province of other object services
and facilities such as Management Facilities and/or Collection Service in the future.

Domains Association at Object Creation

When a new object is created, the ORB implicitly associates the object with the
following elements forming its environment:

• One or more Policy Domains, defining all the policies to which the object is subject.

• The Technology Domains, characterizing the particular variants of mechanisms
(including security) available in the ORB.

The ORB will establish these associations when the creating object calls
CORBA::BOA::create or an equivalent. Some or all of these associations may
subsequently be explicitly referenced and modified by administrative or application
activity, which might be specifically security-related but could also occur as a side-
effect of some other activity, such as moving an object to another host machine.

In some cases, when a new object is created, it needs to be created in a new domain.
Within a given domain a construction policy can be associated with a specific object
type thus causing a new domain (i.e., a domain manager object) to be created whe
an object of that type is created and the new object associated with the new domain
manager. This construction policy is enforced at the same time as the domain
membership (i.e., by BOA::create or equivalent).
CORBA V2.2 Management of Policy Domains February 1998 4-15

4

h the

he
m.

is

ested

, the

 no
ns.

d

re.
Implementor’s View of Object Creation

For policy domains, the construction policy of the application or factory creating the
object proceeds as follows. The application (which may be a generic factory) object
calls BOA::create or equivalent to create the new object reference. The ORB
obtains the construction policy associated with the creating object, or the default
domain absent a creating object.

By default, the new object that is created is made a member of the domain to whic
parent object belongs. Non object applications on the client side are associated with a
default, per process policy domain by the ORB. Thus, when they create objects t
new objects are by default associated with the default domain associated with the

Each domain manager has a construction policy associated with it, which controls
whether, in addition to creating the specified new object, a new domain manager
created with it. This object provides a single operation make_domain_manager
which can be invoked with the constr_policy parameter set to TRUE to indicate to
the ORB that new objects of the specified type are to be created within their own
separate domains. Once such a construction policy is set, it can be reversed by
invoking make_domain_manager again with the constr_policy parameter set to
FALSE .

When creating an object of the type specified in the make_domain_manager call
with constr_policy set to TRUE, the ORB must also create a new domain for the
newly created object. If a new domain is needed, the ORB creates both the requ
object and a domain manager object. A reference to this domain manager can be found
by calling get_domain_managers on the newly created object’s reference.

While the management interface to the construction policy object is standardized
interface from the ORB to the policy object is assumed to be a private one, which may
be optimized for different implementations.

If a new domain is created, the policies initially applicable to it are the policies of the
enclosing domain. The ORB will always arrange to provide a default enclosing domain
with default ORB policies associated with it, in those cases where there would be
such domain as in the case of a non-object client invoking object creation operatio

The calling application, or an administrative application later, can change the domains
to which this object belongs, using the domain management interfaces, which will be
defined in the future.

4.8.2 Domain Management Operations

This section defines the interfaces and operations needed to find domain managers an
find the policies associated with these. However, it does not include operations to
manage domain membership, structure of domains, and manage which policies are
associated with domains, as these are expected to be developed in a future
Management Facility specification (for example, one based on the X/Open Systems
Management Preliminary Specification); the Collection Service is also relevant he
4-16 CORBA V2.2 February 1998

4

s

This section also includes the interface to the construction policy object, as that i
relevant to domains. The basic definitions of the interfaces and operations related to
these are part of the CORBA module, since other definitions in the CORBA module
depend on these.

module CORBA
{

interface DomainManager {
Policy get_domain_policy (

in PolicyType policy_type
);

};

const PolicyType SecConstruct ion = 11;

interface ConstructionPol icy: Policy{
void make_domain_manager(

in CORBA::Inter faceDef object_type,
in boolean constr_policy

);
};

typedef sequence <DomainManager> DomainManagerList;
};

Domain Manager

The domain manager provides mechanisms for:

• Establishing and navigating relationships to superior and subordinate domains.

• Creating and accessing policies.

There should be no unnecessary constraints on the ordering of these activities, for
example, it must be possible to add new policies to a domain with a preexisting
membership. In this case, some means of determining the members that do not
conform to a policy that may be imposed is required.

All domain managers provide the get_domain_policy operation. By virtue of being
an object, the Domain Managers also have the get_policy and
get_domain_managers operations, which is available on all objects (see “Getting
Policy Associated with the Object” on page 4-7 and “Getting the Domain Managers
Associated with the Object” on page 4-8).

CORBA::DomainManager::get_domain_policy

This returns the policy of the specified type for objects in this domain.

Policy get_domain_policy (
in PolicyType policy_type

);
CORBA V2.2 Management of Policy Domains February 1998 4-17

4

a

ffect

d
 the

in.
Parameters

policy_type The type of policy for objects in the domain which the application
wants to administer. For security, the possible policy types are
described in CORBAservices: Common Object Services
Specification, Security chapter, Security Policies Introduction
section.

Return Value

A reference to the policy object for the specified type of policy in
this domain.

Exceptions

Construction Policy

The construction policy object allows callers to specify that when instances of a
particular interface are created, they should be automatically assigned membership in
newly created domain at creation time.

CORBA::ConstructionPolicy::make_domain_manager

This operation enables the invoker to set the construction policy that is to be in e
in the domain with which this ConstructionPolicy object is associated. Construction
Policy can either be set so that when an instance of the interface specified by the input
parameter is created, a new domain manager will be created and the newly created
object will respond to get_domain_managers by returning a reference to this
domain manager. Alternatively the policy can be set to associate the newly create
object with the domain associated with the creator. This policy is implemented by
ORB during execution of BOA::create (or equivalent) and results in the
construction of the application-specified object and a Domain Manager object if so
dictated by the policy in effect at the time of the creation of the object.

void make_domain_manager (
in Inter faceDef object_type,
in boolean constr_policy

);

Parameters

object_type The type of the objects for which Domain Managers will be
created. If this is nil, the policy applies to all objects in the doma

CORBA::BAD_PARAM raised when the value of policy type is not valid
either because the specified type is not supported
by this ORB or because a policy object of that
type is not associated with this Object.
4-18 CORBA V2.2 February 1998

4

h the

r to
RB.

o

it of
constr_policy If TRUE the construction policy is set to create a new domain
manager associated with the newly created object of this type in
this domain. If FALSE construction policy is set to associate the
newly created object with the domain of the creator or a default
domain as described above.

4.9 Thread-related operations

To support single-threaded ORBs, as well as multi-threaded ORBs that run multi-
thread-unaware code, several operations are included in the ORB interface. These
operations can be used by single-threaded and multi-threaded applications. An
application that is a pure ORB client would not need to use these operations. Bot
ORB::run() and ORB::shutdown() are useful in fully multi-threaded programs.

Note – These operations are defined on the ORB rather than on an object adapte
allow the main thread to be used for all kinds of asynchronous processing by the O
Defining these operations on the ORB also allows the ORB to support multiple object
adapters, without requiring the application main to know about all the object adapters.
The interface between the ORB and an object adapter is not standardized.

module CORBA
{

…
interface ORB {

...
boolean work_pending();
void perform_work();
void shutdown(in boolean w ait_for_compl etion);
void run();

4.9.1 work_pending

boolean work_pending();

This operation returns an indication of whether the ORB needs the main thread t
perform some work.

A result of TRUE indicates that the ORB needs the main thread to perform some work
and a result of FALSE indicates that the ORB does not need the main thread.

4.9.2 perform_work

void perform_work();

If called by the main thread, this operation performs an implementation-defined un
work. Otherwise, it does nothing.
CORBA V2.2 Thread-related operations February 1998 4-19

4

It is platform specific how the application and ORB arrange to use compatible
threading primitives.

The work_pending() and perform_work() operations can be used to write a
simple polling loop that multiplexes the main thread among the ORB and other
activities. Such a loop would most likely be needed in a single-threaded server. A
multi-threaded server would need a polling loop only if there were both ORB and other
code that required use of the main thread.

Here is an example of such a polling loop:

// C++
for (;;) {

if (orb->work_pending()) {
orb->perform_work();

}
// do other things
// sleep?

}

4.9.3 run

void run();

This operation returns when the ORB has shut down. If called by the main thread, it
enables the ORB to perform work using the main thread. Otherwise, it simply waits
until the ORB has shut down.

This operation can be used instead of perform_work() to give the main thread to the
ORB if there are no other activities that need to share the main thread. Even in a pure
multi-threaded server, calling run() in the main thread is useful to ensure that the
process does not exit until the ORB has been shut down.

4.9.4 shutdown

 void shutdown(in boolean wait_for_completion);

This operation instructs the ORB to shut down. Shutting down the ORB causes all
object adapters to be shut down. If the wait_for_completion parameter is TRUE,
this operation blocks until all ORB processing (including request processing and object
deactivation or other operations associated with object adapters) has completed.
4-20 CORBA V2.2 February 1998

Dynamic Invocation Interface 5
that
is
The Dynamic Invocation Interface (DII) describes the client’s side of the interface
allows dynamic creation and invocation of request to objects. All types defined in th
chapter are part of the CORBA module. When referenced in OMG IDL, the type
names must be prefixed by “CORBA::”.

Contents

This chapter contains the following sections.

Section Title Page

“Overview” 5-2

“Request Operations” 5-5

“Deferred Synchronous Operations” 5-8

“List Operations” 5-11

“Context Objects” 5-13

“Context Object Operations” 5-14

“Native Data Manipulation” 5-17
 CORBA V2.2 February 1998 5-1

5

s

eters

r
quest.

utines

B
5.1 Overview

The Dynamic Invocation Interface (DII) allows dynamic creation and invocation of
requests to objects. A client using this interface to send a request to an object obtain
the same semantics as a client using the operation stub generated from the type
specification.

A request consists of an object reference, an operation, and a list of parameters. The
ORB applies the implementation-hiding (encapsulation) principle to requests.

In the Dynamic Invocation Interface, parameters in a request are supplied as elements
of a list. Each element is an instance of a NamedValue (see “Common Data
Structures” on page 5-2). Each parameter is passed in its native data form.

Parameters supplied to a request may be subject to run-time type checking upon
request invocation. Parameters must be supplied in the same order as the param
defined for the operation in the Interface Repository.

The user exception WrongTransaction is defined in the CORBA module, prior to the
definitions of the ORB and Request interfaces, as follows:

exception WrongTransaction {};

This exception can be raised only if the request is implicitly associated with a
transaction (the current transaction at the time that the request was issued).

5.1.1 Common Data Structures

The type NamedValue is a well-known data type in OMG IDL. It can be used eithe
as a parameter type directly or as a mechanism for describing arguments to a re
The type NVList is a pseudo-object useful for constructing parameter lists. The types
are described in OMG IDL and C, respectively, as:

typedef unsigned long Flags;

struct NamedValue {
Identifier name; // ar gument name
any argument; // argument
long len; // length/count of argument value
Flags arg_modes;// argument mode flags

};

CORBA_NamedValue * CORBA_NVList; /* C */

NamedValue and Flags are defined in the CORBA module.

The NamedValue and NVList structures are used in the request operations to
describe arguments and return values. They are also used in the context object ro
to pass lists of property names and values. Despite the above declaration for NVList ,
the NVList structure is partially opaque and may only be created by using the OR
create_list operation.
5-2 CORBA V2.2 February 1998

5

f a

inted
d.

sed to
 in the

ee

For out parameters, applications can set the argument member of the NamedValue
structure to a value that includes either a NULL or a non-NULL storage pointer. I
non-null storage pointer is provided for an out parameter, the ORB will attempt to use
the storage pointed to for holding the value of the out parameter. If the storage po
to is not sufficient to hold the value of the out parameter, the behavior is undefine

A named value includes an argument name, argument value (as an any), length of the
argument, and a set of argument mode flags. When named value structures are u
describe arguments to a request, the names are the argument identifiers specified
OMG IDL definition for a specific operation.

As described in Section 19.7, “Mapping for Basic Data Types,” on page 19-10, an any

consists of a TypeCode and a pointer to the data value. The TypeCode is a well-known
opaque type that can encode a description of any type specifiable in OMG IDL. S
this section for a full description of TypeCodes.

For most data types, len is the actual number of bytes that the value occupies. For
object references, len is 1. Table 5-1 shows the length of data values for the C
language binding. The behavior of a NamedValue is undefined if the len value is
inconsistent with the TypeCode.

Table 5-1 C Type Lengths

Data type: X Length (X)

short sizeof (CORBA_short)

unsigned short sizeof (CORBA_unsigned_short)

long sizeof (CORBA_long)

unsigned long sizeof (CORBA_unsigned_long)

long long sizeof (CORBA_long_long)

unsigned long long sizeof (CORBA_unsigned_long_long)

float sizeof (CORBA_float)

double sizeof (CORBA_double)

long double sizeof (CORBA_long_double)

fixed<d,s> sizeof (CORBA_fixed_d_s)

char sizeof (CORBA_char)

wchar sizeof (CORBA_wchar)

boolean sizeof (char)

octet sizeof (CORBA_octet)

string strlen (string) /* does NOT include ‘\0’ byte! */

wstring number of wide characters in string, not including wide null
terminator

enum E {}; sizeof (CORBA_enum)

union U { }; sizeof (U)

struct S { }; sizeof (S)

Object 1
CORBA V2.2 Overview February 1998 5-3

5

ag

n-

When

al

s, the

pe
The arg_modes field is defined as a bitmask (long) and may contain the following
flag values:

These flag values identify the parameter passing mode for arguments. Additional fl
values have specific meanings for request and list routines, and are documented with
their associated routines.

All other bits are reserved. The high-order 16 bits are reserved for implementatio
specific flags.

5.1.2 Memory Usage

The values for output argument data types that are unbounded strings or unbounded
sequences are returned as pointers to dynamically allocated memory. In order to
facilitate the freeing of all “out-arg memory,” the request routines provide a
mechanism for grouping, or keeping track of, this memory. If so specified, out-arg
memory is associated with the argument list passed to the create request routine.
the list is deleted, the associated out-arg memory will automatically be freed.

If the programmer chooses not to associate out-arg memory with an argument list, the
programmer is responsible for freeing each out parameter using CORBA_free() ,
which is discussed in Section 19.9, “Mapping for Structure Types,” on page 19-12.

5.1.3 Return Status and Exceptions

In the Dynamic Invocation interface, routines typically indicate errors or exception
conditions either via programming language exception mechanisms, or via an
Environment parameter for those languages that do not support exceptions. Thu
return type of these routines is void.

Previous versions of CORBA allowed implementations to choose the type they
returned from these routines by specifying the return type as a typedef named
CORBA::Status. Implementations were allowed to define this typedef as either ty
void or as unsigned long . Due to the portability problems resulting from this
approach, the unsigned long definition of Status is deprecated. Use of unsigned
long status, while legal, is not portable.

array N of type T1 Length (T1) * N

sequence V of type T2 Length (T2) * V /* V is the actual, dynamic, number of
elements */

CORBA::ARG_IN The associated value is an input only argument.

CORBA::ARG_OUT The associated value is an output only argument.

CORBA::ARG_INOUT The associated value is an in/out argument.

Table 5-1 C Type Lengths (Continued)

Data type: X Length (X)
5-4 CORBA V2.2 February 1998

5

st
The Status type has been left in the CORBA module for reasons of backwards
compatibility. In the next major revision of CORBA it will be removed entirely and
all instances of Status will be replaced with void.

5.2 Request Operations

The request operations are defined in terms of the Request pseudo-object. The Reque
routines use the NVList definition defined in the preceding section.

module CORBA {
interface Request { // PIDL

Status add_arg (
in Identifier name, // argument name

 in TypeCode arg_type, // argument datatype
 in void * value, // argument value to be added
 in long len, // length/count of argument

value
 in Flags arg_flags // argument flags
);
Status invoke (

 in Flags invoke_flags // invocation flags
);
Status delete ();
Status send (

in Flags invoke_flags// invocation flags
);
Status get_response (

in Flags response_flags // response flags
) raises (WrongTransaction);

};
};

5.2.1 create_request

Because it creates a pseudo-object, this operation is defined in the Object interface (see
“Object Reference Operations” on page 4-5 for the complete interface definition). The
create_request operation is performed on the Object which is to be invoked.
CORBA V2.2 Request Operations February 1998 5-5

5

t
s
 as

 also
and
tion.

ow

n

th

r
f
 on
Status create_request (// PIDL
in Context ctx, // context object for operation
in Identifier operation, // intended operation on object
in NVList arg_list, // args to operation
inout NamedValue result, // operation result
out Request request, // newly created request
in Flags req_flags // request flags

);

This operation creates an ORB request. The actual invocation occurs by calling invoke
or by using the send / get_re sponse calls.

The operation name specified on create_request is the same operation identifier tha
is specified in the OMG IDL definition for this operation. In the case of attributes, it i
the name as constructed following the rules specified in the ServerRequest interface
described in the DSI in “ServerRequestPseudo-Object” on page 6-3.

The arg_list , if specified, contains a list of arguments (input, output, and/or
input/output) which become associated with the request. If arg_list is omitted
(specified as NULL), the arguments (if any) must be specified using the add_arg call
below.

Arguments may be associated with a request by passing in an argument list or by using
repetitive calls to add_arg . One mechanism or the other may be used for supplying
arguments to a given request; a mixture of the two approaches is not supported.

If specified, the arg_list becomes associated with the request; until the invoke call
has completed (or the request has been deleted), the ORB assumes that arg_list (and
any values it points to) remains unchanged.

When specifying an argument list, the value and len for each argument must be
specified. An argument’s datatype, name, and usage flags (i.e., in, out, inout) may
be specified; if so indicated, arguments are validated for data type, order, name,
usage correctness against the set of arguments expected for the indicated opera

An implementation of the request services may relax the order constraint (and all
arguments to be specified out of order) by doing ordering based upon argument name.

The context properties associated with the operation are passed to the object
implementation. The object implementation may not modify the context informatio
passed to it.

The operation result is placed in the result argument after the invocation completes.

The req_flags argument is defined as a bitmask (long) that may contain the
following flag values:

CORBA::OUT_LIST_MEMORY indicates that any out-arg memory is associated wi
the argument list (NVList).

Setting the OUT_LIST_MEMORY flag controls the memory allocation mechanism fo
out-arg memory (output arguments, for which memory is dynamically allocated). I
OUT_LIST_MEMORY is specified, an argument list must also have been specified
5-6 CORBA V2.2 February 1998

5

ns

t

st the

ow

nded

ed
the create_request call. When output arguments of this type are allocated, they are
associated with the list structure. When the list structure is freed (see below), any
associated out-arg memory is also freed.

If OUT_LIST_MEMORY is not specified, then each piece of out-arg memory remai
available until the programmer explicitly frees it with procedures provided by the
language mappings (See Section 19.19, “Argument Passing Considerations,” on
page 19-21; Section 20.27, “NVList,” on page 20-71; and Section 22.24, “Argumen
Passing Considerations,” on page 21-17.

5.2.2 add_arg

Status add_arg (// PIDL
 in Identifier name, // argument name
 in TypeCode arg_type, // argument datatype
 in void * value, // argument value to be added
 in long len, // length/count of argument value
 in Flags arg_flags // argument flags

);

add_arg incrementally adds arguments to the request.

For each argument, minimally its value and len must be specified. An argument’s data
type, name, and usage flags (i.e., in, out, inout) may also be specified. If so indicated,
arguments are validated for data type, order, name, and usage correctness again
set of arguments expected for the indicated operation.

An implementation of the request services may relax the order constraint (and all
arguments to be specified out of order) by doing ordering based upon argument name.

The arguments added to the request become associated with the request and are
assumed to be unchanged until the invoke has completed (or the request has been
deleted).

Arguments may be associated with a request by specifying them on the
create_request call or by adding them via calls to add_arg . Using both methods for
specifying arguments, for the same request, is not currently supported.

In addition to the argument modes defined in “Common Data Structures” on page 5-2,
arg_flags may also take the flag value:IN_COPY_VALUE. The argument passing
flags defined in “Common Data Structures” may be used here to indicate the inte
parameter passing mode of an argument.

If the IN_COPY_VALUE flag is set, a copy of the argument value is made and us
instead. This flag is ignored for inout and out arguments.
CORBA V2.2 Request Operations February 1998 5-7

5

, by

h.

e

 will

5.2.3 invoke

Status invoke (// PIDL
 in Flags invoke_flags // invocation flags
);

This operation calls the ORB, which performs method resolution and invokes an
appropriate method. If the method returns successfully, its result is placed in the result
argument specified on create_request . The behavior is undefined if the Request
pseudo-object has already been used with a previous call to invoke, send, or
send_multiple_requests.

5.2.4 delete

Status delete (); // PIDL

This operation deletes the request. Any memory associated with the request (i.e.
using the IN_COPY_VALUE flag) is also freed.

5.3 Deferred Synchronous Operations

5.3.1 send

Status send (// PIDL
in Flags invoke_flags // invocation flags

);

send initiates an operation according to the information in the Request. Unlike
invoke, send returns control to the caller without waiting for the operation to finis
To determine when the operation is done, the caller must use the get_response or
get_next_response operations described below. The out parameters and return valu
must not be used until the operation is done.

Although it is possible for some standard exceptions to be raised by the send
operation, there is no guarantee that all possible errors will be detected. For example,
if the object reference is not valid, send might detect it and raise an exception, or
might return before the object reference is validated, in which case the exception
be raised when get_response is called.

If the operation is defined to be oneway or if INV_NO_RESPONSE is specified, then
get_response does not need to be called. In such cases, some errors might go
unreported, since if they are not detected before send returns there is no way to
inform the caller of the error.

The following invocation flags are currently defined for send:
5-8 CORBA V2.2 February 1998

5

r a
dated.

r a
dated.

the
CORBA::INV_NO_RESPONSE indicates that the invoker does not intend to wait fo
response, nor does it expect any of the output arguments (in/out and out) to be up
This option may be specified even if the operation has not been defined to be oneway.

5.3.2 send_multiple_requests

/* C */
CORBA_ Status CORBA _send_m ulti ple_requests (
CORBA_Requestreqs[], /* array of Re quests */
CORBA_Enviro nment*env,
CORBA_long count, /* number of Requ ests */
CORBA_Flagsinvoke_f lags
);

// C++

class ORB
{
public:

typedef sequence<R equest_ptr> RequestSeq;
...

Status send_mul tiple_req uests_oneway(const R equestSeq &);
Status send_mul tiple_req uests_deferred(const R equestSeq &);

};

The Smalltalk mapping of send multiple requests is as follows:

sendMultipleRequests: aCol lection
sendMultipleRequestOne way: aCollection

send_multiple_requests initiates more than one request in parallel. Like send,
send_multiple_requests returns to the caller without waiting for the operations to
finish. To determine when each operation is done, the caller must use the
get_response or get_next_response operations described below.

The degree of parallelism in the initiation and execution of the requests is system
dependent. There are no guarantees about the order in which the requests are initiated.
If INV_TERM_ON_ERR is specified, and the ORB detects an error initiating one of
the requests, it will not initiate any further requests from this list. If
INV_NO_RESPONSE is specified, it applies to all of the requests in the list.

The following invocation flags are currently defined for send_multiple_requests :

CORBA::INV_NO_RESPONSE indicates that the invoker does not intend to wait fo
response, nor does it expect any of the output arguments (inout and out) to be up
This option may be specified even if the operation has not been defined to be oneway .

CORBA::INV_TERM_ON_ERR means that if one of the requests causes an error,
remaining requests are not sent.
CORBA V2.2 Deferred Synchronous Operations February 1998 5-9

5

st had

 the
5.3.3 get_response

Status get_response (// PIDL
 in Flags response_flags // response flags
) raises (WrongTransaction);

get_response determines whether a request has completed. If get_response
indicates that the operation is done, the out parameters and return values defined in the
Request are valid, and they may be treated as if the Request invoke operation had
been used to perform the request.

If the RESP_NO_WAIT flag is set, get_re sponse returns immediately even if the
request is still in progress. Otherwise, get_response waits until the request is done
before returning.

The following response flag is defined for get_response:

CORBA::RESP_NO_WAIT indicates that the caller does not want to wait for a
response.

A request has an associated transaction context if the thread originating the reque
a non-null transaction context and the target object is a transactional object. The
get_response operation may raise the WrongTransaction exception if the request
has an associated transaction context, and the thread invoking get_response either has
a null transaction context or a non-null transaction context that differs from that of
request.

5.3.4 get_next_response
/* C */
CORBA_ Status CORBA_get_next_response (
CORBA_Enviro nment*env,
CORBA_Flags response_f lags,
CORBA_Request *req
);

// C++
class ORB
{
public:

Boolean poll_next_response();
Status get_next_res ponse(RequestSeq*&);

};
5-10 CORBA V2.2 February 1998

5

here
ey are

hen

st had

ace
The Smalltalk mapping of get_next_response is as follows:

pollNextR esponse
getNextResponse

get_next_response returns the next request that completes. Despite the name, t
is no guaranteed ordering among the completed requests, so the order in which th
returned from successive get_next_response calls is not necessarily related to the
order in which they finish.

If the RESP_NO_WAIT flag is set, and there are no completed requests pending, t
get_next_response returns immediately. Otherwise, get_next_response waits
until some request finishes.

The following response flag is defined for get_next_response:

CORBA::RESP_NO_WAIT indicates that the caller does not want to wait for a response.

A request has an associated transaction context if the thread originating the reque
a non-null transaction context and the target object is a transactional object. The
get_next_response operation may raise the WrongTransaction exception if the
request has an associated transaction context, and the thread invoking
get_next_response has a non-null transaction context that differs from that of the
request.

5.4 List Operations

The list operations use the named-value structure defined above.The list operations that
create NVList objects are defined in the ORB interface described in the ORB Interf
chapter, but are described in this section. The NVList interface is shown below.

interface NVList { // PIDL
Status add_item (

 in Identifier item_name, // name of item
 in TypeCode item_type, // item datatype
 in void *value, // item value
 in long value_len, // length of item value
 in Flags item_flags // item flags

);
Status free ();
Status free_memory ();
Status get_count (

out long count // number of entries in the list
);

};

Interface NVList is defined in the CORBA module.
CORBA V2.2 List Operations February 1998 5-11

5

d

r

re to

ed
5.4.1 create_list

This operation, which creates a pseudo-object, is defined in the ORB interface an
excerpted below.

Status create_list (//PIDL
in long count, // number of items to allocate for list
out NVList new_list // newly created list

);

This operation allocates a list of the specified size, and clears it for initial use. List
items may be added to the list using the add_item routine. Alternatively, they may be
added by indexing directly into the list structure. A mixture of the two approaches fo
initializing a list, however, is not supported.

An NVList is a partially opaque structure. It may only be allocated via a call to
create_l ist.

5.4.2 add_item

Status add_item (// PIDL
 in Identifier item_name, // name of item
 in TypeCode item_type, // item datatype
 in void *value, // item value
 in long value_len, // length of item value
 in Flags item_flags // item flags

);

This operation adds a new item to the indicated list. The item is added after the
previously added item.

In addition to the argument modes defined in Section 5.1.1, item_flags may also take
the following flag values: IN_COPY_VALUE, DEPENDENT_LIST. The argument
passing flags defined in “Common Data Structures” on page 5-2 may be used he
indicate the intended parameter passing mode of an argument.

If the IN_COPY_VALUE flag is set, a copy of the argument value is made and us
instead.

If a list structure is added as an item (e.g., a “sublist”), the DEPENDENT_LIST flag
may be specified to indicate that the sublist should be freed when the parent list is
freed.

5.4.3 free

Status free (); // PIDL

This operation frees the list structure and any associated memory (an implicit call to
the list free_memory operation is done).
5-12 CORBA V2.2 February 1998

5

n

efined

t

ontext

d
5.4.4 free_memory

Status free_memory (); // PIDL

This operation frees any dynamically allocated out-arg memory associated with the
list. The list structure itself is not freed.

5.4.5 get_count

Status get_count (// PIDL
out long count // number of entries in the list

);

This operation returns the total number of items allocated for this list.

5.4.6 create_operation_list

This operation, which creates a pseudo-object, is defined in the ORB interface.

Status create_operation_list (// PIDL
in OperationDef oper, // operation
out NVList new_list // argument definitions

);

This operation returns an NVList initialized with the argument descriptions for a give
operation. The information is returned in a form that may be used in Dynamic
Invocation requests. The arguments are returned in the same order as they were d
for the operation.

The list free operation is used to free the returned information.

5.5 Context Objects

A context object contains a list of properties, each consisting of a name and a string
value associated with that name. By convention, context properties represent
information about the client, environment, or circumstances of a request that are
inconvenient to pass as parameters.

Context properties can represent a portion of a client’s or application’s environmen
that is meant to be propagated to (and made implicitly part of) a server’s environment
(for example, a window identifier, or user preference information). Once a server has
been invoked (i.e., after the properties are propagated), the server may query its c
object for these properties.

In addition, the context associated with a particular operation is passed as a
distinguished parameter, allowing particular ORBs to take advantage of context
properties, for example, using the values of certain properties to influence metho
binding behavior, server location, or activation policy.
CORBA V2.2 Context Objects February 1998 5-13

5

at

y

via

ed

L

“*.”

e

text

vior.

amed

e 3-6
g
An operation definition may contain a clause specifying those context properties th
may be of interest to a particular operation. These context properties comprise the
minimum set of properties that will be propagated to the server’s environment
(although a specified property may have no value associated with it). The ORB ma
choose to pass more properties than those specified in the operation declaration.

When a context clause is present on an operation declaration, an additional argument is
added to the stub and skeleton interfaces. When an operation invocation occurs
either the stub or Dynamic Invocation interface, the ORB causes the properties which
were named in the operation definition in OMG IDL and which are present in the
client’s context object, to be provided in the context object parameter to the invok
method.

Context property names (which are strings) typically have the form of an OMG ID
identifier, or a series of OMG IDL identifiers separated by periods. A context property
name pattern is either a property name, or a property name followed by a single
Property name patterns are used in the context clause of an operation definition and in
the get_values operation (described below).

A property name pattern without a trailing “*” is said to match only itself. A property
name pattern of the form “<name>*” matches any property name that starts with
<name> and continues with zero or more additional characters.

Context objects may be created and deleted, and individual context properties may b
set and retrieved. There will often be context objects associated with particular
processes, users, or other things depending on the operating system, and there may be
conventions for having them supplied to calls by default.

It may be possible to keep context information in persistent implementations of con
objects, while other implementations may be transient. The creation and modification
of persistent context objects, however, is not addressed in this specification.

Context objects may be “chained” together to achieve a particular defaulting beha

Properties defined in a particular context object effectively override those properties in
the next higher level. This searching behavior may be restricted by specifying the
appropriate scope and the “restrict scope” option on the Context get_values call.

Context objects may be named for purposes of specifying a starting search scope.

5.6 Context Object Operations

When performing operations on a context object, properties are represented as n
value lists. Each property value corresponds to a named value item in the list.

A property name is represented by a string of characters (see “Identifiers” on pag
for the valid set of characters that are allowed). Property names are stored preservin
their case, however names cannot differ simply by their case.

The Context interface is shown below.
5-14 CORBA V2.2 February 1998

5

B

ult
module CORBA {

interface Context { // PIDL
Status set_one_value (

 in Identifier prop_name, // property name to add
 in string value // property value to add

);
Status set_values (

 in NVList values // property values to be
changed

);
Status get_values (

in Identifier start_scope, // search scope
 in Flags op_flags, // operation flags
 in Identifier prop_name, // name of property(s) to

retrieve
 out NVList values // requested property(s)

);
Status delete_values (

 in Identifier prop_name // name of property(s) to
delete

);
Status create_child (

in Identifier ctx_name, // name of context object
 out Context child_ctx // newly created context

object
);
Status delete (

 in Flags del_flags // flags controlling deletion
);

};
};

5.6.1 get_default_context

This operation, which creates a Context pseudo-object, is defined in the ORB interface
(see “Converting Object References to Strings” on page 4-3 for the complete OR
definition).

Status get_default_context (// PIDL
out Context ctx // context object
);

This operation returns a reference to the default process context object. The defa
context object may be chained into other context objects. For example, an ORB
implementation may chain the default context object into its User, Group, and System
context objects.
CORBA V2.2 Context Object Operations February 1998 5-15

5

are

t,

t

ed

e
5.6.2 set_one_value

Status set_one_value (// PIDL
 in Identifier prop_name, // property name to add
 in string value // property value to add

);

This operation sets a single context object property. Currently, only string values
supported by the context object.

5.6.3 set_values

Status set_values (// PIDL
 in NVList values // property values to be changed

);

This operation sets one or more property values in the context object. In the NVLis
the flags field must be set to zero, and the TypeCode field associated with an attribute
value must be TC_string. Currently, only string values are supported by the contex
object.

5.6.4 get_values

Status get_values (// PIDL
 in Identifier start_scope, // search scope
 in Flags op_flags, // operation flags
 in Identifier prop_name, // name of property(s) to retrieve
 out NVList values // requested property(s)

);

This operation retrieves the specified context property value(s). If prop_name has a
trailing wildcard character (“*”), then all matching properties and their values are
returned. The values returned may be freed by a call to the list free operation.

If no properties are found, an error is returned and no property list is returned.

Scope indicates the context object level at which to initiate the search for the specified
properties (e.g., “_USER”, “_SYSTEM”). If the property is not found at the indicat
level, the search continues up the context object tree until a match is found or all
context objects in the chain have been exhausted.

Valid scope names are implementation-specific.

If scope name is omitted, the search begins with the specified context object. If th
specified scope name is not found, an exception is returned.

The following operation flags may be specified:

CORBA::CTX_RESTRICT_SCOPE - Searching is limited to the specified search
scope or context object.
5-16 CORBA V2.2 February 1998

5

e
), if

 all

.
5.6.5 delete_values

Status delete_values (// PIDL
 in Identifier prop_name // name of property(s) to delete

);

This operation deletes the specified property value(s) from the context object. If
prop_name has a trailing wildcard character (“*”), then all property names that
match will be deleted.

Search scope is always limited to the specified context object.

If no matching property is found, an exception is returned.

5.6.6 create_child

Status create_child (// PIDL
 in Identifier ctx_name, // name of context object
 out Context child_ctx // newly created context object

);

This operation creates a child context object.

The returned context object is chained into its parent context. That is, searches on th
child context object will look in the parent context (and so on, up the context tree
necessary, for matching property names.

Context object names follow the rules for OMG IDL identifiers (see “Identifiers” on
page 3-6).

5.6.7 delete

Status delete (// PIDL
 in Flags del_flags // flags controlling deletion

);

This operation deletes the indicated context object.

The following option flags may be specified:

CORBA::CTX_DELETE_DESCENDENTS deletes the indicated context object and
of its descendent context objects, as well.

An exception is returned if there are one or more child context objects and the
CTX_DELETE_DESCENDENTS flag was not set.

5.7 Native Data Manipulation

A future version of this specification will define routines to facilitate the conversion of
data between the list layout found in NVList structures and the compiler native layout
CORBA V2.2 Native Data Manipulation February 1998 5-17

5

5-18 CORBA V2.2 February 1998

 Dynamic Skeleton Interface 6
ns.

s

e

t
t
but
The Dynamic Skeleton Interface (DSI) allows dynamic handling of object invocatio
That is, rather than being accessed through a skeleton that is specific to a particular
operation, an object’s implementation is reached through an interface that provide
access to the operation name and parameters in a manner analogous to the client side’s
Dynamic Invocation Interface. Purely static knowledge of those parameters may b
used, or dynamic knowledge (perhaps determined through an Interface Repository)
may be also used, to determine the parameters.

Contents

This chapter contains the following sections.

6.1 Introduction

The Dynamic Skeleton Interface is a way to deliver requests from an ORB to an objec
implementation that does not have compile-time knowledge of the type of the object i
is implementing. This contrasts with the type-specific, OMG IDL-based skeletons,
serves the same architectural role.

Section Title Page

“Introduction” 6-1

“Overview” 6-2

“ServerRequestPseudo-Object” 6-3

“DSI: Language Mapping” 6-4
 CORBA V2.2 February 1998 6-1

6

ine
he

itors

ing

ld be

nd the

ters
DSI is the server side’s analogue to the client side’s Dynamic Invocation Interface
(DII). Just as the implementation of an object cannot distinguish whether its client is
using type-specific stubs or the DII, the client who invokes an object cannot determ
whether the implementation is using a type-specific skeleton or the DSI to connect t
implementation to the ORB.

.

Figure 6-1 Requests are delivered through skeletons, including dynamic ones

DSI, like DII, has many applications beyond interoperability solutions. Uses include
interactive software development tools based on interpreters, debuggers and mon
that want to dynamically interpose on objects, and support for dynamically-typed
languages such as LISP.

6.2 Overview

The basic idea of the DSI is to implement all requests on a particular object by hav
the ORB invoke the same upcall routine, a Dynamic Implementation Routine (DIR).
Since in any language binding all DIRs have the same signature, a single DIR cou
used as the implementation for many objects, with different interfaces.

The DIR is passed all the explicit operation parameters, and an indication of the object
that was invoked and the operation that was requested. The information is encoded in
the request parameters. The DIR can use the invoked object, its object adapter, a
Interface Repository to learn more about the particular object and invocation. It can
access and operate on individual parameters. It can make the same use of an object
adapter as other object implementations.

This chapter describes the elements of the DSI that are common to all object adap
that provide a DSI. See “Single Servant, many objects and types, using DSI” on
page 9-57 for the specification of the DSI for the Portable Object Adapter.

Skeleton

ORB Core

Object Adapter

Dynamic Object Implementation

Dynamic Skeleton
6-2 CORBA V2.2 February 1998

6

e
ct will

l
6.3 ServerRequestPseudo-Object

6.3.1 ExplicitRequest State: ServerRequestPseudo-Object

The ServerRequest pseudo-object captures the explicit state of a request for the DSI,
analogous to the Request pseudo-object in the DII. The object adapter dispatches an
invocation to a DSI-based object implementation by passing an instance of
ServerRequest to the DIR associated with the object implementation. The following
shows how it provides access to the request information:

module CORBA {
...
pseudo interface ServerRequest {

readonly attribute Identifier operation;
void arguments(inout NVList nv);
Context ctx();
void set_result(in Any val);
void set_exception(in Any val);

};
};

The identity and/or reference of the target object of the invocation is provided by th
object adapter and its language mapping. In the context of a bridge, the target obje
typically be a proxy for an object in some other ORB.

The operation attribute provides the identifier naming the operation being invoked;
according to OMG IDL's rules, these names must be unique among all operations
supported by the object's "most-derived" interface. Note that the operation names for
getting and setting attributes are _get_<attribute_name> and
set<attribute_name>, respectively. The operation attribute can be accessed by the
DIR at any time.

Operation parameter types will be specified, and "in" and "inout" argument values wil
be retrieved, with arguments. Unless it calls set_exception, the DIR must call
arguments exactly once, even if the operation signature contains no parameters. Once
arguments or set_exception has been called, calling arguments on the same
ServerRequest will result in a BAD_INV_ORDER system exception. The DIR
must pass in to arguments an NVList initialized with TypeCodes and Flags
describing the parameter types for the operation, in the order in which they appear in the
IDL specification (left to right). A potentially-different NVList will be returned from
arguments, with the "in" and "inout" argument values supplied. If it does not call
set_exception, the DIR must supply the returned NVList with return values for any
"out" arguments before returning, and may also change the return values for any "inout"
arguments.
CORBA V2.2 ServerRequestPseudo-Object February 1998 6-3

6

 the

e

l

ot

ed to
When the operation is not an attribute access, and the operation's IDL definition contains
a context expression, ctx will return the context information specified in IDL for the
operation. Otherwise it will return a nil Context reference. Calling ctx before
arguments has been called or after ctx, set_result or set_exception has been called
will result in a BAD_INV_ORDER system exception.

The set_result operation is used to specify any return value for the call. Unless
set_exception is called, if the invoked operation has a non-void result type, set_result
must be called exactly once before the DIR returns. If the operation has a void result
type, set_result may optionally be called once with an Any whose type is tk_void.
Calling set_result before arguments has been called or after set_result or
set_exception has been called will result in a BAD_INV_ORDER system exception.
Calling set_result without having previously called ctx when the operation IDL
contains a context expression, or when the NVList passed to arguments did not
describe all parameters passed by the client, may result in a MARSHAL system
exception.

The DIR may call set_exception at any time to return an exception to the client. The
Any passed to set_exception must contain either a system exception or one of the user
exceptions specified in the raises expression of the invoked operation’s IDL definition.
Passing in an Any that does not contain an exception will result in a BAD_PARAM
system exception. Passing in an unlisted user exception will result in either the DIR
receiving a BAD_PARAM system exception or in the client receiving an
UNKNOWN_EXCEPTION system exception.

See each language mapping for a description of the memory management aspects of
parameters to the ServerRequest operations.

6.4 DSI: Language Mapping

Because DSI is defined in terms of a pseudo-object, special attention must be paid to it
in the language mapping. This section provides general information about mapping th
Dynamic Skeleton Interface to programming languages.

Each language provides its own mapping for DSI.

6.4.1 ServerRequest’s Handling of Operation Parameters

There is no requirement that a ServerRequest pseudo-object be usable as a genera
argument in OMG IDL operations, or listed in “orb.idl.”

The client side memory management rules normally applied to pseudo-objects do n
strictly apply to a ServerRequest’s handling of operation parameters. Instead, the
memory associated with parameters follows the memory management rules appli
data passed from skeletons into statically typed implementation routines, and vice
versa.
6-4 CORBA V2.2 February 1998

6

eton
6.4.2 Registering Dynamic Implementation Routines

In an ORB implementation, the Dynamic Skeleton Interface is supported entirely through
the Object Adapter. An Object Adapter does not have to support the Dynamic Skel
Interface but, if it does, the Object Adapter is responsible for the details.
CORBA V2.2 DSI: Language Mapping February 1998 6-5

6

6-6 CORBA V2.2 February 1998

Dynamic management of Any values 7
y
An any can be passed to a program that doesn’t have any static information for the
type of the any (code generated for the type by an IDL compiler has not been
compiled with the object implementation). As a result, the object receiving the any
does not have a portable method of using it.

The facility presented here enables traversal of the data value associated with an any at
runtime and extraction of the primitive constituents of the data value. This is especiall
helpful for writing powerful generic servers (bridges, event channels supporting
filtering, etc.).

Similarly, this facility enables the construction of an any at runtime, without having
static knowledge of its type. This is especially helpful for writing generic clients
(bridges, browsers, debuggers, user interface tools, etc.).

Contents

This chapter contains the following sections.

Section Title Page

“Overview” 7-2

“DynAny API” 7-3

“Usage in C++ language” 7-14
 CORBA V2.2 February 1998 7-1

7

f the

cted

uct.

at
7.1 Overview

Any values can be dynamically interpreted (traversed) and constructed through
DynAny objects. A DynAny object is associated with a data value which may
correspond to a copy of the value inserted into an any. The DynAny object may be
seen as owning a pointer to an external buffer which holds some representation o
data value.

A constructed DynAny object is a DynAny object associated with a constructed type.
There is a different interface, inheriting from the DynAny interface, associated with
each kind of constructed type in IDL (struct, sequence, union, or array). A constru
DynAny object exports operations that enable the creation of new DynAny objects,
each of them associated with a component of the constructed data value.

As an example, a DynStruct is associated with a struct value. This means that the
object may be seen as owning a pointer to a external buffer which holds a
representation of struct. The DynStruct object exports operations that enable the
creation of new DynAny objects, each of them associated with a member of the str

If a DynAny object has been created from another (a constructed) DynAny object
then the buffer pointed to by the first DynAny object is logically contained within the
buffer pointed by the second DynAny object.

Destroying a DynAny object implies deleting the buffer it points to and also
destroying all DynAny objects obtained from it. Invoking operations using references
to descendants of a destroyed DynAny object leads to unpredictable results. Note th
releasing a reference to a DynAny object will not delete the buffer pointed by the
object, since the object indeed exists (it has not been explicitly destroyed).

If the programmer wants to destroy a DynAny object but still wants to manipulate
some component of the data value associated with it, then he or she should first create
a DynAny for the component and, after that, make a copy of the created DynAny
object.

The behavior of DynAny objects has been defined in order to enable efficient
implementations in terms of allocated memory space and speed of access. DynAny
objects are intended to be used for traversing values extracted from anys or
constructing values of any s at runtime. Their use for other purposes is not
recommended.
7-2 CORBA V2.2 February 1998

7

7.2 DynAny API

The DynAny API comprises the following IDL definitions to be included in the
CORBA module:

// IDL
interface DynAny {

exception Invalid {};
exception Invali dValue {};
exception TypeMismatch {};
exception InvalidSeq {};

typedef sequence<oct et> OctetSeq;
TypeC ode type ();

void assign (in DynAny dyn_any) raises (Inval id);
void from_any (in any value) raises (Inval id);
any to_any() raises (In valid);

void destroy();

DynAny copy();

void insert_boolean(in b oolean value) raises (In validValue);
void insert_octet(in octet value) raises (InvalidValue);
void insert_char(in char value) raises (Invali dValue);
void insert_short(in short value) raises (InvalidValue);
void in sert_ushort (in unsig ned short value) raises (InvalidValue);
void insert_long(in long value) raises (InvalidValue);
void insert_ulong(in unsigned long value) raises (InvalidValue);
void insert_float(in float value) raises (InvalidValue);
void insert_double(in double value) raises (I nvalidValue);
void insert_string(in string value) raises (Invali dValue);
void insert_ref erence (in Object value) raises (InvalidV alue);
void insert_ty pecode (in TypeC ode value) raises (InvalidValue);
void insert_longlong(in long long value) raises(InvalidValue);
void insert_ulonglong(in unsigned long long value) raises(InvalidValue);
void insert_lo ngdouble(in long double value) raises(In validValue);
void insert_wchar (in wchar value) raises(InvalidValue);
void insert_wstring(in wstring value) raises(I nvalidValue);
void insert_any(in any value) raises(InvalidValue);

boolean get_boolean() raises (TypeMismatch);
octet get_octet() raises (T ypeMismatch);
char get_char() raises (TypeMismatch);
short get_short() raises (TypeMismatch);
unsigned short get_u short () raises (TypeMismatch);
long get_long() raises (TypeMismatch);
unsigned long get_ulong() raises (TypeMismatch);
float get_float() raises (TypeMismatch);
CORBA V2.2 DynAny API February 1998 7-3

7

double get_doubl e() raises (TypeMismatch);
string get_string() raises (TypeMismatch);
Object get_reference() raises (TypeMismatch);
TypeC ode get_typecode () raises (TypeMismatch);
long long get_longlong() raises(TypeMismatch);
unsigned long long get_ulonglong() raises(TypeMismatch);
long double get_lon gdoubl e() raises(TypeMismatch);
wchar get_wchar() raises(TypeMismatch);
wstring get_wstring() rai ses(TypeMismatch);
any get_any() raises (TypeMismatch);

DynAny current_component ();
boolean next ();
boolean seek (in long index);
void rewind ();

};

interface DynFixed : D ynAny {
OctetSeq get_value ();
void set_value (in OctetSeq val) raises (InvalidValue);

};

interface DynEnum: DynAny {
attribute string value_as_string;
attribute unsigned long value_as_ulong;

};

typedef string FieldName;

struct NameValuePair {
FieldName id;
any value;

};

typedef sequence<NameValuePair> NameValuePairSeq;

interface DynSt ruct: DynAny {
FieldName current _member_name ();
TCKind current_member_kind ();
NameValuePairSeq get_members();
void set_members(in N ameValuePairSeq value)

raises (InvalidSeq);
};
7-4 CORBA V2.2 February 1998

7

 and

interface DynUnion: DynAny {
attribute boolean set_as_default;
DynAny di scriminator ();
TCKind discriminator_kind ();
DynAny member ();
attribute FieldName m ember_name;
TCKind member_kind ();

};

typedef sequence<any> AnySeq;

interface DynSequence: DynAny {
attribute unsigned long length;
AnySeq g et_elements ();
void set_elements (in AnySeq v alue)

raises (InvalidSeq);
};

interface DynArr ay: DynAny {
AnySeq g et_element s();
void set_elements(in A nySeq value)

raises (InvalidSeq);
};

7.2.1 Locality and usage constraints

DynAny objects are intended to be local to the process in which they are created
used. This means that references to DynAny objects cannot be exported to other
processes, or externalized with ORB::object_to_string . If any attempt is made to do
so, the offending operation will raise a MARSHAL system exception.

Since their interfaces are specified in IDL, DynAny objects export operations defined
in the standard CORBA:: Object interface. However, any attempt to invoke operations
exported through the Object interface may raise the standard NO_IMPLEMENT
exception.

An attempt to use a DynAny object with the DII may raise the NO_IMPLEMENT
exception.

7.2.2 Creating a DynAny object

A DynAny object can be created as a result of:

• invoking an operation on an existing DynAny object

• invoking an operation exported by the ORB

Actually, a constructed DynAny object support operations that enable the creation of
new DynAny objects encapsulating access to the value of some constituent. DynAny
objects also support the copy operation for creating new DynAny objects.
CORBA V2.2 DynAny API February 1998 7-5

7

 a

the

tc.

s
In addition, the ORB can act as a factory of DynAny objects in the same way as with
TypeCode objects. Therefore, the standard ORB interface includes the following
operations:

interface ORB {
...
DynAny create_dyn_any (in any value);
DynAny create_basic_dyn_any(in T ypeC ode type)

raises (Inconsistent TypeCo de);
DynStruct create_dyn_struct(in T ypeC ode type)

raises (Inconsistent TypeCo de);
DynSequence create_dyn_sequ ence(in T ypeC ode type)

raises (Inconsistent TypeCo de);
DynArray create_dyn_array(in T ypeC ode type)

raises (Inconsistent TypeCo de);
DynUnion create_dyn_union(in Ty peCode type)

raises (Inconsistent TypeCo de);
DynEnum create_dyn _enum(in T ypeC ode type)

raises (Inconsistent TypeCo de);
DynFixed create_dyn_fixed(in T ypeC ode type)

raises (Inconsistent TypeCo de);
...

};

The create_dyn_any operation creates a new DynAny object from an any value. A
duplicate of the TypeCode associated with the any value is assigned to the resulting
DynAny object. The value associated with the DynAny object is a copy of the value
in the original any.

The rest of the operations used to create DynAny objects receive a TypeCode input
parameter and throw the InconsistentT ypeCode exception if the TypeCode passed
as a parameter is not consistent with the operation.

Dynamic interpretation of an any usually involves creating a DynAny object using
create_dyn_any as the first step. Depending on the type of the any, the resulting
DynAny object reference can be narrowed to a DynStruct , DynSequence ,
DynArray , DynUnion or DynEnum object reference.

Dynamic creation of an any containing a struct data value typically involves creating
DynStruct object using create_dyn_struct , passing the TypeCode associated with
the struct data value to be created. Then, components of the struct can be initialized by
means of invoking operations on the resulting DynStruct object or DynAny objects
generated for each member of the struct. Finally, once the data value pointed by
DynStruct object has been properly initiali zed, the to_any operation can be invoked.
The same approach would be followed for dynamic creation of sequences, unions, e

Dynamic creation of an any containing a value of a basic data type typically involve
creating a DynAny object using create_basic_dyn_any , passing the TypeCode
associated with the basic data type value to be created. Then, the value can be
7-6 CORBA V2.2 February 1998

7

in a
initialized by means of invoking operations on the resulting DynAny object
(insert_boolean if the DynAny is of type boolean , etc.). Finally, the to_any
operation can be invoked.

7.2.3 The DynAny interface

The following operations can be applied to a DynAny object:

• Obtaining the TypeCode associated with the DynAny object

• Generating an any value from the DynAny object

• Destroying the DynAny object

• Creating a DynAny object as copy of the DynAny object

• Inserting/getting a value of some basic type into/from the DynAny object

• Iterating through the components of a DynAny

• Obtaining the TypeCode associated to the DynAny object

• Initializing a DynAny object from another DynAny object

• Initializing a DynAny object from an any value

• Generating an any value from the DynAny object

• Destroying the DynAny object

• Creating a DynAny object as copy of the DynAny object

• Inserting/Getting a value of some basic type into/from the DynAny object

• Iterating through the components of a DynAny

Obtaining the TypeCode associated with a DynAny object

A DynAny object is created with a TypeCode value assigned to it. This TypeCode
value determines the type of the value handled through the DynAny object. The type
operation returns the TypeCode associated with a DynAny object:

TypeC ode type();

Note that the TypeCode associated with a DynAny object is initialized at the time the
DynAny is created and cannot be changed during lifetime of the DynAny object.

Initializing a DynAny object from another DynAny object

The assign operation initializes the value associated to a DynAny object with the
value associated to another DynAny object:

void assign(in DynAny dyn_any) raises(Inval id);

If an invalid DynAny object is passed (it has a different typecode or doesn’t conta
meaningful value), the Invalid exception is returned.
CORBA V2.2 DynAny API February 1998 7-7

7

alue)

ful

s

es
Initializing a DynAny object from an any value

The from_any operation initializes the value associated to a DynAny object with the
value contained in an any :

void from_any(in any value) raises(Inval id);

If an invalid any is passed (it has a different typecode or hasn’t been assigned a v
the Invalid exception is returned.

Generating an any value from a DynAny object

The to_any operation creates an any value from a DynAny object:

any to_any() raises(Inv alid);

If the DynAny object has not been correctly created or doesn’t contain a meaning
value (it hasn’t been properly initialized, for example), the Invalid exception is
returned.

A duplicate of the TypeCode associated with the DynAny object is assigned to the
resulting any. The value associated with the DynAny object is copied into the any.

Destroying a DynAny object

The destroy operation destroys a DynAny object. This operation frees any resource
used to represent the data value associated with a DynAny object.

void destroy();

Destruction of a DynAny object implies destruction of all DynAny objects obtained
from it.

Destruction of DynAny objects should be handle with care taking into account issu
dealing with representation of data values associated with DynAny objects.

If the programmer wants to destroy a DynAny object but still wants to manipulate
some component of the data value associated with it, he or she should first create a
DynAny for the component and then make a copy of the created DynAny object.

Creating a copy of a DynAny object

The copy operation enables the creation of a new DynAny object whose value is a
deep copy of the value pointed by the DynAny object:
7-8 CORBA V2.2 February 1998

7

basic

t

nal

ed.

g
ing
s

ed
DynAny copy();

Accessing a value of some basic type in a DynAny object

The insert and get operations have been defined to enable insertion/extraction of
data type values into/from a DynAny object.

Insert operations raise the InvalidValue exception if the value inserted is not
consistent with the type of the accessed component in the DynAny object.

Get operations raise the TypeMismatch exception if the accessed component in the
DynAny is of a type that is not consistent with the requested type.

These operations are necessary to handle basic DynAny objects but are also helpful to
handle constructed DynAny objects. Inserting a basic data type value into a
constructed DynAny object implies initializing the next component of the constructed
data value associated with the DynAny object. For example, invoking
insert_boolean in a DynStruct implies inserting a boolean data value as the nex
member of the associated struct data value.

In addition, availability of these operations enable the traversal of anys associated with
sequences of basic data types without the need to generate a DynAny object for each
element in the sequence.

Iterating through components of a DynAny

The DynAny interface allows a client to iterate through the components of the struct
data value pointed by a DynStruct object.

As mentioned above, a DynAny object may be seen as owning a pointer to an exter
buffer that holds some representation of a data value. In addition, the DynAny object
holds a pointer to a buffer offset where the current component is being represent

The buffer pointer effectively points to the space used to represent the first component
of the data value when the programmer creates the DynAny object. It also points to
the first component each time rewind is invoked.

void rewind();

The next operation logically advances the pointer and returns TRUE if the resultin
pointer points to a component, or FALSE if there are no more components. Invok
next on a DynAny associated with a basic data type value is allowed, but it alway
returns FALSE.

boolean next();

The programmer is able to inspect/initialize the component of the data value associat
with the DynAny object by means of invoking current_component at each step
during the iteration.
CORBA V2.2 DynAny API February 1998 7-9

7

e

is

f the
DynAny current_component();

The resulting DynAny object reference would be used to get/set the value of the
component currently accessed. In order to get access to specific operations, the
resulting DynAny object reference may be narrowed based on its TypeCode .

In order to construct an any associated with a sequence data value, for example, th
programmer may first create the DynAny object invoking create_dyn_sequence .
After doing so, the programmer may iterate through the elements of the sequence. At
each step, an element in the sequence would be initialized by means of invoking
current_component and using the returned DynAny . After that, next will be
invoked. The end of the initialization process would be detected when next returns
FALSE. At that point, the programmer would invoke to_any to create an any.

Operation seek logically sets a new offset for this pointer, returning TRUE if the
resulting pointer points to a component or FALSE if there is no component at the
designated offset. Invoking seek on a DynAny associated to a basic data type value
allowed but it only returns TRUE if the value passed as argument equals to zero.

boolean seek(in long index);

7.2.4 The DynFixed interface

DynFixed objects are associated with values of the IDL fixed type.

typedef sequence<oct et> OctetSeq;
interface DynFixed : D ynAny {

OctetSeq get_value ();
void set_value (in OctetSeq val) raises (InvalidValue);

};

The get_value operation returns the value of the DynFixed as a sequence of octet.
Each octet contains either one or two decimal digits. If the fixed type has an odd
number of decimal digits (which can be determined from the
TypeCode:: fixed_digits operation), then the representation begins with the first
(most significant) digit. Otherwise, the first half-octet is all zero, and the first digit is in
the second half-octet. The sign of the value, which is stored in the last half-octet o
sequence, shall be 0xD for negative numbers and 0xC for positive and zero values.

The set_value operation sets the value of the DynFixed with an OctetSeq having
the same format as that described above. If the OctetSeq does not conform to the
expected number of digits as determined by the TypeCode , the InvalidValue
exception is raised.

7.2.5 The DynEnum interface

DynEnum objects are associated with enumerated values.
7-10 CORBA V2.2 February 1998

7

the
interface DynEnum: DynAny {
attribute string value_as_string;
attribute unsigned long value_as_ulong;

};

The DynEnum interface consists of two attributes: the value_as_string attribute
which contains the value of the enum value as a string and the value_as_ulong
which contains the value of the enum value as an unsigned long:

attribute string value_as_string;
attribute unsigned long value_as_ulong;

7.2.6 The DynStruct interface

DynStruct objects are associated with struct values and exception values.

typedef string FieldName;

struct NameValuePair {
FieldName id;
any value;

};

typedef sequence<NameValuePair> NameValuePairSeq;

interface DynSt ruct: DynAny {
FieldName current _member_name ();
TCKind current_member_kind ();
NameValuePairSeq get_members();
void set_members(in N ameValuePairSeq value)

raises (InvalidSeq);
};

The current_member_name operation returns the name of the member currently
being accessed.

FieldName current _member_name ();

This operation may return an empty string since the TypeCode of the struct being
manipulated may not contain the names of members in the struct.

current_member_kind returns the TCKind associated with the current member
being accessed.

TCKind current_member_kind ();

It is possible to obtain a sequence of name/value pairs describing the name and
value of each member in the struct associated with a DynStruct object using the
get_members operation:
CORBA V2.2 DynAny API February 1998 7-11

7

 or

d
NameValuePairSeq get_members();

The set_members operation initializes the struct data value associated with a
DynStruct object from a sequence of name value pairs:

void set_members(in N ameValuePairSeq value)
raises (InvalidSeq);

Members must appear in the NameValuePairSeq in the order in which they appear in
the IDL specification of the struct. This operation raises the InvalidSeq exception if
an inconsistent name or value is passed as argument (for example, the
NameValuePairSeq does not match the members of the struct, it’s too long/short,
member values are passed in the wrong order).

DynStruct objects can also be used for handling exception values. In that case,
members of the exceptions are handled in the same way as members of a struct.

7.2.7 The DynUnion interface

DynUnion objects are associated with unions.

interface DynUnion: DynAny {
attribute boolean set_as_default;
DynAny di scriminator ();
TCKind discriminator_kind ();
DynAny member ();
attribute FieldName m ember_name;
TCKind member_kind ();

};

The DynU nion interface allows for the insertion/extraction of an OMG IDL union
type into/from a DynUnion object.

The discriminator operation returns a DynAny object reference that must be narrowe
to the type of the discriminator in order to insert/get the discriminator value:

DynAny di scriminator ();

Note that the type of the discriminator is contained in the TypeCode of the union.

The member operation returns a DynAny object reference that is used in order to
insert/get the member of the union:

DynAny member ();

discriminator_kind and member_kind return the TCKind associated with the
discriminator and member of the union, respectively:
7-12 CORBA V2.2 February 1998

7

the

f

ned

TCKind discriminator_kind ();
TCKind member_kind ();

The member_name attribute allows for the inspection/assignment of the name of
union member without checking the value of the discriminator.

The set_as_default attribute determines whether the discriminator associated with
the union has been assigned a valid default value.

Union values can be traversed using the operations defined in “Iterating through
components of a DynAny” on page 7-9. In that case, the first component in the union
corresponds to the discriminator while the second corresponds to the actual value o
the union. Operation next should then be called twice.

7.2.8 The DynSequence interface

DynSequence objects are associated with sequences.

typedef sequence<any> AnySeq;

interface DynSequence: DynAny {
attribute unsigned long length;
AnySeq g et_element s();
void set_elements(in A nySeq value)

raises (InvalidSeq);
};

The length attribute contains the number of elements contained in (or to be contai
in) the sequence; its value is initalized to zero for unbounded sequences:

attribute unsigned long length;

The get_elements and set_elements operations return and receive respectively a
sequence of anys containing each of the elements of the sequence:

AnySeq g et_element s();
void set_elements(in A nySeq value);

The set_elements operation raises the InvalidSeq exception if an inconsistent value
is passed in the sequence of any values passed as argument (for example, the AnySeq
is too long/short).

7.2.9 The DynArray interface

DynArray objects are associated with arrays.

interface DynArr ay: DynAny {
AnySeq g et_element s();
void set_elements(in A nySeq value)

raises (InvalidSeq);
};
CORBA V2.2 DynAny API February 1998 7-13

7

The get_elements and set_elements operations return and receive respectively a
sequence of anys containing each of the elements of the array:

AnySeq g et_element s();
void set_elements(in A nySeq value);

The set_elements operation raises the InvalidSeq exception if an inconsistent value
is passed in the sequence of any values passed as argument (for example, the AnySeq
is too long/short).

Note that the dimension of the array is contained in the TypeCode which is accessible
through the type attribute.

7.3 Usage in C++ language

7.3.1 Dynamic creation of CORBA::Any values

Creating an any which contains a struct

Consider the following IDL definition:

// IDL
struct MyStruct {

long member1;
boolean member2;

};

The following example illustrates how a CORBA::Any value may be constructed on
the fly containing a value of type MyStruct :
7-14 CORBA V2.2 February 1998

7

// C++
CORBA::ORB_var orb;
CORBA::StructMemberSeq mems(2);
CORBA::Any result;
long value1;
boolean value2;

mems[0].name = CORBA::string_dup(" member1");
mems[1].type = CORBA::TypeCode::_duplicate(CORBA::_tc_long);
mems[0].name = CORBA::string_dup(" member2");
mems[1].type =

CORBA::TypeCode::_duplicate(CORBA::_tc_boolean);

CORBA::TypeCode_var new_tc = orb->create_struct_tc (
" IDL:MyStruct:1.0",
"MyStruct",
mems

);

// construct the DynStruct object. Values for members have
// read in the value1 and value2 variables

DynStruct_ptr dyn_struct = orb->create_dyn_struct (new_tc);
dyn_struct->insert_long(value1);
dyn_struct->insert_boolean(value2);
result = dyn_struct->to_any();
dyn_struct->destroy ();
CORBA::release(dyn_struct);

7.3.2 Dynamic interpretation of CORBA::Any values

Filtering of events

Suppose there is a CORBA object which receives events and prints all those events
which correspond to a data structure containing a member called is_urgent whose
value is TRUE.

The following fragment of code corresponds to a method which determines if an event
should be printed or not. Note that the program allows several struct events to be
filtered with respect to some common member.
CORBA V2.2 Usage in C++ language February 1998 7-15

7

// C++
CORBA::Boolean Tester::eval_filter(const CORBA::Any &event)
{

CORBA::Boolean success = FALSE;

// First, typecode is extracted from the event. This
// is necessary to get struct member names:
CORBA::TypeCode_var event_type = event->type();

// The filter only returns true if the event is a struct:
if (event_type->kind() == CORBA::tk_struct)
{

DynAny_ptr dyn_any = orb->create_dyn_any(event);
DynStruct_ptr dyn_struct= DynStruct::_narrow(dyn_any);
CORBA::release(dyn_any);

CORBA::Boolean found = FALSE;

do
{

CORBA::String_var member_name =
dyn_struct->current_member_name();

found = (strcmp(member_name, " is_urgent") == 0);
} while (!found && !dyn_struct->next());

if (found)
{

// We only create a DynAny object for the member
// we were looking for:
CORBA::DynAny_var dyn_member =

dyn_struct->current_component ();
success = dyn_member->get_boolean();

};

dyn_struct->destroy();
CORBA::release(dyn_struct);

};

return success;
};
7-16 CORBA V2.2 February 1998

 The Interface Repository 8
ge
Contents

This chapter contains the following sections.

8.1 Overview

The Interface Repository is the component of the ORB that provides persistent stora
of interface definitions—it manages and provides access to a collection of object
definitions specified in OMG IDL.

Section Title Page

“Overview” 8-1

“Scope of an Interface Repository” 8-2

“Implementation Dependencies” 8-4

“Basics” 8-6

“Interface Repository Interfaces” 8-9

“RepositoryIds” 8-31

“TypeCodes” 8-35

“OMG IDL for Interface Repository” 8-44
 CORBA V2.2 February 1998 8-1

8

nd

,

that

f the

 and
An ORB provides distributed access to a collection of objects using the objects’
publicly defined interfaces specified in OMG IDL. The Interface Repository provides
for the storage, distribution, and management of a collection of related objects’
interface definitions.

For an ORB to correctly process requests, it must have access to the definitions of the
objects it is handling. Object definitions can be made available to an ORB in one of
two forms:

1. By incorporating the information procedurally into stub routines (e.g., as code that
maps C language subroutines into communication protocols).

2. As objects accessed through the dynamically accessible Interface Repository (i.e.,
as interface objects” accessed through OMG IDL-specified interfaces).

In particular, the ORB can use object definitions maintained in the Interface Repository
to interpret and handle the values provided in a request to:

• Provide type-checking of request signatures (whether the request was issued
through the DII or through a stub).

• Assist in checking the correctness of interface inheritance graphs.

• Assist in providing interoperability between different ORB implementations.

As the interface to the object definitions maintained in an Interface Repository is
public, the information maintained in the Repository can also be used by clients a
services. For example, the Repository can be used to:

• Manage the installation and distribution of interface definitions.

• Provide components of a CASE environment (for example, an interface browser).

• Provide interface information to language bindings (such as a compiler).

• Provide components of end-user environments (for example, a menu bar
constructor).

The complete OMG IDL specification for the Interface Repository is in Section 8.8
“OMG IDL for Interface Repository,” on page 8-44; however, fragments of the
specification are used throughout this chapter as necessary.

8.2 Scope of an Interface Repository

Interface definitions are maintained in the Interface Repository as a set of objects
are accessible through a set of OMG IDL-specified interface definitions. An interface
definition contains a description of the operations it supports, including the types o
parameters, exceptions it may raise, and context information it may use.

In addition, the interface repository stores constant values, which might be used in
other interface definitions or might simply be defined for programmer convenience
it stores typecodes, which are values that describe a type in structural terms.
8-2 CORBA V2.2 February 1998

8

ions,

re
tion’s

an
 a

e

The Interface Repository uses modules as a way to group interfaces and to navigate
through those groups by name. Modules can contain constants, typedefs, except
interface definitions, and other modules. Modules may, for example, correspond to the
organization of OMG IDL definitions. They may also be used to represent
organizations defined for administration or other purposes.

The Interface Repository is a set of objects that represent the information in it. The
are operations that operate on this apparent object structure. It is an implementa
choice whether these objects exist persistently or are created when referenced in an
operation on the repository. There are also operations that extract information in
efficient form, obtaining a block of information that describes a whole interface or
whole operation.

An ORB may have access to multiple Interface Repositories. This may occur becaus

• two ORBs have different requirements for the implementation of the Interface
Repository,

• an object implementation (such as an OODB) prefers to provide its own type
information, or

• it is desired to have different additional information stored in different repositories.

The use of typecodes and repository identifiers is intended to allow different
repositories to keep their information consistent.

As shown in Figure 8-1 on page 8-4, the same interface Doc is installed in two
different repositories, one at SoftCo, Inc., which sells Doc objects, and one at
Customer, Inc., which buys Doc objects from SoftCo. SoftCo sets the repository id for
the Doc interface when it defines it. Customer might first install the interface in its
repository in a module where it could be tested before exposing it for general use.
Because it has the same repository id, even though the Doc interface is stored in a
different repository and is nested in a different module, it is known to be the same.
CORBA V2.2 Scope of an Interface Repository February 1998 8-3

8

ees

y
g

face

t

Meanwhile at SoftCo, someone working on a new Doc interface has given it a new
repository id 456, which allows the ORBs to distinguish it from the current product
Doc interface.

Figure 8-1 Using Repository IDs to establish correspondence between repositories

Not all interfaces will be visible in all repositories. For example, Customer employ
cannot see the new release of the Doc interface. However, widely used interfaces will
generally be visible in most repositories.

This Interface Repository specification defines operations for retrieving information
from the repository as well as creating definitions within it. There may be additional
ways to insert information into the repository (for example, compiling OMG IDL
definitions, copying objects from one repository to another, etc.).

A critical use of the interface repository information is for connecting ORBs together.
When an object is passed in a request from one ORB to another, it may be necessary to
create a new object to represent the passed object in the receiving ORB. This ma
require locating the interface information in an interface repository in the receivin
ORB. By getting the repository id from a repository in the sending ORB, it is possible
to look up the interface in a repository in the receiving ORB. To succeed, the inter
for that object must be installed in both repositories with the same repository id.

8.3 Implementation Dependencies

An implementation of an Interface Repository requires some form of persistent objec
store. Normally the kind of persistent object store used determines how interface
definitions are distributed and/or replicated throughout a network domain. For
example, if an Interface Repository is implemented using a filing system to provide
object storage, there may be only a single copy of a set of interfaces maintained on a
single machine. Alternatively, if an OODB is used to provide object storage, multiple
copies of interface definitions may be maintained each of which is distributed across
several machines to provide both high-availability and load-balancing.

SoftCo, Inc., Repository

module softco {
interface Doc id 123 {

void print();
};

};

module ne wrele ase {
interface Doc id 456 {

void print();
};

};

Customer, Inc., Repository

module testfirst {

module softco {
interface Doc id 123 {

void print();
};

};

};
8-4 CORBA V2.2 February 1998

8

d

ts of

,
re
do

ate

gh
pear

red

s.

l
y

The kind of object store used may determine the scope of interface definitions provide
by an implementation of the Interface Repository. For example, it may determine
whether each user has a local copy of a set of interfaces or if there is one copy per
community of users. The object store may also determine whether or not all clien
an interface set see exactly the same set at any given point in time or whether latency
in distributing copies of the set gives different users different views of the set at any
point in time.

An implementation of the Interface Repository is also dependent on the security
mechanism in use. The security mechanism (usually operating in conjunction with the
object store) determines the nature and granularity of access controls available to
constrain access to objects in the repository.

8.3.1 Managing Interface Repositories

Interface Repositories contain the information necessary to allow programs to
determine and manipulate the type information at run-time. Programs may attempt to
access the interface repository at any time by using the get_interface operation on
the object reference. Once information has been installed in the repository, programs
stubs, and objects may depend on it. Updates to the repository must be done with ca
to avoid disrupting the environment. A variety of techniques are available to help
so.

A coherent repository is one whose contents can be expressed as a valid collection of
OMG IDL definitions. For example, all inherited interfaces exist, there are no duplic
operation names or other name collisions, all parameters have known types, and so
forth. As information is added to the repository, it is possible that it may pass throu
incoherent states. Media failures or communication errors might also cause it to ap
incoherent. In general, such problems cannot be completely eliminated.

Replication is one technique to increase the availability and performance of a sha
database. It is likely that the same interface information will be stored in multiple
repositories in a computing environment. Using repository IDs, the repositories can
establish the identity of the interfaces and other information across the repositorie

Multiple repositories might also be used to insulate production environments from
development activity. Developers might be permitted to make arbitrary updates to their
repositories, but administrators may control updates to widely used repositories. Some
repository implementations might permit sharing of information, for example, severa
developers’ repositories may refer to parts of a shared repository. Other repositor
implementations might instead copy the common information. In any case, the result
should be a repository facility that creates the impression of a single, coherent
repository.

The interface repository itself cannot make all repositories have coherent information,
and it may be possible to enter information that does not make sense. The repository
will report errors that it detects (e.g., defining two attributes with the same name) but
might not report all errors, for example, adding an attribute to a base interface may or
may not detect a name conflict with a derived interface. Despite these limitations, the
CORBA V2.2 Implementation Dependencies February 1998 8-5

8

y

 may

he

or

the

rn
y

,

data
expectation is that a combination of conventions, administrative controls, and tools that
add information to the repository will work to create a coherent view of the repositor
information.

Transactions and concurrency control mechanisms defined by the Object Services
be used by some repositories when updating the repository. Those services are
designed so that they can be used without changing the operations that update t
repository. For example, a repository that supports the Transaction Service would
inherit the Repository interface, which contains the update operations, as well as the
Transaction interface, which contains the transaction management operations. (F
more information about Object Services, including the Transaction and Concurrency
Control Services, refer to CORBAservices: Common Object Service Specifications.)

Often, rather than change the information, new versions will be created, allowing
old version to continue to be valid. The new versions will have distinct repository IDs
and be completely different types as far as the repository and the ORBs are conceed.
The IR provides storage for version identifiers for named types, but does not specif
any additional versioning mechanism or semantics.

8.4 Basics

This section introduces some basic ideas that are important to understanding the
Interface Repository. Topics addressed in this section are:

• Names and IDs

• Types and TypeCodes

• Interface Objects

8.4.1 Names and Identifiers

Simple names are not necessarily unique within an Interface Repository; they are
always relative to an explicit or implicit module. In this context, interface definitions
are considered explicit modules.

Scoped names uniquely identify modules, interfaces, constant, typedefs, exceptions
attributes, and operations in an Interface Repository.

Repository identifiers globally identify modules, interfaces, constants, typedefs,
exceptions, attributes, and operations. They can be used to synchronize definitions
across multiple ORBs and Repositories.

8.4.2 Types and TypeCodes

The Interface Repository stores information about types that are not interfaces in a
value called a TypeCode. From the TypeCode alone it is possible to determine the
complete structure of a type. See “TypeCodes” on page 8-35 for more information on
the internal structure of TypeCodes.
8-6 CORBA V2.2 February 1998

8

,

.

ide
8.4.3 Interface Objects

Each interface managed in an Interface Repository is maintained as a collection of
interface objects:

• Repository: the top-level module for the repository name space; it contains
constants, typedefs, exceptions, interface definitions, and modules.

• ModuleDef: a logical grouping of interfaces; it contains constants, typedefs,
exceptions, interface definitions, and other modules.

• InterfaceDef: an interface definition; it contains lists of constants, types, exceptions
operations, and attributes.

• AttributeDef: the definition of an attribute of the interface.

• OperationDef: the definition of an operation on the interface; it contains lists of
parameters and exceptions raised by this operation.

• TypedefDef: base interface for definitions of named types that are not interfaces.

• ConstantDef: the definition of a named constant.

• ExceptionDef: the definition of an exception that can be raised by an operation

The interface specifications for each interface object lists the attributes maintained by
that object (see “Interface Repository Interfaces” on page 8-9). Many of these
attributes correspond directly to OMG IDL statements. An implementation can choose
to maintain additional attributes to facilitate managing the Repository or to record
additional (proprietary) information about an interface. Implementations that extend
the IR interfaces should do so by deriving new interfaces, not by modifying the
standard interfaces.

The CORBA specification defines a minimal set of operations for interface objects.
Additional operations that an implementation of the Interface Repository may prov
could include operations that provide for the versioning of interfaces and for the
reverse compilation of specifications (i.e., the generation of a file containing an
object’s OMG IDL specification).

8.4.4 Structure and Navigation of Interface Objects

The definitions in the Interface Repository are structured as a set of objects. The
objects are structured the same way definitions are structured—some objects
(definitions) “contain” other objects.

The containment relationships for the objects in the Interface Repository are shown in
Figure 8-2 on page 8-8.
CORBA V2.2 Basics February 1998 8-7

8

tion
e

sible

que.

t
tion

Figure 8-2 Interface Repository Object Containment

There are three ways to locate an interface in the Interface Repository, by:

1. Obtaining an InterfaceDef object directly from the ORB.

2. Navigating through the module name space using a sequence of names.

3. Locating the InterfaceDef object that corresponds to a particular repository
identifier.

Obtaining an InterfaceDef object directly is useful when an object is encountered
whose type was not known at compile time. By using the get_interface() operation
on the object reference, it is possible to retrieve the Interface Repository informa
about the object. That information could then be used to perform operations on th
object.

Navigating the module name space is useful when information about a particular
named interface is desired. Starting at the root module of the repository, it is pos
to obtain entries by name.

Locating the InterfaceDef object by ID is useful when looking for an entry in one
repository that corresponds to another. A repository identifier must be globally uni
By using the same identifier in two repositories, it is possible to obtain the interface
identifier for an interface in one repository, and then obtain information about tha
interface from another repository that may be closer or contain additional informa
about the interface.

Repository

ConstantDef
TypedefDef
ExceptionDef
InterfaceDef

ConstantDef
TypedefDef
ExceptionDef
ModuleDef
InterfaceDef

ModuleDef

ConstantDef
TypedefDef
ExceptionDef
AttributeDef
OperationDef

Each interface repository is represented
by a global root repository object.

The repository object represents the constants,
typedefs, exceptions, interfaces and modules
that are defined outside the scope of a module.

The module object represents the constants,
typedefs, exceptions, interfaces, and other modules
defined within the scope of the module.

An interface object represents constants,
typedefs, exceptions, attributes, and operations
defined within or inherited by the interface.

Operation objects reference
exception objects.
8-8 CORBA V2.2 February 1998

8

that

defs,
8.5 Interface Repository Interfaces

Several abstract interfaces are used as base interfaces for other objects in the IR.

A common set of operations is used to locate objects within the Interface Repository.
These operations are defined in the abstract interfaces IRObject , Container , and
Contained described below. All IR objects inherit from the IRObject interface,
which provides an operation for identifying the actual type of the object. Objects
are containers inherit navigation operations from the Container interface. Objects that
are contained by other objects inherit navigation operations from the Contained
interface.

The IDLType interface is inherited by all IR objects that represent IDL types,
including interfaces, typedefs, and anonymous types. The TypedefDef interface is
inherited by all named non-interface types.

The IRObject , Contained , Container , IDLType , and TypedefDef interfaces are not
instantiable.

All string data in the Interface Repository are encoded as defined by the ISO 8859-1
coded character set.

8.5.1 Supporting Type Definitions

Several types are used throughout the IR interface definitions.

module CORBA {
typedef string Identifier;
typedef string Scop edName;
typedef string RepositoryId;

enum Defi nition Kind {
dk_no ne, dk_all,
dk_Attri bute, d k_Constant, dk_Exception, dk_Interface,
dk_Module, dk_Operation, dk_T ypedef,
dk_Alias, dk_Struct, dk_Union, dk_Enum,
dk_Primitive, dk_St ring, dk _Sequ ence, dk_Array,
dk_R epository,
dk_Wstring, dk_Fixed

};
};

Identifier s are the simple names that identify modules, interfaces, constants, type
exceptions, attributes, and operations. They correspond exactly to OMG IDL
identifiers. An Identifier is not necessarily unique within an entire Interface
Repository; it is unique only within a particular Repository, ModuleDef ,
InterfaceDef , or Operat ionDef .

A ScopedName is a name made up of one or more Identifier s separated by the
characters “::”. They correspond to OMG IDL scoped names.
CORBA V2.2 Interface Repository Interfaces February 1998 8-9

8

s

An absolute ScopedName is one that begins with “::” and unambiguously identifie
a definition in a Repository . An absolute ScopedName in a Repository
corresponds to a global name in an OMG IDL file. A relative ScopedName does not
begin with “::” and must be resolved relative to some context.

A Reposi toryId is an identifier used to uniquely and globally identify a module,
interface, constant, typedef, exception, attribute or operation. As RepositoryId s are
defined as strings, they can be manipulated (e.g., copied and compared) using a
language binding’s string manipulation routines.

A Definitio nKind identifies the type of an IR object.

8.5.2 IRObject

The IRObject interface represents the most generic interface from which all other
Interface Repository interfaces are derived, even the Repository itself.

module CORBA {
interface IRObject {

// read interface
readonly attribute DefinitionKind def_kind;

// write interface
void destroy ();

};
};

Read Interface

The def_kind attribute identifies the type of the definition.

Write Interface

The destroy operation causes the object to cease to exist. If the object is a
Container , destroy is applied to all its contents. If the object contains an IDLType
attribute for an anonymous type, that IDLType is destroyed. If the object is currently
contained in some other object, it is removed. Invoking destroy on a Repository or
on a PrimitiveDef is an error. Implementations may vary in their handling of
references to an object that is being destroyed, but the Repository should not be left in
an incoherent state.
8-10 CORBA V2.2 February 1998

8

8.5.3 Contained

The Contained interface is inherited by all Interface Repository interfaces that are
contained by other IR objects. All objects within the Interface Repository, except the
root object (Repository) and definitions of anonymous (ArrayDef , StringDef , and
SequenceDef), and primitive types are contained by other objects.

module CORBA {
typedef string VersionSpec;

interface Contained : IRObject {
// read/write interface

attribute RepositoryId id;
attribute Identifier name;
attribute Versio nSpec version;

// read interface

readonly attribute Container defined_in;
readonly attribute Sco pedName absolute_name;
readonly attribute Repository containing_repository;

struct Description {
Definitio nKind kind;
any value;

};

Descr iption describe ();

// write interface
void move (

in Container new_container,
in Identifier new_name,
in VersionSpec new_version
);

};
};

Read Interface

An object that is contained by another object has an id attribute that identifies it
globally, and a name attribute that identifies it uniquely within the enclosing
Container object. It also has a version attribute that distinguishes it from other
versioned objects with the same name . IRs are not required to support simultaneous
containment of multiple versions of the same named object. Supporting multiple
versions most likely requires mechanism and policy not specified in this document.
CORBA V2.2 Interface Repository Interfaces February 1998 8-11

8

e
Contained objects also have a defined_in attribute that identifies the Container
within which they are defined. Objects can be contained either because they are
defined within the containing object (for example, an interface is defined within a
module) or because they are inherited by the containing object (for example, an
operation may be contained by an interface because the interface inherits the operation
from another interface). If an object is contained through inheritance, the defined_in
attribute identifies the Interfa ceDef from which the object is inherited.

The absolute_name attribute is an absolute ScopedName that identifies a
Contained object uniquely within its enclosing Reposi tory . If this object’s
defined_in attribute references a Repository , the absolute_name is formed by
concatenating the string “::” and this object’s name attribute. Otherwise, the
absolute_name is formed by concatenating the absolute_name attribute of the
object referenced by this object’s defined_in attribute, the string “::”, and this object’s
name attribute.

The containing_repository attribute identifies the Repository that is eventually
reached by recursively following the object’s defined_in attribute.

The describe operation returns a structure containing information about the interface.
The description structure associated with each interface is provided below with the
interface’s definition. The kind of definition described by the structure returned is
provided with the returned structure. For example, if the describe operation is
invoked on an attribute object, the kind field contains dk_Attri bute and the value
field contains an any, which contains the AttributeDe scription structure.

Write Interface

Setting the id attribute changes the global identity of this definition. An error is
returned if an object with the specified id attribute already exists within this object’s
Repository .

Setting the name attribute changes the identity of this definition within its Container .
An error is returned if an object with the specified name attribute already exists within
this object’s Container . The absolute_name attribute is also updated, along with
any other attributes that reflect the name of the object. If this object is a Container ,
the absolute_name attribute of any objects it contains are also updated.

The move operation atomically removes this object from its current Container , and
adds it to the Container specified by new_container , which must:

• Be in the same Repository,

• Be capable of containing this object’s type (see “Structure and Navigation of
Interface Objects” on page 8-7); and

• Not already contain an object with this object’s name (unless multiple versions ar
supported by the IR).

The name attribute is changed to new_name , and the version attribute is changed to
new_version .
8-12 CORBA V2.2 February 1998

8

The defined_in and absolute_name attributes are updated to reflect the new
container and name . If this object is also a Container , the absolute_name
attributes of any objects it contains are also updated.

8.5.4 Container

The Container interface is used to form a containment hierarchy in the Interface
Repository. A Container can contain any number of objects derived from the
Contained interface. All Container s, except for Repository , are also derived from
Contained .

module CORBA {
typedef sequence <Contained> ContainedSeq;

interface Container : IRObject {
// read interface

Contained lookup (in Sc opedN ame search_name);

ContainedSeq contents (
in Definit ionKind limit_type,
in boolean exclude_inherited

);

ContainedSeq lookup_name (
in Identifier search_name,
in long levels_to_search,
in Definit ionKind limit_type,
in boolean exclude_inherited

);
struct Description {

Contained contained_obj ect;
Definitio nKind kind;
any value;

};

typedef sequence<D escription> DescriptionSeq;

Descr iption Seq describe_contents (
in Definit ionKind limit_type,
in boolean exclude_inher ited,
in long max_returned_objs

);

// write interface
CORBA V2.2 Interface Repository Interfaces February 1998 8-13

8

ModuleDef create_module (
in RepositoryId id,
in Identifier name,
in VersionSpec version

);

ConstantDef create_constant (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType type,
in any value

);

StructDef create_struct (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in StructMemberSeq members
);

UnionDef create_union (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType discriminator_type,
in UnionMemberSeq members
);

EnumDef create_enum (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in EnumMemberSeq members
);

AliasDef create_alias (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType original_type
);

InterfaceDef create_interface (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in Inter faceDefSeq base_interfaces
);
8-14 CORBA V2.2 February 1998

8

 with

e
ExceptionDef create_exception(
in RepositoryId id,
in Identifier name,
in VersionSpec ver sion,
in StructMemberSeq members
);

};
};

Read Interface

The lookup operation locates a definition relative to this container given a scoped
name using OMG IDL’s name scoping rules. An absolute scoped name (beginning
“::”) locates the definition relative to the enclosing Repository . If no object is found,
a nil object reference is returned.

The contents operation returns the list of objects directly contained by or inherited
into the object. The operation is used to navigate through the hierarchy of objects.
Starting with the Repository object, a client uses this operation to list all of the objects
contained by the Repository, all of the objects contained by the modules within th
Repository, and then all of the interfaces within a specific module, and so on.

limit_type If limit_type is set to dk_all , objects of all interface
types are returned. For example, if this is an
InterfaceDef , the attribute, operation, and exception
objects are all returned. If limit_type is set to a
specific interface, only objects of that interface type
are returned. For example, only attribute objects are
returned if limit_type is set to dk_Attri bute .

exclude_inherited If set to TRUE, inherited objects (if there are any) are
not returned. If set to FALSE, all contained
objects—whether contained due to inheritance or
because they were defined within the object—are
returned.
The lookup_name operation is used to locate an
object by name within a particular object or within
the objects contained by that object.

search_name Specified which name is to be searched for.

levels_to_search Controls whether the lookup is constrained to the
object the operation is invoked on or whether it
should search through objects contained by the object
as well. Setting levels_to_search to -1 searches the
current object and all contained objects. Setting
levels_to_search to 1 searches only the current
object.
CORBA V2.2 Interface Repository Interfaces February 1998 8-15

8

Write Interface

The Container interface provides operations to create ModuleDef s, ConstantDef s,
StructDef s, UnionDef s, EnumDef s, AliasDef s, and Interfac eDefs as contained
objects. The defined_in attribute of a definition created with any of these operations
is initialized to identify the Container on which the operation is invoked, and the
containing_repository attribute is initialized to its Reposi tory .

The create_<type> operations all take id and name parameters which are used to
initialize the identity of the created definition. An error is returned if an object with the
specified id already exists within this object’s Repository , or, assuming multiple
versions are not supported, if an object with the specified name already exists within
this Container .

The create_module operation returns a new empty ModuleDef . Definitions can be
added using Container::create_<type> operations on the new module, or by using
the Contained::move operation.

The create_constant operation returns a new ConstantDef with the specified type
and value .

The create_struct operation returns a new StructDef with the specified members .
The type member of the StructMember structures is ignored, and should be set to
TC_void . See “StructDef” on page 8-20 for more information.

limit_type If limit_type is set to dk_all , objects of all interface
types are returned (e.g., attributes, operations, and
exceptions are all returned). If limit_type is set to a
specific interface, only objects of that interface type
are returned. For example, only attribute objects are
returned if limit_type is set to dk_Attri bute .

exclude_inherited If set to TRUE, inherited objects (if there are any) are
not returned. If set to FALSE, all contained objects
(whether contained due to inheritance or because they
were defined within the object) are returned.
The describe_contents operation combines the
contents operation and the describe operation. For
each object returned by the contents operation, the
description of the object is returned (i.e., the object’s
describe operation is invoked and the results
returned).

max_returned_objs Limits the number of objects that can be returned in
an invocation of the call to the number provided.
Setting the parameter to -1 means return all contained
objects.
8-16 CORBA V2.2 February 1998

8

ent

 The

nt
The create_union operation returns a new UnionDef with the specified
discriminator_type and members . The type member of the UnionMember
structures is ignored, and should be set to TC_void . See “UnionDef” on page 8-21 for
more information.

The create_enum operation returns a new EnumDef with the specified members .
See “EnumDef” on page 8-22 for more information.

The create_alias operation returns a new AliasDef with the specified
original_type .

The create_interface operation returns a new empty InterfaceDef with the specified
base_interfaces . Type, exception, and constant definitions can be added using
Container::create_<type> operations on the new InterfaceDef . Operat ionDefs
can be added using InterfaceDef:: create_operation and AttributeDefs can be
added using Interface::create_attribute . Definitions can also be added using the
Contained::move operation.

The create_exception operation returns a new ExceptionDef with the specified
members. The type member of the StructMember structures is ignored, and should
be set to TC_void .

8.5.5 IDLType

The IDLType interface is an abstract interface inherited by all IR objects that repres
OMG IDL types. It provides access to the TypeCode describing the type, and is used
in defining other interfaces wherever definitions of IDL types must be referenced.

module CORBA {
interface IDLType : IRObject {
readonly attribute T ypeCode type;
};

};

The type attribute describes the type defined by an object derived from IDLType .

8.5.6 Repository

Repository is an interface that provides global access to the Interface Repository.
Repository object can contain constants, typedefs, exceptions, interfaces, and
modules. As it inherits from Container , it can be used to look up any definition
(whether globally defined or defined within a module or interface) either by name or
by id .

There may be more than one Interface Repository in a particular ORB environme
(although some ORBs might require that definitions they use be registered with a
particular repository). Each ORB environment will provide a means for obtaining
object references to the Repositories available within the environment.
CORBA V2.2 Interface Repository Interfaces February 1998 8-17

8

 As

.
module CORBA {
interface Reposi tory : Container {

// read interface

Contained lookup_id (in RepositoryId search_id);

PrimitiveDef get_primitive (in PrimitiveKind kind);

// write interface

StringDef create_string (in unsig ned long b ound);

WstringDef create_wst ring(in unsigned long bound);

SequenceDef create_sequence (
in unsigned long bound,
in IDLType element_type

);

ArrayDef create_array (
in unsigned long length,
in IDLType element_type

);

FixedDef create_fixed(
in unsigned short digits,
in short scale

);
};

};

Read Interface

The lookup_id operation is used to lookup an object in a Repository given its
RepositoryId . If the Repository does not contain a definition for search_id , a nil
object reference is returned.

The get_primitive operation returns a reference to a PrimitiveDef with the specified
kind attribute. All PrimitiveDef s are immutable and owned by the Reposi tory .

Write Interface

The three create_<type> operations create new objects defining anonymous types.
these interfaces are not derived from Contained , it is the caller’s responsibility to
invoke destroy on the returned object if it is not successfully used in creating a
definition that is derived from Contained . Each anonymous type definition must be
used in defining exactly one other object.

The create_string operation returns a new Strin gDef with the specified bound ,
which must be non-zero. The get_primitive operation is used for unbounded strings
8-18 CORBA V2.2 February 1998

8

.

The create_wstring operation returns a new Wstrin gDef with the specified bound ,
which must be non-zero. The get_primitive operation is used for unbounded strings

The create _sequence operation returns a new SequenceDef with the specified
bound and element_type .

The create_array operation returns a new ArrayDef with the specified length and
element_type .

The create_fixed operation returns a new FixedDef with the specified number of
digits and scale. The number of digits must be from 1 to 31, inclusive.

8.5.7 ModuleDef

A ModuleDef can contain constants, typedefs, exceptions, interfaces, and other
module objects.

module CORBA {
interface ModuleDef : Container, Contained {
};

struct ModuleDescr iption {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
Versio nSpec version;

};
};

The inherited describe operation for a ModuleDef object returns a
ModuleDescription .

8.5.8 ConstantDef Interface

A ConstantDef object defines a named constant.

module CORBA {
interface ConstantDef : Contained {

readonly attribute T ypeCode type;
attribute IDLType type_def;
attribute any value;

};

struct ConstantDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
Versio nSpec version;
TypeC ode type;
any value;
CORBA V2.2 Interface Repository Interfaces February 1998 8-19

8

octet,

lue

};
};

Read Interface

The type attribute specifies the TypeCode describing the type of the constant. The
type of a constant must be one of the simple types (long, short, float, char, string,
etc.). The type_def attribute identifies the definition of the type of the constant.

The value attribute contains the value of the constant, not the computation of the va
(e.g., the fact that it was defined as “1+2”).

The describe operation for a ConstantDef object returns a ConstantDescription .

Write Interface

Setting the type_def attribute also updates the type attribute.

When setting the value attribute, the TypeCode of the supplied any must be equal to
TypedefDef Interface

TypedefDef is an abstract interface used as a base interface for all named non-object
types (structures, unions, enumerations, and aliases). The TypedefDef interface is not
inherited by the definition objects for primitive or anonymous types.

module CORBA {
interface TypedefDef : Co ntained, IDLType {
};

struct TypeD escription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
Versio nSpec version;
TypeC ode type;

};
};

The inherited describe operation for interfaces derived from TypedefDef returns a
TypeD escription .

8.5.9 StructDef

A StructDef represents an OMG IDL structure definition. It can contain structs,
unions, and enums.

module CORBA {
struct StructMember {

Identifier name;
TypeCode type;
8-20 CORBA V2.2 February 1998

8

s,
IDLType type_def;
};
typedef sequence <StructMember> StructMemberSeq;

interface StructDef : TypedefDef, Container{
attribute StructMemberSeq members;

};
};

Read Interface

The members attribute contains a description of each structure member. It can
contain structs, unions, and enums.

The inherited type attribute is a tk_struct TypeCode describing the structure.

Write Interface

Setting the members attribute also updates the type attribute. When setting the
members attribute, the type member of the StructMember structure is ignored and
should be set to TC_void .

8.5.10 UnionDef

A UnionDef represents an OMG IDL union definition. It can contain structs, union
and enums.

module CORBA {
struct UnionMember {

Identifier name;
any label;
TypeCode type;
IDLType type_def;

};
typedef sequence <UnionMember> UnionMemberSeq;

interface UnionDef : TypedefDef, Container {
readonly attribute T ypeCode discriminator_type;

attribute IDLType discriminator_type_def;
attribute UnionMemberSeq members;

};
};

Read Interface

The discriminator_type and discrimi nator_type_def attributes describe and
identify the union’s discriminator type.
CORBA V2.2 Interface Repository Interfaces February 1998 8-21

8

The members attribute contains a description of each union member. The label of
each UnionMemberDescription is a distinct value of the discrimi nator_type .
Adjacent members can have the same name . Members with the same name must also
have the same type . A label with type octet and value 0 indicates the default union
member.

The inherited type attribute is a tk_union TypeCode describing the union.

Write Interface

Setting the discriminator_type_def attribute also updates the discriminator_type
attribute and setting the discrimi nator_type_def or members attribute also updates
the type attribute.

When setting the members attribute, the type member of the UnionMember
structure is ignored and should be set to TC_void .

8.5.11 EnumDef

An EnumDef represents an OMG IDL enumeration definition.

module CORBA {
typedef sequence <Id entifier> E numMemberSeq;

interface EnumDef : T ypedefDef {
attribute EnumMemberSeq members;

};
};

Read Interface

The members attribute contains a distinct name for each possible value of the
enumeration.

The inherited type attribute is a tk_enum TypeCode describing the enumeration.

Write Interface

Setting the members attribute also updates the type attribute.

8.5.12 AliasDef

An AliasDef represents an OMG IDL typedef that aliases another definition.

module CORBA {
interface AliasDef : TypedefDef {

attribute IDLType original_type_def;
};

};
8-22 CORBA V2.2 February 1998

8

Read Interface

The original_type_def attribute identifies the type being aliased.

The inherited type attribute is a tk_alias TypeCode describing the alias.

Write Interface

Setting the original_typ e_def attribute also updates the type attribute.

8.5.13 PrimitiveDef

A PrimitiveDef represents one of the OMG IDL primitive types. As primitive types
are unnamed, this interface is not derived from TypedefDef or Contained .

module CORBA {
enum PrimitiveKind {

pk_null, pk_void, pk_short, pk_long, p k_ushort, pk_ulong,
pk_float, pk_double, pk_boolean, pk_char, pk_octet,
pk_any, pk_Typ eCode, pk_Pr incipal, pk_string, pk_obj ref,
pk_longlong, pk_ulonglong, pk_longdouble, pk_wchar, pk_w string

};

interface PrimitiveDef: IDLType {
readonly attri bute PrimitiveKind kind;
};

};

The kind attribute indicates which primitive type the PrimitiveDef represents. There
are no PrimitiveDef s with kind pk_null . A PrimitiveDef with kind pk_string
represents an unbounded string. A PrimitiveDef with kind pk_objref represents the
IDL type Object .

The inherited type attribute describes the primitive type.

All PrimitiveDef s are owned by the Repository. References to them are obtained
using Repository::get_primitive .

8.5.14 StringDef

A StringDef represents an IDL bounded string type. The unbounded string type is
represented as a PrimitiveDef . As string types are anonymous, this interface is not
derived from TypedefDef or Contained .

module CORBA {
interface Str ingDef : IDLType {

attribute unsigned long bound;
};

};
CORBA V2.2 Interface Repository Interfaces February 1998 8-23

8

ous,
The bound attribute specifies the maximum number of characters in the string and
must not be zero.

The inherited type attribute is a tk_string TypeCode describing the string.

8.5.15 WstringDef

A WstringDef represents an IDL wide string. The unbounded wide string type is
represented as a PrimitiveDef . As wide string types are anonymous, this interface is
not derived from TypedefDef or Contained.

module CORBA {
interface WstringDef : IDLType {

attribute unsigned long bound;
};

};

The bound attribute specifies the maximum number of wide characters in a wide
string, and must not be zero.

The inherited type attribute is a tk_wstring Typ eCode describing the wide string.

8.5.16 FixedDef

A FixedDef represents an IDL fixed point type.

module CORBA {
interface FixedDef : IDLType {

 attribute unsigned sh ort digits;
 attribute short scale;

};
};

The digits attribute specifies the total number of decimal digits in the number, and
must be from 1 to 31, inclusive. The scale attribute specifies the position of the
decimal point.

The inherited type attribute is a tk_fixed T ypeCode , which describes a fixed-point
decimal number.

8.5.17 SequenceDef

A SequenceDef represents an IDL sequence type. As sequence types are anonym
this interface is not derived from TypedefDef or Contained .

module CORBA {
interface Seque nceDef : IDLType {

attribute unsigned long bound;
readonly attribute T ypeCode element _type;

attribute IDLType element_type_def;
8-24 CORBA V2.2 February 1998

8

};
};

Read Interface

The bound attribute specifies the maximum number of elements in the sequence. A
bound of zero indicates an unbounded sequence.

The type of the elements is described by element_type and identified by
element_type_def .

The inherited type attribute is a tk_sequence TypeCode describing the sequence.

Write Interface

Setting the element_type_def attribute also updates the element_type attribute.

Setting the bound or element_type_def attribute also updates the type attribute.

8.5.18 ArrayDef

An ArrayDef represents an IDL array type. As array types are anonymous, this
interface is not derived from TypedefDef or Contained .

module CORBA {
interface ArrayDef : IDLType {

attribute unsigned long length;
readonly attribute T ypeCode element _type;

attribute IDLType element_type_def;
};

};

Read Interface

The length attribute specifies the number of elements in the array.

The type of the elements is described by element_type and identified by
element_type_def . Since an ArrayDef only represents a single dimension of an
array, multi-dimensional IDL arrays are represented by multiple ArrayDef objects, one
per array dimension. The element_type_def attribute of the ArrayDef representing
the leftmost index of the array, as defined in IDL, will refer to the ArrayDef
representing the next index to the right, and so on. The innermost ArrayDef represents
the rightmost index and the element type of the multi-dimensional OMG IDL array.

The inherited type attribute is a tk_array TypeCode describing the array.

Write Interface

Setting the element_type_def attribute also updates the element_type attribute.
CORBA V2.2 Interface Repository Interfaces February 1998 8-25

8

Setting the bound or element_type_def attribute also updates the type attribute.

8.5.19 ExceptionDef

An ExceptionDef represents an exception definition. It can contain structs, unions,
and enums.

module CORBA {
interface ExceptionDef : Contained, Contai ner {

readonly attribute T ypeCode type;
attribute StructMemberSeq members;

};

struct ExceptionD escription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
Versio nSpec version;
TypeC ode type;

};
};

Read Interface

The type attribute is a tk_except TypeCode describing the exception.

The members attribute describes any exception members.

The describe operation for a ExceptionDef object returns an
ExceptionD escription .

Write Interface

Setting the members attribute also updates the type attribute. When setting the
members attribute, the type member of the StructMember structure is ignored and
should be set to TC_void .

8.5.20 AttributeDef

An AttributeDef represents the information that defines an attribute of an interface.

module CORBA {
enum AttributeMode {AT TR_NORMAL, ATTR_READONLY};

interface AttributeDef : Contained {
readonly attribute T ypeCode type;

attribute IDLType type_def;
attribute AttributeMode mode;

};
8-26 CORBA V2.2 February 1998

8

struct AttributeDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
Versio nSpec version;
TypeC ode type;
AttributeMode mode;

};
};

Read Interface

The type attribute provides the TypeCode describing the type of this attribute. The
type_def attribute identifies the object defining the type of this attribute.

The mode attribute specifies read only or read/write access for this attribute.

Write Interface

Setting the type_def attribute also updates the type attribute.

8.5.21 OperationDef

An OperationDef represents the information needed to define an operation of an
interface.

module CORBA {
enum OperationMode { OP_NORMAL, OP_ONEWAY};

enum ParameterMode {PARAM_IN, PARAM_OUT, PARAM_INOUT};
struct ParameterDescription {

Identifier name;
TypeC ode type;
IDLType type_def;
ParameterMode mode;

};
typedef sequence <ParameterDe scription> ParDescr iptio nSeq;

typedef Identif ier C ontextIdentif ier;
typedef sequence <Cont extIdentifier> ContextIdSeq;

typedef sequence <ExceptionDef> ExceptionDefSeq;
typedef sequence <ExceptionD escription> ExcDescriptionSeq;

interface OperationDef : Contained {
readonly attribute T ypeCode result;

attribute IDLType result_def;
attribute ParDescriptionSeq params;
attribute OperationMode mode;
CORBA V2.2 Interface Repository Interfaces February 1998 8-27

8

r

 the

attribute ContextIdSeq contexts;
attribute ExceptionDefSeq exceptions;

};

struct OperationD escription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
Versio nSpec version;
TypeC ode result;
OperationMode mode;
ContextIdSeq contexts;
ParDescriptionSeq parameters;
ExcD escriptionSeq exceptions;

};
};

Read Interface

The result attribute is a TypeCode describing the type of the value returned by the
operation. The result_def attribute identifies the definition of the returned type.

The params attribute describes the parameters of the operation. It is a sequence of
ParameterDescr iption structures. The order of the ParameterDescription s in the
sequence is significant. The name member of each structure provides the paramete
name. The type member is a TypeCode describing the type of the parameter. The
type_def member identifies the definition of the type of the parameter. The mode
member indicates whether the parameter is an in, out, or inout parameter.

The operation’s mode is either oneway (i.e., no output is returned) or normal.

The contexts attribute specifies the list of context identifiers that apply to the
operation.

The exceptions attribute specifies the list of exception types that can be raised by
operation.

The inherited describe operation for an Operatio nDef object returns an
OperationD escription .

The inherited describe_contents operation provides a complete description of this
operation, including a description of each parameter defined for this operation.

Write Interface

Setting the result_def attribute also updates the result attribute.

The mode attribute can only be set to OP_ONEWAY if the result is TC_void and all
elements of params have a mode of PARAM_IN .
8-28 CORBA V2.2 February 1998

8

8.5.22 InterfaceDef

An InterfaceDef object represents an interface definition. It can contain constants,
typedefs, exceptions, operations, and attributes.

module CORBA {
interface InterfaceDef;
typedef sequence <InterfaceDef> InterfaceDefSeq;
typedef sequence <Reposi toryId> R eposi toryIdSeq;
typedef sequence <OperationD escription> OpDescript ionSeq;
typedef sequence <AttributeDescription> AttrDescript ionSeq;

interface InterfaceDef : Container, Contained, IDLType {
// read/write interface

attribute InterfaceDefSeq base_interfaces;

// read interface

boolean is_a (in RepositoryId interface_id);

struct FullInterfaceDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
Versio nSpec version;
OpDescriptionSeq operations;
AttrDescriptionSeq attributes;
RepositoryIdSeq base_interfaces;
TypeCode type;

};

FullInterfaceDescription describe_interface();

// write interface

AttributeDef create_attribute (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType type,
in AttributeMode mode

);

OperationDef create_operation (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType result,
in Operati onMode mode,
in ParDescriptionSeq params,
CORBA V2.2 Interface Repository Interfaces February 1998 8-29

8

the
in Exception DefSeq exceptions,
in ContextIdSeq contexts

);
};

struct InterfaceDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
Versio nSpec version;
RepositoryIdSeq base_interfaces;

};
};

Read Interface

The base_interfaces attribute lists all the interfaces from which this interface
inherits. The is_a operation returns TRUE if the interface on which it is invoked either
is identical to or inherits, directly or indirectly, from the interface identified by its
interface_id parameter. Otherwise it returns FALSE.

The describe_interface operation returns a FullInter faceDescription describing
the interface, including its operations and attributes.

The inherited describe operation for an Interfac eDef returns an
InterfaceDescription .

The inherited contents operation returns the list of constants, typedefs, and
exceptions defined in this InterfaceDef and the list of attributes and operations either
defined or inherited in this InterfaceDef. If the exclude_inherited parameter is set to
TRUE, only attributes and operations defined within this interface are returned. If
exclude_inherited parameter is set to FALSE, all attributes and operations are
returned.

Write Interface

Setting the base_interfaces attribute returns an error if the name attribute of any
object contained by this InterfaceDef conflicts with the name attribute of any object
contained by any of the specified base Inter faceDef s.

The create_attribute operation returns a new AttributeDef contained in the
InterfaceDef on which it is invoked. The id , name , version, type_def , and mode
attributes are set as specified. The type attribute is also set. The defined_in attribute
is initialized to identify the containing InterfaceDef . An error is returned if an object
with the specified id already exists within this object’s Repository , or if an object
with the specified name already exists within this Interfa ceDef .

The create_operation operation returns a new Operat ionDef contained in the
InterfaceDef on which it is invoked. The id , name , version , result_def , mode ,
params , exceptions , and contexts attributes are set as specified. The result
attribute is also set. The defined_in attribute is initialized to identify the containing
8-30 CORBA V2.2 February 1998

8

re,
at

G

r

r

n

for
InterfaceDef . An error is returned if an object with the specified id already exists
within this object’s Repository , or if an object with the specified name already exists
within this InterfaceDef .

8.6 RepositoryIds

RepositoryIds are values that can be used to establish the identity of information in
the repository. A RepositoryId is represented as a string, allowing programs to sto
copy, and compare them without regard to the structure of the value. It does not mter
what format is used for any particular RepositoryId . However, conventions are used
to manage the name space created by these IDs.

RepositoryId s may be associated with OMG IDL definitions in a variety of ways.
Installation tools might generate them, they might be defined with pragmas in OM
IDL source, or they might be supplied with the package to be installed.

The format of the id is a short format name followed by a colon (“:”) followed by
characters according to the format. This specification defines three formats: one
derived from OMG IDL names, one that uses DCE UUIDs, and another intended fo
short-term use, such as in a development environment.

8.6.1 OMG IDL Format

The OMG IDL format for RepositoryIds primarily uses OMG IDL scoped names to
distinguish between definitions. It also includes an optional unique prefix, and majo
and minor version numbers.

The Reposi toryId consists of three components, separated by colons, (“:”)

The first component is the format name, “IDL.”

The second component is a list of identifiers, separated by “/” characters. These
identifiers are arbitrarily long sequences of alphabetic, digit, underscore (“_”), hyphen
(“-”), and period (“.”) characters. Typically, the first identifier is a unique prefix, and
the rest are the OMG IDL Identifiers that make up the scoped name of the definition.

The third component is made up of major and minor version numbers, in decimal
format, separated by a “.”. When two interfaces have Reposi toryId s differing only in
minor version number it can be assumed that the definition with the higher versio
number is upwardly compatible with (i.e., can be treated as derived from) the one with
the lower minor version number.

8.6.2 DCE UUID Format

DCE UUID format RepositoryId s start with the characters “DCE:” and are followed
by the printable form of the UUID, a colon, and a decimal minor version number,
example: “DCE:700dc518-0110-11ce-ac8f-0800090b5d3e:1”.
CORBA V2.2 RepositoryIds February 1998 8-31

8

s

s

on of

.
 so
8.6.3 LOCAL Format

Local format Reposi toryId s start with the characters “LOCAL:” and are followed by
an arbitrary string. Local format IDs are not intended for use outside a particular
repository, and thus do not need to conform to any particular convention. Local ID
that are just consecutive integers might be used within a development environment to
have a very cheap way to manufacture the IDs while avoiding conflicts with well-
known interfaces.

8.6.4 Pragma Directives for RepositoryId

Three pragma directives (id, prefix, and version), are specified to accommodate
arbitrary RepositoryId formats and still support the OMG IDL RepositoryId format
with minimal annotation. The pragma directives can be used with the OMG IDL, DCE
UUID, and LOCAL formats. An IDL compiler must either interpret these annotation
as specified, or ignore them completely.

The ID Pragma

An OMG IDL pragma of the format

#pragma ID <name> “<id>”

associates an arbitrary RepositoryId string with a specific OMG IDL name. The
<name> can be a fully or partially scoped name or a simple identifier, interpreted
according to the usual OMG IDL name lookup rules relative to the scope within which
the pragma is contained.

The Prefix Pragma

An OMG IDL pragma of the format:

#pragma prefix “<string>”

sets the current prefix used in generating OMG IDL format RepositoryId s. The
specified prefix applies to RepositoryId s generated after the pragma until the end of
the current scope is reached or another prefix pragma is encountered.

For example, the RepositoryId for the initial version of interface Printer defined on
module Office by an organization known as “SoftCo” might be
“IDL:SoftCo/Office/Printer:1.0”.

This format makes it convenient to generate and manage a set of IDs for a collecti
OMG IDL definitions. The person creating the definitions sets a prefix (“SoftCo”), and
the IDL compiler or other tool can synthesize all the needed IDs.

Because RepositoryId s may be used in many different computing environments and
ORBs, as well as over a long period of time, care must be taken in choosing them
Prefixes that are distinct, such as trademarked names, domain names, UUIDs, and
forth, are preferable to generic names such as “document.”
8-32 CORBA V2.2 February 1998

8

The Version Pragma

An OMG IDL pragma of the format:

#pragma version <name> <major>.<minor>

provides the version specification used in generating an OMG IDL format
RepositoryId for a specific OMG IDL name. The <name> can be a fully or partially
scoped name or a simple identifier, interpreted according to the usual OMG IDL name
lookup rules relative to the scope within which the pragma is contained. The <major>
and <minor> components are decimal unsigned shorts.

If no version pragma is supplied for a definition, version 1.0 is assumed.

Generation of OMG IDL - Format IDs

A definition is globally identified by an OMG IDL - format RepositoryId if no ID
pragma is encountered for it.

The ID string can be generated by starting with the string “IDL:”. Then, if any prefix
pragma applies, it is appended, followed by a “/” character. Next, the components of
the scoped name of the definition, relative to the scope in which any prefix that applies
was encountered, are appended, separated by “/” characters. Finally, a “:” and the
version specification are appended.

For example, the following OMG IDL:

module M1 {
typedef long T1;
typedef long T2;
#pragma ID T2 “DCE:d62207a2-011e-11ce-88b4-0800090b5d3e:3”

};

#pragma prefix “P1”

module M2 {
module M3 {

#pragma prefix “P2”
typedef long T3;

};
typedef long T4;

#pragma version T4 2.4
};
CORBA V2.2 RepositoryIds February 1998 8-33

8

3

.

specifies types with the following scoped names and RepositoryId s:

::M1::T1 IDL:M1/T1:1.0

::M1::T2 DCE:d62207a2-011e-11ce-88b4-0800090b5d3e:

::M2::M3::T3 IDL:P2/T3:1.0

::M2::T4 IDL:P1/M2/T4:2.4

For this scheme to provide reliable global identity, the prefixes used must be unique
Two non-colliding options are suggested: Internet domain names and DCE UUIDs.

Furthermore, in a distributed world, where different entities independently evolve
types, a convention must be followed to avoid the same RepositoryId being used for
two different types. Only the entity that created the prefix has authority to create new
IDs by simply incrementing the version number. Other entities must use a new prefix,
even if they are only making a minor change to an existing type.

Prefix pragmas can be used to preserve the existing IDs when a module or other
container is renamed or moved.

module M4 {
#pragma prefix “P1/M2”

module M3 {
#pragma prefix “P2”

typedef long T3;
};

typedef long T4;
#pragma version T4 2.4

};

This OMG IDL declares types with the same global identities as those declared in
module M2 above.

8.6.5 For More Information

Section 8.8, “OMG IDL for Interface Repository,” on page 8-44 shows the OMG IDL
specification of the IR, including the #pragma directive. “Preprocessing” on page 3-9
contains additional, general information on the pragma directive.

8.6.6 RepositoryIDs for OMG-Specified Types

Interoperability between implementations of official OMG specifications, including but
not limited to CORBA, CORBAservices, and CORBAfacilities, depends on
unambiguous specification of Reposito ryId s for all IDL-defined types in such
specifications. Unless pragma directives establishing RepositoryId s for all
definitions are present in an IDL definition officially published by the OMG, the
following directive is implicitly present at file scope preceding all such definitions:
8-34 CORBA V2.2 February 1998

8

s

rface

#pragma prefix “omg.org”

For example, if an existing official specification included the IDL fragment:

module CORBA { // non-normative example IDL
interface Nothing {

void do_nothing();
};

};

the RepositoryId of the interface would be

“IDL:omg.org/CORBA/Nothing: 1.0”.

Revisions to OMG specifications must also ensure that the definitions associated with
existing RepositoryId s are not changed. A pragma version or pragma id
directive should be included with any revised IDL definition to specify a distinct
identity for the revised type. If the revised definition is compatible with the previou
definition, such as when a new operation is added to an existing interface, only the
minor version should be incremented.

A revision of the previous example might look something like:

module CORBA { // revised non-nor mative example IDL
interface Nothing {

void do_nothing();
void do_something();

};
#pragma version Nothing 1.1

};

for which the RepositoryId of the interface would be

“IDL:omg.org/CORBA/Nothing: 1.1”.

If an implementation must extend an OMG-specified interface, interoperability
requires it to derive a new interface from the standard interface, rather than modify the
standard definition.

8.7 TypeCodes

TypeCode s are values that represent invocation argument types and attribute types.
They can be obtained from the Interface Repository or from IDL compilers.

TypeCode s have a number of uses. They are used in the dynamic invocation inte
to indicate the types of the actual arguments. They are used by an Interface Repository
to represent the type specifications that are part of many OMG IDL declarations.
Finally, they are crucial to the semantics of the any type.
CORBA V2.2 TypeCodes February 1998 8-35

8

TypeCode s are themselves values that can be passed as invocation arguments. To
allow different ORB implementations to hide extra information in TypeCode s, the
representation of TypeCode s will be opaque (like object references). However, we
will assume that the representation is such that TypeCode “lit erals” can be placed in
C include files.

Abstractly, TypeCode s consist of a “kind” field, and a set of parameters appropriate
for that kind. For example, the TypeCode describing OMG IDL type long has kind
tk_long and no parameters. The TypeCode describing OMG IDL type
sequence<boolean,10> has kind tk_sequence and two parameters: 10 and
boolean .

8.7.1 The TypeCode Interface

The PIDL interface for TypeCodes is as follows:

module CORBA {
enum TCKind {

tk_null, tk_void,
tk_short, tk_long, tk_ushort, tk_ulong,
tk_f loat, tk_double, tk_boolean, tk_char,
tk_octet, tk_any, tk_TypeCode, tk_Principal, tk_objref,
tk_struct, tk_union, tk_enum, tk_string,
tk_sequence, tk_array, tk_alias, tk_except,
tk_longlong, tk_ulonglong, tk_longdouble,
tk_wchar, tk_wstring, tk_fixed

};

interface TypeCode {
exception Bounds {};
exception BadKind {};

// for all TypeCode kinds
boolean equal (in TypeCode tc);
TCKind kind ();
// for t k_objref, tk_struct, tk_union, tk_enum, tk_alias, and
tk_except
RepositoryId id () raises (BadKind);

// for t k_objref, tk_struct, tk_union, tk_enum, tk_alias, and
tk_except
Identifier name () raises (BadKind);

// for tk_struct, tk_union, tk_enum, and tk_except
unsigned long member_count () raises (BadKind);
Identifier member_name (in unsigned long index) raises
(BadKind, Bounds);
8-36 CORBA V2.2 February 1998

8

// for tk_struct, tk_union, and tk_except
TypeCode member_type (in unsigned long index) raises
(BadKind, Bounds);

// for t k_union
any member_label (in unsigned long index) raises
(BadKind, Bounds);
TypeCode discriminator_type () raises (BadKind);
long default_index () raises (BadKind);

// for tk_string, tk_sequence, and tk_array
unsigned long length () raises (BadKind);

// for tk_sequence, tk_array, and tk_alias
TypeCode content_type () raises (BadKind);

// for t k_fixed
 unsigned short fixed_digits() raises(BadKind);
 short fixed_scale() raises(BadKind);

// deprecated interface
long param_count ();
any parameter (in long index) raises (Bounds);

};
};

With the above operations, any TypeCode can be decomposed into its constituent
parts. The BadKind exception is raised if an operation is not appropriate for the
TypeCode kind it invoked.

The equal operation can be invoked on any TypeCode . Equal TypeCode s are
interchangeable, and give identical results when TypeCode operations are applied to
them.

The kind operation can be invoked on any TypeCode . Its result determines what
other operations can be invoked on the TypeCode .

The id operation can be invoked on object reference, structure, union, enumeration,
alias, and exception TypeCode s. It returns the RepositoryId globally identifying the
type. Object reference and exception TypeCode s always have a RepositoryId .
Structure, union, enumeration, and alias TypeCode s obtained from the Interface
Repository or the ORB::create_operation_list operation also always have a
RepositoryId . Otherwise, the id operation can return an empty string.
CORBA V2.2 TypeCodes February 1998 8-37

8

he
no

uting

t

i-
The name operation can also be invoked on object reference, structure, union,
enumeration, alias, and exception TypeCode s. It returns the simple name identifying
the type within its enclosing scope. Since names are local to a Reposi tory , the name
returned from a TypeCode may not match the name of the type in any particular
Repository , and may even be an empty string.

The member_count and member_name operations can be invoked on structure,
union, and enumeration TypeCode s. Member_count returns the number of members
constituting the type. Member_name returns the simple name of the member
identified by index . Since names are local to a Repository , the name returned from a
TypeCode may not match the name of the member in any particular Repository , and
may even be an empty string.

The member_type operation can be invoked on structure and union TypeCode s. It
returns the TypeCode describing the type of the member identified by index .

The member_label , discriminator_type , and default_index operations can only
be invoked on union TypeCode s. Member_label returns the label of the union
member identified by index . For the default member, the label is the zero octet. The
discriminator_type operation returns the type of all non-default member labels. T
default_index operation returns the index of the default member, or -1 if there is
default member.

The member_name , member_type , and member_label operations raise Bounds
if the index parameter is greater than or equal to the number of members constit
the type.

The content_type operation can be invoked on sequence, array, and alias
TypeCode s. For sequences and arrays, it returns the element type. For aliases, i
returns the original type.

An array TypeCode only describes a single dimension of an OMG IDL array. Mult
dimensional arrays are represented by nesting TypeCode s, one per dimension. The
outermost tk_array Typecode describes the leftmost array index of the array as
defined in IDL. Its content_type describes the next index. The innermost nested
tk_array TypeCode describes the rightmost index and the array element type.

The length operation can be invoked on string, wide string, sequence, and array
TypeCode s. For strings and sequences, it returns the bound, with zero indicating an
unbounded string or sequence. For arrays, it returns the number of elements in the
array. For wide strings, it returns the bound, or zero for unbounded wide strings.
8-38 CORBA V2.2 February 1998

8

ion
The deprecated param_count and parameter operations provide access to those
parameters that were present in previous versions of CORBA. Some information
available via other TypeCode operations is not visible via the parameter operation.
The meaning of the indexed parameters for each TypeCode kind are listed in
Table 8-1, along with the information that is not visible via the parameter operation.

The tk_fixed TypeCode has 2 parameters: a non-zero integer specifying the precis
of the fixed-point number in decimal digits, and an integer giving the position of the
decimal point (scale).

Table 8-1 Legal TypeCode Kinds and Parameters

KIND PARAMETER LIST NOT VISIBLE

tk_null *NONE*

tk_void *NONE*

tk_short *NONE*

tk_long *NONE*

tk_longlong *NONE*

tk_ushort *NONE*

tk_ulong *NONE*

tk_ulonglong *NONE*

tk_float *NONE*

tk_double *NONE*

tk_longdouble *NONE*

tx_fixed {digits_integer, scale_integer}

tk_boolean *NONE*

tk_char *NONE*

tk_wchar *NONE*

tk_octet *NONE*

tk_any *NONE*

tk_TypeCode *NONE*

tk_Principal *NONE*

tk_objref { interface-id } interface name

tk_struct { struct-name, member-name, TypeCode, ... (repeat pairs) } RepositoryId

tk_union { union-name, discriminator-TypeCode, label-value, member-
name, TypeCode, ... (repeat triples) }

RepositoryId

tk_enum { enum-name, enumerator-name, ... } RepositoryId

tk_string { maxlen-integer }

tk_wstring {maxlen-integer}

tk_sequence { TypeCode, maxlen-integer }

tk_array { TypeCode, length-integer }

tk_alias { alias-name, TypeCode } Repositoryid

tk_except { except-name, member-name, TypeCode, ... (repeat pairs) } RepositoryId
CORBA V2.2 TypeCodes February 1998 8-39

8

he

s

.

g

n

The tk_objref TypeCode represents an interface type. Its parameter is the
RepositoryId of that interface.

A structure with N members results in a tk_struct TypeCode with 2N+1 parameters:
first, the simple name of the struct; the rest are member names alternating with t
corresponding member TypeCode . Member names are represented as strings.

A union with N members results in a tk_union TypeCode with 3N+2 parameters: the
simple name of the union, the discriminator TypeCode followed by a label value,
member name, and member TypeCode for each of the N members. The label value
are all values of the data type designated by the discriminator TypeCode , with one
exception. The default member (if present) is marked with a label value consisting of
the 0 octet . Recall that the operation “parameter(tc,i)” returns an any, and that anys
themselves carry a TypeCode that can distinguish an octet from any of the legal
switch types.

The tk_enum TypeCode has the simple name of the enum followed by the
enumerator names as parameters. Enumerator names are represented as strings

The tk_string TypeCode has one parameter: an integer giving the maximum strin
length. A maximum of 0 denotes an unbounded string.

The tk_wstring TypeCode has one parameter, an integer specifying the maximum
length. A length of zero indicates an unbounded wide string.

The tk_sequence TypeCode has 2 parameters: a TypeCode for the sequence
elements, and an integer giving the maximum sequence. Again, 0 denotes unbounded.

The tk_array TypeCode has 2 parameters: a TypeCode for the array elements, and
an integer giving the array length. Arrays are never unbounded.

The tk_alias TypeCode has 2 parameters: the name of the alias followed by the
TypeCode of the type being aliased.

The tk_except TypeCode has the same format as the tk_struct TypeCode , except
that exceptions with no members are allowed.

8.7.2 TypeCode Constants

If “ typedef ... FOO; ” is an IDL type declaration, the IDL compiler will (if asked)
produce a declaration of a TypeCode constant named TC_FOO for the C language
mapping. In the case of an unnamed, bounded string type used directly in an operation
or attribute declaration, a TypeCode constant named TC_string_n, where n is the
bound of the string is produced. (For example, “string<4> op1();” produces the
constant “TC_string_4”.) These constants can be used with the dynamic invocatio
interface, and any other routines that require TypeCode s.

The IDL compiler will generate fixed-point decimal TypeCode s on request, much as
it does for bounded strings. Where an unnamed fixed type of the form fixed<d,s> is
used directly in an operation or attribute declaration, a TypeCode constant named
“TC_fixed_d_s ” is generated. For example, a fixed type with 10 decimal digits and
8-40 CORBA V2.2 February 1998

8

,

 in
a scale factor of 4, fixed<10,4> , produces the constant “TC_fixed_10_4 .” The sign
of a negative scale factor is represented by the letter “n;” thus the IDL type fixed<4,-
6> would produce “TC_fixed_4_n6 .”

The predefined TypeCode constants, named according to the C language mapping
are:

TC_null
TC_void
TC_short
TC_long
TC_longlong
TC_ushort
TC_ulong
TC_ulonglong
TC_float
TC_double
TC_longdouble
TC_boolean
TC_char
TC_wchar
TC_octet
TC_any
TC_TypeCode
TC_Principal
TC_Object = tk_objref { Object }
TC_string= tk_string { 0 } // unbounded
TC_wstring = tk_wstring{0} mmmmm/// unbounded
TC_CORBA_NamedValue= tk_struct { ... }
TC_CORBA_InterfaceDescription= tk_struct { ... }
TC_CORBA_OperationDescription= tk_struct { ... }
TC_CORBA_AttributeDescription= tk_struct { ... }
TC_CORBA_ParameterDescription= tk_struct { ... }
TC_CORBA_ModuleDescription= tk_struct { ... }
TC_CORBA_ConstantDescription= tk_struct { ... }
TC_CORBA_ExceptionDescription= tk_struct { ... }
TC_CORBA_TypeDescription= tk_struct { ... }
TC_CORBA_InterfaceDef_FullInterfaceDescription= tk_struct { ... }

The exact form for TypeCode constants is language mapping, and possibly
implementation, specific.

8.7.3 Creating TypeCodes

When creating type definition objects in an Interface Repository, types are specified
terms of object references, and the TypeCode s describing them are generated
automatically.
CORBA V2.2 TypeCodes February 1998 8-41

8

In some situations, such as bridges between ORBs, TypeCode s need to be constructed
outside of any Interface Repository. This can be done using operations on the ORB
pseudo-object.

module CORBA {
interface ORB {

// other operations ...

TypeCode create_struct_tc (
in RepositoryId id,
in Identifier name,
in StructMemberSeq members

);

TypeCode create_union_tc (
in RepositoryId id,
in Identifier name,
in TypeCode discriminator_type,
in UnionMemberSeq members

);

TypeCode create_enum_tc (
in RepositoryId id,
in Identifier name,
in EnumMemberSeq members

);

TypeC ode create_alias_tc (
in RepositoryId id,
in Identifier name,
in TypeCode origi nal_type

);

TypeCode create_exception_tc (
in RepositoryId id,
in Identifier name,
in StructMemberSeq members

);

TypeCode create_interface_tc (
in RepositoryId id,
in Identifier name

);

TypeCode create_string_tc (
in unsigned long bound

);
8-42 CORBA V2.2 February 1998

8

TypeC ode create_w strin g_tc (
 in unsigned long bound

);

TypeC ode create_fixed_tc (
in unsigned short digits,
in short scale

);

TypeCode create_sequence_tc (
in unsigned long bound,
in TypeCode element _type

);

TypeCode create_recursive_sequence_tc (
in unsigned long bound,
in unsigned long offset

);

TypeCode create_array_tc (
in unsigned long length,
in TypeCode element _type

);
};

};

Most of these operations are similar to corresponding IR operations for creating type
definitions. TypeCode s are used here instead of IDLType object references to refer to
other types. In the StructMember and UnionMember structures, only the type is
used, and the type_def should be set to nil.

The create_recursive_se quence_tc operation is used to create TypeCode s
describing recursive sequences. The result of this operation is used in constructing
other types, with the offset parameter determining which enclosing TypeCode
describes the elements of this sequence. For instance, to construct a TypeCode for the
following OMG IDL structure, the offset used when creating its sequence TypeCode
would be one:

struct foo {
long value;
seque nce <foo> chain;

};

Operations to create primitive TypeCode s are not needed, since TypeCode constants
for these are available.
CORBA V2.2 TypeCodes February 1998 8-43

8

8.8 OMG IDL for Interface Repository

This section contains the complete OMG IDL specification for the Interface
Repository.

#pragma prefix “omg.org”

module CORBA {
 typedef string Identi fier;
 typedef string Sco pedN ame;
 typedef string RepositoryId;

enum Defi nition Kind {
dk_no ne, dk_all,
dk_Attri bute, d k_Constant, dk_Exception, dk_Interface,
dk_Module, dk_Operation, dk_T ypedef,
dk_Alias, dk_Struct, dk_Union, dk_Enum,
dk_Primitive, dk_St ring, dk _Sequ ence, dk_Array,
dk_R epository,
dk_Wstring, dk_Fixed

 };

interface IRObject {
// read interface
readonly attri bute Defi nition Kind def_kind;
// write interface
void destroy ();

 };

typedef string VersionSpec;

 interface Contained;
 interface Repository;
 interface Container;

 interface Contained : IRObject {
// read/write interface

attribute RepositoryId id;
attribute Identifier name;
attribute Versio nSpec version;

// read interface

readonly attri bute Container defined_in;
readonly attri bute S copedName absolute_name;
readonly attri bute R eposi tory containing_repository;

struct Description {
8-44 CORBA V2.2 February 1998

8

 DefinitionKind kind;
 any value;
};

Descr iption describe ();

// write interface

void move (
 in Container new_container,
 in Identifier new_name,
 in VersionSpec new_version
);

 };

 interface ModuleDef;
 interface ConstantDef;
 interface IDLT ype;
 interface StructDef;
 interface Unio nDef;
 interface E numDef;
 interface AliasDef;
 interface Inter faceDef;

 typedef sequence < InterfaceDef> Inter faceDefSeq;

 typedef sequence <Contained> ContainedSeq;
 struct StructMember {

Identifier name;
TypeC ode type;
IDLType type_def;

 };

 typedef sequence <StructMember> StructMemberSeq;

 struct UnionMember {
Identifier name;
any label;
TypeC ode type;
IDLType type_def;

 };

 typedef sequence <UnionMember> UnionMemberSeq;

 typedef sequence < Identifier> Enum MemberSeq;

 interface Container : IRObject {
// read interface

Contained lookup (in ScopedName search_name);

ContainedSeq contents (
CORBA V2.2 OMG IDL for Interface Repository February 1998 8-45

8

 in DefinitionKind lim it_type,
 in boolean exclude_inherited
);

ContainedSeq lookup_name (
 in Identifier sear ch_name,
 in long levels_to_sear ch,
 in DefinitionKind lim it_type,
 in boolean exclude_inherited
);

struct Description {
 Contained contained_object;
 Definit ionKind kind;
 any value;
};

typedef sequence<D escription> DescriptionSeq;

Descr iption Seq describe_contents (
 in DefinitionKind lim it_type,
 in boolean exclude_inherited,
 in long max_returned_objs
);

// write interface

ModuleDef create_module (
 in RepositoryId id,
 in Identifier name,
 in VersionSpec version
);

ConstantDef create_constant (
 in RepositoryId id,
 in Identifier name,
 in VersionSpec version,
 in IDLType type,
 in any value
);

StructDef create_struct (
 in RepositoryId id,
 in Identifier name,
 in VersionSpec version,
 in StructMemberSeq members
);

UnionDef create_union (
 in RepositoryId id,
8-46 CORBA V2.2 February 1998

8

 in Identifier name,
 in VersionSpec version,
 in IDLType discriminator_type,
 in UnionMemberSeq members
);

EnumDef create_enum (
 in RepositoryId id,
 in Identifier name,
 in VersionSpec version,
 in EnumMemberSeq members
);

AliasDef create_alias (
 in RepositoryId id,
 in Identifier name,
 in VersionSpec version,
 in IDLType original_type
);

InterfaceDef create_interface (
 in RepositoryId id,
 in Identifier name,
 in VersionSpec version,
 in Interfac eDefSeq base_interfaces
);

ExceptionDef create_exception(
in RepositoryId id,
in Identifier name,
in VersionSpec ver sion,
in StructMemberSeq members

);

 };

 interface IDLType : IRObject {
readonly attri bute Ty peCode type;

 };

 interface PrimitiveDef;
 interface Strin gDef;
 interface S equence Def;
 interface Ar rayDef;

 enum PrimitiveKind {
pk_null, pk_void, pk_short, pk_long, p k_ushort, pk_ulong,
pk_float, pk_double, pk_boolean, pk_char, pk_octet,
pk_any, pk_Typ eCode, pk_Pr incipal, pk_string, pk_obj ref,
CORBA V2.2 OMG IDL for Interface Repository February 1998 8-47

8

pk_longlong, pk_ulonglong, pk_longdouble, pk_wchar, pk_w string
 };

 interface Repository : Container {
// read interface

Contained lookup_id (in RepositoryId search_id);

PrimitiveDef get_primitive (in PrimitiveKind kind);

// write interface

StringDef create_string (in unsig ned long b ound);

WstringDef create_wst ring (in unsigned long bound);

SequenceDef create_sequence (
 in unsigned long bound,

 in IDLType element_type
);

ArrayDef create_array (
 in unsigned long length,
 in IDLType element_type
);

 };

FixedDef create_fixed (
 in unsigned short digits,
 in short scale
);

 };

 interface ModuleDef : Container, Contained {
 };

 struct ModuleDescript ion {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
Versio nSpec version;

 };

 interface ConstantDef : Contained {
readonly attri bute Ty peCode type;
attribute IDLType type_def;
attribute any value;

 };

 struct C onstantDe scription {
8-48 CORBA V2.2 February 1998

8

Identifier name;
RepositoryId id;
RepositoryId defined_in;
Versio nSpec version;
TypeC ode type;
any value;

 };

 interface TypedefDef : Contained, IDLType {
 };

 struct Ty peDescr iption {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
Versio nSpec version;
TypeC ode type;

 };

 interface StructDef : T ypedefDef, C ontainer {
attribute StructMemberSeq members;

 };

 interface UnionDef : T ypedefDef, C ontainer {
readonly attri bute Ty peCode di scriminator_type;
attribute IDLType discriminator_type_def;
attribute UnionMemberSeq members;

 };

 interface EnumDef : TypedefDef {
attribute EnumMemberSeq members;

 };

 interface AliasDef : TypedefDef {
attribute IDLType original_type_def;

 };

 interface PrimitiveDef: IDLType {
readonly attri bute PrimitiveKind kind;

 };

 interface StringDef : IDLType {
attribute unsigned long bound;
CORBA V2.2 OMG IDL for Interface Repository February 1998 8-49

8

 };

 interface WstringDef : IDLType {
attribute unsigned long bound;

 };

 interface FixedDef : IDLType {
attribute unsigned sh ort digits;
attribute short scale;

 };

 interface S equence Def : IDLType {
attribute unsigned long bound;
readonly attri bute Ty peCode el ement_type;
attribute IDLType element_type_def;

 };

 interface Ar rayDef : IDLType {
attribute unsigned long length;
readonly attri bute Ty peCode el ement_type;
attribute IDLType element_type_def;

 };

 interface ExceptionDef : Contained, Container {
readonly attri bute Ty peCode type;
attribute StructMemberSeq members;

 };
 struct Exceptio nDescr iption {

Identifier name;
RepositoryId id;
RepositoryId defined_in;
Versio nSpec version;
TypeC ode type;

 };
 enum AttributeMode {ATTR _NORMAL, AT TR_READONLY};

 interface Attri buteDef : Co ntained {
readonly attri bute Ty peCode type;
attribute IDLType type_def;
attribute AttributeMode mode;

 };

 struct Attri buteD escription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
Versio nSpec version;
8-50 CORBA V2.2 February 1998

8

TypeC ode type;
AttributeMode mode;

 };

 enum OperationMode {OP _NORMAL, OP_ONEWAY};

 enum ParameterMode {PARAM_IN, PARAM_OUT, PARAM_INOUT};
 struct ParameterDescription {

Identifier name;
TypeC ode type;
IDLType type_def;
ParameterMode mode;

 };
 typedef sequence <ParameterDescription> ParDescriptionSeq;

 typedef Identifier ContextIdentifier;
 typedef sequence <ContextIdentif ier> C ontextIdSeq;

 typedef sequence <ExceptionDef> Exceptio nDefSeq;
 typedef sequence <Exceptio nDescr iption> Ex cDescriptionSeq;

 interface OperationDef : Contained {
readonly attri bute Ty peCode result;
attribute IDLType result_def;
attribute ParDescriptionSeq params;
attribute OperationMode mode;
attribute ContextIdSeq contexts;
attribute ExceptionDefSeq exceptions;

 };

 struct Operatio nDescr iption {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
Versio nSpec version;
TypeC ode result;
OperationMode mode;
ContextIdSeq contexts;
ParDescriptionSeq paramet ers;
ExcD escriptionSeq exc eptions;

 };

 typedef sequence <RepositoryId> RepositoryIdSeq;
 typedef sequence < Operatio nDescr iption> OpDescr iption Seq;
 typedef sequence <AttributeD escription> AttrDescri ptionSeq;

 interface Inter faceDef : Container, Cont ained, IDLType {
// read/write interface
CORBA V2.2 OMG IDL for Interface Repository February 1998 8-51

8

attribute InterfaceDefSeq base_interfaces;

// read interface

boolean is_a (in RepositoryId interface_id);

struct FullInterfaceDescription {
 Identifier name;
 RepositoryId id;
 RepositoryId defined_in;
 VersionSpec version;
 OpDescriptionSeq operations;
 AttrDescr iptio nSeq attributes;
 RepositoryIdSeq base_interfaces;
 TypeCode type;

};

FullInterfaceDescription describe_interface();

// write interface

AttributeDef create_attribute (
 in Reposi toryId id,

 in Identifier name,
 in VersionSpec version,
 in IDLType type,
 in AttributeMode mode
);

OperationDef create_operation (
 in Reposi toryId id,
 in Identifier name,
 in VersionSpec version,
 in IDLType result,
 in OperationMode mode,
 in ParDescriptionSeq params,
 in ExceptionDefSeq ex ceptions,
 in ContextIdSeq contexts
);

 };

 struct InterfaceDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
Versio nSpec version;
RepositoryIdSeq base_interfaces;

 };

 enum TCKind {
8-52 CORBA V2.2 February 1998

8

tk_null, tk_void,
tk_short, tk_long, tk_ushort, tk_ulong,
tk_float, tk_double, tk_boolean, tk_char,
tk_octet, tk_any, tk_TypeC ode, tk_Principal, tk_objref,
tk_struct, tk_union, tk_enum, tk_st ring,
tk_sequen ce, tk_array, tk_alias, t k_except
tk_longlong, tk_ulonglong, tk_longdouble,
tk_wchar, tk_wstring, tk_fixed

 };

 interface Typ eCode { // PIDL
exception B ounds {};
exception BadKind {};

// for all T ypeC ode kinds
boolean equal (in T ypeC ode tc);
TCKind kind ();

// for tk_objref, tk_st ruct, tk_union, tk_enum, tk_al ias, and tk_except
RepositoryId id () raises (BadKind);

// for tk_objref, tk_st ruct, tk_union, tk_enum, tk_al ias, and tk_except
Identifier name () raises (BadKind);

// for tk_struct, tk _union, tk_enum, and tk_except
unsigned long member_count () raises (BadKind);
Identifier member_name (in unsig ned long index) raises (BadKind,
Bounds);

// for tk_struct, tk _union, and tk_except
TypeC ode member_type (in unsigned long index) raises (BadKind,
Bounds);

// for tk_union
any member_label (in unsig ned long index) raises (BadKind, Bounds);
TypeC ode discriminator_type () raises (BadKind);
long default_index () raises (BadKind);

// for tk_string, tk _sequen ce, and tk_array
unsigned long length () raises (BadKind);

// for tk_sequence, tk_array, and tk_alias
TypeC ode content_type () raises (BadKind);

// for tk_fixed
unsigned short fixed_digi ts() raises (BadKind);
short fixed_scal e() raises (BadKind);

// deprecated interface
long param_count ();
any param eter (in long index) raises (B ounds);
CORBA V2.2 OMG IDL for Interface Repository February 1998 8-53

8

 };

 interface ORB {
// other operations ...

TypeC ode create_struct_tc (
 in RepositoryId id,
 in Identifier name,
 in StructMemberSeq members
);

TypeC ode create_union_tc (
 in RepositoryId id,
 in Identifier name,
 in TypeCode di scriminator_type,
 in UnionMemberSeq members
);

TypeC ode create_enum_tc (
 in RepositoryId id,
 in Identifier name,
 in EnumMemberSeq members
);

TypeC ode create_alias_tc (
 in RepositoryId id,
 in Identifier name,
 in TypeCode or iginal_type
);

TypeC ode create_exception_tc (
 in RepositoryId id,
 in Identifier name,
 in StructMemberSeq members
);

TypeC ode create_interface_tc (
 in RepositoryId id,
 in Identifier name
);

TypeC ode create_string_tc (
 in unsigned long b ound
);

TypeC ode create_w strin g_tc (
 in unsigned long b ound
);

TypeC ode create_fixed_tc (
 in unsigned short digits,
8-54 CORBA V2.2 February 1998

8

 in short scale
);

TypeC ode create_sequence_tc (
 in unsigned long b ound,
 in TypeCode element type
);

TypeC ode create_recursive_sequence_tc (
 in unsigned long b ound,
 in unsigned long offset
);

TypeC ode create_array_tc (
 in unsigned long length,
 in TypeCode element_type
);

 };
};
CORBA V2.2 OMG IDL for Interface Repository February 1998 8-55

8

8-56 CORBA V2.2 February 1998

 The Portable Object Adaptor 9
goals,
ailed

This chapter describes the Portable Object Adapter, or POA. It presents the design
a description of the abstract model of the POA and its interfaces, followed by a det
description of the interfaces themselves.

Contents

This chapter contains the following sections.

9.1 Overview

 The POA is designed to meet the following goals:

• Allow programmers to construct object implementations that are portable between
different ORB products.

• Provide support for objects with persistent identities. More precisely, the POA is
designed to allow programmers to build object implementations that can provide
consistent service for objects whose lifetimes (from the perspective of a client
holding a reference for such an object) span multiple server lifetimes.

Section Title Page

“Overview” 9-1

“Abstract Model Description” 9-2

“Interfaces” 9-13

“IDL for PortableServer module” 9-38

“UML Description of PortableServer” 9-46

“Usage Scenarios” 9-47
 CORBA V2.2 February 1998 9-1

9

or.

, and

cts,
been
n.

ts

ts that

y be
• Provide support for transparent activation of objects.

• Allow a single servant to support multiple object identities simultaneously.

• Allow multiple distinct instances of the POA to exist in a server.

• Provide support for transient objects with minimal programming effort and
overhead.

• Provide support for implicit activation of servants with POA-allocated Object Ids.

• Allow object implementations to be maximally responsible for an object’s behavi
Specifically, an implementation can control an object’s behavior by establishing the
datum that defines an object’s identity, determining the relationship between the
object’s identity and the object’s state, managing the storage and retrieval of the
object’s state, providing the code that will be executed in response to requests
determining whether or not the object exists at any point in time.

• Avoid requiring the ORB to maintain persistent state describing individual obje
their identities, where their state is stored, whether certain identity values have
previously used or not, whether an object has ceased to exist or not, and so o

• Provide an extensible mechanism for associating policy information with objec
implemented in the POA.

• Allow programmers to construct object implementations that inherit from static
skeleton classes, generated by OMG IDL compilers, or a DSI implementation.

9.2 Abstract Model Description

The POA interfaces described in this chapter imply a particular abstract computational
model. This section presents that model and defines terminology and basic concep
will be used in subsequent sections.

This section provides the rationale for the POA design, describes some of its intended
uses, and provides a background for understanding the interface descriptions.

9.2.1 Model Components

The model supported by the POA is a specialization of the general object model
described in the OMA guide. Most of the elements of the CORBA object model are
present in the model described here, but there are some new components, and some of
the names of existing components are defined more precisely than they are in the
CORBA object model. The abstract model supported by the POA has the following
components:

• Client—A client is a computational context that makes requests on an object
through one of its references.

• Server—A server is a computational context in which the implementation of an
object exists. Generally, a server corresponds to a process. Note that client and
server are roles that programs play with respect to a given object. A program that
is a client for one object may be the server for another. The same process ma
both client and server for a single object.
9-2 CORBA V2.2 February 1998

9

A

f a

e ORB

be

s
ged
 by

usly
r an

BA

 it

n
ich
odel

y

ild)
• Object—In this discussion, we use object to indicate a CORBA object in the
abstract sense, that is, a programming entity with an identity, an interface, and an
implementation. From a client’s perspective, the object’s identity is encapsulated in
the object’s reference. This specification defines the server’s view of object
identity, which is explicitly managed by object implementations through the PO
interface.

• Servant—A servant is a programming language object or entity that implements
requests on one or more objects. Servants generally exist within the context o
server process. Requests made on an object’s references are mediated by th
and transformed into invocations on a particular servant. In the course of an
object’s lifetime it may be associated with (that is, requests on its references will
targeted at) multiple servants.

• Object Id—An Object Id is a value that is used by the POA and by the user-supplied
implementation to identify a particular abstract CORBA object. Object Id value
may be assigned and managed by the POA, or they may be assigned and mana
by the implementation. Object Id values are hidden from clients, encapsulated
references. Object Ids have no standard form; they are managed by the POA as
uninterpreted octet sequences.

Note – The Object Id defined in this specification is a mechanical device used by an
object implementation to correlate incoming requests with references it has previo
created and exposed to clients. It does not constitute a unique logical identity fo
object in any larger sense. The assignment and interpretation of Object Id values is
primarily the responsibility of the application developer, although the SYSTEM_ID
policy enables the POA to generate Object Id values for the application.

• Object Reference—An object reference in this model is the same as in the COR
object model. This model implies, however, that a reference specifically
encapsulates an Object Id and a POA identity.

Note – A concrete reference in a specific ORB implementation will contain more
information, such as the location of the server and POA in question. For example,
might contain the full name of the POA (the names of all POAs starting from the root
and ending with the specific POA). The reference might not, in fact, actually contai
the Object Id, but instead contain more compact values managed by the ORB wh
can be mapped to the Object Id. This is a description of the abstract information m
implied by the POA. Whatever encoding is used to represent the POA name and the
Object Id must not restrict the ability to use any legal character in a POA name or an
legal octet in an Object Id.

• POA—A POA is an identifiable entity within the context of a server. Each POA
provides a namespace for Object Ids and a namespace for other (nested or ch
POAs. Policies associated with a POA describe characteristics of the objects
implemented in that POA. Nested POAs form a hierarchical name space for objects
within a server.
CORBA V2.2 Abstract Model Description February 1998 9-3

9

to

a

ts

tate
cause
n also

r

bject
r

er

sts.
• Policy—A Policy is an object associated with a POA by an application in order
specify a characteristic shared by the objects implemented in that POA. This
specification defines policies controlling the POA’s threading model as well as
variety of other options related to the management of objects. Other specifications
may define other policies that affect how an ORB processes requests on objec
implemented in the POA.

• POA Manager—A POA manager is an object that encapsulates the processing s
of one or more POAs. Using operations on a POA manager, the developer can
requests for the associated POAs to be queued or discarded. The developer ca
use the POA manager to deactivate the POAs.

• Servant Manager—A servant manager is an object that the application develope
can associate with a POA. The ORB will invoke operations on servant managers to
activate servants on demand, and to deactivate servants. Servant managers are
responsible for managing the association of an object (as characterized by its O
Id value) with a particular servant, and for determining whether an object exists o
not. There are two kinds of servant managers, called ServantActivator and
ServantLocator ; the type used in a particular situation depends on policies in the
POA.

• Adapter Activator—An adapter activator is an object that the application develop
can associate with a POA. The ORB will invoke an operation on an adapter
activator when a request is received for a child POA that does not currently exist.
The adapter activator can then create the required POA on demand.

9.2.2 Model Architecture

This section describes the architecture of the abstract model implied by the POA, and the
interactions between various components. The ORB is an abstraction visible to both the
client and server. The POA is an object visible to the server. User-supplied
implementations are registered with the POA (this statement is a simplification; more
detail is provided below). Clients hold references upon which they can make reque
The ORB, POA, and implementation all cooperate to determine which servant the
operation should be invoked on, and to perform the invocation.
9-4 CORBA V2.2 February 1998

9

iation

r an

e
Figure 9-1 Abstract POA model

Figure 9-2 shows the detail of the relationship between the POA and the implementation.
Ultimately, a POA deals with an Object Id and an active servant. By active servant, we
mean a programming object that exists in memory and has been presented to the POA
with one or more associated object identities. There are several ways for this assoc
to be made.

If the POA supports the RETAIN policy, it maintains a map, labeled Active Object Map,
that associates Object Ids with active servants, each association constituting an active
object. If the POA has the USE_DEFAULT_SERVANT policy, a default servant may
be registered with the POA. Alternatively, if the POA has the
USE_SERVANT_MANAGER policy, a user-written servant manager may be
registered with the POA. If the Active Object Map is not used, or a request arrives fo
object not present in the Active Object Map, the POA either uses the default servant to
perform the request or it invokes the servant manager to obtain a servant to perform the
request. If the RETAIN policy is used, the servant returned by a servant manager is
retained in the Active Object Map. Otherwise, the servant is used only to process th
one request.

In this specification, the term active is applied equally to servants, Object Ids, and
objects. An object is active in a POA if the POA’s Active Object Map contains an entry
that associates an Object Id with an existing servant. When this specification refers to
active Object Ids and active servants, it means that the Object Id value or servant in
question is part of an entry in the Active Object Map.

Client Server

Object Reference

User-supplied
servants

POA

POA

?

ORB

Object Id
CORBA V2.2 Abstract Model Description February 1998 9-5

9

Figure 9-2 POA Architecture

9.2.3 POA Creation

To implement an object using the POA requires that the server application obtain a POA
object. A distinguished POA object, called the root POA, is managed by the ORB and
provided to the application using the ORB initialization interface under the initial object
name “RootPOA.” The application developer can create objects using the root POA if
those default policies are suitable. The root POA has the following policies.

• Thread Policy: ORB_CTRL_MODEL
• Lifespan Policy: TRANSIENT
• Object Id Uniqueness Policy: UNIQUE_ID
• Id Assignment Policy: SYSTEM_ID
• Servant Retention Policy: RETAIN
• Request Processing Policy: USE_ACTIVE_OBJECT_MAP_ONLY
• Implicit Activation Policy: IMPLICIT_ACTIVATION

default servant

 servant mgr.

Object Id

Object Id
Object Id
Object Id

POA A

POA B

POA C

User-supplied
servant

User-supplied
ServantManager.

User-supplied
servant

User-supplied
servant

Object Id

Object Id
Object Id

Object Id

User-supplied
servant

User-supplied
servant

User-supplied
servant

User-supplied
servant

Active Object Map

A
d
a
p
t
e
r

A
c
t
i
v
a
t
o
r

root
POA

User-supplied
servant

Object Id

Object reference
Servant pointer

P
O
A
M
a
n
a
g
e
r

AdapterActivator.
9-6 CORBA V2.2 February 1998

9

preted

nique

he

o

n

 into

ject
The developer can also create new POAs. Creating a new POA allows the application
developer to declare specific policy choices for the new POA and to provide a different
adapter activator and servant manager (these are callback objects used by the POA to
activate objects and nested POAs on demand). Creating new POAs also allows the
application developer to partition the name space of objects, as Object Ids are inter
relative to a POA. Finally, by creating new POAs, the developer can independently
control request processing for multiple sets of objects.

A POA is created as a child of an existing POA using the create_POA operation on
the parent POA. When a POA is created, the POA is given a name that must be u
with respect to all other POAs with the same parent.

POA objects are not persistent. No POA state can be assumed to be saved by the ORB.
It is the responsibility of the server application to create and initialize the appropriate
POA objects during server initialization or to set an AdapterActivater to create POA
objects needed later.

Creating the appropriate POA objects is particularly important for persistent objects,
objects whose existence can span multiple server lifetimes. To support an object
reference created in a previous server process, the application must recreate the POA that
created the object reference as well as all of its ancestor POAs. To ensure portability,
each POA must be created with the same name as the corresponding POA in the original
server process and with the same policies. (It is the user’s responsibility to create t
POA with these conditions.)

A portable server application can presume that there is no conflict between its POA
names and the POA names chosen by other applications. It is the responsibility of the
ORB implementation to provide a way to support this behavior.

9.2.4 Reference Creation

Object references are created in servers. Once they are created, they may be exported t
clients.

From this model’s perspective, object references encapsulate object identity informatio
and information required by the ORB to identify and locate the server and POA with
which the object is associated (that is, in whose scope the reference was created.)
References are created in the following ways:

• The server application may directly create a reference with the create_reference
and create_reference_with_id operations on a POA object. These operations
collect the necessary information to constitute the reference, either from
information associated with the POA or as parameters to the operation. These
operations only create a reference. In doing so, they bring the abstract object
existence, but do not associate it with an active servant.

• The server application may explicitly activate a servant, associating it with an ob
identity using the activate_object or activate_object_with_id operations. Once
a servant is activated, the server application can map the servant to its
corresponding reference using the servant_to_reference or id_to_reference
operations.
CORBA V2.2 Abstract Model Description February 1998 9-7

9

ign a

.

of

tempt

ly
• The server application may cause a servant to implicitly activate itself. This
behavior can only occur if the POA has been created with the
IMPLICIT_ACTIVATION policy. If an attempt is made to obtain an object
reference corresponding to an inactive servant, the POA may automatically ass
generated unique Object Id to the servant and activate the resulting object. The
reference may be obtained by invoking POA::servant_to_reference with an
inactive servant, or by performing an explicit or implicit type conversion from the
servant to a reference type in programming language mappings that permit this
conversion.

Once a reference is created in the server, it can be made available to clients in a variety
of ways. It can be advertised through the OMG Naming and Trading Services. It can be
converted to a string via ORB::object_to_string and published in some way that
allows the client to discover the string and convert it to a reference using
ORB::string_to_object . It can be returned as the result of an operation invocation

Once a reference becomes available to a client, that reference constitutes the identity
the object from the client’s perspective. As long as the client program holds and uses that
reference, requests made on the reference should be sent to the “same” object.

Note – It should be noted here that the meaning of object identity and “sameness” is at
present the subject of heated debate in the OMG. This specification does not at
to resolve that debate in any way, particularly by defining a concrete notion of identity
that is exposed to clients, beyond the existing notions of identity described in the
CORBA specifications and the OMA guide.

The states of servers and implementation objects are opaque to clients. This specification
deals primarily with the view of the ORB from the server’s perspective.

9.2.5 Object Activation States

At any point in time, a CORBA object may or may not be associated with an active
servant.

If the POA has the RETAIN policy, the servant and its associated Object Id are entered
into the Active Object Map of the appropriate POA. This type of activation can be
accomplished in one of the following ways.

• The server application itself explicitly activates individual objects (via the
activate_object or activate_object_with_id operations).

• The server application instructs the POA to activate objects on demand by having the
POA invoke a user-supplied servant manager. The server application registers this
servant manager with set_servant_manager .

• Under some circumstances (when the IMPLICIT_ACTIVATION policy is also in
effect and the language binding allows such an operation), the POA may implicit
activate an object when the server application attempts to obtain a reference for a
servant that is not already active (that is, not associated with an Object Id).
9-8 CORBA V2.2 February 1998

9

 a

s the

 to re-

ervant

If the USE_DEFAULT_SERVANT policy is also in effect, the server application
instructs the POA to activate unknown objects by having the POA invoke a single
servant no matter what the Object Id is. The server application registers this servant with
set_servant .

If the POA has the NON_RETAIN policy, for every request, the POA may use either
default servant or a servant manager to locate an active servant. From the POA’s point of
view, the servant is active only for the duration of that one request. The POA does not
enter the servant-object association into the Active Object Map.

9.2.6 Request Processing

A request must be capable of conveying the Object Id of the target object as well a
identification of the POA that created the target object reference. When a client issues a
request, the ORB first locates an appropriate server (perhaps starting one if needed) and
then it locates the appropriate POA within that server.

If the POA does not exist in the server process, the application has the opportunity
create the required POA by using an adapter activator. An adapter activator is a user-
implemented object that can be associated with a POA. It is invoked by the ORB when a
request is received for a non-existent child POA. The adapter activator has the
opportunity to create the required POA. If it does not, the client receives the
OBJECT_NOT_EXIST exception.

Once the ORB has located the appropriate POA, it delivers the request to that POA. The
further processing of that request depends both upon the policies associated with that
POA as well as the object's current state of activation.

If the POA has the RETAIN policy, the POA looks in the Active Object Map to find if
there is a servant associated with the Object Id value from the request. If such a s
exists, the POA invokes the appropriate method on the servant.

If the POA has the NON_RETAIN policy or has the RETAIN policy but didn't find a
servant in the Active Object Map, the POA takes the following actions:

• If the POA has the USE_DEFAULT_SERVANT policy, a default servant has been
associated with the POA so the POA will invoke the appropriate method on that
servant. If no servant has been associated with the POA, the POA raises the
OBJ_ADAPTER system exception.

• If the POA has the USE_SERVANT_MANAGER policy, a servant manager has
been associated with the POA so the POA will invoke incarnate or preinvoke on it
to find a servant that may handle the request. (The choice of method depends on the
NON_RETAIN or RETAIN policy of the POA.) If no servant manager has been
associated with the POA, the POA raises the OBJ_ADAPTER system exception.

• If the USE_OBJECT_MAP_ONLY policy is in effect, the POA raises the
OBJECT_NOT_EXIST system exception.

If a servant manager is located and invoked, but the servant manager is not directly
capable of incarnating the object, it (the servant manager) may deal with the
circumstance in a variety of ways, all of which are the application’s responsibility. Any
CORBA V2.2 Abstract Model Description February 1998 9-9

9

 a

d

d
amic

n

 an

system exception raised by the servant manager will be returned to the client in the reply.
In addition to standard CORBA exceptions, a servant manager is capable of raising
ForwardRequest exception. This exception includes an object reference. The ORB
will process this exception as stated below.

9.2.7 Implicit Activation

A POA can be created with a policy that indicates that its objects may be implicitly
activated. This policy, IMPLICIT_ACTIVATION , also requires the SYSTEM_ID and
RETAIN policies. When a POA supports implicit activation, an inactive servant may be
implicitly activated in that POA by certain operations that logically require an Object I
to be assigned to that servant. Implicit activation of an object involves allocating a
system-generated Object Id and registering the servant with that Object Id in the Active
Object Map. The interface associated with the implicitly activated object is determine
from the servant (using static information from the skeleton, or, in the case of a dyn
servant, using the _primary_interface() operation).

The operations that support implicit activation include:

• The POA::servant_to_reference operation, which takes a servant parameter and
returns a reference.

• The POA::servant_to_id operation, which takes a servant parameter and returns an
Object Id.

• Operations supported by a language mapping to obtain an object reference or a
Object Id for a servant. For example, the _this() servant member function in C++
returns an object reference for the servant.

• Implicit conversions supported by a language mapping that convert a servant to
object reference or an Object Id.

The last two categories of operations are language mapping dependent.

If the POA has the UNIQUE_ID policy, then implicit activation will occur when any of
these operations are performed on a servant that is not currently active (that is, it is
associated with no Object Id in the POA's Active Object Map).

If the POA has the MULTIPLE_ID policy, the servant_to_reference and
servant_to_id operations will always perform implicit activation, even if the servant is
already associated with an Object Id. The behavior of language mapping operations in
the MULTIPLE_ID case is specified by the language mapping. For example, in C++, the
_this() servant member function will not implicitly activate a MULTIPLE_ID
servant if the invocation of _this() is immediately within the dynamic context of a
request invocation directed by the POA to that servant; instead, it returns the object
reference used to issue the request.

Note – The exact timing of implicit activation is ORB implementation dependent. For
example, instead of activating the object immediately upon creation of a local object
reference, the ORB could defer the activation until the Object Id is actually needed (for
example, when the object reference is exported outside the process).
9-10 CORBA V2.2 February 1998

9

eded

a

ovide
B.

All
ith

r
9.2.8 Multi-threading

The POA does not require the use of threads and does not specify what support is ne
from a threads package. However, in order to allow the development of portable servers
that utilize threads, the behavior of the POA and related interfaces when used within a
multiple thread environment must be specified.

Specifying this behavior does not require that an ORB must support being used in
threaded environment, nor does it require that an ORB must utilize threads in the
processing of requests. The only requirement given here is that if an ORB does pr
support for multi-threading, these are the behaviors that will be supported by that OR
This allows a programmer to take advantage of multiple ORBs that support threads in a
portable manner across those ORBs.

The POA’s processing is affected by the thread-related calls available in the ORB:
work_pending , perform_work , run , and shutdown .

POA Threading Models

The POA supports two models of threading when used in conjunction with multi-
threaded ORB implementations; ORB controlled and single thread behavior. The two
models can be used together or independently. Either model can be used in
environments where a single-threaded ORB is used.

The threading model associated with a POA is indicated when the POA is created by
including a ThreadPolicy object in the policies parameter of the POA’s create_POA
operation. Once a POA is created with one model, it cannot be changed to the other.
uses of the POA within the server must conform to that threading model associated w
the POA.

Using the Single Thread Model

Requests for a single-threaded POA are processed sequentially. In a multi-threaded
environment, all upcalls made by this POA to implementation code (servants, servant
managers, and adapter activators) are made in a manner that is safe for code that is multi-
thread-unaware.

Using the ORB Controlled Model

The ORB controlled model of threading is used in environments where the develope
wants the ORB/POA to control the use of threads in the manner provided by the ORB.
This model can also be used in environments that do not support threads.

In this model, the ORB is responsible for the creation, management, and destruction of
threads used with one or more POAs.
CORBA V2.2 Abstract Model Description February 1998 9-11

9

mmer

-
 the

rvant
e

g

e

le,
Limitations When Using Multiple Threads

There are no guarantees that the ORB and POA will do anything specific about
dispatching requests across threads with a single POA. Therefore, a server progra
who wants to use one or more POAs within multiple threads must take on all of the
serialization of access to objects within those threads.

There may be requests active for the same object being dispatched within multiple
threads at the same time. The programmer must be aware of this possibility and code
with it in mind.

9.2.9 Dynamic Skeleton Interface

The POA is designed to enable programmers to connect servants to:

• type-specific skeletons, typically generated by OMG IDL compilers; or

• dynamic skeletons

Servants that are members of type-specific skeleton classes are referred to as type
specific servants. Servants connected to dynamic skeletons are used to implement
Dynamic Skeleton Interface (DSI) and are referred to as DSI servants.

Whether a CORBA object is being incarnated by a DSI servant or a type-specific se
is transparent to its clients. Two CORBA objects supporting the same interface may b
incarnated one by a DSI servant and the other with a type-specific servant. Furthermore,
a CORBA object may be incarnated by a DSI servant only during some period of time,
while the rest of the time is incarnated by a static servant.

The mapping for POA DSI servants is language specific, with each language providing a
set of interfaces to the POA. These interfaces are used only by the POA. The interfaces
required are the following.

• Take a CORBA::ServerRequest object from the POA and perform the processin
necessary to execute the request.

• Return the Interface Repository Id identifying the most-derived interface supported
by the target CORBA object in a request.

The reason for the first interface is the entire reason for existence of the DSI: to be abl
to handle any request in the way the programmer wishes to handle it. A single DSI
servant may be used to incarnate several CORBA objects, potentially supporting
different interfaces.

The reason for the second interface can be understood by comparing DSI servants to
type-specific servants.

A type-specific servant may incarnate several CORBA objects but all of them will
support the same IDL interface as the most-derived IDL interface. In C++, for examp
an IDL interface Window in module GraphicalSystem will generate a type-
specific skeleton class called Window in namespace POA_GraphicalSystem . A
type-specific servant which is directly derived from the
9-12 CORBA V2.2 February 1998

9

e

e-

ion if

r

ire

not
POA_GraphicalSystem::Window skeleton class may incarnate several
CORBA objects at a time, but all those CORBA objects will support the
GraphicalSystem::Window interface as the most-derived interface.

A DSI servant may incarnate several CORBA objects, not necessarily supporting th
same IDL interface as the most-derived IDL interface.

In both cases (type-specific and DSI) the POA may need to determine, at runtime, the
Interface Repository Id identifying the most-derived interface supported by the target
CORBA object in a request. The POA should be able to determine this by asking the
servant that is going to serve the CORBA object.

In the case of type-specific servants, the POA obtains that information from the typ
specific skeleton class from which the servant is a directly derived. In the case of DSI
servants, the POA obtains that information by using the second language-specific
interface above.

9.2.10 Location Transparency

The POA supports location transparency for objects implemented using the POA. Unless
explicitly stated to the contrary, all POA behavior described in this specification applies
regardless of whether the client is local (same process) or remote. For example, like a
request from a remote client, a request from a local client may: cause object activat
the object is not active; may block indefinitely if the target object's POA is in the holding
state; may be rejected if the target object's POA is in the discarding or inactive states;
may be delivered to a thread-unaware object implementation; or may be delivered to a
different object if the target object's servant manager raises the ForwardRequest
exception. The Object Id and POA of the target object will also be available to the serve
via the Current object, regardless of whether the client is local or remote.

Note – The implication of these requirements on the ORB implementation is to requ
the ORB to mediate all requests to POA based objects, even if the client is co-resident in
the same process. This specification is not intended to change CORBAServices
specifications that allow for behaviors that are not location transparent. This specification
does not prohibit (nonstandard) POA extensions to support object behavior that is
location transparent.

9.3 Interfaces

The POA-related interfaces are defined in a module separate from the CORBA module,
the PortableServer module. It consists of several interfaces:

• POA
• POAManager
• ServantManager
• ServantActivator
• ServantLocator
• AdapterActivator
• ThreadPolicy
CORBA V2.2 Interfaces February 1998 9-13

9

an
used

ess

ssing

n cause
• LifespanPolicy
• IdUniquenessPolicy
• IdAssignmentPolicy
• ImplicitActivatio nPolicy
• ServantRetentionPolicy
• RequestProcessingPolicy
• Current

In addition, the POA defines the Servant native type.

9.3.1 The Servant IDL Type

This specification defines a native type PortableServer::Servant . Values of the type
Servant are programming-language-specific implementations of CORBA interfaces.
Each language mapping must specify how Servant is mapped to the programming
language data type that corresponds to an object implementation. The Servant type has
the following characteristics and constraints.

• Values of type Servant are opaque from the perspective of CORBA application
programmers. There are no operations that can be performed directly on them by
user programs. They can be passed as parameters to certain POA operations. Some
language mappings may allow Servant values to be implicitly converted to object
references under appropriate conditions.

• Values of type Servant support a language-specific programming interface that c
be used by the ORB to obtain a default POA for that servant. This interface is
only to support implicit activation. A language mapping may provide a default
implementation of this interface that returns the root POA of a default ORB.

• Values of type Servant must be testable for identity.

• Values of type Servant have no meaning outside of the process context or addr
space in which they are generated.

9.3.2 POAManager Interface

Each POA object has an associated POAManager object. A POA manager may be
associated with one or more POA objects. A POA manager encapsulates the proce
state of the POAs it is associated with. Using operations on the POA manager, an
application can cause requests for those POAs to be queued or discarded, and ca
the POAs to be deactivated.

POA managers are created and destroyed implicitly. Unless an explicit POA manager
object is provided at POA creation time, a POA manager is created when a POA is
created and is automatically associated with that POA. A POA manager object is
implicitly destroyed when all of its associated POAs have been destroyed.
9-14 CORBA V2.2 February 1998

9

 and

t

/or
Processing States

A POA manager has four possible processing states; active, inactive, holding, and
discarding. The processing state determines the capabilities of the associated POAs
the disposition of requests received by those POAs. Figure 9-3 illustrates the processing
states and the transitions between them. For simplicity of presentation, this specification
sometimes describes these states as POA states, referring to the POA or POAs thahave
been associated with a particular POA manager. A POA manager is created in the
holding state. The root POA is therefore initially in the holding state.

Figure 9-3 Processing States

Active State

When a POA manager is in the active state, the associated POAs will receive and start
processing requests (assuming that appropriate thread resources are available). Note that
even in the active state, a POA may need to queue requests depending upon the ORB
implementation and resource limits. The number of requests that can be received and
queued is an implementation limit. If this limit is reached, the POA should return a
TRANSIENT system exception to indicate that the client should re-issue the request.

A user program can legally transition a POA manager from the active state to either the
discarding, holding, or inactive state by calling the discard_requests ,
hold_requests , or deact ivate operations, respectively. The POA enters the active
state through the use of the activate operation when in the discarding or holding state.
CORBA V2.2 Interfaces February 1998 9-15

9

rded,

for

e, an

ion

 in

he

le.
Discarding State

When a POA manager is in the discarding state, the associated POAs will discard all
incoming requests (whose processing has not yet begun). When a request is disca
the TRANSIENT system exception must be returned to the client-side to indicate that
the request should be re-issued. (Of course, an ORB may always reject a request
other reasons and raise some other system exception.)

In addition, when a POA manager is in the discarding state, the adapter activators
registered with the associated POAs will not get called. Instead, requests that require the
invocation of an adapter activator will be discarded, as described in the previous
paragraph.

The primary purpose of the discarding state is to provide an application with flow-
control capabilities when it determines that an object's implementation or POA is being
flooded with requests. It is expected that the application will restore the POA manager to
the active state after correcting the problem that caused flow-control to be needed.

A POA manager can legally transition from the discarding state to either the active,
holding, or inactive state by calling the activate , hold_requests , or deactivate
operations, respectively. The POA enters the discarding state through the use of the
discard_requests operation when in the active or holding state.

Holding State

When a POA manager is in the holding state, the associated POAs will queue incoming
requests. The number of requests that can be queued is an implementation limit. If this
limit is reached, the POAs may discard requests and return the TRANSIENT system
exception to the client to indicate that the client should reissue the request. (Of cours
ORB may always reject a request for other reasons and raise some other system
exception.)

In addition, when a POA manager is in the holding state, the adapter activators registered
with the associated POAs will not get called. Instead, requests that require the invocat
of an adapter activator will be queued, as described in the previous paragraph.

A POA manager can legally transition from the holding state to either the active,
discarding, or inactive state by calling the activate , discard_requests , or
deactivate operations, respectively. The POA enters the holding state through the use
of the hold_requests operation when in the active or discarding state. A POA manager
is created in the holding state.

Inactive State

The inactive state is entered when the associated POAs are to be shut down. Unlike the
discarding state, the inactive state is not a temporary state. When a POA manager is
the inactive state, the associated POAs will reject new requests. The rejection mechanism
used is specific to the vendor. The GIOP location forwarding mechanism and
CloseConnection message are examples of mechanisms that could be used to indicate t
rejection. If the client is co-resident in the same process, the ORB could raise the
OBJ_ADAPTER exception to indicate that the object implementation is unavailab
9-16 CORBA V2.2 February 1998

9

d
ion

ject.
be

ith
ill

ts that

In addition, when a POA manager is in the inactive state, the adapter activators registere
with the associated POAs will not get called. Instead, requests that require the invocat
of an adapter activator will be rejected, as described in the previous paragraph.

The inactive state is entered using the deactivate operation. It is legal to enter the
inactive state from either the active, holding, or discarding states.

If the transition into the inactive state is a result of calling deactivate with an
etherealize_objects parameter of

• TRUE - the associated POAs will call etherealize for each active object associated
with the POA once all currently executing requests have completed processing(if
the POAs have the RETAIN and USE_SERVANT_MANAGER policies). If a
servant manager has been registered for the POA, the POA will get rid of the ob
If there are any queued requests that have not yet started executing, they will
treated as if they were new requests and rejected.

• FALSE - No deactivations or etherealizations will be attempted.

Locality Constraints

A POAManager object must not be exported to other processes, or externalized w
ORB::object_to_string . If any attempt is made to do so, the offending operation w
raise a MARSHAL system exception. An attempt to use a POAManager object with
the DII may raise the NO_IMPLEMENT exception.

activate

void activate()
raises (Adapt erInactive);

This operation changes the state of the POA manager to active. If issued while the POA
manager is in the inactive state, the AdapterInactive exception is raised. Entering the
active state enables the associated POAs to process requests.

hold_requests

void hold_requests(in boolean wait_for_completion)
raises(AdapterInactive);

This operation changes the state of the POA manager to holding. If issued while the POA
manager is in the inactive state, the AdapterInactive exception is raised. Entering the
holding state causes the associated POAs to queue incoming requests. Any reques
have been queued but have not started executing will continue to be queued while in the
holding state.
CORBA V2.2 Interfaces February 1998 9-17

9

If the wait_for_completion parameter is FALSE, this operation returns immediately
after changing the state. If the parameter is TRUE, this operation does not return until
either there are no actively executing requests in any of the POAs associated with this
POA manager (that is, all requests that were started prior to the state change have
completed) or the state of the POA manager is changed to a state other than holding.

discard_requests

void discard_requests(in boolean wait_for_completion)
raises (Adapt erInactive);

This operation changes the state of the POA manager to discarding. If issued while the
POA manager is in the inactive state, the AdapterInactive exception is raised. Entering
the discarding state causes the associated POAs to discard incoming requests. In
addition, any requests that have been queued but have not started executing are
discarded. When a request is discarded, a TRANSIENT system exception is returned to
the client.

If the wait_for_completion parameter is FALSE, this operation returns immediately
after changing the state. If the parameter is TRUE, this operation does not return until
either there are no actively executing requests in any of the POAs associated with this
POA manager (that is, all requests that were started prior to the state change have
completed) or the state of the POA manager is changed to a state other than discarding.

deactivate

void deactivate(in boolean etherealize_objects,
in boolean wait_for_completion);

raises (Adapt erInactive);

This operation changes the state of the POA manager to inactive. If issued while the
POA manager is in the inactive state, the AdapterInactive exception is raised. Entering
the inactive state causes the associated POAs to reject requests that have not begun to be
executed as well as any new requests.

After changing the state, if the ethereali ze_objects parameter is

• TRUE - the POA manager will cause all associated POAs that have the RETAIN and
USE_SERVANT_MANAGER policies to perform the etherealize operation on the
associated servant manager for all active objects.

• FALSE - the etherealize operation is not called. The purpose is to provide
developers with a means to shut down POAs in a crisis (for example, unrecoverable
error) situation.

If the wait_for_completion parameter is FALSE, this operation will return
immediately after changing the state. If the parameter is TRUE, this operation does not
return until there are no actively executing requests in any of the POAs associated with
this POA manager (that is, all requests that were started prior to the state change have
9-18 CORBA V2.2 February 1998

9

ith

ing.

ts it

at

t
to

d

t of
completed) and, in the case of a TRUE etherealize_objects , all invocations of
etherealize have completed for POAs having the RETAIN and
USE_SERVANT_MANAGER policies.

If the ORB::shutdown operation is called, it makes a call on deactivate with a TRUE
etherealize_objects parameter for each POA manager known in the process; the
wait_for_completion parameter to deactivate will be the same as the similarly
named parameter of ORB::shutdown .

9.3.3 AdapterActivator Interface

Adapter activators are associated with POAs. An adapter activator supplies a POA w
the ability to create child POAs on demand, as a side-effect of receiving a request that
names the child POA (or one of its children), or when find_POA is called with an
activate parameter value of TRUE. An application server that creates all its needed POAs
at the beginning of execution does not need to use or provide an adapter activator; it is
necessary only for the case in which POAs need to be created during request process

While a request from the POA to an adapter activator is in progress, all requests to
objects managed by the new POA (or any descendant POAs) will be queued. This
serialization allows the adapter activator to complete any initialization of the new POA
before requests are delivered to that POA.

Locality Constraints

An AdapterActivator object must be local to the process containing the POA objec
is registered with.

unknown_adapter

boolean unknown_adapter(in POA parent, in string name);

This operation is invoked when the ORB receives a request for an object reference th
identifies a target POA that does not exist. The ORB invokes this operation once for each
POA that must be created in order for the target POA to exist (starting with the ancestor
POA closest to the root POA). The operation is invoked on the adapter activator
associated with POA that is the parent of the POA that needs to be created. That paren
POA is passed as the parent parameter. The name of the POA to be created (relative
the parent) is passed as the name parameter.

The implementation of this operation should either create the specified POA and return
TRUE, or it should return FALSE. If the operation returns TRUE, the ORB will procee
with processing the request. If the operation returns FALSE, the ORB will return
OBJECT_NOT_EXIST to the client. If multiple POAs need to be created, the ORB will
invoke unknown_adapter once for each POA that needs to be created. If the paren
a nonexistent POA does not have an associated adapter activator, the ORB will return the
OBJECT_NOT_EXIST exception.
CORBA V2.2 Interfaces February 1998 9-19

9

t,

n
to be

If unknown_adapter raises a system exception, the ORB will report an
OBJ_ADAPTER exception.

For example, if the target object reference was created by a POA whose full name is
“A”, “B”, “C”, “D” and only POAs “A” and “B” c urrently exist, the
unknown_ad apter operation will be invoked on the adapter activator associated with
POA “B” passing POA “B” as the parent parameter and “C” as the name of the missing
POA. Assuming that the adapter activator creates POA “C” and returns TRUE, the ORB
will then invoke unknown_adapter on the adapter activator associated with POA “C”,
passing POA “C” as the parent parameter and “D” as the name.

The unknown_adapter operation is also invoked when find_POA is called on the
POA with which the AdapterActivator is associated, the specified child does not exis
and the activate_it parameter to find_POA is TRUE. If unknown_adapter creates
the specified POA and returns TRUE, that POA is returned from find_POA .

Note – This allows the same code, the unknown_adapter implementation, to be used
to initialize a POA whether that POA is created explicitly by the application or as a side-
effect of processing a request. Furthermore, it makes this initialization atomic with
respect to delivery of requests to the POA.

9.3.4 ServantManager Interface

Servant managers are associated with POAs. A servant manager supplies a POA with
the ability to activate objects on demand when the POA receives a request targeted at a
inactive object. A servant manager is registered with a POA as a callback object,
invoked by the POA when necessary. An application server that activates all its needed
objects at the beginning of execution does not need to use a servant manager; it isused
only for the case in which an object must be activated during request processing.

The ServantManager interface is itself empty. It is inherited by two other interfaces,
ServantAct ivator and ServantLocator .

The two types of servant managers correspond to the POA’s RETAIN policy
(ServantActivator) and to the NON_RETAIN policy (ServantLocator). The
meaning of the policies and the operations that are available for POAs using each policy
are listed under the two types of derived interfaces.

Each servant manager type contains two operations, the first called to find and return a
servant and the second to deactivate a servant. The operations differ according to the
amount of information usable for their situation.

Common information for servant manager types

The two types of servant managers have certain semantics that are identical.

The incarnate and preinvoke operation may raise any system exception deemed
appropriate (for example, OBJECT_NOT_EXIST if the object corresponding to the
Object Id value has been destroyed).
9-20 CORBA V2.2 February 1998

9

n.
ated.

ts it

ated
til

i

Note – If a user-written routine (servant manager or method code) raises the
OBJECT_NOT_EXIST exception, the POA does nothing but pass on that exceptio
It is the user’s responsibility to deactivate the object if it had been previously activ

The incarnate and preinvoke operation may also raise a ForwardRequest
exception. If this occurs, the ORB is responsible for delivering the current request and
subsequent requests to the object denoted in the forward_reference member of the
exception. The behavior of this mechanism must be the functional equivalent of the
GIOP location forwarding mechanism. If the current request was delivered via an
implementation of the GIOP protocol (such as IIOP), the reference in the exception
should be returned to the client in a reply message with LOCATION_FORWARD reply
status. If some other protocol or delivery mechanism was used, the ORB is responsible
for providing equivalent behavior, from the perspectives of the client and the object
denoted by the new reference.

Locality Constraints

A ServantManager object must be local to the process containing the POA objec
is registered with.

9.3.5 ServantActivator Interface

When the POA has the RETAIN policy it uses servant managers that are
ServantAct ivator s. When using such servant managers, the following statements apply
for a given ObjectId used in the incarnate and etherealize operations:

• Servants incarnated by the servant manager will be placed in the Active Object Map
with objects they have activated.

• Invocations of incarnate on the servant manager are serialized.

• Invocations of etherealize on the servant manager are serialized.

• Invocations of incarnate and etherealize on the servant manager are mutually
exclusive.

• Incarnations of a particular servant may not overlap; that is, if a servant is incarn
by a servant manager, incarnate shall not be invoked using that same Object Id un
that servant is etherealized.

It should be noted that there may be a period of time between an object's deactivation
and the etherealization (during which outstanding requests are being processed) in which
arriving requests on that object should not be passed to its servant. During this perod,
requests targeted for such an object act as if the POA were in holding state until
etherealize completes. If etherealize is called as a consequence of a deactivate call
with a etherealize_objects parameter of TRUE, incoming requests are rejected.

It should also be noted that a similar situation occurs with incarnate .There may be a
period of time after the POA invokes incarnate and before that method returns in which
arriving requests bound for that object should not be passed to the servant.
CORBA V2.2 Interfaces February 1998 9-21

9

s.

ed.

ject

 use
A single servant manager object may be concurrently registered with multiple POA
Invocations of incarnate and etherealize on a servant manager in the context of
different POAs are not necessarily serialized or mutually exclusive. There are no
assumptions made about the thread in which etherealize is invoked.

incarnate

 Servant incarnate (
in ObjectId oid,
in POA adapter)

raises (Forward Request);

This operation is invoked by the POA whenever the POA receives a request for an object
that is not currently active, assuming the POA has the USE_SERVANT_MANAGER
and RETAIN policies.

The oid parameter contains the ObjectId value associated with the incoming request.
The adapter is an object reference for the POA in which the object is being activat

The user-supplied servant manager implementation is responsible for locating or creating
an appropriate servant that corresponds to the ObjectId value if possible. incarnate
returns a value of type Servant , which is the servant that will be used to process the
incoming request (and potentially subsequent requests, since the POA has the RETAIN
policy).

The POA enters the returned Servant value into the Active Object Map so that
subsequent requests with the same ObjectId value will be delivered directly to that
servant without invoking the servant manager.

If the incarnate operation returns a servant that is already active for a different Ob
Id and if the POA also has the UNIQUE_ID policy, the incarnate has violated the POA
policy and is considered to be in error. The POA will raise an OBJ_ADAPTER system
exception for the request.

Note – If the same servant is used in two different POAs, it is legal for the POAs to
that servant even if the POAs have different Object Id uniqueness policies. The POAs do
not interact with each other in this regard.

etherealize

void ethereal ize (
in ObjectId oid,
in POA adapter,
in Servant serv,
in boolean cleanup_in_progress,
in boolean remaining_act ivations);
9-22 CORBA V2.2 February 1998

9

e

This operation is invoked whenever a servant for an object is deactivated, assuming the
POA has the USE_SERVANT_MAN AGER and RETAIN policies. Note that an active
servant may be deactivated by the servant manager via etherealize even if it was not
incarnated by the servant manager.

The oid parameter contains the Object Id value of the object being deactivated. The
adapter parameter is an object reference for the POA in whose scope the object was
active. The serv parameter contains a reference to the servant that is associated with th
object being deactivated. If the servant denoted by the serv parameter is associated with
other objects in the POA denoted by the adapter parameter (that is, in the POA's Active
Object Map) at the time that etherealize is called, the remaining_activations
parameter has the value TRUE. Otherwise, it has the value FALSE.

If the cleanup_in_progress parameter is TRUE, the reason for the etherealize
operation is that either the deactivate or destroy operation was called with an
etherealize_objects parameter of TRUE. If the parameter is FALSE, the etherealize
operation is called for other reasons.

Deactivation occurs in the following circumstances:

• When an object is deactivated explicitly by an invocation of
POA::deactivate_object .

• When the ORB or POA determines internally that an object must be deactivated.
For example, an ORB implementation may provide policies that allow objects to be
deactivated after some period of quiescence, or when the number of active objects
reaches some limit.

• If POAManager ::deactivate is invoked on a POA manager associated with a
POA that has currently active objects.

Destroying a servant that is in the Active Object Map or is otherwise known to the POA
can lead to undefined results.

In a multi-threaded environment, the POA makes certain guarantees that allow servant
managers to safely destroy servants. Specifically, the servant's entry in the Active Object
Map corresponding to the target object is removed before etherealize () is called.
Because calls to incarnate () and etherealize () are serialized, this prevents new
requests for the target object from being invoked on the servant during etherealization.
After removing the entry from the Active Object Map, if the POA determines before
invoking etherealize () that other requests for the same target object are already in
progress on the servant, it delays the call to etherealize () until all active methods for
the target object have completed. Therefore, when etherealize () is called, the servant
manager can safely destroy the servant if it wants to, unless the
remaining_act ivations argument is TRUE.
CORBA V2.2 Interfaces February 1998 9-23

9

able to

uest

t

ect

ed.

9.3.6 ServantLocator Interface

When the POA has the NON_RETAIN policy it uses servant managers that are
ServantLocator s. Because the POA knows that the servant returned by this servant
manager will be used only for a single request, it can supply extra information to the
servant manager’s operations and the servant manager’s pair of operations may be
cooperate to do something different than a ServantActivator .

When the POA uses the ServantLocator interface, immediately after performing the
operation invocation on the servant returned by preinvoke , the POA will invoke
postinvoke on the servant manager, passing the ObjectId value and the Servant
value as parameters (among others). The next request with this ObjectId value will then
cause preinvoke to be invoked again. This feature may be used to force every req
for objects associated with a POA to be mediated by the servant manager.

When using such a ServantLocator , the following statements apply for a given
ObjectId used in the preinvoke and postinvoke operations:

• The servant returned by preinvoke is used only to process the single request tha
caused preinvoke to be invoked.

• No servant incarnated by the servant manager will be placed in the Active Obj
Map.

• When the invocation of the request on the servant is complete, postinvoke will be
invoked for the object.

• No serialization of invocations of preinvoke or postinvoke may be assumed;
there may be multiple concurrent invocations of prein voke for the same ObjectId .

• The same thread will be used to preinvoke the object, process the request, and
postinvoke the object.

preinvoke

Servant preinvoke(
in ObjectId oid,
in POA adapter,
in CORBA::Identifier operation,
out Cookie th e_cookie)

raises (Forward Request);

This operation is invoked by the POA whenever the POA receives a request for an object
that is not currently active, assuming the POA has the USE_SERVANT_MANAGER
and NON_RETAIN policies.

The oid parameter contains the ObjectId value associated with the incoming request.
The adapter is an object reference for the POA in which the object is being activat

The user-supplied servant manager implementation is responsible for locating or creating
an appropriate servant that corresponds to the ObjectId value if possible. preinvoke
returns a value of type Servant , which is the servant that will be used to process the
incoming request.
9-24 CORBA V2.2 February 1998

9

r use
y

ctory
d

The Cookie is a type opaque to the POA that can be set by the servant manager fo
later by postinvoke . The operation is the name of the operation that will be called b
the POA when the servant is returned.

postinvoke

void postinvoke(
in ObjectId oid,
in POA adapter,
in CORBA::Identifier operation,
in Cookie the_cookie,
in Servant the_servant);

This operation is invoked whenever a servant completes a request, assuming the POA
has the USE_SERVANT_MANAGER and NON_RETAIN policies.

The oid parameter contains the Object Id value of the object on which the request was
made. The adapter parameter is an object reference for the POA in whose scope the
object was active. The serv parameter contains a reference to the servant that is
associated with the object.

The Cookie is a type opaque to the POA; it contains any value that was set by the
prein voke operation. The operation is the name of the operation that was called by
the POA for the request.

Destroying a servant that is known to the POA can lead to undefined results.

9.3.7 POA Policy Objects

Interfaces derived from CORBA::Policy are used with the POA::create_POA
operation to specify policies that apply to a POA. Policy objects are created using fa
operations on any pre-existing POA, such as the root POA. Policy objects are specifie
when a POA is created. Policies may not be changed on an existing POA. Policies are
not inherited from the parent POA.

Thread Policy

Objects with the ThreadPolicy interface are obtained using the
POA::create_thread_policy operation and passed to the POA::create_POA
operation to specify the threading model used with the created POA. The value attribute
of ThreadPolicy contains the value supplied to the POA::create_thread_policy
operation from which it was obtained. The following values can be supplied.

• ORB_CTRL_MODEL - The ORB is responsible for assigning requests for an ORB
controlled POA to threads. In a multi-threaded environment, concurrent requests
may be delivered using multiple threads.

• SINGLE_THREAD_MODEL - Requests for a single-threaded POA are processed
sequentially. In a multi-threaded environment, all upcalls made by this POA to
implementation code (servants and servant managers) are made in a manner that is
safe for code that multi-thread-unaware.
CORBA V2.2 Interfaces February 1998 9-25

9

in

d by

 in

e

ot
If no Thread Policy object is passed to create_POA , the thread policy defaults to
ORB_CTRL_MODEL .

Note – In some environments, calling multi-thread-unaware code safely (that is, using
the SINGLE_THREAD_MODEL) may mean that the POA will use only the main
thread, in which case the application programmer is responsible to ensure that the ma
thread is given to the ORB, using ORB::perform_work or ORB::run .

POAs using the SINGLE_THREAD_MODEL may need to cooperate to ensure that
calls are safe even when implementation code (such as a servant manager) is share
multiple single-threaded POAs.

These models presume that the ORB and the application are using compatible
threading primitives in a multi-threaded environment.

Lifespan Policy

Objects with the LifespanPolicy interface are obtained using the
POA::create_lifespan_policy operation and passed to the POA::create_POA
operation to specify the lifespan of the objects implemented in the created POA. The
following values can be supplied.

• TRANSIENT - The objects implemented in the POA cannot outlive the process
which they are first created. Once the POA is deactivated, use of any object
references generated from it will result in an OBJECT_NOT_EXIST exception.

• PERSISTENT - The objects implemented in the POA can outlive the process in
which they are first created.

• Persistent objects have a POA associated with them (the POA which created them).
When the ORB receives a request on a persistent object, it first searches for th
matching POA, based on the names of the POA and all of its ancestors.

• Administrative action beyond the scope of this specification may be necessary to
inform the ORB's location service of the creation and eventual termination of
existence of this POA, and optionally to arrange for on-demand activation of a
process implementing this POA.

• POA names must be unique within their enclosing scope (the parent POA). A
portable program can assume that POA names used in other processes will n
conflict with its own POA names. A conforming CORBA implementation will
provide a method for ensuring this property.

If no LifespanPolicy object is passed to create_POA , the lifespan policy defaults to
TRANSIENT.
9-26 CORBA V2.2 February 1998

9

ed

Object Id Uniqueness Policy

Objects with the IdUniquenessPolicy interface are obtained using the
POA::create_id_uniqu eness_policy operation and passed to the
POA::create_POA operation to specify whether the servants activated in the creat
POA must have unique object identities. The following values can be supplied.

• UNIQUE_ID - Servants activated with that POA support exactly one Object Id.

• MULTIPLE_ID - a servant activated with that POA may support one or more Object
Ids.

If no IdUniquenessPolicy is specified at POA creation, the default is UNIQUE_ID.

Id Assignment Policy

Objects with the IdAssignmentPolicy interface are obtained using the
POA::create_id_assignment_policy operation and passed to the
POA::create_POA operation to specify whether Object Ids in the created POA are
generated by the application or by the ORB. The following values can be supplied.

• USER_ID - Objects created with that POA are assigned Object Ids only by the
application.

• SYSTEM_ID - Objects created with that POA are assigned Object Ids only by the
POA. If the POA also has the PERSISTENT policy, assigned Object Ids must be
unique across all instantiations of the same POA.

If no IdAssignmentPolicy is specified at POA creation, the default is SYSTEM_ID.

Servant Retention Policy

Objects with the ServantRetentionPolicy interface are obtained using the
POA::create_servant_retention_policy operation and passed to the
POA::create_POA operation to specify whether the created POA retains active
servants in an Active Object Map. The following values can be supplied.

• RETAIN - The POA will retain active servants in its Active Object Map.

• NON_RETAIN - Servants are not retained by the POA.

If no ServantR etentionPolicy is specified at POA creation, the default is RETAIN.

Note – The NON_RETAIN policy requires either the USE_DEFAULT_SERVANT or
USE_SERVANT_MANAGER policies.
CORBA V2.2 Interfaces February 1998 9-27

9

f
Request Processing Policy

Objects with the RequestProcessingPolicy interface are obtained using the
POA::create_request_processing_policy operation and passed to the
POA::create_POA operation to specify how requests are processed by the created
POA. The following values can be supplied.

• USE_ACTIVE_OBJECT_MAP_ONLY - If the Object Id is not found in the Active
Object Map, an OBJECT_NOT_EXIST exception is returned to the client. The
RETAIN policy is also required.

• USE_DEFAULT_SERVANT - If the Object Id is not found in the Active Object
Map or the NON_RETAIN policy is present, and a default servant has been
registered with the POA using the set_servant operation, the request is dispatched
to the default servant. If no default servant has been registered, an OBJ_ADAPTER
exception is returned to the client. The MULTIPLE_ID policy is also required.

• USE_SERVANT_MANAGER - If the Object Id is not found in the Active Object
Map or the NON_RETAIN policy is present, and a servant manager has been
registered with the POA using the set_servant_manager operation, the servant
manager is given the opportunity to locate a servant or raise an exception. If no
servant manager has been registered, an OBJECT_ADAPTER exception is returned
to the client.

If no RequestProcessingPolicy is specified at POA creation, the default is
USE_ACTIVE_OBJECT_MAP_ONLY .

By means of combining the USE_ACTIVE_OBJECT_MA P_ONLY /
USE_DEFAULT_SERVANT / USE_SERVANT_MANAGER policies and the
RETAIN / NON_RETAIN policies, the programmer is able to define a rich number o
possible behaviors.

RETAIN and USE_ACTIVE_OBJECT_MAP_ONLY

This combination represents the situation where the POA does no automatic object
activation (that is, the POA searches only the Active Object Map). The server must
activate all objects served by the POA explicitly, using either the activate_object or
activate_object_with_id operation.

RETAIN and USE_SERVANT_MANAGER

This combination represents a very common situation, where there is an Active Object
Map and a ServantManager .

Because RETAIN is in effect, the application can call activate_object or
activate_object_with_id to establish known servants in the Active Object Map for
use in later requests.

If the POA doesn't find a servant in the Active Object Map for a given object, it tries to
determine the servant by means of invoking incarnate in the ServantManager
(specifically a ServantActivator) registered with the POA. If no ServantManager is
available, the POA raises the OBJE CT_ADAPTER system exception.
9-28 CORBA V2.2 February 1998

9

or all

ll

te
RETAIN and USE_DEFAULT_SERVANT

This combination represents the situation where there is a default servant defined f
requests involving unknown objects.

Because RETAIN is in effect, the application can call activate_object or
activate_object_with_id to establish known servants in the Active Object Map for
use in later requests.

The POA first tries to find a servant in the Active Object Map for a given object. If it
does not find such a servant, it uses the default servant. If no default servant is available,
the POA raises the OBJE CT_ADAPTER system exception.

NON-RETAIN and USE_SERVANT_MANAGER:

This combination represents the situation where one servant is used per method call.

The POA doesn't try to find a servant in the Active Object Map because the
ActiveObjectMap does not exist. In every request, it will call prein voke on the
ServantManager (specifically a ServantLocator) registered with the POA. If no
ServantManager is available, the POA will raise the OBJE CT_ADAPTER system
exception.

NON-RETAIN and USE_DEFAULT_SERVANT:

This combination represents the situation where there is one single servant defined for a
CORBA objects.

The POA does not try to find a servant in the Active Object Map because the
ActiveObjectMap doesn't exist. In every request, the POA will invoke the appropria
operation on the default servant registered with the POA. If no default servant is
available, the POA will raise the OBJECT_ADAPTER system exception.

Implicit Activation Policy

Objects with the ImplicitActivat ionPolicy interface are obtained using the
POA::create_impl icit_activatio n_policy operation and passed to the
POA::create_POA operation to specify whether implicit activation of servants is
supported in the created POA. The following values can be supplied.

• IMPLICIT_ACTIVATION - the POA will support implicit activation of servants.
IMPLICIT_ACTIVATION also requires the SYSTEM_ID and RETAIN policies.

• NO_IMPLICIT_ACTIVATION - the POA will not support implicit activation of
servants.

If no ImplicitActivationPolicy is specified at POA creation, the default is
NO_IMPLICIT_ACTIVATION .
CORBA V2.2 Interfaces February 1998 9-29

9

ill

e

9.3.8 POA Interface

A POA object manages the implementation of a collection of objects. The POA supports
a name space for the objects, which are identified by Object Ids.

A POA also provides a name space for POAs. A POA is created as a child of an existing
POA, which forms a hierarchy starting with the root POA.

Locality Constraints

A POA object must not be exported to other processes, or externalized with
ORB::object_to_string . If any attempt is made to do so, the offending operation w
raise a MARSHAL system exception. An attempt to use a POA object with the DII may
raise the NO_IMPLEMENT exception.

create_POA

POA create_POA(in string adapter_name,
in POAManager a_POAManager,
in CORBA::PolicyList policies)

raises (AdapterAlreadyExi sts, Invali dPolicy);

This operation creates a new POA as a child of the target POA. The specified name
identifies the new POA with respect to other POAs with the same parent POA. If th
target POA already has a child POA with the specified name, the
AdapterAlreadyExists exception is raised.

If the a_POAManager parameter is null, a new POAManager object is created and
associated with the new POA. Otherwise, the specified POAManager object is
associated with the new POA. The POAManager object can be obtained using the
attribute name the_POAManager .

The specified policy objects are associated with the POA and used to control its
behavior. The policy objects are effectively copied before this operation returns, so the
application is free to destroy them while the POA is in use. Policies are not inherited
from the parent POA.

If any of the policy objects specified are not valid for the ORB implementation, if
conflicting policy objects are specified, or if any of the specified policy objects require
prior administrative action that has not been performed, an InvalidPolicy exception is
raised containing the index in the policies parameter value of the first offending policy
object.

Note – Creating a POA using a POA manager that is in the active state can lead to race
conditions if the POA supports preexisting objects, because the new POA may receive a
request before its adapter activator, servant manager, or default servant have been
initialized. These problems do not occur if the POA is created by an adapter activator
registered with a parent of the new POA, because requests are queued until the adapter
9-30 CORBA V2.2 February 1998

9

he

m

ere
ing

activator returns. To avoid these problems when a POA must be explicitly initialized,
the application can initialize the POA by invoking find_POA with a TRUE activate
parameter.

find_POA

POA find_POA(in string adapter_name, in boolean activate_it)
raises (AdapterNonExistent);

If the target POA is the parent of a child POA with the specified name (relative to t
target POA), that child POA is returned. If a child POA with the specified name does
not exist and the value of the activate_it parameter is TRUE, the target POA's
AdapterActivator , if one exists, is invoked, and, if it successfully activates the child
POA, that child POA is returned. Otherwise, the AdapterNonExistent exception is
raised.

destroy

void destroy(in boolean etherealize_objects,
in boolean wait_for_completion);

This operation destroys the POA and all descendant POAs. The POA so destroyed (that
is, the POA with its name) may be re-created later in the same process. (This differs fro
the POAManager::deactivate operation that does not allow a re-creation of its
associated POA in the same process.)

When a POA is destroyed, any requests that have started execution continue to
completion. Any requests that have not started execution are processed as if they w
newly arrived, that is, the POA will attempt to cause recreation of the POA by invok
one or more adapter activators.

If the etherealize_objects parameter is TRUE, the POA has the RETAIN policy, and
a servant manager is registered with the POA, the etherealize operation on the servant
manager will be called for each active object in the Active Object Map. The apparent
destruction of the POA occurs before any calls to etherealize are made. Thus, for
example, an etherealize method that attempts to invoke operations on the POA will
receive the OBJECT_NOT_EXIST exception.

If the wait_for_completion parameter is TRUE, the destroy operation will return
only after all requests in process have completed and all invocations of etherealize
have completed. Otherwise, the destroy operation returns after destroying the POAs.
CORBA V2.2 Interfaces February 1998 9-31

9

 relied
Policy Creation Operations

ThreadPolicy
create_thread_policy(in ThreadPolicyValue value);

LifespanPolicy
create_lifespan_pol icy(in LifespanPolicyValue value);

IdUniquenessPolicy
create_id_uniqueness_policy(in IdUniquenessPolicyValue value);

IdAssignmentPolicy
create_id_assignment_policy(in IdAssignmentPolicyValue value);

ImplicitActivat ionPolicy
create_i mplicit_activat ion_policy

(in ImplicitActivat ionPolicyValue value);
ServantRetentionPolicy

create_servant_retention_policy(in ServantRetentionPolicyValue value);
RequestProcessingPolicy

create_request_processing_policy
(in RequestProcessingPolicyValue value);

These operations each return a reference to a policy object with the specified value. The
application is responsible for calling the inherited destroy operation on the returned
reference when it is no longer needed.

the_name

readonly attri bute string the_name;

This attribute identifies the POA relative to its parent. This name is assigned when the
POA is created. The name of the root POA is system-dependent and should not be
upon by the application.

the_parent

readonly attri bute POA the_parent;

This attribute identifies the parent of the POA. The parent of the root POA is null.

the_POAManager

readonly attri bute POAManager the_POAManager;

This attribute identifies the POA manager associated with the POA.
9-32 CORBA V2.2 February 1998

9

the_activator

attribute AdapterActivator the_activator;

This attribute identifies the adapter activator associated with the POA. A newly created
POA has no adapter activator (the attribute is null). It is system-dependent whether the
root POA initially has an adapter activator; the application is free to assign its own
adapter activator to the root POA.

get_servant_manager

ServantManager get_servant_manager()
raises(WrongPoli cy);

This operation requires the USE_SERVANT_MANAGER policy; if not present, the
WrongPolicy exception is raised.

This operation returns the servant manager associated with the POA. If no servant
manager has been associated with the POA, it returns a null reference. It is system-
dependent whether the root POA initially has a servant manager; the application is free to
assign its own servant manager to the root POA.

set_servant_manager

void set_servant_manager(in ServantManager imgr)
raises(WrongPoli cy);

This operation requires the USE_SERVANT_MANAGER policy; if not present, the
WrongPolicy exception is raised.

This operation sets the default servant manager associated with the POA.

get_servant

Servant get_servant()
raises(NoServant, Wrong Policy);

This operation requires the USE_DEFAULT_SERVANT policy; if not present, the
WrongPolicy exception is raised.

This operation returns the default servant associated with the POA. If no servant has
been associated with the POA, the NoServant exception is raised.
CORBA V2.2 Interfaces February 1998 9-33

9

This
ect

e

ject
set_servant

void set_servant(in Servant p_servant)
raises(WrongPoli cy);

This operation requires the USE_DEFAULT_SERVANT policy; if not present, the
WrongPolicy exception is raised.

This operation registers the specified servant with the POA as the default servant.
servant will be used for all requests for which no servant is found in the Active Obj
Map.

activate_object

ObjectId activate_object(in Servant p_servant)
raises (ServantAlreadyActive, WrongPol icy);

This operation requires the SYSTEM_ID and RETAIN policy; if not present, the
WrongPolicy exception is raised.

If the POA has the UNIQUE_ID policy and the specified servant is already in the Active
Object Map, the ServantAlreadyActive exception is raised. Otherwise, the
activate_object operation generates an Object Id and enters the Object Id and the
specified servant in the Active Object Map. The Object Id is returned.

activate_object_with_id

void activate_object_with_id(in ObjectId oid,
in Servant p_servant)

raises (ObjectAlreadyActive, ServantAlre adyActive, WrongPoli cy);

This operation requires the RETAIN policy; if not present, the WrongPolicy exception
is raised.

If the CORBA object denoted by the Object Id value is already active in this POA (there
is a servant bound to it in the Active Object Map), the ObjectAlreadyActive exception
is raised. If the POA has the UNIQUE_ID policy and the servant is already in the Activ
Object Map, the ServantAlreadyActive exception is raised. Otherwise, the
activate_object_with_id operation enters an association between the specified Ob
Id and the specified servant in the Active Object Map.

If the POA has the SYSTEM_ID policy and it detects that the Object Id value was not
generated by the system or for this POA, the activate_object_with_id operation may
raise the BAD_PARAM system exception. An ORB is not required to detect all such
invalid Object Id values, but a portable application must not invoke
activate_object_with_id on a POA that has the SYSTEM_ID policy with an Object
Id value that was not previously generated by the system for that POA, or, if the POA
also has the PERSISTENT policy, for a previous instantiation of the same POA.
9-34 CORBA V2.2 February 1998

9

iated

 be
ng

d

deactivate_object

void deactivate_object (in ObjectId oid)
raises (ObjectNotAct ive, WrongPolicy);

This operation requires the RETAIN policy; if not present, the WrongPolicy
exception is raised.

This operation causes the association of the Object Id specified by the oid parameter and
its servant to be removed from the Active Object Map. If a servant manager is assoc
with the POA, ServantLocator::etherealize will be invoked with the oid and the
servant. (The deactivate_object operation does not wait for the etherealize operation
to complete before deactivate_object returns.) If there is no active object associated
with the specified Object Id, the operation raises an ObjectNotActive exception.

Note – If the servant associated with the oid is serving multiple Object Ids,
ServantLocat or::etherealize may be invoked multiple times with the same servant
when the other objects are deactivated. It is the responsibility of the object
implementation to refrain from destroying the servant while it is active with any Id.

create_reference

Object create_reference (in CORBA::Reposi toryId intf)
raises (WrongPol icy);

This operation requires the SYSTEM_ID policy; if not present, the WrongPolicy
exception is raised.

This operation creates an object reference that encapsulates a POA-generated Object Id
value and the specified interface repository id. This operation does not cause an
activation to take place. The resulting reference may be passed to clients, so that
subsequent requests on those references will cause the appropriate servant manager to
invoked, if one is available. The generated Object Id value may be obtained by invoki
POA::reference_to_id with the created reference.

create_reference_with_id

Object create_reference_with_id (
in ObjectId oid,
in CORBA::Reposi toryId intf);

This operation creates an object reference that encapsulates the specified Object Iand
interface repository Id values. This operation does not cause an activation to take place.
The resulting reference may be passed to clients, so that subsequent requests on those
references will cause the object to be activated if necessary, or the default servant used,
depending on the applicable policies.

If the POA has the SYSTEM_ID policy and it detects that the Object Id value was not
generated by the system or for this POA, the create_reference_with_id operation
may raise the BAD_PARAM system exception. An ORB is not required to detect all
CORBA V2.2 Interfaces February 1998 9-35

9

ct

t, and

ed
t, and

 that
such invalid Object Id values, but a portable application must not invoke this operation
on a POA that has the SYSTEM_ID policy with an Object Id value that was not
previously generated by the system for that POA, or, if the POA also has the
PERSISTENT policy, for a previous instantiation of the same POA.

servant_to_id

ObjectId servant_to_id(in Servant p_servant)
raises (ServantNotActive, WrongPoli cy);

This operation requires the RETAIN and either the UNIQUE_ID or
IMPLICIT_ACTIVATION policies; if not present, the WrongPolicy exception is raised.

This operation has three possible behaviors.

• If the POA has the UNIQUE_ID policy and the specified servant is active, the Obje
Id associated with that servant is returned.

• If the POA has the IMPLICIT_ACTIVATION policy and either the POA has the
MULTIPLE_ID policy or the specified servant is not active, the servant is activated
using a POA-generated Object Id and the Interface Id associated with the servan
that Object Id is returned.

• Otherwise, the ServantNotActive exception is raised.

servant_to_reference

Object servant_to_reference (in Servant p_servant)
raises (ServantNotActive, WrongPoli cy);

This operation requires the RETAIN and either the UNIQUE_ID or
IMPLICIT_ACTIVATION policies; if not present, the WrongPolicy exception is raised.

This operation has three possible behaviors.

• If the POA has the UNIQUE_ID policy and the specified servant is active, an object
reference encapsulating the information used to activate the servant is returned.

• If the POA has the IMPLICIT_ACTIVATION policy and either the POA has the
MULTIPLE_ID policy or the specified servant is not active, the servant is activat
using a POA-generated Object Id and the Interface Id associated with the servan
a corresponding object reference is returned.

• Otherwise, the ServantNotActive exception is raised.

Note – The allocation of an Object Id value and installation in the Active Object Map
caused by implicit activation may actually be deferred until an attempt is made to
externalize the reference. The real requirement here is that a reference is produced
will behave appropriately (that is, yield a consistent Object Id value when asked
politely).
9-36 CORBA V2.2 February 1998

9

e

reference_to_servant

Servant reference_to_servant (O bject reference)
raises (ObjectNotAct ive, WrongAdapter, WrongPol icy);

This operation requires the RETAIN policy or the USE_DEFAULT_SERVANT policy.
If neither policy is present, the WrongPolicy exception is raised.

If the POA has the RETAIN policy and the specified object is present in the Active
Object Map, this operation returns the servant associated with that object in the Activ
Object Map. Otherwise, if the POA has the USE_DEFAULT_SERVANT policy and a
default servant has been registered with the POA, this operation returns the default
servant. Otherwise, the ObjectNotActive exception is raised.

If the object reference was not created by this POA, the Wrong Adapter exception is
raised.

reference_to_id

ObjectId reference_to_id(in Object ref erence)
raises (WrongAdapter, WrongPol icy);

The WrongPolicy exception is declared to allow future extensions.

This operation returns the Object Id value encapsulated by the specified reference . This
operation is valid only if the reference was created by the POA on which the operation is
being performed. If the reference was not created by that POA, a WrongAdapter
exception is raised. The object denoted by the reference does not have to be active for
this operation to succeed.

id_to_servant

Servant id_to_servant (in ObjectId oid)
raises (ObjectNotAct ive, WrongPolicy);

This operation requires the RETAIN policy; if not present, the WrongPolicy exception
is raised.

This operation returns the active servant associated with the specified Object Id value. If
the Object Id value is not active in the POA, an ObjectNotActive exception is raised.

id_to_reference

Object id_to_reference(in ObjectId oid)
raises (ObjectNotAct ive, WrongPolicy);

This operation requires the RETAIN policy; if not present, the WrongPolicy exception
is raised.
CORBA V2.2 Interfaces February 1998 9-37

9

ntext

f
If an object with the specified Object Id value is currently active, a reference
encapsulating the information used to activate the object is returned. If the Object Id
value is not active in the POA, an ObjectNotActive exception is raised.

9.3.9 Current operations

The PortableServer::Current interface, derived from CORBA::Current , provides
method implementations with access to the identity of the object on which the method
was invoked. The Current interface is provided to support servants that implement
multiple objects, but can be used within the context of POA-dispatched method
invocations on any servant. To provide location transparency, ORBs are required to
support use of Current in the context of both locally-invoked and remotely-invoked
operations.

An instance of Current can be obtained by the application by issuing the
CORBA::ORB: :resolve_initial_references(" POACurrent") operation.
Thereafter, it can be used within the context of a method dispatched by the POA to
obtain the POA and ObjectId that identify the object on which that operation was
invoked.

get_POA

POA get_POA() raises (NoContext);

This operation returns a reference to the POA implementing the object in whose co
it is called. If called outside the context of a POA-dispatched operation, a NoContext
exception is raised.

get_object_id

ObjectId get_object_id() raises (NoContext);

This operation returns the ObjectId identifying the object in whose context it is called. I
called outside the context of a POA-dispatched operation, a NoContext exception is
raised.

9.4 IDL for PortableServer module

#pragma prefix "omg.org"
module PortableServer
{

// forward reference
interface POA;

native Servant;

typedef sequence<oct et> ObjectId;
9-38 CORBA V2.2 February 1998

9

exception ForwardR equest
{

Object forward_reference;
};

// **
//
// Policy interfaces
//
// **
enum ThreadPolicyValue {

ORB_CTRL_MODEL,
SINGLE_THREAD_MODEL

};
interface ThreadPol icy : CORBA::Policy
{

readonly attribute ThreadPolicyValue value;
};

enum LifespanPolicyValue {
TRANSIENT,
PERSISTENT

};
interface LifespanPolicy : CORBA::Policy
{

readonly attribute LifespanPolicyValue value;
};

enum IdU niquenessPolicyValue {
UNIQUE_ID,
MULTIPLE_ID

};
interface IdU niquenessPolicy : CORBA::Policy
{

readonly attribute IdUniqu enessPolicyValue value;
};

enum IdAssignmentPolicyValue {
USER_ID,
SYSTEM_ID

};
interface IdAssignmentPolicy : CORBA::Policy
{

readonly attribute IdAssignmentPolicyValue value;
};

enum ImplicitActivat ionPolicyValue {
IMPLICIT_ACTIVATION,
NO_IMPLICIT_ACTIVATION

};
interface ImplicitActivat ionPol icy : CORBA::Policy
CORBA V2.2 IDL for PortableServer module February 1998 9-39

9

{
readonly attribute ImplicitAct ivatio nPolicyValue value;

};

enum ServantRetentionPolicyValue {
RETAIN,
NON_RETAIN

};
interface ServantRetentionPol icy : CORBA::Policy
{

readonly attribute ServantRetentionPolicyValue value;
};

enum RequestProcessingPolicyValue {
USE_ACTIVE_OBJECT_MAP_ONLY,
USE_DEFAULT_SERVANT,
USE_SERVANT_MANAGER

};
interface RequestProcessingPol icy : CORBA::Policy
{

readonly attribute RequestProcessingPolicyValue value;
};

// **
//
// POAManager interface
//
// **

interface POAManager
{

exception AdapterInactive{};

void activate()
raises(AdapterInactive);

void hold_requests(in boolean wait_for_completion)
raises(AdapterInactive);

void discard_requests(in boolean wait_for_completion)
raises(AdapterInactive);

void deactivate(in boolean etherealize_objects,
in boolean wait_for_completion)

raises(AdapterInactive);
};

// **
//
// AdapterActivator interface
//
// **

interface AdapterActivator
9-40 CORBA V2.2 February 1998

9

{
boolean unknown_adapter(in POA parent, in string name);

};

// **
//
// ServantManager interface
//
// **

interface ServantManager
{ };

interface ServantActivator : ServantManager {
 Servant incarnate (

in ObjectId oid,
in POA adapter)

raises (Forward Request);

void etherealize (
in ObjectId oid,
in POA adapter,
in Servant serv,
in boolean cleanup_in_progress,
in boolean remaining_act ivations);

};

interface ServantLocator : ServantManager {
native Cookie;
Servant preinvoke(

in ObjectId oid,
in POA adapter,
in CORBA::Identifier operation,
out Cookie th e_cookie)

raises (Forward Request);

void postinvoke(
in ObjectId oid,
in POA adapter,
in CORBA::Identifier operation,
in Cookie th e_cookie,
in Servant the_servant);

};

// **
//
// POA interface
//
// **
CORBA V2.2 IDL for PortableServer module February 1998 9-41

9

interface POA
{

exception AdapterAlreadyExists {};
exception AdapterInactive {};
exception AdapterNonExistent {};
exception InvalidPolicy { unsigned short index; };
exception NoServ ant {};
exception ObjectAlreadyAct ive {};
exception ObjectNotAct ive {};
exception ServantAlreadyAct ive {};
exception ServantNotAct ive {};
exception WrongAdapter {};
exception WrongPolicy {};

//--
//
// POA creation and destruction
//
//--

POA create_POA(in string adapter_name,
in POAManager a_POAManager,
in CORBA::PolicyList policies)

raises (AdapterAlreadyExists, Inval idPolicy);

POA find_POA(in string adapter_name, in boolean act ivate_it)
raises (AdapterNonExistent);

void destroy(in boolean etherealize_objects,
in boolean wait_for_completion);

// **
//
// Factories for Policy objects
//
// **

ThreadPolicy
create_thread_policy(in ThreadPolicyValue value);

LifespanPolicy
create_lifespan_pol icy(in LifespanPolicyValue value);

IdUniquenessPolicy
create_id_uniqueness_policy

(in IdUniquenessPolicyValue value);
IdAssignmentPolicy

create_id_assignment_policy
(in IdAssignmentPolicyValue value);

ImplicitActivat ionPolicy
create_i mplicit_activat ion_policy
9-42 CORBA V2.2 February 1998

9

(in ImplicitActivat ionPolicyValue value);
ServantRetentionPolicy

create_servant_retention_policy
(in ServantRetentionPolicyValue value);

RequestProcessingPolicy
create_request_processing_policy

(in RequestProcessingPolicyValue value);

//--
//
// POA attr ibutes
//
//--

readonly attribute string the_name;
readonly attribute POA the_parent;
readonly attribute POAManager the_POAManager;
attribute AdapterActivator the_activator;

//--
//
// Servant Manager registration:
//
//--

ServantManager get_servant_manager()
raises (WrongPol icy);

void set_servant_manager(in ServantManager imgr)
raises (WrongPol icy);

//--
//
// operations for the USE_DEFA ULT_SERVANT policy
//
//--

Servant get_servant()
raises (NoSer vant, Wro ngPol icy);

void set_servant(in Servant p_servant)
raises (WrongPol icy);

// **
//
// object activation and deactivation
//
// **
CORBA V2.2 IDL for PortableServer module February 1998 9-43

9

ObjectId activate_object(in Servant p_servant)
raises (ServantAlreadyActi ve, WrongPolicy);

void activate_object_with_id(
in ObjectId id,
in Servant p_servant)

raises (ServantAlreadyActi ve, ObjectAlre adyAct ive,
WrongPol icy);

void deactivate_obj ect(in ObjectId oid)
raises (ObjectNotActive, Wrong Policy);

// **
//
// reference creation operations
//
// **

Object create_reference (
in CORBA::Reposi toryId intf)

raises (WrongPol icy);

Object create_reference_with_id (
in ObjectId oid,
in CORBA::Reposi toryId intf)

raises (WrongPol icy);

//--
//
// Identity mapping operations:
//
//--

ObjectId servant_to_id(in Servant p_servant)
raises (ServantNotActi ve, WrongPolicy);

Object servant_to_reference(in Servant p_servant)
raises (ServantNotActi ve, WrongPolicy);

Servant reference_to_servant(in Object reference)
raises (ObjectNotActive, Wrong Adapt er, WrongPoli cy);

ObjectId reference_to_id(in Object reference)
raises (WrongAd apter, Wro ngPol icy);

Servant id_to_servant(in ObjectId oid)
raises (ObjectNotActive, Wrong Policy);
9-44 CORBA V2.2 February 1998

9

Object id_to_reference(in ObjectId oid)
raises (ObjectNotActive, Wrong Policy);

};

// **
//
// Current interface
//
// **

interface Current : CORBA::Current
{

exception NoContext { };

POA get_POA() raises (NoContext);
ObjectId get_object_id() raises (NoContext);

};

};
CORBA V2.2 IDL for PortableServer module February 1998 9-45

9

to
9.5 UML Description of PortableServer

The following diagrams were generated by an automated tool and then annotated with
the cardinalities of the associations. They are intended to be an aid in comprehension
those who enjoy such representations. They are are not normative.

Figure 9-4 UML for main part of PortableServer

PortableServer::AdapterActivator
(from Portable Server)

unknown_adapter()

PortableServer::POAManager
(from Portable Server)

activate()
hold_requests()
discard_requests()
deactivate()

PortableServer::ServantManager
(from Portable Server)

PortableServer::ServantLocator
(from Portable Server)

preinvoke()
postinvoke()

PortableServer::ServantActivator
(from Portable Server)

incarnate()
etherealize()

PortableServer::Cookie
(from Portable Server)

PortableServer::Servant
(from Portable Server)

PortableServer::Current
(from Portable Server)

PortableServer::ObjectId
(from Portable Server)

CORBA::PolicyList
(from CORBA Core)

CORBA::Policy
(from CORBA Core)

PortableServer::POA
(from Portable Server)

CORBA::Current
(from CORBA Core)

get_POA()
get_object_id()

: CORBA::Policy
policy_type : CORBA::PolicyType

copy()
destroy()

the_name : string
the_parent : PortableServer::POA
the_manager : PortableServer::POAManager
the_activator : PortableServer::AdapterActivator

create_POA ()
find_POA()
destroy()
create_thread_policy()
create_lifespan_policy()
create_id_uniqueness_policy()
create_id_assignment_policy()
create_implicit_activation_policy()
create_servant_retention_policy()
create_request_processing_policy()
get_servant_manager()
set_servant_manager()
get_servant()
set_servant()
activate_object()
activate_object_iwth_id()
deactivate_object()
create_reference()
create_reference_with_id()
servant_to_id()
servant_to_reference()
reference_to_servant()
reference_to_id()
id_to_servant()
id_to_reference()

1..1 0..n

the_parent

1..n
the_manager

1..1

0..1

0..1

1..n

0..n

0..n

0..n

the_servant_manager : PortableServer::ServantManager
9-46 CORBA V2.2 February 1998

9

ly
Figure 9-5 UML for PortableServer policies

9.6 Usage Scenarios

This section illustrates how different capabilities of the POA may be used in
applications.

Note – In some of the following C++ examples, PortableServer names are not explicit
scoped. It is assumed that all the examples have the C++ statement
using namespace PortableServer;

IdAssignmentPolicyValue

USER_ID
SYSTEM_ID

IdUniquenessPolicyValue

UNIQUE_ID
MULTIPLE_ID

ImplicitActivationPolicyValue

IMPLICIT_ACTIVATION
NO_IMPLICIT_ACTIVATION

LifespanPolicyValue

TRANSIENT
PERSISTENT

RequestProcessingPolicyValue

USE_ACTIVE_OBJECT_MAP_ONLY
USE_DEFAULT_SERVANT

ThreadPolicyPolicyValue

ORB_CTRL_MODEL
SINGLE_THREAD_MODEL

USE_SERVANT_MANAGER

ServantRetentionPolicyValue
RETAIN
NON_RETAIN

IdAssignmentPolicy
value:IdAssignmentPolicyValue

IdUniquessPolicy
value:IdUniquenessPolicyValue

ImpliciActivationtPolicy
value:ImpliciActivationPolicyValue

LifespanPolicy
value:LifespanPolicyValue

RequestProcessingPolicy
value:RequestProcessingPolicyValue

ThreadPolicy
value:ThreadPolicyValue

ServantRetentionPolicy
value:ServantRetentionPolicyValue

CORBA::Policy
(from CORBA core)

policy_type : CORBA::PolicyType

copy()
destroy()

CORBA::PolicyList
(from CORBA core)

 : CORBA::Policy

valuevaluevalue

valuevaluevalue

value

1..n

0..n
CORBA V2.2 Usage Scenarios February 1998 9-47

9

the

 to

e, the

ct Id
9.6.1 Getting the root POA

All server applications must obtain a reference to the root POA, either to use it directly
to manage objects or to create new POA objects. The following example demonstrates
how the application server can obtain a reference to the root POA.

// C++
CORBA::ORB_ptr orb = CORBA::ORB_init(argc, argv);
CORBA::Object_ptr pfobj =

orb->resolve_initial_references("RootPOA");
PortableServer::POA_ptr rootPOA;
rootPOA = PortableServer::POA::narrow(pfobj);

9.6.2 Creating a POA

For a variety of reasons, a server application might want to create a new POA. The POA
is created as a child of an existing POA. In this example, it is created as a child of
root POA.

// C++
CORBA::PolicyList policies(2);
policies[0] = rootPOA->create_thread_policy(

PortableServer::ThreadPolicy::ORB_CTRL_MODEL);
policies[1] = rootPOA->create_lifespan_policy(

PortableServer::LifespanPolicy::TRANSIENT);
PortableServer::POA_ptr poa =

rootPOA->create_POA("my_little_poa",
PortableServer::POAManager::_nil(), policies);

9.6.3 Explicit Activation with POA-assigned Object Ids

By specifying the SYSTEM_ID policy on a POA, objects may be explicitly activated
through the POA without providing a user-specified identity value. Using this approach,
objects are activated by performing the activate_object operation on the POA with the
object in question. For this operation, the POA allocates, assigns, and returns a unique
identity value for the object.

Generally this capability is most useful for transient objects, where the Object Id needs
be valid only as long as the servant is active in the server. The Object Ids can remain
completely hidden and no servant manager need be provided. When this is the cas
identity and lifetime of the servant and the abstract object are essentially equivalent.
When POA-assigned Object Ids are used with persistent objects or objects that are
activated on demand, the application must be able to associate the generated Obje
value with its corresponding object state.

This example illustrates a simple implementation of transient objects using POA-
assigned Object Ids. It presumes a POA that has the SYSTEM_ID,
USE_SERVANT_MANAGER , and RETAIN policies.
9-48 CORBA V2.2 February 1998

9

is
Assume this interface:

// IDL
interface Foo
{

long doit();
}

This might result in the generation of the following skeleton:

class POA_Foo : public ServantBase
{
public:
...

virtual CORBA::Long doit() = 0;
}

Derive your implementation:

class MyFooServant : public POA_Foo
{

public:
 MyFooServant(POA_ptr poa, Long value)

: my_poa(POA::_duplicate(poa)), my_value(value) {}
~MyFooServant() { CORBA::release(my_poa); }
virtual POA_ptr _default_POA()

{ return POA::_duplicate(my_poa); }
virtual Long doit() { return my_value; }

protected:
POA_ptr my_poa;
Long my_value;

};

Now, somewhere in the program during initialization, probably in main() :

MyFooServant* afoo = new MyFooServant(poa,27);
PortableServer::ObjectId_var oid =

 poa->activate_object(afoo);
Foo_var foo = afoo->_this();
poa->the_POAManager()->activate();
orb->run();

This object is activated with a generated Object Id.

9.6.4 Explicit activation with user assigned Object Ids

An object may be explicitly activated by a server using a user-assigned identity. Th
may be done for several reasons. For example, a programmer may know that certain
objects are commonly used, or act as initial points of contact through which clients
CORBA V2.2 Usage Scenarios February 1998 9-49

9

t

ion
r

n

hown
access other objects (for example, factories). The server could be implemented to create
and explicitly activate these objects during initialization, avoiding the need for a servan
manager.

If an implementation has a reasonably small number of servants, the server may be
designed to keep them all active continuously (as long as the server is executing). If this
is the case, the implementation need not provide a servant manager. When the server
initializes, it could create all available servants, loading their state and identities from
some persistent store. The POA supports an explicit activation operation,
activate_object_with_id , that associates a servant with an Object Id. This operat
would be used to activate all of the existing objects managed by the server during serve
initialization. Assuming the POA has the USE_SERVANT_MANAGER policy and no
servant manager is associated with a POA, any request received by the POA for a
Object Id value not present in the Active Object Map will result in an
OBJECT_NOT_EXIST exception.

In simple cases of well-known, long-lived objects, it may be sufficient to activate them
with well known Object Id values during server initialization, before activating the POA.
This approach ensures that the objects are always available when the POA is active, and
doesn’t require writing a servant manager. It has severe practical limitations for a large
number of objects, though.

This example illustrates the explicit activation of an object using a user chosen Object Id.
This example presumes a POA that has the USER_ID, USE_SERVANT_MANAGER ,
and RETAIN policies.

The code is like the previous example, but replace the last portion of the example s
above with the following code:

// C++
MyFooServant* afoo = new MyFooServant(poa, 27);
PortableServer::ObjectId_var oid =
 PortableServer::string_to_ObjectId("myLittleFoo");
poa->activate_object_with_id(oid.in(), afoo);
Foo_var foo = afoo->_this();

9.6.5 Creating references before activation

It is sometimes useful to create references for objects before activating them. This
example extends the previous example to illustrate this option:
9-50 CORBA V2.2 February 1998

9

// C++
PortableServer::ObjectId_var oid =

PortableServer::string_to_ObjectId("myLittleFoo");
CORBA::Object_var obj = poa->create_reference_with_id(

oid.in(), "IDL:Foo:1.0");
Foo_var foo = Foo::_narrow(obj);

// ...later...

MyFooServant* afoo = new MyFooServant(poa, 27);
poa->activate_object_with_id(oid.in(), afoo);

9.6.6 Servant Manager Definition and Creation

Servant managers are object implementations, and are required to satisfy all of the
requirements of object implementations necessary for their intended function. Because
servant managers are local objects, and their use is limited to a single narrow role, some
simplifications in their implementation are possible. Note that these simplifications are
suggestions, not normative requirements. They are intended as examples of ways to
reduce the programming effort required to define servant managers.

A servant manager implementation must provide the following things:

• implementation code for either

• incarnate() and etherealize() , or

• preinvoke() and postinvoke()

• implementation code for the servant operations, as for all servants

The first two are obvious; their content is dictated by the requirements of the
implementation that the servant manager is managing. For the third point, the default
servant manager on the root POA already supplies this implementation code. User
written servant managers will have to provide this themselves.

Since servant managers are objects, they themselves must be activated. It is expected that
most servant managers can be activated on the root POA with its default set of policies
(see “POA Creation” on page 9-6). It is for this reason that the root POA has the
IMPLICIT_ACTIVATION policy: so that a servant manager can easily be activated.
Users may choose to activate a servant manager on other POAs.

The following is an example servant manager to activate objects on demand. This
example presumes a POA that has the USER_ID, USE_SERVANT_MANAGER , and
RETAIN policies.

Since RETAIN is in effect, the type of servant manager used is a ServantActivator. The
ORB supplies a servant activator skeleton class in a library:

// C++
namespace POA_PortableServer
{

class ServantActivator : public virtual ServantManager
{

CORBA V2.2 Usage Scenarios February 1998 9-51

9

n the

rom
public:
virtual ~ServantActivator();
virtual Servant incarnate(

const ObjectId& POA_ptr poa) = 0;
virtual void etherealize(

const ObjectId&, POA_ptr poa,
Servant, Boolean remaining_activations) = 0;

};
}

A ServantActivator servant manager might then look like:

// C++
class MyFooServantActivator : public POA_PortableServer::Ser-
vantActivator
{

public:
// ...
Servant incarnate(

const ObjectId& oid, POA_ptr poa)
{

String_var s = PortableServer::ObjectId_to_string
(oid);

if (strcmp(s, "myLittleFoo") == 0) {
return new MyFooServant(poa, 27);

} else {
throw CORBA::OBJECT_NOT_EXIST();

}
}
void etherealize(

const ObjectId& oid,
POA_ptr poa,
Servant servant,
Boolean remaining_activations)

{
if (remaining_activations == 0)

delete servant;
}
// ...

};

9.6.7 Object activation on demand

The precondition for this scenario is the existence of a client with a reference for an
object with which no servant is associated at the time the client makes a request o
reference. It is the responsibility of the ORB, in collaboration with the POA and the
server application to find or create an appropriate servant and perform the requested
operation on it. Such an object is said to be incarnated when it has an active servant (or,
incarnation). Note that the client had to obtain the reference in question previously f
9-52 CORBA V2.2 February 1998

9

est to

t
e
target

sulate

n a
 in
 POA
t

tivate
rvant

is

some source. From the client’s perspective, the abstract object exists as long as it holds a
reference, until it receives an OBJECT_NOT_EXIST system exception in a reply from
an attempted request on the object. Incarnation state does not imply existence or non-
existence of the abstract object.

Note – This specification does not address the issues of communication or server
process activation, as they are immaterial to the POA interface and operation. It is
assumed that the ORB activates the server if necessary, and can deliver the requ
the appropriate POA.

To support object activation on demand, the server application must register a servan
manager with the appropriate POA. Upon receiving the request, if the POA consults th
Active Object Map and discovers that there is no active servant associated with the
Object Id, the POA invokes the incarnate operation on the servant manager.

Note – An implication that this model has for GIOP is that the object key in the
request message must encapsulate the Object Id value. In addition, it may encap
other values as necessitated by the ORB implementation. For example, the server must
be able to determine to which POA the request should be directed. It could assig
different communication endpoint to each POA so that the POA identity is implicit
the request, or it could use a single endpoint for the entire server and encapsulate
identities in object key values. Note that this is not a concrete requirement; the objec
key may not actually contain any of those values. Whatever the concrete information
is, the ORB and POA must be able to use it to find the servant manager, invoke ac
if necessary (which requires the actual Object Id value), and/or find the active se
in some map.

The incarnate invocation passes the Object Id value to the servant manager. At th
point, the servant manager may take any action necessary to produce a servant that it
considers to be a valid incarnation of the object in question. The operation returns the
servant to the POA, which invokes the operation on it. The incarnate operation may
alternatively raise an OBJE CT_NOT_EXIST system exception that will be returned to
the invoking client. In this way, the user-supplied implementation is responsible for
determining object existence and non-existence.

After activation, the POA maintains the association of the servant and the Object Id in
the Active Object Map. (This example presumes the RETAIN and
USE_SERVANT_MANAGER policies.)

As an obvious example of transparent activation, the Object Id value could contain a key
for a record in a database that contains the object’s state. The servant manager would
retrieve the state from the database, construct a servant of the appropriate implementation
class (assuming an object-oriented programming language), initialize it with the state
from the database, and return it to the POA.

The example servant manager in the last section (“Servant Manager Definition and
Creation” on page 9-51) could be used for this scenario. Recall that the POA would have
the USER_ID, USE_SERVANT_MANAGER , and RETAIN policies.
CORBA V2.2 Usage Scenarios February 1998 9-53

9

the

.

all

Given such a ServantActivator, all that remains is initialization code such as the
following.

PortableServer::ObjectId_var oid =
PortableServer::string_to_ObjectId("myLittleFoo");

CORBA::Object_var obj = poa->create_reference_with_id(
oid, "IDL:foo:1.0");

MyFooServantActivator* fooIM = new MyFooServantActivator;
ServantActivator_var IMref = fooIM->_this();
poa->set_servant_manager(IMref);
poa->the_POAmanager()->activate();
orb->run();

9.6.8 Persistent objects with POA-assigned Ids

It is possible to access the Object Id value assigned to an object by the POA, with
POA::reference_to_id operation. If the reference is for an object managed by the
POA that is the operation’s target, the operation will return the Object Id value, whether
it was assigned by the POA or the user. By doing this, an implementation may provide
a servant manager that associates the POA-allocated Object Id values with persistently
stored state. It may also pass the POA-allocated Object Id values to POA operations such
as activate_object_with_id and create_reference_w ith_id .

A POA with the PERSISTENT policy may be destroyed and later reinstantiated in the
same or a different process. A POA with both the SYSTEM_ID and PERSISTENT
policies generates Object Id values are unique across all instantiations of the same POA

9.6.9 Multiple Object Ids Mapping to a Single Servant

Each POA is created with a policy that indicates whether or not servants are allowed to
support multiple object identities simultaneously. If a POA allows multiple identities per
servant, the POA’s treatment of the servants is affected in the following ways:

• Servants of the type may be explicitly activated multiple times with different
identity values without raising an exception.

• A servant cannot be mapped onto or converted to an individual object reference
using that POA, since the identity is potentially ambiguous.

9.6.10 One Servant for all Objects

By using the USE_DEFAULT_SERVANT policy, the developer can create a POA that
will use a single servant to implement all of its objects. This approach is useful when
there is very little data associated with each object, so little that the data can be encoded
in the Object Id.

The following example illustrates this approach by using a single servant to incarnate
CORBA objects that export a given interface in the context of a server. This example
presumes a POA that has the USER_ID, NON_RETAIN, and
USE_DEFAULT_SERVANT policies.
9-54 CORBA V2.2 February 1998

9

Two interfaces are defined in IDL. The FileDescriptor interface is supported by objects
that will encapsulate access to operations in a file, associated with a file system. Global
operations in a file system, such as the ones necessary to create FileDescriptor objects,
are supported by objects that export the FileSystem interface.

// IDL
interface FileDe scriptor {

typedef sequence<o ctet> DataBuf fer;

long write (in DataBuffer buffer);
DataBuf fer read (in long num_bytes);
void destroy ();

};

interface FileSystem {
...
FileDescriptor open (in string file_name, in long flags);
...

};

Implementation of these two IDL interfaces may inherit from static skeleton classes
generated by an IDL to C++ compiler as follows:

// C++
class FileDescriptorImpl : public POA_FileDescriptor
{

public:
FileDescriptorImpl(POA_ptr poa);
~FileDescriptorImpl();
POA_ptr _default_POA();
CORBA::Long write(

const FileDescriptor::DataBuffer& buffer);
FileDescriptor::DataBuffer* read(

CORBA::Long num_bytes);
void destroy();

private:
POA_ptr my_poa;

};

class FileSystemImpl : public POA_FileSystem
{

public:
FileSystemImpl(POA_ptr poa);
~FileSystemImpl();
POA_ptr _default_POA();
FileDescriptor_ptr open(

const char* file_name, CORBA::Long flags);
private:

POA_ptr my_poa;
FileDescriptorImpl* fd_servant;

};
CORBA V2.2 Usage Scenarios February 1998 9-55

9

e the

, after
ce

al file
A single servant may be used to serve all requests issued to all FileDescriptor objects
created by a FileSystem object. The following fragment of code illustrates the steps to
perform when a FileSystem servant is created.

// C++
FileSystemImpl::FileSystemImpl(POA_ptr poa)

: my_poa(POA::_duplicate(poa))
{

fd_servant = new FileDescriptorImpl(poa);
poa->set_servant(fd_servant);

}

The following fragment of code illustrates how FileDescriptor objects are created as a
result of invoking an operation (open) exported by a FileSystem object. First, a local
file descriptor is created using the appropriate operating system call. Then, a CORBA
object reference is created and returned to the client. The value of the local file descriptor
will be used to distinguish the new FileDescr iptor object from other FileDe scriptor
objects. Note that FileDescriptor objects in the example are transient, since they us
value of their file descriptors for their ObjectIds, and of course the file descriptors are
only valid for the life of a process.

// C++
FileDescriptor_ptr
FileSystemImpl::open(

const char* file_name, CORBA::Long flags)
{

int fd = ::open(file_name, flags);
ostrstream ostr;
ostr << fd;
PortableServer::ObjectId_var oid =

PortableServer::string_to_ObjectId(ostr.str());
Object_var obj = my_poa->create_reference_with_id(

 oid.in(),"IDL:FileDescriptor:1.0");
return FileDescriptor::_narrow(obj);

}

Any request issued to a FileDescriptor object is handled by the same servant. In the
context of a method invocation, the servant determines which particular object is being
incarnated by invoking an operation that returns a reference to the target object and
that, invoking POA::ref erence_to_id . In C++, the operation used to obtain a referen
to the target object is _this() . Typically, the ObjectId value associated with the
reference will be used to retrieve the state of the target object. However, in this example,
such step is not required since the only thing that is needed is the value for the loc
descriptor and that value coincides with the ObjectId value associated with the
reference.

Implementation of the read operation is rather simple. The servant determines which
object it is incarnating, obtains the local file descriptor matching its identity, performs
the appropriate operating system call, and returns the result in a DataBuffer sequence.
9-56 CORBA V2.2 February 1998

9

t are

o the
le

t

acy

A

entries
f
// C++
FileDescriptor::DataBuffer*
FileDescriptorImpl::read(CORBA::Long num_bytes)
{

FileDescriptor_var me = _this();
PortableServer::ObjectId_var oid =

my_poa->reference_to_id(me.in());
CORBA::String_var s =

PortableServer::ObjectId_to_string(oid.in());
istrstream is(s);
int fd;
is >> fd;
CORBA::Octet* buffer = DataBuffer::alloc_buf(num_bytes);
int len = ::read(fd, buffer, num_bytes);
DataBuffer* result = new DataBuffer(len, len, buffer, 1);
return result;

}

Using a single servant per interface is useful in at least two situations.

• In one case, it may be appropriate for encapsulating access to legacy APIs tha
not object-oriented (system calls in the Unix environment, as we have shown in the
example).

• In another case, this technique is useful in handling scalability issues related t
number of CORBA objects that can be associated with a server. In the examp
above, there may be a million FileDescriptor objects in the same server and this
would only require one entry in the ORB. Although there are operating system
limitations in this respect (a Unix server is not able to open so many local file
descriptors) the important point to take into account is that usage of CORBA doesn'
introduce scalability problems but provides mechanisms to handle them.

9.6.11 Single Servant, many objects and types, using DSI

The ability to associate a single DSI servant with many CORBA objects is rather
powerful in some scenarios. It can be the basis for development of gateways to leg
systems or software that mediates with external hardware, for example.

Usage of the DSI is illustrated in the following example. This example presumes a PO
that supports the USER_ID, USE_DEFAULT_SERVANT , and RETAIN policies.

A single servant will be used to incarnate a huge number of CORBA objects, each of
them representing a separate entry in a Database. There may be several types of
in the Database, representing different entity types in the Database model. Each type o
entry in the Database is associated with a separate interface which comprises operations
supported by the Database on entries of that type. All these interfaces inherit from the
DatabaseEntry interface. Finally, an object supporting the DatabaseAgent interface
supports basic operations in the database such as creating a new entry, destroying an
existing entry, etc.
CORBA V2.2 Usage Scenarios February 1998 9-57

9

c
// IDL
interface DatabaseEntry {

readonly attribute string name;
};

interface Employee : DatabaseEntry {
attribute long id;
attribute long salary;

};

...

interface DatabaseAgent {
DatabaseEntry create_entry (

in string key,
in CORBA::Identifier entry_type,
in NVPairSeque nce initial_att ribute_values

) ;
void destroy_entry (in string key);
...

};

Implementation of the DatabaseEntry interface may inherit from the standard dynami
skeleton class as follows:

// C++
class DatabaseEntryImpl :

public POA_PortableServer::DynamicImplementation
{
public:

DatabaseEntryImpl (DatabaseAccessPoint db);
virtual void invoke (ServerRequest_ptr request);
~DatabaseEntryImpl ();

virtual POA_ptr _defaultPOA()
{

return poa;
}

};

On the other hand, implementation of the DatabaseAgent interface may inherit from
a static skeleton class generated by an IDL to C++ compiler as follows:
9-58 CORBA V2.2 February 1998

9

l

 is

mmon
// C++
class DatabaseAgentImpl :

public DatabaseAgentImplBase
{
protected:

DatabaseAccessPoint mydb;
DatabaseEntryImpl * common_servant;

public:
DatabaseAgentImpl ();
virtual DatabaseEntry_ptr create_entry (

const char * key,
const char * entry_type,
const NVPairSequence& initial_attribute_values

);
virtual void destroy_entry (const char * key);
~DatabaseAgentImpl ();

};

A single servant may be used to serve all requests issued to all DatabaseEntry objects
created by a DatabaseAgent object. The following fragment of code illustrates the
steps to perform when a DatabaseAgent servant is created. First, access to the
database is initialized. As a result, some kind of descriptor (a DatabaseAccessPoint loca
object) used to operate on the database is obtained. Finally, a servant will be created and
associated with the POA.

// C++
void DatabaseAgentImpl::DatabaseAgentImpl ()
{

mydb = ...;
common_servant = new DatabaseEntryImpl(mydb);
poa->set_servant(common_servant);

};

The code used to create DatabaseEntry objects representing entries in the database
similar to the one used for creating FileDescriptor objects in the example of the
previous section. In this case, a new entry is created in the database and the key
associated with that entry will be used to represent the identity for the corresponding
DatabaseEntry object. All requests issued to a DatabaseEntry object are handled by
the same servant because references to this type of object are associated with a co
POA created with the USE_DEFAULT_SERVANT policy.
CORBA V2.2 Usage Scenarios February 1998 9-59

9

 in
the
// C++
DatabaseEntry_ptr DatabaseAgentImpl::create_entry (

const char * key,
const char * entry_type,
const NVPairSequence& initial_attribute_values)

// creates a new entry in the database:
mydb->new_entry (key, ...);

// creates a reference to the CORBA object used to
// encapsulate access to the new entry in the database.
// There is an interface for each entry type:
CORBA::Object_ptr obj = poa->create_reference_with_id(

string_to_ObjectId (key),
identifierToRepositoryId (entry_type),

);

DatabaseEntry_ptr entry = DatabaseEntry::_narrow (obj);
CORBA::release (obj);
return entry;

};

Any request issued to a DatabaseEntry object is handled by the same servant. In the
context of a method invocation, the servant determines which particular object it is
incarnating, obtains the database key matching its identity, invokes the appropriate
operation in the database and returns the result as an output parameter in the
ServerRequest object.

Sometimes, a program may need to determine the type of an entry in the database
order to invoke operations on the entry. If that is the case, the servant may obtain
type of an entry based on the interface supported by the DatabaseEntry object
encapsulating access to that entry. This interface may be obtained by means of invoking
the get_interface operation exported by the reference to the DatabaseEntry object.
9-60 CORBA V2.2 February 1998

9

 at the

.

// C++
void DatabaseEntryImpl::invoke (ServerRequest_ptr request)
{

CORBA::Object_ptr current_obj = _this ();

// The servant determines the key associated with
// the database entry represented by current_obj:
PortableServer::ObjectId oid =

poa->reference_to_id (current_obj);
char * key = ObjectId_to_string (oid);

// The servant handles the incoming CORBA request. This
// typically involves the following steps:
// 1. mapping the CORBA request into a database request
// using the key obtained previously
// 2. constructing output parameters to the CORBA request
// from the response to the database request
...

};

Note that in this example, we may have a billion DatabaseEntry objects in a server
requiring only a single entry in map tables supported by the POA (that is, the ORB at the
server). No permanent storage is required for references to DatabaseEntry objects
server. Actually, references to DatabaseEntry objects will only occupy space:

• at clients, as long as those references are used; or

• at the server, only while a request is being served.

Scalability problems can be handled using this technique. There are many scenarios
where this scalability causes no penalty in terms of performance (basically, when there is
no need to restore the state of an object, each time a request to it is being served)
CORBA V2.2 Usage Scenarios February 1998 9-61

9

9-62 CORBA V2.2 February 1998

Interoperability Overview 10
neous

ORB interoperability specifies a comprehensive, flexible approach to supporting
networks of objects that are distributed across and managed by multiple, heteroge
CORBA-compliant ORBs. The approach to “interORBability” is universal, because its
elements can be combined in many ways to satisfy a very broad range of needs.

Contents

This chapter contains the following sections.

10.1 Elements of Interoperability

The elements of interoperability are as follows:

• ORB interoperability architecture

• Inter-ORB bridge support

• General and Internet inter-ORB Protocols (GIOPs and IIOPs)

In addition, the architecture accommodates environment-specific inter-ORB
protocols (ESIOPs) that are optimized for particular environments such as DCE.

Section Title Page

“Elements of Interoperability” 10-1

“Relationship to Previous Versions of CORBA” 10-4

“Examples of Interoperability Solutions” 10-5

“Motivating Factors” 10-8

“Interoperability Design Goals” 10-9
 CORBA V2.2 February 1998 10-1

10

g

ed to

)

s”

.
rior

y

l in
s
10.1.1 ORB Interoperability Architecture

The ORB Interoperability Architecture provides a conceptual framework for definin
the elements of interoperability and for identifying its compliance points. It also
characterizes new mechanisms and specifies conventions necessary to achieve
interoperability between independently produced ORBs.

Specifically, the architecture introduces the concepts of immediate and mediated
bridging of ORB domains. The Internet inter-ORB Protocol (IIOP) forms the common
basis for broad-scope mediated bridging. The inter-ORB bridge support can be us
implement both immediate bridges and to build “half-bridges” to mediated bridge
domains.

By use of bridging techniques, ORBs can interoperate without knowing any details of
that ORB’s implementation, such as what particular IPC or protocols (such as ESIOPs
are used to implement the CORBA specification.

The IIOP may be used in bridging two or more ORBs by implementing “half bridge
which communicate using the IIOP. This approach works both for stand-alone ORBs,
and for networked ones which use an ESIOP.

The IIOP may also be used to implement an ORB’s internal messaging, if desired
Since ORBs are not required to use the IIOP internally, the goal of not requiring p
knowledge of each others’ implementation is fully satisfied.

10.1.2 Inter-ORB Bridge Support

The interoperability architecture clearly identifies the role of different kinds of
domains for ORB-specific information. Such domains can include object reference
domains, type domains, security domains (e.g., the scope of a Principal identifier), a
transaction domain, and more.

Where two ORBs are in the same domain, they can communicate directly. In man
cases, this is the preferable approach. This is not always true, however, since
organizations often need to establish local control domains.

When information in an invocation must leave its domain, the invocation must traverse
a bridge. The role of a bridge is to ensure that content and semantics are mapped from
the form appropriate to one ORB to that of another, so that users of any given ORB
only see their appropriate content and semantics.

The inter-ORB bridge support element specifies ORB APIs and conventions to enable
the easy construction of interoperability bridges between ORB domains. Such bridge
products could be developed by ORB vendors, Sieves, system integrators or other
third-parties.

Because the extensions required to support Inter-ORB Bridges are largely genera
nature, do not impact other ORB operation, and can be used for many other purpose
besides building bridges, they are appropriate for all ORBs to support. Other
applications include debugging, interposing of objects, implementing objects with
interpreters and scripting languages and dynamically generating implementations.
10-2 CORBA V2.2 February 1998

10

bject

ets a
RPC
lable
ith

uch

itated
at
t

 by
The inter-ORB bridge support can also be used to provide interoperability with non-
CORBA systems, such as Microsoft’s Component Object Model (COM). The ease of
doing this will depend on the extent that those systems conform to the CORBA O
Model.

10.1.3 General Inter-ORB Protocol (GIOP)

The General Inter-ORB Protocol (GIOP) element specifies a standard transfer syntax
(low-level data representation) and a set of message formats for communications
between ORBs. The GIOP is specifically built for ORB to ORB interactions and is
designed to work directly over any connection-oriented transport protocol that me
minimal set of assumptions. It does not require or rely on the use of higher level
mechanisms. The protocol is simple (as simple as possible, but not simpler), sca
and relatively easy to implement. It is designed to allow portable implementations w
small memory footprints and reasonable performance, with minimal dependencies on
supporting software other than the underlying transport layer.

While versions of the GIOP running on different transports would not be directly
interoperable, their commonality would allow easy and efficient bridging between s
networking domains.

10.1.4 Internet Inter-ORB Protocol (IIOP)

The Internet Inter-ORB Protocol (IIOP) element specifies how GIOP messages are
exchanged using TCP/IP connections. The IIOP specifies a standardized
interoperability protocol for the Internet, providing “out of the box” interoperation
with other compatible ORBs based on the most popular product- and vendor-neutral
transport layer. It can also be used as the protocol between half-bridges (see below).

The protocol is designed to be suitable and appropriate for use by any ORB to
interoperate in Internet Protocol domains unless an alternative protocol is necess
by the specific design center or intended operating environment of the ORB. In th
sense it represents the basic inter-ORB protocol for TCP/IP environments, a mos
pervasive transport layer.

The IIOP’s relationship to the GIOP is similar to that of a specific language mapping
to OMG IDL; the GIOP may be mapped onto a number of different transports, and
specifies the protocol elements that are common to all such mappings. The GIOP
itself, however, does not provide complete interoperability, just as IDL cannot be used
to built complete programs. The IIOP, and other similar mappings to different
transports, are concrete realizations of the abstract GIOP definitions, as shown in
Figure 10-1 on page 10-4.
CORBA V2.2 Elements of Interoperability February 1998 10-3

10

o

ices
s the

to

Figure 10-1 Inter-ORB Protocol Relationships.

10.1.5 Environment-Specific Inter-ORB Protocols (ESIOPs)

This specification also makes provision for an open ended set of Environment-Specific
Inter-ORB Protocols (ESIOPs). Such protocols would be used for “out of the box”
interoperation at user sites where a particular networking or distributing computing
infrastructure is already in general use.

Because of the opportunity to leverage and build on facilities provided by the specific
environment, ESIOPs might support specialized capabilities such as those relating to
security and administration.

While ESIOPs may be optimized for particular environments, all ESIOP specifications
will be expected to conform to the general ORB interoperability architecture
conventions to enable easy bridging. The inter-ORB bridge support enables bridges t
be built between ORB domains that use the IIOP and ORB domains that use a
particular ESIOP.

10.2 Relationship to Previous Versions of CORBA

The ORB Interoperability Architecture builds on Common Object Request Broker
Architecture by adding the notion of ORB Services, and their domains. (ORB Serv
are described in “ORBs and ORB Services” on page 11-3). The architecture define
problem of ORB interoperability in terms of bridging between those domains, and
defines several ways in which those bridges can be constructed: the bridges can be
internal (in-line) and external (request-level) to ORBs.

APIs included in the interoperability specifications include compatible extensions
previous versions of CORBA to support request level bridging:

• A Dynamic Skeleton Interface (DSI) is the basic support needed for building
request level bridges; it is the server side analogue of the Dynamic Invocation
Interface, and in the same way it has general applicability beyond bridging. For
information about the Dynamic Skeleton Interface, refer to the Dynamic Skeleton
Interface chapter in this book.

GIOP

IIOP

CORBA/IDL

ESIOPs

other GIOP
mappings...

Mandatory for CORBA
10-4 CORBA V2.2 February 1998

10

rt
ce

e

for
 GUI
 will
to

ed to
B C
• APIs for managing object references have been defined, building on the suppo
identified for the Relationship Service. The APIs are defined in Object Referen
Operations in the ORB Interface chapter of this book. The Relationship Service is
described in CORBAservices: Common Object Service Specifications; refer to the
CosObjectIdentity Module section.

10.3 Examples of Interoperability Solutions

The elements of interoperability (Inter-ORB Bridges, General and Internet Inter-ORB
Protocols, Environment-Specific Inter-ORB Protocols) can be combined in a variety of
ways to satisfy particular product and customer needs. This section provides some
examples.

10.3.1 Example 1

ORB product A is designed to support objects distributed across a network and provide
“out of the box” interoperability with compatible ORBs from other vendors. In
addition it allows for bridges to be built between it and other ORBs that use
environment-specific or proprietary protocols. To accomplish this, ORB A uses th
IIOP and provides inter-ORB bridge support.

10.3.2 Example 2

ORB product B is designed to provide highly optimized, very high speed support
objects located on a single machine; for example, to support thousands of Fresco
objects operated on at near function-call speeds. In addition, some of the objects
need to be accessible from other machines and objects on other machines will need
be infrequently accessed. To accomplish this, ORB A provides a half-bridge to support
the Internet IOP for communication with other “distributed” ORBs.

10.3.3 Example 3

ORB product C is optimized to work in a particular operating environment. It uses a
particular environment-specific protocol based on distributed computing services that
are commonly available at the target customer sites. In addition, ORB C is expect
interoperate with arbitrary other ORBs from other vendors. To accomplish this, OR
provides inter-ORB bridge support and a companion half-bridge product (supplied by
the ORB vendor or some third-party) provides the connection to other ORBs. The half-
bridge uses the IIOP to enable interoperability with other compatible ORBs.

10.3.4 Interoperability Compliance

An ORB is considered to be interoperability-compliant when it meets the following
requirements:
CORBA V2.2 Examples of Interoperability Solutions February 1998 10-5

10

n

d
ry

er

 IIOP

ere

, the
ther
tion

dge
ay
• In the CORBA Core part of this specification, standard APIs are provided by a
ORB to enable the construction of request level inter-ORB bridges. APIs are
defined by the Dynamic Invocation Interface, the Dynamic Skeleton Interface, an
by the object identity operations, which are described in the Interface Reposito
chapter in this book.

• An Internet Inter-ORB Protocol (IIOP) (explained in Chapter 12) defines a transf
syntax and message formats (described independently as the General Inter-ORB
Protocol), and defines how to transfer messages via TCP/IP connections. The
can be supported natively or via a half-bridge.

Support for additional ESIOPs and other proprietary protocols is optional in an
interoperability-compliant system. However, any implementation that chooses to use
the other protocols defined by the CORBA interoperability specifications must adh
to those specifications to be compliant with CORBA interoperability.

Figure 10-2 on page 10-7 shows examples of interoperable ORB domains that are
CORBA-compliant.

These compliance points support a range of interoperability solutions. For example
standard APIs may be used to construct “half bridges” to the IIOP, relying on ano
“half bridge” to connect to another ORB. The standard APIs also support construc
of “full bridges,” without using the Internet IOP to mediate between separated bri
components. ORBs may also use the Internet IOP internally. In addition, ORBs m
use GIOP messages to communicate over other network protocol families (such as
Novell or OSI), and provide transport-level bridges to the IIOP.

The GIOP is described separately from the IIOP to allow future specifications to treat
it as an independent compliance point.
10-6 CORBA V2.2 February 1998

10
Figure 10-2 Examples of CORBA Interoperability Compliance

ORB Domains ORB Domains

IIOP

DCE-CIOP

*e.g. Proprietary protocol or
GIOP OSI mapping

IIOP

IIOP Other
Protocol*

CORBA V2.0 Interoperable

CORBA V2.0 Interoperable

CORBA V2.0 Interoperable

Half
Bridge

Half
Bridge
CORBA V2.2 Examples of Interoperability Solutions February 1998 10-7

10

everal

 on a

 to

ake

ts

.

al to

er a

d

10.4 Motivating Factors

This section explains the factors that motivated the creation of interoperability
specifications.

10.4.1 ORB Implementation Diversity

Today, there are many different ORB products that address a variety of user needs. A
large diversity of implementation techniques is evident. For example, the time for a
request ranges over at least 5 orders of magnitude, from a few microseconds to s
seconds. The scope ranges from a single application to enterprise networks. Some
ORBs have high levels of security, others are more open. Some ORBs are layered
particular widely used protocol, others use highly optimized, proprietary protocols.

The market for object systems and applications that use them will grow as object
systems are able to be applied to more kinds of computing. From application
integration to process control, from loosely coupled operating systems to the
information superhighway, CORBA-based object systems can be the common
infrastructure.

10.4.2 ORB Boundaries

Even when it is not required by implementation differences, there are other reasons
partition an environment into different ORBs.

For security reasons, it may be important to know that it is not generally possible to
access objects in one domain from another. For example, an “internet ORB” may m
public information widely available, but a “company ORB” will want to restrict what
information can get out. Even if they used the same ORB implementation, these two
ORBs would be separate, so that the company could allow access to public objec
from inside the company without allowing access to private objects from outside. Even
though individual objects should protect themselves, prudent system administrators
will want to avoid exposing sensitive objects to attacks from outside the company

Supporting multiple ORBs also helps handle the difficult problem of testing and
upgrading the object system. It would be unwise to test new infrastructure without
limiting the set of objects that might be damaged by bugs, and it may be impractic
replace “the ORB” everywhere simultaneously. A new ORB might be tested and
deployed in the same environment, interoperating with the existing ORB until eith
complete switch is made or it incrementally displaces the existing one.

Management issues may also motivate partitioning an ORB. Just as networks are
subdivided into domains to allow decentralized control of databases, configurations,
resources, etc., management of the state in an ORB (object reference location and
translation information, interface repositories, per-object data, etc.) might also be one
by creating sub-ORBs.
10-8 CORBA V2.2 February 1998

10

asons
rs in

e

late
 a
ame
cess
 the

s to

ss

g

 is no

tocol

 not
10.4.3 ORBs Vary in Scope, Distance, and Lifetime

Even in a single computing environment produced by a single vendor, there are re
why some of the objects an application might use would be in one ORB, and othe
another ORB. Some objects and services are accessed over long distances, with more
global visibility, longer delays, and less reliable communication. Other objects are
nearby, are not accessed from elsewhere, and provide higher quality service. By
deciding which ORB to use, an implementer sets expectations for the clients of th
objects.

One ORB might be used to retain links to information that is expected to accumu
over decades, such as a library archives. Another ORB might be used to manage
distributed chess program in which the objects should all be destroyed when the g
is over. Although while it is running, it makes sense for “chess ORB” objects to ac
the “archives ORB,” we would not expect the archives to try to keep a reference to
current board position.

10.5 Interoperability Design Goals

Because of the diversity in ORB implementations, multiple approaches to
interoperability are required. Options identified in previous versions of CORBA
include:

• Protocol Translation, where a gateway residing somewhere in the system maps
requests from the format used by one ORB to that used by another;

• Reference Embedding, where invocation using a native object reference delegate
a special object whose job it is to forward that invocation to another ORB;

• Alternative ORBs, where ORB implementations agree to coexist in the same addre
space so easily that a client or implementation can transparently use any of them,
and pass object references created by one ORB to another ORB without losin
functionality.

In general, there is no single protocol that can meet everyone's needs, and there
single means to interoperate between two different protocols. There are many
environments in which multiple protocols exist, and there are ways to bridge between
environments that share no protocols.

This specification adopts a flexible architecture that allows a wide variety of ORB
implementations to interoperate and that includes both bridging and common pro
elements.

The following goals guided the creation of interoperability specifications:

• The architecture and specifications should allow high performance, small footprint,
lightweight interoperability solutions.

• The design should scale, should not be unduly difficult to implement and should
unnecessarily restrict implementation choices.
CORBA V2.2 Interoperability Design Goals February 1998 10-9

10

e

• Interoperability solutions should be able to work with any vendors’ existing ORB

implementations, with respect to their CORBA compliant core feature set; thos
implementations are diverse.

• All operations implied by the CORBA object model (i.e., the stringify and
destringify operations defined on the CORBA:ORB pseudo-object, and all the
operations on CORBA:Object) as well as type management (e.g., narrowing, as
needed by the C++ mapping) should be supported.

10.5.1 Non-Goals

The following were taken into account, but were not goals:

• Support for security

• Support for future ORB Services
10-10 CORBA V2.2 February 1998

ORB Interoperability Architecture 11
Contents

This chapter contains the following sections.

11.1 Overview

The original Request for Proposal on Interoperability (OMG Document 93-9-15)
defines interoperability as the ability for a client on ORB A to invoke an OMG IDL-
defined operation on an object on ORB B, where ORB A and ORB B are
independently developed. It further identifies general requirements including in
particular:

• Ability for two vendors’ ORBs to interoperate without prior knowledge of each
other’s implementation.

• Support of all ORB functionality.

Section Title Page

“Overview” 11-1

“ORBs and ORB Services” 11-3

“Domains” 11-5

“Interoperability Between ORBs” 11-7

“Object Addressing” 11-11

“An Information Model for Object References” 11-14

“Code Set Conversion” 11-22

“Example of Generic Environment Mapping” 11-34

“Relevant OSFM Registry Interfaces” 11-35
 CORBA V2.2 February 1998 11-1

11

e
ate

be
ents
y

B
re.
y

d
• Preservation of content and semantics of ORB-specific information across ORB
boundaries (for example, security).

In effect, the requirement is for invocations between client and server objects to b
independent of whether they are on the same or different ORBs, and not to mand
fundamental modifications to existing ORB products.

11.1.1 Domains

The CORBA Object Model identifies various distribution transparencies that must
supported within a single ORB environment, such as location transparency. Elem
of ORB functionality often correspond directly to such transparencies. Interoperabilit
can be viewed as extending transparencies to span multiple ORBs.

In this architecture a domain is a distinct scope, within which certain common
characteristics are exhibited and common rules are observed: over which a distribution
transparency is preserved. Thus, interoperability is fundamentally involved with
transparently crossing such domain boundaries.

Domains tend to be either administrative or technological in nature, and need not
correspond to the boundaries of an ORB installation. Administrative domains include
naming domains, trust groups, resource management domains and other “run-time”
characteristics of a system. Technology domains identify common protocols, syntaxes
and similar “build-time” characteristics. In many cases, the need for technology
domains derives from basic requirements of administrative domains.

Within a single ORB, most domains are likely to have similar scope to that of the OR
itself: common object references, network addresses, security mechanisms, and mo
However, it is possible for there to be multiple domains of the same type supported b
a given ORB: internal representation on different machine types, or security domains.
Conversely, a domain may span several ORBs: similar network addresses may be use
by different ORBs, type identifiers may be shared.

11.1.2 Bridging Domains

The abstract architecture describes ORB interoperability in terms of the translation
required when an object request traverses domain boundaries. Conceptually, a mapping
or bridging mechanism resides at the boundary between the domains, transforming
requests expressed in terms of one domain’s model into the model of the destination
domain.

The concrete architecture identifies two approaches to inter-ORB bridging:

• At application level, allowing flexibility and portability

• At ORB level, built into the ORB itself
11-2 CORBA V2.2 February 1998

11

e
t,

ese

RB’s

n

s, or

ge
 and

est.
es,
rvices

B

.

11.2 ORBs and ORB Services

The ORB Core is that part of the ORB which provides the basic representation of
objects and the communication of requests. The ORB Core therefore supports th
minimum functionality to enable a client to invoke an operation on a server objec
with (some of) the distribution transparencies required by CORBA.

An object request may have implicit attributes which affect the way in which it is
communicated - though not the way in which a client makes the request. These
attributes include security, transactional capabilities, recovery, and replication. Th
features are provided by “ORB Services,” which will in some ORBs be layered as
internal services over the core, or in other cases be incorporated directly into an O
core. It is an aim of this specification to allow for new ORB Services to be defined in
the future, without the need to modify or enhance this architecture.

Within a single ORB, ORB services required to communicate a request will be
implemented and (implicitly) invoked in a private manner. For interoperability betwee
ORBs, the ORB services used in the ORBs, and the correspondence between them,
must be identified.

11.2.1 The Nature of ORB Services

ORB Services are invoked implicitly in the course of application-level interactions.
ORB Services range from fundamental mechanisms such as reference resolutionand
message encoding to advanced features such as support for security, transaction
replication.

An ORB Service is often related to a particular transparency. For example, messa
encoding – the marshaling and unmarshaling of the components of a request into
out of message buffers – provides transparency of the representation of the requ
Similarly, reference resolution supports location transparency. Some transparenci
such as security, are supported by a combination of ORB Services and Object Se
while others, such as replication, may involve interactions between ORB Services
themselves.

ORB Services differ from Object Services in that they are positioned below the
application and are invoked transparently to the application code. However, many OR
Services include components which correspond to conventional Object Services in that
they are invoked explicitly by the application.

Security is an example of service with both ORB Service and normal Object Service
components, the ORB components being those associated with transparently
authenticating messages and controlling access to objects while the necessary
administration and management functions resemble conventional Object Services

11.2.2 ORB Services and Object Requests

Interoperability between ORBs extends the scope of distribution transparencies and
other request attributes to span multiple ORBs. This requires the establishment of
relationships between supporting ORB Services in the different ORBs.
CORBA V2.2 ORBs and ORB Services February 1998 11-3

11

is

ect,

t,

f a
tiple

t

s

t
 true
and
e or

he
order

nd
In order to discuss how the relationships between ORB Services are established, it
necessary to describe an abstract view of how an operation invocation is communicated
from client to server object.

• The client generates an operation request, using a reference to the server obj
explicit parameters, and an implicit invocation context. This is processed by certain
ORB Services on the client path.

• On the server side, corresponding ORB Services process the incoming reques
transforming it into a form directly suitable for invoking the operation on the server
object.

• The server object performs the requested operation.

• Any result of the operation is returned to the client in a similar manner.

The correspondence between client-side and server-side ORB Services need not be
one-to-one and in some circumstances may be far more complex. For example, i
client application requests an operation on a replicated server, there may be mul
server-side ORB service instances, possibly interacting with each other.

In other cases, such as security, client-side or server-side ORB Services may interac
with Object Services such as authentication servers.

11.2.3 Selection of ORB Services

The ORB Services used are determined by:

• Static properties of both client and server objects; for example, whether a server i
replicated.

• Dynamic attributes determined by a particular invocation context; for example,
whether a request is transactional.

• Administrative policies (e.g., security).

Within a single ORB, private mechanisms (and optimizations) can be used to establish
which ORB Services are required and how they are provided. Service selection migh
in general require negotiation to select protocols or protocol options. The same is
between different ORBs: it is necessary to agree which ORB Services are used,
how each transforms the request. Ultimately, these choices become manifest as on
more protocols between the ORBs or as transformations of requests.

In principle, agreement on the use of each ORB Service can be independent of t
others and, in appropriately constructed ORBs, services could be layered in any
or in any grouping. This potentially allows applications to specify selective
transparencies according to their requirements, although at this time CORBA provides
no way to penetrate its transparencies.

A client ORB must be able to determine which ORB Services must be used in order to
invoke operations on a server object. Correspondingly, where a client requires dynamic
attributes to be associated with specific invocations, or administrative policies dictate,
it must be possible to cause the appropriate ORB Services to be used on client a
11-4 CORBA V2.2 February 1998

11

le,

f

g by
and

).

 a

t and

 them

rent
server sides of the invocation path. Where this is not possible - because, for examp
one ORB does not support the full set of services required - either the interaction
cannot proceed or it can only do so with reduced facilities or transparencies.

11.3 Domains

From a computational viewpoint, the OMG Object Model identifies various
distribution transparencies which ensure that client and server objects are presented
with a uniform view of a heterogeneous distributed system. From an engineering
viewpoint, however, the system is not wholly uniform. There may be distinctions o
location and possibly many others such as processor architecture, networking
mechanisms and data representations. Even when a single ORB implementation is used
throughout the system, local instances may represent distinct, possibly optimized
scopes for some aspects of ORB functionality.

Figure 11-1 Different Kinds of Domains can Coexist.

Interoperability, by definition, introduces further distinctions, notably between the
scopes associated with each ORB. To describe both the requirements for
interoperability and some of the solutions, this architecture introduces the concept of
domains to describe the scopes and their implications.

Informally, a domain is a set of objects sharing a common characteristic or abidin
common rules. It is a powerful modelling concept which can simplify the analysis
description of complex systems. There may be many types of domains (e.g.,
management domains, naming domains, language domains, and technology domains

11.3.1 Definition of a Domain

Domains allow partitioning of systems into collections of components which have
some characteristic in common. In this architecture a domain is a scope in which
collection of objects, said to be members of the domain, is associated with some
common characteristic; any object for which the association does not exist, or is
undefined, is not a member of the domain. A domain can be modelled as an objec
may be itself a member of other domains.

It is the scopes themselves and the object associations or bindings defined within
which characterize a domain. This information is disjoint between domains. However,
an object may be a member of several domains, of similar kinds as well as of diffe
kinds, and so the sets of members of domains may overlap.

Representation Representation

Reference Reference

Security

Networking
CORBA V2.2 Domains February 1998 11-5

11

of

l

ithin

re

s the
erior

f
The concept of a domain boundary is defined as the limit of the scope in which a
particular characteristic is valid or meaningful. When a characteristic in one domain is
translated to an equivalent in another domain, it is convenient to consider it as
traversing the boundary between the two domains.

Domains are generally either administrative or technological in nature. Examples
domains related to ORB interoperability issues are:

• Referencing domain – the scope of an object reference

• Representation domain – the scope of a message transfer syntax and protoco

• Network addressing domain – the scope of a network address

• Network connectivity domain – the potential scope of a network message

• Security domain – the extent of a particular security policy

• Type domain – the scope of a particular type identifier

• Transaction domain – the scope of a given transaction service

Domains can be related in two ways: containment, where a domain is contained w
another domain, and federation, where two domains are joined in a manner agreed and
set up by their administrators.

11.3.2 Mapping Between Domains: Bridging

Interoperability between domains is only possible if there is a well-defined mapping
between the behaviors of the domains being joined. Conceptually, a mapping
mechanism or bridge resides at the boundary between the domains, transforming
requests expressed in terms of one domain’s model into the model of the destination
domain. Note that the use of the term “bridge” in this context is conceptual and refers
only to the functionality which performs the required mappings between distinct
domains. There are several implementation options for such bridges and these a
discussed elsewhere.

For full interoperability, it is essential that all the concepts used in one domain are
transformable into concepts in other domains with which interoperability is required,
or that if the bridge mechanism filters such a concept out, nothing is lost as far a
supported objects are concerned. In other words, one domain may support a sup
service to others, but such a superior functionality will not be available to an
application system spanning those domains.

A special case of this requirement is that the object models of the two domains need to
be compatible. This specification assumes that both domains are strictly compliant
with the CORBA Object Model and the CORBA specifications. This includes the use o
OMG IDL when defining interfaces, the use of the CORBA Core Interface Repository,
and other modifications that were made to CORBA. Variances from this model could
easily compromise some aspects of interoperability.
11-6 CORBA V2.2 February 1998

11

on

must

(e.g.

:

e
cture

nge

 all

es
e

ries
11.4 Interoperability Between ORBs

An ORB “provides the mechanisms by which objects transparently make and receive
requests and responses. In so doing, the ORB provides interoperability between
applications on different machines in heterogeneous distributed environments...” ORB
interoperability extends this definition to cases in which client and server objects
different ORBs “transparently make and receive requests...”

Note that a direct consequence of this transparency requirement is that bridging
be bidirectional: that is, it must work as effectively for object references passed as
parameters as for the target of an object invocation. Were bridging unidirectional
if one ORB could only be a client to another) then transparency would not have been
provided, because object references passed as parameters would not work correctly
ones passed as “callback objects,” for example, could not be used.

Without loss of generality, most of this specification focuses on bridging in only one
direction. This is purely to simplify discussions, and does not imply that unidirectional
connectivity satisfies basic interoperability requirements.

11.4.1 ORB Services and Domains

In this architecture, different aspects of ORB functionality - ORB Services - can b
considered independently and associated with different domain types. The archite
does not, however, prescribe any particular decomposition of ORB functionality and
interoperability into ORB Services and corresponding domain types. There is a ra
of possibilities for such a decomposition:

1. The simplest model, for interoperability, is to treat all objects supported by one
ORB (or, alternatively, all ORBs of a given type) as comprising one domain.
Interoperability between any pair of different domains (or domain types) is then
achieved by a specific all-encompassing bridge between the domains. (This is
CORBA implies.)

2. More detailed decompositions would identify particular domain types - such as
referencing, representation, security, and networking. A core set of domain typ
would be pre-determined and allowance made for additional domain types to b
defined as future requirements dictate (e.g., for new ORB Services).

11.4.2 ORBs and Domains

In many respects, issues of interoperability between ORBs are similar to those which
can arise with a single type of ORB (e.g., a product). For example:

• Two installations of the ORB may be installed in different security domains, with
different Principal identifiers. Requests crossing those security domain bounda
will need to establish locally meaningful Principals for the caller identity, and for
any Principals passed as parameters.

• Different installations might assign different type identifiers for equivalent types,
and so requests crossing type domain boundaries would need to establish locally
meaningful type identifiers (and perhaps more).
CORBA V2.2 Interoperability Between ORBs February 1998 11-7

11

 a

 be

es. It
ies

ls or

or

e

r

een

main

nt
Conversely, not all of these problems need to appear when connecting two ORBs of
different type (e.g., two different products). Examples include:

• They could be administered to share user visible naming domains, so that naming
domains do not need bridging.

• They might reuse the same networking infrastructure, so that messages could
sent without needing to bridge different connectivity domains.

Additional problems can arise with ORBs of different types. In particular, they may
support different concepts or models, between which there are no direct or natural
mappings. CORBA only specifies the application level view of object interactions, and
requires that distribution transparencies conceal a whole range of lower level issu
follows that within any particular ORB, the mechanisms for supporting transparenc
are not visible at the application level and are entirely a matter of implementation
choice. So there is no guarantee that any two ORBs support similar internal mode
that there is necessarily a straightforward mapping between those models.

These observations suggest that the concept of an ORB (instance) is too coarse
superficial to allow detailed analysis of interoperability issues between ORBs. Indeed,
it becomes clear that an ORB instance is an elusive notion: it can perhaps best b
characterized as the intersection or coincidence of ORB Service domains.

11.4.3 Interoperability Approaches

When an interaction takes place across a domain boundary, a mapping mechanism, o
bridge, is required to transform relevant elements of the interaction as they traverse the
boundary. There are essentially two approaches to achieving this: mediated bridging
and immediate bridging. These approaches are described in the following subsections.

Figure 11-2 Two bridging techniques, different uses of an intermediate form agreed on betw
the two domains.

Mediated Bridging

With mediated bridging, elements of the interaction relevant to the domain are
transformed, at the boundary of each domain, between the internal form of that do
and an agreed, common form.

Observations on mediated bridging are as follows:

• The scope of agreement of a common form can range from a private agreeme
between two particular ORB/domain implementations to a universal standard.

Domain

Interop

Mediated Bridging

Domain Domain Domain

Interop

Immediate Bridging
11-8 CORBA V2.2 February 1998

11

 can

t, or

diate

iated

f a

tems.

 to

as
e
• There can be more than one common form, each oriented or optimized for a
different purpose.

• If there is more than one possible common form, then selection of which is used
be static (e.g., administrative policy agreed between ORB vendors, or between
system administrators) or dynamic (e.g., established separately for each objec
on each invocation).

• Engineering of this approach can range from in-line specifically compiled (compare
to stubs) or generic library code (such as encryption routines) code, to interme
bridges to the common form.

Immediate Bridging

With immediate bridging, elements of the interaction relevant to the domain are
transformed, at the boundary of each domain, directly between the internal form of one
domain and the internal form of the other.

Observations on immediate bridging are as follows:

• This approach has the potential to be optimal (in that the interaction is not med
via a third party, and can be specifically engineered for each pair of domains) but
sacrifices flexibility and generality of interoperability to achieve this.

• This approach is often applicable when crossing domain boundaries which are
purely administrative (i.e., there is no change of technology). For example, when
crossing security administration domains between similar ORBs, it is not necessary
to use a common intermediate standard.

As a general observation, the two approaches can become almost indistinguishable
when private mechanisms are used between ORB/domain implementations.

Location of Inter-Domain Functionality

Logically, an inter-domain bridge has components in both domains, whether the
mediated or immediate bridging approach is used. However, domains can span ORB
boundaries and ORBs can span machine and system boundaries; conversely, a machine
may support, or a process may have access to more than one ORB (or domain o
given type). From an engineering viewpoint, this means that the components of an
inter-domain bridge may be dispersed or co-located, with respect to ORBs or sys
It also means that the distinction between an ORB and a bridge can be a matter of
perspective: there is a duality between viewing inter-system messaging as belonging
ORBs, or to bridges.

For example, if a single ORB encompasses two security domains, the inter-domain
bridge could be implemented wholly within the ORB and thus be invisible as far as
ORB interoperability is concerned. A similar situation arises when a bridge between
two ORBs or domains is implemented wholly within a process or system which h
access to both. In such cases, the engineering issues of inter-domain bridging ar
CORBA V2.2 Interoperability Between ORBs February 1998 11-9

11

lely

ace,

n

n

iate

main
hide

s

af

cific,
confined, possibly to a single system or process. If it were practical to implement all
bridging in this way, then interactions between systems or processes would be so
within a single domain or ORB.

Bridging Level

As noted at the start of this section, bridges may be implemented both internally to an
ORB and as layers above it. These are called respectively “in-line” and “request-level”
bridges.

Request level bridges use the CORBA APIs, including the Dynamic Skeleton Interf
to receive and issue requests. However, there is an emerging class of “implicit context”
which may be associated with some invocations, holding ORB Service informatio
such as transaction and security context information, which is not at this time exposed
through general purpose public APIs. (Those APIs expose only OMG IDL-defined
operation parameters, not implicit ones.) Rather, the precedent set with the Transactio
Service is that special purpose APIs are defined to allow bridging of each kind of
context. This means that request level bridges must be built to specifically understand
the implications of bridging such ORB Service domains, and to make the appropr
API calls.

11.4.4 Policy-Mediated Bridging

An assumption made through most of this specification is that the existence of do
boundaries should be transparent to requests: that the goal of interoperability is to
such boundaries. However, if this were always the goal, then there would be no real
need for those boundaries in the first place.

Realistically, administrative domain boundaries exist because they reflect ongoing
differences in organizational policies or goals. Bridging the domains will in such case
require policy mediation. That is, inter-domain traffic will need to be constrained,
controlled, or monitored; fully transparent bridging may be highly undesirable.
Resource management policies may even need to be applied, restricting some kinds of
traffic during certain periods.

Security policies are a particularly rich source of examples: a domain may need to
audit external access, or to provide domain-based access control. Only a very few
objects, types of objects, or classifications of data might be externally accessible
through a “firewall.”

Such policy-mediated bridging requires a bridge that knows something about the trfic
being bridged. It could in general be an application-specific policy, and many policy-
mediated bridges could be parts of applications. Those might be organization-spe
off-the-shelf, or anywhere in between.

Request-level bridges, which use only public ORB APIs, easily support the addition of
policy mediation components, without loss of access to any other system infrastructure
that may be needed to identify or enforce the appropriate policies.
11-10 CORBA V2.2 February 1998

11

ble

 full-

isting

t

y
11.4.5 Configurations of Bridges in Networks

In the case of network-aware ORBs, we anticipate that some ORB protocols will be
more frequently bridged to than others, and so will begin to serve the role of
“backbone ORBs.” (This is a role that the IIOP is specifically expected to serve.) This
use of “backbone topology” is true both on a large scale and a small scale. While a
large scale public data network provider could define its own backbone ORB, on a
smaller scale, any given institution will probably designate one commercially availa
ORB as its backbone.

Figure 11-3 An ORB chosen as a backbone will connect other ORBs through bridges, both
bridges and half-bridges.

Adopting a backbone style architecture is a standard administrative technique for
managing networks. It has the consequence of minimizing the number of bridges
needed, while at the same time making the ORB topology match typical network
organizations. (That is, it allows the number of bridges to be proportional to the
number of protocols, rather than combinatorial.)

In large configurations, it will be common to notice that adding ORB bridges doesn’t
even add any new “hops” to network routes, because the bridges naturally fit in
locations where connectivity was already indirect, and augment or supplant the ex
network firewalls.

11.5 Object Addressing

The Object Model (see Chapter 1, Requests) defines an object reference as an objec
name that reliably denotes a particular object. An object reference identifies the same
object each time the reference is used in a request, and an object may be denoted b
multiple, distinct references.

Backbone ORB

ORB A

ORB CORB D

ORB B
CORBA V2.2 Object Addressing February 1998 11-11

11

 to
ing

r

 the

eed

e

to
The fundamental ORB interoperability requirement is to allow clients to use such
object names to invoke operations on objects in other ORBs. Clients do not need
distinguish between references to objects in a local ORB or in a remote one. Provid
this transparency can be quite involved, and naming models are fundamental to it.

This section of this specification discusses models for naming entities in multiple
domains, and transformations of such names as they cross the domain boundaries. That
is, it presents transformations of object reference information as it passes through
networks of inter-ORB bridges. It uses the word “ORB” as synonymous with
referencing domain; this is purely to simplify the discussion. In other contexts, “ORB”
can usefully denote other kinds of domain.

11.5.1 Domain-relative Object Referencing

Since CORBA does not require ORBs to understand object references from othe
ORBs, when discussing object references from multiple ORBs one must always
associate the object reference’s domain (ORB) with the object reference. We use
notation D0.R0 to denote an object reference R0 from domain D0; this is itself an
object reference. This is called “domain-relative” referencing (or addressing) and n
not reflect the implementation of object references within any ORB.

At an implementation level, associating an object reference with an ORB is only
important at an inter-ORB boundary; that is, inside a bridge. This is simple, since th
bridge knows from which ORB each request (or response) came, including any object
references embedded in it.

11.5.2 Handling of Referencing Between Domains

When a bridge hands an object reference to an ORB, it must do so in a form
understood by that ORB: the object reference must be in the recipient ORB’s native
format. Also, in cases where that object originated from some other ORB, the bridge
must associate each newly created “proxy” object reference with (what it sees as) the
original object reference.

Several basic schemes to solve these two problems exist. These all have advantages in
some circumstances; all can be used, and in arbitrary combination with each other,
since CORBA object references are opaque to applications. The ramifications of each
scheme merits attention, with respect to scaling and administration. The schemes
include:

1. Object Reference Translation Reference Embedding: The bridge can store the
original object reference itself, and pass an entirely different proxy reference in
the new domain. The bridge must then manage state on behalf of each bridged
object reference, map these references from one ORB’s format to the other’s, and
vice versa.
11-12 CORBA V2.2 February 1998

11

 s

bjects

y path
2. Reference Encapsulation: The bridge can avoid holding any state at all by
conceptually concatenating a domain identifier to the object name. Thus if a
reference D0.R, originating in domain D0, traversed domains D1... D4 it could be
identified in D4 as proxy reference d3.d2.d1.d0.R, where dn is the address of Dn
relative to Dn+1.

Figure 11-4 Reference encapsulation adds domain information during bridging.

3. Domain Reference Translation: Like object reference translation, this scheme holds
some state in the bridge. However, it supports sharing that state between multiple
object references by adding a domain-based route identifier to the proxy (whichtill
holds the original reference, as in the reference encapsulation scheme).

It achieves this by providing encoded domain route information each time a domain
boundary is traversed; thus if a reference D0.R, originating in domain D0, traversed
domains D1...D4 it would be identified in D4 as (d3, x3).R, and in D2 as (d1,x1).R,
and so on, where dn is the address of Dn relative to Dn+1, and xn identifies the pair
(dn-1, xn-1).

Figure 11-5 Domain Reference Translation substitutes domain references during bridging.

4. Reference Canonicalization: This scheme is like domain reference translation,
except that the proxy uses a “well known” (e.g., global) domain identifier rather
than an encoded path. Thus a reference R, originating in domain D0 would be
identified in other domains as D0.R.

Observations about these approaches to inter-domain reference handling are as follows:

• Naive application of reference encapsulation could lead to arbitrarily large
references. A “topology service” could optimize cycles within any given
encapsulated reference and eliminate the appearance of references to local o
as alien references.

• A topology service could also optimize the chains of routes used in the domain
reference translation scheme. Since the links in such chains are re-used by an
traversing the same sequence of domains, such optimization has particularly high
leverage.

R
D0 D1 D2 D3 D4

d0 d1 d2 d3

R
D0 D1 D2 D3 D4

d0 d1 d2 d3
x1 x2 x3
CORBA V2.2 Object Addressing February 1998 11-13

11

r 8.)

ce

name

nd

l

.

y

ns,
• With the general purpose APIs defined in CORBA 2.1, object reference translation
can be supported even by ORBs not specifically intended to support efficient
bridging, but this approach involves the most state in intermediate bridges. As with
reference encapsulation, a topology service could optimize individual object
references. (APIs are defined by the Dynamic Skeleton Interface, Dynamic
Invocation Interface, and by the object identity operations described in Chapte

• The chain of addressing links established with both object and domain referen
translation schemes must be represented as state within the network of bridges.
There are issues associated with managing this state.

• Reference canonicalization can also be performed with managed hierarchical
spaces such as those now in use on the Internet and X.500 naming.

11.6 An Information Model for Object References

This section provides a simple, powerful information model for the information fou
in an object reference. That model is intended to be used directly by developers of
bridging technology, and is used in that role by the IIOP, described in the Genera
Inter-ORB Protocol chapter, Object References section.

11.6.1 What Information Do Bridges Need?

The following potential information about object references has been identified as
critical for use in bridging technologies:

• Is it null? Nulls only need to be transmitted and never support operation invocation

• What type is it? Many ORBs require knowledge of an object’s type in order to
efficiently preserve the integrity of their type systems.

• What protocols are supported? Some ORBs support objrefs that in effect live in
multiple referencing domains, to allow clients the choice of the most efficient
communications facilities available.

• What ORB Services are available? As noted in “Selection of ORB Services” on
page 11-4, several different ORB Services might be involved in an invocation.
Providing information about those services in a standardized way could in man
cases reduce or eliminate negotiation overhead in selecting them.

11.6.2 Interoperable Object References: IORs

To provide the information above, an “Interoperable Object Reference,” (IOR) data
structure has been provided. This data structure need not be used internally to any
given ORB, and is not intended to be visible to application-level ORB programmers. It
should be used only when crossing object reference domain boundaries, within bridges.

This data structure is designed to be efficient in typical single-protocol configuratio
while not penalizing multiprotocol ones.
11-14 CORBA V2.2 February 1998

11

 a
module IOP { // IDL
//
// Standard Protocol Pr ofile tag val ues
//
typedef unsigned long ProfileId;
const ProfileId TAG_INTERNET_IOP = 0;
const ProfileId TAG_MULTIPLE_COM PONENTS = 1;

struct TaggedProfile {
ProfileId tag;
seque nce <octet> profile_data;

};

//
// an Interoperable Object Reference is a sequence of
// object-specific protocol profiles, plus a type ID.
//
struct IOR {

string type_id;
seque nce <TaggedPr ofile> profiles;

};

//
// Standard way of representing multicomponent profiles.
// This would be encapsulated in a T aggedPr ofile.
//
typedef unsigned long Compon entId;
struct TaggedComponent {

Compo nentId tag;
seque nce <octet> com ponent_data;

};
typedef sequence <TaggedComponent> Mult ipleComponentProfile;

};

Object references have at least one tagged profile. Each profile supports one or more
protocols and encapsulates all the basic information the protocols it supports need to
identify an object. Any single profile holds enough information to drive a complete
invocation using any of the protocols it supports; the content and structure of those
profile entries are wholly specified by these protocols. A bridge between two domains
may need to know the detailed content of the profile for those domains’ profiles,
depending on the technique it uses to bridge the domains1.

1.Based on topology and policy information available to it, a bridge may find it prudent to add
or remove some profiles as it forwards an object reference. For example, a bridge acting as
firewall might remove all profiles except ones that make such profiles, letting clients that
understand the profiles make routing choices.
CORBA V2.2 An Information Model for Object References February 1998 11-15

11

s

s

 to

e

B

d

r

of

B
Each profile has a unique numeric tag, assigned by OMG. The ones defined here are
for the IIOP (see Chapter 12, General Inter-ORB Protocol) and for use in “multiple
component profiles.” Profile tags in the range 0x80000000 through 0xffffffff are
reserved for future use, and are not currently available for assignment.

Null object references are indicated by an empty set of profiles, and by a “Null” type
ID (a string which contains only a single terminating character). Type IDs may only be
“Null” in any message, requiring the client to use existing knowledge or to consult the
object, to determine interface types supported. The type ID is provided to allow ORBs
to preserve strong typing.This identifier is agreed on within the bridge and, for reason
outside the scope of this interoperability specification, needs to have a much broader
scope to address various problems in system evolution and maintenance. Type ID
support detection of type equivalence, and in conjunction with an Interface Repository,
allow processes to reason about the relationship of the type of the object referred
and any other type.

The type ID, if provided by the server, indicates the most derived type at the time the
reference is generated. The object’s actual most derived type may later change to a
more derived type. Therefore, the type ID in the IOR can only be interpreted by th
client as a hint that the object supports at least the indicated interface. The client can
succeed in narrowing the reference to the indicated interface, or to one of its base
interfaces, based solely on the type ID in the IOR, but must not fail to narrow the
reference without consulting the object via the “_is_a” or “_get_interface” pseudo-
operations.

The TAG_INTERNET_IOP Profile

The TAG_INTERNET_IOP tag identifies profiles that support the Internet Inter-OR
Protocol. The ProfileBody of this profile, described in detail in “IIOP IOR Profiles”
on page 13-34, contains a CDR encapsulation of a structure containing addressing an
object identification information used by IIOP. Version 1.1 of the
TAG_INTERNET_IOP profile also includes a sequence<TaggedCompo nent>
that can contain additional information supporting optional IIOP features, ORB
services such as security, and future protocol extensions.

Protocols other than IIOP (such as ESIOPs and other GIOPs) can share profile
information (such as object identity or security information) with IIOP by encoding
their additional profile information as components in the TAG_INTERNET_IOP
profile. All TAG_INTERNET_IOP profiles support IIOP, regardless of whether they
also support additional protocols. Interoperable ORBs are not required to create o
understand any other profile, nor are they required to create or understand any of the
components defined for other protocols that might share the TAG_INTERNET_IOP
profile with IIOP.

The TAG_MULTIPLE_COMPONENTS Profile

The TAG_MULTIP LE_COMPONENTS tag indicates that the value encapsulated is
type Mult ipleComponentProfile . In this case, the profile consists of a list of
protocol components, indicating ORB services accessible using that protocol. OR
11-16 CORBA V2.2 February 1998

11

the

es.

d in

e

ust

services are assigned component identifiers in a namespace that is distinct from
profile identifiers. Note that protocols may use the Multiple ComponentProfile data
structure to hold profile components even without using
TAG_MULTIPLE_COMPONENTS to indicate that particular protocol profile, and
need not use a MultipleComponentProfile to hold sets of profile components.

IOR Components

TaggedComponent s contained in TAG_INTERNET_IOP and
TAG_MULTIPLE_COMPONENTS profiles are identified by unique numeric tags
using a namespace distinct form that used for profile tags. Component tags are
assigned by the OMG.

Specifications of components must include the following information:

• Component ID: The compound tag that is obtained from OMG.

• Structure and encoding: The syntax of the component data and the encoding rul

• Semantics: How the component data is intended to be used.

• Protocols: The protocol for which the component is defined, and whether it is
intended that the component be usable by other protocols.

• At most once: whether more than one instance of this component can be include
a profile.

Specification of protocols must describe how the components affect the protocol. The
following should be specified in any protocol definition for each TaggedComponent
that the protocol uses:

• Mandatory presence: Whether inclusion of the component in profiles supporting th
protocol is required (MANDATORY PRESENCE) or not required (OPTIONAL
PRESENCE).

• Droppable: For optional presence component, whether component, if present, m
be retained or may be dropped.

11.6.3 Standard IOR Components

The following are standard IOR components that can be included in
TAG_INTERNET_IOP and TAG_MULTIP LE_COMPONENTS profiles, and may
apply to IIOP, other GIOPs, ESIOPs or other protocols. An ORB must not drop these
components from an existing IOR. Additional components that can be used by other
protocols are specified in “DCE-CIOP Object References” on page 14-16.
CORBA V2.2 An Information Model for Object References February 1998 11-17

11

an

 will

gle

les
module IOP {
const Compon entId TAG _ORB_TYPE = 0;
const Compon entId TAG_COD E_SETS = 1;
const Compon entId TAG_S EC_NAME = 14;
const Compon entId TAG_A SSOCIATION_OPTIONS = 13;
const Compon entId TAG_ GENERIC_SE C_MECH = 12;

};

TAG_ORB_TYPE Component

It is often useful in the real world to be able to identify the particular kind of ORB
object reference is coming from, to work around problems with that particular ORB, or
exploit shared efficiencies.

The TAG_ORB_TYPE component has an associated value of type unsigned long ,
encoded as a CDR encapsulation, designating an ORB type ID allocated by the OMG
for the ORB type of the originating ORB. Anyone may register any ORB types by
submitting a short (one-paragraph) description of the ORB type to the OMG, and
receive a new ORB type ID in return. A list of ORB type descriptions and values will
be made available on the OMG web server.

The TAG_ORB_TYPE component can appear at most once in any IOR profile. For
profiles supporting IIOP 1.1, it is optionally present and may not be dropped.

Other Components

The following components are specified in different OMG specifications:

• TAG_CODE_SETS (See “CodeSet Component of IOR Multi-Component Profile”
on page 11-28.)

• TAG_SEC_NAME (Security - CORBAServices)

• TAG_ASSOCIATION_OPTIONS (Security - CORBAServices)

• TAG_GENERIC_SEC_MECH (Security - CORBAServices)

11.6.4 Profile and Component Composition in IORs

The following rules augment the preceding discussion:

1. Profiles must be independent, complete, and self-contained. Their use shall not
depend on information contained in another profile.

2. Any invocation uses information from exactly one profile.

3. Information used to drive multiple inter-ORB protocols may coexist within a sin
profile, possibly with some information (e.g., components) shared between the
protocols, as specified by the specific protocols.

4. Unless otherwise specified in the definition of a particular profile, multiple profi
with the same profile tag may be included in an IOR.
11-18 CORBA V2.2 February 1998

11

ons
ate

e by

 will

l

B
5. Unless otherwise specified in the definition of a particular component, multiple
components with the same component tag may be part of a given profile within an
IOR.

6. A TAG_MULTIPLE_COMPONENTS profile may hold components shared
between multiple protocols. Multiple such profiles may exist in an IOR.

7. The definition of each protocol using a TAG_MULTIPLE _COMPONENTS profile
must specify which components it uses, and how it uses them.

8. Profile and component definitions can be either public or private. Public definiti
are those whose tag and data format is specified in OMG documents. For priv
definitions, only the tag is registered with OMG.

9. Public component definitions shall state whether or not they are intended for us
protocols other than the one(s) for which they were originally defined, and
dependencies on other components.

The OMG is responsible for allocating and registering protocol and component tags.
Neither allocation nor registration indicates any “standard” status, only that the tag
not be confused with other tags. Requests to allocate tags should be sent to
tag_request@omg.org.

11.6.5 IOR Creation and Scope

IORs are created from object references when required to cross some kind of
referencing domain boundary. ORBs will implement object references in whatever
form they find appropriate, including possibly using the IOR structure. Bridges wil
normally use IORs to mediate transfers where that standard is appropriate.

11.6.6 Stringified Object References

Object references can be “stringified” (turned into an external string form) by the
ORB::object_to_st ring operation, and then “destringified” (turned back into a
programming environment’s object reference representation) using the
ORB::string_to_object operation.

There can be a variety of reasons why being able to parse this string form might not
help make an invocation on the original object reference:

• Identifiers embedded in the string form can belong to a different domain than the
ORB attempting to destringify the object reference.

• The ORBs in question might not share a network protocol, or be connected.

• Security constraints may be placed on object reference destringification.

Nonetheless, there is utility in having a defined way for ORBs to generate and parse
stringified IORs, so that in some cases an object reference stringified by one OR
could be destringified by another.
CORBA V2.2 An Information Model for Object References February 1998 11-19

11

nt

s
bject

,
nsfer

e
g
To allow a stringified object reference to be internalized by what may be a differe
ORB, a stringified IOR representation is specified. This representation instead
establishes that ORBs could parse stringified object references using that format. Thi
helps address the problem of bootstrapping, allowing programs to obtain and use o
references, even from different ORBs.

The following is the representation of the stringified (externalized) IOR:

<oref> ::= <prefix> <hex_Octets>

<prefix> ::= “IOR:”

<hex_Octets> ::= <hex_Octet> {<hex_Octet>}*

<hex_Octet> ::= <hexDigit> <hexDigit>

<hexDigit> ::= <digit> | <a> | | <c> | <d> | <e> | <f>

<digit> ::= “0” | “1” | “2” | “3” | “4” | “5” |

 “6” | “7” | “8” | “9”

<a> ::= “a” | “A”

 ::= “b” | “B”

<c> ::= “c” | “C”

<d> ::= “d” | “D”

<e> ::= “e” | “E”

<f> ::= “f” | “F”

The hexadecimal strings are generated by first turning an object reference into an IOR
and then encapsulating the IOR using the encoding rules of CDR. (See CDR Tra
Syntax in Chapter 13 for more information.) The content of the encapsulated IOR is
then turned into hexadecimal digit pairs, starting with the first octet in the
encapsulation and going until the end. The high four bits of each octet are encoded as
a hexadecimal digit, then the low four bits.

11.6.7 Object Service Context

Emerging specifications for Object Services occasionally require service-specific
context information to be passed implicitly with requests and replies. (Specifications
for OMG’s Object Services are contained in CORBAservices: Common Object Servic
Specifications.) The Interoperability specifications define a mechanism for identifyin
and passing this service-specific context information as “hidden” parameters. The
specification makes the following assumptions:

• Object Service specifications that need additional context passed will completely
specify that context as an OMG IDL data type.

• ORB APIs will be provided that will allow services to supply and consume context
information at appropriate points in the process of sending and receiving requests
and replies.
11-20 CORBA V2.2 February 1998

11

any

t ID

d in

ext

that
• It is an ORB’s responsibility to determine when to send service-specific context
information, and what to do with such information in incoming messages. It may be
possible, for example, for a server receiving a request to be unable to de-
encapsulate and use a certain element of service-specific context, but nevertheless
still be able to successfully reply to the message.

As shown in the following OMG IDL specification, the IOP module provides the
mechanism for passing Object Service–specific information. It does not describe
service-specific information. It only describes a mechanism for transmitting it in the
most general way possible. The mechanism is currently used by the DCE ESIOP and
could also be used by the Internet Inter-ORB protocol (IIOP) General Inter_ORB
Protocol (GIOP).

Each Object Service requiring implicit service-specific context to be passed through
GIOP will be allocated a unique service context ID value by OMG. Service contex
values are of type unsigned long . Object service specifications are responsible for
describing their context information as single OMG IDL data types, one data type
associated with each service context ID.

The marshaling of Object Service data is described by the following OMG IDL:

module IOP { // IDL

typedef unsigned long ServiceId;

struct ServiceContext {
 ServiceId context_id;
 seque nce <octet> context_data;
 };

typedef sequence <ServiceContext>ServiceContextList;

const ServiceId TransactionS ervice = 0;
const ServiceId CodeSets = 1;

};

The context data for a particular service will be encoded as specified for its service-
specific OMG IDL definition, and that encoded representation will be encapsulate
the context_data member of IOP::Service Context . (See “Encapsulation” on
page 13-12). The context_id member contains the service ID value identifying the
service and data format. Context data is encapsulated in octet sequences to permit
ORBs to handle context data without unmarshaling, and to handle unknown cont
data types.

During request and reply marshaling, ORBs will collect all service context data
associated with the Request or Reply in a ServiceContextList , and include it in the
generated messages. No ordering is specified for service context data within the list.
The list is placed at the beginning of those messages to support security policies
may need to apply to the majority of the data in a request (including the message
headers).
CORBA V2.2 An Information Model for Object References February 1998 11-21

11

”

trol

)

ters."

pical

e,
and a
cter
al
The ServiceId s currently defined are:

• TransactionService identifies a CDR encapsulation of the
CosTSInteroperation::PropogationContext defined in CORBAservices:
Common Object Services Specifications.

• CodeSets identifies a CDR encapsulation of the
CONV_FRAME::C odeSetC ontext defined in “GIOP Code Set Service Context
on page 11-29.

11.7 Code Set Conversion

11.7.1 Character Processing Terminology

This section introduces a few terms and explains a few concepts to help understand the
character processing portions of this document.

Character Set

A finite set of different characters used for the representation, organization or con
of data. In this document, the term “character set” is used without any relationship to
code representation or associated encoding. Examples of character sets are the English
alphabet, Kanji or sets of ideographic characters, corporate character sets (commonly
used in Japan), and the characters needed to write certain European languages.

Coded Character Set, or Code Set

A set of unambiguous rules that establishes a character set and the one-to-one
relationship between each character of the set and its bit representation or numeric
value. In this document, the term “code set” is used as an abbreviation for the term
“coded character set.” Examples include ASCII, ISO 8859-1, JIS X0208 (which
includes Roman characters, Japanese hiragana, Greek characters, Japanese kanji, etc.
and Unicode.

Code Set Classifications

Some language environments distinguish between byte-oriented and “wide charac
The byte-oriented characters are encoded in one or more 8 bit bytes. A typical single-
byte encoding is ASCII as used for western European languages like English. A ty
multi-byte encoding which uses from one to three 8 bit bytes for each character is
eucJP (Extended UNIX Code - Japan, packed format) as used for Japanese
workstations.

Wide characters are a fixed 16 or 32 bits long, and are used for languages like Chines
Japanese, etc., where the number of combinations offered by 8 bits is insufficient
fixed-width encoding is needed. A typical example is Unicode (a “universal” chara
set defined by the The Unicode Consortium, which uses an encoding scheme identic
11-22 CORBA V2.2 February 1998

11

rs
te-

 32-
er of

code
ous
to ISO 10646 UCS-2, or 2-byte Universal Character Set encoding). An extended
encoding scheme for Unicode characters is UTF-16 (UCS Transformation Format, 16-
bit representations).

The C language has data types char for byte-oriented characters and wchar_t for
wide characters. The language definition for C states that the sizes for these characte
are implementation dependent. Some environments do not distinguish between by
oriented and wide characters, e.g., Ada and Smalltalk. Here again, the size of a
character is implementation dependent. The following table illustrates code set
classifications as used in this document.

Narrow and Wide Characters

Some language environments distinguish between “narrow” and “wide” characters.
Typically the narrow characters are considered to be 8-bit long and are used for
western European languages like English, while the wide characters are 16-bit or
bit long and are used for languages like Chinese, Japanese, etc. where the numb
combinations offered by 8 bits are insufficient. However, as noted above there are
common encoding schemes in which Asian characters are encoded using multi-byte
code sets and it is incorrect to assume that Asian characters are always encoded as
“wide” characters.

Within this document, the general terms “narrow character” and “wide character” are
only used in discussing OMG IDL.

Char Data and Wchar Data

The phrase “char data” in this document refers to data whose IDL types have been
specified as char or string . Likewise “wchar data” refers to data whose IDL types
have been specified as wchar or wstring .

Byte-Oriented Code Set

An encoding of characters where the numeric code corresponding to a character
element can occupy one or more bytes. A byte as used in this document is synonym
with octet, which occupies 8 bits.

Orientation Code Element Encoding Code Set Examples C Data Type

byte-oriented single-byte ASCII, ISO 8859-1 (Latin-1),
EBCDIC, ...

char

multi-byte UTF-8, eucJP, Shift-JIS, JIS, Big-
5, ...

char[]

non-byte-
oriented

fixed-length ISO 10646 UCS-2 (Unicode),
ISO 10646 UCS-4, UTF-16, ...

wchar_t
CORBA V2.2 Code Set Conversion February 1998 11-23

11

 can

code

d.

me

 with
Multi-Byte Character Strings

A character string represented in a byte-oriented encoding where each character
occupy one or more bytes is called a multi-byte character string. Typically, wide
characters are converted to this form from a (fixed-width) process code set before
transmitting the characters outside the process (see below about process code sets).
Care must be taken to correctly process the component bytes of a character’s multi-
byte representation.

Non-Byte Oriented Code Set

An encoding of characters where the numeric code corresponding to a character
element can occupy fixed 16 or 32 bits.

Char Transmission Code Set (TCS-C) and Wchar Transmission
Code Set (TCS-W)

These two terms refer to code sets that are used for transmission between ORBs after
negotiation is completed. As the names imply, the first one is used for char data and
the second one for wchar data. Each TCS can be byte-oriented or non-byte oriente

Process Code Set and File Code Set

Processes generally represent international characters in an internal fixed-width format
which allows for efficient representation and manipulation. This internal format is
called a “process code set.” The process code set is irrelevant outside the process, and
hence to the interoperation between CORBA clients and servers through their
respective ORBs.

When a process needs to write international character information out to a file, or
communicate with another process (possibly over a network), it typically uses a
different encoding called a “file code set.” In this specification, unless otherwise
indicated, all references to a program’s code set refer to the file code set, not the
process code set. Even when a client and server are located physically on the sa
machine, it is possible for them to use different file code sets.

Native Code Set

A native code set is the code set which a client or a server uses to communicate
its ORB. There might be separate native code sets for char and wchar data.
11-24 CORBA V2.2 February 1998

11

ta

g

e

e

ich

ns.
Transmission Code Set

A transmission code set is the commonly agreed upon encoding used for character da
transfer between a client’s ORB and a server’s ORB. There are two transmission code
sets established per session between a client and its server, one for char data (TCS-C)
and the other for wchar data (TCS-W). Figure 11-6 on page 11-25 illustrates these
relationships:

Figure 11-6 Transmission Code Sets

The intent is for TCS-C to be byte-oriented and TCS-W to be non-byte-oriented.
However, this specification does allow both types of characters to be transmitted usin
the same transmission code set. That is, the selection of a transmission code set is
orthogonal to the wideness or narrowness of the characters, although a given codset
may be better suited for either narrow or wide characters.

Conversion Code Set (CCS)

With respect to a particular ORB’s native code set, the set of other or target code sets
for which an ORB can convert all code points or character encodings between th
native code set and that target code set. For each code set in this CCS, the ORB
maintains appropriate translation or conversion procedures and advertises the ability to
use that code set for transmitted data in addition to the native code set.

11.7.2 Code Set Conversion Framework

Requirements

The file code set that an application uses is often determined by the platform on wh
it runs. In Japan, for example, Japanese EUC is used on Unix systems, while Shift-JIS
is used on PCs. Code set conversion is therefore required to enable interoperability
across these platforms. This proposal defines a framework for the automatic
conversion of code sets in such situations. The requirements of this framework are:

1. Backward compatibility. In previous CORBA specifications, IDL type char was
limited to ISO 8859-1. The conversion framework should be compatible with
existing clients and servers that use ISO 8859-1 as the code set for char.

2. Automatic code set conversion. To facilitate development of CORBA clients and
servers, the ORB should perform any necessary code set conversions automatically
and efficiently. The IDL type octet can be used if necessary to prevent conversio

ORB ORB
transmission

code set

native
client process server processcode sets

code set

native
CORBA V2.2 Code Set Conversion February 1998 11-25

11

et)

 to
the

le, if
r

d on
 the

.

s

de

e

ecall
3. Locale support. An internationalized application determines the code set in use by
examining the LOCALE string (usually found in the LANG environment variable),
which may be changed dynamically at run time by the user. Example LOCALE
strings are fr_FR.ISO8859-1 (French, used in France with the ISO 8859-1 code s
and ja_JP.ujis (Japanese, used in Japan with the EUC code set and X11R5
conventions for LOCALE). The conversion framework should allow applications
use the LOCALE mechanism to indicate supported code sets, and thus select
correct code set from the registry.

4. CMIR and SMIR support. The conversion framework should be flexible enough to
allow conversion to be performed either on the client or server side. For examp
a client is running in a memory-constrained environment, then it is desirable fo
code set converters to reside in the server and for a Server Makes It Right (SMIR)
conversion method to be used. On the other hand, if many servers are execute
one server machine, then converters should be placed in each client to reduce
load on the server machine. In this case, the conversion method used is Client
Makes It Right (CMIR).

Overview of the Conversion Framework

Both the client and server indicate a native code set indirectly by specifying a locale
The exact method for doing this is language-specific, such as the XPG4 C/C++
function setlocale . The client and server use their native code set to communicate
with their ORB. (Note that these native code sets are in general different from proces
code sets and hence conversions may be required at the client and server ends.)

The conversion framework is illustrated in Figure 11-7 on page 11-27. The server-si
ORB stores a server’s code set information in a component of the IOR multiple-
component profile structure (see “Interoperable Object References: IORs” on
page 11-14)2. The code sets actually used for transmission are carried in the servic
context field of an IOP (Inter-ORB Protocol) request header (see “Object Service
Context” on page 11-20 and “GIOP Code Set Service Context” on page 11-29). R
that there are two code sets (TCS-C and TCS-W) negotiated for each session.

2.Version 1.1 of the IIOP profile body can also be used to specify the server’s code set
information, as this version introduces an extra field that is a sequence of tagged
components.
11-26 CORBA V2.2 February 1998

11

on is

erver-
, the

on
r

,

Figure 11-7 Code Set Conversion Framework Overview

If the native code sets used by a client and server are the same, then no conversi
performed. If the native code sets are different and the client-side ORB has an
appropriate converter, then the CMIR conversion method is used. In this case, the
server’s native code set is used as the transmission code set. If the native code sets are
different and the client-side ORB does not have an appropriate converter but the s
side ORB does have one, then the SMIR conversion method is used. In this case
client’s native code set is used as the transmission code set.

The conversion framework allows clients and servers to specify a native char code set
and a native wchar code set, which determine the local encodings of IDL types char
and wchar , respectively. The conversion process outlined above is executed
independently for the char code set and the wchar code set. In other words, the
algorithm that is used to select a transmission code set is run twice, once for char data
and once for wchar data.

The rationale for selecting two transmission code sets rather than one (which is
typically inferred from the locale of a process) is to allow efficient data transmissi
without any conversions when the client and server have identical representations fo
char and/or wchar data. For example, when a Windows NT client talks to a Windows
NT server and they both use Unicode for wide character data, it becomes possible to
transmit wide character data from one to the other without any conversions. Of course,
this becomes possible only for those wide character representations that are well-
defined, not for any proprietary ones. If a single transmission code set was mandated
it might require unnecessary conversions. (For example, choosing Unicode as the
transmission code set would force conversion of all byte-oriented character data to
Unicode.)

ORB Databases and Code Set Converters

The conversion framework requires an ORB to be able to determine the native code set
for a locale and to convert between code sets as necessary. While the details of exactly
how these tasks are accomplished are implementation-dependent, the following
databases and code set converters might be used:

ServerClient

ORB ORB

Client’s native
code set

Server’s native
code set

IOP service context
indicates transmission
code sets information

IOR multi-component
profile structure indicates
server’s native code set information
CORBA V2.2 Code Set Conversion February 1998 11-27

11

ode set

etup

y

or

• Locale database. This database defines a native code set for a process. This c
could be byte-oriented or non-byte-oriented and could be changed programmatically
while the process is running. However, for a given session between a client and a
server, it is fixed once the code set information is negotiated at the session’s s
time.

• Environment variables or configuration files. Since the locale database can onl
indicate one code set while the ORB needs to know two code sets, one for char
data and one for wchar data, an implementation can use environment variables
configuration files to contain this information on native code sets.

• Converter database. This database defines, for each code set, the code sets to which
it can be converted. From this database, a set of “conversion code sets” (CCS) can
be determined for a client and server. For example, if a server’s native code set is
eucJP, and if the server-side ORB has eucJP-to-JIS and eucJP-to-SJIS bilateral
converters, then the server’s conversion code sets are JIS and SJIS.

• Code set converters. The ORB has converters which are registered in the converter
database.

CodeSet Component of IOR Multi-Component Profile

The code set component of the IOR multi-component profile structure contains:

• server’s native char code set and conversion code sets; and

• server’s native wchar code set and conversion code sets.

Both char and wchar conversion code sets are listed in order of preference. The code
set component is identified by the following tag:

const IOP::C omponentID TAG_CODE_SETS = 1;

This tag has been assigned by OMG (See “Standard IOR Components” on
page 11-17.). The following IDL structure defines the representation of code set
information within the component:

module CON V_FRAME { // IDL
typedef unsigned long Code SetId;
struct CodeSetComp onent {

 CodeSetId native _code_set;
 sequence<CodeSetId> conversion_c ode_sets;

};
struct CodeSetComponentInfo {

 CodeSetComponent ForCharData;
 CodeSetComponent ForWcharData;

};
};
11-28 CORBA V2.2 February 1998

11

ype

e

ice
Code sets are identified by a 32-bit integer id from the OSF Character and Code Set
Registry (See “Character and Code Set Registry” on page 11-35 for further
information). Data within the code set component is represented as a structure of t
CodeSetComponentInfo . In other words, the char code set information comes first,
then the wchar information, represented as structures of type CodeSetComponent .

A null value should be used in the native_code_set field if the server desires to
indicate no native code set (possibly with the identification of suitable conversion code
sets).

If the code set component is not present in a multi-component profile structure, then
the default char code set is ISO 8859-1 for backward compatibility. However, there is
no default wchar code set. If a server supports interfaces that use wide character data
but does not specify the wchar code sets that it supports, client-side ORBs will rais
exception INV_OBJREF.

GIOP Code Set Service Context

The code set GIOP service context contains:

• char transmission code set, and

• wchar transmission code set

in the form of a code set service. This service is identified by:

const IOP::ServiceID CodeSets = 1;

This service ID has been assigned by OMG (See “Object Service Context” on
page 11-20.) The following IDL structure defines the representation of code set serv
information:

module CON V_FRAME { // IDL
typedef unsigned long Code SetId;
struct CodeSetContext {

CodeSetId char_data;
CodeSetId wchar_data;

};
};

Code sets are identified by a 32-bit integer id from the OSF Character and Code Set
Registry (See “Character and Code Set Registry” on page 11-35 for further
information).

Note – A server’s char and wchar Code set components are usually different, but
under some special circumstances they can be the same. That is, one could use the
same code set for both char data and wchar data. Likewise the CodesetId s in the
service context don’t have to be different.
CORBA V2.2 Code Set Conversion February 1998 11-29

11

rom

ient

g

they
on

e
Code Set Negotiation

The client-side ORB determines a server’s native and conversion code sets from the
code set component in an IOR multi-component profile structure, and it determines a
client’s native and conversion code sets from the locale setting (and/or environment
variables/configuration files) and the converters that are available on the client. F
this information, the client-side ORB chooses char and wchar transmission code sets
(TCS-C and TCS-W). For both requests and replies, the char TCS-C determines the
encoding of char and string data, and the wchar TCS-W determines the encoding of
wchar and wstring data.

Code set negotiation is not performed on a per-request basis, but only when a cl
initially connects to a server. All text data communicated on a connection are encoded
as defined by the TCSs selected when the connection is established.

As the following figure illustrates, there are two channels for character data flowin
between the client and the server. The first, TCS-C, is used for char data and the
second, TCS-W, is used for wchar data. Also note that two native code sets, one for
each type of data, could be used by the client and server to talk to their respective
ORBs (as noted earlier, the selection of the particular native code set used at any
particular point is done via setlocale or some other implementation dependent
method).

Figure 11-8 Transmission Code Set Use

Let us look at an example. Assume that the code set information for a client and server
is as shown in the table below. (Note that this example is talking about only char code
sets and is applicable only for data described as char s in the IDL.)

The client-side ORB first compares the native code sets of the client and server. If
are identical, then the transmission and native code sets are the same and no conversi
is required. In this example, they are different, so code set conversion is necessary.
Next, the client-side ORB checks to see if the server’s native code set, eucJP, is one of
the conversion code sets supported by the client. It is, so eucJP is selected as th

Client Server

Native code set: SJIS eucJP

Conversion code
sets:

eucJP,
JIS

SJIS,
JIS

S
erverC

lie
nt

ORB ORB

Client’s native
code set for char for char (TCS-C)

Transmission code set

Client’s native
code set for wchar

Server’s native
code set for char

Server’s native
code set for wchar

for wchar (TCS-W)
Transmission code set

Client
Side Side

Server
11-30 CORBA V2.2 February 1998

11

rom

.

 If
rsion
transmission code set, with the client (i.e., its ORB) performing conversion to and f
its native code set, SJIS, to eucJP. Note that the client may first have to convert all its
data described as char s (and possibly wchar_ ts) from process codes to SJIS first.

Now let us look at the general algorithm for determining a transmission code set and
where conversions are performed. First, we introduce the following abbreviations:

• CNCS - Client Native Code Set;

• CCCS - Client Conversion Code Sets;

• SNCS - Server Native Code Set;

• SCCS - Server Conversion Code Sets; and

• TCS - Transmission Code Set.

The algorithm is as follows:

if (CNCS==SNCS)
TCS = CNCS; // no conversion required

else {
if (elementOf(SNCS,CCCS))

TCS = SNCS; // client converts to server’s native code set
else if (elementOf(CNCS,SCCS))

 TCS = CNCS; // server converts from client’s native code set
else if (intersection(CCCS,SCCS) != emptySet) {

TCS = oneOf(intersection(CCCS,SCCS));
// client chooses TCS, from intersection(CCCS,SCCS), that is
// most preferable to server;
// client converts from CNCS to TCS and server from TCS to SNCS

else if (compatible(CNCS,SNCS))
TCS = fallbackCS; // fallbacks are UTF-8 (for char data) and

// UTF-16 (for wchar data)
else

raise CODESET_INCOMPATIBLE exception;
}

The algorithm first checks to see if the client and server native code sets are the same
If they are, then the native code set is used for transmission and no conversion is
required. If the native code sets are not the same, then the conversion code sets are
examined to see if (1) the client can convert from its native code set to the server’s
native code set; (2) the server can convert from the client’s native code set to its native
code set; or (3) transmission through an intermediate conversion code set is possible.
the third option is selected and there is more than one possible intermediate conve
code set (i.e., the intersection of CCCS and SCCS contains more than one code set),
then the one most preferable to the server is selected.3

3.Recall that server conversion code sets are listed in order of preference.
CORBA V2.2 Code Set Conversion February 1998 11-31

11

he
r sets

E
client

 a

,

t,

eption

. The
e can

x

each
If none of these conversions is possible, then the fallback code set (UTF-8 for char
data and UTF-16 for wchar data— see below) is used. However, before selecting t
fallback code set, a compatibility test is performed. This test looks at the characte
encoded by the client and server native code sets. If they are different (e.g., Korean and
French), then meaningful communication between the client and server is not possible
and a CODESET_INCOMPATIBLE exception is raised. This test is similar to the DC
compatibility test and is intended to catch those cases where conversion from the
native code set to the fallback, and the fallback to the server native code set would
result in massive data loss. (See 11.9 on page 11-35 for the relevant OSF registry
interfaces that could be used for determining compatibility.)

A DATA_CONVERSION exception is raised when a client or server attempts to
transmit a character that does not map into the negotiated transmission code set. For
example, not all characters in Taiwan Chinese map into Unicode. When an attempt is
made to transmit one of these characters via Unicode, an ORB is required to raise
DATA_CONVERSION exception.

In summary, the fallback code set is UTF-8 for char data (identified in the Registry as
0x05010001, “X/Open UTF-8; UCS Transformation Format 8 (UTF-8)"), and UTF-16
for wchar data (identified in the Registry as 0x00010109, "ISO/IEC 10646-1:1993;
UTF-16, UCS Transformation Format 16-bit form"). As mentioned above the fallback
code set is meaningful only when the client and server character sets are compatible
and the fallback code set is distinguished from a default code set used for backward
compatibility.

If a server’s native char code set is not specified in the IOR multi-component profile,
then it is considered to be ISO 8859-1 for backward compatibility. However, a server
that supports interfaces that use wide character data is required to specify its native
wchar code set; if one is not specified, then the client-side ORB raises exception
INV_OBJREF.

Similarly, if no char transmission code set is specified in the code set service contex
then the char transmission code set is considered to be ISO 8859-1 for backward
compatibility. If a client transmits wide character data and does not specify its wchar
transmission code set in the service context, then the server-side ORB raises exc
BAD_PARAM .

To guarantee “out-of-the-box” interoperability, clients and servers must be able to
convert between their native char code set and UTF-8 and their native wchar code set
(if specified) and Unicode. Note that this does not require that all server native code
sets be mappable to Unicode, but only those that are exported as native in the IOR
server may have other native code sets that aren’t mappable to Unicode and thos
be exported as SCCSs (but not SNCSs). This is done to guarantee out-of-the-bo
interoperability and to reduce the number of code set converters that a CORBA-
compliant ORB must provide.

ORB implementations are strongly encouraged to use widely-used code sets for
regional market. For example, in the Japanese marketplace, all ORB implementations
should support Japanese EUC, JIS and Shift JIS to be compatible with existing
business practices.
11-32 CORBA V2.2 February 1998

11

nd
de

te
e

 code
cter
11.7.3 Mapping to Generic Character Environments

Certain language environments do not distinguish between byte-oriented and wide
characters. In such environments both char and wchar are mapped to the same
“generic” character representation of the language. string and wstring are likewise
mapped to generic strings in such environments. Examples of language environments
that provide generic character support are Smalltalk and Ada.

Even while using languages that do distinguish between wide and byte-oriented
characters (e.g., C and C++), it is possible to mimic some generic behavior by the use
of suitable macros and support libraries. For example, developers of Windows NT a
Windows 95 applications can write portable code between NT (which uses Unico
strings) and Windows 95 (which uses byte-oriented character strings) by using a set of
macros for declaring and manipulating characters and character strings. Appendix A in
this chapter shows how to map wide and byte-oriented characters to these generic
macros.

Another way to achieve generic manipulation of characters and strings is by treating
them as abstract data types (ADTs). For example, if strings were treated as abstract
data types and the programmers are required to create, destroy, and manipulate strings
only through the operations in the ADT interface, then it becomes possible to wri
code that is representation independent. This approach has an advantage over th
macro-based approach in that it provides portability between byte-oriented and wide
character environments even without recompilation (at runtime the string function calls
are bound to the appropriate byte-oriented/wide library). Another way of looking at it
is that the macro-based genericity gives compile-time flexibility, while ADT-based
genericity gives runtime flexibility.

Yet another way to achieve generic manipulation of character data is through the ANSI
C++ Strings library defined as a template that can be parameterized by char ,
wchar_t or other integer types.

Given that there can be several ways of treating characters and character strings in a
generic way, this standard cannot, and therefore does not, specify the mapping of char ,
wchar, string and wstring to all of them. It only specifies the following normative
requirements which are applicable to generic character environments:

• wchar must be mapped to the generic character type in a generic character
environment.

• wstring must be mapped to a string of such generic characters in a generic
character environment.

• The language binding files (i.e., stubs) generated for these generic environments
must ensure that the generic type representation is converted to the appropriate
sets (i.e., CNCS on the client side and SNCS on the server side) before chara
data is given to the ORB runtime for transmission.
CORBA V2.2 Code Set Conversion February 1998 11-33

11

 exist

ith a

 the

e

e

e an

Describing Generic Interfaces

To describe generic interfaces in IDL we recommend using wchar and wstring .
These can be mapped to generic character types in environments where they do
and to wide characters where they do not. Either way interoperation between generic
and non-generic character type environments is achieved because of the code set
conversion framework.

Interoperation

Let us consider an example to see how a generic environment can interoperate w
non-generic environment. Let us say there is an IDL interface with both char and
wchar parameters on the operations, and let us say the client of the interface is in a
generic environment while the server is in a non-generic environment (for example
client is written in Smalltalk and the server is written in C++).

Assume that the server’s (byte-oriented) native char code set (SNCS) is eucJP and th
client’s native char code set (CNCS) is SJIS. Further assume that the code set
negotiation led to the decision to use eucJP as the char TCS-C and Unicode as the
wchar TCS-W.

As per the above normative requirements for mapping to a generic environment, th
client’s Smalltalk stubs are responsible for converting all char data (however they are
represented inside Smalltalk) to SJIS and all wchar data to the client’s wchar code set
before passing the data to the client-side ORB. (Note that this conversion could b
identity mapping if the internal representation of narrow and wide characters is the
same as that of the native code set(s).) The client-side ORB now converts all char data
from SJIS to eucJP and all wchar data from the client’s wchar code set to Unicode,
and then transmits to the server side.

The server side ORB and stubs convert the eucJP data and Unicode data into C++’s
internal representation for char s and wchar s as dictated by the IDL operation
signatures. Notice that when the data arrives at the server side it does not look any
different from data arriving from a non-generic environment (e.g., that is just like the
server itself). In other words, the mappings to generic character environments do not
affect the code set conversion framework.

11.8 Example of Generic Environment Mapping

This Appendix shows how char , wchar , string , and wchar can be mapped to the
generic C/C++ macros of the Windows environment. This is merely to illustrate one
possibility. This Appendix is not normative and is applicable only in generic
environments. See “Mapping to Generic Character Environments” on page 11-33.
11-34 CORBA V2.2 February 1998

11

 the

JIS,
g

e
ince

ained

 if the
11.8.1 Generic Mappings

char and string are mapped to C/C++ char and char* as per the standard C/C++
mappings. wchar is mapped to the TCHAR macro which expands to either char or
wchar_t depending on whether _UNICODE is defined. wstring is mapped to
pointers to TCHAR as well as to the string class CORBA::Wstring_var . Literal
strings in IDL are mapped to the _TEXT macro as in _TEXT(<literal>) .

11.8.2 Interoperation and Generic Mappings

We now illustrate how the interoperation works with the above generic mapping.
Consider an IDL interface operation with a wstring parameter, a client for the
operation which is compiled and run on a Windows 95 machine, and a server for
operation which is compiled and run on a Windows NT machine. Assume that the
locale (and/or the environment variables for CNCS for wchar representation) on the
Windows 95 client indicates the client’s native code set to be SJIS, and that the
corresponding server’s native code set is Unicode. The code set negotiation in this case
will probably choose Unicode as the TCS-W.

Both the client and server sides will be compiled with _UNICODE defined. The IDL
type wstring will be represented as a string of wchar_t on the client. However, since
the client’s locale or environment indicates that the CNCS for wide characters is S
the client side ORB will get the wstring parameter encoded as a SJIS multi-byte strin
(since that is the client’s native code set), which it will then convert to Unicode befor
transmitting to the server. On the server side the ORB has no conversions to do s
the TCS-W matches the server’s native code set for wide characters.

We therefore notice that the code set conversion framework handles the necessary
translations between byte-oriented and wide forms.

11.9 Relevant OSFM Registry Interfaces

11.9.1 Character and Code Set Registry

The OSF character and code set registry is defined in OSF Character and Code Set
Registry (see References in the Preface) and current registry contents may be obt
directly from the Open Software Foundation (obtain via anonymous ftp to
ftp.opengroup.org:/pub/code_set_registry). This registry contains two parts: character
sets, and code sets. For each listed code set, the set of character sets encoded by this
code set is shown.

Each 32-bit code set value consists of a high-order 16-bit organization number and a
16-bit identification of the code set within that organization. As the numbering of
organizations starts with 0x0001, a code set null value (0x00000000) may be used to
indicate an unknown code set.

When associating character sets and code sets, OSF uses the concept of “fuzzy
equality,” meaning that a code set is shown as encoding a particular character set
code set can encode “most” of the characters.
CORBA V2.2 Relevant OSFM Registry Interfaces February 1998 11-35

11

e set.

s

e.

er set

ugh

se

and

-

es to
us a
“Compatibility” is determined with respect to two code sets by examining their entries
in the registry, paying special attention to the character sets encoded by each cod
For each of the two code sets, an attempt is made to see if there is at least one (fuzzy-
defined) character set in common, and if such a character set is found, then the
assumption is made that these code sets are “compatible.” Obviously, application
which exploit parts of a character set not properly encoded in this scheme will suffer
information loss when communicating with another application in this “fuzzy” schem

The ORB is responsible for accessing the OSF registry and determining
“compatibility” based on the information returned.

OSF members and other organizations can request additions to both the charact
and code set registries by email to cs-registry@opengroup.org; in particular, one range
of the code set registry (0xf5000000 through 0xffffffff) is reserved for
organizations to use in identifying sets which are not registered with the OSF (altho
such use would not facilitate interoperability without registration).

11.9.2 Access Routines

The following routines are for accessing the OSF character and code set registry. The
routines map a code set string name to code set id and vice versa. They also help in
determining character set compatibility. These routine interfaces, their semantics
their actual implementation are not normative (i.e., ORB vendors do not have to bundle
the OSF registry implementation with their products for compliance).

The following routines are adopted from RPC Runtime Support For I18N Characters
Functional Specification (see References in the Preface).

dce_cs_loc_to_rgy

Maps a local system-specific string name for a code set to a numeric code set value
specified in the code set registry.

SYNOPSIS
void dce_cs_loc_to_rgy(

idl_char *local_code_set_name,
unsigned32 *rgy_code_set_value,
unsigned16 *rgy_char_sets_number,
unsigned16 **rgy_char_sets_value,
error_status_t *status);

PARAMETERS
Input

local_code_set_name
A string that specifies the name that the local host's locale environment us
refer to the code set. The string is a maximum of 32 bytes: 31 data bytes pl
terminating NULL character.
11-36 CORBA V2.2 February 1998

11

 by

ing

ts

her

lue

ULL
e
ant

from
Output
rgy_code_set_value

The registered integer value that uniquely identifies the code set specified
local_code_set_name.

rgy_char_sets_number
The number of character sets that the specified code set encodes. Specify
NULL prevents this routine from returning this parameter.

rgy_char_sets_value
A pointer to an array of registered integer values that uniquely identify the
character set(s) that the specified code set encodes. Specifying NULL preven
this routine from returning this parameter. The routine dynamically allocates
this value.

status
Returns the status code from this routine. This status code indicates whet
the routine completed successfully or, if not, why not.

The possible status codes and their meanings are as follows:
dce_cs_c_ok – Code set registry access operation succeeded.
dce_cs_c_cannot_allocate_memory –Cannot allocate memory for code set

info.
dce_cs_c_unknown – No code set value was not found in the registry which

corresponds to the code set name specified.
dce_cs_c_notfound – No local code set name was found in the registry which

corresponds to the name specified.

DESCRIPTION

The dce_cs_loc_to_rgy() routine maps operating system-specific names for
character/code set encodings to their unique identifiers in the code set registry.

The dce_cs_loc_to_rgy() routine takes as input a string that holds the host-specific
“local name” of a code set and returns the corresponding integer value that uniquely
identifies that code set, as registered in the host's code set registry. If the integer va
does not exist in the registry, the routine returns the status dce_cs_c_unknown.

The routine also returns the number of character sets that the code set encodes and the
registered integer values that uniquely identify those character sets. Specifying N
in the rgy_char_sets_number and rgy_char_sets_value[] parameters prevents th
routine from performing the additional search for these values. Applications that w
only to obtain a code set value from the code set registry can specify NULL for these
parameters in order to improve the routine's performance. If the value is returned
the routine, application developers should free the array after it is used, since the array
is dynamically allocated.

dce_cs_rgy_to_loc

Maps a numeric code set value contained in the code set registry to the local system-
specific name for a code set.
CORBA V2.2 Relevant OSFM Registry Interfaces February 1998 11-37

11

es to

ing

her

ode

 the

 set
SYNOPSIS
void dce_cs_rgy_to_loc(

 unsigned32 *rgy_code_set_value,
 idl_char **local_code_set_name,
 unsigned16 *rgy_char_sets_number,
 unsigned16 **rgy_char_sets_value,
 error_status_t *status);

PARAMETERS
Input

rgy_code_set_value
The registered hexadecimal value that uniquely identifies the code set.

Output
local_code_set_name

A string that specifies the name that the local host's locale environment us
refer to the code set. The string is a maximum of 32 bytes: 31 data bytes and a
terminating NULL character.

rgy_char_sets_number
The number of character sets that the specified code set encodes. Specify
NULL in this parameter prevents the routine from returning this value.

rgy_char_sets_value
A pointer to an array of registered integer values that uniquely identify the
character set(s) that the specified code set encodes. Specifying NULL in this
parameter prevents the routine from returning this value. The routine dynami-
cally allocates this value.

status
Returns the status code from this routine. This status code indicates whet
the routine completed successfully or, if not why not.

The possible status codes and their meanings are as follows:
dce_cs_c_ok – Code set registry access operation succeeded.
dce_cs_c_cannot_allocate_memory –Cannot allocate memory for code set

info.
dce_cs_c_unknown – The requested code set value was not found in the c

set registry.
dce_cs_c_notfound – No local code set name was found in the registry which

corresponds to to the specific code set registry ID value. This implies that the
code set is not supported in the local system environment.

DESCRIPTION

The dce_cs_rgy_to_loc() routine maps a unique identifier for a code set in the code set
registry to the operating system-specific string name for the code set, if it exists in
code set registry.

The dce_cs_rgy_to_loc() routine takes as input a registered integer value of a code
and returns a string that holds the operating system-specific, or local name, of the code
set.
11-38 CORBA V2.2 February 1998

11

ULL

ant

ed
 after

t the

t the

her

nvert.
e.

ot
If the code set identifier does not exist in the registry, the routine returns the status
dce_cs_c_unknown and returns an undefined string.

The routine also returns the number of character sets that the code set encodes and the
registered integer values that uniquely identify those character sets. Specifying N
in the rgy_char_sets_number and rgy_char_sets_value[] parameters prevents the
routine from performing the additional search for these values. Applications that w
only to obtain a local code set name from the code set registry can specify NULL for
these parameters in order to improve the routine's performance. If the value is return
from the routine, application developers should free the rgy_char_sets_value array
it is used.

rpc_cs_char_set_compat_check

Evaluates character set compatibility between a client and a server.

SYNOPSIS
void rpc_cs_char_set_compat_check(

 unsigned32 client_rgy_code_set_value,
 unsigned32 server_rgy_code_set_value,
 error_status_t *status);

PARAMETERS
Input

client_rgy_code_set_value
The registered hexadecimal value that uniquely identifies the code set tha
client is using as its local code set.

server_rgy_code_set_value
The registered hexadecimal value that uniquely identifies the code set tha
server is using as its local code set.

Output
status

Returns the status code from this routine. This status code indicates whet
the routine completed successfully or, if not, why not.

The possible status codes and their meanings are as follows:
rpc_s_ok – Successful status.
rpc_s_ss_no_compat_charsets – No compatible code set found. The client and

server do no have a common encoding that both could recognize and co
The routine can also return status codes from the dce_cs_rgy_to_loc() routin

DESCRIPTION

The rpc_cs_char_set_compat_check() routine provides a method for determining
character set compatibility between a client and a server; if the server's character set is
incompatible with that of the client, then connecting to that server is most likely n
acceptable, since massive data loss would result from such a connection.
CORBA V2.2 Relevant OSFM Registry Interfaces February 1998 11-39

11

upport.

er
iders

m

her
The routine takes the registered integer values that represent the code sets that the
client and server are currently using and calls the code set registry to obtain the
registered values that represent the character set(s) that the specified code sets s
If both client and server support just one character set, the routine compares client and
server registered character set values to determine whether or not the sets are
compatible. If they are not, the routine returns the status message
rpc_s_ss_no_compat_charsets.

If the client and server support multiple character sets, the routine determines wheth
at least two of the sets are compatible. If two or more sets match, the routine cons
the character sets compatible, and returns a success status code to the caller.

rpc_rgy_get_max_bytes

Gets the maximum number of bytes that a code set uses to encode one character fro
the code set registry on a host

SYNOPSIS
void rpc_rgy_get_max_bytes(

unsigned32 rgy_code_set_value,
unsigned16 *rgy_max_bytes,
error_status_t *status);

PARAMETERS
Input

rgy_code_set_value
The registered hexadecimal value that uniquely identifies the code set.

Output
rgy_max_bytes

The registered decimal value that indicates the number of bytes this code set
uses to encode one character.

status
Returns the status code from this routine. This status code indicates whet
the routine completed successfully or, if not, why not.

The possible status codes and their meanings are as follows:
rpc_s_ok – Operation succeeded.
dce_cs_c_cannot_allocate_memory –Cannot allocate memory for code set

info.
dce_cs_c_unknown – No code set value was not found in the registry which

corresponds to the code set value specified.
dce_cs_c_notfound – No local code set name was found in the registry which

corresponds to the value specified.
11-40 CORBA V2.2 February 1998

11

t. It

d
DESCRIPTION

The rpc_rgy_get_max_bytes() routine reads the code set registry on the local hos
takes the specified registered code set value, uses it as an index into the registry, and
returns the decimal value that indicates the number of bytes that the code set uses to
encode one character.

This information can be used for buffer sizing as part of the procedure to determine
whether additional storage needs to be allocated for conversion between local an
network code sets.
CORBA V2.2 Relevant OSFM Registry Interfaces February 1998 11-41

11
11-42 CORBA V2.2 February 1998

 Building Inter-ORB Bridges 12
This chapter provides an implementation-oriented conceptual framework for the
construction of bridges to provide interoperability between ORBs. It focuses on the
layered request level bridges that the CORBA Core specifications facilitate, although
ORBs may always be internally modified to support bridges.

Key feature of the specifications for inter-ORB bridges are as follows:

• Enables requests from one ORB to be translated to requests on another

• Provides support for managing tables keyed by object references

The OMG IDL specification for interoperable object references, which are important to
inter-ORB bridging, is shown in “Interoperable Object References: IORs” on page
11-14.

Contents

This chapter contains the following sections.

Section Title Page

“In-Line and Request-Level Bridging” 12-2

“Proxy Creation and Management” 12-5

“Interface-specific Bridges and Generic Bridges” 12-6

“Building Generic Request-Level Bridges” 12-6

“Bridging Non-Referencing Domains” 12-7

“Bootstrapping Bridges” 12-7
 CORBA V2.2 February 1998 12-1

12

he
re the

 is

t
BA

est-

.
)
12.1 In-Line and Request-Level Bridging

Bridging of an invocation between a client in one domain and a server object in
another domain can be mediated through a standardized mechanism, or done
immediately using nonstandard ones.

The question of how this bridging is constructed is broadly independent of whether t
bridging uses a standardized mechanism. There are two possible options for whe
bridge components are located:

• Code inside the ORB may perform the necessary translation or mappings; this
termed in-line bridging.

• Application style code outside the ORB can perform the translation or mappings;
this is termed request level bridging.

Request level bridges which mediate through a common protocol (using networking,
shared memory, or some other IPC provided by the host operating system) between
distinct execution environments will involve components, one in each ORB, known as
“half bridges.”

When that mediation is purely internal to one execution environment, using a shared
programming environment’s binary interfaces to CORBA- and OMG-IDL-defined data
types, this is known as a “full bridge”1. From outside the execution environment this
will appear identical to some kinds of in-line bridging, since only that environment
knows the construction techniques used. However, full bridges more easily suppor
portable policy mediation components, because of their use of only standard COR
programming interfaces.

Network protocols may be used immediately “in-line,” or to mediate between requ
level half bridges. The General Inter-ORB Protocol can be used in either manner. In
addition, this specification provides for Environment Specific Inter-ORB Protocols
(ESIOP), allowing for alternative mediation mechanisms.

Note that mediated, request level half-bridges can be built by anyone who as access to
an ORB, without needing information about the internal construction of that ORB.
Immediate-mode request level half-bridges (i.e., ones using nonstandard mediation
mechanisms) can similarly be built without needing information about ORB internals
Only in-line bridges (using either standard or nonstandard mediation mechanisms
need potentially proprietary information about ORB internals.

1.Special initialization supporting object referencing domains (e.g. two protocols) to be
exposed to application programmers to support construction of this style bridge.
12-2 CORBA V2.2 February 1998

12

new
 such

12.1.1 In-line Bridging

In-line bridging is in general the most direct method of bridging between ORBs. It is
structurally similar to the engineering commonly used to bridge between systems
within a single ORB (e.g., mediating using some common inter-process
communications scheme, such as a network protocol). This means that implementing
in-line bridges involves as fundamental a set of changes to an ORB as adding a
inter-process communications scheme. (Some ORBs may be designed to facilitate
modifications, though.)

In this approach, the required bridging functionality can be provided by a combination
of software components at various levels:

• As additional or alternative services provided by the underlying ORBs

• As additional or alternative stub and skeleton code.

Figure 12-1 In-Line bridges are built using ORB internal APIs.

12.1.2 Request-level Bridging

The general principle of request-level bridging is as follows:

1. The original request is passed to a proxy object in the client ORB.

2. The proxy object translates the request contents (including the target object
reference) to a form that will be understood by the server ORB.

3. The proxy invokes the required operation on the apparent server object.

4. Any operation result is passed back to the client via a complementary route.

Client Server

 ORB Core ORB Core

ORB Services ORB Services

Logical client to server operation request

(DII)
CORBA V2.2 In-Line and Request-Level Bridging February 1998 12-3

12

t

volve

he
Figure 12-2 Request-Level bridges are built using public ORB APIs.

The request translation involves performing object reference mapping for all objec
references involved in the request (the target, explicit parameters, and perhaps implicit
ones such as transaction context). As elaborated later, this translation may also in
mappings for other domains: the security domain of CORBA: :Principal parameters,
type identifiers, and so on.

It is a language mapping requirement of the CORBA Core specification that all
dynamic typing APIs (e.g., Any, NamedValue) support such manipulation of
parameters even when the bridge was not created with compile-time knowledge of the
data types involved.

12.1.3 Collocated ORBs

In the case of immediate bridging (i.e. not via a standardized, external protocol) t
means of communication between the client-side bridge component and that on the
server-side is an entirely private matter. One possible engineering technique optimizes
this communication by coalescing the two components into the same system or even
the same address space. In the latter case, accommodations must be made by both
ORBs to allow them to share the same execution environment.

Client Server

 ORB Core ORB Core

ORB Services ORB Services

Logical client to server operation request

(DII) DSI (DII)

Bridge
12-4 CORBA V2.2 February 1998

12

ting

k

aging
 each

op,”

ters

ents
BA

ORB

,
ype
ill
Similar observations apply to request level bridges, which in the case of collocated
ORBs use a common binary interface to all OMG IDL-defined data as their media
data format.

Figure 12-3 When the two ORBs are collocated in a bridge execution environment, networ
communications will be purely intra-ORB. If the ORBs are not collocated, such
communications must go between ORBs.

An advantage of using bridges spanning collocated ORBs is that all external mess
can be arranged to be intra-ORB, using whatever message passing mechanisms
ORB uses to achieve distribution within a single ORB, multiple machine system. That
is, for bridges between networked ORBs such a bridge would add only a single “h
a cost analogous to normal routing.

12.2 Proxy Creation and Management

Bridges need to support arbitrary numbers of proxy objects, because of the
(bidirectional) object reference mappings required. The key schemes for creating and
managing proxies are reference translation and reference encapsulation, as discussed
in “Handling of Referencing Between Domains” on page 11-12.

• Reference translation approaches are possible with CORBA V2.0 Core APIs.
Proxies themselves can be created as normal objects using the Basic Object Adapter
(BOA) and the Dynamic Skeleton Interface (DSI).

• Reference Encapsulation is not supported by the BOA, since it would call for
knowledge of more than one ORB. Some ORBs could provide other object adap
which support such encapsulation.

Note that from the perspective of clients, they only ever deal with local objects; cli
do not need to distinguish between proxies and other objects. Accordingly, all COR
operations supported by the local ORB are also supported through a bridge. The
used by the client might, however, be able to recognize that encapsulation is in use,
depending on how the ORB is implemented.

Also, note that the CORBA:: Interfa ceDef used when creating proxies (e.g, the one
passed to CORBA::BOA::create) could be either a proxy to one in the target ORB
or could be an equivalent local one. When the domains being bridged include a t
domain, then the InterfaceDef objects cannot be proxies since type descriptions w
not have the same information. When bridging CORBA compliant ORBs, type
domains by definition do not need to be bridged.

Bridge

Bridge Bridge

BridgeBridge

ORB 2

ORB 3ORB 1

ORB 1 ORB 2

Inter-ORB messaging Intra-ORB messaging
CORBA V2.2 Proxy Creation and Management February 1998 12-5

12

es,
).

ut the

lues,

t

d

same

uch as
12.3 Interface-specific Bridges and Generic Bridges

Request-level bridges may be:

• Interface-specific: they support predetermined IDL interfaces only, and are built
using IDL-compiler generated stub and skeleton interfaces.

• Generic: capable of bridging requests to server objects of arbitrary IDL interfac
using the interface repository and other dynamic invocation support (DII and DSI

Interface-specific bridges may be more efficient in some cases (a generic bridge could
conceivably create the same stubs and skeletons using the interface repository), b
requirement for prior compilation means that this approach offers less flexibility than
use of generic bridges.

12.4 Building Generic Request-Level Bridges

The CORBA Core specifications define the following interfaces. These interfaces are
of particular significance when building a generic request-level bridge:

• Dynamic Invocation Interface (DII) lets the bridge make arbitrary invocations on
object references whose types may not have been known when the bridge was
developed or deployed.

• Dynamic Skeleton Interface (DSI) lets the bridge handle invocations on proxy
object references which it implements, even when their types may not have been
known when the bridge was developed or deployed.

• Interface Repositories are consulted by the bridge to acquire the information used
to drive DII and DSI, such as the type codes for operation parameters, return va
and exceptions.

• Object Adapters (such as the Basic Object Adapter) are used to create proxy objec
references both when bootstrapping the bridge and when mapping object references
which are dynamically passed from one ORB to the other.

• CORBA Object References support operations to fully describe their interfaces an
to create tables mapping object references to their proxies (and vice versa).

Interface repositories accessed on either side of a half bridge need not have the
information, though of course the information associated with any given repository ID
(e.g, an interface type ID, exception ID) or operation ID must be the same.

Using these interfaces and an interface to some common transport mechanism s
TCP, portable request-level half bridges connected to an ORB can:

• Use DSI to translate all CORBA invocations on proxy objects to the form used by
some mediating protocol such as IIOP (see the General Inter-ORB Protocol
chapter).

• Translate requests made using such a mediating protocol into DII requests on
objects in the ORB.
12-6 CORBA V2.2 February 1998

12

s

t, an

ing

ned
he

 will

t
d

s as

ribed

o
As noted in “In-Line and Request-Level Bridging” on page 12-2, translating requests
and responses (including exceptional responses) involves mapping object reference
(and other explicit and implicit parameter data) from the form used by the ORB to the
form used by the mediating protocol, and vice versa. Explicit parameters, which are
defined by an operation’s OMG-IDL definition, are presented through DII or DSI and
are listed in the Interface Repository entry for any particular operation.

Operations on object references such as hash() and is_equivalent() may be used to
maintain tables that support such mappings. When such a mapping does not exis
object adapter is used to create a ORB-specific proxy object references, and bridge-
internal interfaces are used to create the analogous data structure for the mediat
protocol.

12.5 Bridging Non-Referencing Domains

In the simplest form of request-level bridging, the bridge operates only on IDL-defi
data, and bridges only object reference domains. In this case, a proxy object in t
client ORB acts as a representative of the target object and is, in almost any practical
sense, indistinguishable from the target server object - indeed, even the client ORB
not be aware of the distinction.

However, as alluded to above, there may be multiple domains that need simultaneous
bridging. The transformation and encapsulation schemes described above may no
apply in the same way to Principal or type identifiers. Request level bridges may nee
to translate such identifiers, in addition to object references, as they are passed as
explicit operation parameters.

Moreover, there is an emerging class of “implicit context” information that ORBs may
need to convey with any particular request, such as transaction and security context
information. Such parameters are not defined as part of an operation’s OMG-IDL
signature, hence are “implicit” in the invocation context. Bridging the domains of such
implicit parameters could involve additional kinds of work, needing to mediate more
policies, than bridging the object reference, Principal, and type domains directly
addressed by CORBA.

CORBA does not yet have a generic way (including support for both static and
dynamic invocations) to expose such implicit context information.

12.6 Bootstrapping Bridges

A particularly useful policy for setting up bridges is to create a pair of proxies for two
Naming Service naming contexts (one in each ORB) and then install those proxie
naming contexts in the other ORB’s naming service. (The Naming Service is desc
in CORBAservices.) This will allow clients in either ORB to transparently perform
naming context lookup operations on the other ORB, retrieving (proxy) object
references for other objects in that ORB. In this way, users can access facilities that
have been selectively exported from another ORB, through a naming context, with n
administrative action beyond exporting those initial contexts. (See “Obtaining Initial
Object References” on page 4-10 for additional information).
CORBA V2.2 Bridging Non-Referencing Domains February 1998 12-7

12

g
This same approach may be taken with other discovery services, such as a tradin
service or any kind of object that could provide object references as operation results
(and in “out” parameters). While bridges can be established which only pass a
predefined set of object references, this kind of minimal connectivity policy is not
always desirable.
12-8 CORBA V2.2 February 1998

General Inter-ORB Protocol 13
 a
P

ol
This chapter specifies a General Inter-ORB Protocol (GIOP) for ORB interoperability,
which can be mapped onto any connection-oriented transport protocol that meets
minimal set of assumptions. This chapter also defines a specific mapping of the GIO
which runs directly over TCP/IP connections, called the Internet Inter-ORB Protoc
(IIOP). The IIOP must be supported by conforming networked ORB products
regardless of other aspects of their implementation. Such support does not require
using it internally; conforming ORBs may also provide bridges to this protocol.

Contents

This chapter contains the following sections.

Section Title Page

“Goals of the General Inter-ORB Protocol” 13-2

“GIOP Overview” 13-2

“CDR Transfer Syntax” 13-4

“GIOP Message Formats” 13-19

“GIOP Message Transport” 13-30

“Object Location” 13-32

“Internet Inter-ORB Protocol (IIOP)” 13-33

“OMG IDL” 13-37
 CORBA V2.2 February 1998 13-1

13

d

ld

s

tocol,

ed of

n-

o
13.1 Goals of the General Inter-ORB Protocol

The GIOP and IIOP support protocol-level ORB interoperability in a general, low-cost
manner. The following objectives were pursued vigorously in the GIOP design:

• Widest possible availability - The GIOP and IIOP are based on the most widely-
used and flexible communications transport mechanism available (TCP/IP), an
defines the minimum additional protocol layers necessary to transfer CORBA
requests between ORBs.

• Simplicity - The GIOP is intended to be as simple as possible, while meeting other
design goals. Simplicity is deemed the best approach to ensure a variety of
independent, compatible implementations.

• Scalability - The GIOP/IIOP protocol should support ORBs, and networks of
bridged ORBs, to the size of today’s Internet, and beyond.

• Low cost - Adding support for GIOP/IIOP to an existing or new ORB design shou
require small engineering investment. Moreover, the run-time costs required to
support IIOP in deployed ORBs should be minimal.

• Generality - While the IIOP is initially defined for TCP/IP, GIOP message format
are designed to be used with any transport layer that meets a minimal set of
assumptions; specifically, the GIOP is designed to be implemented on other
connection-oriented transport protocols.

• Architectural neutrality - The GIOP specification makes minimal assumptions
about the architecture of agents that will support it. The GIOP specification treats
ORBs as opaque entities with unknown architectures.

The approach a particular ORB takes to providing support for the GIOP/IIOP is
undefined. For example, an ORB could choose to use the IIOP as its internal pro
it could choose to externalize IIOP as much as possible by implementing it in a half-
bridge, or it could choose a strategy between these two extremes. All that is requir
a conforming ORB is that some entity or entities in, or associated with, the ORB be
able to send and receive IIOP messages.

13.2 GIOP Overview

The GIOP specification consists of the following elements:

• The Common Data Representation (CDR) definition. CDR is a transfer syntax
mapping OMG IDL data types into a bicanonical low-level representation for “o
the-wire” transfer between ORBs and Inter-ORB bridges (agents).

• GIOP Message Formats. GIOP messages are exchanged between agents to facilitate
object requests, locate object implementations, and manage communication
channels.

• GIOP Transport Assumptions. The GIOP specification describes general
assumptions made concerning any network transport layer that may be used t
transfer GIOP messages. The specification also describes how connections may be
managed, and constraints on GIOP message ordering.
13-2 CORBA V2.2 February 1998

13

P
cific
pings

nt
e

e byte

l

 are

tion
ases,
The IIOP specification adds the following element to the GIOP specification:

• Internet IOP Message Transport. The IIOP specification describes how agents open
TCP/IP connections and use them to transfer GIOP messages.

The IIOP is not a separate specification; it is a specialization, or mapping, of the GIO
to a specific transport (TCP/IP). The GIOP specification (without the transport-spe
IIOP element) may be considered as a separate conformance point for future map
to other transport layers.

The complete OMG IDL specifications for the GIOP and IIOP are shown in
Section 13.8, “OMG IDL,” on page 13-37. Fragments of the specification are used
throughout this chapter as necessary.

13.2.1 Common Data Representation (CDR)

CDR is a transfer syntax, mapping from data types defined in OMG IDL to a
bicanonical, low-level representation for transfer between agents. CDR has the
following features:

• Variable byte ordering - Machines with a common byte order may exchange
messages without byte swapping. When communicating machines have differe
byte order, the message originator determines the message byte order, and th
receiver is responsible for swapping bytes to match its native ordering. Each GIOP
message (and CDR encapsulation) contains a flag that indicates the appropriat
order.

• Aligned primitive types - Primitive OMG IDL data types are aligned on their natura
boundaries within GIOP messages, permitting data to be handled efficiently by
architectures that enforce data alignment in memory.

• Complete OMG IDL Mapping - CDR describes representations for all OMG IDL
data types, including transferable pseudo-objects such as TypeCodes. Where
necessary, CDR defines representations for data types whose representations
undefined or implementation-dependent in the CORBA Core specifications.

13.2.2 GIOP Message Overview

The GIOP specifies formats for messages that are exchanged between inter-operating
ORBs. GIOP message formats have the following features:

• Few, simple messages. With only seven message formats, the GIOP supports full
CORBA functionality between ORBs, with extended capabilities supporting object
location services, dynamic migration, and efficient management of communica
resources. GIOP semantics require no format or binding negotiations. In most c
clients can send requests to objects immediately upon opening a connection.

• Dynamic object location. Many ORBs’ architectures allow an object
implementation to be activated at different locations during its lifetime, and may
allow objects to migrate dynamically. GIOP messages provide support for object
location and migration, without requiring ORBs to implement such mechanisms
when unnecessary or inappropriate to an ORB’s architecture.
CORBA V2.2 GIOP Overview February 1998 13-3

13

rs
and

text

ort

t

eives

a

al.

r that
rk

tets

• Full CORBA support - GIOP messages directly support all functions and behavio
required by CORBA, including exception reporting, passing operation context,
remote object reference operations (such as CORBA::Obj ect::get_interface).

GIOP also supports passing service-specific context, such as the transaction con
defined by the Transaction Service (the Transaction Service is described in
CORBAservices: Common Object Service Specifications). This mechanism is designed
to support any service that requires service related context to be implicitly passed with
requests.

13.2.3 GIOP Message Transfer

The GIOP specification is designed to operate over any connection-oriented transp
protocol that meets a minimal set of assumptions (described in “GIOP Message
Transport” on page 13-30). GIOP uses underlying transport connections in the
following ways:

• Asymmetrical connection usage - The GIOP defines two distinct roles with respec
to connections, client and server. The client side of a connection originates the
connection, and sends object requests over the connection. The server side rec
requests and sends replies. The server side of a connection may not send object
requests. This restriction allows the GIOP specification to be much simpler and
avoids certain race conditions.

• Request multiplexing - If desirable, multiple clients within an ORB may share a
connection to send requests to a particular ORB or server. Each request uniquely
identifies its target object. Multiple independent requests for different objects, or
single object, may be sent on the same connection.

• Overlapping requests - In general, GIOP message ordering constraints are minim
GIOP is designed to allow overlapping asynchronous requests; it does not dictate
the relative ordering of requests or replies. Unique request/reply identifiers provide
proper correlation of related messages. Implementations are free to impose any
internal message ordering constraints required by their ORB architectures.

• Connection management - GIOP defines messages for request cancellation and
orderly connection shutdown. These features allow ORBs to reclaim and reuse idle
connection resources.

13.3 CDR Transfer Syntax

The Common Data Representation (CDR) transfer syntax is the format in which the
GIOP represents OMG IDL data types in an octet stream.

An octet stream is an abstract notion that typically corresponds to a memory buffe
is to be sent to another process or machine over some IPC mechanism or netwo
transport. For the purposes of this discussion, an octet stream is an arbitrarily long (but
finite) sequence of eight-bit values (octets) with a well-defined beginning. The oc
in the stream are numbered from 0 to n-1, where n is the size of the stream. The
numeric position of an octet in the stream is called its index. Octet indices are used to
calculate alignment boundaries, as described in “Alignment” on page 13-5.
13-4 CORBA V2.2 February 1998

13

il in

G IDL

o be

include
in

ctets,

 as

GIOP defines two distinct kinds of octet streams, messages and encapsulations.
Messages are the basic units of information exchange in GIOP, described in deta
“GIOP Message Formats” on page 13-19.

Encapsulations are octet streams into which OMG IDL data structures may be
marshaled independently, apart from any particular message context. Once a data
structure has been encapsulated, the octet stream can be represented as the OM
opaque data type sequen ce<octet> , which can be marshaled subsequently into a
message or another encapsulation. Encapsulations allow complex constants (such as
TypeCodes) to be pre-marshaled; they also allow certain message components t
handled without requiring full unmarshaling. Whenever encapsulations are used in
CDR or the GIOP, they are clearly noted.

13.3.1 Primitive Types

Primitive data types are specified for both big-endian and little-endian orderings. The
message formats (see “GIOP Message Formats” on page 13-19) include tags in
message headers that indicate the byte ordering in the message. Encapsulations
an initial flag that indicates the byte ordering within the encapsulation, described
“Encapsulation” on page 13-12. The byte ordering of any encapsulation may be
different from the message or encapsulation within which it is nested. It is the
responsibility of the message recipient to translate byte ordering if necessary.

Primitive data types are encoded in multiples of octets. An octet is an 8-bit value.

The transfer syntax for an IDL wide character depends on whether the transmission
code set (TCS-W, which is determined via the process described in “Code Set
Conversion” on page 11-22) is byte-oriented or non-byte-oriented:

• Byte-oriented (e.g., SJIS). Each wide character is represented as one or more o
as defined by the selected TCS-W.

• Non-byte-oriented (e.g., Unicode UTF-16). Each wide character is represented
one or more codepoints. A codepoint is the same as “Coded-Character data
element,” or “CC data element” in ISO terminology. Each codepoint is encoded
using a fixed number of bits as determined by the selected TCS-W.

Alignment

In order to allow primitive data to be moved into and out of octet streams with
instructions specifically designed for those primitive data types, in CDR all primitive
data types must be aligned on their natural boundaries (i.e., the alignment boundary of
a primitive datum is equal to the size of the datum in octets). Any primitive of size n
octets must start at an octet stream index that is a multiple of n. In CDR, n is one of 1,
2, 4, or 8.
CORBA V2.2 CDR Transfer Syntax February 1998 13-5

13

ize

n,
Where necessary, an alignment gap precedes the representation of a primitive datum.
The value of octets in alignment gaps is undefined. A gap must be the minimum s
necessary to align the following primitive. Table 13-1 gives alignment boundaries for
CDR/OMG-IDL primitive types.

Alignment is defined above as being relative to the beginning of an octet stream. The
first octet of the stream is octet index zero (0); any data type may be stored starting at
this index. Such octet streams begin at the start of an GIOP message header (see
“GIOP Message Header” on page 13-19) and at the beginning of an encapsulatio
even if the encapsulation itself is nested in another encapsulation. (See
“Encapsulation” on page 13-12).

Table 13-1Alignment requirements for OMG IDL primitive data types

TYPE OCTET ALIGNMENT

char 1

wchar 1, 2, or 4, depending on code set

octet 1

short 2

unsigned short 2

long 4

unsigned long 4

long long 8

unsigned long long 8

float 4

double 8

long double 8

boolean 1

enum 4
13-6 CORBA V2.2 February 1998

13

 types
Integer Data Types

Figure 13-1 on page 13-7 illustrates the representations for OMG IDL integer data
types, including the following data types:

• short

• unsigned short

• long

• unsigned long

• long long

• unsigned long long

The figure illustrates bit ordering and size. Signed types (short, long, and long
long) are represented as two’s complement numbers; unsigned versions of these
are represented as unsigned binary numbers.

Figure 13-1 Sizes and bit ordering in big-endian and little-endian encodings of OMG IDL
integer data types, both signed and unsigned.

0
1

0
1
2
3

0
1

0
1
2
3

MSB
LSB

MSB

LSB

LSB

LSB

MSB

MSB
short

long

octet octet

Big-Endian Little-Endian

long long

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

MSB

LSB

LSB

MSB
CORBA V2.2 CDR Transfer Syntax February 1998 13-7

13

 and

d as

0, f1
ber

 the

Floating Point Data Types

Figure 13-2 on page 13-9 illustrates the representation of floating point numbers.
These exactly follow the IEEE standard formats for floating point numbers1, selected
parts of which are abstracted here for explanatory purposes. The diagram shows three
different components for floating points numbers, the sign bit (s), the exponent (e)
the fractional part (f) of the mantissa. The sign bit has values of 0 or 1, representing
positive and negative numbers, respectively.

For single-precision float values the exponent is 8 bits long, comprising e1 and e2 in
the figure, where the 7 bits in e1 are most significant. The exponent is represente
excess 127. The fractional mantissa (f1 - f3) is a 23-bit value f where 1.0 <= f < 2.
being most significant and f3 being least significant. The value of a normalized num
is described by:

For double-precision values the exponent is 11 bits long, comprising e1 and e2 in
figure, where the 7 bits in e1 are most significant. The exponent is represented as
excess 1023. The fractional mantissa (f1 - f7) is a 52-bit value m where 1.0 <= m <
2.0, f1 being most significant and f7 being least significant. The value of a normalized
number is described by:

For double-extended floating-point values the exponent is 15 bits long, comprising e1
and e2 in the figure, where the 7 bits in e1 are the most significant. The fractional
mantissa (f1 through f14) is 112 bits long, with f1 being the most significant. The
value of a long double is determined by:

1. “IEEE Standard for Binary Floating-Point Arithmetic,” ANSI/IEEE Standard 754-1985,
Institute of Electrical and Electronics Engineers, August 1985.

1sign 2 exponent 127–()× 1 fraction+()×–

1sign 2 exponent 1023–()× 1 fraction+()×–

1sign 2 exponent 16383–()× 1 fraction+()×–
13-8 CORBA V2.2 February 1998

13
Figure 13-2 Sizes and bit ordering in big-endian and little-endian representations of OMG IDL
single, double precision, and double extended floating point numbers.

s
e2

e1
f1
f2
f3s

e2
e1
f1
f2
f3

s e1
e2 f1

f2
f3
f4
f5
f6
f7

0
1
2
3

0
1
2
3
4
5
6
7

0
1
2
3

0
1
2
3
4
5
6
7

Big-En dian Little-Endian

float

double s e1
e2 f1

f2
f3
f4
f5
f6
f7

s e1

e2

f1

f2

f3

f4

f5
f6

f7

f8

f9

f10

f11

f12

f13

f14 s e1

e2

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

f11

f12

f13

f140

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

long double
CORBA V2.2 CDR Transfer Syntax February 1998 13-9

13

o any

LSE

e

ctets,

 as

acter

ithin

ation
Octet

Octets are uninterpreted 8-bit values whose contents are guaranteed not to underg
conversion during transmission. For the purposes of describing possible octet values in
this specification, octets may be considered as unsigned 8-bit integer values.

Boolean

Boolean values are encoded as single octets, where TRUE is the value 1, and FA
as 0.

Character Types

An IDL character is represented as a single octet; the code set used for transmission of
character data (e.g., TCS-C) between a particular client and server ORBs is determined
via the process described in Section 11.7, “Code Set Conversion,” on page 11-22. Not
that multi-byte characters will require the use of an array of IDL char variables.

The transfer syntax for an IDL wide character depends on whether the transmission
code set (TCS-W, which is determined via the process described in “Code Set
Conversion” on page 11-22) is byte-oriented or non-byte-oriented:

• Byte-oriented (e.g., SJIS). Each wide character is represented as one or more o
as defined by the selected TCS-W.

• Non-byte-oriented (e.g., Unicode UTF-16). Each wide character is represented
one or more codepoints. A codepoint is the same as “Coded-Character data
element,” or “CC data element” in ISO terminology. Each codepoint is encoded
using a fixed number of bits as determined by the selected TCS-W. The OSF
Character and Code Set Registry may be examined using the interfaces in Appendix
10B on page 10-37 to determine the maximum length (max_bytes) of any char
codepoint. For example, if the TCS-W is ISO 10646 UCS-2 (Universal Character
Set containing 2 bytes), then wide characters are represented as unsigned shorts .
For ISO 10646 UCS-4, they are represented as unsigned longs .

13.3.2 OMG IDL Constructed Types

Constructed types are built from OMG IDL’s data types using facilities defined by the
OMG IDL language.

Alignment

Constructed type have no alignment restrictions beyond those of their primitive
components; the alignment of those primitive types is not intended to support use of
marshaling buffers as equivalent to the implementation of constructed data types w
any particular language environment. GIOP assumes that agents will usually construct
structured data types by copying primitive data between the marshaled buffer and the
appropriate in-memory data structure layout for the language mapping implement
involved.
13-10 CORBA V2.2 February 1998

13

s type

d, no

.

ce.

 enum

ight.

,
f

 f
Struct

The components of a structure are encoded in their order of their declaration in the
structure. Each component is encoded as defined for its data type.

Union

Unions are encoded as the discriminant tag of the type specified in the union
declaration, followed by the representation of any selected member, encoded as it
indicates.

Array

Arrays are encoded as the array elements in sequence. As the array length is fixe
length values are encoded. Each element is encoded as defined for the type of the
array. In multidimensional arrays, the elements are ordered so the index of the first
dimension varies most slowly, and the index of the last dimension varies most quickly

Sequence

Sequences are encoded as an unsigned long value, followed by the elements of the
sequence. The initial unsigned long contains the number of elements in the sequen
The elements of the sequence are encoded as specified for their type.

Enum

Enum values are encoded as unsigned longs. The numeric values associated with
identifiers are determined by the order in which the identifiers appear in the enum
declaration. The first enum identifier has the numeric value zero (0). Successive enum
identifiers are take ascending numeric values, in order of declaration from left to r

Strings and Wide Strings

A string is encoded as an unsigned long indicating the length of the string in octets
followed by the string value in single- or multi-byte form represented as a sequence o
octets. Both the string length and contents include a terminating null.

A wide string is encoded as an unsigned long indicating the length of the string in
octets or unsigned integers (determined by the transfer syntax for wchar) followed by
the individual wide characters. Both the string length and contents include a
terminating null. The terminating null character for a wstring is also a wide character.

Fixed-Point Decimal Type

The IDL fixed type has no alignment restrictions, and is represented as shown in
Figure 13-3 on page 13-12. Each octet contains (up to) two decimal digits. If the fixed
type has an odd number of decimal digits, then the representation begins with theirst
CORBA V2.2 CDR Transfer Syntax February 1998 13-11

13

n,
for

pe

lation

 the
 (1),

t part

haled

te
(most significant) digit — d0 in the figure. Otherwise, this first half-octet is all zero,
and the first digit is in the second half-octet — d1 in the figure. The sign configuratio
in the last half-octet of the representation, is 0xD for negative numbers and 0xC
positive and zero values.

Figure 13-3 IDL Fixed Type Representation

13.3.3 Encapsulation

As described above, OMG IDL data types may be independently marshaled into
encapsulation octet streams. The octet stream is represented as the OMG IDL ty
sequence<o ctet>, which may be subsequently included in a GIOP message or
nested in another encapsulation.

The GIOP and IIOP explicitly use encapsulations in three places: TypeCodes (see
“TypeCode” on page 13-13), the IIOP protocol profile inside an IOR (see “Object
References” on page 13-18), and in service-specific context (see “Object Service
Context” on page 11-20). In addition, some ORBs may choose to use an encapsu
to hold Principal identification information (see “Principal” on page 13-18), the
object_key (see “IIOP IOR Profiles” on page 13-34), or in other places that a
sequence<o ctet> data type is in use.

When encapsulating OMG IDL data types, the first octet in the stream (index 0)
contains a boolean value indicating the byte ordering of the encapsulated data. If
value is FALSE (0), the encapsulated data is encoded in big-endian order; if TRUE
the data is encoded in little-endian order, exactly like the byte order flag in GIOP
message headers (see “GIOP Message Header” on page 13-19). This value is no
of the data being encapsulated, but is part of the octet stream holding the
encapsulation. Following the byte order flag, the data to be encapsulated is mars
into the buffer as defined by CDR encoding rules. Marshaled data are aligned relative
to the beginning of the octet stream (the first octet of which is occupied by the by
order flag).

Big and Little-Endian octet

0

1

2

= =

n

d0 d1

d2 d3

d4 d5

dm s

fixed

MSD

LSD

=

13-12 CORBA V2.2 February 1998

13

 the
 length
nt of

ata

r

eters.

r

When the encapsulation is encoded as type sequence<octet> for subsequent
marshaling, an unsigned long value containing the sequence length is prefixed to
octet stream, as prescribed for sequences (see “Sequence” on page 13-11). The
value is not part of the encapsulation’s octet stream, and does not affect alignme
data within the encapsulation.

Note that this guarantees a four octet alignment of the start of all encapsulated d
within GIOP messages and nested encapsulations.2

13.3.4 Pseudo-Object Types

CORBA defines some kinds of entities that are neither primitive types (integral or
floating point) nor constructed ones.

TypeCode

In general, TypeCodes are encoded as the TCKind enum value, potentially followed by
values that represent the TypeCode parameters. Unfortunately, TypeCodes cannot be
expressed simply in OMG IDL, since their definitions are recursive. The basic
TypeCode representations are given in Table 13-2. The enum value column this table
gives the TCKind enum value corresponding to the given TypeCode, and lists the
parameters associated with such a TypeCode. The rest of this section presents the
details of the encoding.

Basic TypeCode Encoding Framework

The encoding of a TypeCode is the TCKind enum value (encoded, like all enum
values, using four octets), followed by zero or more parameter values. The encodings
of the parameter lists fall into three general categories, and differ in order to conserve
space and to support efficient traversal of the binary representation:

• Typecodes with an empty parameter list are encoded simply as the corresponding
TCKind enum value.

• Typecodes with simple parameter lists are encoded as the TCKind enum value
followed by the parameter value(s), encoded as indicated in Table 13-2. A “simple”
parameter list has a fixed number of fixed length entries, or a single paramete
which is has its length encoded first. Currently, only the TCKind value tk_string
has such a parameter list.

• All other typecodes have complex parameter lists, which are encoded as the
TCKind enum value followed by a CDR encapsulation octet sequence (see
“Encapsulation” on page 13-12) containing the encapsulated, marshaled param
The order of these parameters is shown in the fourth column of Table 13-2.

2. Accordingly, in cases where encapsulated data holds data with natural alignment of greate
than four octets, some processors may need to copy the octet data before removing it from
the encapsulation. The GIOP protocol itself does not require encapsulation of such data.
CORBA V2.2 CDR Transfer Syntax February 1998 13-13

13

rder

in
The third column of Table 13-2 shows whether each parameter list is empty, simple, or
complex. Also, note that an internal indirection facility is needed to represent some
kinds of typecodes; this is explained in “Indirection: Recursive and Repeated
TypeCodes” on page 13-17. This indirection does not need to be exposed to application
programmers.

TypeCode Parameter Notation

TypeCode parameters are specified in the fourth column of Table13-2. The ordering
and meaning of parameters is a superset of those given in the Interface Repository
specification (Chapter 8); more information is needed by CDR’s representation in o
to provide the full semantics of TypeCodes as shown by the API.

• Each parameter is written in the form type (name), where type describes the
parameter’s type, and name describes the parameter’s meaning.

• The encoding of some parameter lists (specifically, tk_struct, t k_union,
tk_enum, tk_except) contain a counted sequence of tuples.

Such counted tuple sequences are written in the form count {parameters}, where
count is the number of tuples in the encoded form, and the parameters enclosed in
braces are available in each tuple instance. First the count, which is an unsigned
long , and then each parameter in each tuple (using the noted type), is encoded
the CDR representation of the typecode. Each tuple is encoded, first parameter
followed by second etc., before the next tuple is encoded (first, then second, etc.).

Note that the tuples identifying struct, exception, and enum members must be in the
order defined in the OMG IDL definition text. Also, that the types of discriminant
values in encoded tk_union TypeCodes are established by the second encoded
parameter (discriminant type), and cannot be specified except with reference to a
specific OMG IDL definition.3

Table 13-2 TypeCode enum values, parameter list types, and parameters

TCKind Integer Value Type Parameters

tk_null 0 empty – none –

tk_void 1 empty – none –

tk_short 2 empty – none –

tk_long 3 empty – none –

tk_longlong 23 empty -none-

tk_ushort 4 empty – none –

3. This means that, for example, two OMG IDL unions that are textually equivalent, except
that one uses a “char” discriminant, and the other uses a “long” one, would have different
size encoded TypeCodes.
13-14 CORBA V2.2 February 1998

13
tk_ulong 5 empty – none –

tk_ulonglong 24 empty -none-

tk_fixed 28 simple ushort(digits), short(scale)

tk_float 6 empty – none –

tk_double 7 empty – none –

tk_longdouble 25 empty -none-

tk_boolean 8 empty – none –

tk_char 9 empty – none –

tk_wchar 26 empty -none-

tk_octet 10 empty – none –

tk_any 11 empty – none –

tk_TypeCode 12 empty – none –

tk_Principal 13 empty – none –

tk_objref 14 complex string (repository ID),
string(name)

tk_struct 15 complex string (repository ID), string
(name), ulong (count) {string
(member name), TypeCode
(member type)}

tk_union 16 complex string (repository ID),
string(name), TypeCode (dis-
criminant type), long (default
used), ulong (count) {discrimi-

nant type1 (label value), string
(member name), TypeCode
(member type)}

tk_enum 17 complex string (repository ID), string
(name), ulong (count) {string
(member name)}

tk_string 18 simple ulong (max length2)

tk_wstring 27 simple ulong(max length or zero if
unbounded)

Table 13-2 TypeCode enum values, parameter list types, and parameters

TCKind Integer Value Type Parameters
CORBA V2.2 CDR Transfer Syntax February 1998 13-15

13

me

d in

ased
Encoded Identifiers and Names

The Repository ID parameters in tk_obj ref, tk_struct, tk_union, tk_enum,
tk_alias , and tk_except TypeCodes are Interface Repository RepositoryId
values, whose format is described in the specification of the Interface Repository.
RepositoryId values are required for tk_objref and tk_except TypeCodes; for other
TypeCodes they are optional and are encoded as empty strings if omitted.

The name parameters in tk_objref, tk_struct, tk_union, tk_enum, tk_alias, and
tk_except TypeCodes and the member name parameters in tk_struct, tk_union,
tk_enum and tk_except TypeCodes are not specified by (or significant in) GIOP.
Agents should not make assumptions about type equivalence based on these na
values; only the structural information (including Reposi toryId values, if provided) is
significant. If provided, the strings should be the simple, unscoped names supplie
the OMG IDL definition text. If omitted, they are encoded as empty strings.

Encoding the tk_union Default Case

In tk_union TypeCodes, the long default used value is used to indicate which tuple
in the sequence describes the union’s default case. If this value is less than zero,
then the union contains no default case. Otherwise, the value contains the zero b
index of the default case in the sequence of tuples describing union members.

tk_sequence 19 complex TypeCode (element type), ulong

(max length3)

tk_array 20 complex TypeCode (element type), ulong
(length)

tk_alias 21 complex string (repository ID), string
(name), TypeCode

tk_except 22 complex string (repository ID), string
(name), ulong (count) {string
(member name), TypeCode
(member type)}

– none – 0xffffffff s imple long (indirection4)

1. The type of union label values is determined by the second parameter, discriminant type.

2. For unbounded strings, this value is zero.

3. For unbounded sequences, this value is zero.

4. See “Indirection: Recursive and Repeated TypeCodes” on page 13-17.

Table 13-2 TypeCode enum values, parameter list types, and parameters

TCKind Integer Value Type Parameters
13-16 CORBA V2.2 February 1998

13

L;

e

e
TypeCodes for Multi-Dimensional Arrays

The tk_array TypeCode only describes a single dimension of any array. TypeCodes
for multi-dimensional arrays are constructed by nesting tk_array TypeCodes within
other tk_array TypeCodes, one per array dimension. The outermost (or top-level)
tk_array TypeCode describes the leftmost array index of the array as defined in ID
the innermost nested tk_array TypeCode describes the rightmost index.

Indirection: Recursive and Repeated TypeCodes

The typecode representation of OMG IDL data types that can indirectly contain
instances of themselves (e.g., struct foo {sequence <foo> bar;}) must also contain
an indirection. Such an indirection is also useful to reduce the size of encodings; for
example, unions with many cases sharing the same value.

CDR provides a constrained indirection to resolve this problem:

• The indirection applies only to TypeCodes nested within some “top level”
TypeCode. Indirected TypeCodes are not “freestanding,” but only exist inside som
other encoded TypeCode.

• Only the second (and subsequent) references to a given TypeCode in that scope may
use the indirection facility. The first reference to that TypeCode must be encoded
using the normal rules. In the case of a recursive TypeCode, this means that the first
instance will not have been fully encoded before a second one must be completely
encoded.

The indirection is a numeric octet offset within the scope of the “top level” TypeCode
and points to the TCKind value for the typecode. (Note that the byte order of the
TCKind value can be determined by its encoded value.) This indirection may well
cross encapsulation boundaries, but this is not problematic because of the first
constraint identified above. Because of the second constraint, the value of the offset
will always be negative.

The encoding of such an indirection is as a TypeCode with a “TCKind value” that has
the special value 232-1 (0xffffffff, all ones). Such typecodes have a single (simple)
parameter, which is the long offset (in units of octets) from the simple parameter.
(This means that an offset of negative four (-4) is illegal because it will be self-
indirecting.)

Any

Any values are encoded as a TypeCode (encoded as described above) followed by th
encoded value.
CORBA V2.2 CDR Transfer Syntax February 1998 13-17

13

r

y

 on
re is

ver

t.
Principal

Principal pseudo objects are encoded as sequ ence<octet> . In the absence of a
Security service specification, Principal values have no standard format or
interpretation, beyond (as described in the CORBA CORE) serving to identify callers
(and potential callers). This specification does not define any inter-ORB security
mechanisms, or prescribe any usage of Principal values.

By representing Principal values as sequen ce<octet> , GIOP guarantees that ORBs
may use domain-specific principal identification schemes; such values undergo no
translation or interpretation during transmission. This allows bridges to translate o
interpret these identifiers as needed when forwarding requests between different
security domains.

Context

Context pseudo objects are encoded as sequence< string> . The strings occur in pairs.
The first string in each pair is the context property name, and the second string in each
pair is the associated value.

Exception

Exceptions are encoded as a string followed by exception members, if any. The string
contains the RepositoryId for the exception, as defined in the Interface Repositor
chapter. Exception members (if any) are encoded in the same manner as a struct.

If an ORB receives a non-standard system exception that it does not support, the
exception shall be mapped to UNKNOWN.

13.3.5 Object References

Object references are encoded in OMG IDL (as described in “Object Addressing”
page 11-11). IOR profiles contain transport-specific addressing information, so the
no general-purpose IOR profile format defined for GIOP. Instead, this specification
describes the general information model for GIOP profiles and provides a specific
format for the IIOP (see “IIOP IOR Profiles” on page 13-34).

In general, GIOP profiles shall include at least these three elements:

• The version number of the transport-specific protocol specification that the ser
supports

• The address of an endpoint for the transport protocol being used

• An opaque datum (an object_key , in the form of an octet sequence) used
exclusively by the agent at the specified endpoint address to identify the objec
13-18 CORBA V2.2 February 1998

13

or the

r

 used
13.4 GIOP Message Formats

In describing GIOP messages, it is necessary to define client and server roles. F
purpose of this discussion, a client is the agent that opens a connection (see more
details in “Connection Management” on page 13-30) and originates requests. A serve
is an agent that accepts connections and receives requests.

GIOP message types are summarized in Table 13-3, which lists the message type
names, whether the message is originated by client, server, or both, and the value
to identify the message type in GIOP message headers.

13.4.1 GIOP Message Header

All GIOP messages begin with the following header, defined in OMG IDL:

module GIOP { // IDL extended for version 1.1

struct Version {
octet major;
octet minor;

};

#ifndef GIOP_1_1
// GIOP 1.0
enum MsgType_1_0 { // Renamed from MsgType
 Request, Reply, C ancelReq uest,

LocateRequest, LocateReply,
CloseC onnection, MessageError

};

Table 13-3 GIOP Message Types and originators

Message Type Originator Value GIOP Versions

Request Client 0 1.0, 1.1

Reply Server 1 1.0, 1.1

CancelRequest Client 2 1.0, 1.1

LocateRequest Client 3 1.0, 1.1

LocateReply Server 4 1.0, 1.1

CloseConnec-
tion

Server 5 1.0, 1.1

MessageError Both 6 1.0, 1.1

Fragment Both 7 1.1
CORBA V2.2 GIOP Message Formats February 1998 13-19

13

e.

 the

This
es”
#else
// GIOP 1.1
enum MsgType_1_1 {
 Request, Reply, C ancelReq uest,

LocateRequest, LocateReply,
CloseC onnection, MessageError,
Fragment // GIOP 1.1 addition

};
#endif

// GIOP 1.0
struct MessageH eader_1_0 { // Renamed from MessageHeader

 char magic [4];
Version GIOP_version;

 boolean byte_order;
octet message_type;

 unsigned long message_size;
};

// GIOP 1.1
struct MessageHeader_1_1 {

 char magic [4];
Version GIOP_version;

 octet flags; // GIOP 1.1 change
 octet message_type;
 unsigned long message_size;

};
};

The message header clearly identifies GIOP messages and their byte-ordering. The
header is independent of byte ordering except for the field encoding message siz

• magic identifies GIOP messages. The value of this member is always the four
(upper case) characters “GIOP,” encoded in ISO Latin-1 (8859.1).

• GIOP_version contains the version number of the GIOP protocol being used in
message. The version number applies to the transport-independent elements of this
specification (i.e., the CDR and message formats) which constitute the GIOP.
is not equivalent to the IIOP version number (as described in “Object Referenc
on page 13-18) though it has the same structure. The major GIOP version number
of this specification is one (1); the minor versions are zero (0) and one (1).

• byte_order (in GIOP 1.0 only) indicates the byte ordering used in subsequent
elements of the message (including message_size). A value of FALSE (0)
indicates big-endian byte ordering, and TRUE (1) indicates little-endian byte
ordering.
13-20 CORBA V2.2 February 1998

13

se

der.

e use.
• flags (in GIOP 1.1) is an 8 bit octet. The least significant ibt indicates the byte
ordering used in subsequent elements of the message (including message_size).
A value of FALSE (0) indicates big-endian byte ordering, and TRUE (1) indicates
little-endian byte ordering.

The second least significant bit indicates whether or not more framents follow. A
value of FALSE (0) indicates this message is the last fragment, and TRUE (1)
indicates more fragment follows this message.

The most significant 6 bits are reserved. All these 6 bits must have value 0 for
GIOP version 1.1.

• message_type indicates the type of the message, according to Table 13-3; the
correspond to enum values of type MsgType .

• message_size contains the number of octets in the message following the
message header, encoded using the byte order specified in the byte order bit (the
least significant bit) in the flags field (or using the bute_order field in GIOP 1.0). It
refers to the size of the message body, not including the 12 byte message hea
This count includes any alignment gaps. The use of a message size of 0 with a
Request, LocateRequest, Reply, or LocateReply message is reserved for futur

Request Message

Request messages encode CORBA object invocations, including attribute accessor
operations, and CORBA::Object operations get_interface and
get_implementation . Requests flow from client to server.

Request messages have three elements, encoded in this order:

• A GIOP message header

• A Request Header

• The Request Body
CORBA V2.2 GIOP Message Formats February 1998 13-21

13

e

lues

ply
).

a
Request Header

The request header is specified as follows:

module GIOP { // IDL extended for version 1.1

// GIOP 1.0
struct RequestHeader_1_0 { // Renamed from RequestHeader

 IOP::ServiceContextList service_context;
unsigned long request_id;

 boolean response_expected;
 seque nce <octet> object_key;
 string operation;
 Principal requesting_principal;
 };

// GIOP 1.1
struct RequestHeader_1_1 {

 IOP::ServiceContextList service_context;
unsigned long request_id;

 boolean response_expected;
 octet reserved[3]; // Added in GIOP 1.1
 seque nce <octet> object_key;
 string operation;
 Principal requesting_principal;
 };
};

The members have the following definitions:

• service_context contains ORB service data being passed from the client to th
server, encoded as described in “Object Service Context” on page 11-20.

• request_id is used to associate reply messages with request messages (including
LocateRequest messages). The client (requester) is responsible for generating va
so that ambiguity is eliminated; specifically, a client must not re-use request_id
values during a connection if: (a) the previous request containing that ID is still
pending, or (b) if the previous request containing that ID was canceled and no re
was received. (See the semantics of the “CancelRequest Message” on page 13-26

• response_expected is set to TRUE if a reply message is expected for this
request. If the operation is not defined as oneway, and the request is not invoked vi
the DII with the INV_NO_RESPONSE flag set, the response_expected flag
must be set to TRUE.

If the operation is defined as oneway, or the request is invoked via the DII with the
INV_NO_RESPONSE flag set, the response_expected flag may be set to TRUE
or FALSE. Asking for a reply gives the client ORB an opportunity to receive
LOCATION_FORWARD responses and replies that might indicate system
exceptions. When this flag is set to TRUE for a oneway operation, receipt of a reply
does not imply that the operation has necessarily completed.
13-22 CORBA V2.2 February 1998

13

name

uest

n that
• reserved is always set to 0 in GIOP 1.1. These three octets are reserved for future
use.

• object_key identifies the object which is the target of the invocation. It is the
object_key field from the transport-specific GIOP profile (e.g., from the
encapsulated IIOP profile of the IOR for the target object). This value is only
meaningful to the server and is not interpreted or modified by the client.

• operation is the IDL identifier naming, within the context of the interface (not a
fully qualified scoped name), the operation being invoked. In the case of attribute
accessors, the names are _get_<attribute> and _set_<attribute> . The
case of the operation or attribute name must match the case of the operation
specified in the OMG IDL source for the interface being used.

In the case of CORBA::Object operations that are defined in the CORBA Core
(“Object Reference Operations” on page 4-4) and that correspond to GIOP req
messages, the operation names are _interface , _implementation 4, _is_a
and _not_existent .

• requesting_principal contains a value identifying the requesting principal. It is
provided to support the BOA::get_principal operation.

Request Body

The request body includes the following items encoded in this order:

• All in and inout parameters, in the order in which they are specified in the
operation’s OMG IDL definition, from left to right.

• An optional Context pseudo object, encoded as described in “Context” on
page 13-18. This item is only included if the operation’s OMG IDL definition
includes a context expression, and only includes context members as defined i
expression.

For example, the request body for the following OMG IDL operation

double example (in short m, out string str, inout Principal p);

would be equivalent to this structure:

struct example_body {
short m; // leftmost in or inout parameter
Principal p; // ... to the rightmost

};

4. Since CORBA::Object::get_implementation is a null interface, clients must narrow the
object reference they get to some ORB-specific kind of ImplementationDef.
CORBA V2.2 GIOP Message Formats February 1998 13-23

13

ponse

 may

he

e
13.4.2 Reply Message

Reply messages are sent in response to Request messages if and only if the res
expected flag in the request is set to TRUE. Replies include inout and out parameters,
operation results, and may include exception values. In addition, Reply messages
provide object location information. Replies flow from server to client.

Reply messages have three elements, encoded in this order:

• A GIOP message header

• A ReplyHeader structure

• The reply body

Reply Header

The reply header is defined as follows:

module GIOP { // IDL
enum ReplyStatusType {

 NO_EXCEPTION,
 USER_EXCEPTION,
 SYSTEM_EXCEPTION,
 LOCATION_FORWARD
 };

struct ReplyHeader {
IOP::ServiceContextList service_context;

 unsigned long request_id;
 ReplyStatusType reply_status;
 };
};

The members have the following definitions:

• service_context contains ORB service data being passed from the server to t
client, encoded as described in “GIOP Message Transfer” on page 13-4.

• request_id is used to associate replies with requests. It contains the same
request_id value as the corresponding request.

• reply_status indicates the completion status of the associated request, and also
determines part of the reply body contents. If no exception occurred and the
operation completed successfully, the value is NO_EXCEPTION and the body
contains return values. Otherwise the body contains an exception, or else directs th
client to reissue the request to an object at some other location.
13-24 CORBA V2.2 February 1998

13

es

3-18.

.

Reply Body

The reply body format is controlled by the value of reply_status. There are three typ
of reply body:

1 If the reply_status value is NO_EXCEPTION, the body is encoded as if it were a
structure holding first any operation return value, then any inout and out
parameters in the order in which they appear in the operation’s OMG IDL
definition, from left to right. (That structure could be empty.)

2 If the reply_status value is USER_EXCEPTION or SYSTEM_EXCEPTION,
then the body contains the exception that was raised by the operation, encoded as
described in “Exception” on page 13-18. (Only the user defined exceptions listed in
the operation’s OMG IDL definition may be raised.)

When a GIOP Reply message contains a `reply_status' value of
SYSTEM_EXCEPTION, the body of the Reply message conforms to the following
structure:

module GIOP { // IDL
 struct SystemExceptionReplyBody {

string exception_id;
 unsigned long minor_code_value;

unsigned long completion_status;
 };

};

The high order 20 bits of minor_code_value contain a 20-bit “vendor minor
codeset ID”(VMCID); the low order 12 bits contain a minor code. A vendor (or
group of vendors) wishing to define a specific set of system exception minor codes
should obtain a unique VMCID from the OMG, and then define up to 4096 minor
codes for each system exception. Any vendor may use the special VMCID of zero
(0) without previous reservation, but minor code assignments in this codeset may
conflict with other vendor's assignments, and use of the zero VMCID is officially
deprecated.

3 If the reply_status value is LOCATION_FORWARD , then the body contains an
object reference (IOR) encoded as described in “Object References” on page 1
The client ORB is responsible for re-sending the original request to that (different)
object. This resending is transparent to the client program making the request
CORBA V2.2 GIOP Message Formats February 1998 13-25

13

ified

 only.
For example, the reply body for a successful response (the value of reply_status is
NO_EXCEPTION) to the Request example shown on page 13-23 would be equivalent
to the following structure:

struct example_reply {
double return_value; // return value
string str; // leftmost inout or out param eter
Principal p; // ... to the rightmost

};

Note that the object_key field in any specific GIOP profile is server-relative, not
absolute. Specifically, when a new object reference is received in a
LOCATION_FORWARD Reply or in a LocateReply message, the object_key field
embedded in the new object reference’s GIOP profile may not have the same value as
the object_key in the GIOP profile of the original object reference. For details on
location forwarding, see “Object Location” on page 13-32.

13.4.3 CancelRequest Message

CancelRequest messages may be sent from clients to servers. CancelRequest
messages notify a server that the client is no longer expecting a reply for a spec
pending Request or LocateRequest message.

CancelRequest messages have two elements, encoded in this order:

• A GIOP message header

• A CancelRequestHeader

Cancel Request Header

The cancel request header is defined as follows:

module GIOP { // IDL
struct CancelRequestHeader {

 unsigned long request_id;
 };
};

The request_id member identifies the Request or LocateRequest message to
which the cancel applies. This value is the same as the request_id value specified in
the original Request or LocateRequest message.

When a client issues a cancel request message, it serves in an advisory capacity
The server is not required to acknowledge the cancellation, and may subsequently send
the corresponding reply. The client should have no expectation about whether a reply
(including an exceptional one) arrives.
13-26 CORBA V2.2 February 1998

13

e
uld

ges

age”

 the
13.4.4 LocateRequest Message

LocateRequest messages may be sent from a client to a server to determine the
following regarding a specified object reference: (a) whether the object reference is
valid, (b) whether the current server is capable of directly receiving requests for th
object reference, and if not, (c) to what address requests for the object reference sho
be sent.

Note that this information is also provided through the Request message, but that
some clients might prefer not to support retransmission of potentially large messa
that might be implied by a LOCATION_FORWARD status in a Reply message. That
is, client use of this represents a potential optimization.

LocateRequest messages have two elements, encoded in this order:

• A GIOP message header

• A LocateRequestHeader

LocateRequest Header.

The LocateRequest header is defined as follows:

module GIOP { // IDL
struct LocateRequestHeader {

 unsigned long request_id;
 seque nce <octet> object_key;

};
};

The members are defined as follows:

• request_id is used to associate LocateReply messages with LocateRequest ones.
The client (requester) is responsible for generating values; see “Request Mess
on page 13-21 for the applicable rules.

• object_key identifies the object being located. In an IIOP context, this value is
obtained from the object_key field from the encapsulated IIOP::ProfileBody in
the IIOP profile of the IOR for the target object. When GIOP is mapped to other
transports, their IOR profiles must also contain an appropriate corresponding value.
This value is only meaningful to the server and is not interpreted or modified by
client.

See “Object Location” on page 13-32 for details on the use of LocateRequest.
CORBA V2.2 GIOP Message Formats February 1998 13-27

13

 the

t
13.4.5 LocateReply Message

LocateReply messages are sent from servers to clients in response to
LocateRequest messages.

A LocateReply message has three elements, encoded in this order:

• A GIOP message header

• A LocateReplyHeader

• The locate reply body

Locate Reply Header

The locate reply header is defined as follows:

module GIOP { // IDL
 enum LocateStatusType {

UNKNOWN_OBJECT,
 OBJECT_HERE,
 OBJECT_FORWARD
 };

struct LocateReplyHeader {
 unsigned long request_id;
 LocateStatusType locate_status;
 };
};

The members have the following definitions:

• request_id - is used to associate replies with requests. This member contains
same request_id value as the corresponding LocateRequest message.

• locate_status - the value of this member is used to determine whether a
LocateReply body exists. Values are:

• UNKNOWN_OBJECT - the object specified in the corresponding
LocateRequest message is unknown to the server; no body exists.

• OBJE CT_HERE - this server (the originator of the LocateReply message) can
directly receive requests for the specified object; no body exists.

• OBJECT_FORWARD - a LocateReply body exists.

LocateReply Body

The body is empty unless the LocateStatus value is OBJECT_FORWARD , in
which case the body contains an object reference (IOR) that may be used as the targe
for requests to the object specified in the LocateRequest message.
13-28 CORBA V2.2 February 1998

13

er
plies

s

ing

 that

ader
n

 the
ge
f the

gment

 the
will
13.4.6 CloseConnection Message

CloseConnection messages are sent only by servers. They inform clients that the
server intends to close the connection and must not be expected to provide furth
responses. Moreover, clients know that any requests for which they are awaiting re
will never be processed, and may safely be reissued (on another connection).

The CloseConnection message consists only of the GIOP message header,
identifying the message type.

For details on the usage of CloseConnect ion messages, see “Connection
Management” on page 13-30.

13.4.7 MessageError Message

The MessageError message is sent in response to any GIOP message whose version
number or message type is unknown to the recipient, or any message is received whose
header is not properly formed (e.g., has the wrong magic value). Error handling i
context-specific.

The MessageError message consists only of the GIOP message header, identify
the message type.

13.4.8 Fragment Message

This message is added in GIOP 1.1.

The Fragment message is sent following a previous request or response message
has the more fragments bit set to TRUE in the flags field.

All of the GIOP messages begin with a GIOP header. One of the fields of this he
is the message_size field, a 32-bit unsigned number giving the number of bytes i
the message following the header. Unfortunately, when actually constructing a GIOP
Request or Reply message, it is sometimes impractical or undesirable to ascertain
total size of the message at the stage of message construction where the messa
header has to be written. GIOP 1.1 provides an alternative indication of the size o
message, for use in those cases.

A Request or Reply message can be broken into multiple fragments. The first
fragment is a regular message (e.g., Request or Reply) with the more fragments bit
in the flags field set to TRUE. This initial fragment can be followed by one or more
messages using the fragment messages. The last fragment shall have the more fra
bit in the flag field set to FALSE.

A CancelRequest message may be sent by the client before the final fragment of
message being sent. In this case, the server should assume no more fragments
follow.

A primitive data type of 8 bytes or smaller should never be broken across two
fragments.
CORBA V2.2 GIOP Message Formats February 1998 13-29

13

pe

s. If
 a

to

).

nly

d in
13.5 GIOP Message Transport

The GIOP is designed to be implementable on a wide range of transport protocols. The
GIOP definition makes the following assumptions regarding transport behavior:

• The transport is connection-oriented. GIOP uses connections to define the sco
and extent of request IDs.

• The transport is reliable. Specifically, the transport guarantees that bytes are
delivered in the order they are sent, at most once, and that some positive
acknowledgment of delivery is available.

• The transport can be viewed as a byte stream. No arbitrary message size limitations,
fragmentation, or alignments are enforced.

• The transport provides some reasonable notification of disorderly connection los
the peer process aborts, the peer host crashes, or network connectivity is lost,
connection owner should receive some notification of this condition.

• The transport’s model for initiating connections can be mapped onto the general
connection model of TCP/IP. Specifically, an agent (described herein as a server)
publishes a known network address in an IOR, which is used by the client when
initiating a connection.

The server does not actively initiate connections, but is prepared to accept requests
connect (i.e., it listens for connections in TCP/IP terms). Another agent that knows the
address (called a client) can attempt to initiate connections by sending connect requests
to the address. The listening server may accept the request, forming a new, unique
connection with the client, or it may reject the request (e.g., due to lack of resources
Once a connection is open, either side may close the connection. (See “Connection
Management” on page 13-30 for semantic issues related to connection closure.) A
candidate transport might not directly support this specific connection model; it is o
necessary that the transport’s model can be mapped onto this view.

13.5.1 Connection Management

For the purposes of this discussion, the roles client and server are defined as follows:

• A client initiates the connection, presumably using addressing information foun
an object reference (IOR) for an object to which it intends to send requests.

• A server accepts connections, but does not initiate them.

These terms only denote roles with respect to a connection. They do not have any
implications for ORB or application architectures.

Connections are not symmetrical. Only clients can send Request, LocateRequest, and
CancelRequest messages over a connection. Only a server can send Reply, LocateReply
and CloseConnection messages over a connection. Either client or server can send
MessageError messages.

Only GIOP messages are sent over GIOP connections.
13-30 CORBA V2.2 February 1998

13

e

t.

r may
r

e

 a new

rly

 for
ided.
Request IDs must unambiguously associate replies with requests within the scope and
lifetime of a connection. Request IDs may be re-used if there is no possibility that th
previous request using the ID may still have a pending reply. Note that cancellation
does not guarantee no reply will be sent. It is the responsibility of the client to generate
and assign request IDs. Request IDs must be unique among both Request and
LocateRequest messages.

Connection Closure

Connections can be closed in two ways: orderly shutdown, or abortive disconnec
Orderly shutdown is initiated by servers reliably sending a CloseConnection
message, or by clients just closing down a connection. Orderly shutdown may be
initiated by the client at any time. If there are pending requests when a client shuts
down a connection, the server should consider all such requests canceled. A serve
not initiate shutdown if it has begun processing any requests for which it has not eithe
received a CancelRequest or sent a corresponding reply.

If a client receives an CloseConnection message from the server, it should assum
that any outstanding messages (i.e., without replies) were received after the server sent
the CloseConnection message, were not processed, and may be safely resent on
connection.

After reliably issuing a CloseConnection message, the server may close the
connection. Some transport protocols (not including TCP) do not provide an “orde
disconnect” capability, guaranteeing reliable delivery of the last message sent. When
GIOP is used with such protocols, an additional handshake needs to be provided to
guarantee that both ends of the connection understand the disposition of any
outstanding GIOP requests.

If a client detects connection closure without receiving a CloseConnect ion message,
it should assume an abortive disconnect has occurred, and treat the condition as an
error. Specifically, it should report COMM_FAILURE exceptions for all pending
requests on the connection, with completion_status values set to
COMPLETED_MAYBE.

Multiplexing Connections

A client, if it chooses, may send requests to multiple target objects over the same
connection, provided that the connection’s server side is capable of responding to
requests for the objects. It is the responsibility of the client to optimize resource usage
by re-using connections, if it wishes. If not, the client may open a new connection
each active object supported by the server, although this behavior should be avo
CORBA V2.2 GIOP Message Transport February 1998 13-31

13

 a

res

be
ocess
nt

stead
either

s
13.5.2 Message Ordering

Only the client (connection originator) may send Request, LocateRe quest, and
CancelRequest messages. Connections are not fully symmetrical.

Clients may have multiple pending requests. A client need not wait for a reply from
previous request before sending another request.

Servers may reply to pending requests in any order. Reply messages are not required
to be in the same order as the corresponding Requests .

The ordering restrictions regarding connection closure mentioned in Connection
Management, above, are also noted here. Servers may only issue CloseConn ection
messages when Reply messages have been sent in response to all received Request
messages that require replies.

13.6 Object Location

The GIOP is defined to support object migration and location services without
dictating the existence of specific ORB architectures or features. The protocol featu
are based on the following observations:

A given transport address does not necessarily correspond to any specific ORB
architectural component (such as an object adapter, object server process, Inter-ORB
bridge, and so forth). It merely implies the existence of some agent with which a
connection may be opened, and to which requests may be sent.

The “agent” (owner of the server side of a connection) may have one of the following
roles with respect to a particular object reference:

• The agent may be able to accept object requests directly for the object and return
replies. The agent may or may not own the actual object implementation; it may
an Inter-ORB bridge that transforms the request and passes it on to another pr
or ORB. From GIOP’s perspective, it is only important that requests can be se
directly to the agent.

• The agent may not be able to accept direct requests for any objects, but acts in
as a location service. Any Request messages sent to the agent would result in
exceptions or replies with LOCATION_FORWARD status, providing new addresse
to which requests may be sent. Such agents would also respond to LocateRequest
messages with appropriate LocateReply messages.

• The agent may directly respond to some requests (for certain objects) and provide
forwarding locations for other objects.

• The agent may directly respond to requests for a particular object at one point in
time, and provide a forwarding location at a later time (perhaps during the same
connection).
13-32 CORBA V2.2 February 1998

13

 an

ed
ly) be

-

tion

both
 and
Agents are not required to implement location forwarding mechanisms. An agent can
be implemented with the policy that a connection either supports direct access to
object, or returns exceptions. Such an ORB (or inter-ORB bridge) always return
LocateReply messages with either OBJECT_HERE or UNKNOWN_OBJECT
status, and never OBJECT_FORWARD status.

Clients must, however, be able to accept and process Reply messages with
LOCATION_FORWARD status, since any ORB may choose to implement a location
service. Whether a client chooses to send LocationRequest messages is at the
discretion of the client. For example, if the client routinely expected to see
LOCATION_FORWARD replies when using the address in an object reference, it
might always send LocateRequest messages to objects for which it has no record
forwarding address. If a client sends LocateRequest messages, it should (obvious
prepared to accept LocateReply messages.

A client shall not make any assumptions about the longevity of object addresses
returned by location forwarding mechanisms. Once a connection based on location
forwarding information is closed, a client can attempt to reuse the forwarding
information it has, but, if that fails, it shall restart the location process using the
original address specified in the initial object reference.

Even after performing successful invocations using an address, a client should be
prepared to be forwarded. The only object address that a client should expect to
continue working reliably is the one in the initial object reference. If an invocation
using that address returns UNKNOWN_OBJECT, the object should be deemed non
existent.

In general, the implementation of location forwarding mechanisms is at the discre
of ORBs, available to be used for optimization and to support flexible object location
and migration behaviors.

13.7 Internet Inter-ORB Protocol (IIOP)

The baseline transport specified for GIOP is TCP/IP5. Specific APIs for libraries
supporting TCP/IP may vary, so this discussion is limited to an abstract view of
TCP/IP and management of its connections. The mapping of GIOP message transfer to
TCP/IP connections is called the Internet Inter-ORB Protocol (IIOP).

IIOP 1.0 is based on GIOP 1.0.

IIOP 1.1 can be based on either GIOP 1.0 or GIOP 1.1. An IIOP 1.1 client can either
support both GIP 1.0 and 1.1, or GIOP 1.1 only. An IIOP 1.1 server must support
GIOP 1.0 and GIOP 1.1. An IIOP 1.1 server must be able to receive both GIOP 1.0
GIOP 1.1 requests and reply using the same GIOP revision as invoked.

5. Postel, J., “Transmission Control Protocol – DARPA Internet Program Protocol Specifica-
tion,” RFC-793, Information Sciences Institute, September 1981
CORBA V2.2 Internet Inter-ORB Protocol (IIOP) February 1998 13-33

13

jects

ented
ests.

ld
d

on.

ata on

ume.

ding

are
13.7.1 TCP/IP Connection Usage

Agents that are capable of accepting object requests or providing locations for ob
(i.e., servers) publish TCP/IP addresses in IORs, as described in “IIOP IOR Profiles”
on page 13-34. A TCP/IP address consists of an IP host address, typically repres
by a host name, and a TCP port number. Servers must listen for connection requ

A client needing an object’s services must initiate a connection with the address
specified in the IOR, with a connect request.

The listening server may accept or reject the connection. In general, servers shou
accept connection requests if possible, but ORBs are free to establish any desire
policy for connection acceptance (e.g., to enforce fairness or optimize resource usage).

Once a connection is accepted, the client may send Request, LocateRequest , or
CancelRequest messages by writing to the TCP/IP socket it owns for the connecti
The server may send Reply, LocateReply , and CloseConnection messages by
writing to its TCP/IP connection.

After sending (or receiving) a CloseCo nnection message, both client or server must
close the TCP/IP connection.

Given TCP/IP’s flow control mechanism, it is possible to create deadlock situations
between clients and servers if both sides of a connection send large amounts of d
a connection (or two different connections between the same processes) and do not
read incoming data. Both processes may block on write operations, and never res
It is the responsibility of both clients and servers to avoid creating deadlock by rea
incoming messages and avoiding blocking when writing messages, by providing
separate threads for reading and writing, or any other workable approach. ORBs
free to adopt any desired implementation strategy, but should provide robust behavior.

13.7.2 IIOP IOR Profiles

IIOP profiles, identifying individual objects accessible through the Internet Inter_ORB
Protocol, have the following form:

module IIOP { // IDL extended for version 1.1
struct Version {

 octet major;
 octet minor;
 };

struct ProfileBody_1_0 { // renamed from Profile Body
 Version iiop_version;

string host;
 unsigned short port;
 seque nce <octet> object_key;
 };

 struct ProfileBody_1_1 {
 Version iiop_version;
13-34 CORBA V2.2 February 1998

13

n

is

 then
fined

ess
r
on or

of 1,
string host;
 unsigned short port;
 seque nce <octet> object_key;

// Added in 1.1
 seque nce <IOP::TaggedC omponent> components;
 };
};

IIOP Profile version number:

• Indicates the IIOP protocol version.

• Major number can stay the same if the new changes are backward compatible.

• Clients with lower minor version can attempt to invoke objects with higher minor
version number by using only the information defined in the lower minor versio
protocol (ignore the extra information).

Profiles supporting only IIOP version 1.0 use the ProfileBody_1_0 structure, while
those supporting IIOP version 1.1 use the ProfileBody_1_1 structure. An instance of
one of these structure types is marshaled into an encapsulation octet stream. Th
encapsulation (a sequence <octet>) becomes the profile_data member of the
IOP::TaggedProfile structure representing the IIOP profile in an IOR, and the tag
has the value TAG_INTERNET_IOP (as defined earlier).

If the major revision number is 1, and the minor revision number is greater than 0,
the length of the encapsulated profile may exceed the total size of components de
in this specification for profiles with minor revision number 0. ORBs that support only
revision 1.0 IIOP profiles must ignore any data in the profile that occurs after the
object_key. If the revision of the profile is 1.0, there shall be no extra data in the
profile, i.e., the length of the encapsulated profile must agree with the total size of
components defined for version 1.0.

The members of IIOP::Profi leBody1_0 and IOP::Profi leBody1_1 are defined as
follows:

• iiop_version describes the version of IIOP that the agent at the specified addr
is prepared to receive. When an agent generates IIOP profiles specifying a particula
version, it must be able to accept messages complying with the specified versi
any previous minor version (i.e., any smaller version number). The major version
number of this specification is 1; the minor version is 1. Compliant ORBs must
generate version 1.1 profiles, and must accept any profile with a major version
regardless of the minor version number. If the minor version number is 0, the
encapsulation is fully described by the ProfileBody_1_0 structure. If the minor
version number is 1, the encapsulation is fully described by the ProfileBody_1_1
structure. If the minor version number is greater than 1, then the length of the
encapsulated profile may exceed the total size of components defined in this
specification for profiles with minor version number 1. ORBs that support only
version 1.1 IIOP profiles must ignore, but preserve, any data in the profile that
occurs after the components member.
CORBA V2.2 Internet Inter-ORB Protocol (IIOP) February 1998 13-35

13

ge

ect
ject
er
,

gent

est is
 value

is
n
P, to

an

mant

,
Note – This value is not equivalent to the GIOP version number specified in GIOP
message headers. Transport-specific elements of the IIOP specification may chan
independently from the GIOP specification.

• host identifies the Internet host to which GIOP messages for the specified obj
may be sent. In order to promote a very large (Internet-wide) scope for the ob
reference, this will typically be the fully qualified domain name of the host, rath
than an unqualified (or partially qualified) name. However, per Internet standards
the host string may also contain a host address expressed in standard “dotted
decimal” form (e.g., “192.231.79.52”).

• port contains the TCP/IP port number (at the specified host) where the target a
is listening for connection requests. The agent must be ready to process IIOP
messages on connections accepted at this port.

• object_key is an opaque value supplied by the agent producing the IOR. This
value will be used in request messages to identify the object to which the requ
directed. An agent that generates an object key value must be able to map the
unambiguously onto the corresponding object when routing requests internally.

• compon ents is a sequence of TaggedComponent , which contains additional
information that may be used in making invocations on the object described by th
profile. TaggedComp onent s that apply to IIOP 1.1 are described below in sectio
13.7.3. Other components may be included to support enhanced versions of IIO
support ORB services such as security, and to support other GIOPs, ESIOPs, and
proprietary protocols. If an implementation puts a non-standard component in
IOR, it cannot be assured that any or all non-standard component will remain in the
IOR.

The relationship between the IIOP protocol version and component support
conformance requirements is as follows:

• Each IIOP version specifies a set of standard components and the conformance
rules for that version. These rules specify which components are mandatory
presence, which are optional presence, and which can be dropped. A confor
implementation has to conform to these rules, and is not required to conform to
more than these rules.

• New components can be added, but they do not become part of the versions
conformance rules.

• When there is a need to specify conformance rules which include the new
components, there will be a need to create a new IIOP version.

Note that host addresses are restricted in this version of IIOP to be Class A, B, or C
Internet addresses. That is, Class D (multi-cast) addresses are not allowed. Such
addresses are reserved for use in future versions of IIOP.

Also note that at this time no “well known” port number has been allocated; therefore
individual agents will need to assign previously unused ports as part of their
installation procedures. IIOP supports multiple such agents per host.
13-36 CORBA V2.2 February 1998

13

.

13.7.3 IIOP IOR Profile Components

The following components are part of the IIOP 1.1 conformance. All these components
are optional presence in the IIOP profile and cannot be dropped from an IIOP 1.1 IOR

• TAG_ORB_TYPE

• TAG_CODE_SETS

• TAG_SEC_NAME

• TAG_ASSOCIATION_OPTIONS

• TAG_GENERIC_SEC_MECH

13.8 OMG IDL

This section contains the OMG IDL for the GIOP and IIOP modules.

13.8.1 GIOP Module

module GIOP { // IDL extended for version 1.1

struct Version {
octet major;
octet minor;

};

#ifndef GIOP_1_1
// GIOP 1.0
enum MsgType_1_0{ // rename from MsgType
 Request, Reply, C ancelReq uest,

LocateRequest, LocateReply,
CloseC onnection, MessageError

};

#else
// GIOP 1.1
enum MsgType_1_1{
 Request, Reply, C ancelReq uest,

LocateRequest, LocateReply,
CloseC onnection, MessageError,
Fragment // GIOP 1.1 addition

};
#endif

// GIOP 1.0
struct MessageH eader_1_0 { // Renamed from MessageHeader

 char magic [4];
Version GIOP_version;
boolean byte_order;
octet message_type;
CORBA V2.2 OMG IDL February 1998 13-37

13
 unsigned long message_size;
};

// GIOP 1.1
struct MessageHeader_1_1 {

 char magic [4];
Version GIOP_version;

 octet flags; // GIOP 1.1 change
 octet message_type;
 unsigned long message_size;

};

};// GIOP 1.0
struct RequestHeader _1_0 {

 IOP::ServiceContextList service_context;
unsigned long request_id;

 boolean response_expected;
 seque nce <octet> object_key;
 string operation;
 Principal requesting_principal;
 };

// GIOP 1.1
struct RequestHeader_1_1 {

 IOP::ServiceContextList service_context;
unsigned long request_id;

 boolean response_expected;
 octet reserved[3]; // Added in GIOP 1.1
 seque nce <octet> object_key;
 string operation;
 Principal requesting_principal;
 };

enum ReplyStatusType {
 NO_EXCEPTION,

USER_EXCEPTION,
 SYSTEM_EXCEPTION,

 LOCATION_FORWARD
 };

struct ReplyHeader {
IOP::ServiceContextList service_context;

 unsigned long request_id;
 ReplyStatusType reply_status;
 };

struct CancelRequestHeader {
 unsigned long request_id;
 };

struct LocateRequestHeader {
 unsigned long request_id;
13-38 CORBA V2.2 February 1998

13
 seque nce <octet> object_key;
};
enum LocateStatusType {

 UNKNOWN_OBJECT,
 OBJECT_HERE,
 OBJECT_FORWARD
 };

struct LocateReplyHeader {
 unsigned long request_id;
 LocateStatusType locate_status;
 };
};

13.8.2 IIOP Module

module IIOP { // IDL extended for version 1.1

struct Version {
 octet major;
 octet minor;
 };

struct ProfileBody_1_0 { // renamed from Profile Body
 Version iiop_version;

string host;
 unsigned short port;
 seque nce <octet> object_key;
 };
struct ProfileBody_1_1 {
 Version iiop_version;

string host;
 unsigned short port;
 seque nce <octet> object_key;
 seque nce <IOP::TaggedC omponent> components;
 };
};
CORBA V2.2 OMG IDL February 1998 13-39

13
13-40 CORBA V2.2 February 1998

 The DCE ESIOP 14
This chapter specifies an Environment Specific Inter-ORB Protocol (ESIOP) for the
OSF DCE environment, the DCE Common Inter-ORB Protocol (DCE-CIOP).

Contents

This chapter contains the following sections.

14.1 Goals of the DCE Common Inter-ORB Protocol

DCE CIOP was designed to meet the following goals:

• Support multi-vendor, mission-critical, enterprise-wide, ORB-based applications.

• Leverage services provided by DCE wherever appropriate.

• Allow efficient and straightforward implementation using public DCE APIs.

Section Title Page

“Goals of the DCE Common Inter-ORB Protocol” 14-1

“DCE Common Inter-ORB Protocol Overview” 14-2

“DCE-CIOP Message Transport” 14-5

“DCE-CIOP Message Formats” 14-11

“DCE-CIOP Object References” 14-16

“DCE-CIOP Object Location” 14-22

“OMG IDL for the DCE CIOP Module” 14-25

“References for this Chapter” 14-26
 CORBA V2.2 February 1998 14-1

14

rt,

his

ted

e

RBs
• Preserve ORB implementation freedom.

DCE CIOP achieves these goals by using DCE-RPC to provide message transpo
while leaving the ORB responsible for message formatting, data marshaling, and
operation dispatch.

14.2 DCE Common Inter-ORB Protocol Overview

The DCE Common Inter-ORB Protocol uses the wire format and RPC packet formats
defined by DCE-RPC to enable independently implemented ORBs to communicate. It
defines the message formats that are exchanged using DCE-RPC, and specifies how
information in object references is used to establish communication between client and
server processes.

The full OMG IDL for the DCE ESIOP specification is shown in Section 14.7, “OMG
IDL for the DCE CIOP Module,” on page 14-25. Fragments are used throughout t
chapter as necessary.

14.2.1 DCE-CIOP RPC

DCE-CIOP requires an RPC which is interoperable with the DCE connection-orien
and/or connectionless protocols as specified in the X/Open CAE Specification C309
and the OSF AES/Distributed Computing RPC Volume. Some of the features of the
DCE-RPC are as follows:

• Defines connection-oriented and connectionless protocols for establishing the
communication between a client and server.

• Supports multiple underlying transport protocols including TCP/IP.

• Supports multiple outstanding requests to multiple CORBA objects over the sam
connection.

• Supports fragmentation of messages. This provides for buffer management by O
of CORBA requests which contain a large amount of marshaled data.

All interactions between ORBs take the form of remote procedure calls on one of two
well-known DCE-RPC interfaces. Two DCE operations are provided in each interface:

• invoke - for invoking CORBA operation requests, and

• locate - for locating server processes.

Each DCE operation is a synchronous remote procedure call1,2, consisting of a request
message being transmitted from the client to the server, followed by a response
message being transmitted from the server to the client.

1. DCE maybe operation semantics cannot be used for CORBA oneway operations because
they are idempotent as opposed to at-most-once.

2. The deferred synchronous DII API can be implemented on top of synchronous RPCs by
using threads.
14-2 CORBA V2.2 February 1998

14

f the

rays
-
PC

x,
ders
 the
es
Using one of the DCE-RPC interfaces, the messages are transmitted as pipes of
uninterpreted bytes. By transmitting messages via DCE pipes, the following
characteristics are achieved:

• Large amounts of data can be transmitted efficiently.

• Buffering of complete messages is not required.

• Marshaling and demarshaling can take place concurrently with message
transmission.

• Encoding of messages and marshaling of data is completely under the control o
ORB.

• DCE client and server stubs can be used to implement DCE-CIOP.

Using the other DCE-RPC interface, the messages are transmitted as conformant ar
of uninterpreted bytes. This interface does not offer all the advantages of the pipe
based interface, but is provided to enable interoperability with ORBs using DCE-R
implementations that do not adequately support pipes.

14.2.2 DCE-CIOP Data Representation

DCE-CIOP messages represent OMG IDL types by using the CDR transfer synta
which is defined in “CDR Transfer Syntax” on page 13-4. DCE-CIOP message hea
and bodies are specified as OMG IDL types. These are encoded using CDR, and
resulting messages are passed between client and server processes via DCE-RPC pip
or conformant arrays.

NDR is the transfer syntax used by DCE-RPC for operations defined in DCE IDL.
CDR, used to represent messages defined in OMG IDL on top of DCE RPCs,
represents the OMG IDL primitive types identically to the NDR representation of
corresponding DCE IDL primitive types.

The corresponding OMG IDL and DCE IDL primitive types are shown in table
Table 14-1.

Table 14-1 Relationship between CDR and NDR primitive data types

OMG IDL type
DCE IDL type with NDR repr esentation
equivalent to CDR representation of OMG
IDL type

char byte

wchar byte, unsigned short, or unsigned long, depending on
transmission code set

octet byte

short short

unsigned short unsigned short
CORBA V2.2 DCE Common Inter-ORB Protocol Overview February 1998 14-3

14

ctets

DR

 and

The CDR representation of OMG IDL constructed types and pseudo-object types does
not correspond to the NDR representation of types describable in DCE IDL.

A wide string is encoded as a unidimensional conformant array of octets in DCE 1.1
NDR. This consists of an unsigned long of four octets, specifying the number of o
in the array, followed by that number of octets, with no null terminator.

The NDR representation of OMG IDL fixed-point type, fixed , will be proposed as an
addition to the set of DCE IDL types.

As new data types are added to OMG IDL, NDR can be used as a model for their C
representations.

14.2.3 DCE-CIOP Messages

The following request and response messages are exchanged between ORB clients
servers via the invoke and locate RPCs:

• Invoke Request identifies the target object and the operation and contains the
principal, the operation context, a ServiceContext, and the in and inout parameter
values.

long long

unsigned long unsigned long

long long hyper

unsigned long long unsigned hyper

float float1

double double2

long double long double3

boolean byte4

1. Restricted to IEEE format.

2. Restricted to IEEE format.

3. Restricted to IEEE format.

4. Values restricted to 0 and 1.

Table 14-1 Relationship between CDR and NDR primitive data types

OMG IDL type
DCE IDL type with NDR repr esentation
equivalent to CDR representation of OMG
IDL type
14-4 CORBA V2.2 February 1998

14

it

e.

ry

ther

 or
t

nt

voke

h

• Invoke Response indicates whether the operation succeeded, failed, or needs to be
reinvoked at another location, and returns a ServiceContext . If the operation
succeeded, the result and the out and inout parameter values are returned. If
failed, an exception is returned. If the object is at another location, new RPC
binding information is returned.

• Locate Request identifies the target object and the operation.

• Locate Response indicates whether the location is in the current process, is
elsewhere, or is unknown. If the object is at another location, new RPC binding
information is returned.

All message formats begin with a field that indicates the byte order used in the CDR
encoding of the remainder of the message. The CDR byte order of a message is
required to match the NDR byte order used by DCE-RPC to transmit the messag

14.2.4 Interoperable Object Reference (IOR)

For DCE-CIOP to be used to invoke operations on an object, the information necessa
to reference an object via DCE-CIOP must be included in an IOR. This information
can coexist with the information needed for other protocols such as IIOP. DCE-CIOP
information is stored in an IOR as a set of components in a profile identified by ei
TAG_INTERNET_IOP or TAG_MULTIPLE_COMPONENTS . Components are
defined for the following purposes:

• To identify a server process via a DCE string binding, which can be either fully
partially bound. This process may be a server process implementing the object, or i
may be an agent capable of locating the object implementation.

• To identify a server process via a name that can be resolved using a DCE
nameservice. Again, this process may implement the object or may be an age
capable of locating it.

• In the TAG_MULTIP LE_COMPONENTS profile, to identify the target object
when request messages are sent to the server. In the TAG_INTENET_IOP profile,
the object_key profile member is used instead.

• To enable a DCE-CIOP client to recognize objects that share an endpoint.

• To indicate whether a DCE-CIOP client should send a locate message or an in
message.

• To indicate if the pipe-based DCE-RPC interface is not available.

The IOR is created by the server ORB to provide the information necessary to
reference the CORBA object.

14.3 DCE-CIOP Message Transport

DCE-CIOP defines two DCE-RPC interfaces for the transport of messages between
client ORBs and server ORBs3. One interface uses pipes to convey the messages, wile
the other uses conformant arrays.
CORBA V2.2 DCE-CIOP Message Transport February 1998 14-5

14

and

is
 to

f
The pipe-based interface is the preferred interface, since it allows messages to be
transmitted without precomputing the message length. But not all DCE-RPC
implementations adequately support pipes, so this interface is optional. All client
server ORBs implementing DCE-CIOP must support the array-based interface4.

While server ORBs may provide both interfaces or just the array-based interface, it
up to the client ORB to decide which to use for an invocation. If a client ORB tries
use the pipe-based interface and receives a rpc_s_unknown_if error, it should fall
back to the array-based interface.

14.3.1 Pipe-based Interface

The dce_ciop_pipe interface is defined by the DCE IDL specification shown
below:

[/* DCE IDL */

uuid(d7d99f66-97ee-11cf-b1a0-0800090b5d3e),/* 2nd revision */

version(1.0)

]

interface dce_ciop_pipe

{

 typedef pipe byte message_type;

void invoke ([in] handle_t binding_handle,

 [in] message_type *request_message,

 [out] message_type *response_message);

void locate ([in] handle_t binding_handle,

 [in] message_type *request_message,

 [out] message_type *response_message);

}

ORBs can implement the dce_ciop_pipe interface by using DCE stubs generated
from this IDL specification, or by using lower-level APIs provided by a particular
DCE-RPC implementation.

3. Previous DCE-CIOP revisions used different DCE RPC interface UUIDs and had
incompatible message formats. These previous revisions are deprecated, but
implementations can continue to support them in conjunction with the current interface
UUIDs and message formats.

4. A future DCE-CIOP revision may eliminate the array-based interface and require support o
the pipe-based interface.
14-6 CORBA V2.2 February 1998

14

n.
ing

CE-
n”

.

the
ge

l

n is
This
The dce_ciop_pipe interface is identified by the UUID and version number show
To provide maximal performance, all server ORBs and location agents implement
DCE-CIOP should listen for and handle requests made to this interface. To maximize
the chances of interoperating with any DCE-CIOP client, servers should listen for
requests arriving via all available DCE protocol sequences.

Client ORBs can invoke OMG IDL operations over DCE-CIOP by performing DCE
RPCs on the dce_ciop_pipe interface. The dce_ciop_pipe interface is made up
of two DCE-RPC operations, invoke and locate . The first parameter of each of
these RPCs is a DCE binding handle, which identifies the server process on which to
perform the RPC. See “DCE-CIOP String Binding Component” on page 14-17, “D
CIOP Binding Name Component” on page 14-18, and “DCE-CIOP Object Locatio
on page 14-22 for discussion of how these binding handles are obtained. The
remaining parameters of the dce_ciop_pipe RPCs are pipes of uninterpreted bytes
These pipes are used to convey messages encoded using CDR. The
request_message input parameters send a request message from the client to
server, while the response_message output parameters return a response messa
from the server to the client.

Figure 14-1 illustrates the layering of DCE-CIOP messages on the DCE-RPC protoco
as NDR pipes:

Figure 14-1 Pipe-based interface protocol layering.

The DCE-RPC protocol data unit (PDU) bodies, after any appropriate authenticatio
performed, are concatenated by the DCE-RPC run-time to form an NDR stream.
stream is then interpreted as the NDR representation of a DCE IDL pipe.

PDU

Chunk Chunk Data Chunk ChunkChunk Data

PDU Body Auth

DCE-CIOP
Message

PDU PDU Body Auth

NDR Stream

DCE-RPC

DCE-CIOP DCE-CIOP Body
CORBA V2.2 DCE-CIOP Message Transport February 1998 14-7

14

hunk
s that

ess
s

sage”
A pipe is made up of chunks, where each chunk consists of a chunk length and c
data. The chunk length is an unsigned long indicating the number of pipe element
make up the chunk data. The pipe elements are DCE IDL bytes, which are
uninterpreted by NDR. A pipe is terminated by a chunk length of zero. The pipe
chunks are concatenated to form a DCE-CIOP message.

Invoke

The invoke RPC is used by a DCE-CIOP client process to attempt to invoke a
CORBA operation in the server process identified by the binding_handle
parameter. The request_message pipe transmits a DCE-CIOP invoke request
message, encoded using CDR, from the client to the server. See “DCE_CIOP Invoke
Request Message” on page 14-11 for a description of its format. The
response_message pipe transmits a DCE-CIOP invoke response message, also
encoded using CDR, from the server to the client. See “DCE-CIOP Invoke Response
Message” on page 14-12 for a description of the response format.

Locate

The locate RPC is used by a DCE-CIOP client process to query the server proc
identified by the binding_handle parameter for the location of the server proces
where requests should be sent. The request_message and response_message
parameters are used similarly to the parameters of the invoke RPC. See “DCE-CIOP
Locate Request Message” on page 14-14 and “DCE-CIOP Locate Response Mes
on page 14-15 for descriptions of their formats. Use of the locate RPC is described
in detail in “DCE-CIOP Object Location” on page 14-22.

14.3.2 Array-based Interface

The dce_ciop_array interface is defined by the DCE IDL specification shown
below:

[/* DCE IDL */

uuid(09f9ffb8-97ef-11cf-9c96-0800090b5d3e),/* 2nd revision */

version(1.0)

]

interface dce_ciop_array

{

 typedef struct {

 unsigned long length;

[size_is(length),ptr] byte *data;

 } message_type;

 void invoke ([in] handle_t binding_handle,

 [in] message_type *request_message,
14-8 CORBA V2.2 February 1998

14

 on
DR-
ge

 [out] message_type *response_message);

 void locate ([in] handle_t binding_handle,

 [in] message_type *request_message,

 [out] message_type *response_message);

}

ORBs can implement the dce_ciop_array interface, identified by the UUID and
version number shown, by using DCE stubs generated from this IDL specification, or
by using lower-level APIs provided by a particular DCE-RPC implementation.

All server ORBs and location agents implementing DCE-CIOP must listen for and
handle requests made to the dce_ciop_array interface, and to maximize
interoperability, should listen for requests arriving via all available DCE protocol
sequences.

Client ORBs can invoke OMG IDL operations over DCE-CIOP by performing
locate and invoke RPCs on the dce_ciop_array interface.

As with the dce_ciop_pipe interface, the first parameter of each
dce_ciop_array RPC is a DCE binding handle that identifies the server process
which to perform the RPC. The remaining parameters are structures containing C
encoded messages. The request_message input parameters send a request messa
from the client to the server, while the response_message output parameters return
a response message from the server to the client.

The message_type structure used to convey messages is made up of a length
member and a data member:

• length - This member indicates the number of bytes in the message.

• data - This member is a full pointer to the first byte of the conformant array
containing the message.
CORBA V2.2 DCE-CIOP Message Transport February 1998 14-9

14

 by
ich is
mber
The layering of DCE-CIOP messages on DCE-RPC using NDR arrays is illustrated in
Figure 14-2 below:

Figure 14-2 Array-based interface protocol layering.

The NDR stream, formed by concatenating the PDU bodies, is interpreted as the NDR
representation of the DCE IDL message_type structure. The length member is
encoded first, followed by the data member. The data member is a full pointer,
which is represented in NDR as a referent ID. In this case, this non-NULL pointer is
the first (and only) pointer to the referent, so the referent ID is 1 and it is followed
the representation of the referent. The referent is a conformant array of bytes, wh
represented in NDR as an unsigned long indicating the length, followed by that nu
of bytes. The bytes form the DCE-CIOP message.

Invoke

The invoke RPC is used by a DCE-CIOP client process to attempt to invoke a
CORBA operation in the server process identified by the binding_handle
parameter. The request_message input parameter contains a DCE-CIOP invoke
request message. The response_message output parameter returns a DCE-CIOP
invoke response message from the server to the client.

PDU PDU Body Auth

DCE-CIOP
Message

PDU PDU Body Auth

NDR Stream

DCE-RPC

DCE-CIOP DCE-CIOP Body

length ref ID length bytes
14-10 CORBA V2.2 February 1998

14

ess
s

port”

eader

der
Locate

The locate RPC is used by a DCE-CIOP client process to query the server proc
identified by the binding_handle parameter for the location of the server proces
where requests should be sent. The request_message and response_message
parameters are used similarly to the parameters of the invoke RPC.

14.4 DCE-CIOP Message Formats

The section defines the message formats used by DCE-CIOP. These message formats
are specified in OMG IDL, are encoded using CDR, and are transmitted over DCE-
RPC as either pipes or arrays of bytes as described in “DCE-CIOP Message Trans
on page 14-5.

14.4.1 DCE_CIOP Invoke Request Message

DCE-CIOP invoke request messages encode CORBA object requests, including
attribute accessor operations and CORBA::Object operations such as
get_interface and get_implementation . Invoke requests are passed from
client to server as the request_message parameter of an invoke RPC.

A DCE-CIOP invoke request message is made up of a header and a body. The h
has a fixed format, while the format of the body is determined by the operation’s IDL
definition.

Invoke Request Header

DCE-CIOP request headers have the following structure:

module DCE_CIOP { // IDL
struct InvokeRequestHeader {

boolean byte_order;
IOP::ServiceContextList service_context;
seque nce <oct et> obj ect_key;
string operation;
CORBA::Principal principal;

// in and inout parameters follow
};

};

The members have the following definitions:

• byte_order indicates the byte ordering used in the representation of the remain
of the message. A value of FALSE indicates big-endian byte ordering, and TRUE
indicates little-endian byte ordering.

• service_context contains any ORB service data that needs to be sent from the
client to the server.
CORBA V2.2 DCE-CIOP Message Formats February 1998 14-11

14

e

n that

• object_key contains opaque data used to identify the object that is the target of the
operation5. Its value is obtained from the object_key field of the
TAG_INTERNET_IOP profile or the TAG_COMPLET E_OBJECT_KEY
component of the TAG_MULTIPLE_COMPONENTS profile.

• operation contains the name of the CORBA operation being invoked. The case of
the operation name must match the case of the operation name specified in th
OMG IDL source for the interface being used.

Attribute accessors have names as follows:

• Attribute selector: operation name is "_get_<attribute>"

• Attribute mutator: operation name is "_set_<attribute>"

CORBA::Object pseudo-operations have operation names as follows:
• get_interface - operation name is "_interface"
• get_implementation - operation name is "_implementation"
• is_a - operation name is "_is_a"
• non_existent - operation name is "_non_existent"

• Principal contains a value identifying the requesting principal. No particular
meaning or semantics are associated with this value. It is provided to support the
BOA::get_principal operation.

Invoke Request Body

The invoke request body contains the following items encoded in this order:

• All in and inout parameters, in the order in which they are specified in the
operation’s OMG IDL definition, from left to right.

• An optional Context pseudo object, encoded as described in “Context” on
page 13-186. This item is only included if the operation’s OMG IDL definition
includes a context expression, and only includes context members as defined i
expression.

14.4.2 DCE-CIOP Invoke Response Message

Invoke response messages are returned from servers to clients as the
response_message parameter of an invoke RPC.

5. Previous revisions of DCE-CIOP included an endpoint_id member, obtained from an
optional TAG_ENDPOINT_ID component, as part of the object identity. The endpoint ID,
if used, is now contained within the object key, and its position is specified by the optional
TAG_ENDPOINT_ID_POSITION component.

6. Previous revisions of DCE-CIOP encoded the Context in the InvokeRequestHeader. It has
been moved to the body for consistency with GIOP.
14-12 CORBA V2.2 February 1998

14

der and

der
Like invoke request messages, an invoke response message is made up of a hea
a body. The header has a fixed format, while the format of the body depends on the
operation’s OMG IDL definition and the outcome of the invocation.

Invoke Response Header

DCE-CIOP invoke response headers have the following structure:

module DCE_CIOP { // IDL
enum In vokeRespon seStatus {

INVOKE_NO_EXCEPTION,
INVOKE_USER_EXCEPTION,
INVOKE_SYSTEM_EXCEPTION,
INVOKE_LOCATION_FORWARD,
INVOKE_TRY_AGAIN

};

struct InvokeResponseHe ader {
boolean byte_order;
IOP::ServiceContextList service_context;
InvokeResponseSt atus status;

// if status = INV OKE_NO_EXCEPTION,
// result then inouts and outs follow

// if status = INV OKE_USER_EXCEPTION or
// INVOKE_SYSTEM_EXCEPTION, an exception follows

// if status = INV OKE_LOCATION_FORWARD, an
// IOP::IOR follows

};
};

The members have the following definitions:

• byte_order indicates the byte ordering used in the representation of the remain
of the message. A value of FALSE indicates big-endian byte ordering, and TRUE
indicates little-endian byte ordering.

• service_context contains any ORB service data that needs to be sent from the
client to the server.

• status indicates the completion status of the associated request, and also
determines the contents of the body.

Invoke Response Body

The contents of the invoke response body depends on the value of the status
member of the invoke response header, as well as the OMG IDL definition of the
operation being invoked. Its format is one of the following:
CORBA V2.2 DCE-CIOP Message Formats February 1998 14-13

14

rder

See

ect

ould
• If the status value is INVOKE_NO_EXCEPTION, then the body contains the
operation result value (if any), followed by all inout and out parameters, in the o
in which they appear in the operation signature, from left to right.

• If the status value is INVOKE_USER_EXCEPTION or
INVOKE_SYSTEM_EXCEPTION, then the body contains the exception, encoded
as in GIOP.

• If the status value is INVOKE_LOCATION_FORWARD , then the body contains
a new IOR containing a TAG_INTERNET_IOP or
TAG_MULT IPLE_COMPONENTS profile whose components can be used to
communicate with the object specified in the invoke request message7. This profile
must provide at least one new DCE-CIOP binding component. The client ORB is
responsible for resending the request to the server identified by the new profile.
This operation should be transparent to the client program making the request.
“DCE-CIOP Object Location” on page 14-22 for more details.

• If the status value is INVOKE_TRY_AGAIN , then the body is empty and the
client should reissue the invoke RPC, possibly after a short delay8.

14.4.3 DCE-CIOP Locate Request Message

Locate request messages may be sent from a client to a server, as the
request_message parameter of a locate RPC, to determine the following
regarding a specified object reference:

• Whether the object reference is valid

• Whether the current server is capable of directly receiving requests for the obj
reference

• If not capable, to solicit an address to which requests for the object reference sh
be sent.

For details on the usage of the locate RPC, see “DCE-CIOP Object Location” on
page 14-22.

Locate request messages contain a fixed-format header, but no body.

Locate Request Header

DCE-CIOP locate request headers have the following format:

7. Previous revisions of DCE-CIOP returned a MultipleComponentProfile structure. An IOR
is now returned to allow either a TAG_INTERNET_IOP or a
TAG_MULTIPLE_COMPONENTS profile to be used.

8. An exponential back-off algorithm is recommended, but not required.
14-14 CORBA V2.2 February 1998

14

der

ded
module DCE_CIOP { // IDL
struct LocateRequestHeader {

boolean byte_order;
seque nce <oct et> obj ect_key;
string operation;

// no body follows
};

};

The members have the following definitions:

• byte_order indicates the byte ordering used in the representation of the remain
of the message. A value of FALSE indicates big-endian byte ordering, and TRUE
indicates little-endian byte ordering.

• object_key contains opaque data used to identify the object that is the target of the
operation. Its value is obtained from the object_key field of the
TAG_INTERNET_IOP profile or the TAG_COMPLET E_OBJECT_KEY
component of the TAG_MULTIPLE_COMPONENTS profile.

• operation contains the name of the CORBA operation being invoked. It is enco
as in the invoke request header.

14.4.4 DCE-CIOP Locate Response Message

Locate response messages are sent from servers to clients as the
response_message parameter of a locate RPC. They consist of a fixed-format
header, and a body whose format depends on information in the header.

Locate Response Header

DCE-CIOP locate response headers have the following format:

module DCE_CIOP { // IDL
enum LocateRes ponseSt atus {

LOCATE_UNKNOWN_OBJECT,
LOCATE_OBJE CT_HERE,
LOCATE_LOCATION_FORWARD,
LOCATE_TRY_AGAIN

};
struct LocateResponseHeader {

boolean byte_order;
LocateRespons eStatus status;

// if status = LOCA TE_LOCATION_FORWARD, an
// IOP::IOR follows

};
};

The members have the following definitions:
CORBA V2.2 DCE-CIOP Message Formats February 1998 14-15

14

der

ver.

file

d

ofile.
• byte_order indicates the byte ordering used in the representation of the remain
of the message. A value of FALSE indicates big-endian byte ordering, and TRUE
indicates little-endian byte ordering.

• status indicates whether the object is valid and whether it is located in this ser
It determines the contents of the body.

Locate Response Body

The contents of the locate response body depends on the value of the status member
of the locate response header. Its format is one of the following:

• If the status value is LOCATE_UNKNOWN_OBJECT, then the object specified
in the corresponding locate request message is unknown to the server. The locate
reply body is empty in this case.

• If the status value is LOCATE_OBJECT_HERE, then this server (the originator
of the locate response message) can directly receive requests for the specified
object. The locate response body is also empty in this case.

• If the status value is LOCATE_LOCATION_FORWARD, then the locate
response body contains a new IOR containing a TAG_INTERNET_IOP or
TAG_MULT IPLE_COMPONENTS profile whose components can be used to
communicate with the object specified in the locate request message. This pro
must provide at least one new DCE-CIOP binding component.

• If the status value is LOCATE_TRY_AGAIN, the locate response body is empty an
the client should reissue the locate RPC, possibly after a short delay9.

14.5 DCE-CIOP Object References

The information necessary to invoke operations on objects using DCE-CIOP is
encoded in an IOR in a profile identified either by TAG_INTERNET_IOP or by
TAG_MULTIPLE_COMPONENTS . The profile_data for the
TAG_INTERNET_IOP profile is a CDR encapsulation of the
IIOP::Profi leBody_1_1 type, described in “IIOP IOR Profiles” on page 13-34. The
profile_data for the TAG_MULTIPLE_COMPONENTS profile is a CDR
encapsulation of the Multiple ComponentProfile type, which is a sequence of

TaggedComp onent structures, described in “An Information Model for Object
References” on page 11-14.

DCE-CIOP defines a number of IOR components that can be included in either pr
Each is identified by a unique tag, and the encoding and semantics of the associated
component_data are specified.

9. An exponential back-off algorithm is recommended, but not required.
14-16 CORBA V2.2 February 1998

14

mple,

y be

ther

served

f,

-

for
g

g

 the
Either IOR profile can contain components for other protocols in addition to DCE-
CIOP, and can contain components used by other kinds of ORB services. For exa
an ORB vendor can define its own private components within this profile to support
the vendor’s native protocol. Several of the components defined for DCE-CIOP ma
of use to other protocols as well. The following component descriptions will note
whether the component is intended solely for DCE-CIOP or can be used by other
protocols, whether the component is required or optional for DCE-CIOP, and whe
more than one instance of the component can be included in a profile.

A conforming implementation of DCE-CIOP is only required to generate and
recognize the components defined here. Unrecognized components should be pre
but ignored. Implementations should also be prepared to encounter profiles identified
by TAG_INTERNET_IOP or by TAG_MULTIPLE _COMPONENTS that do not
support DCE-CIOP.

14.5.1 DCE-CIOP String Binding Component

A DCE-CIOP string binding component, identified by
TAG_DCE_STRING_BINDING , contains a fully or partially bound string binding. A
string binding provides the information necessary for DCE-RPC to establish
communication with a server process that can either service the client’s requests itsel
or provide the location of another process that can. The DCE API routine
rpc_binding_from_string_binding can be used to convert a string binding to
the DCE binding handle required to communicate with a server as described in “DCE
CIOP Message Transport” on page 14-5.

This component is intended to be used only by DCE-CIOP. At least one string binding
or binding name component must be present for an IOR profile to support DCE-CIOP.

Multiple string binding components can be included in a profile to define endpoints
different DCE protocols, or to identify multiple servers or agents capable of servicin
the request.

The string binding component is defined as follows:

module DCE_CIOP { \\ IDL
const IOP::C omponentId TAG_DCE_STRING_BINDING = 100;

};

A TaggedComp onent structure is built for the string binding component by settin
the tag member to TAG_DCE_STRING_BINDING and setting the component_data
member to the value of a DCE string binding. The string is represented directly in
sequence of octets, including the terminating NUL, without further encoding.

The format of a string binding is defined in Chapter 3 of the OSF AES/Distributed
Computing RPC Volume. The DCE API function
rpc_binding_from_string_binding converts a string binding into a binding
handle that can be used by a client ORB as the first parameter to the invoke and
locate RPCs.

A string binding contains:
CORBA V2.2 DCE-CIOP Object References February 1998 14-17

14

g
nt for

ry
• A protocol sequence

• A network address

• An optional endpoint

• An optional object UUID

DCE object UUIDs are used to identify server process endpoints, which can each
support any number of CORBA objects. DCE object UUIDs do not necessarily
correspond to individual CORBA objects.

A partially bound string binding does not contain an endpoint. Since the DCE-RPC
run-time uses an endpoint mapper to complete a partial binding, and multiple ORB
servers might be located on the same host, partially bound string bindings must contain
object UUIDs to distinguish different endpoints at the same network address.

14.5.2 DCE-CIOP Binding Name Component

A DCE-CIOP binding name component is identified by
TAG_DCE_BINDING_NAME . It contains a name that can be used with a DCE
nameservice such as CDS or GDS to obtain the binding handle needed to communicate
with a server process.

This component is intended for use only by DCE-CIOP. Multiple binding name
components can be included to identify multiple servers or agents capable of handlin
a request. At least one binding name or string binding component must be prese
a profile to support DCE-CIOP.

The binding name component is defined by the following OMG IDL:

module DCE_CIOP { // IDL
const IOP::C omponentId TAG_DCE_BINDING_NAME = 101;

struct BindingNameComponent {
unsigned long entry_name_syntax;
string entry_name;
string object_uuid;

};
};

A TaggedComp onent structure is built for the binding name component by setting
the tag member to TAG_DCE_BINDING_NAME and setting the component_data
member to a CDR encapsulation of a BindingNameComponent structure.

BindingNameComponent

The BindingNameComponent structure contains the information necessary to que
a DCE nameservice such as CDS. A client ORB can use the entry_name_syntax,
entry_name, and object_uuid members of the BindingName structure with the
rpc_ns_binding_import_* or rpc_ns_binding_lookup_* families of DCE
14-18 CORBA V2.2 February 1998

14

 as the

r
API routines to obtain binding handles to communicate with a server. If the
object_uuid member is an empty string, a nil object UUID should be passed to
these DCE API routines.

14.5.3 DCE-CIOP No Pipes Component

The optional component identified by TAG_DCE_NO_PIPES indicates to an ORB
client that the server does not support the dce_ciop_pipe DCE-RPC interface. It is
only a hint, and can be safely ignored. As described in “DCE-CIOP Message
Transport” on page 14-5, the client must fall back to the array-based interface if the
pipe-based interface is not available in the server.

module DCE_CIOP {
const IOP::C omponentId TAG_DCE_NO_PIPES = 102;

};

A TaggedComp onent structure with a tag member of TAG_DCE_NO_PIPES
must have an empty component_data member.

This component is intended for use only by DCE-CIOP, and a profile should not
contain more than one component with this tag.

14.5.4 Complete Object Key Component

An IOR profile supporting DCE-CIOP must include an object key that identifies the
object the IOR represents. The object key is an opaque sequence of octets used
object_key member in invoke and locate request message headers. In a
TAG_INTERNET_IOP profile, the object_key member of the
IIOP::Profi leBody_1_1 structure is used. In a TAG_MULTIP LE_COMPONENTS
profile supporting DCE-CIOP10, a single TAG_COMPLETE_OBJECT_KEY
component must be included to identify the object.

The TAG_COMPLETE_OBJECT_KEY component is available for use by all
protocols that use the TAG_MULTIPLE _COMPONENTS profile. By sharing this
component, protocols can avoid duplicating object identity information. This
component should never be included in a TAG_INTERNET_IOP profile.

module IOP { // IDL
const Compon entId TAG_COMPLETE_OBJEC T_KEY = 5;
};

The sequence of octets comprising the component_data of this component is not
interpreted by the client process. Its format only needs to be understood by the serve
process and any location agent that it uses.

10.Previous DCE-CIOP revisions used a different component.
CORBA V2.2 DCE-CIOP Object References February 1998 14-19

14

ble
.
point

h

ct

n
.

14.5.5 Endpoint ID Position Component

An optional endpoint ID position component can be included in IOR profiles to ena
client ORBs to minimize resource utilization and to avoid redundant locate messages
It can be used by other protocols as well as by DCE-CIOP. No more than one end
ID position component can be included in a profile.

module IOP { // IDL
const Compon entId TAG_ENDPOINT_ID_POSITION = 6;

struct EndpointIdPositionC omponent {
unsigned short begin;
unsigned short end;
};
};

An endpoint ID position component, identified by TAG_ENDPOINT_ID_POSITION ,
indicates the portion of the profile’s object key that identifies the endpoint at whic
operations on an object can be invoked. The component_data is a CDR
encapsulation of an EndpointIdPositionC omponent structure. The begin member
of this structure specifies the index in the object key of the first octet of the endpoint
ID. The end member specifies the index of the last octet of the endpoint ID. An index
value of zero specifies the first octet of the object key. The value of end must be
greater than the value of begin , but less than the total number of octets in the obje
key. The endpoint ID is made up of the octets located between these two indices
inclusively.

The endpoint ID should be unique within the domain of interoperability. A binary or
stringified UUID is recommended.

If multiple objects have the same endpoint ID, they can be messaged to at a single
endpoint, avoiding the need to locate each object individually. DCE-CIOP clients can
use a single binding handle to invoke requests on all of the objects with a commo
endpoint ID. See “Use of the Location Policy and the Endpoint ID” on page 14-24

14.5.6 Location Policy Component

An optional location policy component can be included in IOR profiles to specify
when a DCE-CIOP client ORB should perform a locate RPC before attempting to
perform an invoke RPC. No more than one location policy component should be
included in a profile, and it can be used by other protocols that have location
algorithms similar to DCE-CIOP.
14-20 CORBA V2.2 February 1998

14

 a

module IOP { // IDL
const Compon entId TAG_LOCATI ON_POLICY = 12;

// IDL does not support octet constants
#define LOCATE_NEVER = 0
#define LOCATE_OBJECT = 1
#define LOCATE_OPERATION = 2
#define LOCATE_ALWAYS = 3

};

A TaggedComp onent structure for a location policy component is built by setting
the tag member to TAG_LOCATION_POLICY and setting the component_data
member to a sequence containing a single octet, whose value is LOCATE_NEVER ,
LOCATE_OBJECT, LOCATE_OPERATION , or LOCATE_ALWAYS .

If a location policy component is not present in a profile, the client should assume
location policy of LOCATE_OBJECT .

A client should interpret the location policy as follows:

• LOCATE_NEVER - Perform only the invoke RPC. No locate RPC is
necessary.

• LOCATE_OBJECT - Perform a locate RPC once per object. The operation
member of the locate request message will be ignored.

• LOCATE_OPERATION - Perform a separate locate RPC for each distinct
operation on the object. This policy can be used when different methods of an
object are located in different processes.

• LOCATE_ALWAYS - Perform a separate locate RPC for each invocation on
the object. This policy can be used to support server-per-method activation.

The location policy is a hint that enables a client to avoid unnecessary locate RPCs
and to avoid invoke RPCs that return INVOKE_LOCATION_FORWARD status. It
is not needed to provide correct semantics, and can be ignored. Even when this hint is
utilized, an invoke RPC might result in an INVOKE_LOCATION_FORWARD
response. See “DCE-CIOP Object Location” on page 14-22 for more details.

A client does not need to implement all location policies to make use of this hint. A
location policy with a higher value can be substituted for one with a lower value. For
instance, a client might treat LOCATE_OPERATION as LOCATE_ALWAYS to avoid
having to keep track of binding information for each operation on an object.

When combined with an endpoint ID component, a location policy of
LOCATE_OBJECT indicates that the client should perform a locate RPC for the
first object with a particular endpoint ID, and then just perform an invoke RPC for
other objects with the same endpoint ID. When a location policy of LOCATE_NEVER
is combined with an endpoint ID component, only invoke RPCs need be performed.
The LOCATE_ALWAYS and LOCATE_OPERATION policies should not be
combined with an endpoint ID component in a profile.
CORBA V2.2 DCE-CIOP Object References February 1998 14-21

14

can

res

ess,
may

ect

eturn
ay

s or

s

ssages

n

olicy
14.6 DCE-CIOP Object Location

This section describes how DCE-CIOP client ORBs locate the server ORBs that
perform operations on an object via the invoke RPC.

14.6.1 Location Mechanism Overview

DCE-CIOP is defined to support object migration and location services without
dictating the existence of specific ORB architectures or features. The protocol featu
are based on the following observations:

• A given transport address does not necessarily correspond to any specific ORB
architectural component (such as an object adapter, server process, ORB proc
locator, etc.). It merely implies the existence of some agent to which requests
be sent.

• The "agent" (receiver of an RPC) may have one of the following roles with resp
to a particular object reference:

• The agent may be able to accept object requests directly for the object and r
replies. The agent may or may not own the actual object implementation; it m
be a gateway that transforms the request and passes it on to another proces
ORB. From DCE-CIOP’s perspective, it is only important that invoke request
messages can be sent directly to the agent.

• The agent may not be able to accept direct requests for any objects, but act
instead as a location service. Any invoke request messages sent to the agent
would result in either exceptions or replies with
INVOKE_LOCATION_FORWARD status, providing new addresses to which
requests may be sent. Such agents would also respond to locate request me
with appropriate locate response messages.

• The agent may directly respond to some requests (for certain objects) and provide
forwarding locations for other objects.

• The agent may directly respond to requests for a particular object at one point in
time, and provide a forwarding location at a later time.

• Server ORBs are not required to implement location forwarding mechanisms. A
ORB can be implemented with the policy that servers either support direct access to
an object, or return exceptions. Such a server ORB would always return locate
response messages with either LOCATE_OBJE CT_HERE or
LOCATE_UNKNOW N_OBJECT status, and never
LOCATE_LOCATION_FORWARD status. It would also never return invoke
response messages with INVOKE_LOCATION_FORWARD status.

• Client ORBs must, however, be able to accept and process invoke response
messages with INVOKE_LOCATION_FORWARD status, since any server ORB
may choose to implement a location service. Whether a client ORB chooses to send
locate request messages is at the discretion of the client.

• Client ORBs that send locate request messages can use the location policy
component found in DCE-CIOP IOR profiles to decide whether to send a locate
request message before sending an invoke request message. See “Location P
Component” on page 14-20. This hint can be safely ignored by a client ORB.
14-22 CORBA V2.2 February 1998

14

rned

 to

er be

er
le of

ith

• A client should not make any assumptions about the longevity of addresses retu
by location forwarding mechanisms. If a binding handle based on location
forwarding information is used successfully, but then fails, subsequent attempts
send requests to the same object should start with the original address specified in
the object reference.

In general, the use of location forwarding mechanisms is at the discretion of ORBs,
available to be used for optimization and to support flexible object location and
migration behaviors.

14.6.2 Activation

Activation of ORB servers is transparent to ORB clients using DCE-CIOP. Unless an
IOR refers to a transient object, the agent addressed by the IOR profile should eith
permanently active, or should be activated on demand by DCE’s endpoint mapper.

The current DCE endpoint mapper, rpcd, does not provide activation. In ORB serv
environments using rpcd, the agent addressed by an IOR must not only be capab
locating the object, it must also be able to activate it if necessary. A future DCE
endpoint mapper may provide automatic activation, but client ORB implementations do
not need to be aware of this distinction.

14.6.3 Basic Location Algorithm

ORB clients can use the following algorithm to locate the server capable of handling
the invoke RPC for a particular operation:

1. Pick a profile with TAG_INTERNET_IOP or TAG_MULTIPLE _COMPONENTS
from the IOR. Make this the original profile and the current profile. If no profiles
with either tag are available, operations cannot be invoked using DCE-CIOP w
this IOR.

2. Get a binding handle to try from the current profile. See “DCE-CIOP String
Binding Component” on page 14-17 and “DCE-CIOP Binding Name Component”
on page 14-18. If no binding handles can be obtained, the server cannot be located
using the current profile, so go to step 1.

3. Perform either a locate or invoke RPC using the object key from the current
profile.

• If the RPC fails, go to step 2 to try a different binding handle.

• If the RPC returns INVOKE_TRY_AGAIN or LOCATE_TRY_AGAIN, try the
same RPC again, possibly after a delay.

• If the RPC returns either INVOKE_LOCATION_FORWARD or
LOCATE_LOCATION_FORWARD , make the new IOR profile returned in the
response message body the current profile and go to step 2.

• If the RPC returns LOCATE_UNKNOWN_OBJECT , and the original profile
was used, the object no longer exists.

• Otherwise, the server has been successfully located.
CORBA V2.2 DCE-CIOP Object Location February 1998 14-23

14

B

ID

 an
ject.

with
Any invoke RPC might return INVOKE_LOCATION_FORWARD , in which case
the client ORB should make the returned profile the current profile, and re-enter the
location algorithm at step 2.

If an RPC on a binding handle fails after it has been used successfully, the client OR
should start over at step 1.

14.6.4 Use of the Location Policy and the Endpoint ID

The algorithm above will allow a client ORB to successfully locate a server ORB, if
possible, so that operations can be invoked using DCE-CIOP. But unnecessary
locate RPCs may be performed, and invoke RPCs may be performed when
locate RPCs would be more efficient. The optional location policy and endpoint
position components can be used by the client ORB, if present in the IOR profile, to
optimize this algorithm.

Current Location Policy

The client ORB can decide whether to perform a locate RPC or an invoke RPC in
step 3 based on the location policy of the current IOR profile. If the current profile has
a TAG_LOCATION_POLICY component with a value of LOCATE_NEVER , the
client should perform an invoke RPC. Otherwise, it should perform a locate RPC.

Original Location Policy

The client ORB can use the location policy of the original IOR profile as follows to
determine whether it is necessary to perform the location algorithm for a particular
invocation:

• LOCATE_OBJECT or LOCATE_NEVER A binding handle previously used
successfully to invoke an operation on an object can be reused for all operations on
the same object. The client only needs to perform the location algorithm once per
object.

• LOCATE_OPERATION A binding handle previously used successfully to invoke
operation on an object can be reused for that same operation on the same ob
The client only needs to perform the location algorithm once per operation.

• LOCATE_ALWAYS Binding handles should not be reused. The client needs to
perform the location algorithm once per invocation.

Original Endpoint ID

If a component with TAG_ENDPOINT_ID_POSITION is present in the original IOR
profile, the client ORB can reuse a binding handle that was successfully used to
perform an operation on another object with the same endpoint ID. The client only
needs to perform the location algorithm once per endpoint.

An endpoint ID position component should never be combined in the same profile
a location policy of LOCATE_OPERATION or LOCATE_ALWAYS .
14-24 CORBA V2.2 February 1998

14
14.7 OMG IDL for the DCE CIOP Module

This section shows the DCE_CIOP module and DCE_CIOP additions to the IOP
module.

module DCE_CIOP {
struct InvokeRequestHeader {

boolean byte_order;
IOP::ServiceContextList service_context;
seque nce <oct et> obj ect_key;
string operation;
CORBA::Principal principal;

// in and inout parameters follow
};

enum In vokeRespon seStatus {
INVOKE_NO_EXCEPTION,
INVOKE_USER_EXCEPTION,
INVOKE_SYSTEM_EXCEPTION,
INVOKE_LOCATION_FORWARD,
INVOKE_TRY_AGAIN

};
struct InvokeResponseHe ader {

boolean byte_order;
IOP::ServiceContextList service_context;
InvokeResponseSt atus status;

// if status = INV OKE_NO_EXCEPTION,
// result then inouts and outs follow

// if status = INV OKE_USER_EXCEPTION or
// INVOKE_SYSTEM_EXCEPTION, an exception follows

// if status = INV OKE_LOCATION_FORWARD, an
// IOP::IOR follows

};
struct LocateRequestHeader {

boolean byte_order;
seque nce <oct et> obj ect_key;
string operation;

// no body follows
};

enum LocateRes ponseSt atus {
LOCATE_UNKNOWN_OBJECT,
LOCATE_OBJE CT_HERE,
LOCATE_LOCATION_FORWARD,
LOCATE_TRY_AGAIN
CORBA V2.2 OMG IDL for the DCE CIOP Module February 1998 14-25

14
};
struct LocateResponseHeader {
boolean byte_order;
LocateRespons eStatus status;

// if status = LOCA TE_LOCATION_FORWARD, an
// IOP::IOR follows
};

const IOP::C omponentId TAG_DCE_STRING_BINDING = 100;

const IOP::C omponentId TAG_DCE_BINDING_NAME = 101;

struct BindingNameComponent {
unsigned long entry_name_syntax;
string entry_name;
string object_uuid;
};

const IOP::C omponentId TAG_DCE_NO_PIPES = 102;
};

module IOP {
const Compon entId TAG_COMPLETE_OBJEC T_KEY = 5;

const Compon entId TAG_ENDPOINT_ID_POSITION = 6;

struct EndpointIdPositionC omponent {
unsigned short begin;
unsigned short end;
};

const Compon entId TAG_LOCATI ON_POLICY = 12;

// IDL does not support octet constants
#define LOCATE_NEVER 0
#define LOCATE_OBJECT 1
#define LOCATE_OPERATION 2
#define LOCATE_ALWAYS 3
};

14.8 References for this Chapter

AES/Distributed Computing RPC Volume, P T R Prentice Hall, Englewood Cliffs, New
Jersey, 1994

CAE Specification C309 X/Open DCE: Remote Procedure Call, X/Open Company
Limited, Reading, UK
14-26 CORBA V2.2 February 1998

 Interworking Architecture 15
t this
The Interworking chapters describe a specification for communication between two
similar but very distinct object management systems: Microsoft’s COM (including
OLE) and the OMG’s CORBA. An optimal specification would allow objects from
either system to make their key functionality visible to clients using the other system
as transparently as possible. The architecture for Interworking is designed to mee
goal.

Contents

This chapter contains the following sections.

Section Title Page

“Purpose of the Interworking Architecture” 15-2

“Interworking Object Model” 15-3

“Interworking Mapping Issues” 15-8

“Interface Mapping” 15-8

“Interface Composition Mappings” 15-11

“Object Identity, Binding, and Life Cycle” 15-18

“Interworking Interfaces” 15-23

“Distribution” 15-32

“Interworking Targets” 15-34

“Compliance to COM/CORBA Interworking” 15-34
 CORBA V2.2 February 1998 15-1

15

ts
bject
a

ard

d

gely

n,

inly
l

ite
p,
, cut-

 the

 (and
15.1 Purpose of the Interworking Architecture

The purpose of the Interworking architecture is to specify support for two-way
communication between CORBA objects and COM objects. The goal is that objec
from one object model should be able to be viewed as if they existed in the other o
model. For example, a client working in a CORBA model should be able to view
COM object as if it were a CORBA object. Likewise, a client working in a COM
object model should be able to view a CORBA object as if it were a COM object.

There are many similarities between the two systems. In particular, both are centered
around the idea that an object is a discrete unit of functionality that presents its
behavior through a set of fully-described interfaces. Each system hides the details of
implementation from its clients. To a large extent COM and CORBA are semantically
isomorphic. Much of the COM/CORBA Interworking specification simply involves a
mapping of the syntax, structure and facilities of each to the other — a straightforw
task.

There are, however, differences in the CORBA and COM object models. COM an
CORBA each have a different way of describing what an object is, how it is typically
used, and how the components of the object model are organized. Even among lar
isomorphic elements, these differences raise a number of issues as to how to provide
the most transparent mapping.

15.1.1 Comparing COM Objects to CORBA Objects

From a COM point of view, an object is typically a subcomponent of an applicatio
which represents a point of exposure to other parts of the application, or to other
applications. Many OLE objects are document-centric and are often (though certa
not exclusively) tied to some visual presentation metaphor. Historically, the typica
domain of an COM object is a single-user, multitasking visual desktop such as a
Microsoft Windows desktop. Currently, the main goal of COM and OLE is to exped
collaboration- and information-sharing among applications using the same deskto
largely through user manipulation of visual elements (for example, drag-and-drop
and-paste).

From a CORBA point of view, an object is an independent component providing a
related set of behaviors. An object is expected to be available transparently to any
CORBA client regardless of the location (or implementation) of either the object or
client. Most CORBA objects focus on distributed control in a heterogeneous
environment. Historically, the typical domain of a CORBA object is an arbitrarily
scalable distributed network. In its current form, the main goal of CORBA is to allow
these independent components to be shared among a wide variety of applications
other objects), any of which may be otherwise unrelated.

Of course, CORBA is already used to define desktop objects, and COM can be
extended to work over a network. Also, both models are growing and evolving, and
will probably overlap in functionally in the future. Therefore, a good interworking
model must map the functionality of two systems to each other while preserving the
flavor of each system as it is typically presented to a developer.
15-2 CORBA V2.2 February 1998

15

d on a

faces
e
ary.

n

ces
The most obvious similarity between these two systems is that they are both based
architecturally on objects. The Interworking Object Model describes the overlap
between the features of the CORBA and COM object models, and how the common
features map between the two models.

Figure 15-1 Interworking Object Model

15.2 Interworking Object Model

15.2.1 Relationship to CORBA Object Model

In the Interworking Object Model, each object is simply a discrete unit of functionality
that presents itself through a published interface described in terms of a well-known,
fully-described set of interface semantics. An interface (and its underlying
functionality) is accessed through at least one well-known, fully described form of
request. Each request in turn targets a specific object—an object instance—base
reference to its identity. That target object is then expected to service the request by
invoking the expected behavior in its own particular implementation. Request
parameters are object references or nonobject data values described in the object
model’s data type system. Interfaces may be composed by combining other inter
according to some well-defined composition rules. In each object system, interfaces ar
described in a specialized language or can be represented in some repository or libr

In CORBA, the Interworking Object Model is mapped to an architectural abstractio
known as the Object Request Broker (ORB). Functionally, an ORB provides for the
registration of the following:

• Types and their interfaces, as described in the OMG Interface Definition Language
(OMG IDL).

• Instance identities, from which the ORB can then construct appropriate referen
to each object for interested clients.

Object

Interface

Request

Parameters

Identity

Implementation
CORBA V2.2 Interworking Object Model February 1998 15-3

15

 its
quest

d

cific

s
ay be

ted

 is

A CORBA object may thereafter receive requests from interested clients that hold
object reference and have the necessary information to make a properly-formed re
on the object’s interface. This request can be statically defined at compile time or
dynamically created at run-time based upon type information available through an
interface type repository.

While CORBA specifies the existence of an implementation type description calle
ImplementationDef (and an Implementation Repository, which contains these type
descriptions), CORBA does not specify the interface or characteristics of the
Implementation Repository or the ImplementationDef. As such, implementation typing
and descriptions vary from ORB to ORB and are not part of this specification.

15.2.2 Relationship to the OLE/COM Model

In OLE, the Interworking Object Model is principally mapped to the architectural
abstraction known as the Component Object Model (COM). Functionally, COM allows
an object to expose its interfaces in a well-defined binary form (that is, a virtual
function table) so that clients with static compile-time knowledge of the interface’s
structure, and with a reference to an instance offering that interface, can send it
appropriate requests. Most COM interfaces are described in Microsoft Interface
Definition Language (MIDL).

COM supports an implementation typing mechanism centered around the concept of a
COM class. A COM class has a well-defined identity and there is a repository (known
as the system registry) that maps implementations (identified by class IDs) to spe
executable code units that embody the corresponding implementation realizations.

COM also provides an extension called OLE Automation. Interfaces that are
Automation-compatible can be described in Object Definition Language (ODL) and
can optionally be registered in a binary Type Library. Automation interfaces can be
invoked dynamically by a client having no compile-time interface knowledge through a
special COM interface (IDispatch). Run-time type checking on invocations can be
implemented when a Type Library is supplied. Automation interfaces have propertie
and methods, whereas COM interfaces have only methods. The data types that m
used for properties and as method parameters comprise a subset of the types suppor
in COM, with no support for user-defined constructed types.

Thus, use of and interoperating with objects exposing OLE Automation interfaces
considerably different from other COM objects. Although Automation is implemented
through COM, for the purposes of this document, OLE Automation and COM are
considered to be distinct object models. Interworking between CORBA and OLE
Automation will be described separately from interworking with the basic COM
model.

15.2.3 Basic Description of the Interworking Model

Viewed at this very high level, Microsoft’s COM and OMG’s CORBA appear quite
similar. Roughly speaking, COM interfaces (including Automation interfaces) are
equivalent to CORBA interfaces. In addition, COM interface pointers are very roughly
equivalent to CORBA object references. Assuming that lower-level design details
15-4 CORBA V2.2 February 1998

15

wo

ct

ct
ed to

e

d B,
(calling conventions, data types, and so forth) are more or less semantically
isomorphic, a reasonable level of interworking is probably possible between the t
systems through straightforward mappings.

How such interworking can be practically achieved is illustrated in an Interworking
Model, shown in Figure 15-2. It shows how an object in Object System B can be
mapped and represented to a client in Object System A. From now on, this will be
called a B/A mapping. For example, mapping a CORBA object to be visible to a COM
client is a CORBA/COM mapping.

Figure 15-2 B/A Interworking Model

On the left is a client in object system A, that wants to send a request to a target obje
in system B, on the right. We refer to the entire conceptual entity that provides the
mapping as a bridge. The goal is to map and deliver any request from the client
transparently to the target.

To do so, we first provide an object in system A called a View. The View is an obje
in system A that presents the identity and interface of the target in system B mapp
the vernacular of system A, and is described as an A View of a B target.

The View exposes an interface, called the View Interface, which is isomorphic to th
target’s interface in system B. The methods of the View Interface convert requests from
system A clients into requests on the target’s interface in system B. The View is a
component of the bridge. A bridge may be composed of many Views.

The bridge maps interface and identify forms between different object systems.
Conceptually, the bridge holds a reference in B for the target (although this is not
physically required). The bridge must provide a point of rendezvous between A an
and may be implemented using any mechanism that permits communication between
the two systems (IPC, RPC, network, shared memory, and so forth) sufficient to
preserve all relevant object semantics.

Object System A Object System B

Object reference in A

View in A of target in B
(object in system A)

Bridge

Object reference in B

Target object
implementation in B
CORBA V2.2 Interworking Object Model February 1998 15-5

15

 the
at
tance

 A

t

rs.
The client treats the View as though it is the real object in system A, and makes the
request in the vernacular request form of system A. The request is translated into
vernacular of object system B, and delivered to the target object. The net effect is th
a request made on an interface in A is transparently delivered to the intended ins
in B.

The Interworking Model works in either direction. For example, if system A is COM,
and system B is CORBA, then the View is called the COM View of the CORBA target.
The COM View presents the target’s interface to the COM client. Similarly if system
is CORBA and system B is COM, then the View is called the CORBA View of the
COM target. The CORBA View presents the target’s interface to the CORBA clien.

Figure 15-3 shows the interworking mappings discussed in the Interworking chapte
They represent the following:

• The mapping providing a COM View of a CORBA target

• The mapping providing a CORBA View of a COM target

• The mapping providing an Automation View of a CORBA target

• The mapping providing a CORBA View of an Automation target
15-6 CORBA V2.2 February 1998

15

Figure 15-3 Interworking Mapping

Note that the division of the mapping process into these architectural componentsdoes
not infer any particular design or implementation strategy. For example, a COM View
and its encapsulated CORBA reference could be implemented in COM as a single
component or as a system of communicating components on different hosts.

The architecture allows for a range of implementation strategies, including, but not
limited to generic and interface-specific mapping.

CORBA client COM server

AA
AA

CORBA object reference

AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA

CORBA View
(a real CORBA object)

AA
AA

AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA

Bridge

COM interface pointer

Target COM object

CORBA server COM client

AAA
AAA

CORBA object reference

AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA

COM View
(a real COM object)

AA
AA

AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA

Bridge COM interface pointerTarget CORBA object

CORBA client Automation server

AA
AA

CORBA object reference

AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA

CORBA View
(a real CORBA object)

Bridge

Automation interface pointer

Target Automation object

CORBA server Automation client

CORBA object reference Automation View
(a real Automation object)

AA
AA
AA

AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA

Bridge
Automation interface pointerTarget CORBA object

(IDispatch pointer)

(IDispatch pointer)

a)

b)

c)

d)
CORBA V2.2 Interworking Object Model February 1998 15-7

15

s
get
t
ic

ple,

ct

o
ped

ts
• Generic Mapping assumes that all interfaces can be mapped through a dynamic
mechanism supplied at run-time by a single set of bridge components. This allow
automatic access to new interfaces as soon as they are registered with the tar
system. This approach generally simplifies installation and change management, bu
may incur the run-time performance penalties normally associated with dynam
mapping.

• Interface-Specific Mapping assumes that separate bridge components are
generated for each interface or for a limited set of related interfaces (for exam
by a compiler). This approach generally improves performance by “precompiling”
request mappings, but may create installation and change management problems.

15.3 Interworking Mapping Issues

The goal of the Interworking specification is to achieve a straightforward two-way
(COM/CORBA and CORBA/COM) mapping in conformance with the previously
described Interworking Model. However, despite many similarities, there are some
significant differences between CORBA and COM that complicate achieving this goal.
The most important areas involve:

• Interface Mapping. A CORBA interface must be mapped to and from two distin
forms of interfaces, OLE Automation and COM.

• Interface Composition Mapping. CORBA multiple inheritance must be mapped t
COM single inheritance/aggregation. COM interface aggregation must be map
to the CORBA multiple inheritance model.

• Identity Mapping . The explicit notion of an instance identity in CORBA must be
mapped to the more implicit notion of instance identity in COM.

• Mapping Invertibility . It may be desirable for the object model mappings to be
invertible, but the Interworking specification does not guarantee invertibility in all
situations.

15.4 Interface Mapping

The CORBA standard for describing interfaces is OMG IDL. It describes the reques
that an object supports. OLE provides two distinct and somewhat disjointed interface
models: COM and Automation. Each has its own respective request form, interface
semantics, and interface syntax.

Therefore, we must consider the problems and benefits of four distinct mappings:

• CORBA/COM

• CORBA/Automation

• COM/CORBA

• Automation/CORBA
15-8 CORBA V2.2 February 1998

15

BA

nnot
f

s.

ted
e).

es.

er

OLE
We must also consider the bidirectional impact of a third, hybrid form of interface, the
Dual Interface, which supports both an Automation and a COM-like interface. The
succeeding sections summarize the main issues facing each of these mappings.

15.4.1 CORBA/COM

There is a reasonably good mapping from CORBA objects to COM Interfaces; for
instance:

• OMG IDL primitives map closely to COM primitives.

• Constructed data types (structs, unions, arrays, strings, and enums) also map
closely.

• CORBA object references map closely to COM interface pointers.

• Inherited CORBA interfaces may be represented as multiple COM interfaces.

• CORBA attributes may be mapped to get and set operations in COM interfaces.

This mapping is perhaps the most natural way to represent the interfaces of COR
objects in the COM environment. In practice, however, many COM clients (for
example, Visual Basic applications) can only bind to Automation Interfaces and ca
bind to the more general COM Interfaces. Therefore, providing only a mapping o
CORBA to the COM Interfaces would not satisfy many COM/OLE clients.

15.4.2 CORBA/Automation

There is a limited fit between OLE Automation objects and CORBA objects:

• Some OMG IDL primitives map directly to Automation primitives. However, there
are primitives in both systems (for example, the OLE CURRENCY type and the
CORBA unsigned integral types) that must be mapped as special cases (possibly
with loss of range or precision).

• OMG IDL constructed types do not map naturally to any Automation construct
Since such constructed types cannot be passed as argument parameters in
Automation interfaces, these must be simulated by providing specially construc
interfaces (for example, viewing a struct as an OLE object with its own interfac

• CORBA Interface Repositories can be mapped dynamically to Automation Type
Libraries.

• CORBA object references map to Automation interface pointers.

• There is no clean mapping for multiple inheritance to OLE Automation interfac
All methods of the multiply-inherited interfaces could be expanded to a single
Automation interface; however, this approach would require a total ordering ov
the methods if [dual] interfaces are to be supported. An alternative approach would
be to map multiple inheritance to multiple Automation interfaces. This mapping,
however, would require that an interface navigation mechanism be exposed to
Automation controllers. Currently OLE Automation does not provide a canonical
way for clients (such as Visual Basic) to navigate between multiple interfaces.
CORBA V2.2 Interface Mapping February 1998 15-9

15

urred

g,
tly

g.

ing

BA

• CORBA attributes may be mapped to get and put properties in Automation
interfaces.

This form of interface mapping will place some restrictions on the types of argument
passing that can be mapped, and/or the cost (in terms of run-time translations) inc
in those mappings. Nevertheless, it is likely to be the most popular form of CORBA-to-
COM interworking, since it will provide dynamic access to CORBA objects from
Visual Basic and other OLE Automation client development environments.

15.4.3 COM/CORBA

This mapping is similar to CORBA/COM, except for the following:

• Some COM primitive data types (for example, UNICODE long, unsigned long lon
and wide char) and constructed types (for example, wide string) are not curren
supported by OMG IDL. (These data types may be added to OMG IDL in the
future.)

• Some unions, pointer types and the SAFEARRAY type require special handlin

The COM/CORBA mapping is somewhat further complicated, by the following issues:

• Though it is less common, COM objects may be built directly in C and C++
(without exposing an interface specification) by providing custom marshaling
implementations. If the interface can be expressed precisely in some COM
formalism (MIDL, ODL, or a Type Library), it must first be hand-translated to such
a form before any formal mapping can be constructed. If not, the interworking
mechanism (such as the View, request transformation, and so forth) must be
custom-built.

• MIDL, ODL, and Type Libraries are somewhat different, and some are not
supported on certain Windows platforms; for example, MIDL is not available on
Win16 platforms.

15.4.4 Automation/CORBA

The Automation interface model and type system are markedly constrained, bound
the size of the problem of mapping from OLE Automation interfaces to CORBA
interfaces.

• Automation interfaces and references (IDispatch pointers) map directly to COR
interfaces and object references.

• Automation request signatures map directly into CORBA request signatures.

• Most of the Automation data types map directly to CORBA data types. Certain
Automations types (for example, CURRENCY) do not have corresponding
predefined CORBA types, but can easily be mapped onto isomorphic constructed
types.

• Automation properties map to CORBA attributes.
15-10 CORBA V2.2 February 1998

15

t

ble

es

t is,

t use

le
 the
’s

15.5 Interface Composition Mappings

CORBA provides a multiple inheritance model for aggregating and extending objec
interfaces. Resulting CORBA interfaces are, essentially, statically defined either in
OMG IDL files or in the Interface Repository. Run-time interface evolution is possi
by deriving new interfaces from existing ones. Any given CORBA object reference
refers to a CORBA object that exposes, at any point in time, a single most-derived
interface in which all ancestral interfaces are joined. The CORBA object model do
not support objects with multiple, disjoint interfaces.1

In contrast, COM objects expose aggregated interfaces by providing a uniform
mechanism for navigating among the interfaces that a single object supports (tha
the QueryInterface method). In addition, COM anticipates that the set of interfaces that
an object supports will vary at run-time. The only way to know if an object supports an
interface at a particular instant is to ask the object.

OLE Automation objects typically provide all Automation operations in a single
“flattened” IDispatch interface. While an analogous mechanism to QueryInterface
could be supported in OLE Automation as a standard method, it is not the curren
model for OLE Automation services.2

15.5.1 CORBA/COM

CORBA multiple inheritance maps into COM interfaces with some difficulty.
Examination of object-oriented design practice indicates two common uses of interface
inheritance, extending and mixing in. Inheritance may be used to extend an interface
linearly, creating a specialization or new version of the inherited interface. Inheritance
(particularly multiple inheritance) is also commonly used to mix in a new capability
(such as the ability to be stored or displayed) that may be orthogonal to the object’s
basic application function.

Ideally, extension maps well into a single inheritance model, producing a single linear
connection of interface elements. This usage of CORBA inheritance for specialization
maps directly to COM; a unique CORBA interface inheritance path maps to a sing
COM interface vtable that includes all of the elements of the CORBA interfaces in
inheritance path.3 The use of inheritance to mix in an interface maps well into COM

1. This is established in the CORBA specification, Chapter 1, Interfaces Section, and in the
Object Management Architecture Guide, Section 4.4.7.

2. One can use [dual] interfaces to expose multiple IDispatch interfaces for a given COM co-
class. The “Dim A as new Z” statement in Visual Basic 4.0 can be used to invoke a Query-
Interface for the Z interface. Many OLE Automation controllers, however, do not use the
dual interface mechanism.

3. An ordering is needed over the CORBA operations in an interface to provide a deterministic
mapping from the OMG IDL interface to a COM vtable. The current ordering is lexico-
graphical by bytes in machine-collating sequence.
CORBA V2.2 Interface Composition Mappings February 1998 15-11

15

ps to
 the

ake
ns

r
s

 a

it.

rface

M
se are

reter
 apply

e or
-

aggregation mechanism; each mixed-in inherited interface (or interface graph) ma
a separate COM interface, which can be acquired by invoking QueryInterface with
interface’s specific UUID.

Unfortunately, with CORBA multiple inheritance there is no syntactic way to
determine whether a particular inherited interface is being extended or being mixed in
(or used with some other possible design intent). Therefore it is not possible to m
ideal mappings mechanically from CORBA multiply-inherited interfaces to collectio
of COM interfaces without some additional annotation that describes the intended
design. Since extending OMG IDL (and the CORBA object model) to support
distinctions between different uses of inheritance is undesirable, alternative mappings
require arbitrary decisions about which nodes in a CORBA inheritance graph map to
which aggregated COM interfaces, and/or an arbitrary ordering mechanism. The
mapping described in Section 13.5.2, Ordering Rules for the CORBA->MIDL
Transformation, describes a compromise that balances the need to preserve linea
interface extensions with the need to keep the number of resulting COM interface
manageably small. It satisfies the primary requirement for interworking in that it
describes a uniform, deterministic mapping from any CORBA inheritance graph to
composite set of COM interfaces.

COM/CORBA

The features of COM’s interface aggregation model can be preserved in CORBA by
providing a set of CORBA interfaces that can be used to manage a collection of
multiple CORBA objects with different disjoint interfaces as a single composite un
The mechanism described in OMG IDL in Section 15.4, “Interface Mapping,” on
page 15-8, is sufficiently isomorphic to allow composite COM interfaces to be
uniformly mapped into composite OMG IDL interfaces with no loss of capability.

CORBA/Automation

OLE Automation (as exposed through the IDispatch interface) does not rely on
ordering in a virtual function table. The target object implements the IDispatch
interface as a mini interpreter and exposes what amounts to a flattened single inte
for all operations exposed by the object. The object is not required to define an
ordering of the operations it supports.

An ordering problem still exists, however, for dual interfaces. Dual interfaces are CO
interfaces whose operations are restricted to the Automation data types. Since the
COM interfaces, the client can elect to call the operations directly by mapping the
operation to a predetermined position in a function dispatch table. Since the interp
is being bypassed, the same ordering problems discussed in the previous section
for OLE Automation dual interfaces.

Automation/CORBA

OLE Automation interfaces are simple collections of operations, with no inheritanc
aggregation issues. Each IDispatch interface maps directly to an equivalent OMG IDL
described interface.
15-12 CORBA V2.2 February 1998

15

e
der.

r. If

rface

the
n

utes.

 the

s

 by
 f
15.5.2 Detailed Mapping Rules

Ordering Rules for the CORBA->MIDL Transformation

• Each OMG IDL interface that does not have a parent is mapped to an MIDL
interface deriving from IUnknown.

• Each OMG IDL interface that inherits from a single parent interface is mapped to
an MIDL interface that derives from the mapping for the parent interface.

• Each OMG IDL interface that inherits from multiple parent interfaces is mapped to
an MIDL interface deriving from IUnknown.

• For each CORBA interface, the mapping for operations precede the mapping for
attributes.

• The resulting mapping of operations within an interface are ordered based upon th
operation name. The ordering is lexicographic by bytes in machine-collating or

• The resulting mapping of attributes within an interface are ordered based upon the
attribute name. The ordering is lexicographic by bytes in machine-collating orde
the attribute is not read-only, the get_<attribute name> method immediately
precedes the set_<attribute name> method.

Ordering Rules for the CORBA->OLE Automation Transformation

• Each OMG IDL interface that does not have a parent is mapped to an ODL inte
deriving from IDispatch.

• Each OMG IDL interface that inherits from a single parent interface is mapped to
an ODL interface that derives from the mapping for the parent interface.

• Each OMG IDL interface that inherits from multiple parent interfaces is mapped to
an ODL interface which derives using single inheritance from the mapping for
first parent interface. The first parent interface is defined as the first interface whe
the immediate parent interfaces are sorted based upon interface repository id. The
order of sorting is lexicographic by bytes in machine-collating order.

• Within an interface, the mapping for operations precede the mapping for attrib

• An OMG IDL interface’s operations are ordered in the resulting mapping based
upon the operation name. The ordering is lexicographic by bytes in machine-
collating order.

• An OMG IDL interface’s attributes are ordered in the resulting mapping based upon
the attribute name. The ordering is lexicographic by bytes in machine-collating
order. For non-read-only attributes, the [propget] method immediately precedes
[propput] method.

• For OMG IDL interfaces that multiply inherit from parent interfaces, the operation
introduced in the current interface are mapped first and ordered based on the above
rules. After the interface’s operations are mapped, the operations are followed
the ordered operations from the mapping of the parent interfaces (excluding theirst
interface which was mapped using inheritance).
CORBA V2.2 Interface Composition Mappings February 1998 15-13

15
15.5.3 Example of Applying Ordering Rules

Consider the OMG IDL description shown in Figure 15-4.

Following the rules in “Detailed Mapping Rules” on page 15-13 the interface
description would map to the Microsoft MIDL definition shown in Figure 15-5 and
would map to the ODL definition shown in Figure 15-6.

interface A {// OMG IDL
void opA();
attribute long val;

};
interface B : A {

void opB();
};
interface C: A {

void opC();
};
interface D : B, C {

void opD();
};
interface E {

void opE();
};
interface F : D, E {

void opF();
};

Figure 15-4 OMG IDL Description with Multiple Inheritance

A

B C

D
E

F

15-14 CORBA V2.2 February 1998

15
[object, uuid(7fc56270-e7a7-0fa8-1d59-35b72eacbe29)]
interface IA : IUnknown{// Microsoft MIDL

HRESULT opA();
HRESULT get_val([out] long * val);
HRESULT set_val([in] long val);

};
[object, uuid(9d5ed678-fe57-bcca-1d41-40957afab571)]
interface IB : IA {

HRESULT opB();

};
[object,uuid(0d61f837-0cad-1d41-1d40-b84d143e1257)]
interface IC: IA {

HRESULT opC();
};
[object, uuid(f623e75a-f30e-62bb-1d7d-6df5b50bb7b5)]
interface ID : IUnknown {

HRESULT opD();
};
[object, uuid(3a3ea00c-fc35-332c-1d76-e5e9a32e94da)]
interface IE : IUnknown{

HRESULT opE();
};
[object, uuid(80061894-3025-315f-1d5e-4e1f09471012)]
interface IF : IUnknown {

HRESULT opF();
};

Figure 15-5 MIDL Description

A

B C

D E FA

IU IU IU IU IU
CORBA V2.2 Interface Composition Mappings February 1998 15-15

15

rate

s a
15.5.4 Mapping Interface Identity

This specification enables interworking solutions from different vendors to interope
across client/server boundaries (for example, a COM View created by product A can
invoke a CORBA server created with product B, given that they both share the same
IDL interface). To interoperate in this way, all COM Views mapped from a particular
CORBA interface must share the same COM Interface IDs. This section describe
uniform mapping from CORBA Interface Repository IDs to COM Interface IDs.

[uuid(7fc56270-e7a7-0fa8-1dd9-35b72eacbe29),
oleautomation, dual]
interface DA : IDispatch { //
Microsoft ODL

HRESULT opA([out, optional] VARAINT* v);
[propget]
HRESULT val([out] long *val);
[propset]
HRESULT val([in] long val);

};
[uuid(9d5ed678-fe57-bcca-1dc1-40957afab571),
oleautomation,dual]
interface DB : DA {

HRESULT opB([out, optional]VARIANT * v);
};
[uuid(0d61f837-0cad-1d41-1dc0-b84d143e1257),
oleautomation, dual]
interface DC: DA {

HRESULT opC([out, optional]VARIANT *v);
};
[uuid(f623e75a-f30e-62bb-1dfd-6df5b50bb7b5),
oleautomation, dual]
interface DD : DB {

HRESULT opD([out, optional]VARIANT *v);
HRESULT opC([out, optional] VARIANT *v);

};
[uuid(3a3ea00c-fc35-332c-1df6-e5e9a32e94da),
oleautomation, dual]
interface DE : IDispatch{

HRESULT opE([out, optional] VARIANT *v);
};
[uuid(80061894-3025-315f-1dde-4e1f09471012)
oleautomation, dual]
interface DF : DD {

HRESULT opF([out, optional] VARIANT *v);
HRESULT opE([out, optional] VARIANT *v);

};

Figure 15-6 Example: ODL Mapping for Multiple Inheritance

IDispatch

A

B C

D

F

IDispatch

E

15-16 CORBA V2.2 February 1998

15

8-

his

t

Mapping Interface Repository IDs to COM IIDs

A CORBA Repository ID is mapped to a corresponding COM Interface ID using a
derivative of the RSA Data Security, Inc. MD5 Message-Digest algorithm.4,5 The
repository ID of the CORBA interface is fed into the MD5 algorithm to produce a 12
bit hash identifier. The least significant byte is byte 0 and the most significant byte is
byte 8. The resulting 128 bits are modified as follows.

Note – The DCE UUID space is currently divided into four main groups:
byte 8 = 0xxxxxxx (the NCS1.4 name space)
10xxxxxx (A DCE 1.0 UUID name space)
110xxxxx (used by Microsoft)
1111xxxx (Unspecified)

For NCS1.5, the other bits in byte 8 specify a particular family. Family 29 will be
assigned to ensure that the autogenerated IIDs do not interfere with other UUID
generation techniques.

The upper two bits of byte 9 will be defined as follows.

00 unspecified
01generated COM IID
10generated Automation IID
11generated dual interface Automation ID

Note – These bits should never be used to determine the type of interface. They are
used only to avoid collisions in the name spaces when generating IIDs for multiple
types of interfaces — dual, COM, or Automation.

The other bits in the resulting key are taken from the MD5 message digest (stored in
the UUID with little endian ordering).

The IID generated from the CORBA repository ID will be used for a COM view of a
CORBA interface except when the repository ID is a DCE UUID and the IID being
generated is for a COM interface (not Automation or dual). In this case, the DCE
UUID will be used as the IID instead of the IID generated from the repository ID (t
is done to allow CORBA server developers to implement existing COM interfaces).

This mechanism requires no change to IDL. However, there is an implicit assumption
that repository IDs should be unique across ORBs for different interfaces and idenical
across ORBs for the same interface.

Note – This assumption is also necessary for IIOP to function correctly across ORBs.

4. Rivest, R. “The MD5 Message-Digest Algorithm,” RFC 1321, MIT and RSA Data Security,
Inc., April 1992.
CORBA V2.2 Interface Composition Mappings February 1998 15-17

15

,
were

ns:

t)

t of
ting
g

.

t.

Mapping COM IIDs to CORBA Interface IDs

The mapping of a COM IID to the CORBA interface ID is vendor specific. However
the mapping should be the same as if the CORBA mapping of the COM interface
defined with the #pragma ID <interface_name> = “DCE:...”.

Thus, the MIDL definition

[uuid(f4f2f07c-3a95-11cf-affb-08000970dac7), object]
interface A: IUnknown {
...
}

maps to this OMG IDL definition:

interface A {
#pragma ID A=”DC E:f4f2f07c-3a95-11cf -affb-080 00970dac7”
...
};

15.6 Object Identity, Binding, and Life Cycle

The interworking model illustrated in Figure 13-2 and Figure 13-3 maps a View in one
object system to a reference in the other system. This relationship raises questio

• How do the concepts of object identity and object life cycle in different object
models correspond, and to the extent that they differ, how can they be appropriately
mapped?

• How is a View in one system bound to an object reference (and its referent objec
in the other system?

15.6.1 Object Identity Issues

COM and CORBA have different notions of what object identity means. The impac
the differences between the two object models affects the transparency of presen
CORBA objects as COM objects or COM objects as CORBA objects. The followin
sections discuss the issues involved in mapping identities from one system to another
They also describe the architectural mechanics of identity mapping and binding.

5. MD5 was chosen as the hash algorithm because of its uniformity of distribution of bits in
the hash value and its popularity for creating unique keys for input text. The algorithm is
designed such that on average, half of the output bits change for each bit change in the inpu
The original algorithm provides a key with uniform distribution in 128 bits. The modifica-
tion used in this specification selects 118 bits. With a uniform distribution, the probability of

drawing k distinct keys (using k distinct inputs) is n!/((n-k)!* nk), where n is the number of

distinct key values (i.e., n=2118). If a million (i.e., k=106) distinct interface repository IDs
are passed through the algorithm, the probability of a collision in any of the keys is less than

1 in 1023.
15-18 CORBA V2.2 February 1998

15

licitly
bject

t.
s a

bj
a

or is

ether

rly

ce

t

is no
CORBA Object Identity and Reference Properties

CORBA defines an object as a combination of state and a set of methods that exp
embodies an abstraction characterized by the behavior of relevant requests. An o
reference is defined as a name that reliably and consistently denotes a particular objec
A useful description of a particular object in CORBA terms is an entity that exhibit
consistency of interface, behavior, and state over its lifetime. This description may fail
in many boundary cases, but seems to be a reasonable statement of a common intuitive
notion of object identity.

Other important properties of CORBA objects include the following:

• Objects have opaque identities that are encapsulated in object references.

• Object identities are unique within some definable reference domain, which is at
least as large as the space spanned by an ORB instance.

• Object references reliably denote a particular object; that is, they can be used to
identify and locate a particular object for the purposes of sending a request.

• Identities are immutable, and persist for the lifetime of the denoted object.

• Object references can be used as request targets irrespective of the denoted oect’s
state or location; if an object is passively stored when a client makes a request on
reference to the object, the ORB is responsible for transparently locating and
activating the object.

• There is no notion of “connectedness” between object reference and object, n
there any notion of reference counting.

• Object references may be externalized as strings and reinternalized anywhere within
the ORB’s reference domain.

• Two object references may be tested for equivalence (that is, to determine wh
both references identify the same object instance), although only a result of TRUE
for the test is guaranteed to be reliable.

COM Object Identity and Reference Properties

The notion of what it means to be “a particular COM object” is somewhat less clea
defined than under CORBA. In practice, this notion typically corresponds to an active
instance of an implementation, but not a particular persistent state. A COM instan
can be most precisely defined as “the entity whose interface (or rather, one of whose
interfaces) is returned by an invocation of IClassFactory::CreateInstance .”
The following observations may be made regarding COM instances:

• COM instances are either initialized with a default “empty” state (e.g., a documen
or drawing with no contents), or they are initialized to arbitrary states;
IClassFactory::CreateInstance has no parameters for describing initial
state.

• The only inherently available identity or reference for a COM instance is its
collection of interface pointers. Their usefulness for determining identity
equivalence is limited to the scope and extent of the process they live in. There
CORBA V2.2 Object Identity, Binding, and Life Cycle February 1998 15-19

15

long

 a
s

he

ls.

 this
nts in

ory.

hen

ork

ces.
still

ove

avior

e
canonical information model, visible or opaque, that defines the identity of a COM
object. Individual COM class types may establish a strong notion of persistent
identity, but this is not the responsibility of the COM model itself.

• There is no inherent mechanism to determine whether two interface pointers be
to the same COM class or not.

• The identity and management of state are generally independent of the identity and
life cycle of COM class instances. Files that contain document state are persistent,
and are identified within the file system’s name space. A single COM instance of
document type may load, manipulate, and store several different document file
during its lifetime; a single document file may be loaded and used by multiple COM
class instances, possibly of different types. Any relationship between a COM
instance and a state vector is either an artifact of the particular class type, or t
user’s imagination.

15.6.2 Binding and Life Cycle

The identity-related issues previously discussed emerge as practical problems in
defining binding and life cycle management mechanisms in the Interworking mode
Binding refers to the way in which an existing object in one system can be located by
clients in the other system and associated with an appropriate View. Life cycle, in
context, refers to the way objects in one system are created and destroyed by clie
the other system.

Lifetime Comparison

The in-memory lifetime of COM (including Automation) objects is bounded by the
lifetimes of its clients. That is, in COM, when there are no more clients attached to an
object, it is destroyed. If clients remain, the object cannot be removed from mem
Unfortunately, a reference counted lifecycle model such as COM’s has problems w
applied to wide area networks, when network traffic is heavy, and when networks and
routers are not fault tolerant (and thus not 100% reliable). For example, if the netw
connection between clients and the server object were down, the server would think
that its clients had died, and would delete itself (if there were no local references to it).
When the network connection was later restored, even just seconds later, the clients
would then have invalid object references and would need to be restarted, or be
prepared to handle invalid interface reference errors for the previously valid referen
In addition, if clients exist for a server object but rarely use it, the server object is
required to be in memory. In large, long-running distributed systems, this type of
memory consuming behavior is not typically acceptable.

In contrast, the CORBA Life Cycle model decouples the lifetime of the clients from
the lifetime of the active (in-memory) representation of the persistent server object.
The CORBA model allows clients to maintain references to CORBA server objects
even when the clients are no longer running. Server objects can deactivate and rem
themselves from memory whenever no clients are currently using them. This beh
avoids the problems and limitations introduced by distributed reference counting.
Clients can be started and stopped without incurring expensive data reloads in th
server. Servers can relinquish memory (but can later be restored) if they have not been
15-20 CORBA V2.2 February 1998

15

nd

ss
ries

BA
used recently or if the network connection is down. In addition, since the client and
server lifetimes are decoupled, CORBA, unlike COM, has no requirement for the
servers to constantly “ping” their clients -- a requirement of distributed reference
counting which can become expensive across local networks and impractical across
wide area networks.

Binding Existing CORBA Objects to COM Views

COM and Automation have limited mechanisms for registering and accessing active
objects. A single instance of a COM class can be registered in the active object
registry. COM or Automation clients can obtain an IUnknown pointer for an active
object with the COM GetActiveObject function or the Automation GetObject function.
The most natural way for COM or Automation clients to access existing CORBA
objects is through this (or some similar) mechanism.

Interworking solutions can, if desirable, create COM Views for any CORBA object a
place them in the active object registry, so that the View (and thus, the object) can be
accessed through GetActiveObject or GetObject.

The resources associated with the system registry are limited; some interworking
solutions will not be able to map objects efficiently through the registry. This
submission defines an interface, ICORBAFactory, which allows interworking solutions
to provide their own name spaces through which CORBA objects can be made
available to COM and Automation clients in a way that is similar to OLE’s native
mechanism (GetObject). This interface is described fully in Section 13.7.3,
ICORBAFactory Interface.

Binding COM Objects to CORBA Views

As described in “Object Identity Issues” on page15-18, COM class instances are
inherently transient. Clients typically manage COM and Automation objects by
creating new class instances and subsequently associating them with a desired stored
state. Thus, COM objects are made available through factories. The SimpleFactory
OMG IDL interface (described next in “SimpleFactory Interface” on page 15-23) is
designed to map onto COM class factories, allowing CORBA clients to create (and
bind to) COM objects. A single CORBA SimpleFactory maps to a single COM cla
factory. The manner in which a particular interworking solution maps SimpleFacto
to COM class factories is not specified. Moreover, the manner in which mapped
SimpleFactory objects are presented to CORBA clients is not specified.

COM View of CORBA Life Cycle

The SimpleFactory interface provides a create operation without parameters. COR
SimpleFactory objects can be wrapped with COM IClassFactory interfaces and
registered in the Windows registry. The process of building, defining, and registering
the factory is implementation-specific.
CORBA V2.2 Object Identity, Binding, and Life Cycle February 1998 15-21

15

cle

are
r,

ects

ch as
tate is

es.
M

ker

BA

s.

or

so
To allow COM and Automation developers to benefit from the robust CORBA lifecy
model, the following rules apply to COM and Automation Views of CORBA objects.
When a COM or Automation View of a CORBA object is dereferenced and there
no longer any clients for the View, the View may delete itself. It should not, howeve
delete the CORBA object that it refers to. The client of the View may call the
LifeCycleObject::remove operation (if the interface is supported) on the
CORBA object to remove it. Otherwise, the lifetime of the CORBA object is controlled
by the implementation-specific lifetime management process.

COM currently provides a mechanism for client-controlled persistence of COM obj
(equivalent to CORBA externalization). However, unlike CORBA, COM currently
provides no general-purpose mechanism for clients to deal with server objects, su
databases, which are inherently persistent (i.e. they store their own state -- their s
not stored through an outside interface such as IPersistStorage). COM does provide
monikers, which are conceptually equivalent to CORBA persistent object referenc
However, monikers are currently only used for OLE graphical linking. To enable CO
developers to use CORBA objects to their fullest extent, the submission defines a
mechanism that allows monikers to be used as persistent references to CORBA objects,
and a new COM interface, IMonikerProvider, that allows clients to obtain an IMoni
interface pointer from COM and Automation Views. The resulting moniker
encapsulates, stores, and loads the externalized string representation of the COR
reference managed by the View from which the moniker was obtained. The
IMonkierProvider interface and details of object reference monikers are described in
“IMonikerProvider Interface and Moniker Use” on page 15-23.

CORBA View of COM/Automation Life Cycle

Initial references to COM and Automation objects can be obtained in the following
way: COM IClassFactories can be wrapped with CORBA SimpleFactory interface
These SimpleFactory Views of COM IClassFactories can then be installed in the
naming service or used via factory finders. The mechanisms used to register or
dynamically look up these factories is beyond the scope of this specification.

All CORBA Views for COM and Automation objects support the LifeCycleObject
interface. In order to destroy a View for a COM or Automation object, the remove
method of the LifeCycleObject interface must be called. Once a CORBA View is
instantiated, it must remain active (in memory) for the lifetime of the View unless the
COM or Automation objects supports the IMonikerProvider interface. If the COM
Automation object supports the IMonikerProvider interface, then the CORBA View
can safely be deactivated and reactivated provided it stores the object’s moniker in
persistent storage between activations. Interworking solutions are not required to
support deactivation and activation of CORBA View objects, but are enabled to do
by the IMonikerProvider interface.
15-22 CORBA V2.2 February 1998

15

ts to

o

t
ust

ur 0
15.7 Interworking Interfaces

15.7.1 SimpleFactory Interface

CORBA allows object factories to be arbitrarily defined. In contrast, COM
IClassFactory is limited to having only one object constructor and the object
constructor method (called CreateInstance) has no arguments for passing data during
the construction of the instance. The SimpleFactory interface allows CORBA objec
be created under the rigid factory model of COM. The interface also supports CORBA
Views of COM class factories.

module CosLifeCycle
{

interface SimpleFactory
{

Object create_object();
};

};

SimpleFactory provides a generic object constructor for creating instances with n
initial state. In the future, CORBA objects, which can be created with no initial state,
should provide factories, which implement the SimpleFactory interface.

15.7.2 IMonikerProvider Interface and Moniker Use

COM or Automation Views for CORBA objects may support the IMonikerProvider
interface. COM clients may use QueryInterface for this interface.

[object, uuid(ecce76fe-39ce-11cf-8e92-08000970dac7)] // MIDL
interface IMonikerProvider: IUnknown {

HRESULT get_moniker([out] IMoniker ** val);
}

This allows COM clients to persistently save the object reference for later use withou
needing to keep the View in memory. The moniker returned by IMonikerProvider m
support at least the IMoniker and IPersistStorage interfaces. To allow CORBA object
reference monikers to be created with one COM/CORBA interworking solution and
later restored using another, IPersist::GetClassID must return the following
CLSID:

{a936c802-33fb-11cf-a9d1-00401c606e79}

In addition, the data stored by the moniker’s IPersistStorage interface must be fo
(null) bytes followed by the length in bytes of the stringified IOR (stored as a little
endian 4-byte unsigned integer value) followed by the stringified IOR itself (without
null terminator).
CORBA V2.2 Interworking Interfaces February 1998 15-23

15

the

ent

ts.
15.7.3 ICORBAFactory Interface

All interworking solutions that expose COM Views of CORBA objects shall expose
ICORBAFactory interface. This interface is designed to support general, simple
mechanisms for creating new CORBA object instances and binding to existing
CORBA object references by name.

interface ICORBAFactory: IUnknown
{

HRESULT CreateObject([in] LPTSTR factoryName, [out,
retval] IUknown ** val);

HRESULT GetObject([in] LPTSTR objectName, [out, retval]
IUknown ** val);
}

The UUID for the ICORBAFactory interface is:

{204F6240-3AEC-11cf-BBFC-444553540000}

A COM class implementing ICORBAFactory must be registered in the Windows
System Registry on the client machine using the following class id, class id tag, and
Program Id respectively:

{913D82C0-3B00-11cf-BBFC-444553540000}
DEFINE_GUID(IID_ICORBAFactory,
0x913d82c0, 0x3b00, 0x11cf, 0xbb, 0xfc, 0x44, 0x45, 0x53,

0x54, 0x0, 0x0);
“CORBA.Factory.COM”

The CORBA factory object may be implemented as a singleton object, i.e., subsequ
calls to create the object may return the same interface pointer.

We define a similar interface, DICORBAFactory, that supports creating new CORBA
object instances and binding to existing CORBA objects for OLE Automation clien
DICORBAFactory is an Automation Dual Interface. (For an explanation of Automation
Dual interfaces, see the Mapping: OLE Automation and CORBA chapter.)

interface DICORBAFactory: IDispatch
{

HRESULT CreateObject([in] BSTR factoryName, [out,
retval] IDispatch ** val);

HRESULT GetObject([in] BSTR objectName, [out, retval]
IDispatch ** val);

}

The UUID for the DICORBAFactory interface is:

{204F6241-3AEC-11cf-BBFC-444553540000}

An instance of this class must be registered in the Windows System Registry by calling
on the client machine using the Program Id “CORBA.Factory.”
15-24 CORBA V2.2 February 1998

15

del

thod
ull

must

d

ed by
e

e
 the

 the
he

 is

, for

put

The CreateObject and GetObject methods are intended to approximate the usage mo
and behavior of the Visual Basic CreateObject and GetObject functions.

The first method, CreateObject, causes the following actions:

• A COM View is created. The specific mechanism by which it is created is
undefined. We note here that one possible (and likely) implementation is that the
View delegates the creation to a registered COM class factory.

• A CORBA object is created and bound to the View. The argument, factoryName,
identifies the type of CORBA object to be created. Since the CreateObject me
does not accept any parameters, the CORBA object must either be created by a n
factory (a factory whose creation method requires no parameters), or the View
supply its own factory parameters internally.

• The bound View is returned to the caller.

The factoryName parameter identifies the type of CORBA object to be created, an
thus implicitly identifies (directly or indirectly) the interface supported by the View. In
general, the factoryName string takes the form of a sequence of identifiers separat
period characters (“.”), such as “personnel.record.person”. The intent of this nam
form is to provide a mechanism that is familiar and natural for COM and OLE
Automation programmers by duplicating the form of OLE ProgIDs. The specific
semantics of name resolution are determined by the implementation of the
interworking solution. The following examples illustrate possible implementations:

• The factoryName sequence could be interpreted as a key to a CosNameService-
based factory finder. The CORBA object would be created by invoking the factory
create method. Internally, the interworking solution would map the factoryNam
onto the appropriate COM class ID for the View, create the View, and bind it to
CORBA object.

• The creation could be delegated directly to a COM class factory by interpreting
factoryName as a COM ProgID. The ProgID would map to a class factory for t
COM View, and the View’s implementation would invoke the appropriate CORBA
factory to create the CORBA server object.

The GetObject method has the following behavior:

• The objectName parameter is mapped by the interworking solution onto a CORBA
object reference. The specific mechanism for associating names with references
not specified. In order to appear familiar to COM and Automation users, this
parameter shall take the form of a sequence of identifiers separated by periods (.), in
the same manner as the parameter to CreateObject. An implementation could
example, choose to map the objectName parameter to a name in the OMG Naming
Service implementation. Alternatively, an interworking solution could choose to
precreated COM Views bound to specific CORBA object references in the active
object registry, and simply delegate GetObject calls to the registry.

• The object reference is bound to an appropriate COM or Automation View and
returned to the caller.
CORBA V2.2 Interworking Interfaces February 1998 15-25

15

ng

he

to

n

t

ss.

he
Another name form that is specialized to CORBA is a single name with a precedi
period, such as “.NameService”. When the name takes this form, the Interworking
solution shall interpret the identifier (without the preceding period) as a name in t
ORB Initialization interface. Specifically, the name shall be used as the parameter to an
invocation of the CORBA::ORB::ResolveInitialReferences method on the
ORB pseudo-object associated with the ICORBAFactory. The resulting object
reference is bound to an appropriate COM or Automation View, which is returned
the caller.

15.7.4 IForeignObject Interface

As object references are passed back and forth between two different object models
through a bridge, and the references are mapped through Views (as is the case ithis
specification), the potential exists for the creation of indefinitely long chains of Views
that delegate to other Views, which in turn delegate to other Views, and so on. To avoid
this, the Views of at least one object system must be able to expose the reference for
the “foreign” object managed by the View. This exposure allows other Views to
determine whether an incoming object reference parameter is itself a View and, if so,
obtain the “foreign” reference that it manages. By passing the foreign reference
directly into the foreign object system, the bridge can avoid creating View chains.

This problem potentially exists for any View representing an object in a foreign objec
system. The IForeignObject interface is specified to provide bridges access to object
references from foreign object systems that are encapsulated in proxies.

typedef struct {
unsigned long cbMaxSize;
unsigned long cbLengthUsed;
[size_is(cbMaxSize), length_is(cbLengthUsed), unique]

long *pValue;
} objSystemIDs;
interface IForeignObject : IUnknown {

HRESULT GetForeignReference([in[objSystemIDs systemIDs,
[out] long *systemID,
[out] LPSTR* objRef);

HRESULT GetRepositoryId([out] RepositoryId
*repositoryId);

}

The UUID for IForeignObject is:

{204F6242-3AEC-11cf-BBFC-444553540000}

The first parameter (systemIDs) is an array of long values that correspond to specific
object systems. These values must be positive, unique, and publicly known. The OMG
will manage the allocation of identifier values in this space to guarantee uniquene
The value for the CORBA object system is the long value 1. The systemIDs array
contains a list of IDs for object systems for which the caller is interested in obtaining
a reference. The order of IDs in the list indicates the caller’s order of preference. If the
View can produce a reference for at least one of the specified object systems, then t
15-26 CORBA V2.2 February 1998

15

y

t
 of

ode

ces,
n

second parameter (systemID) is the ID of the first object system in the incoming arra
that it can satisfy. The objRef out parameter will contain the object reference converted
to a string form. Each object system is responsible for providing a mechanism to
convert its references to strings, and back into references. For the CORBA object
system, the string contains the IOR string form returned by
CORBA::ORB::object_to_string , as defined in the CORBA specification.

The choice of object reference strings is motivated by the following observations:

• Language mappings for object references do not prescribe the representation of
object references. Therefore, it is impossible to reliably map any given ORB’s
object references onto a fixed OLE Automation parameter type.

• The object reference being returned from GetForeignObject may be from a differen
ORB than the caller. IORs in string form are the only externalized standard form
object reference supported by CORBA.

The purpose of the GetRepositoryID method is to support the ability of DICORBAAny
(see “Mapping for anys” on page 17-24) when it wraps an object reference, to produce
a type code for the object when asked to do so via DICORBAAny’s readonly typeC
property.

It is not possible to provide a similar inverse interface exposing COM references to
CORBA clients through CORBA Views, because of limitations imposed by COM’s
View of object identity and use of interface pointer as references.

15.7.5 ICORBAObject Interface

The ICORBAObject interface is a COM interface that is exposed by COM Views,
allowing COM clients to have access to operations on the CORBA object referen
defined on the CORBA::Object pseudo-interface. The ICORBAObject interface ca
be obtained by COM clients through QueryInterface. ICORBAObject is defined as
follows:

interface ICORBAObject: IUnknown
{

HRESULT GetInterface([out] IUnknown ** val);
HRESULT GetImplementation([out] IUnknown ** val);
HRESULT IsA([in] LPTSTR repositoryID, [out] boolean);
HRESULT IsNil([out] boolean *val);
HRESULT IsEquivalent([in] IUnknown* obj,[out] boolean *

val);
HRESULT NonExistent([out] boolean *val);
HRESULT Hash([out] long *val);

}

The UUID for ICORBAObject is:

{204F6243-3AEC-11cf-BBFC-444553540000}
CORBA V2.2 Interworking Interfaces February 1998 15-27

15

Automation controllers gain access to operations on the CORBA object reference
interface through the Dual Interface DIORBObject::GetCORBAObject method
described next.

interface DICORBAObject: IDispatch
{

HRESULT GetInterface([out, retval] IDispatch ** val);
HRESULT GetImplementation([out, retval] IDispatch **

val);
HRESULT IsA([in] BSTR repositoryID, [out, retval]

boolean);
HRESULT IsNil([out, retval] boolean *val);
HRESULT IsEquivalent([in] IDispatch* obj,[out,retval]

boolean * val);
HRESULT NonExistent([out,retval] boolean *val);
HRESULT Hash([out, retval] long *val);

}

The UUID for DICORBAObject is:

{204F6244-3AEC-11cf-BBFC-444553540000}

15.7.6 IORBObject Interface

The IORBObject interface provides Automation and COM clients with access to the
operations on the ORB pseudo-object.

The IORBObject is defined as follows:

typedef struct {
unsigned long cbMaxSize;
unsigned long cbLengthUsed;
[size_is(cbMaxSize), length_is(cbLengthUsed), unique]
LPSTR *pValue;

} CORBA_ORBObjectIdList;
interface IORBObject : IUnknown

HRESULT ObjectToString([in] IUnknown* obj, [out] LPSTR
*val);
HRESULT StringToObject([in] LPTSTR ref, [out] IUnknown
*val);
HRESULT GetInitialReferences([out], CORBA_ORBObjectIdList
*val);
HRESULT ResolveInitialReference([in] LPTSTR name, [out]
IUnknown ** val));

}

The UUID for IORBObject is:

{204F6245-3AEC-11cf-BBFC-444553540000}
15-28 CORBA V2.2 February 1998

15

:

A reference to this interface is obtained by calling
ICORBAFactory::GetObject(”CORBA.ORB.2”).

The methods of DIORBObject delegate their function to the similarly-named
operations on the ORB pseudo-object associated with the IORBObject.

Automation clients access operations on the ORB via the following Dual Interface

interface DIORBObject: IDispatch {
HRESULT ObjectToString([in] IDispatch* obj, [out,retval]
BSTR *val);
HRESULT StringToObject([in] BSTR ref, [out,retval]
IDispatch * val);
HRESULT GetInitialReferences([out, retval]
SAFEARRAY(IDispatch *) *val);
HRESULT ResolveInitialReference([in] BSTR name, [out,
retval] IDispatch ** val));
HRESULT GetCORBAObject([in] IDispatch* obj, [out, retval]
DICORBAObject * val);

}

The UUID for DIORBObject is:

{204F6246-3AEC-11cf-BBFC-444553540000}

A reference to this interface is obtained by calling
DICORBAFactory::GetObject(”CORBA.ORB.2”).

This interface is very similar to IORBObject, except for the additional method
GetCORBAObject. This method returns an IDispatch pointer to the DICORBAObject
interface associated with the parameter Object. This operation is primarily provided to
allow Automation controllers (i.e., Automation clients) that cannot invoke
QueryInterface on the View object to obtain the ICORBAObject interface.

15.7.7 Naming Conventions for View Components

Naming the COM View Interface Id

The default tag for the COM View’s Interface Id (IID) should be:

IID_I<module name>_<interface name>

For example, if the module name is “MyModule” and the interface name is
“MyInterface” then the default IID tag should be:

IID_IMyModule_MyInterface
CORBA V2.2 Interworking Interfaces February 1998 15-29

15

If the module containing the interface is itself nested within other modules, the default
tag should be:

IID_I<module name>_<module name>_...<module name>_<interface
name>

where the module names read from outermost on the left to innermost on the right.
Extending our example, if module “MyModule” were nested within module
“OuterModule,” then the default IID tag shall be:

IID_IOuterModule_MyModule_MyInterface

Tag for the Automation Interface Id

No standard tag is required for Automation and Dual Interface IDs because client
programs written in Automation controller environments such as Visual Basic are not
expected to explicitly use the UUID value.

Naming the COM View Interface

The default name of the COM View’s Interface should be:

I<module name>_<interface name>

For example, if the module name is “MyModule” and the interface name is
“MyInterface,” then the default name should be:

IMyModule_MyInterface

If the module containing the interface is itself nested within other modules, the default
name should be:

I<module name>_<module name>_...<module name>_<interface
name>

where the module names read from outermost on the left to innermost on the right.
Extending our example, if module “MyModule” were nested within module
“OuterModule,” then the default name shall be:

IOuterModule_MyModule_MyInterface

Naming the Automation View Dispatch Interface

The default name of the Automation View’s Interface should be:

D<module name>_<interface name>

For example, if the module name is “MyModule” and the interface name is
“MyInterface,” then the default name should be:
15-30 CORBA V2.2 February 1998

15

t. In
DMyModule_MyInterface

If the module containing the interface is itself nested within other modules, the default
name should be:

D<module name>_<module name>_...<module name>_<interface
name>

where the module names read from outermost on the left to innermost on the right.
Extending our example, if module “MyModule” were nested within module
“OuterModule,” then the default name shall be:

DOuterModule_MyModule_MyInterface

Naming the Automation View Dual Interface

The default name of the Automation Dual View’s Interface should be:

DI<module name>_<interface name>

For example, if the module name is “MyModule” and the interface name is
“MyInterface,” then the default name should be:

DIMyModule_MyInterface

If the module containing the interface is itself nested within other modules, the default
name should be:

DI<module name>_<module name>_...<module name>_<interface
name>

where the module names read from outermost on the left to innermost on the right.
Extending our example, if module “MyModule” were nested within module
“OuterModule,” then the default name shall be:

DIOuterModule_MyModule_MyInterface

Naming the Program Id for the COM Class

If a separate COM class is registered for each View Interface, then the default Program
Id for that class shall be:

<module name> “.” <module name> “.” ...<module name> “.”
<interface name>

where the module names read from outermost on the left to innermost on the righ
our example, the default Program Id shall be:
CORBA V2.2 Interworking Interfaces February 1998 15-31

15

 the

t. In

d

ject
an
“OuterModule.MyModule.MyInterface”

Naming the Class Id for the COM Class

If a separate COM co-class is registered for each Automation View Interface, then
default tag for the COM Class Id (CLSID) for that class should be:

CLSID_<module name>_<module name>_...<module name>_
<interface name>

where the module names read from outermost on the left to innermost on the righ
our example, the default CLSID tag should be:

CLSID_OuterModule_MyModule_MyInterface

15.8 Distribution

The version of COM (and OLE) that is addressed in this specification (OLE 2.0 in its
currently released form) does not include any mechanism for distribution. CORBA
specifications define a distribution architecture, including a standard protocol (IIOP)
for request messaging. Consequently, the CORBA architecture, specifications, an
protocols shall be used for distribution.

15.8.1 Bridge Locality

One of the goals of this specification is to allow any compliant interworking
mechanism delivered on a COM client node to interoperate correctly with any
CORBA-compliant components that use the same interface specifications. Compliant
interworking solutions must appear, for all intents and purposes, to be CORBA ob
implementations and/or clients to other CORBA clients, objects, and services on
attached network.
15-32 CORBA V2.2 February 1998

15

nts.

nd

jects

t the
Figure 15-7 Bridge Locality

Table 15-7 on page 15-33 illustrates the required locality for interworking compone
All of the transformations between CORBA interfaces and COM interfaces described
in this specification will take place on the node executing the COM environment.
Mapping agents (COM views, CORBA views, and bridging elements) will reside a
execute on the COM client node. This requirement allows compliant interworking
solutions to be localized to a COM client node, and to interoperate with any CORBA-
compliant networking ORB that shares the same view of interfaces with the
interworking solution.

15.8.2 Distribution Architecture

External communications between COM client machines, and between COM client
machines and machines executing CORBA environments and services, will follow
specifications contained in CORBA. Figure 15-7 illustrates the required distribution
architecture. The following statements articulate the responsibilities of compliant
solutions.

• All externalized CORBA object references will follow CORBA specifications for
Interoperable Object References (IORs). Any IORs generated by components
performing mapping functions must include a valid IIOP profile.

• The mechanisms for negotiating protocols and binding references to remote ob
will follow the architectural model described in CORBA.

• A product component acting as a CORBA client may bind to an object by using any
profile contained in the object’s IOR. The client must, however, be capable of
binding with an IIOP profile.

• Any components that implement CORBA interfaces for remote use must suppor
IIOP.

COM Node

COM Object

COM View

CORBA Nodes

Any compliant
interworking
bridge

CORBA
object

CORBA
client
object
reference

ORB X

ORB Y

IIOP
communications

CORBA
View
CORBA V2.2 Distribution February 1998 15-33

15

l for
l

n

t

 are

15.9 Interworking Targets

This specification is targeted specifically at interworking between the following
systems and versions:

• CORBA as described in CORBA: Common Object Request Broker Architecture and
Specification.

• OLE as embodied in version 2.03 of the OLE run-time libraries.

• Microsoft Object Description Language (ODL) as supported by MKTYPELIB
version 2.03.3023.

• Microsoft Interface Description Language (MIDL) as supported by the MIDL
Compiler version 2.00.0102.

In determining which features of Automation to support, the expected usage mode
Automation Views follows the Automation controller behavior established by Visua
Basic 4.0.

15.10 Compliance to COM/CORBA Interworking

This section explains which software products are subject to compliance to the
Interworking specification, and provides compliance points. For general informatio
about compliance to CORBA specifications, refer to the Preface, Section 0.5,
Definition of CORBA Compliance.

15.10.1 Products Subject to Compliance

COM/CORBA interworking covers a wide variety of software activities and a wide
range of products. This specification is not intended to cover all possible products tha
facilitate or use COM and CORBA mechanisms together. This Interworking
specification defines three distinct categories of software products, each of which
subject to a distinct form of compliance. The categories are:

• Interworking Solutions

• Mapping Solutions

• Mapped Components

Interworking Solutions

Products that facilitate the development of software that will bidirectionally transform
COM and/or Automation invocations into isomorphic CORBA invocations (and vice
versa) in a generic way are Interworking Solutions. An example of this kind of
software would be a language processor that parses OMG IDL specifications and
automatically generates code for libraries that map the OMG IDL interfaces into OLE
Automation interfaces and which also parses OLE Automation ODL and automatically
generates code for libraries that map the OLE Automation interfaces into CORBA
15-34 CORBA V2.2 February 1998

15

on

that
un-

 a

s
interfaces. Another example would be a generic bridging component that, based
run-time interface descriptions, interpretively maps both COM and CORBA
invocations onto CORBA and COM objects (respectively).

A product of this type is a compliant Interworking Solution if the resulting mapped
interfaces are transformed as described in this specification, and if the mapped
interfaces support all of the features and interface components required by this
specification.

A compliant Interworking Solution must designate whether it is a compliant
COM/CORBA Interworking Solution and/or a compliant Automation/CORBA
Interworking Solution.

Mapping Solutions

Products that facilitate the development of software that will unidirectionally transform
COM and/or Automation invocations into isomorphic CORBA invocations (and vice
versa) in a generic way are described as Mapping Solutions. An example of this kind of
software would be a language processor that parses OMG IDL specifications and
automatically generates code for libraries that map the OMG IDL interfaces into OLE
Automation interfaces. Another example would be a generic bridging component
interpretively maps OLE Automation invocations onto CORBA objects based on r
time interface descriptions.

A product of this type will be considered a compliant Mapping Solution if the
resulting mapped interfaces are transformed as described in this specification, and if
the mapped interfaces support all of the features and interface components required in
this specification.

A compliant Mapping Solution must designate whether it is a compliant COM to
CORBA Mapping Solution, a compliant Automation to CORBA Mapping Solution,
compliant CORBA to COM Mapping Solution, and/or a compliant CORBA to
Automation Mapping Solution.

Mapped Components

Applications, components or libraries that expose a specific, fixed set of interfaces
mapped from CORBA to COM or Automation (and/or vice versa) are described a
Mapped Components. An example of this kind of product would be a set of business
objects defined and implemented in CORBA that also expose isomorphic OLE
Automation interfaces.

This type of product will be considered a compliant Mapped Component if the
interfaces it exposes are mapped as described in this specification, and if the mapped
interfaces support all of the features and interface components required in this
specification.
CORBA V2.2 Compliance to COM/CORBA Interworking February 1998 15-35

15

t in

uct

o

do

e

r

o

15.10.2 Compliance Points

The intent of this submission is to allow the construction of implementations that fi
the design space described in Section 15.2, “Interworking Object Model,” on
page 15-3, and yet guarantee interface uniformity among implementations with similar
or overlapping design centers. This goal is achieved by the following compliance
statements:

• When a product offers the mapping of CORBA interfaces onto isomorphic COM
and/or Automation interfaces, the mapping of COM and/or Automation interfaces
onto isomorphic CORBA interfaces, or when a product offers the ability to
automatically generate components that perform such mappings, then the prod
must use the interface mappings defined in this specification. Note that products
may offer custom, nonisomorphic interfaces that delegate some or all of their
behavior to CORBA, COM, or Automation objects. These interfaces are not in the
scope of this specification, and are neither compliant nor noncompliant.

• Interworking solutions that expose COM Views of CORBA objects are required t
expose the CORBA-specific COM interfaces ICORBAObject and IORBObject,
defined in “ICORBAObject Interface” on page 15-27 and “IORBObject Interface”
on page 15-28, respectively.

• Interworking solutions that expose Automation Views of CORBA objects are
required to expose the CORBA-specific Automation Dual interfaces
DICORBAObject and DIORBObject, defined in “ICORBAObject Interface” on
page 15-27 and “IORBObject Interface” on page 15-28, respectively.

• OMG IDL interfaces exposed as COM or Automation Views are not required to
provide type library and registration information in the COM client environment
where the interface is to be used. If such information is provided; however, then it
must be provided in the prescribed manner.

• Each COM and Automation View must map onto one and only one CORBA object
reference, and must also expose the IForeignObject interface, described in
“IForeignObject Interface” on page 15-26. This constraint guarantees the ability to
obtain an unambiguous CORBA object reference from any COM or Automation
View via the IForeignObject interface.

• If COM or Automation Views expose the IMonikerProvider interface, they shall
so as specified in “IMonikerProvider Interface and Moniker Use” on page 15-23.

• All COM interfaces specified in this submission have associated COM Interfac
IDs. Compliant interworking solutions must use the IIDs specified herein, to allow
interoperability between interworking solutions.

• All compliant products that support distributed interworking must support the
CORBA Internet Inter-ORB Protocol (IIOP), and use the interoperability
architecture described in CORBA in the manner prescribed in “Distribution” on
page 15-32. Interworking solutions are free to use any additional proprietary o
public protocols desired.

• Interworking solutions that expose COM Views of CORBA objects are required t
provide the ICORBAFactory object as defined in “ICORBAFactory Interface” on
page 15-24.
15-36 CORBA V2.2 February 1998

15

• Interworking solutions that expose Automation Views of CORBA objects are
required to provide the DICORBAFactory object as defined in “ICORBAFactory
Interface” on page 15-24.

• Interworking solutions that expose CORBA Views of COM or Automation objects
are required to derive the CORBA View interfaces from
CosLifeCycle::LifeCycleObject as described in CORBA View of
COM/Automation Life Cycle, as described under “Binding and Life Cycle” on
page 15-20.
CORBA V2.2 Compliance to COM/CORBA Interworking February 1998 15-37

15
15-38 CORBA V2.2 February 1998

 Mapping: COM and CORBA 16
M

 to be

-

m-
This chapter describes the data type and interface mapping between COM and
CORBA. The mappings are described in the context of both Win16 and Win32 CO
due to the differences between the versions of COM and between the automated tools
available to COM developers under these environments. The mapping is designed
fully implemented by automated interworking tools.

Contents

This chapter contains the following sections.

16.1 Data Type Mapping

The data type model used in this mapping for Win32 COM is derived from MIDL (a
derivative of DCE IDL). COM interfaces using “custom marshaling” must be hand
coded and require special treatment to interoperate with CORBA using automated
tools. This specification does not address interworking between CORBA and custo
marshaled COM interfaces.

The data type model used in this mapping for Win16 COM is derived from ODL since
Microsoft RPC and the Microsoft MIDL compiler are not available for Win16. The
ODL data type model was chosen since it is the only standard, high-level
representation available to COM object developers on Win16.

Section Title Page

“Data Type Mapping” 16-1

“CORBA to COM Data Type Mapping” 16-2

“COM to CORBA Data Type Mapping” 16-32
 CORBA V2.2 February 1998 16-1

16

e for
d to

ypes.
.
Note that although the MIDL and ODL data type models are used as the referenc
the data model mapping, there is no requirement that either MIDL or ODL be use
implement a COM/CORBA interworking solution.

In many cases, there is a one-to-one mapping between COM and CORBA data t
However, in cases without exact mappings, run-time conversion errors may occur
Conversion errors will be discussed in Mapping for Exception Types under “Interface
Mapping” on page 16-11.

16.2 CORBA to COM Data Type Mapping

16.2.1 Mapping for Basic Data Types

The basic data types available in OMG IDL map to the corresponding data types
available in Microsoft IDL as shown in Table 16-1.

16.2.2 Mapping for Constants

The mapping of the OMG IDL keyword const to Microsoft IDL and ODL is almost
exactly the same. The following OMG IDL definitions for constants

Table 16-1 OMG IDL to MIDL Intrinsic Data Type Mappings

OMG IDL Microsoft
IDL

Microsoft
ODL

Description

short short short Signed integer with a range of -215...215 - 1

long long long Signed integer with a range of -231...231 - 1

unsigned short unsigned short unsigned short Unsigned integer with a range of 0...216 - 1

unsigned long unsigned long unsigned long Unsigned integer with a range of 0...232 - 1

float float float IEEE single-precision floating point number

double double double IEEE double-precision floating point number

char char char 8-bit quantity limited to the ISO Latin-1
character set

boolean boolean boolean 8-bit quantity which is limited to 1 and 0

octet byte unsigned char 8-bit opaque data type, guaranteed to not
undergo any conversion during transfer
between systems.
16-2 CORBA V2.2 February 1998

16

and

 of the

A C

ion.
// OMG IDL
const short S = ...;
const long L = ...;
const unsigned short US = ...;
const unsigned long UL = ...;
const char C = ...;
const boolean B = ...;
const string STR = “...”;

maps to the following Microsoft IDL and ODL definitions for constants

// Microsoft IDL and ODL
const short S = ...;
const long L = ...;
const unsigned short US = ...;
const unsigned long UL = ...;
const char C = ...;
const boolean B = ...;
const string STR = “...”;

Note that OMG IDL supports the definition of constants for the data types float and
double , while COM does not. Because of this, any tool that generates Microsoft IDL
or ODL from OMG IDL should raise an error when a float or double constant is
encountered.

16.2.3 Mapping for Enumerators

CORBA has enumerators that are not explicitly tagged with values. Microsoft IDL
ODL support enumerators that are explicitly tagged with values. The constraint is that
any language mapping that permits two enumerators to be compared or defines
successor or predecessor functions on enumerators must conform to the ordering
enumerators as specified in the OMG IDL.

// OMG IDL
enum A_or_B_or_C {A, B, C};

CORBA enumerators are mapped to COM enumerations directly as per the CORB
language binding. The Microsoft IDL keyword v1_enum is required in order for an
enumeration to be transmitted as 32-bit values. Microsoft recommends that this
keyword be used on 32-bit platforms, since it increases the efficiency of marshalling
and unmarshalling data when such an enumerator is embedded in a structure or un

// Microsoft IDL and ODL
 typedef [v1_enum] enum tagA_or_B_orC { A = 0, B, C }
A_or_B_or_C;

A maximum of 2ˆ32 identifiers may be specified in an enumeration in CORBA.
Enumerators in Microsoft IDL and ODL will only support 2ˆ16 identifiers, and
therefore, truncation may result.
CORBA V2.2 CORBA to COM Data Type Mapping February 1998 16-3

16

n

pe

 a

ft
16.2.4 Mapping for String Types

CORBA currently defines the data type string to represent strings that consist of
8-bit quantities, which are NULL-terminated.

Microsoft IDL and ODL define a number of different data types which are used to
represent both 8-bit character strings and strings containing wide characters based o
Unicode.

Table 16-2 illustrates how to map the string data types in OMG IDL to their
corresponding data types in both Microsoft IDL and ODL.

If a BSTR containing embedded nulls is passed to a CORBA server, the COM client
will receive an E_DATA_CONVERSION.

OMG IDL supports two different types of strings: bounded and unbounded. Bounded
strings are defined as strings that have a maximum length specified; whereas,
unbounded strings do not have a maximum length specified.

Mapping for Unbounded String Types

The definition of an unbounded string limited to 8-bit quantities in OMG IDL

 // OMG IDL
 typedef string UN BOUNDED_STRING;

is mapped to the following syntax in Microsoft IDL and ODL, which denotes the ty
of a “stringified unique pointer to character.”

 // Microsoft IDL and ODL
typedef [string, unique] char * UNBOUNDED_STRING;

In other words, a value of type UNBOUNDED_STRING is a non-NULL pointer to
one-dimensional null-terminated character array whose extent and number of valid
elements can vary at run-time.

Mapping for Bounded String Types

Bounded strings have a slightly different mapping between OMG IDL and Microso
IDL and ODL. The following OMG IDL definition for a bounded string:

Table 16-2 OMG IDL to Microsoft IDL/ODL String Mappings

OMG
IDL

Microsoft
IDL

Microsoft
ODL

Description

string LPSTR, char * LPSTR Null terminated 8-bit character
string

LPTSTR LPTSTR Null terminated 8-bit or Unicode
string (depends upon compiler
flags used)
16-4 CORBA V2.2 February 1998

16

ull-

d set
ed in
// OMG IDL
 const long N = ...;
 typedef string<N> BOUNDED_STRING;

maps to the following syntax in Microsoft IDL and ODL for a “stringified non-
conformant array.”

// Microsoft IDL and ODL
 const long N = ... ;
 typedef [string, unique] char (* BOUNDED_STRING) [N];

In other words, the encoding for a value of type BOUNDED_STRING is that of a n
terminated array of characters whose extent is known at compile time, and the number
of valid characters can vary at run-time.

16.2.5 Mapping for Struct Types

OMG IDL uses the keyword struct to define a record type, consisting of an ordere
of name-value pairs representing the member types and names. A structure defin
OMG IDL maps bidirectionally to Microsoft IDL and ODL structures. Each member
of the structure is mapped according to the mapping rules for that data type.

An OMG IDL struct type with members of types T0, T1, T2, and so on

// OMG IDL
typedef ... T0
typedef ... T1;
typedef ... T2;
...
typedef ... Tn;
struct STRUCTURE
{

T0 m0;
T1 ml;
T2 m2;

 ...
Tn mN;

 };

has an encoding equivalent to a Microsoft IDL and ODL structure definition, as
follows.
CORBA V2.2 CORBA to COM Data Type Mapping February 1998 16-5

16

ar
r
// Microsoft IDL and ODL
typedef ... T0;
typedef ... Tl;
typedef ... T2;
...
typedef ... Tn;
typedef struct

 {
 T0 m0;

 Tl ml;
T2 m2;

 ...
 TN mN;

} STRUCTURE;

Self-referential data types are expanded in the same manner. For example,

struct A { // OMG IDL
seque nce<A> v1;

};

is mapped as

typedef struct A {
struct { // MIDL

unsigned long cbMaxSize;
unsigned long cbLengthUsed;
[size_is(cbMaxSize), length_is(cbLengthUsed), unique]
struct A * pValue;

} v1;
} A;

16.2.6 Mapping for Union Types

OMG IDL defines unions to be encapsulated discriminated unions: the discriminator
itself must be encapsulated within the union.

In addition, the OMG IDL union discriminants must be constant expressions. The
discriminator tag must be a previously defined long , short , unsigned long ,
unsigned short , char , boolean , or enum constant. The default case can appe
at most once in the definition of a discriminated union, and case labels must match o
be automatically castable to the defined type of the discriminator.
16-6 CORBA V2.2 February 1998

16
The following definition for a discriminated union in OMG IDL

// OMG IDL
enum UNION_DISCRIMINATOR
 {

dChar,
dShort,
dLong,
dFloat,
dDouble
};

union UNION_OF_CHAR_AND_ARITHMETIC
switch(UNION_DISCRIMINATOR)
{
case dChar: char c;
case dShort: short s;
case dLong: long l;
case dFloat: float f;
case dDouble: double d;
default: octet v[8];

};

is mapped into encapsulated unions in Microsoft IDL as follows:

// Microsoft IDL
typedef enum

{
dchar,
dShort,
dLong,
dFloat,
dDouble

} UNION_DISCRIMINATOR;

typedef union switch (UNION_DISCRIMINATOR DCE_d)
{
case dChar: char c;
case dShort: short s;
case dLong: long l;
case dFloat: float f;
case dDouble: double d;
default: byte v[8];
}UNION_OF_CHAR_AND_ARITH
CORBA V2.2 CORBA to COM Data Type Mapping February 1998 16-7

16

ngth

ce is

e T

e
t
ds

16.2.7 Mapping for Sequence Types

OMG IDL defines the keyword sequence to be a one-dimensional array with two
characteristics: an optional maximum size which is fixed at compile time, and a le
that is determined at run-time. Like the definition of strings, OMG IDL allows
sequences to be defined in one of two ways: bounded and unbounded. A sequen
bounded if a maximum size is specified, else it is considered unbounded.

Mapping for Unbounded Sequence Types

The mapping of the following OMG IDL syntax for the unbounded sequence of typ

// OMG IDL for T
typedef ... T;
typedef sequence<T> UNBOUNDED_SEQUENCE;

maps to the following Microsoft IDL and ODL syntax:

// Microsoft IDL or ODL
typedef ... U;
typedef struct
 {

unsigned long cbMaxSize;
unsigned long cbLengthUsed;
[size_is(cbMaxSize), length_is(cbLengthUsed), unique]

U * pValue;
} UNBOUNDED_SEQUENCE;

The encoding for an unbounded OMG IDL sequence of type T is that of a Microsoft
IDL or ODL struct containing a unique pointer to a conformant array of type U, wher
U is the Microsoft IDL or ODL mapping of T. The enclosing struct in the Microsof
IDL/ODL mapping is necessary to provide a scope in which extent and data boun
can be defined.

Mapping for Bounded Sequence Types

The mapping for the following OMG IDL syntax for the bounded sequence of type T
which can grow to be N size

// OMG IDL for T
const long N = ...;
typedef ...T;
typedef sequence<T,N> BOUNDED_SEQUENCE_OF_N;

maps to the following Microsoft IDL or ODL syntax:

// Microsoft IDL or ODL
const long N = ...;
typedef ...U;
16-8 CORBA V2.2 February 1998

16

U
L

ny

e
typedef struct
{
unsigned long cbMaxSize;
unsigned long cbLengthUsed;
[length_is(cbLengthUsed)] U Value[N];
} BOUNDED_SEQUENCE_OF_N;

16.2.8 Mapping for Array Types

OMG IDL arrays are fixed length multidimensional arrays. Both Microsoft IDL and
ODL also support fixed length multidimensional arrays. Arrays defined in OMG IDL
map bidirectionally to COM fixed length arrays. The type of the array elements is
mapped according to the data type mapping rules.

The mapping for an OMG IDL array of some type T is that of an array of the type
as defined in Microsoft IDL and ODL, where U is the result of mapping the OMG ID
T into Microsoft IDL or ODL.

// OMG IDL for T
const long N = ...;
typedef ... T;
typedef T ARRAY_OF_T[N];

 // Microsoft IDL or ODL for T
const long N = ...;
typedef ... U;
typedef U ARRAY_OF_U[N];

In Microsoft IDL and ODL, the name ARRAY_OF_U denotes the type of a “one-
dimensional nonconformant and nonvarying array of U.” The value N can be of a
integral type, and const means (as in OMG IDL) that the value of N is fixed and known
at IDL compilation time. The generalization to multidimensional arrays follows the
obvious mapping of syntax.

Note that if the ellipsis were octet in the OMG IDL, then the ellipsis would have to
be byte in Microsoft IDL or ODL. That is why the types of the array elements hav
different names in the two texts.
CORBA V2.2 CORBA to COM Data Type Mapping February 1998 16-9

16

e
16.2.9 Mapping for the any Type

The CORBA any type permits the specification of values that can express any OMG
IDL data type. There is no direct or simple mapping of this type into COM, thus w
map it to the following interface definition:

// Microsoft IDL
typedef [v1_enum] enum CORBAAnyDataTagEnum {

anySimpleValTag,
anyAnyValTag,
anySeqValTag,
anyStructValTag,
anyUnionValTag

} CORBAAnyDataTag;

typedef union CORBAAnyDataUnion switch(CORBAAnyDataTag
whichOne){

case anyAnyValTag:
ICORBA_Any *anyVal;

case anySeqValTag:
case anyStructValTag:

struct {
[string, unique] char * repositoryId;
unsigned long cbMaxSize;
unsigned long cbLengthUsed;
[size_is(cbMaxSize), length_is(cbLengthUsed),

unique]
union CORBAAnyDataUnion *pVal;

} multiVal;
case anyUnionValTag:

struct {
[string, unique] char * repositoryId;
long disc;
union CORBAAnyDataUnion *value;

} unionVal;
case anyObjectValTag:

struct {
[string, unique] char * repositoryId;
VARIANT val;

} objectVal;
case anySimpleValTag: // All other types

VARIANT simpleVal;
} CORBAAnyData;

.... uuid(74105F50-3C68-11cf-9588-AA0004004A09)]
interface ICORBA_Any: IUnknown

{
HRESULT _get_value([out] VARIANT * val);
HRESULT _put_value([in] VARIANT val);
HRESULT _get_CORBAAnyData([out] CORBAAnyData* val);
16-10 CORBA V2.2 February 1998

16

er

 case

s

 or a

t of

ta
tion
HRESULT _put_CORBAAnyData([in] CORBAAnyData val);
HRESULT _get_typeCode([out] ICORBA_TypeCode ** tc);
}

However, the data types that can be included in a VARIANT are too restrictive to
represent the data types that can be included in an any, such as structs and unions. In
cases where the data types can be represented in a VARIANT, they will be; in oth
cases, they will optionally be returned as an IStream pointer in the VARIANT. An
implementation may choose not to represent these types as an IStream, in which
an SCODE value of E_DATA_CONVERSION is returned when the VARIANT is
requested.

16.2.10 Interface Mapping

Mapping for Interface Identifiers

Interface identifiers are used in both CORBA and COM to uniquely identify interfaces.
These allow the client code to retrieve information about, or to inquire about other
interfaces of an object.

CORBA identifies interfaces using the RepositoryId. The RepositoryId is a unique
identifier for, among other things, an interface. COM identifies interfaces using a
structure similar to the DCE UUID (in fact, identical to a DCE UUID on Win32)
known as an IID. As with CORBA, COM specifies that the textual names of interface
are only for convenience and need not be globally unique.

The CORBA RepositoryId is mapped, bidirectionally, to the COM IID. The algorithm
for creating the mapping is detailed in “Mapping Interface Identity” on page 15-16.

Mapping for Exception Types

The CORBA object model uses the concept of exceptions to report error information.
Additional, exception-specification information may accompany the exception. The
exception-specific information is a specialized form of a record. Because it is defined
as a record, the additional information may consist of any of the basic data types
complex data type constructed from one or more basic data types. Exceptions are
classified into two types: System (Standard) Exceptions and User Exceptions.

COM provides error information to clients only if an operation uses a return resul
type HRESULT. A COM HRESULT with a value of zero indicates success. The
HRESULT then can be converted into an SCODE (the SCODE is explicitly specified
as being the same as the HRESULT on Win32 platforms). The SCODE can then be
examined to determine whether the call succeeded or failed. The error or success code,
also contained within the SCODE, is composed of a “facility” major code (13 bits on
Win32 and 4 bits on Win16) and a 16-bit minor code.

Unlike CORBA, COM provides no standard way to return user-defined exception da
to the client. Also, there is no standard mechanism in COM to specify the comple
status of an invocation. In addition, it is not possible to predetermine what set of errors
CORBA V2.2 CORBA to COM Data Type Mapping February 1998 16-11

16

 in

A

ting
ng

s
lete,
a COM interface might return based on the definition of the interface as specified
Microsoft IDL, ODL, or in a type library. Although the set of status codes that can be
returned from a COM operation must be fixed when the operation is defined, there is
currently no machine-readable way to discover the set of valid codes.

Since the CORBA exception model is significantly richer than the COM exception
model, mapping CORBA exceptions to COM requires an additional protocol to be
defined for COM. However, this protocol does not violate backwards compatibility, nor
does it require any changes to COM. To return the User Exception data to a COM
client, an optional parameter is added to the end of a COM operation signature when
mapping CORBA operations, which raise User Exceptions. System exception
information is returned in a standard OLE Error Object.

Mapping for System Exceptions

System exceptions are standard exception types, which are defined by the CORB
specification and are used by the Object Request Broker (ORB) and object adapters
(OA). Standard exceptions may be returned as a result of any operation invocation,
regardless of the interface on which the requested operation was attempted.

There are two aspects to the mapping of System Exceptions. One aspect is genera
an appropriate HRESULT for the operation to return. The other aspect is conveyi
System Exception information via a standard OLE Error Object.

The following table shows the HRESULT, which must be returned by the COM View
when a CORBA System Exception is raised. Each of the CORBA System Exceptions
is assigned a 16-bit numerical ID starting at 0x200 to be used as the code (lower 16
bits) of the HRESULT. Because these errors are interface-specific, the COM facility
code FACILITY_ITF is used as the facility code in the HRESULT.

Bits 12-13 of the HRESULT contain a bit mask, which indicates the completion statu
of the CORBA request. The bit value 00 indicates that the operation did not comp
a bit value of 01 indicates that the operation did complete, and a bit value of 02
indicates that the operation may have completed. Table 16-3 lists the HRESULT
constants and their values.

Table 16-3Standard Exception to SCODE Mapping

HRESULT Constant HRESULT
Value

ITF_E_UNKNOWN_NO 0x40200

ITF_E_UNKNOWN_YES 0x41200

ITF_E_UNKNOWN_MAYBE 0x42200

ITF_E_BAD_PARAM_NO 0x40201

ITF_E_BAD_PARAM_YES 0x41201

ITF_E_BAD_PARAM_MAYBE 0x42201

ITF_E_NO_MEMORY_NO 0x40202
16-12 CORBA V2.2 February 1998

16
ITF_E_NO_MEMORY_YES 0x41202

ITF_E_NO_MEMORY_MAYBE 0x42202

ITF_E_IMP_LIMIT_NO 0x40203

ITF_E_IMP_LIMIT_YES 0x41203

ITF_E_IMP_LIMIT_MAYBE 0x42203

ITF_E_COMM_FAILURE_NO 0x40204

ITF_E_COMM_FAILURE_YES 0x41204

ITF_E_COMM_FAILURE_MAYBE 0x42204

ITF_E_INV_OBJREF_NO 0x40205

ITF_E_INV_OBJREF_YES 0x41205

ITF_E_INV_OBJREF_MAYBE 0x42205

ITF_E_NO_PERMISSION_NO 0x40206

ITF_E_NO_PERMISSION_YES 0x41206

ITF_E_NO_PERMISSION_MAYBE 0x42206

ITF_E_INTERNAL_NO 0x40207

ITF_E_INTERNAL_YES 0x41207

ITF_E_INTERNAL_MAYBE 0x42207

ITF_E_MARSHAL_NO 0x40208

ITF_E_MARSHAL_YES 0x41208

ITF_E_MARSHAL_MAYBE 0x42208

ITF_E_INITIALIZE_NO 0x40209

ITF_E_INITIALIZE_YES 0x41209

ITF_E_INITIALIZE_MAYBE 0x42209

ITF_E_NO_IMPLEMENT_NO 0x4020A

ITF_E_NO_IMPLEMENT_YES 0x4120A

ITF_E_NO_IMPLEMENT_MAYBE 0x4220A

ITF_E_BAD_TYPECODE_NO 0x4020B

ITF_E_BAD_TYPECODE_YES 0x4120B

ITF_E_BAD_TYPECODE_MAYBE 0x4220B

Table 16-3Standard Exception to SCODE Mapping (Continued)
CORBA V2.2 CORBA to COM Data Type Mapping February 1998 16-13

16
ITF_E_BAD_OPERATION_NO 0x4020C

ITF_E_BAD_OPERATION_YES 0x4120C

ITF_E_BAD_OPERATION_MAYBE 0x4220C

ITF_E_NO_RESOURCES_NO 0x4020D

ITF_E_NO_RESOURCES_YES 0x4120D

ITF_E_NO_RESOURCES_MAYBE 0x4220D

ITF_E_NO_RESPONSE_NO 0x4020E

ITF_E_NO_RESPONSE_YES 0x4120E

ITF_E_NO_RESPONSE_MAYBE 0x4220E

ITF_E_PERSIST_STORE_NO 0x4020F

ITF_E_PERSIST_STORE_YES 0x4120F

ITF_E_PERSIST_STORE_MAYBE 0x4220F

ITF_E_BAD_INV_ORDER_NO 0x40210

ITF_E_BAD_INV_ORDER_YES 0x41210

ITF_E_BAD_INV_ORDER_MAYBE 0x42210

ITF_E_TRANSIENT_NO 0x40211

ITF_E_TRANSIENT_YES 0x41211

ITF_E_TRANSIENT_MAYBE 0x42211

ITF_E_FREE_MEM_NO 0x40212

ITF_E_FREE_MEM_YES 0x41212

ITF_E_FREE_MEM_MAYBE 0x42212

ITF_E_INV_IDENT_NO 0x40213

ITF_E_INV_IDENT_YES 0x41213

ITF_E_INV_IDENT_MAYBE 0x42213

ITF_E_INV_FLAG_NO 0x40214

ITF_E_INV_FLAG_YES 0x41214

ITF_E_INV_FLAG_MAYBE 0x42214

ITF_E_INTF_REPOS_NO 0x40215

ITF_E_INTF_REPOS_YES 0x41215

Table 16-3Standard Exception to SCODE Mapping (Continued)
16-14 CORBA V2.2 February 1998

16

n

It is not possible to map a System Exception’s minor code and RepositoryId into the
HRESULT. Therefore, OLE Error Objects may be used to convey these data. Writing
the exception information to an OLE Error Object is optional. However, if the Error
Object is used for this purpose, it must be done according to the following
specifications.

• The COM View must implement the standard COM interface ISupportErrorInfo
such that the View can respond affirmatively to an inquiry from the client as to
whether Error Objects are supported by the View Interface.

• The COM View must call SetErrorInfo with a NULL value for the IErrorInfo
pointer parameter when the mapped CORBA operation is completed without a
exception being raised. Calling SetErrorInfo in this fashion assures that the Error
Object on that thread is thoroughly destroyed.

The properties of the OLE Error Object must be set according to Table 16-4.

ITF_E_INTF_REPOS_MAYBE 0x42215

ITF_E_BAD_CONTEXT_NO 0x40216

ITF_E_BAD_CONTEXT_YES 0x41216

ITF_E_BAD_CONTEXT_MAYBE 0x42216

ITF_E_OBJ_ADAPTER_NO 0x40217

ITF_E_OBJ_ADAPTER_YES 0x41217

ITF_E_OBJ_ADAPTER_MAYBE 0x42217

ITF_E_DATA_CONVERSION_NO 0x40218

ITF_E_DATA_CONVERSION_YES 0x41218

ITF_E_DATA_CONVERSION_MAYBE 0x42218

Table 16-3Standard Exception to SCODE Mapping (Continued)
CORBA V2.2 CORBA to COM Data Type Mapping February 1998 16-15

16
Table 16-4Error Object Usage for CORBA System Exceptions

A COM View supporting error objects would have code, which approximates the
following C++ example.

SetErrorInfo(OL,NULL); // Initialize the thread-local error
object
try
{

// Call the CORBA operation
}
catch(...)
{

...

CreateErrorInfo(&pICreateErrorInfo);
pICreateErrorInfo->SetSource(...);
pICreateErrorInfo->SetDescription(...);
pICreateErrorInfo->SetGUID(...);
pICreateErrorInfo

 ->QueryInterface(IID_IErrorInfo,&pIErrorInfo);
pICreateErrorInfo->SetErrorInfo(OL,pIErrorInfo);
pIErrorInfo->Release();
pICreateErrorInfo->Release();

...

}

Property Description

bstrSource <interface name>.<operation name>
where the interface and operation names are those of the
CORBA interface that this Automation View is representing.

bstrDescription CORBA System Exception: [<exception repository id>]
minor code [<minor code>][<completion status>]
where the <exception repository id> and <minor code> are
those of the CORBA system exception. <completion status> is
“YES,” “NO,” or “MAYBE” based upon the value of the
system exception’s CORBA completion status. Spaces and
square brackets are literals and must be included in the
string.

bstrHelpFile Unspecified

dwHelpContext Unspecified

GUID The IID of the COM View Interface
16-16 CORBA V2.2 February 1998

16

ing

ribe
 The

e
A client to a COM View would access the OLE Error Object with code approximat
the following.

// After obtaining a pointer to an interface on
// the COM View, the
// client does the following one time

pIMyMappedInterface->QueryInterface(IID_ISupportErrorInfo,
 &pISupportErrorInfo);

hr = pISupportErrorInfo

->InterfaceSupportsErrorInfo(IID_MyMappedInterface);
BOOL bSupportsErrorInfo = (hr == NOERROR ? TRUE : FALSE);
...
// Call to the COM operation...
HRESULT hrOperation = pIMyMappedInterface->...

if (bSupportsErrorInfo)
{

HRESULT hr = GetErrorInfo(O,&pIErrorInfo);

// S_FALSE means that error data is not available,
NO_ERROR

// means it is
if (hr == NO_ERROR)
{
pIErrorInfo->GetSource(...);

// Has repository id & minor code. hrOperation (above)
// has the completion status encoded into it.
pIErrorInfo->GetDescription(...);

}
}

The COM client program could use C++ exception handling mechanisms to avoid
doing this explicit check after every call to an operation on the COM View.

Mapping for User Exception Types

User exceptions are defined by users in OMG IDL and used by the methods in an
object server to report operation-specific errors. The definition of a User Exception is
identified in an OMG IDL file with the keyword exception. The body of a User
Exception is described using the syntax for describing a structure in OMG IDL.

When CORBA User Exceptions are mapped into COM, a structure is used to desc
various information about the exception — hereafter called an Exception structure.
structure contains members, which indicate the type of the CORBA exception, the
identifier of the exception definition in a CORBA Interface Repository, and interfac
pointers to User Exceptions. The name of the structure is constructed from the name of
CORBA V2.2 CORBA to COM Data Type Mapping February 1998 16-17

16

he
ns.”

 last

s

f the

c

ry

 the
the CORBA module in which the exception is defined (if specified), the name of t
interface in which the exception is either defined or used, and the word “Exceptio
A template illustrating this naming convention is as follows.

// Microsoft IDL and ODL
typedef enum { NO_EXCEPTION, USER_EXCEPTION}

ExceptionType;

typedef struct
{

ExceptionType type;
LPTSTR repositoryId;

<ModuleName><InterfaceName>UserException
*....piUserException;

} <ModuleName><InterfaceName>Exceptions;

The Exceptions structure is specified as an output parameter, which appears as the
parameter of any operation mapped from OMG IDL to Microsoft IDL, which raises a
User Exception. The Exceptions structure is always passed by indirect reference.
Because of the memory management rules of COM, passing the Exceptions structure
as an output parameter by indirect reference allows the parameter to be treated a
optional by the callee. The following example illustrates this point.

// Microsoft IDL
interface IAccount

{
 HRESULT Withdraw([in] float fAmount,

[out] float pfNewBalance,
[out] BankExceptions

** ppException);
 };

The caller can indicate that no exception information should be returned, if an
exception occurs, by specifying NULL as the value for the Exceptions parameter o
operation. If the caller expects to receive exception information, it must pass the
address of a pointer to the memory in which the exception information is to be plaed.
COM’s memory management rules state that it is the responsibility of the caller to
release this memory when it is no longer required.

If the caller provides a non-NULL value for the Exceptions parameter and the callee is
to return exception information, the callee is responsible for allocating any memo
used to hold the exception information being returned. If no exception is to be
returned, the callee need do nothing with the parameter value.

If a CORBA exception is not raised, then S_OK must be returned as the value of
HRESULT to the callee, indicating the operation succeeded. The value of the
HRESULT returned to the callee when a CORBA exception has been raised depends
upon the type of exception being raised and whether an Exception structure was
specified by the caller.
16-18 CORBA V2.2 February 1998

16
The following OMG IDL statements show the definition of the format used to
represent User Exceptions.

// OMG IDL
module BANK

{
...
exception InsufFunds { float balance };
exception InvalidAmount { float amount };
...
interface Account

 {
exception NotAuthorized { };
float Deposit(in fl oat Amount)

raises(InvalidAmount);
float Withdraw(in float Amount)

raises(InvalidAmount, NotAuthorized);
};

};

and map to the following statements in Microsoft IDL and ODL.

// Microsoft IDL and ODL
struct BankInsufFunds

{
float balance;
};

struct BankInvalidAmount
{
float amount;
};

struct BankAccountNotAuthorized
{
};

interface IBankAccountUserExceptions : IUnknown
{
HRESULT get_InsufFunds([out] BankInsufFunds

* exceptionBody);
HRESULT get_InvalidAmount([out] BankInvalidAmount

* exceptionBody);
HRESULT get_NotAuthorized([out]

BankAccountNotAuthorized

* exceptionBody);
};

typedef struct
{

CORBA V2.2 CORBA to COM Data Type Mapping February 1998 16-19

16

cted

y of

 the

he
ExceptionType type;
LPTSTR repositoryId;
IBankAccountUserExceptions * piUserException;

} BankAccountExceptions;

User exceptions are mapped to a COM interface and a structure which describes the
body of information to be returned for the User Exception. A COM interface is defined
for each CORBA interface containing an operation that raises a User Exception. The
name of the interface defined for accessing User Exception information is constru
from the fully scoped name of the CORBA interface on which the exception is raised.
A structure is defined for each User Exception, which contains the body of information
to be returned as part of that exception. The name of the structure follows the naming
conventions used to map CORBA structure definitions.

Each User Exception that can be raised by an operation defined for a CORBA interface
is mapped into an operation on the Exception interface. The name of the operation is
constructed by prefixing the name of the exception with the string “get_”. Each
accessor operation defined takes one output parameter in which to return the bod
information defined for the User Exception. The data type of the output parameter is a
structure that is defined for the exception. The operation is defined to return an
HRESULT value.

If a CORBA User Exception is to be raised, the value of the HRESULT returned to
caller is E_FAIL.

If the caller specified a non-NULL value for the Exceptions structure parameter, the
callee must allocate the memory to hold the exception information and fill in the
Exceptions structure as in Table 16-5.

When data conversion errors occur while mapping the data types between object
models (during a call from a COM client to a CORBA server), an HRESULT with t
code E_DATA_CONVERSION and the facility value FACILITY_NULL is returned to
the client.

Table 16-5User Exceptions Structure

Member Description

type Indicates the type of CORBA exception that
is being raised. Must be USER_EXCEPTION.

repositoryId Indicates the repository identifier for the
exception definition.

piUserException Points to an interface with which to obtain
information about the User Exception
raised.
16-20 CORBA V2.2 February 1998

16

 This

an

n

e
Mapping User Exceptions: A Special Case

If a CORBA operation raises only one User Exception, and it is the COM_ERROR
User Exception (defined under Section 13.3.10, Mapping for COM Errors), then the
mapped COM operation should not have the additional parameter for exceptions.
proviso enables a CORBA implementation of a preexisting COM interface to be
mapped back to COM without altering the COM operation’s original signature.

COM_ERROR is defined as part of the CORBA to COM mapping. However, this
special rule in effect means that a COM_ERROR raises clause can be added to
operation specifically to indicate that the operation was originally defined as a COM
operation.

Mapping for Operations

Operations defined for an interface are defined in OMG IDL within interface
definitions. The definition of an operation constitutes the operations signature. An
operation signature consists of the operation’s name, parameters (if any), and return
value. Optionally, OMG IDL allows the operation definition to indicate exceptions that
can be raised, and the context to be passed to the object as implicit arguments, both of
which are considered part of the operation.

OMG IDL parameter directional attributes in , out , inout map directly to Microsoft
IDL and ODL parameter direction attributes [in], [out], [in,out]. Operation
request parameters are represented as the values of in or inout parameters in OMG
IDL, and operation response parameters are represented as the values of inout or
out parameters. An operation return result can be any type that can be defined i
OMG IDL, or void if a result is not returned.

The OMG IDL sample (next) shows the definition of two operations on the Bank
interface. The names of the operations are bolded to make them stand out. Operations
can return various types of data as results, including nothing at all. The operation
Bank::Transfer is an example of an operation that does not return a value. Th
operation Bank::OpenAccount returns an object as a result of the operation.

// OMG IDL
#pragma ID::BANK::Bank "IDL:BANK/Bank:1.2"

interface Bank
{
Acco unt OpenAccount(in float Startin gBalance,

in AccountTypes AccountType);
void Transfer(in Account Accou nt1,

in Account Accou nt2,
in float Amount)

raises(InSufFunds);
};
CORBA V2.2 CORBA to COM Data Type Mapping February 1998 16-21

16

n
e

osoft

e

n, if
The operations defined in the preceding OMG IDL code is mapped to the following
lines of Microsoft IDL code

// Microsoft IDL
[object, uuid(682d22fb-78ac-0000-0c03-4d0000000000),
pointer_default(unique)]
interface IBank : IUnknown
 {
 HRESULT OpenAccount([in] float StartingBalance,

[in] AccountTypes AccountType,
[out] IAccount ** ppiNewAccount);

 HRESULT Transfer([in]IAccount * Account1,
 [in] IAccount * Account2,
 [in] float Amount,
 [out] IBankUserExceptions

** ppiUserException);
 };

and to the following statements in Microsoft ODL

// Microsoft ODL
[uuid(682d22fb-78ac-0000-0c03-4d0000000000)]
interface IBank: IUnknown
 {
 HRESULT OpenAccount([in] float StartingBalance,

[in] AccountTypes AccountType,
[out, retval] IAccount

** ppiNewAccount);
 HRESULT Transfer([in] IAccount * Account1,
 [in] IAccount * Account2,
 [in] float Amount,

[out]IBankUserExceptions
** ppiUserException);

 };

The ordering and names of parameters in the Microsoft IDL and ODL mapping is
identical to the order in which parameters are specified in the text of the operatio
definition in OMG IDL. The COM mapping of all CORBA operations must obey th
COM memory ownership and allocation rules specified.

It is important to note that the signature of the operation as written in OMG IDL is
different from the signature of the same operation in Microsoft IDL or ODL. In
particular, the result value returned by an operation defined in OMG IDL will be
mapped as an output argument at the end of the signature when specified in Micr
IDL or ODL. This allows the signature of the operation to be natural to the COM
developer. When a result value is mapped as an output argument, the result valu
becomes an HRESULT. Without an HRESULT return value, there would be no way for
COM to signal errors to clients when the client and server are not collocated. The
value of the HRESULT is determined based on a mapping of the CORBA exceptio
any, that was raised.
16-22 CORBA V2.2 February 1998

16

es

o

 RPC

y
he

f

e

n is
ed
It is also important to note that if any user’s exception information is defined for the
operation, an additional parameter is added as the last argument of the operation
signature. The user exception parameter follows the return value parameter, if both
exist. See Mapping for Exception Types under Section 13.2.10 for further details.

Mapping for Oneway Operations

OMG IDL allows an operation’s definition to indicate the invocation semantics the
communication service must provide for an operation. This indication is done through
the use of an operation attribute. Currently, the only operation attribute defined by
CORBA is the oneway attribute.

The oneway attribute specifies that the invocation semantics are best-effort, which do
not guarantee delivery of the request. Best-effort implies that the operation will be
invoked, at most, once. Along with the invocation semantics, the use of the oneway
operation attribute restricts an operation from having output parameters, must have n
result value returned, and cannot raise any user-defined exceptions.

It may seem that the Microsoft IDL maybe operation attribute provides a closer match
since the caller of an operation does not expect any response. However, Microsoft
maybe does not guarantee at most once semantics, and therefore is not sufficient.
Because of this, the mapping of an operation defined in OMG IDL with the oneway
operation attribute maps the same as an operation that has no output arguments.

Mapping for Attributes

OMG IDL allows the definition of attributes for an interface. Attributes are essentiall
a short-hand for a pair of accessor functions to an object’s data; one to retrieve t
value and possibly one to set the value of the attribute. The definition of an attribute
must be contained within an interface definition and can indicate whether the value o
the attribute can be modified or just read. In the example OMG IDL next, the attribute
Profile is defined for the Customer interface and the read-only attribute is Balanc
defined for the Account interface. The keyword attribute is used by OMG IDL to
indicate that the statement is defining an attribute of an interface.

The definition of attributes in OMG IDL are restricted from raising any user-defined
exceptions. Because of this, the implementation of an attribute’s accessor functio
limited to only raising system exceptions. The value of the HRESULT is determin
based on a mapping of the CORBA exception, if any, that was raised.

// OMG IDL
struct CustomerData

{
CustomerId Id;
string Name;
string SurName;
CORBA V2.2 CORBA to COM Data Type Mapping February 1998 16-23

16

n

e to
};

#pragma ID::BANK::Account "IDL:BANK/Acco unt:3.1"

interface Account
 {
 readonly attribute float Balance;
 float Deposit(in float amount) raises(InvalidAmount);
 float Withdrawal(in float amount) raises(In sufFunds, InvalidAmount);
 float Close();
 };

#pragma ID::BANK::Customer "IDL:BA NK/Customer :1.2"

 interface Customer
 {
 attribute C ustomerData Profile;
 };

When mapping attribute statements in OMG IDL to Microsoft IDL or ODL, the name
of the get accessor is the same as the name of the attribute prefixed with _get_ i
Microsoft IDL and contains the operation attribute [propget] in Microsoft ODL. The
name of the put accessor is the same as the name of the attribute prefixed with _put_ in
Microsoft IDL and contains the operation attribute [propput] in Microsoft ODL.

Mapping for Read-Write Attributes

In OMG IDL, attributes are defined as supporting a pair of accessor functions: on
retrieve the value and one to set the value of the attribute, unless the keyword readonly
precedes the attribute keyword. In the preceding example, the attribute Profile is
mapped to the following statements in Microsoft IDL.

// Microsoft IDL
[object, uuid(682d22fb-78ac-0000-0c03-4d0000000000),
pointer_default(unique)]
interface ICustomer : IUnknown
 {
 HRESULT _get_Profile([out] CustomerData * Profile);
 HRESULT _put_Profile([in] CustomerData * Profile);
 };

Profile is mapped to these statements in Microsoft ODL.
16-24 CORBA V2.2 February 1998

16

e

t
// Microsoft ODL
[uuid(682d22fb-78ac-0000-0c03-4d0000000000)]
interface ICustomer : IUnknown
 {
 [propget] HRESULT Profile([out] CustomerData

* Profile);
 [propput] HRESULT Profile([in] CustomerData

* Profile);
 };

Note that the attribute is actually mapped as two different operations in both Microsoft
IDL and ODL. The ICustomer::Get_Profile, in Microsoft IDL operations and the
[propget] Profile, in Microsoft ODL operations are used to retrieve the value of the
attribute. The ICustomer::Set_Profile operation is used to set the value of the attribute.

Mapping for Read-Only Attributes

In OMG IDL, an attribute preceded by the keyword readonly is interpreted as only
supporting a single accessor function used to retrieve the value of the attribute. In the
previous example, the mapping of the attribute Balance is mapped to the following
statements in Microsoft IDL.

// Microsoft IDL
[object, uuid(682d22fb-78ac-0000-0c03-4d0000000000)]
interface IAccount: IUnknown
 {
 HRESULT _get_Balance([out] float Balance);
 };

and the following statements in Microsoft ODL.

// Microsoft ODL
[uuid(682d22fb-78ac-0000-0c03-4d0000000000)]
interface IAccount: IUnknown
 {
 [propget] HRESULT Balance([out] float Balance);
 };

Note that only a single operation was defined since the attribute was defined to b
read-only.

16.2.11 Inheritance Mapping

Both CORBA and COM have similar models for individual interfaces. However, the
models for inheritance and multiple interfaces are different.

In CORBA, an interface can singly or multiply inherit from other interfaces. In
language bindings supporting typed object references, widening and narrowing suppor
convert object references as allowed by the true type of that object.
CORBA V2.2 CORBA to COM Data Type Mapping February 1998 16-25

16

BA,
thout

 C++

f

e
der.

r. If
es
However, there is no built-in mechanism in CORBA to access interfaces without an
inheritance relationship. The run-time interfaces of an object, as defined in CORBA
(for example, CORBA::Object::is_a , CORBA::Object::get_interface)
use a description of the object’s principle type, which is defined in OMG IDL. CORBA
allows many ways in which implementations of interfaces can be structured, including
using implementation inheritance.

In COM V2.0, interfaces can have single inheritance. However, as opposed to COR
there is a standard mechanism by which an object can have multiple interfaces (wi
an inheritance relationship between those interfaces) and by which clients can query
for these at run-time. (It defines no common way to determine if two interface
references refer to the same object, or to enumerate all the interfaces supported by an
entity.)

An observation about COM is that some COM objects have a required minimum set of
interfaces, which they must support. This type of statically defined interface relation is
conceptually equivalent to multiple inheritance; however, discovering this relationship
is only possible if ODL or type libraries are always available for an object.

COM describes two main implementation techniques: aggregation and delegation.
style implementation inheritance is not possible.

The mapping for CORBA interfaces into COM is more complicated than COM
interfaces into CORBA, since CORBA interfaces might be multiply inherited and
COM does not support multiple interface inheritance.

If a CORBA interface is singly inherited, this maps directly to single inheritance o
interfaces in COM. The base interface for all CORBA inheritance trees is IUnknown.
Note that the Object interface is not surfaced in COM. For single inheritance, although
the most derived interface can be queried using IUnknown::QueryInterface ,
each individual interface in the inheritance hierarchy can also be queried separately.

The following rules apply to mapping CORBA to COM inheritance.

• Each OMG IDL interface that does not have a parent is mapped to an MIDL
interface deriving from IUnknown.

• Each OMG IDL interface that inherits from a single parent interface is mapped to
an MIDL interface that derives from the mapping for the parent interface.

• Each OMG IDL interface that inherits from multiple parent interfaces is mapped to
an MIDL interface deriving from IUnknown.

• For each CORBA interface, the mapping for operations precede the mapping for
attributes.

• The resulting mapping of operations within an interface are ordered based upon th
operation name. The ordering is lexicographic by bytes in machine-collating or

• The resulting mapping of attributes within an interface are ordered based upon the
attribute name. The ordering is lexicographic by bytes in machine-collating orde
the attribute is not readonly, the get_<attribute name> method immediately preced
the set_<attribute name> method.
16-26 CORBA V2.2 February 1998

16
Figure 16-1 CORBA Interface Inheritance to COM Interface Inheritance Mapping

//OMG IDL
//
interface A {

void opA();
attribute long val;

};
interface B : A {

void opB();
};
interface C : A {

void opC();
};
interface D : B, C {

void opD();
};
interface E {

void opE();
};
interface F : D, E {

void opF();

}//Microsoft MIDL
//
[object, uuid(b97267fa-7855-e044-71fb-12fa8a4c516f)]
interface IA: IUnknown{

HRESULT opA();
HRESULT get_val([out] long * val);
HRESULT set_val([in] long val);

};
[object, uuid(fa2452c3-88ed-1c0d-f4d2-fcf91ac4c8c6)]
interface IB: IA {

CORBA Interface Inheritance COM Interface Inheritance

A

B

D E

F

C IU

B C

A

IU

D

A IU

E

IU

F

IU
CORBA V2.2 CORBA to COM Data Type Mapping February 1998 16-27

16

HRESULT opB();
};
[object,uuid(dc3a6c32-f5a8-d1f8-f8e2-64566f815ed7)]
interface IC: IA {

HRESULT opC();
};
[object, uuid(b718adec-73e0-4ce3-fc72-0dd11a06a308)]
interface ID: IUnknown {

HRESULT opD();
};
[object, uuid(d2cb7bbc-0d23-f34c-7255-d924076e902f)]
interface IE: IUnknown{

HRESULT opE();
};
[object, uuid(de6ee2b5-d856-295a-fd4d-5e3631fbfb93)]
interface IF: IUnknown {

HRESULT opF();
};

Note that the co-class statement in Microsoft ODL allows the definition of an object
class that allows QueryInterface between a set of interfaces.

Also note that when the interface defined in OMG IDL is mapped to its corresponding
statements in Microsoft IDL, the name of the interface is proceeded by the letter I to
indicate that the name represents the name of an interface. This also makes the
mapping more natural to the COM programmer, since the naming conventions used
follow those suggested by Microsoft.

16.2.12 Mapping for Pseudo-Objects

CORBA defines a number of different kinds of pseudo-objects. Pseudo-objects differ
from other objects in that they cannot be invoked with the Dynamic Invocation
Interface (DII) and do not have object references. Most pseudo-objects cannot be used
as general arguments. Currently, only the TypeCode and Principal pseudo-objects can
be used as general arguments to a request in CORBA.

The CORBA NamedValue and NVList are not mapped into COM as arguments to
COM operation signatures.

Mapping for TypeCode Pseudo-Object

CORBA TypeCodes represent the types of arguments or attributes and are typically
retrieved from the interface repository. The mapping of the CORBA TypeCode
interface follows the same rules as mapping any other CORBA interface to COM. The
result of this mapping is as follows.

// Microsoft IDL or ODL
typedef struct { } TypeCodeBounds;
typedef struct { } TypeCodeBadKind;
16-28 CORBA V2.2 February 1998

16
[uuid(9556EA20-3889-11cf-9586-AA0004004A09), object,
pointer_default(unique)]

interface ICORBA_TypeCodeUserExceptions : IUnknown
{

HRESULT get_Bounds([out] TypeCodeBounds *ExceptionBody);
HRESULT get_BadKind([out] TypeCodeBadKind * pExceptionBody
);
};

typedef struct
{
 ExceptionType type;
 LPTSTR repositoryId;
 long minorCode;
 CompletionStatus completionStatus;
 ICORBA_SystemException * pSystemException;
 ICORBA_TypeCodeExceptions * pUserException;
} CORBATypeCodeExceptions;

typedef LPTSTR RepositoryId;
typedef LPTSTR Identifier;

typedef [v1_enum]
enum tagTCKind { tk_null = 0, tk_void, tk_short,

tk_long, tk_ushort, tk_ulong,
tk_float, tk_double, tk_octet,
tk_any, tk_TypeCode,
tk_principal, tk_objref,
tk_struct, tk_union, tk_enum,
tk_string, tk_sequence,
tk_array, tk_alias, tk_except

} TCKind;

[uuid(9556EA21-3889-11cf-9586-AA0004004A09), object,
pointer_default(unique)]

interface ICORBA_TypeCode : IUnknown
{
 HRESULT equal(

[in] ICORBA_TypeCode * piTc,
[out] boolean * pbRetVal,
[out] CORBATypeCodeExceptions** ppUserExceptions);

HRESULT kind(
[out] TCKind * pRetVal,
[out] CORBATypeCodeExceptions ** ppUserExceptions);

 HRESULT id(
[out] RepositoryId * pszRetVal,
[out] CORBATypeCodeExceptions ** ppUserExceptions);

 HRESULT name(
CORBA V2.2 CORBA to COM Data Type Mapping February 1998 16-29

16

e

ntil
[out] Identifier * pszRetVal,
[out] CORBATypeCodeExceptions ** ppUserExceptions);

HRESULT member_count(
[out] unsigned long * pulRetVal,
[out] CORBATypeCodeExceptions ** ppUserExceptions);

HRESULT member_name(
[in] unsigned long ulIndex,
[out] Identifier * pszRetVal,
[out] CORBATypeCodeExceptions ** ppUserExceptions);

 HRESULT member_type(
[in] unsigned long ulIndex,
[out] ICORBA_TypeCode ** ppRetVal,
[out] CORBATypeCodeExceptions ** ppUserExceptions);

 HRESULT member_label(
[in] unsigned long ulIndex,
[out] ICORBA_Any ** ppRetVal,
[out] CORBATypeCodeExceptions ** ppUserExceptions);

 HRESULT discriminator_type(
[out] ICORBA_TypeCode ** ppRetVal,
[out] CORBATypeCodeExceptions ** ppUserExceptions);

 HRESULT default_index(
[out] long * plRetVal,
[out] CORBATypeCodeExceptions ** ppUserExceptions);

 HRESULT length(
[out] unsigned long * pulRetVal,
[out] CORBATypeCodeExceptions ** ppUserExceptions);

 HRESULT content_type(
[out] ICORBA_TypeCode ** ppRetVal,
[out] CORBATypeCodeExceptions ** ppUserExceptions);

 HRESULT param_count(
[out] long * plRetVal,
[out] CORBATypeCodeExceptions ** ppUserExceptions);

 HRESULT parameter(
[in] long lIndex,
[out] ICORBA_Any ** ppRetVal,
[out] CORBATypeCodeExceptions ** ppUserExceptions

);
}

Mapping for Context Pseudo-Object

This specification provides no mapping for CORBA’s Context pseudo-object into
COM. Implementations that choose to provide support for Context could do so in th
following way. Context pseudo-objects should be accessed through the ICORBA
Context interface. This would allow clients (if they are aware that the object they are
dealing with is a CORBA object) to set a single Context pseudo-object to be used for
all subsequent invocations on the CORBA object from the client process space u
such time as the ICORBA_Context interface is released.
16-30 CORBA V2.2 February 1998

16

e.

es a

e
.
The ICORBA_Context interface has the following definition in Microsoft IDL and
ODL:

// Microsoft IDL and ODL
typedef struct
 {
 unsigned long cbMaxSize;
 unsigned long cbLengthUsed;
 [size_is(cbMaxSize), length_is(cbLengthUsed), unique]

LPTSTR * pszValue;
 } ContextPropertyValue;

[object, uuid(74105F51-3C68-11cf-9588-AA0004004A09),
pointer_default(unique)]
interface ICORBA_Context: IUnknown
 {
 HRESULT GetProperty([in]LPTSTR Name,

[out] ContextPropertyValue
** ppValues);

 HRESULT SetProperty([in] LPTSTR,
[in] ContextPropertyValue

* pValues);
 };

If a COM client application knows it is using a CORBA object, the client application
can use QueryInterface to obtain an interface pointer to the ICORBA_Context interfac
Obtaining the interface pointer results in a CORBA context pseudo-object being
created in the View, which is used with any CORBA request operation that requir
reference to a CORBA context object. The context pseudo-object should be destroyed
when the reference count on the ICORBA_Context interface reaches zero.

This interface should only be generated for CORBA interfaces that have operations
defined with the context clause.

Mapping for Principal Pseudo-Object

The CORBA Principal is not currently mapped into COM. As both the COM and
CORBA security mechanisms solidify, security interworking will need to be defined
between the two object models.

16.2.13 Interface Repository Mapping

Name spaces within the CORBA interface repository are conceptually similar to COM
type libraries. However, the CORBA interface repository looks, to the client, to be on
unified service. Type libraries, on the other hand, are each stored in a separate file
Clients do not have a unified, hierarchical interface to type libraries.
CORBA V2.2 CORBA to COM Data Type Mapping February 1998 16-31

16

g
Table 16-6 defines the mapping between equivalent CORBA and COM interface
description concepts. Where there is no equivalent, the field is left blank.

Using this mapping, implementations must provide the ability to call
Object::get_interface on CORBA object references to COM objects to
retrieve an InterfaceDef. When CORBA objects are accessed from COM,
implementations may provide the ability to retrieve the ITypeInfo for a CORBA object
interface using the IProvideClassInfo COM interface.

16.3 COM to CORBA Data Type Mapping

16.3.1 Mapping for Basic Data Types

The basic data types available in Microsoft IDL and ODL map to the correspondin
data types available in OMG IDL as shown in Table 16-7.

Table 16-6CORBA Interface Repository to OLE Type Library Mappings

TypeCode TYPEDESC

Repository

ModuleDef ITypeLib

InterfaceDef ITypeInfo

AttributeDef VARDESC

OperationDef FUNCDESC

ParameterDef ELEMDESC

TypeDef ITypeInfo

ConstantDef VARDESC

ExceptionDef

Table 16-7Microsoft IDL and ODL to OMG IDL Intrinsic Data Type Mappings

Microsoft
IDL

Microsoft
ODL

OMG IDL Description

short short short Signed integer with a range of -
215...215 -1

long long long Signed integer with a range of -
231...231 -1

unsigned short unsigned short unsigned short Unsigned integer with a range of
0...216 -1

unsigned long unsigned long unsigned long Unsigned integer with a range of
0...232 -1
16-32 CORBA V2.2 February 1998

16

M
A,
16.3.2 Mapping for Constants

The mapping of the Microsoft IDL keyword const to OMG IDL const is almost exactly
the same. The following Microsoft IDL definitions for constants

// Microsoft IDL
const short S = ...;
const long L = ...;
const unsigned short US = ...;
const unsigned long UL = ...;
const char C = ...;
const boolean B = ...;
const string STR = “...”;

map to the following OMG IDL definitions for constants.

// OMG IDL
const short S = ...;
const long L = ...;
const unsigned short US = ...;
const unsigned long UL = ...;
const char C = ...;
const boolean B = ...;
const string STR = “...”;

16.3.3 Mapping for Enumerators

COM enumerations can have enumerators explicitly tagged with values. When CO
enumerations are mapped into CORBA, the enumerators are presented in CORB
ordered according to their tagged values. This Microsoft IDL or ODL

float float float IEEE single -precision floating point
number

double double double IEEE double-precision floating point
number

char char char 8-bit quantity limited to the ISO Latin-
1 character set

boolean boolean boolean 8-bit quantity, which is limited to 1
and 0

byte unsigned char octet 8-bit opaque data type, guaranteed to
not undergo any conversion during
transfer between systems

Table 16-7Microsoft IDL and ODL to OMG IDL Intrinsic Data Type Mappings (Continued)
CORBA V2.2 COM to CORBA Data Type Mapping February 1998 16-33

16

a
// Microsoft IDL or ODL
 typedef [v1_enum] enum tagA_or_B_orC { A = 0, B, C }
A_or_B_or_C;

would be represented as the following statements in OMG IDL:

// OMG IDL
enum A_or_B_ or_C {A, B, C};

Because COM allows enumerators to be defined with explicit tagged values, the
enumerators are mapped to OMG IDL in the same order they appear in Microsoft IDL
or ODL and it is the COM View’s responsibility to maintain the mapping based on
names.

16.3.4 Mapping for String Types

COM support for strings includes the concepts of bounded and unbounded strings.
Bounded strings are defined as strings that have a maximum length specified, whereas
unbounded strings do not have a maximum length specified. COM also supports
Unicode strings where the characters are wider than 8 bits. As in OMG IDL, non-
Unicode strings in COM are NULL-terminated. The mapping of COM definitions for
bounded and unbounded strings differs from that specified in OMG IDL.

Table 16-8 illustrates how to map the string data types in OMG IDL to their
corresponding data types in both Microsoft IDL and ODL.

If a COM Server returns a BSTR containing embedded nulls to a CORBA client,
E_DATA_CONVERSION exception will be raised.

Mapping for Unbounded String Types

The definition of an unbounded string in Microsoft IDL and ODL denotes the
unbounded string as a stringified unique pointer to a character. The following
Microsoft IDL statement

Table 16-8Microsoft IDL/ODL to OMG IDL String Mappings

Microsoft
IDL

Microsoft
ODL OMG IDL Description

LPSTR, char * LPSTR, string Null terminated 8-bit
character string

LPTSTR LPTSTR string Null terminated 8-bit
character string

BSTR on Win16 string Null-terminated 8-bit
character string
16-34 CORBA V2.2 February 1998

16

 a

ft

ull-
// Microsoft IDL
 typedef [string, unique] char * UNBOUNDED_STRING;

is mapped to the following syntax in OMG IDL.

// OMG IDL
 typedef string UN BOUNDED_STRING;

In other words, a value of type UNBOUNDED_STRING is a non-NULL pointer to
one-dimensional null-terminated character array whose extent and number of valid
elements can vary at run-time.

Mapping for Bounded String Types

Bounded strings have a slightly different mapping between OMG IDL and Microso
IDL. Bounded strings are expressed in Microsoft IDL as a “stringified nonconformant
array.” The following Microsoft IDL and ODL definition for a bounded string

// Microsoft IDL and ODL
 const long N = ...;
 typedef [string, unique] char (* BOUNDED_STRING) [N];

maps to the following syntax in OMG IDL.

// OMG IDL
 const long N = ...;
 typedef string<N> BOUNDED_STRING;

In other words, the encoding for a value of type BOUNDED_STRING is that of a n
terminated array of characters whose extent is known at compile time, and the number
of valid characters can vary at run-time.

Mapping for Unicode Unbounded String Types

The mapping for a Unicode unbounded string type in Microsoft IDL or ODL is no
different from that used for ANSI string types. The following Microsoft IDL and ODL
statement

// Microsoft IDL and ODL
 typedef [string, unique] LPTSTR UNBOUNDED_UNICODE_STRING;

is mapped to the following syntax in OMG IDL.

// OMG IDL
 typedef wstring UNBOUNDED_UNICODE _STRING;

It is the responsibility of the mapping implementation to perform the conversions
between ANSI and Unicode formats when dealing with strings.
CORBA V2.2 COM to CORBA Data Type Mapping February 1998 16-35

16
Mapping for Unicode Bound String Types

The mapping for a Unicode bounded string type in Microsoft IDL or ODL is no
different from that used for ANSI string types. The following Microsoft IDL and ODL
statements

// Microsoft IDL and ODL
 const long N = ...;
 typedef [string, unique] TCHAR (* BOUNDED_UNICODE_STRING)
[N];

map to the following syntax in OMG IDL.

// OMG IDL
 const long N = ...;
 typedef wstring<N> BOUNDED_ UNICODE_STRING;

It is the responsibility of the mapping implementation to perform the conversions
between ANSI and Unicode formats when dealing with strings.

16.3.5 Mapping for Structure Types

Support for structures in Microsoft IDL and ODL maps bidirectionally to OMG IDL.
Each structure members is mapped according to the mapping rules for that data type.
The structure definition in Microsoft IDL or ODL is as follows.
// Microsoft IDL and ODL
 typedef ... T0;
 typedef ... Tl;
 ...
 typedef ...TN;
 typedef struct

{
T0 m0;
Tl ml;
...
TN mN;
} STRUCTURE;

The structure has an equivalent mapping in OMG IDL, as follows.
16-36 CORBA V2.2 February 1998

16

 be

// OMG IDL
 typedef ... T0
 typedef ... T1;
 ...
 typedef ... TN;
 struct S TRUCTURE

{
T0 m0;
T1 ml;
...
Tn mm;
};

16.3.6 Mapping for Union Types

ODL unions are not discriminated unions and must be custom marshaled in any
interfaces that use them. For this reason, this specification does not provide any
mapping for ODL unions to CORBA unions.

MIDL unions, while always discriminated, are not required to be encapsulated. The
discriminator for a nonencapsulated MIDL union could, for example, be another
argument to the operation. The discriminants for MIDL unions are not required to
constant expressions.

Mapping for Encapsulated Unions

When mapping from Microsoft IDL to OMG IDL, Microsoft IDL encapsulated unions
having constant discriminators are mapped to OMG IDL unions as shown next.

// Microsoft IDL
 typedef enum

{
dchar,
dShort,
dLong,
dFloat,
dDouble
} UNION_DISCRIMINATOR;

 typedef union switch (UNION_DISCRIMINATOR _d)
{
case dChar: char c;
case dShort: short s;
case dLong: long l;
case dFloat: float f;
case dDouble: double d;
CORBA V2.2 COM to CORBA Data Type Mapping February 1998 16-37

16

th
default: byte v[8];
}UNION_OF_CHAR_AND_ARITHMETIC;

The OMG IDL definition is as follows.

// OMG IDL
 enum UNION_DISCRIMINATOR

{
dChar,
dShort,
dLong,
dFloat,
dDouble
};

 union UNION_OF_CHAR_AND_ARITHMETIC
switch(UNION_DISCRI MINATOR)
{
case dChar: char c;
case dSh ort: short s;
case dLong: long l;
case dFloat:. float f;
case dDouble:. double d;
default: octet v[8];

};

Mapping for Nonencapsulated Unions

Microsoft IDL nonencapsulated unions and Microsoft IDL encapsulated unions wi
nonconstant discriminators are mapped to an any in OMG IDL. The type of the any
is determined at run-time during conversion of the Microsoft IDL union.

// Microsoft IDL
typedef [switch_type(short)] union
tagUNION_OF_CHAR_AND_ARITHMETIC
 {
 [case(0)] char c;
 [case(1)] short s;
 [case(2)] long l;
 [case(3)] float f;
 [case(4)] double d;
 [default] byte v[8];
 } UNION_OF_CHAR_AND_ARITHMETIC;

The corresponding OMG IDL syntax is as follows.
16-38 CORBA V2.2 February 1998

16

ying
can be
// OMG IDL
typedef any UNION_OF_CHAR_AND _ARITHMETIC;

16.3.7 Mapping for Array Types

COM supports fixed-length arrays, just as in CORBA. As in the mapping from OMG
IDL to Microsoft IDL, the arrays can be mapped bidirectionally. The type of the array
elements is mapped according to the data type mapping rules. The following
statements in Microsoft IDL and ODL describe a nonconformant and nonvarying array
of U.

// Microsoft IDL for T
const long N = ...;
typedef ... U;
typedef U ARRAY_OF_N[N];
typedef float DTYPE[0..10]; // Equivalent to [11]

The value N can be of any integral type, and const means (as in OMG IDL) that the
value of N is fixed and known at compilation time. The generalization to
multidimensional arrays follows the obvious trivial mapping of syntax.

The corresponding OMG IDL syntax is as follows.

// OMG IDL for T
 const long N = ...;
 typedef ... T;
 typedef T ARRAY_OF_N[N];
 typedef float DTYPE[11];

Mapping for Nonfixed Arrays

In addition to fixed length arrays, as well as conformant arrays, COM supports var
arrays, and conformant varying arrays. These are arrays whose bounds and size
determined at run-time. Nonfixed length arrays in Microsoft IDL and ODL are mapped
to sequence in OMG IDL, as shown in the following statements.

// Microsoft IDL
typedef short BTYPE[]; // Equivalent to [*];
typedef char CTYPE[*];

The corresponding OMG IDL syntax is as follows.
CORBA V2.2 COM to CORBA Data Type Mapping February 1998 16-39

16

mined

o

// OMG IDL
typedef sequence<sh ort> BTYPE;
typedef sequence<char> CTYPE;

Mapping for SAFEARRAY

Microsoft ODL also defines SAFEARRAY as a variable length, variable dimension
array. Both the number of dimensions and the bounds of the dimensions are deter
at run-time. Only the element type is predefined. A SAFEARRAY in Microsoft ODL is
mapped to a CORBA sequence, as shown in the following statements.

// Microsoft ODL
SAFEARRAY(element-type) * ArrayName;

// OMG IDL
typedef sequence< element-type > SequenceN ame;

If a COM server returns a multidimensional SAFEARRAY to a CORBA client, an
E_DATA_CONVERSION exception will be raised.

16.3.8 Mapping for VARIANT

The COM VARIANT provides semantically similar functionality to the CORBA any .
However, its allowable set of data types are currently limited to the data types
supported by OLE Automation. VARTYPE is an enumeration type used in the
VARIANT structure. The structure member vt is defined using the data type
VARTYPE. Its value acts as the discriminator for the embedded union and governs the
interpretation of the union. The list of valid values for the data type VARTYPE are
listed in Table 16-9 on page 16-40, along with a description of how to use them t
represent the OMG IDL any data type.

Table 16-9 Valid OLE VARIANT Data Types

Value Description

VT_EMPTY No value was specified. If an argument is left blank, you
should not return VT_EMPTY for the argument. Instead,
you should return the VT_ERROR value:
DISP_E_MEMBERNOTFOUND.

VT_EMPTY |
VT_BYREF

Illegal.

VT_UI1 An unsigned 1-byte character is stored in bVal.

VT_UI1 |
VT_BYREF

A reference to an unsigned 1-byte character was passed; a
pointer to the value is in pbVal.

VT_I2 A 2-byte integer value is stored in iVal.
16-40 CORBA V2.2 February 1998

16

VT_I2 | VT_BYREF A reference to a 2-byte integer was passed; a pointer to
the value is in piVal.

VT_I4 A 4-byte integer value is stored in lVal.

VT_I4 | VT_BYREF A reference to a 4-byte integer was passed; a pointer to
the value is in plVal.

VT_R4 An IEEE 4-byte real value is stored in fltVal.

VT_R4 |
VT_BYREF

A reference to an IEEE 4-byte real was passed; a pointer
to the value is in pfltVal.

VT_R8 An 8-byte IEEE real value is stored in dblVal.

VT_R8 |
VT_BYREF

A reference to an 8-byte IEEE real was passed; a pointer
to its value is in pdblVal.

VT_CY A currency value was specified. A currency number is
stored as an 8-byte, two’s complement integer, scaled by
10,000 to give a fixed-point number with 15 digits to the
left of the decimal point and 4 digits to the right. The
value is in cyVal.

VT_CY |
VT_BYREF

A reference to a currency value was passed; a pointer to
the value is in pcyVal.

VT_BSTR A string was passed; it is stored in bstrVal. This pointer
must be obtained and freed via the BSTR functions.

VT_BSTR |
VT_BYREF

A reference to a string was passed. A BSTR*, which
points to a BSTR, is in pbstrVal. The referenced pointer
must be obtained or freed via the BSTR functions.

VT_NULL A propagating NULL value was specified. This should not
be confused with the NULL pointer. The NULL value is
used for tri-state logic as with SQL.

VT_NULL |
VT_BYREF

Illegal.

VT_ERROR An SCODE was specified. The type of error is specified
in code. Generally, operations on error values should raise
an exception or propagate the error to the return value, as
appropriate.

VT_ERROR |
VT_BYREF

A reference to an SCODE was passed. A pointer to the
value is in pscode.

VT_BOOL A Boolean (True/False) value was specified. A value of
0xFFFF (all bits one) indicates True; a value of 0 (all bits
zero) indicates False. No other values are legal.

Table 16-9 Valid OLE VARIANT Data Types (Continued)
CORBA V2.2 COM to CORBA Data Type Mapping February 1998 16-41

16

VT_BOOL |
VT_BYREF

A reference to a Boolean value. A pointer to the Boolean
value is in pbool.

VT_DATE A value denoting a date and time was specified. Dates are
represented as double-precision numbers, where midnight,
January 1, 1900 is 2.0, January 2, 1900 is 3.0, and so on.
The value is passed in date.

This is the same numbering system used by most
spreadsheet programs, although some incorrectly believe
that February 29, 1900 existed, and thus set January 1,
1900 to 1.0. The date can be converted to and from an
MS-DOS representation using
VariantTimeToDosDateTime.

VT_DATE |
VT_BYREF

A reference to a date was passed. A pointer to the value is
in pdate.

VT_DISPATCH A pointer to an object was specified. The pointer is in
pdispVal. This object is only known to implement
IDispatch; the object can be queried as to whether it
supports any other desired interface by calling
QueryInterface on the object. Objects that do not
implement IDispatch should be passed using
VT_UNKNOWN.

VT_DISPATCH |
VT_BYREF

A pointer to a pointer to an object was specified. The
pointer to the object is stored in the location referred to by
ppdispVal.

VT_VARIANT Illegal. VARIANTARGs must be passed by reference.

VT_VARIANT |
VT_BYREF

A pointer to another VARIANTARG is passed in pvarVal.
This referenced VARIANTARG will never have the
VT_BYREF bit set in vt, so only one level of indirection
can ever be present. This value can be used to support
languages that allow functions to change the types of
variables passed by reference.

VT_UNKNOWN A pointer to an object that implements the IUnknown
interface is passed in punkVal.

VT_UNKNOWN |
VT_BYREF

A pointer to a pointer to the IUnknown interface is passed
in ppunkVal. The pointer to the interface is stored in the
location referred to by ppunkVal.

Table 16-9 Valid OLE VARIANT Data Types (Continued)
16-42 CORBA V2.2 February 1998

16

sent

ence

ses

ough
g

.

A COM VARIANT is mapped to the CORBA any without loss. If at run-time a
CORBA client passes an inconvertible any to a COM server, a DATA_CONVERSION
exception is raised.

16.3.9 Mapping for Pointers

MIDL supports three types of pointers:

• Reference pointer; a non-null pointer to a single item. The pointer cannot repre
a data structure with cycles or aliasing (two pointers to the same address).

• Unique pointer; a (possibly null) pointer to a single item. The pointer cannot
represent a data structure with cycles or aliasing.

• Full pointer; a (possibly null) pointer to a single item. Full pointers can be used for
data structures, which form cycles or have aliases.

A reference pointer is mapped to a CORBA sequence containing one element. Unique
pointers and full pointers with no aliases or cycles are mapped to a CORBA sequ
containing zero or one elements. If at run-time a COM client passes a full pointer
containing aliases or cycles to a CORBA server, E_DATA_CONVERSION is returned
to the COM client. If a COM server attempts to return a full pointer containing alia
or cycles to a CORBA client, a DATA_CONVERSION exception is raised.

16.3.10 Interface Mapping

COM is a binary standard based upon standard machine calling conventions. Alth
interfaces can be expressed in Microsoft IDL, Microsoft ODL, or C++, the followin
interface mappings between COM and CORBA will use Microsoft ODL as the
language of expression for COM constructs.

COM interface pointers bidirectionally map to CORBA Object references with the
appropriate mapping of Microsoft IDL and ODL interfaces to OMG IDL interfaces

Mapping for Interface Identifiers

Interface identifiers are used in both CORBA and COM to uniquely identify interfaces.
These allow the client code to retrieve information about, or to inquire about other
interfaces of an object.

VT_ARRAY |
<anything>

An array of data type <anything> was passed.
(VT_EMPTY and VT_NULL are illegal types to combine
with VT_ARRAY.) The pointer in pByrefVal points to an
array descriptor, which describes the dimensions, size, and
in-memory location of the array. The array descriptor is
never accessed directly, but instead is read and modified
using functions.

Table 16-9 Valid OLE VARIANT Data Types (Continued)
CORBA V2.2 COM to CORBA Data Type Mapping February 1998 16-43

16

ult
, if
eing
rmine

s, or

ate a

turn
, are

ta
tion

rned
ntly
COM identifies interfaces using a structure similar to the DCE UUID (in fact, identical
to a DCE UUID on Win32) known as an IID. As with CORBA, COM specifies that the
textual names of interfaces are only for convenience and need not be globally unique.

The COM interface identifier (IID and CLSID) are bidirectionally mapped to the
CORBA RepositoryId.

Mapping for COM Errors

COM will provide error information to clients only if an operation uses a return res
of type HRESULT. The COM HRESULT, if zero, indicates success. The HRESULT
nonzero, can be converted into an SCODE (the SCODE is explicitly specified as b
the same as the HRESULT on Win32). The SCODE can then be examined to dete
whether the call succeeded or failed. The error or success code, also contained within
the SCODE, is composed of a “facility” major code (13 bits on Win32 and 4 bits on
Win16) and a 16-bit minor code.

COM object developers are expected to use one of the predefined SCODE value
use the facility FACILITY_ITF and an interface specific minor code. SCODE values
can indicate either success codes or error codes. A typical use is to overload the
SCODE with a boolean value, using S_OK and S_FALSE success codes to indic
true or false return. If the COM server returns S_OK or S_FALSE, a CORBA
exception will not be raised and the value of the SCODE will be mapped as the re
value. This is because COM operations, which are defined to return an HRESULT
mapped to CORBA as returning an HRESULT.

Unlike CORBA, COM provides no standard way to return user-defined exception da
to the client. Also, there is no standard mechanism in COM to specify the comple
status of an invocation. In addition, it is not possible to predetermine what set of errors
a COM interface might return. Although the set of success codes that can be retu
from a COM operation must be fixed when the operation is defined, there is curre
no machine-readable way to discover what the set of valid success codes are.

COM exceptions have a straightforward mapping into CORBA. COM system error
codes are mapped to the CORBA standard exceptions. COM user-defined error codes
are mapped to CORBA user exceptions.

COM system error codes are defined with the FACILITY_NULL and FACILITY_RPC
facility codes. All FACILITY_NULL and FACILITY_RPC COM errors are mapped to
CORBA standard exceptions. Table 16-10 lists the mapping from COM
FACILITY_NULL exceptions to CORBA standard exceptions.

Table 16-10Mapping from COM FACILITY_NULL Error Codes to
CORBA Standard (System) Exceptions

COM CORBA

E_OUTOFMEMORY NO_MEMORY

E_INVALIDARG BAD_PARAM

E_NOTIMPL NO_IMPLEMENT
16-44 CORBA V2.2 February 1998

16

d

Table 16-11 lists the mapping from COM FACILITY_RPC exceptions to CORBA
standard exceptions. All FACILITY_RPC exceptions not listed in this table are mappe
to the new CORBA standard exception COM.

E_FAIL UNKNOWN

E_ACCESSDENIED NO_PERMISSION

E_UNEXPECTED UNKNOWN

E_ABORT UNKNOWN

E_POINTER BAD_PARAM

E_HANDLE BAD_PARAM

Table 16-11 Mapping from COM FACILITY_RPC Error Codes to CORBA Standard
(System) Exceptions

COM CORBA

RPC_E_CALL_CANCELED TRANSIENT

RPC_E_CANTPOST_INSENDCALL COMM_FAILURE

RPC_E_CANTCALLOUT_INEXTERNALCALL COMM_FAILURE

RPC_E_CONNECTION_TERMINATED NV_OBJREF

RPC_E_SERVER_DIED INV_OBJREF

RPC_E_SERVER_DIED_DNE INV_OBJREF

RPC_E_INVALID_DATAPACKET COMM_FAILURE

RPC_E_CANTTRANSMIT_CALL TRANSIENT

RPC_E_CLIENT_CANTMARSHAL_DATA MARSHAL

RPC_E_CLIENT_CANTUNMARSHAL_DATA MARSHAL

RPC_E_SERVER_CANTMARSHAL_DATA MARSHAL

RPC_E_SERVER_CANTUNMARSHAL_DATA MARSHAL

RPC_E_INVALID_DATA COMM_FAILURE

RPC_E_INVALID_PARAMETER BAD_PARAM

RPC_E_CANTCALLOUT_AGAIN COMM_FAILURE

RPC_E_SYS_CALL_FAILED NO_RESOURCES

RPC_E_OUT_OF_RESOURCES NO_RESOURCES

RPC_E_NOT_REGISTERED NO_IMPLEMENT

Table 16-10Mapping from COM FACILITY_NULL Error Codes to
CORBA Standard (System) Exceptions (Continued)
CORBA V2.2 COM to CORBA Data Type Mapping February 1998 16-45

16

is

 any),

 IDL
COM SCODEs, other than those previously listed, are mapped into CORBA user
exceptions and will require the use of the raises clause in OMG IDL. Since the
OMG IDL mapping from the Microsoft IDL and ODL is likely to be generated, this
not a burden to the average programmer. The following OMG IDL illustrates such a
user exception.

// OMG IDL
exception COM_ERROR { long hresult; };

When data conversion errors occur while mapping the data types between object
models (during a call from a CORBA client to a COM server), the system exception
DATA_CONVERSION will be raised.

Mapping for Operations

Operations defined for an interface are defined in Microsoft IDL and ODL within
interface definitions. The definition of an operation constitutes the operations
signature. An operation signature consists of the operation’s name, parameters (if
and return value. Unlike OMG IDL, Microsoft IDL and ODL does not allow the
operation definition to indicate the error information that can be returned.

Microsoft IDL and ODL parameter directional attributes ([in], [out], [in , out]) map
directly to OMG IDL (in , out , inout). Operation request parameters are
represented as the values of [in] or [inout] parameters in Microsoft IDL, and
operation response parameters are represented as the values of [inout] or [out]
parameters. An operation return result can be any type that can be defined in Microsoft
IDL/ODL, or void if a result is not returned. By convention, most operations are
defined to return an HRESULT. This provides a consistent way to return operation
status information.

When Microsoft ODL methods are mapped to OMG IDL, they undergo the following
transformations. First, if the last parameter is tagged with the Microsoft ODL keyword
retval, that argument will be used as the return type of the operation. If the last
parameter is not tagged with retval, then the signature is mapped directly to OMG
following the mapping rules for the data types of the arguments. Some example
mappings from COM methods to OMG IDL operations are shown in the following
code.

RPC_E_DISCONNECTED INV_OBJREF

RPC_E_RETRY TRANSIENT

RPC_E_SERVERCALL_REJECTED TRANSIENT

RPC_E_NOT_REGISTERED NO_IMPLEMENT

Table 16-11 Mapping from COM FACILITY_RPC Error Codes to CORBA Standard
(System) Exceptions (Continued)
16-46 CORBA V2.2 February 1998

16

MG
 is a
e

ace.
e
// Microsoft ODL
interface IFoo: IUnknown

{
HRESULT stringify ([in] VARIANT value,

 [out, retval] LPSTR * pszValue);

HRESULT permute([inout] short * value);

HRESULT tryPermute([inout] short * value,
 [out] long newValue);

};

In OMG IDL this becomes:

typedef long HRESULT;
interface IFoo: CORBA::Comp osite, CosLifeCycle: :LifeCycleObject

{
string stringify(in any value) raises (CO M_ERROR);

HRESULT permute(inout short value);

HRESULT tryPermute(inout short value, out long newValue)
};

Mapping for Properties

In COM, only Microsoft ODL and OLE Type Libraries provide support for describing
properties. Microsoft IDL does not support this capability. Any operations that can be
determined to be either a put/set or get accessor are mapped to an attribute in O
IDL. Because Microsoft IDL does not provide a means to indicate that something
property, a mapping from Microsoft IDL to OMG IDL will not contain mappings to th
attribute statement in OMG IDL.

When mapping between Microsoft ODL or OLE Type Libraries, properties in COM
are mapped in a similar fashion to that used to map attributes in OMG IDL to COM.
For example, the following Microsoft ODL statements define the attribute Profile for
the ICustomer interface and the read-only attribute Balance for the IAccount interf
The keywords [propput] and [propget] are used by Microsoft ODL to indicate that th
statement is defining a property of an interface.
CORBA V2.2 COM to CORBA Data Type Mapping February 1998 16-47

16

n is
 a
// Microsoft ODL
interface IAccount
 {
 [propget] HRESULT Balance([out, retval] float

* pfBalance);
 ...
 };

interface ICustomer
 {
 [propget] HRESULT Profile([out] CustomerData * Profile);
 [propput] HRESULT Profile([in] CustomerData * Profile);
 };

The definition of attributes in OMG IDL are restricted from raising any user-defined
exceptions. Because of this, the implementation of an attribute’s accessor functio
limited to raising system exceptions. The value of the HRESULT is determined by
mapping of the CORBA exception, if any, that was raised.

16.3.11 Mapping for Read-Only Attributes

In Microsoft ODL, an attribute preceded by the keyword [propget] is interpreted as
only supporting an accessor function, which is used to retrieve the value of the
attribute. In the example above, the mapping of the attribute Balance is mapped to the
following statements in OMG IDL.

// OMG IDL
interface Account

{
readonly attri bute float Balance;
...
};

16.3.12 Mapping for Read-Write Attributes

In Microsoft ODL, an attribute preceded by the keyword [propput] is interpreted as
only supporting an accessor function which is used to set the value of the attribute. In
the previous example, the attribute Profile is mapped to the following statements in
OMG IDL.
16-48 CORBA V2.2 February 1998

16

t

BA,
thout

 C++
// OMG IDL
struct CustomerData

{
CustomerId Id;
string Name;
string SurName;
};

interface Customer
{
attribute CustomerData Profile;
...
};

Since CORBA does not have the concept of write-only attributes, the mapping must
assume that a property that has the keyword [propput] is mapped to a single read-write
attribute, even if there is no associated [propget] method defined.

Inheritance Mapping

Both CORBA and COM have similar models for individual interfaces. However, the
models for inheritance and multiple interfaces are different.

In CORBA, an interface can singly or multiply inherit from other interfaces, and in
language bindings supporting typed object references, widening and narrowing suppor
convert object references as allowed by the true type of that object.

However, there is no built-in mechanism in CORBA to access interfaces without an
inheritance relationship. The run-time interfaces of an object (for example,
CORBA::Object::is_a , CORBA::Object::get_interface) use a
description of the object’s principle type, which is defined in OMG IDL. In terms of
implementation, CORBA allows many ways in which implementations of interfaces
can be structured, including using implementation inheritance.

In COM V2.0, interfaces can have single inheritance. However, as opposed to COR
there is a standard mechanism by which an object can have multiple interfaces (wi
an inheritance relationship between those interfaces) and by which clients can query
for these at run-time. (It defines no common way to determine if two interface
references refer to the same object, or to enumerate all the interfaces supported by an
entity.)

An observation about COM is that some COM objects have a required minimum set of
interfaces that they must support. This type of statically-defined interface relation is
conceptually equivalent to multiple inheritance; however, discovering this relationship
is only possible if ODL or type libraries are always available for an object.

COM describes two main implementation techniques: aggregation and delegation.
style implementation inheritance is not possible.
CORBA V2.2 COM to CORBA Data Type Mapping February 1998 16-49

16

IDL

 not

faces
h in

When COM interfaces are mapped into CORBA, their inheritance hierarchy (which
can only consist of single inheritance) is directly mapped into the equivalent OMG
inheritance hierarchy.1

Note that although it is possible, using Microsoft ODL to map multiple COM
interfaces in a class to OMG IDL multiple inheritance, the necessary information is
available for interfaces defined in Microsoft IDL. As such, this specification does not
define a multiple COM interface to OMG IDL multiple inheritance mapping. It is
assumed that future versions of COM will merge Microsoft ODL and Microsoft IDL,
at which time the mapping can be extended to allow for multiple COM interfaces to be
mapped to OMG IDL multiple inheritance.

CORBA::Composite is a general-purpose interface used to provide a standard
mechanism for accessing multiple interfaces from a client, even though those inter
are not related by inheritance. Any existing ORB can support this interface, althoug
some cases a specialized implementation framework may be desired to take advantage
of this interface.

module CORBA // PIDL
{
interface Composite

{
Object query_interface(in RepositoryId whichOne);

};
interface Composable:Composite

{
Composite primary_interface();
};

};

The root of a COM interface inheritance tree, when mapped to CORBA, is multiply
inherited from CORBA::Composable and
CosLifeCycle::LifeCycleObject . Note that the IUnknown interface is not
surfaced in OMG IDL. Any COM method parameters that require IUnknown interfaces
as arguments are mapped, in OMG IDL, to object references of type
CORBA::Object .

// Microsoft IDL or ODL
interface IFoo: IUnknown
{
HRESULT inquire([in] IUnknown *obj);
};

1. This mapping fails in some cases, for example, if operation names are the same.
16-50 CORBA V2.2 February 1998

16

te
In OMG IDL, this becomes:

interface IFoo: CORBA::Comp osable, CosLifeCyc le::Li feCycleObject
{
void inquire(in Object obj);
};

Type Library Mapping

Name spaces within the OLE Type Library are conceptually similar to CORBA
interface repositories. However, the CORBA interface repository looks, to the client, to
be one unified service. Type libraries, on the other hand, are each stored in a separa
file. Clients do not have a unified, hierarchical interface to type libraries.

The following table defines the mapping between equivalent CORBA and COM
interface description concepts. Where there is no equivalent, the field is left blank.

Using this mapping, implementations must provide the ability to call
Object::get_interface on CORBA object references to COM objects to
retrieve an InterfaceDef. When CORBA objects are accessed from COM,
implementations may provide the ability to retrieve the ITypeInfo for CORBA object
interface using the IProvideClassInfo COM interface.

Table 16-12CORBA Interface Repository to OLE Type Library Mappings

CORBA COM

TypeCode TYPEDESC

Repository

ModuleDef ITypeLib

InterfaceDef ITypeInfo

AttributeDef VARDESC

OperationDef FUNCDESC

ParameterDef ELEMDESC

TypeDef ITypeInfo

ConstantDef VARDESC

ExceptionDef
CORBA V2.2 COM to CORBA Data Type Mapping February 1998 16-51

16
16-52 CORBA V2.2 February 1998

Mapping: OLE Automation and
CORBA 17

ct
d by

f
This chapter describes the bidirectional data type and interface mapping between OLE
Automation and CORBA.

Microsoft’s Object Description Language (ODL) is used to describe Automation obje
model constructs. However, many constructs supported by ODL are not supporte
Automation. Therefore, this specification is confined to the Automation-compatible
ODL constructs.

As described in the Interworking Architecture chapter, many implementation choices
are open to the vendor in building these mappings. One valid approach is to generate
and compile mapping code, an essentially static approach. Another is to map objects
dynamically.

Although some features of the CORBA-Automation mappings address the issue o
inverting a mapping back to its original platform, this specification does not assume
the requirement for a totally invertible mapping between Automation and CORBA.

Contents

This chapter contains the following sections.

Section Title Page

“Mapping CORBA Objects to OLE Automation” 17-2

“Automation Objects as CORBA Objects” 17-38

“Older OLE Automation Controllers” 17-49

“Example Mappings” 17-50
 CORBA V2.2 February 1998 17-1

17

s

iew

17.1 Mapping CORBA Objects to OLE Automation

17.1.1 Architectural Overview

There are seven main pieces involved in the invocation of a method on a remote
CORBA object: the OLE Automation Controller; the COM Communication
Infrastructure; the OLE system registry; the client-side Automation View; the
operation’s type information; the Object Request Broker; and the CORBA object’s
implementation. These are illustrated in Figure 17-1 (the call to the Automation View
could be a call in the same process).

Figure 17-1 CORBA Object Architectural Overview

The Automation View is an OLE Automation server with a dispatch interface that is
isomorphic to the mapped OMG IDL interface. We call this dispatch interface an
Automation View Interface. The Automation server encapsulates a CORBA object
reference and maps incoming OLE Automation invocations into CORBA invocation
on the encapsulated reference. The creation and storage of the type information is not
specified.

There is a one-to-one correspondence between the methods of the Automation V
Interface and operations in the CORBA interface. The Automation View Interface’s
methods translate parameters bidirectionally between a CORBA reference and an OLE
reference.

OLE Automation
Controller

System

Automation

ORB

Object
Implementation

TypeInfo

COM

Registry

Communication

View
17-2 CORBA V2.2 February 1998

17

ere

Figure 17-2 Methods of the Automation View Interface delegate to the CORBA Stub

17.1.2 Main Features of the Mapping
• OMG IDL attributes and operations map to Automation properties and methods

respectively.

• OMG IDL interfaces map to Automation interfaces.

• The OMG IDL basic types map to corresponding basic types in Automation wh
possible. Since Automation supports a limited set of data types, some OMG IDL
types cannot be mapped directly. Specifically:

• OMG IDL constructed types such as structs and unions map to Automation
interfaces with appropriate attributes and operations. User exceptions are mapped
in the same way.

• OMG IDL unsigned types map as closely as possible to Automation types, and
overflow conditions are identified.

• OMG IDL sequences and arrays map to Automation Safearrays.

17.1.3 Mapping for Interfaces

A CORBA interface maps in a straightforward fashion to an Automation View
Interface. For example, the following CORBA interface

Client Space Object Space

CORBA Stub
MyInterface methods CORBA Skeleton

MyInterface methods

Automation View

- Interface DIMyInterface

Client App

Real CORBA Object
Interface MyInterface

pDIMyInterface->In voke(A_METHOD...

Network
CORBA V2.2 Mapping CORBA Objects to OLE Automation February 1998 17-3

17

t

t

L

e
module MyModule // OMG IDL
{
interface MyInterface
{
// Attributes and operations;
...
};
};

maps to the following Automation View Interface:

[odl, dual, uuid(...)]
interface DIMyModule_MyInterface: IDispatch
{
// Properties and methods;
...
};

The interface IMyModule_account is an OLE Automation Dual Interface. A Dual
Interface is a COM vtable-based interface which derives from IDispatch, meaning tha
its methods can be late-bound via IDispatch::Invoke or early-bound through the
vtable portion of the interface. Thus, IMyModule_account contains the methods of
IDispatch as well as separate vtable-entries for its operations and property get/se
methods.

Mapping for Attributes and Operations

An OMG IDL operation maps to an isomorphic Automation operation. An OMG ID
attribute maps to an ODL property, which has one method to get and one to set the
value of the property. An OMG IDL readonly attribute maps to an OLE property,
which has a single method to get the value of the property.

The order of the property and method declarations in the mapped Automation interfac
follows the rules described in “Ordering Rules for the CORBA->OLE Automation
Transformation” part of “Detailed Mapping Rules” on page 15-13.

For example, given the following CORBA interface,

interface account // OMG IDL
{
attribute float balance;
readonly attri bute string owner;
void makeLodgement(in float amount, out float balance);
void makeWithdrawal(in float amount, out float balance);
};

the corresponding Automation View Interface is:
17-4 CORBA V2.2 February 1998

17

9,

 in

cro

e
 the

 of
[odl, dual, uuid(...)]
interface DIaccount: IDispatch
{ // ODL

HRESULT makeLodgement ([in] float amount,
 [out] float * balance,

[optional, out] VARIANT * excep_OBJ);
HRESULT makeWithdrawal ([in] float amount,

[out] float * balance,
[optional, out] VARIANT * excep_OBJ);

[propget] HRESULT balance ([retval,out] float *
[IT_retval];

[propput] HRESULT balance ([in] float balance);
[propget] HRESULT owner ([retval,out] BSTR * IT_retval);

}

OMG IDL in , out , and inout parameters map to ODL [in] , [out] , and
[in,out] parameters, respectively. “Mapping for Basic Data Types” on page 17-
explains the mapping for basic data types. The mapping for CORBA oneway
operations is the same as for normal operations.

An operation of a Dual Interface always returns HRESULT, but the last argument
the operation’s signature may be tagged [retval,out] . An argument tagged in this
fashion is considered syntactically to be a return value. Automation controller ma
languages map this special argument to a return value in their language syntax. Thus, a
CORBA operation’s return value is mapped to the last argument in the corresponding
operation of the Automation View Interface.

Additional, Optional Parameter

All operations on the Automation View Interface have an optional out parameter of
type VARIANT. The optional parameter returns explicit exception information in the
context of each property set/get or method invocation. See “Mapping CORBA
Exceptions to Automation Exceptions” on page 17-29 for a detailed discussion of how
this mechanism works.

If the CORBA operation has no return value, then the optional parameter is the last
parameter in the corresponding Automation operation. If the CORBA operation does
have a return value, then the optional parameter appears directly before the return valu
in the corresponding Automation operation, since the return value must always be
last parameter.

Mapping for OMG IDL Single Inheritance

A hierarchy of singly-inherited OMG IDL interfaces maps to an identical hierarchy
Automation View Interfaces.

For example, given the interface account and its derived interface
checkingAccount defined as follows,
CORBA V2.2 Mapping CORBA Objects to OLE Automation February 1998 17-5

17

ing

on
module MyModule {// OMG IDL
interface account {
attribute float balance;
readonly attri butestr ing owner;
void makeLodgement (in float amount, out float

balance);
void makeWithdrawal (in float amount, out float

theBalance);
};
interface checking Acco unt: account {

readonly attri bute float overdraf tLimit;
boolean orderChequ eBook ();

};
};

the corresponding Automation View Interfaces are as follows

// ODL
[odl, dual, uuid(20c31e22-dcb2-aa79-1dc4-34a4ad297579)]
interface DIMyModule_account: IDispatch {

HRESULT makeLodgement ([in] float amount,
[out] float * balance,
[optional, out] VARIANT * excep_OBJ);

HRESULT makeWithdrawal ([in] float amount,
[out] float * balance,
[optional, out] VARIANT * excep_OBJ);

[propget] HRESULT balance ([retval,out] float *
[IT_retval];

[propput] HRESULT balance ([in] float balance);
[propget] HRESULT owner ([retval,out] BSTR * IT_retval);

};

[odl, dual, uuid(ffe752b2-a73f-2a28-1de4-21754778ab4b)]
interface DIMyModule_checkingAccount: IMyModule_account {

HRESULT orderChequeBook(
[optional, out] VARIANT * excep_OBJ,
[retval,out] short * IT_retval);

[propget] HRESULT overdraftLimit (
[retval,out] short * IT_retval);

};

Mapping of OMG IDL Multiple Inheritance

Automation does not support multiple inheritance; therefore, a direct mapping of a
CORBA inheritance hierarchy using multiple inheritance is not possible. This mapp
splits such a hierarchy, at the points of multiple inheritance, into multiple singly-
inherited strands.

The mechanism for determining which interfaces appear on which strands is based
a left branch traversal of the inheritance tree. At points of multiple inheritance, the
interface that is first in an ordering of the parent interfaces is included in what we call
17-6 CORBA V2.2 February 1998

17

ider

d of
rs,

 they

 of
the main strand, and other interfaces are assigned to other, secondary strands. (The
ordering of parent interfaces is explained later in this section.) For example, cons
the CORBA interface hierarchy, shown in Figure 17-3.

Figure 17-3 A CORBA Interface Hierarchy Using Multiple Inheritance

We read this hierarchy as follows:

• B and C derive from A

• D derives from B and C

• E derives from D

This CORBA hierarchy maps to the following two Automation single inheritance
hierarchies, shown in Figure 17-4.

Figure 17-4 The Mapped Automation Hierarchy Splits at the Point of Multiple Inheritance

Consider the multiple inheritance point D, which inherits from B and C. Following the
left strand B at this point, our main strand is A-B-D and our secondary strand is A-C.
However, to access all of the object’s methods, a controller would have to navigate
among these disjoint strands via QueryInterface. While such navigation is expecte
COM clients and might be an acceptable requirement of C++ automation controlle
many Automation controller environments do not support such navigation.

To accommodate such controllers, at points of multiple inheritance we aggregate the
operations of the secondary strands into the interface of the main strand. In our
example, we add the operations of C to D (A’s operations are not added because
already exist in the main strand). Thus, D has all the methods of the hierarchy and,
more important, an Automation controller holding a reference to D can access all
the methods of the hierarchy without calling QueryInterface.

A

B C

D

E

A

B C

D

E

(+ methods of C)

A

CORBA V2.2 Mapping CORBA Objects to OLE Automation February 1998 17-7

17

ly

t

e

In order to have a reliable, deterministic, portable way to determine the inheritance
chain at points of multiple inheritance, an explicit ordering model must be used.
Furthermore, to achieve interoperability of virtual function tables for dual interfaces, a
precise model for ordering operations and attributes within an interface must be
specified.

Within an interface, attributes should appear before operations and both should be
ordered lexicographically by bytes in machine-collating sequence. For non-readon
attributes, the [propget] method immediately precedes the [propput] method.
This ordering determines the position of the vtable portion of a Dual Interface. At
points of multiple inheritance, the base interfaces should be ordered from left to righ
lexicographically by bytes in machine-collating order. (In all cases, the ordering is
based on ISO Latin-1.) Thus, the leftmost branch at a point of multiple inheritance is
the one ordered first among the base classes, not necessarily the one listed first in the
inheritance declaration.

Continuing with the example, the following OMG IDL code expresses a hierarchy
conforming to Figure 17-3 on page 17-7.

// OMG IDL
module MyModule {

interface A {
void aOp1();
void zOp1();

};
interface B: A{

void aOp2();
void zOp2();

};
interface C: A {

void aOp3();
void zOp3();

};
interface D: C, B{

void aOp4();
void zOp4();

};
};

The OMG IDL maps to the following two Automation View hierarchies. Note that th
ordering of the base interfaces for D has been changed based on our ISO Latin-1
alphabetic ordering model and that operations from C are added to interface D.
17-8 CORBA V2.2 February 1998

17

e D’s
 C

 ODL
// ODL
// strand 1: A-B-D
[odl, dual, uuid(8db15b54-c647-553b-1dc9-6d098ec49328)]
interface DIMyModule_A: IDispatch {

HRESULT aOp1([optional,out] VARIANT * excep_OBJ);
HRESULT zOp1([optional,out] VARIANT * excep_OBJ);

}
[odl, dual, uuid(ef8943b0-cef8-21a5-1dc0-37261e082e51)]
interface DIMyModule_B: DIMyModule_A {

HRESULT aOp2([optional,out] VARIANT * excep_OBJ);
HRESULT zOp2([optional,out] VARIANT * excep_OBJ);

}
[odl, dual, uuid(67528a67-2cfd-e5e3-1de2-d59a444fe593)]
interface DIMyModule_D: DIMyModule_B {

// C’s aggregated operations
HRESULT aOp3([optional,out] VARIANT * excep_OBJ);
HRESULT zOp3([optional,out] VARIANT * excep_OBJ);
// D’s normal operations
HRESULT aOp4([optional,out] VARIANT * excep_OBJ);
HRESULT zOp4([optional,out] VARIANT * excep_OBJ);

}

// strand 2: A-C
[odl, dual, uuid(327885f8-ae9e-19c0-1dd5-d1ea05bcaae5)]
interface DIMyModule_C: DIMyModule_A {

HRESULT aOp3([optional,out] VARIANT * excep_OBJ);
HRESULT zOp3([optional,out] VARIANT * excep_OBJ);

}

Also note that the repeated operations of the aggregated strands are listed befor
operations. The ordering of these operations obeys the rules for operations within
and is independent of the ordering within D.

17.1.4 Mapping for Basic Data Types

Basic Automation Types

Table 9 lists the basic data types supported by OLE Automation. The table contains
fewer data types than those allowed by ODL because not all types recognized by
can be handled by the marshaling of IDispatch interfaces and by the implementation of
ITypeInfo::Invoke . Arguments and return values of operations and properties
are restricted to these basic types.

Table 17-9OLE Automation Basic Types

Type Description

boolean True = -1, False = 0.

double 64-bit IEEE floating-point number.
CORBA V2.2 Mapping CORBA Objects to OLE Automation February 1998 17-9

17
The formal mapping of CORBA types to Automation types is shown in Table 17-9.

float 32-bit IEEE floating-point number.

long 32-bit signed integer.

short 16-bit signed integer.

void Allowed only as return type for a function, or in a
function parameter list to indicate no parameters.

BSTR Length-prefixed string. Prefix is an integer.

CURRENCY 8-byte fixed-point number.

DATE 64-bit floating-point fractional number of days since
December 30, 1899.

SCODE Built-in error type. In Win16, does not include additional
data contained in an HRESULT. In Win32, identical to
HRESULT.

IDispatch * Pointer to IDispatch interface. From the viewpoint of the
mapping, an IDispatch pointer parameter is an object
reference.

IUnknown * Pointer to IUnknown interface. (Any OLE interface can be
represented by its IUnknown interface.)

Table 17-9OMG CORBA to OLE Automation Data Type Mappings

CORBA Type OLE Automation Type

boolean boolean

char short

double double

float float

long long

octet short

short short

unsigned long long

unsigned short long

Type Description
17-10 CORBA V2.2 February 1998

17

e of

17.1.5 Special Cases of Basic Data Type Mapping

An operation of an Automation View Interface must perform bidirectional translation
of the Automation and CORBA parameters and return types. It must map from
Automation to CORBA for in parameters and from CORBA to Automation for out
parameters. The translation logic must handle the special conditions described in the
following sections.

Translating Automation long to CORBA unsigned long

If the Automation long parameter is a negative number, then the View operation should
return the HRESULT DISP_E_OVERFLOW.

Translating CORBA unsigned long to Automation long

If the CORBA::ULong parameter is greater than the maximum value of an
Automation long, then the View operation should return the HRESULT
DISP_E_OVERFLOW.

Translating Automation long to CORBA unsigned short

If the Automation long parameter is negative or is greater than the maximum valu
a CORBA::UShort , then the View operation should return the HRESULT
DISP_E_OVERFLOW.

Translating Automation boolean to CORBA boolean and CORBA
boolean to Automation boolean

True and false values for CORBA boolean are, respectively, one (1) and zero (0). True
and false values for Automation boolean are, respectively, negative one (-1) and zero
(0). Therefore, true values need to be adjusted accordingly.

17.1.6 Mapping for Strings

An OMG IDL bounded or unbounded string maps to an OLE BSTR. For example,
given the OMG IDL definitions,

// OMG IDL
string sortCode<20>;
string name;

the corresponding ODL code is
CORBA V2.2 Mapping CORBA Objects to OLE Automation February 1998 17-11

17

// ODL
BSTRsortCode;
BSTRname;

On Win32 platforms, a BSTR maps to a Unicode string. The use of BSTR is the only
support for internationalization of strings defined at this time.

17.1.7 A Complete IDL to ODL Mapping for the Basic Data Types

There is no requirement that the OMG IDL code expressing the mapped CORBA
interface actually exists. Other equivalent expressions of CORBA interfaces, such as
the contents of an Interface Repository, may be used. Moreover, there is no
requirement that ODL code corresponding to the CORBA interface be generated.

However, OMG IDL is the appropriate medium for describing a CORBA interface and
ODL is the appropriate medium for describing an Automation View Interface.
Therefore, the following OMG IDL code describes a CORBA interface that exercises
all of the CORBA base data types in the roles of attribute, operation in parameter,
operation out parameter, operation inout parameter, and return value. The OMG
IDL code is followed by ODL code describing the Automation View Interface that
would result from a conformant mapping.

module MyModule // OMG IDL
{
interface T ypesTest
{

attribute boolean boolT est;
attribute char charT est;
attribute double doubleT est;
attribute float floatTest;
attribute long longTest;
attribute octet octetTest;
attribute short shortTest;
attribute string stringTest;
attribute string<10>stringnTest;
attribute unsigned long ulongTest;
attribute unsigned sh ort us hortTest;

readonly attri bute short readonlyShortT est;

// Sets all the attri butes
boolean setAll (

in boolean boolT est,
in char charT est,
in double doubleT est,
in float floatTest,
in long longT est,
in octet octetTest,
in short shortT est,
17-12 CORBA V2.2 February 1998

17
in string str ingTest,
in string<10> str ingnTest,
in unsigned long ulongT est,
in unsigned short ushortTest);

// Gets all the attributes
boolean getAll (

out boolean boolT est,
out char charTest,
out double do ubleTest,
out float floatTest,
out long longT est,
out octet octetTest,
out short shortT est,
out string stringTest,
out string<10> stringnTest,
out unsigned long ulongT est,
out unsigned short ushortTest);

boolean setAndIncrement (
inout boolean boolT est,
inout char charTest,
inout double do ubleTest,
inout float floatTest,
inout long longTest,
inout octet octetTest,
inout short shortT est,
inout string str ingTest,
inout string<10> str ingnTest,
inout unsigned long ulongT est,
inout unsigned short ushortTest);

boolean boolReturn ();
char charReturn ();
double doubleReturn();
float f loatReturn();
long longReturn ();
octet octetReturn();
short shortReturn ();
string str ingReturn();
string<10> str ingnReturn();
unsigned long ulongReturn ();
unsigned shortushortReturn();

}; // End of Interface T ypesTest

}; // End of Module MyModule

The corresponding ODL code is as follows.
CORBA V2.2 Mapping CORBA Objects to OLE Automation February 1998 17-13

17
[odl, dual, uuid(180d4c5a-17d2-a1a8-1de1-82e7a9a4f93b)]
interface DIMyModule_TypesTest: IDispatch {

HRESULT boolReturn ([optional,out] VARIANT * excep_OBJ,
[retval,out] short *IT_retval);

HRESULT charReturn ([optional,out] VARIANT * excep_OBJ,
[retval,out] short *IT_retval);

HRESULT doubleReturn ([optional,out] VARIANT * excep_OBJ,
[retval,out] double *IT_retval);

HRESULT floatReturn ([optional,out] VARIANT * excep_OBJ,
[retval,out] float *IT_retval);

HRESULT getAll ([out] short *boolTest,
[out] short *charTest,
[out] double *doubleTest,
[out] float *floatTest,
[out] long *longTest,
[out] short *octetTest,
[out] short *shortTest,
[out] BSTR stringTest,
[out] BSTR *stringnTest,
[out] long *ulongTest,
[out] long *ushortTest,
[optional,out] VARIANT * excep_OBJ,
[retval,out] short * IT_retval);

HRESULT longReturn ([optional,out] VARIANT * excep_OBJ,
[retval,out] long *IT_retval);

HRESULT octetReturn ([optional,out] VARIANT * excep_OBJ,
[retval,out] short *IT_retval);

HRESULT setAll ([in] short boolTest,
[in] short charTest,
[in] double doubleTest,
[in] float floatTest,
[in] long longTest,
[in] short octetTest,
[in] short shortTest,
[in] BSTR stringTest,
[in] BSTR stringnTest,
[in] long ulongTest,
[in] long ushortTest,
[optional,out] VARIANT * excep_OBJ,
[retval,out] short * IT_retval);

HRESULT setAndIncrement ([in,out] short *boolTest,
[in,out] short *charTest,
[in,out] double *doubleTest,
[in,out] float *floatTest,
[in,out] long *longTest,
[in,out] short *octetTest,
[in,out] short *shortTest,
[in,out] BSTR *stringTest,
[in,out] BSTR *stringnTest,
[in,out] long *ulongTest,
[in,out] long *ushortTest,
17-14 CORBA V2.2 February 1998

17
[optional,out] VARIANT * excep_OBJ,
[retval,out] short *IT_retval);

HRESULT shortReturn ([optional,out] VARIANT * excep_OBJ,
[retval,out] short *IT_retval);

HRESULT stringReturn ([optional,out] VARIANT * excep_OBJ,
[retval,out] BSTR *IT_retval);

HRESULT stringnReturn ([optional,out] VARIANT *
exep_OBJ,

[retval,out] BSTR *IT_retval);
HRESULT ulongReturn ([optional,out] VARIANT * excep_OBJ,

[retval,out] long *IT_retval);
HRESULT ushortReturn ([optional,out] VARIANT * excep_OBJ,

[retval,out] long *IT_retval);
[propget] HRESULT boolTest([retval,out] short *IT_retval);
[propput] HRESULT boolTest([in] short boolTest);
[propget] HRESULT charTest([retval,out] short *IT_retval);
[propput] HRESULT charTest([in] short charTest);
[propget] HRESULT doubleTest([retval,out] double

*IT_retval);
[propput] HRESULT doubleTest([in] double doubleTest);
[propget] HRESULT floatTest([retval,out] float

*IT_retval);
[propput] HRESULT floatTest([in] float floatTest);
[propget] HRESULT longTest([retval,out] long *IT_retval);
[propput] HRESULT longTest([in] long longTest);
[propget] HRESULT octetTest([retval,out] short

*IT_retval);
[propput] HRESULT octetTest([in] short octetTest);
[propget] HRESULT readonlyShortTest([retval,out] short

*IT_retval);
[propget] HRESULT shortTest([retval,out] short

*IT_retval);
[propput] HRESULT shortTest([in] short shortTest);
[propget] HRESULT stringTest([retval,out] BSTR

*IT_retval);
[propput] HRESULT stringTest([in] BSTR stringTest);
[propget] HRESULT stringnTest([retval,out] BSTR

*IT_retval);
[propput] HRESULT stringnTest([in] BSTR stringnTest);
[propget] HRESULT ulongTest([retval,out] long *IT_retval);
[propput] HRESULT ulongTest([in] long ulongTest);
[propget] HRESULT ushortTest([retval,out] long

*IT_retval);
[propput] HRESULT ushortTest([in] long ushortTest);

}

CORBA V2.2 Mapping CORBA Objects to OLE Automation February 1998 17-15

17

17.1.8 Mapping for Object References

Type Mapping

The mapping of an object reference as a parameter or return value can be fully
expressed by the following OMG IDL and ODL code. The OMG IDL code defines an
interface Simple and another interface that references Simple as an in parameter, as an
out parameter, as an inout parameter, and as a return value. The ODL code
describes the Automation View Interface that results from an accurate mapping.

module MyModule // OMG IDL
{
// A simple object we can use for testing object refere nces
interface Simple
{

attribute short shortTest;
};

interface ObjRefTest
{

attribute Simple simpleTest;
Simple simpleOp(in Simple inTest,

 out Simple outT est,
 inout Simple inoutT est);

};

}; // End of Module MyModule

The ODL code for the Automation View Dispatch Interface follows.

[odl, dual, uuid(c166a426-89d4-f515-1dfe-87b88727b4ea)]
interface DIMyModule_Simple: IDispatch
{

[propget] HRESULT shortTest([retval, out] short *
IT_retval);

[propput] HRESULT shortTest([in] short shortTest);
}

[odl, dual, uuid(04843769-120e-e003-1dfd-6b75107d01dd)]
interface DIMyModule_ObjRefTest: IDispatch
{

HRESULT simpleOp([in]DIMyModule_Simple *inTest,
[out] DIMyModule_Simple **outTest,
[in,out] DIMyModule_Simple **inoutTest,
[optional, out] VARIANT * excep_OBJ,
[retval, out] DIMyModule_Simple ** IT_retval);

[propget] HRESULT simpleTest([retval, out]
DIMyModule_Simple **
IT_retval);
17-16 CORBA V2.2 February 1998

17

s
phic
t a

ct,

r

[propput] HRESULT simpleTest([in] DIMyModule_Simple
*simpleTest);

}

Object Reference Parameters and IForeignObject

As described in the Interworking Architecture chapter, Automation and COM View
must expose the IForeignObject interface in addition to the interface that is isomor
to the mapped CORBA interface. IForeignObject provides a mechanism to extrac
valid CORBA object reference from a View object.

Consider an Automation View object B, which is passed as an in parameter to an
operation M in View A. Operation M must somehow convert View B to a valid
CORBA object reference. In Figure 17-1, Automation Views expose IForeignObje
as required of all Views.

Figure 17-1 Partial Picture of the Automation View

The sequence of events involving IForeignObject::GetForeignReference
is as follows:

• The client calls Automation-View-A::M , passing an IDispatch-derived pointe
to Automation-View-B.

• Automation-View-A::M calls IDispatch::QueryInterface for
IForeignObject.

• Automation-View-A::M calls IForeignObject::GetForeignReference to
get the reference to the CORBA object of type B.

• Automation-View-A::M calls CORBA-Stub-A::M with the reference, narrowed to
interface type B, as the object reference in parameter.

Automation View
Object

IDispatch

IForeignObject

IUnknown

...
CORBA V2.2 Mapping CORBA Objects to OLE Automation February 1998 17-17

17

 as a

turn

he
ot
r than

d type
17.1.9 Mapping for Enumerated Types

CORBA enums map to Automation enums. Consider the following example

// OMG IDL
module MyModule {

enum color {red, green, blue};
interface foo {

void op1(in color col);
};

};

which maps to the following ODL

// ODL
typedef enum {red, green, blue} MyModule_color;

[odl,dual,uuid(7d1951f2-b5d3-8b7c-1dc3-aa0d5b3d6a2b)]
interface DIMyModule_foo: IDispatch {

HRESULT op1([in] MyModule_color col, [optional,out]
VARIANT * excep_OBJ);

}

Internally, OLE Automation maps enum parameters to the platform’s integer type. (For
Win32, the integer type is equivalent to a long.) If the number of elements in the
CORBA enum exceeds the maximum value of an integer, the condition should be
trapped at some point during static or dynamic construction of the Automation View
Interface corresponding to the CORBA interface in which the enum type appears
parameter. If the overflow is detected at run-time, the Automation View operation
should return the HRESULT DISP_E_OVERFLOW.

If an actual parameter applied to the mapped parameter in the Automation View
Interface exceeds the maximum value of the enum, the View operation should re
the HRESULT DISP_E_OVERFLOW.

Since all Automation controllers do not promote the ODL definition of enums into the
controller scripting language context, vendors may wish to generate a header file
containing an appropriate enum declaration or a set of constant declarations for t
client language. Since the method for doing so is an implementation detail, it is n
specified here. However, it should be noted that some languages type enums othe
as longs, introducing the possibility of conversion errors or faults. If such problems
arise, it is best to use a series of constant declarations rather than an enumerate
declaration in the client header file.

For example, the following enum declaration

enum color {red, green, blue, yellow, white};// OMG IDL

could be translated to the following Visual Basic code:

' Visual Basic
Global const color_red = 0
17-18 CORBA V2.2 February 1998

17

n the

ys are

he

rays.

RBA

eyond

and a
f the
e
Global const color_green = 1
Global const color_blue = 2
Global const color_yellow = 3
Global const color_white = 4

In this case the default naming rules for the enum values should follow those for
interfaces. That is, the name should be fully scoped with the names of enclosing
modules or interfaces. (See “Naming Conventions for View Components” on
page 15-29.)

If the enum is declared at global OMG IDL scope, as in the previous example, the
name of the enum should also be included in the constant name.

17.1.10 Mapping for Arrays and Sequences

OLE Automation methods may have array parameters called Safearrays. Safearra
one or multidimensional arrays whose elements are of any of the basic Automation
types. The following ODL syntax describes an array parameter:

SAFEARRAY (elementtype) arrayname

A Safearray may be passed by reference, using the following syntax:

SAFEARRAY (elementtype) *arrayname

Safearrays have a header which describes certain characteristics of the array including
bounding information, and are thus relatively safe for marshaling. Note that the ODL
declaration of Safearrays does not include bound specifiers. OLE provides an API for
allocating and manipulating Safearrays, which includes a procedure for resizing t
array.

IDL arrays and sequences, both bounded and unbounded, are mapped to Safear
Bounded sequences are mapped to Safearrays with the same boundaries; they do not
grow dynamically up to the bounded size but are statically allocated to the bounded
size. Unbounded sequences are mapped to Safearrays with some default bound.
Attempts to access past the boundary result in a resizing of the Safearray.

Since ODL Safearray declarations contain no boundary specifiers, the bounding
knowledge is contained in the Automation View. A method of the Automation View
Interface, which has a Safearray as a parameter, has the intelligence to handle the
parameter properly. When Safearrays are submitted as in parameters, the View
method uses the Safearray API to dynamically repackage the Safearray as a CO
array, bounded sequence, or unbounded sequence. When Safearrays are out
parameters, the View method uses the Safearray API to dynamically repackage the
CORBA array or sequence as a Safearray. When an unbounded sequence grows b
the current boundary of the corresponding Safearray, the View’s method uses the
Safearray API to increase the size of the array by one allocation unit. The size of an
allocation unit is unspecified. If a Safearray is mapped from a bounded sequence
client of the View attempts to write to the Safearray past the maximum element o
bounded sequence, the View operation considers this a run-time error and returns th
HRESULT DISP_E_OVERFLOW.
CORBA V2.2 Mapping CORBA Objects to OLE Automation February 1998 17-19

17

f
f

to do
Multidimensional OMG IDL arrays map to multidimensional Safearrays. The order o
dimensions in the OMG IDL array from left to right corresponds to ascending order o
dimensions in the Safearray.

17.1.11 Mapping for CORBA Complex Types

CORBA constructed types—Structs, Unions and Exceptions—cannot be mapped
directly to ODL constructed types, as Automation does not support them as valid
parameter types. Instead, constructed types are mapped to Pseudo-Automation
Interfaces. The objects that implement Pseudo-Automation Interfaces are called
pseudo-objects. Pseudo-objects do not expose the IForeignObject interface.

Pseudo-Automation Interfaces are Dual Interfaces, but do not derive directly from
IDispatch as do Automation View Interfaces. Instead, they derive from
DIForeignComplexType:

// ODL
[odl, dual, uuid(...)]
interface DIForeignComplexType: IDispatch
{
[propget] HRESULT INSTANCE_repositoryId([retval,out]
BSTR *IT_retval);
HRESULT INSTANCE_clone([in] IDispatch *pDispatch,
[retval, out] IDispatch **IT_retval);
}

The UUID for DIForeignComplexType is:

{A8B553C0-3B72-11cf-BBFC-444553540000}

This interface can also be implemented as generic (nondual) Automation Interface, in
which case it is named DForeignComplexType and its UUID is:

{E977F900-3B75-11cf-BBFC-444553540000}

The purpose of the DIForeignComplexType::INSTANCE_clone method is to
provide the client programmer a way to duplicate a complex type. INSTANCE_clone
creates a new instance of the type with values identical to the input instance.
Therefore, INSTANCE_clone does not simply duplicate a reference to a complex
type.

The purpose of the INSTANCE_repositoryId readonly property is to support the
ability of DICORBAAny (see “Mapping for anys” on page 17-24), when it wraps an
instance of a complex type, to produce a type code for the instance when asked
so via DICORBAAny’s readonly typeCode property.
17-20 CORBA V2.2 February 1998

17

s
RBA

s

A in
Mapping for Structure Types

CORBA structures are mapped to a Pseudo-Struct, which is an Pseudo-Automation
Interface containing properties corresponding to the members of the struct. The name
of a Pseudo-Struct’s properties are identical to the names of the corresponding CO
struct members.

A Pseudo-Struct derives from DICORBAStruct which, in turn, derives from
DIForeignComplexType:

// ODL
[odl, dual, uuid(...)]
interface DICORBAStruct: DIForeignComplexType
{
}

The GUID for DICORBAStruct is:

{A8B553C1-3B72-11cf-BBFC-444553540000}

This interface can also be implemented as generic (nondual) Automation Interface, in
which case it is named DCORBAStruct and its UUID is:

{E977F901-3B75-11cf-BBFC-444553540000}

The purpose of the methodless DICORBAStruct interface is to mark the interface a
having its origin in the mapping of a CORBA struct. This information, which can be
stored in a type library, is essential for the task of mapping the type back to CORB
the event of an inverse mapping.

An example of mapping a CORBA struct to a Pseudo-Struct follows. The struct

struct S// IDL
{

long l;
double d;
float f;

};

maps to Automation as follows, except that the mapped Automation Dual Interface
derives from DICORBAStruct.

// IDL
interface S
{

attribute long l;
attribute double d;
attribute float f;

};
CORBA V2.2 Mapping CORBA Objects to OLE Automation February 1998 17-21

17

, with

the
Mapping for Union Types

CORBA unions are mapped to a Pseudo-Automation Interface called a Pseudo-Union.
A Pseudo-Union contains properties that correspond to the members of the union
the addition of a discriminator property. The discriminator property’s name is
UNION_d, and its type is the Automation type that corresponds to the OMG IDL
union discriminant.

If a union element is accessed from the Pseudo-Union, and the current value of the
discriminant does not match the property being requested, then the operation of
Pseudo-Union returns DISP_E_TYPEMISMATCH. Whenever an element is set, the
discriminant’s value is set to the value that corresponds to that element.

A Pseudo-Union derives from the methodless interface DICORBAUnion which, in
turn, derives from DIForeignComplexType:

// ODL
[odl, dual, uuid(...)]
interface DICORBAUnion: DIForeignComplexType // ODL
{
}

The UUID for DICORBAUnion is:

{A8B553C2-3B72-11cf-BBFC-444553540000}

This interface can also be implemented as generic (nondual) Automation Interface, in
which case it is named DCORBAUnion and its UUID is:

{E977F902-3B75-11cf-BBFC-444553540000}

An example of mapping a CORBA union to a Pseudo-Union follows. The union

interface A; // IDL

union U switch(long)
{

case 1: long l;
case 2: float f;
default: A obj;

};

maps to Automation as if it were defined as follows, except that the mapped
Automation Dual Interface derives from DICORBAUnion.
17-22 CORBA V2.2 February 1998

17
interface A; // IDL

interface U
{
// Switch discriminant
readonly attri bute long UNION_d;

attribute long l;
attribute float f;
attribute A obj;

};

17.1.12 Mapping for TypeCodes

The OMG IDL TypeCode data type maps to the DICORBATypeCode interface. The
DICORBATypeCode interface is defined as follows.

// ODL
typedef enum {

tk_null = 0, tk_void, tk_short, tk_long, tk_ushort,
tk_ulong, tk_float, tk_double, tk_octet,
tk_any, tk_typeCode, tk_principal, tk_objref,
tk_struct, tk_union, tk_enum, tk_string,
tk_sequence, tk_array, tk_alias, tk_except
} CORBATCKind;

[odl, dual, uuid(...)]
interface DICORBATypeCode: DIForeignComplexType {

[propget] HRESULT kind([retval,out] TCKind * IT_retval);

// for tk_objref, tk_struct, tk_union, tk_alias,
tk_except

[propget] HRESULT id([retval,out] BSTR *IT_retval);
[propget] HRESULT name([retval,out] BSTR * IT_retval);

//tk_struct,tk_union,tk_enum,tk_except
[propget] HRESULT member_count([retval,out]

long * IT_retval);
HRESULT member_name([in] long index,[retval,out]

BSTR * IT_retval);
HRESULT member_type([in] long index,

[retval,out] IDispatch ** IT_retval),

// tk_union
HRESULT member_label([in] long index,[retval,out]

VARIANT * IT_retval);
[propget] HRESULT discriminator_type([retval,out]

IDispatch ** IT_retval);
[propget] HRESULT default_index([retval,out]
CORBA V2.2 Mapping CORBA Objects to OLE Automation February 1998 17-23

17

ed
long * IT_retval);

// tk_string, tk_array, tk_sequence
[propget] HRESULT length([retval,out] long * IT_retval);

// tk_sequence, tk_array, tk_alias
[propget] HRESULT content_type([retval,out]

IDispatch ** IT_retval);
}

The UUID for DICORBATypeCode is:

{A8B553C3-3B72-11cf-BBFC-444553540000}

This interface can also be implemented as generic (nondual) Automation Interface, in
which case it is named DCORBATypeCode and its UUID is:

{E977F903-3B75-11cf-BBFC-444553540000}

When generating Visual Basic constants corresponding to the values of the
CORBATCKind enumeration, the constants should be declared as follows.

Global const CORBATCKind_tk_null =0
Global const CORBATCKind_tk_void = 1
. . .

Since DICORBATypeCode derives from DIForeignComplexType, objects which
implement it are, in effect, pseudo-objects.

17.1.13 Mapping for anys

The OMG IDL any data type maps to the DICORBAAny interface, which is declar
as:

//ODL
[odl, dual, uuid(...)]
interface DICORBAAny: DIForeignComplexType
{

[propget] HRESULT value([retval,out]
VARIANT * IT_retval);

[propput] HRESULT value([in] VARIANT val);
[propget] HRESULT typeCode([retval,out]

DICORBATypeCode ** IT_retval);
}

The UUID for DICORBAAny is:

{A8B553C4-3B72-11cf-BBFC-444553540000}

This interface can also be implemented as generic (nondual) Automation Interface, in
which case it is named DCORBAAny and its UUID is:
17-24 CORBA V2.2 February 1998

17

r

e
e, the
{E977F904-3B75-11cf-BBFC-444553540000}

Since DICORBAAny derives from DIForeignComplexType, objects that implement it
are, in effect, pseudo-objects. See Section 13.1.11, Mapping for CORBA Complex
Types, for a description of the DIForeignComplexType interface.

Note that the VARIANT value property of DICORBAAny can represent a Safearray o
can represent a pointer to a DICORBAStruct or DICORBAUnion interface. Therefore,
the mapping for any is valid for an any that represents a CORBA array, sequence,
structure, or union.

17.1.14 Mapping for Typedefs

The mapping of OMG IDL typedef definitions to OLE depends on the OMG IDL
type for which the typedef is defined. No mapping is provided for typedef
definitions for the basic types: float , double , long , short , unsigned
long , unsigned short , char , boolean , and octet . Hence, a Visual
Basic programmer cannot make use of these typedef definitions.

// OMG IDL
module MyModule {

module Module2 {
module Module3 {

interface foo {};
};

};
};
typedef MyModule::Module2::Module3::foo bar;

For complex types, the mapping creates an alias for the pseudo-object. For interfaces,
the mapping creates an alias for the Automation View object. A conforming
implementation may register these aliases in the Windows System Registry.

Creating a View for this interface would require something like the following:

‘ in Visual Basic
Dim a as Object
Set a = theOrb.GetObject(“MyModule.Module2.Module3.foo”)
‘ Release the object
Set a = Nothing
‘ Create the object using a typedef alias
Set a = theOrb.GetObject(“bar”)

17.1.15 Mapping for Constants

The notion of a constant does not exist in OLE Automation; therefore, no mapping is
prescribed for a CORBA constant.

As with the mapping for enums, some vendors may wish to generate a header fil
containing an appropriate constant declaration for the client language. For exampl
following OMG IDL declaration
CORBA V2.2 Mapping CORBA Objects to OLE Automation February 1998 17-25

17

, the

es

ming
// OMG IDL
const long Max = 1000;

could be translated to the following in Visual Basic:

' Visual Basic
Global Const Max = 1000

The naming rules for these constants should follow that of enums.

17.1.16 Getting Initial CORBA Object References

The DICORBAFactory interface, described in “ICORBAFactory Interface” on
page 15-24, provides a mechanism that is more suitable for the typical programmer in
an Automation controller environment such as Visual Basic.

The implementation of the DICORBAFactory interface is not prescribed, but possible
options include delegating to the OMG Naming Service and using the Windows
System Registry1.

The use of this interface from Visual Basic would appear as:

Dim theORBfactory as Object
Dim Target as Object
Set theORBfactory=CreateObject(“CORBA.Factory”)
Set Target=theORBfactory.GetObject

(“software.sales.accounts”)

In Visual Basic 4.0 projects that have preloaded the standard CORBA Type Library
code could appear as follows:

Dim Target as Object
Set Target=theORBfactory.GetObject(“soft-
ware.sales.accounts”)

The stringified name used to identify the desired target object should follow the rul
for arguments to DICORBAFactory::GetObject described in “ICORBAFactory
Interface” on page 15-24.

A special name space for names with a period in the first position can be used to
resolve an initial reference to the OMG Object Services (for example, the Naming
Service, the Life Cycle Service, and so forth). For example, a reference for the Na
Service can be found using:

1.It is always permissible to directly register a CORBA/OLE Automation bridging object
directly with the Windows Registry. The administration and assignment of ProgIds for direct
registration should follow the naming rules described in the Interworking Architecture
chapter.
17-26 CORBA V2.2 February 1998

17

ject

 a
f
Dim NameContext as Object
Set NameContext=theORBfactory.GetObject(“.NameService”)

Generally the GetObject method will be used to retrieve object references from the
Registry/Naming Service. The CreateObject method is really just a shorthand
notation for GetObject(“someName”).create. It is intended to be used for object
references to objects supporting a CORBAServices Factory interface.

17.1.17 Creating Initial in Parameters for Complex Types

Although CORBA complex types are represented by Automation Dual Interfaces,
creating an instance of a mapped CORBA complex type is not the same as creating an
instance of a mapped CORBA interface. The main difference lies in the fact that the
name space for CORBA complex types differs fundamentally from the CORBA ob
and factory name spaces.

To support creation of instances of Automation objects exposing Pseudo-Automation
Interfaces, we define a new interface, derived from DICORBAFactory (see
“ICORBAFactory Interface” on page 15-24 for a description of DICORBAFactory).

// ODL
[odl, dual, uuid(...)]
interface DICORBAFactoryEx: DICORBAFactory
{

HRESULT CreateType([in] IDispatch *scopingObject,
[in] BSTR typeName,

 [retval,out] VARIANT *val);
HRESULT CreateTypeById([in] IDispatch *scopingObject,

[in] BSTR repositoryId,
[retval,out] VARIANT *val);

}

The UUID for DICORBAFactoryEx is:

{A8B553C5-3B72-11cf-BBFC-444553540000}

This interface can also be implemented as generic (nondual) Automation Interface, in
which case it is named DCORBAFactoryEx and its UUID is:

{E977F905-3B75-11cf-BBFC-444553540000}

The Automation object having the ProgId “CORBA.Factory” shown next actually
exposes DICORBAFactoryEx.

The CreateType method creates an Automation object that has been mapped from
CORBA complex type. The parameters are used to determine the specific type o
object returned.

The first parameter, scopingObject, is a pointer to an Automation View Interface. The
most derived interface type of the CORBA object bound to the View identifies the
scope within which the second parameter, typeName, is interpreted. For example,
assume the following CORBA interface exists:
CORBA V2.2 Mapping CORBA Objects to OLE Automation February 1998 17-27

17

ace

ce,

e

.

ce,
// OMG IDL
module A {

module B {
interface C {

struct S {
// ...

}
void op(in S s);

//
}

}
}

The following Visual Basic example illustrates the primary use of CreateType:

‘ Visual Basic
Dim myC as Object
Dim myS as Object
Dim myCORBAFactory as Object
Set myCORBAFactory = CreateObject(“CORBA.Factory”)
Set myC = myCORBAFactory.CreateObject(“...”)

‘ creates Automation View of the CORBA object
supporting interface ‘ A::B::C
Set myS = myCORBAFactory.CreateType(myC, “S”)
myC.op(myS)

The following rules apply to CreateType:

• The typeName parameter can contain a fully-scoped name (i.e., the name begins
with a double colon “::”). If so, then the first parameter defines the type name sp
within which the fully scoped name will be resolved.

• If the scopingObject parameter does not point to a valid Automation View Interfa
then CreateObject returns the HRESULT DISP_E_UNKNOWNINTERFACE.

• If the typeName parameter does not identify a valid type in the name space
associated with the scopingObject parameter, then CreateObject returns the
HRESULT TYPE_E_UNDEFINEDTYPE.

The CreateTypeByID method accomplishes the same general goal of CreateType, th
creation of Automation objects that are mapped from CORBA constructed types. The
second parameter, repositoryID, is a string containing the CORBA Interface Repository
ID of the CORBA type whose mapped Automation Object is to be created. The
Interface Repository associated with the CORBA object identified by the
scopingObject parameter defines the repository within which the ID will be resolved

The following rules apply to CreateTypeById:

• If the scopingObject parameter does not point to a valid Automation View Interfa
then CreateObject returns the HRESULT DISP_E_UNKNOWNINTERFACE.
17-28 CORBA V2.2 February 1998

17

s

s
rs.

ch

was
ses

a
y
• If the repositoryID parameter does not identify a valid type in the Interface
Repository associated with the scopingObject parameter, then CreateObject return
the HRESULT TYPE_E_UNDEFINEDTYPE.

ITypeFactory Interface

The DICORBAFactory interface delegates its CreateType and CreateTypeByID
methods to an ITypeFactory interface on the scoping object. ITypeFactory is defined a
a COM interface because it is not intended to be exposed to Automation controlle
Every Automation View object must support the ITypeFactory interface:

//MIDL
interface ITypeFactory: IUnknown
{

HRESULT CreateType([in] LPSTR typeName, [out] VARIANT
*IT_retval);

HRESULT CreateTypeById([in] RepositoryId repositoryID,
[out] VARIANT *IT_retval);

}

The UUID for ITypeFactory is:

{A8B553C6-3B72-11cf-BBFC-444553540000}

The methods on ITypeFactory provide the behaviors previously described for the
corresponding DICORBAFactory methods.

17.1.18 Mapping CORBA Exceptions to Automation Exceptions

Overview of Automation Exception Handling

Automation’s notion of exceptions does not resemble true exception handling as
defined in C++ and CORBA. Automation methods are invoked with a call to
IDispatch::Invoke or to a vtable method on a Dual Interface. These methods
return a 32-bit HRESULT, as do almost all COM methods. HRESULT values, whi
have the severity bit (bit 31 being the high bit) set, indicate that an error occurred
during the call, and thus are considered to be error codes. (In Win16, an SCODE
defined as the lower 31 bits of an HRESULT, whereas in Win32 and for our purpo
HRESULT and SCODE are identical.) HRESULTs also have a multibit field called the
facility. One of the predefined values for this field is FACILITY_DISPATCH. Visual
Basic 4.0 examines the return HRESULT. If the severity bit is set and the facility field
has the value FACILITY_DISPATCH, then Visual Basic executes a built-in error
handling routine, which pops up a message box and describes the error.

Invoke has among its parameters one of type EXCEPINFO*. The caller can choose to
pass a pointer to an EXCEPINFO structure in this parameter or to pass NULL. If
non-NULL pointer is passed, the callee can choose to handle an error condition b
returning the HRESULT DISP_E_EXCEPTION and by filling in the EXCEPINFO
structure.
CORBA V2.2 Mapping CORBA Objects to OLE Automation February 1998 17-29

17

fired
 is
e
g
OLE also provides Error Objects, which are task local objects containing similar
information to that contained in the EXCEPINFO structure. Error objects provide a
way for Dual Interfaces to set detailed exception information.

Visual Basic allows the programmer to set up error traps, which are automatically
when an invocation returns an HRESULT with the severity bit set. If the HRESULT
DISP_E_EXCEPTION, or if a Dual Interface has filled an Error Object, the data in th
EXCEPINFO structure or in the Error Object can be extracted in the error handlin
routine.

CORBA Exceptions

CORBA exceptions provide data not directly supported by the Automation error
handling model. Therefore, all methods of Automation View Interfaces have an
additional, optional out parameter of type VARIANT which is filled in by the View
when a CORBA exception is detected.

Both CORBA System exceptions and User exceptions map to Pseudo-Automation
Interfaces called pseudo-exceptions. Pseudo-exceptions derive from IForeignException
which, in turn, derives from IForeignComplexType:

//ODL
[odl, dual, uuid(...)]
interface DIForeignException: DIForeignComplexType
{

[propget] HRESULT EX_majorCode([retval,out] long
*IT_retval);

[propget] HRESULT EX_repositoryID([retval,out] BSTR
*IT_retval);

};

The UUID for DIForeignException is:

{A8B553C7-3B72-11cf-BBFC-444553540000}

This interface can also be implemented as generic (nondual) Automation Interface, in
which case it is named DForeignException and its UUID is:

{E977F907-3B75-11cf-BBFC-444553540000}

The attribute EX_majorCode defines the broad category of exception raised, and has
one of the following numeric values:

NO_EXCEPTION = 0
SYSTEM_EXCEPTION = 1
USER_EXCEPTION = 2

These values may be specified as an enum in the typelibrary information:
17-30 CORBA V2.2 February 1998

17

e

h it

o-
ULT
typedef enum {NO_EXCEPTION,
SYSTEM_EXCEPTION,
USER_EXCEPTION } CORBA_ExceptionType;

The attribute EX_repositoryID is a unique string that identifies the exception. It is
the exception type’s repository ID from the CORBA Interface Repository.

CORBA User Exceptions

A CORBA user exception is mapped to a properties-only pseudo-exception whos
properties correspond one-to-one with the attributes of the CORBA user exception, and
which derives from the methodless interface DICORBAUserException:

//ODL
[odl, dual, uuid(...)]
interface DICORBAUserException: DIForeignException
{
}

The UUID for DICORBAUserException is:

{A8B553C8-3B72-11cf-BBFC-444553540000}

This interface can also be implemented as generic (nondual) Automation Interface, in
which case it is named DCORBAUserException and its UUID is:

{E977F908-3B75-11cf-BBFC-444553540000}

Thus, an OMG IDL exception declaration is mapped to an OLE definition as thoug
were defined as an interface. The declaration

// OMG IDL
exception reject
{

string reason;
};

maps to the following ODL:

//ODL
[odl, dual, uuid(6bfaf02d-9f3b-1658-1dfb-7f056665a6bd)]
interface DIreject: DICORBAUserException
{

[propget] HRESULT reason([retval,out] BSTR reason);
}

Operations that Raise User Exceptions

If the optional exception parameter is supplied by the caller and a User Exception
occurs, the parameter is filled in with an IDispatch pointer to an exception Pseud
Automation Interface, and the operation on the Pseudo-Interface returns the HRES
CORBA V2.2 Mapping CORBA Objects to OLE Automation February 1998 17-31

17

nal
t

e
S_FALSE. S_FALSE does not have the severity bit set, so that returning it from the
operation prevents an active Visual Basic Error Trap from being fired, allowing the
caller to retrieve the exception parameter in the context of the invoked method. The
View fills in the VARIANT by setting its vt field to VT_DISPATCH and setting the
pdispval field to point to the pseudo-exception. If no exception occurs, the optio
parameter is filled with an IForeignException pointer on a pseudo-exception objec
whose EX_majorCode property is set to NO_EXCEPTION.

If the optional parameter is not supplied and an exception occurs, and

• If the operation was invoked via IDispatch::Invoke , then

• The operation returns DISP_E_EXCEPTION.

• If the caller provided an EXCEPINFO, then it is filled by the View.

• If the method was called via the vtable portion of a Dual Interface, then the OLE
Error Object is filled by the View.

Note that in order to support Error Objects, Automation Views must implement th
standard OLE interface ISupportErrorInfo.

Table 17-1EXCEPINFO Usage for CORBA User Exceptions

Field Description

wCode Must be zero.

bstrSource <interface name>.<operation name>
where the interface and operation names are those of the
CORBA interface, which this Automation View is
representing.

bstrDescription CORBA User Exception [<exception repository id>]
where the repository id is that of the CORBA user exception.

bstrHelpFile Unspecified

dwHelpContext Unspecified

pfnDeferredFillIn NULL

scode DISP_E_EXCEPTION

Table 17-2ErrorObject Usage for CORBA User Exceptions

Property Description

bstrSource <interface name>.<operation name>
where the interface and operation names are those of the
CORBA interface, which this Automation View is
representing.

bstrDescription CORBA User Exception: [<exception repository id>]
where the repository id is that of the CORBA user exception.
17-32 CORBA V2.2 February 1998

17
CORBA System Exceptions

A CORBA System Exception is mapped to the Pseudo-Exception
DICORBASystemException, which derives from DIForeignException:

// ODL
[odl, dual, uuid(...)]
interface DICORBASystemException: DIForeignException
{

[propget] HRESULT EX_minorCode([retval,out] long
*IT_retval);

[propget] HRESULT EX_completionStatus([retval,out] long
*IT_retval);

}

The UUID for DICORBASystemException is:

{1E5FFCA0-563B-11cf-B8FD-444553540000}

This interface can also be implemented as generic (nondual) Automation Interface, in
which case it is named DCORBASystemException and its UUID is:

{1E5FFCA1-563B-11cf-B8FD-444553540000}

The attribute EX_minorCode defines the type of system exception raised, while
EX_completionStatus has one of the following numeric values:

COMPLETION_YES = 0
COMPLETION_NO = 1
COMPLETION_MAYBE =

These values may be specified as an enum in the typelibrary information:

typedef enum {COMPLETION_YES,
COMPLETION_NO,
COMPLETION_MAYBE } CORBA_ExceptionType;

Operations that Raise System Exceptions

As is the case for UserExceptions, system exceptions can be returned to the caller
using the optional last parameter, which is present on all mapped methods.

bstrHelpFile Unspecified

dwHelpContext Unspecified

GUID The IID of the Automation View Interface.

Table 17-2ErrorObject Usage for CORBA User Exceptions (Continued)

Property Description
CORBA V2.2 Mapping CORBA Objects to OLE Automation February 1998 17-33

17

nd

ption
tions

e

6-12.

 to
If the optional parameter is supplied and a system exception occurs, the optional
parameter is filled in with an IForeignException pointer to the pseudo-exception, a
the automation return value is S_FALSE. If no exception occurs, the optional
parameter is filled with an IForeignException pointer whose EX_majorCode
property is set to NO_EXCEPTION.

If the optional parameter is not supplied and a system exception occurs, the exce
is looked up in Table 17-3. This table maps a subset of the CORBA system excep
to semantically equivalent FACILITY_DISPATCH HRESULT values. If the exception
is on the table, the equivalent HRESULT is returned. If the exception is not on th
table, that is, if there is no semantically equivalent FACILITY_DISPATCH HRESULT,
then the exception is mapped to an HRESULT according to Table 16-3 on page 1
This new HRESULT is used as follows.

• If the operation was invoked via IDispatch::Invoke :

• The operation returns DISP_E_EXCEPTION.

• If the caller provided an EXCEPINFO, then it is filled with the scode field set
the new HRESULT value.

• If the method was called via the vtable portion of a Dual Interface:

• The OLE Error Object is filled.

• The method returns the new HRESULT.

Table 17-3CORBA Exception to COM Error Codes

CORBA Exception COM Error Codes

BAD_OPERATION DISP_E_MEMBERNOTFOUND

NO_RESPONSE DISP_E_PARAMNOTFOUND

BAD_INV_ORDER DISP_E_BADINDEX

INV_IDENT DISP_E_UNKNOWNNAME

INV_FLAG DISP_E_PARAMNOTFOUND

DATA_CONVERSION DISP_E_OVERFLOW
17-34 CORBA V2.2 February 1998

17
Table 17-4EXCEPINFO Usage for CORBA System Exceptions

Field Description

wCode Must be zero.

bstrSource <interface name>.<operation name>
where the interface and operation names are those of the
CORBA interface, which this Automation View is
representing.

bstrDescription CORBA System Exception: [<exception repository id>]
minor code [<minor code>][<completion status>]
where the <exception repository id> and <minor code> are
those of the CORBA system exception. <completion status> is
“YES,” “NO,” or “MAYBE” based upon the value of the
system exceptions’s CORBA completion status. Spaces and
square brackets are literals and must be included in the
string.

bstrHelpFile Unspecified

dwHelpContext Unspecified

pfnDeferredFillIn NULL

scode Mapped COM error code from Table 13-3 in Chapter 13B.

Table 17-5ErrorObject Usage for CORBA System Exceptions

Property Description

bstrSource <interface name>.<operation name>
where the interface and operation names are those of the
CORBA interface, which this Automation View is
representing.

bstrDescription CORBA System Exception: [<exception repository id>]
minor code [<minor code>][<completion status>]
where the <exception repository id> and <minor code> are
those of the CORBA system exception. <completion status> is
“YES,” “NO,” or “MAYBE” based upon the value of the
system exceptions’s CORBA completion status. Spaces and
square brackets are literals and must be included in the
string.

bstrHelpFile Unspecified

dwHelpContext Unspecified

GUID The IID of the Automation View Interface.
CORBA V2.2 Mapping CORBA Objects to OLE Automation February 1998 17-35

17

eudo-

nents
e is
e

quired

17.1.19 Conventions for Naming Components of the Automation View

The conventions for naming components of the Automation View are detailed
in“Naming Conventions for View Components” on page 15-29.

17.1.20 Naming Conventions for Pseudo-Structs, Pseudo-Unions, and Ps
Exceptions

The formulas used to name components of the Automation View (see “Naming
Conventions for View Components” on page 15-29) are also used to name compo
Pseudo-Structs, Pseudo-Unions, and Pseudo-Exceptions. The CORBA type nam
used as input to the formulas, just as the CORBA interface name is used as input to th
formulas when mapping interfaces.

These formulas apply to the name and IID of the Pseudo-Automation Interface, and to
the Program Id and Class Id of an object implementing the Pseudo-Automation
Interface if it is registered in the Windows System Registry.

17.1.21 Automation View Interface as a Dispatch Interface (Nondual)

In addition to implementing the Automation View Interface as an OLE Automation
Dual Interface, it is also acceptable to map it as a generic Dispatch Interface.

In this case, the normal methods and attribute accessor/assign methods are not re
to have HRESULT return values. Instead, an additional “dispinterface” is defined,
which can use the standard OLE dispatcher to dispatch invocations.

For example, a method declared in a dual interface in ODL as follows:

HRESULT aMethod([in] <type> arg1, [out] <type> arg2,
[retval, out] <return type> IT_retval)

would be declared in ODL in a dispatch interface in the following form:

<return type> aMethod([in] <type> arg1, [out] <type> arg2)

Using the example from “Mapping for Interfaces” on page 17-3:

interface account
{ // OMG IDL

attribute float balance;
readonly attri bute string owner;
void makeLodgement (in float amount, out float
balance);
void makeWithdrawal (in float amount, out float
balance);

};

the corresponding Iaccount interfaces are defined as follows.
17-36 CORBA V2.2 February 1998

17

e

-29

nt,

a

ts,
rfaces

s
[odl, uuid(e268443e-43d9-3dab-1d7e-f303bbe9642f)]
interface Iaccount: IUnknown {// ODL

void makeLodgement ([in] float amount,
[out] float balance,[out,optional]

VARIANT *excep_OBJ);
void makeWithdrawal([in] float amount,

[out] float balance,[out,optional]
VARIANT *excep_OBJ);

[propget] float balance ([retval,out] *IT_retval);
[propput] void balance ([in] float balance)
[propget] BSTR owner ([retval,out] *IT_retval);

}
[uuid(e268443e-43d9-3dab-1dbe-f303bbe9642f)]
dispinterface Daccount {

interface Iaccount;
};

A separate “dispinterface” declaration is required because Iaccount derives from
IUnknown. The dispatch interface is DIaccount. Thus, in the example used for
mapping object references in “Mapping for Object References” on page 17-16, th
reference to the Simple interface in the OMG IDL would map to a reference to
IMyModule_Simple rather than DIMyModule_Simple . The naming conventions
for Dispatch Interfaces (and for their IIDs) exposed by the View are slightly different
from Dual Interfaces. See “Naming Conventions for View Components” on page 15
for details.

The Automation View Interface must correctly respond to a QueryInterface for the
specific Dispatch Interface Id (DIID) for that View. By conforming to this requireme
the Automation View can be strongly type-checked. For example,
ITypeInfo::Invoke , when handling a parameter that is typed as a pointer to
specific DIID, calls QueryInterface on the object for that DIID to make sure the object
is of the required type.

Pseudo-Automation Interfaces representing CORBA complex types such as struc
unions, exceptions and the other noninterface constructs mapped to dispatch inte
can also be exposed as nondual dispatch interfaces.

17.1.22 Aggregation of Automation Views

COM’s implementation reuse mechanism is aggregation. Automation View object
must either be capable of being aggregated in the standard COM fashion or must
follow COM rules to indicate their inability or unwillingness to be aggregated.

The same rule applies to pseudo-objects.

17.1.23 DII and DSI

OLE Automation interfaces are inherently self-describing and may be invoked
dynamically. There is no utility in providing a mapping of the DII interfaces and
related pseudo-objects into OLE Automation interfaces.
CORBA V2.2 Mapping CORBA Objects to OLE Automation February 1998 17-37

17

 is

ts
ctory

 the
legal
e

sly

 of the

ch
17.2 Automation Objects as CORBA Objects

This problem is the reverse of exposing CORBA objects as Automation objects. It
best to solve this problem in a manner similar to the approach for exposing CORBA
objects as Automation objects.

17.2.1 Architectural Overview

We begin with ODL or type information for an Automation object, which implemen
one or more dispatch interfaces and whose server application exposes a class fa
for its COM class.

We then create a CORBA View object, which provides skeletal implementations of
operations of each of those interfaces. The CORBA View object is in every way a
CORBA object. It is not an Automation object. The skeleton is placed on the machin
where the real Automation object lives.

The CORBA View is not fully analogous to the Automation View which, as previou
explained, is used to represent a CORBA object as an Automation object. The
Automation View has to reside on the client side because COM is not distributable. A
copy of the Automation View needs to be available on every client machine.

The CORBA View, however, can live in the real CORBA object’s space and can be
represented on the client side by the CORBA system’s stub because CORBA is
distributable. Thus, only one copy of this View is required.

Note – Throughout this section, the term CORBA View is distinct from CORBA stubs
and skeletons, from COM proxies and stubs, and from Automation Views.

The CORBA View is an Automation client. Its implementations of the CORBA
operations translate parameter types and delegate to the corresponding methods
real Automation object. When a CORBA client wishes to instantiate the real
Automation object, it instantiates the CORBA View.

Thus, from the point of view of the client, it is interacting with a CORBA object whi
may be a remote object. CORBA handles all of the interprocess communication and
marshaling. No COM proxies or stubs are created.
17-38 CORBA V2.2 February 1998

17

emote
Figure 17-2 The CORBA View: a CORBA Object, which is a Client of a COM Object

17.2.2 Main Features of the Mapping

• ODL or type library information can form the input for the mapping.

• Automation properties and methods map to OMG IDL attributes and operations,
respectively.

• Automation interfaces map to OMG IDL interfaces.

• Automation basic types map to corresponding OMG IDL basic types where
possible.

• Automation errors are mapped similarly to COM errors.

17.2.3 Getting Initial Object References

The OMG Naming Service can be used to get initial references to the CORBA View
Interfaces. These interfaces may be registered as normal CORBA objects on the r
machine.

Client Space Object Space

CORBA Stub

MyInterface methods
CORBA Skeleton

MyInterface methods

CORBA Client App

Real Automation Object

IUnknown

((MyInterface *)pObj ect)->Method(...

Network

CORBA View

MyInterface methods
pUnknown->QueryInterface(DIID_MyInterface,&
pIntface->Method(...

Dual Interface DIMyInterface

ORB
CORBA V2.2 Automation Objects as CORBA Objects February 1998 17-39

17

17.2.4 Mapping for Interfaces

The mapping for an ODL interface to a CORBA View interface is straightforward.
Each interface maps to an OMG IDL interface. In general, we map all methods and
properties with the exception of the IUnknown and IDispatch methods.

For example, given the ODL interface IMyModule_account ,

[odl, dual, uuid(...)]
interface DIMyModule_account: IDispatch
{

[propget] HRESULT balance([retval,out] float * ret);
};

the following is the OMG IDL equivalent:

// OMG IDL
interface MyModule_account
{

readonly attri bute float balance;
};

If the ODL interface does not have a parameter with the [retval,out] attributes,
its return type is mapped to long. This allows COM SCODE values to be passed
through to the CORBA client.

17.2.5 Mapping for Inheritance

A hierarchy of Automation interfaces is mapped to an identical hierarchy of CORBA
View Interfaces.

For example, given the interface “account” and its derived interface
“checkingAccount” defined next,

// ODL
[odl, dual, uuid(...)]
interface DIMyModule_account: IDispatch {

[propput] HRESULT balance([in] float balance);
[propget] HRESULT balance([retval,out] float * ret);
[propget] HRESULT owner([retval,out] BSTR * ret);
HRESULT makeLodgement([in] float amount,

[out] float * balance);
HRESULT makeWithdrawal([in] float amount,

[out] float * balance);
};
interface DIMyModule_checkingAccount: DIMyModule_account {

[propget] HRESULT overdraftLimit ([retval,out]
short * ret);

HRESULT orderChequeBook([retval,out] short * ret);
};
17-40 CORBA V2.2 February 1998

17

to an
the corresponding CORBA View Interfaces are:

// OMG IDL
interface MyModule_account {

attribute float balance;
readonly attri bute string owner;
long makeLodgement (in float amount, out float

balance);
long makeWithdrawal (in f loat amount, out float

theBalance);
};
interface MyModul e_checkingAccount: MyModule_account {

readonly attri buteshort overdraftLimit;
short orderC hequeBook ();

};

17.2.6 Mapping for ODL Properties and Methods

An ODL property which has either a get/set pair or just a set method is mapped
OMG IDL attribute. An ODL property with just a get accessor is mapped to an OMG
IDL readonly attribute.

Given the ODL interface definition

// ODL
[odl, dual, uuid(...)]
interface DIaccount: IDispatch {

[propput] HRESULT balance ([in] float balance,
[propget] HRESULT balance ([retval,out] float * ret);
[propget] HRESULT owner ([retval,out] BSTR * ret);
HRESULT makeLodgement ([in] float amount,

[out] float * balance,
[optional, out] VARIANT * excep_OBJ);

HRESULT makeWithdrawal([in] float amount,
[out] float * balance,
[optional, out] VARIANT * excep_OBJ);

}

the corresponding OMG IDL interface is:

// OMG IDL
interface account {

attribute float balance;
readonly attri bute string owner;
long makeLodg ement(in float amount, out float balance);
long makeW ithdraw al(in fl oat amount, out float balance);

};

ODL [in] , [out] , and [in,out] parameters map to OMG IDL in , out, and
inout parameters, respectively. “Mapping for Basic Data Types” on page 17-9
explains the mapping for basic types.
CORBA V2.2 Automation Objects as CORBA Objects February 1998 17-41

17

s are

17.2.7 Mapping for Automation Basic Data Types

Basic Automation Types

The basic data types allowed by OLE Automation as parameters and return value
detailed in “Mapping for Basic Data Types” on page 17-9.

The formal mapping of CORBA types to Automation types is shown in Table17-6.

The Automation CURRENCY type is a 64-bit integer scaled by 10,000, giving a fixed
point number with 15 digits left of the decimal point and 4 digits to the right. The
COM::Currency type is thus defined as follows:

module COM
{

struct Currency
{

unsigned long lower;
long upper;

}
}

This mapping of the CURRENCY type is transitional and should be revised when the
extended data types revisions to OMG IDL are adopted. These revisions are slated to
include a 64-bit integer.

The Automation DATE type is an IEEE 64-bit floating-point number representing the
number of days since December 30, 1899.

Table 17-6Mapping of Automation Types to OMG IDL Types

OLE Automation Type OMG IDL Type

boolean boolean

short short

double double

float float

long long

BSTR string

CURRENCY COM::Currency

DATE double

SCODE long
17-42 CORBA V2.2 February 1998

17

n

.

pped

 is no

e,
17.2.8 Conversion Errors

An operation of a CORBA View Interface must perform bidirectional translation of the
Automation and CORBA parameters and return types. It must map from CORBA to
Automation for in parameters and from Automation to CORBA for out parameters.

When the CORBA View encounters an error condition while translating between
CORBA and Automation data types, it raises the CORBA system exception
DATA_CONVERSION.

17.2.9 Special Cases of Data Type Conversion

Translating COM::Currency to Automation CURRENCY

If the supplied COM::Currency value does not translate to a meaningful Automatio
CURRENCY value, then the CORBA View should raise the CORBA System
Exception DATA_CONVERSION.

Translating CORBA double to Automation DATE

If the CORBA double value is negative or converts to an impossible date, then the
CORBA View should raise the CORBA System Exception DATA_CONVERSION.

Translating CORBA boolean to Automation boolean and
Automation boolean to CORBA boolean

True and false values for CORBA boolean are, respectively, one and zero. True and
false values for Automation boolean are, respectively, negative one (-1) and zero
Therefore, true values need to be adjusted accordingly.

17.2.10 A Complete OMG IDL to ODL Mapping for the Basic Data Types

As previously stated, there is no requirement that the ODL code expressing the ma
Automation interface actually exist. Other equivalent expressions of Automation
interfaces, such as the contents of a Type Library, may be used. Moreover, there
requirement that OMG IDL code corresponding to the CORBA View Interface be
generated.

However, ODL is the appropriate medium for describing an Automation interface, and
OMG IDL is the appropriate medium for describing a CORBA View Interface.
Therefore, we provide the following ODL code to describe an Automation interfac
which exercises all of the Automation base data types in the roles of properties,
method [in] parameter, method [out] parameter, method [inout] parameter, and
return value. The ODL code is followed by OMG IDL code describing the CORBA
View Interface, which would result from a conformant mapping.
CORBA V2.2 Automation Objects as CORBA Objects February 1998 17-43

17
// ODL
[odl, dual, uuid(...)]
interface DIMyModule_TypesTest: IForeignObject {

[propput] HRESULT boolTest([in] short boolTest);
[propget] HRESULT boolTest([retval,out] short

*IT_retval);
[propput] HRESULT doubleTest([in] double doubleTest);
[propget] HRESULT doubleTest([retval,out] double

*IT_retval);
[propput] HRESULT floatTest([in] float floatTest);

[propget] HRESULT floatTest([retval,out] float
*IT_retval);

[propput] HRESULT longTest([in] long longTest);
[propget] HRESULT longTest([retval,out] long *IT_retval);
[propput] HRESULT shortTest([in] short shortTest);
[propget] HRESULT shortTest([retval,out] short

*IT_retval);
[propput] HRESULT stringTest([in] BSTR stringTest);
[propget] HRESULT stringTest([retval,out] BSTR

*IT_retval);
[propput] HRESULT dateTest([in] DATE stringTest);
[propget] HRESULT dateTest([retval,out] DATE *IT_retval);
[propput] HRESULT currencyTest([in] CURRENCY stringTest);
[propget] HRESULT currencyTest([retval,out] CURRENCY

*IT_retval);
[propget] HRESULT readonlyShortTest([retval,out] short

*IT_retval);
HRESULT setAll ([in] short boolTest,

[in] double doubleTest,
[in] float floatTest,
[in] long longTest,
[in] short shortTest,
[in] BSTR stringTest,
[in] DATE dateTest,
[in] CURRENCY currencyTest,
[retval,out] short * IT_retval);

HRESULT getAll ([out] short *boolTest,
[out] double *doubleTest,
[out] float *floatTest,
[out] long *longTest,
[out] short *shortTest,
[out] BSTR stringTest,
[out] DATE * dateTest,
[out] CURRENCY *currencyTest,
[retval,out] short * IT_retval);

HRESULT setAndIncrement ([in,out] short *boolTest,
[in,out] double *doubleTest,
[in,out] float *floatTest,
[in,out] long *longTest,
[in,out] short *shortTest,
[in,out] BSTR *stringTest,
17-44 CORBA V2.2 February 1998

17
[in,out] DATE * dateTest,
[in,out] CURRENCY * currencyTest,
[retval,out] short *IT_retval);

HRESULT boolReturn ([retval,out] short *IT_retval);
HRESULT doubleReturn ([retval,out] double *IT_retval);
HRESULT floatReturn ([retval,out] float *IT_retval);
HRESULT longReturn ([retval,out] long *IT_retval);
HRESULT shortReturn ([retval,out] short *IT_retval);
HRESULT stringReturn ([retval,out] BSTR *IT_retval);
HRESULT octetReturn ([retval,out] DATE *IT_retval);
HRESULT currencyReturn ([retval,out] CURRENCY

*IT_retval);
}

The corresponding OMG IDL is as follows.

// OMG IDL
interface MyModule_Ty pesTest

{
attribute boolean boolT est;
attribute double doubleT est;
attribute float floatTest;
attribute long longTest;
attribute short shortTest;
attribute string stringTest;
attribute double dateT est;
attribute COM::Currency currencyTest;

readonly attri bute short readonlyShortT est;

// Sets all the attri butes
boolean setAll (in boolean boolT est,

in double doubleTest,
in float floatTest,
in long longT est,
in short shortT est,
in string str ingTest,
in double dateT est,
in COM::Currency currencyT est);

// Gets all the attributes
boolean getAll (out boolean boolT est,

out double doubleTest,
out float floatTest,
out long longT est,
out short shortT est,
out string stringTest,
out double dateT est,
out COM::Currency currencyTest);
CORBA V2.2 Automation Objects as CORBA Objects February 1998 17-45

17
boolean setAndIncrement (
inout boolean boolT est,
inout double doubleTest,
inout float floatTest,
inout long longTest,
inout short shortT est,
inout string str ingTest,
inout double dateT est,
inout COM::Currency cur rencyTest);

boolean boolReturn ();
double doubleReturn();
float f loatReturn();
long longReturn ();
short shortReturn ();
string str ingReturn();
double dateReturn ();
COM::CurrencycurrencyReturn();

}; // End of Interface T ypesTest

17.2.11 Mapping for Object References

The mapping of an object reference as a parameter or return value can be fully
expressed by the following OMG IDL and ODL code. The ODL code defines an
interface “Simple” and another interface that references Simple as an in parameter, an
out parameter, an inout parameter, and as a return value. The OMG IDL code
describes the CORBA View Interface that results from a proper mapping.

// ODL
[odl, dual, uuid(...)]
interface DIMyModule_Simple: IDispatch
{

[propget] HRESULT shortTest([retval, out]
short * IT_retval);

[propput] HRESULT shortTest([in] short sshortTest);
}

[odl, dual, uuid(...)]
interface DIMyModule_ObjRefTest: IDispatch
{

[propget] HRESULT simpleTest([retval, out]
DIMyModule_Simple ** IT_retval);

[propput] HRESULT simpleTest([in] DIMyModule_Simple
*pSimpleTest);

HRESULT simpleOp([in] DIMyModule_Simple *inTest,
[out] DIMyModule_Simple **outTest,
[in,out]DIMyModule_Simple **inoutTest,
[retval, out] DIMyModule_Simple **IT_retval);

}

17-46 CORBA V2.2 February 1998

17
The OMG IDL code for the CORBA View Dispatch Interface is as follows.

// OMG IDL
// A simple object we can use for testing object refere nces
interface MyModule_Simple
{

attribute short shortTest;
};

interface MyModule_ObjRefTest
{

attribute MyModule_Simple simpleTest;
MyModule_Simple simpleOp(in MyModule_Simple inTest,
 out MyModule_Simple outTest,
 inout MyModule_Simple inoutT est);

};

17.2.12 Mapping for Enumerated Types

ODL enumerated types are mapped to OMG IDL enums; for example:

// ODL
typedef enum MyModule_color {red, green, blue};

[odl,dual,uuid(...)]
interface DIMyModule_foo: IDispatch {

HRESULT op1([in] MyModule_color col);
}

// OMG IDL
module COM {

enum MyModule_color {red, green, blue};
interfacefoo: COM::CORBA_View {

long op1(in MyModule_color col);
};

};

17.2.13 Mapping for SafeArrays

Automation SafeArrays should be mapped to CORBA unbounded sequences.

A method of the CORBA View Interface, which has a SafeArray as a parameter, will
have the knowledge to handle the parameter properly.

When SafeArrays are in parameters, the View method uses the Safearray API to
dynamically repackage the SafeArray as a CORBA sequence. When arrays are out
parameters, the View method uses the Safearray API to dynamically repackage the
CORBA sequence as a SafeArray.
CORBA V2.2 Automation Objects as CORBA Objects February 1998 17-47

17

lable
.

ns.

e
 is as

n

 on

Multidimensional SafeArrays

SafeArrays are allowed to have more than one dimension. However, the bounding
information for each dimension, and indeed the number of dimensions, is not avai
in the static typelibrary information or ODL definition. It is only available at run-time

For this reason, SafeArrays, which have more than one dimension, are mapped to an
identical linear format and then to a sequence in the normal way.

This linearization of the multidimensional SafeArray should be carried out as follows:

• The number of elements in the linear sequence is the product of the dimensio

• The position of each element is deterministic; for a SafeArray with dimensions d0,
d1, d2, the location of an element [p0][p1][p2] is defined as:

pos[p0][p1][p2] = p0*d1*d2 + p1*d2 + p2

Consider the following example: SafeArray with dimensions 5, 8, 9.

This maps to a linear sequence with a run-time bound of 5 * 8 * 9 = 360. This gives us
valid offsets 0-359. In this example, the real offset to the element at location [4][5][1]
is 4*8*9 + 5*9 + 1 = 334.

17.2.14 Mapping for Typedefs

ODL typedefs map directly to OMG IDL typedefs. The only exception to this is th
case of an ODL enum, which is required to be a typedef. In this case the mapping
per “Mapping for Enumerated Types” on page 17-18.

17.2.15 Mapping for VARIANTs

The VARIANT data type maps to a CORBA any. If the VARIANT contains a DATE
or CURRENCY element, these are mapped as per “Mapping for Automation Basic
Data Types” on page 17-42.

17.2.16 Mapping Automation Exceptions to CORBA

There are several ways in which an HRESULT (or SCODE) can be obtained by a
Automation client such as the CORBA View. These ways differ based on the signature
of the method and the behavior of the server. For example, for vtable invocations
dual interfaces, the HRESULT is the return value of the method. For
IDispatch::Invoke invocations, the significant HRESULT may be the return
value from Invoke, or may be in the EXCEPINFO parameter’s SCODE field.

Regardless of how the HRESULT is obtained by the CORBA View, the mapping of the
HRESULT is the exactly the same as for COM to CORBA (see Mapping for COM
Errors under “Interface Mapping” on page 16-11. The View raises either a standard
CORBA system exception or the COM_HRESULT user exception.
17-48 CORBA V2.2 February 1998

17

as a

f it
hat no

n

_OK

as

alue

ting

this

licit
hods
CORBA Views must supply an EXCEPINFO parameter when making
IDispatch::Invoke invocations to take advantage of servers using EXCEPINFO.
Servers do not use the EXCEPINFO parameter if it is passed to Invoke as NULL.

An Automation method with an HRESULT return value and an argument marked
[retval] maps to an IDL method whose return value is mapped from the
[retval] argument. This situation is common in dual interfaces and means that
there is no HRESULT available to the CORBA client. It would seem on the face o
that there is a problem mapping S_FALSE scodes in this case because the fact t
system exception was generated means that the HRESULT on the vtable method could
have been either S_OK or S_FALSE. However, this should not truly be a problem. A
method in a dual interface should never attach semantic meaning to the distinctio
between S_OK and S_FALSE because a Visual Basic program acting as a client would
never be able to determine whether the return value from the actual method was S
or S_FALSE.

An Automation method with an HRESULT return value and no argument marked
[retval] maps to a CORBA interface with a long return value. The long HRESULT
returned by the original Automation operation is passed back as the long return v
from the CORBA operation.

17.3 Older OLE Automation Controllers

This section provides some solutions that vendors might implement to support exis
and older OLE Automation controllers. These solutions are suggestions; they are
strictly optional.

17.3.1 Mapping for OMG IDL Arrays and Sequences to Collections

Some OLE Automation controllers do not support the use of SAFEARRAYs. For
reason, arrays and sequences can also be mapped to OLE collection objects.

A collection object allows generic iteration over its elements. While there is no exp
ICollection type interface, OLE does specify guidelines on the properties and met
a collection interface should export.

// ODL
[odl, dual, uuid(...)]
interface DICollection: IDispatch {

[propget] HRESULT Count([retval,out] long * count);
[propget, id(DISPID_VALUE)] HRESULT Item([in] long index,

 [retval,out] VARIANT * retval);
[propput, id(DISPID_VALUE)] HRESULT Item([in] long index,

 [in] VARIANT val);
[propget, id(NEW_ENUM)] HRESULT _NewEnum(

 [retval, out] IEnumVARIANT * newEnum);
}

CORBA V2.2 Older OLE Automation Controllers February 1998 17-49

17

e

od
The UUID for DICollection is:

{A8B553C9-3B72-11cf-BBFC-444553540000}

This interface can also be implemented as generic (nondual) Automation Interface, in
which case it is named DCollection and its UUID is:

{E977F909-3B75-11cf-BBFC-444553540000}

In controller scripting languages such as VBA in MS-Excel, the FOR...EACH language
construct can automatically iterate over a collection object such as that previously
described.

‘ Visual Basic:
Dim doc as Object
For Each doc in DocumentCollection
doc.Visible = False
Next doc

The specification of DISPID_VALUE as the id() for the Item property means that
access code like the following is possible.

‘ Visual Basic:
Dim docs as Object
Set docs = SomeCollection

docs(4).Visible = False

Multidimensional arrays can be mapped to collections of collections with access code
similar to the following.

‘ Visual Basic
Set docs = SomeCollection

docs.Item(4).Item(5).Visible = False

If the Collection mapping for OMG IDL Arrays and Sequences is chosen, then th
signatures for operations accepting SAFEARRAYs should be modified to accept a
VARIANT instead. In addition, the implementation code for the View wrapper meth
should detect the kind of object being passed.

17.4 Example Mappings

17.4.1 Mapping the OMG Naming Service to OLE Automation

This section provides an example of how a standard OMG Object Service, the Naming
Service, would be mapped according to the Interworking specification.
17-50 CORBA V2.2 February 1998

17

. A

 on

s
The Naming Service provides a standard service for CORBA applications to obtain
object references. The reference for the Naming Service is found by using the
resolve_initial_references() method provided on the ORB pseudo-
interface:

CORBA::ORB_ptr theORB = CORBA::ORB_init(ar gc, argv,
CORBA::ORBid, ev)
CORBA: :Object_var obj =

theORB->resolve_initial_references(“NameService”, ev);
CosNaming::NamingContext_var inital_nc_ref =

CosNaming::NamingContext::_narrow(obj,ev);
CosNaming::Name factory_name;
factory_name.length(1);
factory_name[0].id = “myFactory”;
factory_name[0].kind = ““;
CORBA: :Object_var objref = initial_nc_ref->resolve(factory_name, ev);

The Naming Service interface can be directly mapped to an equivalent OLE
Automation interface using the mapping rules contained in the rest of this section
direct mapping would result in code from VisualBasic that appears as follows.

Dim CORBA as Object
Dim ORB as Object
Dim NamingContext as Object
Dim NameSequence as Object
Dim Target as Object

Set CORBA=GetObject(“CORBA.ORB”)
Set ORB=CORBA.init(“default”)
Set NamingContext = ORB.resolve_initial_reference(“Naming-
Service”)
Set NameSequence=NamingContext.create_type(“Name”)
ReDim NameSequence as Object(1)
NameSequence[0].name = “myFactory”
NameSequence[0].kind = ““
Set Target=NamingContext.resolve(NameSequence)

17.4.2 Mapping a COM Service to OMG IDL

This section provides an example of mapping a Microsoft IDL-described set of
interfaces to an equivalent set of OMG IDL-described interfaces. The interface is
mapped according to the rules provided in “COM to CORBA Data Type Mapping”
page 16-32 in the Mapping Com and CORBA chapter. The example chosen is the
COM ConnectionPoint set of interfaces. The ConnectionPoint service is commonly
used for supporting event notification in OLE custom controls (OCXs). The service i
a more general version of the IDataObject/IAdviseSink interfaces.
CORBA V2.2 Example Mappings February 1998 17-51

17

 on
The ConnectionPoint service is defined by four interfaces, described in Table 17-9
page 17-52.

For purposes of this example, we describe these interfaces in Microsoft IDL. The
IConnectionPointContainer interface is shown next.

// Microsoft IDL
interface IConnectionPoint;
interface IEnumConnectionPoints;
typedef struct {

 unsigned long Data1;
 unsigned short Data2;
 unsigned short Data3;
 unsigned char Data4[8];

} REFIID;
[object, uuid(B196B284-BAB4-101A-B69C-00AA00241D07),

pointer_default(unique)]
interface IConnectionPointContainer: IUnknown

{
HRESULT EnumConnectionPoints ([out] IEnumConnectionPoints

**pEnum);
HRESULT FindConnectionPoint([in] REFIID iid, [out]

IConnectionPoint **cp);
};
MIDL definition for IConnectionPointContainer

This IConnectionPointContainer interface would correspond to the OMG IDL interface
shown next.

Table 17-9Interfaces of the ConnectionPoint Service

IConnectionPointContaine
r

Used by a client to acquire a reference to one or
more of an object’s notification interfaces

IConnectionPoint Used to establish and maintain notification
connections

IEnumConnectionPoints An iterator over a set of IConnectionPoint
references

IEnumConnections Used to iterate over the connections currently
associated with a ConnectionPoint
17-52 CORBA V2.2 February 1998

17
// OMG IDL
interface IConnectionPoint;
interface IE numConnect ionPoints;
struct REFIID {
unsigned long Data1;
unsigned short Data2;
unsigned short Data3;
unsigned char Data4[8];
};
interface IConnectionPointContainer: CORBA::Composi te,
CosLifeCycle: :LifeCycleObject

{
HRESULT EnumConnectionPoints (out IEnumConnectionPoints

pEnum) r aises (COM_HRESULT);
HRESULT FindConnectionPoint(in REFIID iid, out

IConnect ionPoint cp) raises (COM_HRESULT);
#pragma ID IConnectionPointContainer =‘‘DCE:B 196B284-BAB4-

101A-B69C-00AA00241D07”;
};

Similarly, the forward declared ConnectionPoint interface shown next is remapped to
the OMG IDL definition shown in the second following example.

// Microsoft IDL
interface IEnumConnections;
[object, uuid(B196B286-BAB4-101A-B69C-00AA00241D07),

pointer_default(unique)]
interface IConnectionPoint: IUnknown

{
HRESULT GetConnectionInterface([out] IID *pIID);
HRESULT GetConnectionPointContainer([out]

IConnectionPointContainer **ppCPC);
HRESULT Advise([in] IUnknown *pUnkSink, [out] DWORD

*pdwCookie);
HRESULT Unadvise(in DWORD dwCookie);
HRESULT EnumConnections([out] IEnumConnections **ppEnum);

};

// OMG IDL
interface IE numConnections;
interface IConnectionPoint:: CORBA::Composite,

CosLifeCycle: :LifeCycleObject
{

CORBA V2.2 Example Mappings February 1998 17-53

17
HRESULT GetConnect ionInterface(out IID pIID)
raises (COM_HRESULT);

HRESULT GetConnectionPointC ontainer
(out IConn ectionPo intContainer pCPC)
raises (COM_HRESULT);

HRESULT Advise(in IUnknown pUnkSink, out DWORD pdwCookie)
raises (COM_HRESULT);

HRESULT Unadvise(in DWORD dwCookie)
raises (COM_HRESULT);

HRESULT EnumConnect ions(out IEnumConnections ppEnum)
raises (COM_HRESULT);

#pragma ID IConnectionPoint = “DCE:B 196B286-BAB4-101A-B69C-
00AA00241D 07”;
};

Finally, the MIDL definition for IEnumConnectionPoints and IEnum Connections
interfaces are shown next.

typedef struct tagCONNECTDATA {
IUnknown * pUnk;
DWORD dwCookie;

} CONNECTDATA;

[object, uuid(B196B285-BAB4-101A-B69C-00AA00241D07),
pointer_default(unique)]

interface IEnumConnectionPoints: IUnknown
{

HRESULT Next([in] unsigned long cConnections,
 [out] IConnectionPoint **rcpcn,
 [out] unsigned long *lpcFetched);

HRESULT Skip([in] unsigned long cConnections);
HRESULT Reset();
HRESULT Clone([out] IEnumConnectionPoints **pEnumval);

};
[object, uuid(B196B287-BAB4-101A-B69C-00AA00241D07),

pointer_default(unique)]
interface IEnumConnections: IUnknown
{

HRESULT Next([in] unsigned long cConnections,
 [out] IConnectionData **rcpcn,
 [out] unsigned long *lpcFetched);

HRESULT Skip([in] unsigned long cConnections);
HRESULT Reset();
HRESULT Clone([out] IEnumConnections **pEnumval);

};

The corresponding OMG IDL definition for EnumConnectionPoints and
EnumConnections is shown next:
17-54 CORBA V2.2 February 1998

17

g
struct CONNECTDATA {
IUnknown * pUnk;
DWORD dwCookie;

};
interface IE numConnect ionPoints: CORBA::Composi te,
CosLifeCycle: :LifeCycleObject
{

HRESULT Next(in unsigned long cConnections,
out IConnectionPoint r cpcn,
out unsigned long lpcFetched) raises (CO M_HRESULT);

HRESULT Skip(in unsigned long cC onnect ions) raises
(COM_HRESULT);

HRESULT Reset() raises (CO M_HRESULT);
HRESULT Clone(out IEnumConn ectionPoints p Enumval)

raises(COM_HRESULT)
#pragma ID IEnumConnectionPoints =

“DCE:B196B285-BAB4-101A-B69C-00AA00241D 07”;

};

interface IE numConnections: CORBA::Composi te,
CosLifeCycle: :LifeCycleObject

{
HRESULT Next(in unsigned long cConnections,

 out IConnectData rgcd,
out unsigned long lpcFetched) raises (CO M_HRESULT);

HRESULT Skip(in unsigned long cC onnect ions) raises
(COM_HRESULT);

HRESULT Reset() raises (CO M_HRESULT);
HRESULT Clone(out IEnumConn ectionPoints p EnumVal) raises

(COM_HRESULT);
#pragma ID IEnumConnections =

“DCE:B196B287-BAB4-101A-B69C-00AA00241D 07”;
};

17.4.3 Mapping an OMG Object Service to OLE Automation

This section provides an example of mapping an OMG-defined interface to an
equivalent OLE Automation interface. This example is based on the OMG Namin
Service and follows the mapping rules from the Mapping: OLE Automation and
CORBA chapter. The Naming Service is defined by two interfaces and some associated
CORBA V2.2 Example Mappings February 1998 17-55

17

ns.
types, which are scoped in the OMG IDL CosNaming module.

Microsoft ODL does not explicitly support the notions of modules or scoping domai
To avoid name conflicts, all types defined in the scoping space of CosNaming are
expanded to global names.

The data type portion (interfaces excluded) of the CosNaming interface is shown next.

// OMG IDL
module CosNaming{

typedef string Istring;
struct NameComponent {
Istring id;
Istring kind;

};
typedef sequence <NameComponent> Name;
enum BindingType { nobject, ncontext };
struct Binding {

Name binding_name;
BindingType binding_type;

};
typedef sequence <Binding> BindingList;
interface BindingIterator;
interface NamingContext;
// ...

}

The corresponding portion (interfaces excluded) of the Microsoft ODL interface is
shown next.

Table 17-10 Interfaces of the OMG Naming Service

Interface Description

CosNaming::NamingContext Used by a client to establish the name space
in which new associations between names
and object references can be created, and to
retrieve an object reference that has been
associated with a given name.

CosNaming::BindingIterator Used by a client to walk a list of registered
names that exist within a naming context.
17-56 CORBA V2.2 February 1998

17

s
[uuid(a1789c86-1b2c-11cf-9884-08000970dac7)] // from COMID
association
 library CosNaming
 {

importlib(“stdole32.tlb”);
importlib(“corba.tlb”); / for standard CORBA types
typedef CORBA_string CosNaming_Istring;
[uuid((04b8a791-338c-afcf-1dec-cf2733995279), help-

string(“struct NameComponent”),
oleautomation, dual]

interface CosNaming_NameComponent: ICORBAStruct {
[propget] HRESULT id([out, retval]CosNaming_Istring

**val);
[propput] HRESULT id([in]CosNaming_IString* val);
[propget] HRESULT kind([out, retval]CosNaming_Istring
** val);
[propget] HRESULT kind([in]CosNaming_Istring *val);

};
define Name SAFEARRAY(CosNaming_NameComponent *)

// typedef doesn’t work
typedef enum { [helpstring(“nobject”)]nobject,

[helpstring(“ncontext”)]ncontext
} CosNaming_BindingType;
#define CosNaming_BindingList SAFEARRAY(CosNaming_Binding *)

[uuid(58fbe618-2d20-d19f-1dc2-560cc6195add),
helpstring(“struct Binding”),
oleautomation, dual]

interface DICosNaming_Binding: ICORBAStruct {
[propget] HRESULT binding_name([retval, out]

CosNaming_IString ** val);
[propput] HRESULT binding_name([in]

CosNaming_IString * vall);
[propget] HRESULT binding_type([retval, out]

CosNaming_BindingType *val);
[propset] HRESULT binding_type([in]

CosNaming_BindingType val);
};
#define CosNaming_BindingList SAFEARRAY(CosNaming_Binding)

interface DICosNaming_BindingIterator;
interface DICosNaming_NamingContext;
// ...

};

The types scoped in an OMG IDL interface are also expanded using the notation
[<modulename>_]*[<interfacename>_]typename. Thus the types defined within the
CosNaming::NamingContext interface (shown next) are expanded in Microsoft ODL a
shown in the second following example.

module CosNaming{
// ...

interface NamingContext
CORBA V2.2 Example Mappings February 1998 17-57

17
{
enum NotFoun dReason { missing_ node, not_context,
not_object };
exception NotFound {

NotFoundR eason why;
Name rest_of_name;

};
exception C annotProceed {

NamingContext cxt;
Name rest_of_name;

};
exception InvalidName {};
exception AlreadyB ound {};
exception NotEmpty {};
void bind(in Name n, in Object obj)

raises(NotFou nd, CannotProceed, Inv alidName,
AlreadyBound);

void rebind(in Name n, in Object obj)
raises(NotFou nd, CannotProceed, Inv alidName);

void bind_cont ext(in Name n, in Namin gCont ext nc)
raises(NotFou nd, CannotProceed, Inv alidName,
AlreadyBound);

void rebin d_cont ext(in Name n, in NamingContext nc)
raises(NotFou nd, CannotProceed, Inv alidName);

Object resolve(in Name n)
raises(NotFou nd, CannotProceed, Inv alidName);

void unbind(in Name n)
raises(NotFou nd, CannotProceed, Inv alidName);

NamingContext new_context();
NamingContext bind_new_context (in Name n)

raises(NotFou nd, Al readyBound, CannotProc eed, InvalidName);
void destroy()

raises(NotEmpty);
void list(in unsigned long how_many,

out BindingList bl, out BindingIterator bi);
};

// ...
};

[uuid(d5991293-3e9f-0e16-1d72-7858c85798d1)]
library CosNaming
 {// ...

interface DICosNaming_NamingContext;
[uuid(311089b4-8f88-30f6-1dfb-9ae72ca5b337),

helpstring(“exception NotFound”),
oleautomation, dual]

 interface DICosNaming_NamingContext_NotFound:
ICORBAException {
[propget] HRESULT why([out, retval] long* _val);
[propput] HRESULT why([in] long _val);
[propget] HRESULT rest_of_name([out, retval]
17-58 CORBA V2.2 February 1998

17
CosNaming_Name ** _val);
[propput] HRESULT rest_of_name([in] CosNaming_Name

* _val);
};

[uuid(d2fc8748-3650-cedd-1df6-026237b92940),
helpstring(“exception CannotProceed”),
oleautomation, dual]

interface DICosNaming_NamingContext_CannotProceed:
DICORBAException{

[propget] HRESULT cxt([out, retval]
DICosNaming_NamingContext ** _val);

[propput] HRESULT cxt([in] DICosNaming_NamingContext
* _val);

[propget] HRESULT rest_of_name([out, retval]
CosNaming_Name ** _val);

[propput] HRESULT rest_of_name([in] CosNaming_Name *
_val);
};

[uuid(7edaca7a-c123-42a1-1dca-a7e317aafe69),
helpstring(“exception InvalidName”),
oleautomation, dual]

interface DICosNaming_NamingContext_InvalidName:
DICORBAException {};

[uuid(fee85a90-1f6b-c47a-1dd0-f1a2fc1ab67f),
helpstring(“exception AlreadyBound”),
oleautomation, dual]

interface DICosNaming_NamingContext_AlreadyBound:
DICORBAException {};

[uuid(8129b3e1-16cf-86fc-1de4-b3080e6184c3),
helpstring(“exception NotEmpty”),
oleautomation, dual]

interface CosNaming_NamingContext_NotEmpty:
DICORBAException {};

typedef enum {[helpstring(“missing_node”)]
NamingContext_missing_node,

[helpstring(“not_context”) NamingContext_not_context,
[helpstring(“not_object”) NamingContext_not_object

} CosNaming_NamingContext_NotFoundReason;
[uuid(4bc122ed-f9a8-60d4-1dfb-0ff1dc65b39a),

helpstring(“NamingContext”),
oleautomation,dual]

interface DICosNaming_NamingContext {
HRESULT bind([in] CosNaming_Name * n, [in] IDispatch *

obj,
[out, optional] VARIANT * _user_exception);

HRESULT rebind([in] CosNaming_Name * n, in] IDispatch *
obj,

[out, optional] VARIANT * _user_exception);
HRESULT bind_context([in] CosNaming_Name * n,

[in] DICosNaming_NamingContext * nc,
[out, optional] VARIANT * _user_exception);
CORBA V2.2 Example Mappings February 1998 17-59

17
HRESULT rebind_context([in] CosNaming_Name * n,
[in] DICosNaming_NamingContext * nc,
[out, optional] VARIANT * _user_exception);

HRESULT resolve([in] CosNaming_Name * n,
[out, retval] IDispatch** pResult,
[out, optional] VARIANT * _user_exception)

HRESULT unbind([in] CosNaming_Name * n,
[out, optional] VARIANT * _user_exception);

HRESULT new_context([out, retval]
DICosNaming_NamingContext ** pResult);

HRESULT bind_new_context([in] CosNaming_Name * n,
[out, retval] DICosNaming_NamingContext ** pResult,
[out, optional] VARIANT * _user_exception);

HRESULT destroy([out, optional] VARIANT*
_user_exception);

HRESULT list([in] unsigned long how_many, [out]
CosNaming_BindingList ** bl,

[out] DICosNaming_BindingIterator ** bi);
};

};

The BindingIterator interface is mapped in a similar manner, as shown in the next two
examples.

module CosNaming {
//...
interface BindingIterator {
boolean next_one(out Binding b);
boolean next_n(in unsigned long how_many,
out BindingList bl);
void destroy();
};

};

[uuid(a1789c86-1b2c-11cf-9884-08000970dac7)]
library CosNaming
 {// ...

[uuid(5fb41e3b-652b-0b24-1dcc-a05c95edf9d3),
help string(“BindingIterator”),

 helpcontext(1), oleautomation, dual]
interface DICosNaming_IBindingIterator: IDispatch {

HRESULT next_one([out] DICosNaming_Binding ** b,
[out, retval] boolean* pResult);

HRESULT next_n([in] unsigned long how_many,
[out] CosNaming_BindingList ** bl,
[out, retval] boolean* pResult);

HRESULT destroy();
};

}

17-60 CORBA V2.2 February 1998

Interceptors 18

r 15
18.1 Introduction

This chapter defines ORB operations that allow services such as security to be inserted
in the invocation path. Interceptors are not specific to security; they could be used to
invoke any ORB service. These interceptors permit services internal to the ORB to be
cleanly separated so that, for example, security functions can coexist with other ORB
services such as transactions and replication.

Interceptors are an optional extension to the ORB to allow implementation of the
Replaceable Security option defined in the Security Service specification (Chapte
of CORBA Services).

Contents

This chapter contains the following sections.

Section Title Page

“Introduction” 18-1

“Interceptors” 18-2

“Client-Target Binding” 18-4

“Using Interceptors” 18-6

“Interceptor Interfaces” 18-7

“IDL for Interceptors” 18-9
 CORBA V2.2 February 1998 18-1

18

ORB

evel

ich

een

)

 of

t.
18.1.1 ORB Core and ORB Services

The ORB Core is defined in the CORBA architecture as “that part of the ORB which
provides the basic representation of objects and the communication of requests.”
Services, such as the Security Services, are built on this core and extend the basic
functions with additional qualities or transparencies, thereby presenting a higher-l
ORB environment to the application.

The function of an ORB service is specified as a transformation of a given message (a
request, reply, or derivation thereof). A client may generate an object request, wh
necessitates some transformation of that request by ORB services (for example,
Security Services may protect the message in transit by encrypting it).

18.2 Interceptors

An interceptor is responsible for the execution of one or more ORB services.
Logically, an interceptor is interposed in the invocation (and response) path(s) betw
a client and a target object. When several ORB services are required, several
interceptors may be used.

Two types of interceptors are defined in this specification:

• Request-level interceptors, which execute the given request.

• Message-level interceptors, which send and receive messages (unstructured buffers
derived from the requests and replies.

Interceptors provide a highly flexible means of adding portable ORB Services to a
CORBA compliant object system. The flexibility derives from the capacity of a
binding between client and target object to be extended and specialized to reflect the
mutual requirements of client and target. The portability derives from the definition
the interceptor interface in OMG IDL.

The kinds of interceptors available are known to the ORB. Interceptors are created by
the ORB as necessary during binding, as described next.

18.2.1 Generic ORB Services and Interceptors

An Interceptor implements one or more ORB services. Logically, an interceptor is
interposed in the invocation (and response) path(s) between a client and target object.
There are two types of interceptors:

• Request-level interceptor, which perform transformations on a structured reques

• Message-level interceptors, which perform transformations on an unstructured
buffer.
18-2 CORBA V2.2 February 1998

18

f
on

if
Figure 18-1 shows interceptors being called during the path of an invocation.

Figure 18-1 Interceptors Called During Invocation Path

18.2.2 Request-Level Interceptors

Request-level interceptors are used to implement services which may be required
regardless of whether the client and target are collocated or remote. They resemble the
CORBA bridge mechanism in that they receive the request as a parameter, and
subsequently re-invoke it using the Dynamic Invocation Interface (DII). An example o
a request-level interceptor is the Access Control interceptor, which uses informati
about the requesting principal and the operation in order to make an access control
decision.

The ORB core invokes each request level interceptor via the client_invoke operation
(at the client) or the target_invoke operation (at the target) defined in this section. The
interceptor may then perform actions, including invoking other objects, before re-
invoking the (transformed) request using CORBA::Request::invoke. When the latter
invocation completes, the interceptor has the opportunity to perform other actions,
including recovering from errors and retrying the invocation or auditing the result
necessary, before returning.

18.2.3 Message-Level Interceptors

When remote invocation is required, the ORB will transform the request into a
message, which can be sent over the network. As functions such as encryption are
performed on messages, a second kind on interceptor interface is required.

Client

request request

Target
Object

Message
level

interceptors

Message
level

interceptors

Request
level

interceptors

Request
level

interceptors

reply reply
CORBA V2.2 Interceptors February 1998 18-3

18

led,
en
al
 of a

 a

nd
trol,

e
nded.

o

e

ntext.

nt on
 will
all
 also
The ORB code invokes each message-level interceptor via the send_message operation
(when sending a message, for example, the request at the client and the reply at the
target) or the receive_message operation (when receiving a message). Both have a
message as an argument. The interceptor generally transforms the message and then
invokes send. Send operations return control to the caller without waiting for the
operation to finish. Having completed the send_message operation, the interceptor can
continue with its function or return.

18.2.4 Selecting Interceptors

An ORB that uses interceptors must know which interceptors may need to be cal
and in what order they need to be called. An ORB that supports interceptors, wh
serving as a client, uses information in the target object reference, as well as loc
policy, to decide which interceptors must actually be called during the processing
particular request sent to a particular target object.

When an interceptor is first invoked, a bind time function is used to set up interceptor
binding information for future use.

18.3 Client-Target Binding

The selection of ORB Services is part of the process of establishing a binding between
a client and a target object.

A binding provides the context for a client communicating with a target object via
particular object reference. The binding determines the mechanisms that will be
involved in interactions such that compatible mechanisms are chosen and client a
target policies are enforced. Some requirements, such as auditing or access con
may be satisfied by mechanisms in one environment, while others, such as
authentication, require cooperation between client and target. Binding may also involv
reserving resources in order to guarantee the particular qualities of service dema

Although resolution of mechanisms and policies involves negotiation between the tw
parties, this need not always involve interactions between the parties as information
about the target can be encoded in the object reference, allowing resolution of th
client and target requirements to take place in the client. The outcome of the
negotiation can then be sent with the request, for example, in the GIOP service co
Where there is an issue of trust, however, the target must still check that this outcome
is valid.

The binding between client and target at the application level can generally be
decomposed into bindings between lower-level objects. For example, the agreeme
transport protocol is an agreement between two communications endpoints, which
generally not have a one-to-one correspondence to application objects. The over
binding therefore includes a set of related sub-bindings which may be shared, and
potentially distributed among different entities at different locations.
18-4 CORBA V2.2 February 1998

18

uch

 fact.

ed

y

g

blish

e.

 ones
18.3.1 Binding Model

No object representing the binding is made explicitly visible since the lifetime of s
an object is not under the control of the application, an existing binding potentially
being discarded, and a new one made without the application being aware of the

Instead, operations that will affect how a client will interact with a target are provid
on the Object interface and allow a client to determine how it will interact with the
target denoted by that object reference. On the target side, the binding to the client ma
be accessed through the Current interface. This indirect arrangement permits a wide
range of implementations that trade-off the communication and retention of bindin
information in different ways.

Figure 18-2 Binding Model

The action of establishing a binding is generally implicit, occurring no later than the
first invocation between client and target. It may be necessary for a client to esta
more than one binding to the same target object, each with different attributes (for
example, different security features). In this case, the client can make a copy of the
object reference using Object::duplicate and subsequently specify different attributes
for that reference.

The scope of attributes associated with an object reference is that of the object
reference instance (i.e., the attributes are not copied if the object reference is used as
an argument to another operation or copied using Object::duplicate). If an object
reference is an inout argument, the attributes will still be associated with the object
reference after the call if the reference still denotes the same object, but not otherwis

18.3.2 Establishing the Binding and Interceptors

An ORB maintains a list of interceptors, which it supports, and when these are called.
Note that at the client, when handling the request, the request-level interceptors are
always called before the message level ones, while at the target the message-level
are called first.

Client

ORB Core

Target
Object

Interceptors Interceptors

binding binding

target obj ref

Current
CORBA V2.2 Client-Target Binding February 1998 18-5

18

ation

g up

ue

tion

n.

(for

at the

d

ement,
way.
When the ORB needs to bind an object reference, it refers to the characteristics of the
target object and relates this to the types of interceptor it supports. From this it
determines the appropriate type of interceptor to handle the request and creates it,
passing the object reference in the call. (No separate interceptor initialization oper
is used. The client_invoke/target_invoke or send_message/receive_message calls are
used both for the first invocation and for subsequent ones.)

When an interceptor is created, it performs its bind time functions. These may involve
getting the policies that apply to the client and to the target. This could involve
communicating with the target, for example, a secure invocation interceptor settin
a security association. Note that the ORB Core itself is unaware of service-specific
policies. In addition to performing its specific functions, the interceptor must contin
the request by invoking object(s) derived from the given object reference.

The interceptors themselves maintain per-binding information relevant to the func
they perform. This information will be derived from:

• The policies that apply to the client and target object because of the domains to
which they belong, for example the access policies, default quality of protectio

• Other static properties of the client and target object such as the security
mechanisms and protocols supported.

• Dynamic attributes, associated with a particular execution context or invocation
example, whether a request must be protected for confidentiality).

If the relevant client or target environment changes, part or all of a binding may need
to be reestablished. For example, the secure invocation interceptor may detect th
invocation credentials have changed and therefore needs to establish a new security
association using the new credentials. If the binding cannot be reestablished, an
exception is raised to the application, indicating the cause of the problem.

Similarly, at the target, the ORB will create an instance of each interceptor neede
there. A single interceptor handles both requests and replies at the client (or target), as
these share context information.

18.4 Using Interceptors

When a client performs an object request, the ORB Core uses the binding information
to decide which interceptors provide the required ORB Services for this client and
target as described in “Establishing the Binding and Interceptors” on page 18-5.

18.4.1 Request-Level Interceptors

Request-level interceptors could be used for services such as transaction manag
access control, or replication. Services at this level process the request in some
For example, they may transform the request into one or more lower-level invocations
or make checks that the request is permitted. The request-level interceptors, after
performing whatever action is needed at the client (or target), reinvoke the
(transformed) request using the Dynamic Invocation Interface (DII)
18-6 CORBA V2.2 February 1998

18

unt

trol

n

ge,

re

 send

tor
may
CORBA::Request::invoke. The interceptor is then stacked until the invocation
completes, when it has an opportunity to perform further actions, taking into acco
the response before returning.

Interceptors can find details of the request using the operations on the request as
defined in the Dynamic Skeleton interface in CORBA 2. This allows the interceptor to
find the target object1, operation name, context, parameters, and (when complete) the
result.

If the interceptor decides not to forward the request, for example, the access con
interceptor determines that access is not permitted, it indicates the appropriate
exception and returns.

When the interceptor resumes after an inner request is complete, it can find the result
of the operation using the result operation on the Request object, and check for
exceptions using the exception operation, etc. before returning.

18.4.2 Message-Level Interceptors

When remote invocation is required, the ORB will transform the request into a
message that can be sent over the network. Message-level interceptors operate o
messages in general without understanding how these messages relate to requests (for
example, the message could be just a fragment of a request). Note that the message
interceptors may achieve their purpose not by (just) transforming the given messa
but by communicating using their own message (for example, to establish a secu
association). Fragmentation and message protection are possible message-level
interceptors.

send_message is always used when sending a message, so is used by the client to
a request (or part of a request), and by the target to send a reply.

When a client message-level interceptor is activated to perform a send_message
operation, it transforms the message as required, and calls a send operation to pass the
message on to the ORB and hence to its target. Unlike invoke operations, send
operations may return to the caller without completing the operation. The intercep
can then perform other operations if required before exiting. The client interceptor
next be called either using send_message to process another outgoing message, or
using receive_message to process an incoming message.

A target message-level interceptor also supports send_message and receive_message
operations, though these are obviously called in a different order from the client side.

18.5 Interceptor Interfaces

Two interceptor interfaces are specified, both used only by the ORB:

1.It is assumed that the target object reference is available, as this is described in the C++ mapping for DSI, though
not yet in the OMG IDL.
CORBA V2.2 Interceptor Interfaces February 1998 18-7

18

ns

t to

e

• RequestInterceptor for operations on request-level interceptors. Two operations
are supported:

• client_invoke for invoking a request-level interceptor at the client.

• target_invoke for invoking a request-level interceptor at the target.

• MessageInterceptor for operations on message-level interceptors. Two operatio
are supported:

• send_message for sending a message from the client to the target or the targe
the client.

• receive_message for receiving a message.

Request-level interceptors operate on a representation of the request itself as used in
the CORBA Dynamic Invocation and Skeleton interfaces.

18.5.1 Client and Target Invoke

These invoke a request-level interceptor at the client or target. Both operations hav
identical parameters and return values.

module CORBA {
interface RequestInt ercept or: Interceptor {// PIDL

void client_invoke (
inout CORBA::Request request

);
void target_invoke (

inout CORBA::Request request
);

};
};

Parameters

request The request being invoked. This is defined in the Dynamic
Invocation Interface. After invocation, output parameters and the
associated result and exceptions may have been updated.

18.5.2 Send and Receive Message

These invoke a message-level interceptor to send and receive messages. Both
operations have identical parameters and return values.
18-8 CORBA V2.2 February 1998

18
module CORBA {
native Message;
interface MessageInterceptor: Interceptor {// PIDL

void send_message (
in Object target,
in Message msg

);
void receive_message (

in Object target,
in Message msg

);
};

};

Parameters

target The target object reference.

Note: The target here may not be the same as seen by the
application. For example, a replication request-level interceptor
may send the request to more than one underlying object.

msg The message to be handled by this interceptor.

18.6 IDL for Interceptors

module CORBA {
interface Int erceptor {}; // PIDL
interface RequestInt ercept or: Interceptor {// PIDL

void client_invoke (
inout Request request

);
void target_invoke (

inout Request request
);

};
interface MessageInterceptor: Interceptor {// PIDL

void send_message (
in Object target,
in Message msg

);
void receive_message (

in Object target,
in Message msg

);
};

};
CORBA V2.2 IDL for Interceptors February 1998 18-9

18
18-10 CORBA V2.2 February 1998

C Language Mapping 19
r
CORBA is independent of the programming language used to construct clients and
implementations. In order to use the ORB, it is necessary for programmers to know
how to access ORB functionality from their programming languages. This chapte
defines the mapping of OMG IDL constructs to the C programming language.

Contents

This chapter contains the following sections.

Section Title Page

“Requirements for a Language Mapping” 19-2

“Scoped Names” 19-5

“Mapping for Interfaces” 19-6

“Inheritance and Operation Names” 19-8

“Mapping for Attributes” 19-8

“Mapping for Constants” 19-10

“Mapping for Basic Data Types” 19-10

“Mapping Considerations for Constructed Types” 19-11

“Mapping for Structure Types” 19-12

“Mapping for Union Types” 19-12

“Mapping for Sequence Types” 19-13

“Mapping for Strings” 19-16

“Mapping for Wide Strings” 19-18
 CORBA V2.2 February 1998 19-1

19

and

19.1 Requirements for a Language Mapping

All language mappings have approximately the same structure. They must define the
means of expressing in the language:

• All OMG IDL basic data types

• All OMG IDL constructed data types

• References to constants defined in OMG IDL

• References to objects defined in OMG IDL

• Invocations of operations, including passing parameters and receiving results

• Exceptions, including what happens when an operation raises an exception
how the exception parameters are accessed

• Access to attributes

• Signatures for the operations defined by the ORB, such as the dynamic invocation
interface, the object adapters, and so forth.

A complete language mapping will allow a programmer to have access to all ORB
functionality in a way that is convenient for the particular programming language. To
support source portability, all ORB implementations must support the same mapping
for a particular language.

“Mapping for Fixed” 19-18

“Mapping for Arrays” 19-19

“Mapping for Exception Types” 19-20

“Implicit Ar guments to Operations” 19-21

“Interpretation of Functions with Empty Argument Lists” 19-21

“Argument Passing Considerations” 19-21

“Return Result Passing Considerations” 19-22

“Summary of Argument/Result Passing” 19-23

“Handling Exceptions” 19-26

“Method Routine Signatures” 19-29

“Include Files” 19-29

“Pseudo-objects” 19-29

“Mapping for Object Implementations” 19-30

“Mapping of the Dynamic Skeleton Interface to C” 19-40

“ORB Initialization Operations” 19-44

Section Title Page
19-2 CORBA V2.2 February 1998

19

t the

ight

es
sic

uct as

eters
 these

re not
nt to

g

y
19.1.1 Basic Data Types

A language mapping must define the means of expressing all of the data types defined
in “Basic Types” on page 3-23. The ORB defines the range of values supported, bu
language mapping defines how a programmer sees those values. For example, the C
mapping might define TRUE as 1 and FALSE as 0, whereas the LISP mapping m
define TRUE as T and FALSE as NIL. The mapping must specify the means to
construct and operate on these data types in the programming language.

19.1.2 Constructed Data Types

A language mapping must define the means of expressing the constructed data typ
defined in “Constructed Types” on page 3-25. The ORB defines aggregates of ba
data types that are supported, but the language mapping defines how a programmer
sees those aggregates. For example, the C mapping might define an OMG IDL str
a C struct, whereas the LISP mapping might define an OMG IDL struct as a list. The
mapping must specify the means to construct and operate on these data types in the
programming language.

19.1.3 Constants

OMG IDL definitions may contain named constant values that are useful as param
for certain operations. The language mapping should provide the means to access
constants by name.

19.1.4 Objects

There are two parts of defining the mapping of ORB objects to a particular language.
The first specifies how an object is represented in the program and passed as a
parameter to operations. The second is how an object is invoked. The representation of
an object reference in a particular language is generally opaque, that is, some
language-specific data type is used to represent the object reference, but the program
does not interpret the values of that type. The language-specific representation is
independent of the ORB representation of an object reference, so that programs a
ORB-dependent. In an object-oriented programming language, it may be convenie
represent an ORB object as a programming language object. Any correspondence
between the programming language object types and the OMG IDL types includin
inheritance, operation names, etc., is up to the language mapping.

There are only three uses that a program can make of an object reference: it ma
specify it as a parameter to an operation (including receiving it as an output
parameter), it can invoke an operation on it, or it can perform an ORB operation
(including object adapter operations) on it.
CORBA V2.2 Requirements for a Language Mapping February 1998 19-3

19

the

 calls
o

e
n the

er or

input
y to

irst is

if it
meters

le.

taining
19.1.5 Invocation of Operations

An operation invocation requires the specification of the object to be invoked, the
operation to be performed, and the parameters to be supplied. There are a variety of
possible mappings, depending to a large extent on the procedure mechanism in
particular language. Some possible choices for language mapping of invocation
include: interface-specific stub routines, a single general-purpose routine, a set of
to construct a parameter list and initiate the operation, or mapping ORB operations t
operations on objects defined in an object-oriented programming language.

The mapping must define how parameters are associated with the call, and how th
operation name is specified. It is also necessary to specify the effect of the call o
flow of control in the program, including when an operation completes normally and
when an exception is raised.

The most natural mapping would be to model a call on an ORB object as the
corresponding call in the particular language. However, this may not always be
possible for languages where the type system or call mechanism is not powerful
enough to handle ORB objects. In this case, multiple calls may be required. For
example, in C, it is necessary to have a separate interface for dynamic construction of
calls, since C does not permit discovery of new types at runtime. In LISP, however, it
may be possible to make a language mapping that is the same for objects wheth
not they were known at compile time.

In addition to defining how an operation is expressed, it is necessary to specify the
storage allocation policy for parameters, for example, what happens to storage of
parameters, and how and where output parameters are allocated. It is also necessar
describe how a return value is handled, for operations that have one.

19.1.6 Exceptions

There are two aspects to the mapping of exceptions into a particular language. F
the means for handling an exception when it occurs, including deciding which
exception occurred. If the programming language has a model of exceptions that can
accommodate ORB exceptions, that would likely be the most convenient choice;
does not, some other means must be used, for example, passing additional para
to the operations that receive the exception status.

It is commonly the case that the programmer associates specific code to handle each
kind of exception. It is desirable to make that association as convenient as possib

Second, when an exception has been raised, it must be possible to access the
parameters of the exception. If the language exception mechanism allows for
parameters, that mechanism could be used. Otherwise, some other means of ob
the exception values must be provided.
19-4 CORBA V2.2 February 1998

19

ing
ar to

ce
nted

rface
e

L
essed,

er

n, or
ed
19.1.7 Attributes

The ORB models attributes as a pair of operations, one to set and one to get the
attribute value. The language mapping defines the means of expressing these
operations. One reason for distinguishing attributes from pairs of operations is to allow
the language mapping to define the most natural way for accessing them. Some
possible choices include defining two operations for each attribute, defining two
operations that can set or get, respectively, any attribute, defining operations that can
set or get groups of attributes, and so forth.

19.1.8 ORB Interfaces

Most of a language mapping is concerned with how the programmer-defined objects
and data are accessed. Programmers who use the ORB must also access some
interfaces implemented directly by the ORB, for example, to convert an object
reference to a string. A language mapping must also specify how these interfaces
appear in the particular programming language.

Various approaches may be taken, including defining a set of library routines, allow
additional ORB-related operations on objects, or defining interfaces that are simil
the language mapping for ordinary objects.

The last approach is called defining pseudo-objects. A pseudo-object has an interfa
that can (with a few exceptions) be defined in IDL, but is not necessarily impleme
as an ORB object. Using stubs a client of a pseudo-object writes calls to it in the same
way as if it were an ordinary object. Pseudo-object operations cannot be invoked with
the Dynamic Invocation Interface. However, the ORB may recognize such calls as
special and handle them directly. One advantage of pseudo-objects is that the inte
can be expressed in IDL independent of the particular language mapping, and th
programmer can understand how to write calls by knowing the language mapping for
the invocations of ordinary objects.

It is not necessary for a language mapping to use the pseudo-object approach.
However, this document defines interfaces in subsequent chapters using OMG ID
wherever possible. A language mapping must define how these interfaces are acc
either by defining them as pseudo-objects and supporting a mapping similar to
ordinary objects, by defining language-specific interfaces for them, or in some oth
way.

19.2 Scoped Names

The C programmer must always use the global name for a type, constant, exceptio
operation. The C global name corresponding to an OMG IDL global name is deriv
by converting occurrences of “:: ” to “_” (an underscore) and eliminating the leading
underscore.
CORBA V2.2 Scoped Names February 1998 19-5

19

 the
Consider the following example:

// IDL
typedef string<256> filename_t;
interface example0 {

enum color {red, green, blue};
union bar switch (enum foo {room, bell}) { ... };
• • •

};

Code to use this interface would look as follows:

/* C */
#include "example0.h"

filename_t FN;
example0_color C = example0_red;
example0_bar myUnion;

switch (myUnion._d) {
case example0_bar_room: • • •
case example0_bar_bell: • • •

};

Note that the use of underscores to replace the “:: ” separators can lead to ambiguity if
the OMG IDL specification contains identifiers with underscores in them. Consider
following example:

// IDL
typedef long foo_bar;
interface foo {

typedef short bar; /* A legal OMG IDL stat ement,
but ambiguous in C */
• • •

};

Due to such ambiguities, it is advisable to avoid the indiscriminate use of underscores
in identifiers.

19.3 Mapping for Interfaces

All interfaces must be defined at global scope (no nested interfaces). The mapping for
an interface declaration is as follows:

// IDL
interface example1 {

long op1(in long arg1);
};
19-6 CORBA V2.2 February 1998

19

n,

 type

of
The preceding example generates the following C declarations1:

/* C */
typedef CORBA_Object example1;
extern CORBA_long example1_op1(

example1 o,
CORBA_long arg1,
CORBA_Environment *ev

);

All object references (typed interface references to an object) are of the well-know
opaque type CORBA_Object . The representation of CORBA_Object is a
pointer. To permit the programmer to decorate a program with typed references, a
with the name of the interface is defined to be a CORBA_Object . The literal

CORBA_OBJECT_NIL is legal wherever a CORBA_Object may be used; it is
guaranteed to pass the is_nil operation defined in “Nil Object References” on
page 4-5.

OMG IDL permits specifications in which arguments, return results, or components
constructed types may be interface references. Consider the following example:

// IDL
#include "exampl e1.idl"

interface example2 {
example1 op2();

};

This is equivalent to the following C declaration:

/* C */
#include "example1.h"

typedef CORBA_Object example2;
extern example1 example2_op2(example2 o, CORBA_Environment
*ev);

A C fragment for invoking such an operation is as follows:

1. “Implicit Arguments to Operations” on page 19-21 describes the additional argu-
ments added to an operation in the C mapping.
CORBA V2.2 Mapping for Interfaces February 1998 19-7

19

g
/* C */
#include "example2.h"

example1 ex1;
example2 ex2;
CORBA_Environment ev;

/* code for binding ex2 */

ex1 = example2_op2(ex2, &ev);

19.4 Inheritance and Operation Names

OMG IDL permits the specification of interfaces that inherit operations from other
interfaces. Consider the following example:

// IDL
interface example3 : example1 {

void op3(in long arg3, out long arg4);
};

This is equivalent to the following C declarations:

/* C */
typedef CORBA_Object example3;
extern CORBA_long example3_op1(

example3 o,
CORBA_long arg1,
CORBA_Environment *ev

);
extern void example3_op3(

example3 o,
CORBA_long arg3,
CORBA_long *arg4,
CORBA_Environment *ev

);

As a result, an object written in C can access op1 as if it was directly declared in
example3 . Of course, the programmer could also invoke example1_op1 on an
Object of type example3 ; the virtual nature of operations in interface definitions
will cause invocations of either function to cause the same method to be invoked.

19.5 Mapping for Attributes

The mapping for attributes is best explained through example. Consider the followin
specification:
19-8 CORBA V2.2 February 1998

19

e

turn
// IDL
interface foo {

struct position_t {
float x, y;

};

attribute float radius;
readonly attri bute position_t position;

};

This is exactly equivalent to the following illegal OMG IDL specification:

// IDL (illegal)
interface foo {

struct position_t {
float x, y;

};

float _get_radius();
void _set_radius(in float r);
position_t _get_position();

};

This latter specification is illegal, since OMG IDL identifiers are not permitted to start
with the underscore (_) character.

The language mapping for attributes then becomes the language mapping for these
equivalent operations. More specifically, the function signatures generated for the
above operations are as follows:

/* C */
typedef struct foo_position_t {

CORBA_float x, y;
} foo_position_t;

extern CORBA_float foo__get_radius(foo o, CORBA_Environment
*ev);
extern void foo__set_radius(

foo o,
CORBA_float r,
CORBA_Environment *ev

);
extern foo_position_t foo__get_position(foo o,
CORBA_Environment *ev);

Note that two underscore characters (__) separate the name of the interface from th
words “get ” or “set ” in the names of the functions.

If the “set ” accessor function fails to set the attribute value, the method should re
one of the standard exceptions defined in “Standard Exceptions” on page3-37.
CORBA V2.2 Mapping for Attributes February 1998 19-9

19
19.6 Mapping for Constants

Constant identifiers can be referenced at any point in the user’s code where a literal of
that type is legal. In C, these constants are #define d.

The fact that constants are #define d may lead to ambiguities in code. All names
which are mandated by the mappings for any of the structured types below start with
an underscore.

The mappings for wide character and wide string constants is identical to character and
string constants, except that IDL literals are preceded by L in C. For example, IDL
constant:

const wstring ws = “Hello World”;

would map to

#define ws L”Hello World”

in C.

19.7 Mapping for Basic Data Types

The basic data types have the mappings shown in Table 19-1 on page 19-10.
Implementations are responsible for providing typedefs for CORBA_short,
CORBA_long, and so forth. consistent with OMG IDL requirements for the
corresponding data types.

Table 19-1 Data Type Mappings

OMG IDL C

short CORBA_short

long CORBA_long

long long CORBA_long_long

unsigned short CORBA_unsigned_short

unsigned long CORBA_unsigned_long

unsigned long
long

CORBA_unsigned_long_long

float CORBA_float

double CORBA_double

long double CORBA_long_double

char CORBA_char

wchar CORBA_wchar

boolean CORBA_boolean

any typedef struct CORBA_any { CORBA_TypeCode _type; void *_value; }

 CORBA_any;
19-10 CORBA V2.2 February 1998

19

ed in

ip

the

s)
The C mapping of the OMG IDL boolean types is unsigned char with only the
values 1 (TRUE) and 0 (FALSE) defined; other values produce undefined behavior.
CORBA_boolean is provided for symmetry with the other basic data type mappings.

The C mapping of OMG IDL enum types is an unsigned integer type capable of
representing 232 enumerations. Each enumerator in an enum is #define d with an
appropriate unsigned integer value conforming to the ordering constraints describ
“Enumerations” on page 3-27.

TypeCodes are described in “TypeCodes” on page 8-35. The _value member for an
any is a pointer to the actual value of the datum.

The any type supports the notion of ownership of its _value member. By setting a
release flag in the any when a value is installed, programmers can control ownersh
of the memory pointed to by _value . The location of this release flag is
implementation-dependent, so the following two ORB-supplied functions allow for the
setting and checking of the any release flag:

/* C */
void CORBA_any_set_release(CORBA_any*, CORBA_boolean);

CORBA_boolean CORBA_any_get_release(CORBA_any*);

CORBA_any_set_release can be used to set the state of the release flag. If
flag is set to TRUE, the any effectively “owns” the storage pointed to by _value ; if
FALSE, the programmer is responsible for the storage. If, for example, an any is
returned from an operation with its release flag set to FALSE, calling
CORBA_free() on the returned any* will not deallocate the memory pointed to
by _value . Before calling CORBA_free() on the _value member of an any
directly, the programmer should check the release flag using
CORBA_any_get_release . If it returns FALSE, the programmer should not
invoke CORBA_free() on the _value member; doing so produces undefined
behavior. Also, passing a null pointer to either CORBA_any_set_release or
CORBA_any_get_release produces undefined behavior.

If CORBA_any_set_release is never called for a given instance of any, the
default value of the release flag for that instance is FALSE.

19.8 Mapping Considerations for Constructed Types

The mapping for OMG IDL structured types (structs, unions, arrays, and sequence
can vary slightly depending on whether the data structure is fixed-length or variable-
length. A type is variable-length if it is one of the following types:

• The type any
• A bounded or unbounded string or wide string

• A bounded or unbounded sequence

• An object reference or reference to a transmissible pseudo-object

• A struct or union that contains a member whose type is variable-length

• An array with a variable-length element type

• A typedef to a variable-length type
CORBA V2.2 Mapping Considerations for Constructed Types February 1998 19-11

19

w

rted
lloc”
The reason for treating fixed- and variable-length data structures differently is to allo
more flexibility in the allocation of out parameters and return values from an
operation. This flexibility allows a client-side stub for an operation that returns a
sequence of strings, for example, to allocate all the string storage in one area that is
deallocated in a single call. The mapping of a variable-length type as an out parameter
or operation return value is a pointer to the associated class or array, as shown in
Table 19-2 on page 19-23.

For types whose parameter passing modes require heap allocation, an ORB
implementation will provide allocation functions. These types include variable-length
struct , variable-length union , sequence , any, string , wstring and array of a
variable-length type. The return value of these allocation functions must be freed using
CORBA_free() . For one of these listed types T, the ORB implementation will
provide the following type-specific allocation function:

/* C */
T *T__alloc();

The functions are defined at global scope using the fully-scoped name of T conve
into a C language name (as described in Section 19.2) followed by the suffix “__a
(note the double underscore). For any, string, and wstring , the allocation functions
are:

/* C */

CORBA_any *CORBA_any_alloc();
char *CORBA_string_alloc();
CORBA_wchar* CORBA_wstring_alloc(CORBA_unsigned_long len);

respectively.

19.9 Mapping for Structure Types

OMG IDL structures map directly onto C struct s. Note that all OMG IDL types
that map to C struct s may potentially include padding.

19.10 Mapping for Union Types

OMG IDL discriminated unions are mapped onto C struct s. Consider the following
OMG IDL declaration:

// IDL
union Foo switch (long) {

case 1: long x;
case 2: float y;
default: char z;

};

This is equivalent to the following struct in C:
19-12 CORBA V2.2 February 1998

19

/* C */
typedef struct {

CORBA_long _d;
union {

CORBA_long x;
CORBA_float y;
CORBA_char z;

} _u;
} Foo;

The discriminator in the struct is always referred to as _d ; the union in the struct is
always referred to as _u.

Reference to union elements is as in normal C:

/* C */
Foo *v;

/* make a call that returns a pointer to a Foo in v */

switch(v->_d) {
case 1: printf("x = %ld\n", v->_u.x); break;
case 2: printf("y = %f\n", v->_u.y); break;
default: printf("z = %c\n", v->_u.z); break;

}

An ORB implementation need not use a C union to hold the OMG IDL union
elements; a C struct may be used instead. In either case, the programmer accesses the
union elements via the _u member.

19.11 Mapping for Sequence Types

The OMG IDL data type sequence permits passing of unbounded arrays between
objects. Consider the following OMG IDL declaration:

// IDL
typedef sequence< long,10> vec10;

In C, this is converted to:

/* C */
typedef struct {

CORBA_unsigned_long _maximum;
CORBA_unsigned_long _length;
CORBA_long *_buffer;

} vec10;

An instance of this type is declared as follows:

/* C */
vec10 x = {10L, 0L, (CORBA_long *)NULL);
CORBA V2.2 Mapping for Sequence Types February 1998 19-13

19

tes a

 from

g
Prior to passing &x as an in parameter, the programmer must set the _buffer
member to point to a CORBA_long array of 10 elements, and must set the
_length member to the actual number of elements to transmit.

Prior to passing the address of a vec10* as an out parameter (or receiving a
vec10* as the function return), the programmer does nothing. The client stub will
allocate storage for the returned sequence; for bounded sequences, it also alloca
buffer of the specified size, while for unbounded sequences, it also allocates a buffer
big enough to hold what was returned by the object. Upon successful return from the
invocation, the _maximum member will contain the size of the allocated array, the
_buffer member will point at allocated storage, and the _length member will
contain the number of values that were returned in the _buffer member. The client
is responsible for freeing the allocated sequence using CORBA_free() .

Prior to passing &x as an inout parameter, the programmer must set the _buffer
member to point to a CORBA_long array of 10 elements. The _length member
must be set to the actual number of elements to transmit. Upon successful return
the invocation, the _length member will contain the number of values that were
copied into the buffer pointed to by the _buffer member. If more data must be
returned than the original buffer can hold, the callee can deallocate the original
_buffer member using CORBA_free() (honoring the release flag) and assign
_buffer to point to new storage.

For bounded sequences, it is an error to set the _length or _maximum member to
a value larger than the specified bound.

Sequence types support the notion of ownership of their _buffer members. By
setting a release flag in the sequence when a buffer is installed, programmers can
control ownership of the memory pointed to by _buffer . The location of this release
flag is implementation-dependent, so the following two ORB-supplied functions allow
for the setting and checking of the sequence release flag:

/* C */
void CORBA_sequence_set_release(void*, CORBA_boolean);
CORBA_boolean CORBA_sequence_get_release(void*);

CORBA_sequence_set_release can be used to set the state of the release
flag. If the flag is set to TRUE, the sequence effectively “owns” the storage pointed to
by _buffer ; if FALSE, the programmer is responsible for the storage. If, for
example, a sequence is returned from an operation with its release flag set to FALSE,
calling CORBA_free() on the returned sequence pointer will not deallocate the
memory pointed to by _buffer . Before calling CORBA_free() on the
_buffer member of a sequence directly, the programmer should check the release
flag using CORBA_sequence_get_release . If it returns FALSE, the
programmer should not invoke CORBA_free() on the _buffer member; doing
so produces undefined behavior. Also, passing a null pointer or a pointer to somethin
other than a sequence type to either CORBA_sequence_set_release or
CORBA_sequence_get_release produces undefined behavior.
19-14 CORBA V2.2 February 1998

19

e

ective
CORBA_sequence_set_release should only be used by the creator of a
sequence. If it is not called for a given sequence instance, then the default value of th
release flag for that instance is FALSE.

Two sequence types are the same type if their sequence element type and size arguments
are identical. For example,

// IDL
const long SIZE = 25;
typedef long seqtype;

typedef sequence< long, SIZE> s1;
typedef sequence< long, 25> s2;
typedef sequence<seqtype, SIZE> s3;
typedef sequence<seqtype, 25> s4;

declares s1 , s2, s3, and s4 to be of the same type.

The OMG IDL type

// IDL
seque nce<type,size>

maps to

/* C */
#ifndef _CORBA_sequence_type_defined
#define _CORBA_sequence_type_defined
typedef struct {

CORBA_unsigned_long _maximum;
CORBA_unsigned_long _length;
type *_buffer;

} CORBA_sequence_type;
#endif /* _CORBA_sequence_type_defined */

The ifdef ’s are needed to prevent duplicate definition where the same type is used
more than once. The type name used in the C mapping is the type name of the eff
type, e.g. in

/* C */
typedef CORBA_long FRED;
typedef sequence<FRED,10> FredSeq;

the sequence is mapped onto

struct { ... } CORBA_sequence_long;

If the type in

// IDL
seque nce<type,size>
CORBA V2.2 Mapping for Sequence Types February 1998 19-15

19

name
f the

pe.

consists of more than one identifier (e.g, unsigned long), then the generated type
consists of the string “CORBA_sequence_” concatenated to the string consisting o
concatenation of each identifier separated by underscores (e.g, “unsigned_long”).

If the type is a string , the string “string” is used to generate the type name. If the
type is a sequence , the string “sequence” is used to generate the type name,
recursively. For example

// IDL
sequence<sequen ce<long> >

generates a type of

/* C */
CORBA_sequence_sequence_long

These generated type names may be used to declare instances of a sequence ty

In addition to providing a type-specific allocation function for each sequence, an ORB
implementation must provide a buffer allocation function for each sequence type.
These functions allocate vectors of type T for sequence<T> . They are defined at
global scope and are named similarly to sequences:

/* C */
T *CORBA_sequence_T_allocbuf(CORBA_unsigned_long len);

Here, “T” refers to the type name. For the type

// IDL
sequence<sequen ce<long> >

for example, the sequence buffer allocation function is named

/* C */
T *CORBA_sequence_sequence_long_allocbuf

(CORBA_unsigned_long len);

Buffers allocated using these allocation functions are freed using CORBA_free() .

19.12 Mapping for Strings

OMG IDL strings are mapped to 0-byte terminated character arrays; i.e. the length of
the string is encoded in the character array itself through the placement of the 0-byte.
Note that the storage for C strings is one byte longer than the stated OMG IDL bound.
Consider the following OMG IDL declarations:

// IDL
typedef string<10> sten;
typedef string sinf;

In C, this is converted to:
19-16 CORBA V2.2 February 1998

19

ge

e
e

n
/* C */
typedef CORBA_char *sten;
typedef CORBA_char *sinf;

Instances of these types are declared as follows:

/* C */
sten s1 = NULL;
sinf s2 = NULL;

Two string types are the same type if their size arguments are identical. For example,

/* C */
const long SIZE = 25;

typedef string<SIZE> sx;
typedef string<25> sy;

declares sx and sy to be of the same type.

Prior to passing s1 or s2 as an in parameter, the programmer must assign the address
of a character buffer containing a 0-byte terminated string to the variable. The caller
cannot pass a null pointer as the string argument.

Prior to passing &s1 or &s2 as an out parameter (or receiving an sten or sinf as
the return result), the programmer does nothing. The client stub will allocate stora
for the returned buffer; for bounded strings, it allocates a buffer of the specified size,
while for unbounded strings, it allocates a buffer big enough to hold the returned
string. Upon successful return from the invocation, the character pointer will contain
the address of the allocated buffer. The client is responsible for freeing the allocated
storage using CORBA_free() .

Prior to passing &s1 or &s2 as an inout parameter, the programmer must assign th
address of a character buffer containing a 0-byte terminated array to the variable. If th
returned string is larger than the original buffer, the client stub will call
CORBA_free() on the original string and allocate a new buffer for the new string.
The client should therefore never pass an inout string parameter that was not
allocated using CORBA_string_alloc . The client is responsible for freeing the
allocated storage using CORBA_free() , regardless of whether or not a reallocatio
was necessary.

Strings are dynamically allocated using the following ORB-supplied function:

/* C */
CORBA_char *CORBA_string_alloc(CORBA_unsigned_long len);

This function allocates len+1 bytes, enough to hold the string and its terminating NUL
character.

Strings allocated in this manner are freed using CORBA_free() .
CORBA V2.2 Mapping for Strings February 1998 19-17

19

 are
19.13 Mapping for Wide Strings

The mapping for wide strings is similar to that of strings, except that (1) wide strings
mapped to null-terminated (note: a wide null) wide-character arrays instead of 0-byte
terminated character arrays; and (2) wide strings are dynamically allocated using the
ORB-supplied function:

CORBA_wchar* CORBA_wstring_alloc(CORBA_unsigned_long len);

instead of CORBA_st ring_alloc . The length argument len is the number of
CORBA::WChar units to be allocated, including one additional unit for the null
terminator.

19.14 Mapping for Fixed

If an implementation has a native fixed-point decimal type, matching the CORBA
specifications of the fixed type, then the OMG IDL fixed type may be mapped to the
native type.

Otherwise, the mapping is as follows. Consider the following OMG IDL declarations:

fixed<15,5> dec1; // IDL
typedef fixed<9,2> money;

In C, these become

typedef struct {/* C */
CORBA_unsigned_short _digits;
CORBA_short _scale;
CORBA_char _value[(15+2)/2];
} CORBA_fixed_15_5;

CORBA_fixed_15_5 dec1 = {15u, 5};

typedef struct {
CORBA_unsigned_short _digits;
CORBA_short _scale;
 CORBA_char _value[(9+2)/2];
} CORBA_fixed_9_2;

typedef CORBA_fixed_9_2 money;

An instance of money is declared:

money bags = {9u, 2};

To permit application portability, the following minimal set of functions and operations
on the fixed type must be provided by the mapping. Since C does not support
parameterized types, the fixed arguments are represented as void* pointers. The type
information is instead conveyed within the representation itself. Thus the _digits and
_scale of every fixed operand must be set prior to invoking these functions. Indeed
19-18 CORBA V2.2 February 1998

19

n:

er to
nal

t stub
only the _value field of the result, denoted by *rp , may be left unset. Otherwise the
behavior of the functions is undefined.

/* Conversions: all signs are the same. */
CORBA_long CORBA_fixed_integer_part(const void *fp);
CORBA_long CORBA_fixed_fraction_part(const void *fp);
void CORBA_fixed_set(void *rp, const CORBA_long i,

const CORBA_long f);

/* Operations, of the form: r = f1 op f2 */
void CORBA_fixed_add(void *rp, const void *f1p,

const void *f2p);
void CORBA_fixed_sub(void *rp, const void *f1p,

const void *f2p);
void CORBA_fixed_mul(void *rp, const void *f1p,

const void *f2p);
void CORBA_fixed_div(void *rp, const void *f1p,

const void *f2p);

These operations must maintain proper fixed-point decimal semantics, following the
rules specified in “Semantics” on page 3-20 for the precision and scale of the
intermediate results prior to assignment to the result variable. Truncation without
rounding may occur if the result type cannot express the intermediate result exactly.

Instances of the fixed type are dynamically allocated using the ORB-supplied functio

CORBA_fixed_d_s* CORBA_fixed_alloc(CORBA_unsigned_short d);

19.15 Mapping for Arrays
OMG IDL arrays map directly to C arrays. All array indices run from 0 to <size - 1>.

For each named array type in OMG IDL, the mapping provides a C typedef for point
the array’s slice. A slice of an array is another array with all the dimensions of the origi
except the first. For example, given the following OMG IDL definition:

// IDL
typedef long LongArray[4] [5];

The C mapping provides the following definitions:

/* C */
typedef CORBA_long LongArray[4][5];
typedef CORBA_long LongArray_slice[5];

The generated name of the slice typedef is created by appending “_slice” to the original
array name.

If the return result, or an out parameter for an array holding a variable-length type, of an
operation is an array, the array storage is dynamically allocated by the stub; a pointer to
the array slice of the dynamically allocated array is returned as the value of the clien
function. When the data is no longer needed, it is the programmer’s responsibility to return
CORBA V2.2 Mapping for Arrays February 1998 19-19

19

-

e

t least
r.

the dynamically allocated storage by calling CORBA_free() .

An array T of a variable-length type is dynamically allocated using the following ORB
supplied function:

/* C */
T_slice *T__alloc();

This function is identical to the allocation functions described in Section19.8, “Mapping
Considerations for Constructed Types,” on page 19-11, except that the return type is
pointer to array slice, not pointer to array.

19.16 Mapping for Exception Types
Each defined exception type is defined as a struct tag and a typedef with the C global nam
for the exception. An identifier for the exception, in string literal form, is also
#define d, as is a type-specific allocation function. For example:

// IDL
exception foo {

long dummy;
};

yields the following C declarations:

/* C */
typedef struct foo {

CORBA_long dummy;
/* ...may contain additional

* implementation-specific members...
 */

} foo;
#define ex_foo <unique identifier for exception>
foo *foo__alloc();

The identifier for the exception uniquely identifies this exception type. For example, it
could be the Interface Repository identifier for the exception (see “ExceptionDef” on
page 8-26).

The allocation function dynamically allocates an instance of the exception and returns a
pointer to it. Each exception type has its own dynamic allocation function. Exceptions
allocated using a dynamic allocation function are freed using CORBA_free() .

Since IDL exceptions are allowed to have no members, but C structs must have a
one member, IDL exceptions with no members map to C structs with one membe
This member is opaque to applications. Both the type and the name of the single
member are implementation-specific.
19-20 CORBA V2.2 February 1998

19

 have

an
a
he
ent

nt of
f that

r all
tri

19.17 Implicit Arguments to Operations
From the point of view of the C programmer, all operations declared in an interface
additional leading parameters preceding the operation-specific parameters:

1. The first parameter to each operation is a CORBA_Object input parameter; this
parameter designates the object to process the request.

2. The last parameter to each operation is a CORBA_Environment* output parame-
ter; this parameter permits the return of exception information.

3. If an operation in an OMG IDL specification has a context specification, then a
CORBA_Context input parameter precedes the CORBA_Environment*
parameter and follows any operation-specific arguments.

As described above, the CORBA_Object type is an opaque type. The
CORBA_Environment type is partially opaque; “Handling Exceptions” on
page 19-26 provides a description of the non-opaque portion of the exception structure
and an example of how to handle exceptions in client code. The CORBA_Context type
is opaque; see the Dynamic Invocation Interface chapter for more information on how to
create and manipulate context objects.

19.18 Interpretation of Functions with Empty Argument Lists
A function declared with an empty argument list is defined to take no operation-specific
arguments.

19.19 Argument Passing Considerations
For all OMG IDL types (except arrays), if the OMG IDL signature specifies that
argument is an out or inout parameter, then the caller must always pass the address of
variable of that type (or the value of a pointer to that type); the callee must dereference t
parameter to get to the type. For arrays, the caller must pass the address of the first elem
of the array.

For in parameters, the value of the parameter must be passed for all of the basic types,
enumeration types, and object references. For all arrays, the address of the first eleme
the array must be passed. For all other structured types, the address of a variable o
type must be passed, regardless of whether they are fixed- or variable-length. For strings, a
char* and wchar* must be passed.

For inout parameters, the address of a variable of the correct type must be passed fo
of the basic types, enumeration types, object references, and structured types. For sngs,
the address of a char* and the * of a wchar the must be passed. For all arrays, the
address of the first element of the array must be passed.

Consider the following OMG IDL specification:
CORBA V2.2 Implicit Arguments to Operations February 1998 19-21

19

sult is

// IDL
interface foo {

typedef long Vector [25];

void bar(out Vector x, out long y);
};

Client code for invoking the bar operation would look like:

/* C */
foo object;
foo_Vector_slice x;
CORBA_long y;
CORBA_Environment ev;

/* code to bind object to instance of foo */

foo_bar(object, &x, &y, &ev);

For out parameters of type variable-length struct , variable-length union , string ,
sequence , an array holding a variable-length type, or any, the ORB will allocate storage
for the output value using the appropriate type-specific allocation function. The client may
use and retain that storage indefinitely, and must indicate when the value is no longer
needed by calling the procedure CORBA_free , whose signature is:

/* C */
extern void CORBA_free(void *storage);

The parameter to CORBA_free() is the pointer used to return the out parameter.
CORBA_free() releases the ORB-allocated storage occupied by the out parameter,
including storage indirectly referenced, such as in the case of a sequence of strings or
array of object reference. If a client does not call CORBA_free() before reusing the
pointers that reference the out parameters, that storage might be wasted. Passing a null
pointer to CORBA_free() is allowed; CORBA_free() simply ignores it and
returns without error.

19.20 Return Result Passing Considerations
When an operation is defined to return a non-void return result, the following rules hold:

1. If the return result is one of the types float , double , long , short , unsigned long ,
unsigned short , char , wchar, fixed, boolean , octet , Object , or an enumeration ,
then the value is returned as the operation result.

2. If the return result is one of the fixed-length types struct or union , then the value of
the C struct representing that type is returned as the operation result. If the return re
one of the variable-length types struct , union , sequence , or any, then a pointer to a C
struct representing that type is returned as the operation result.

3. If the return result is of type string or wstring , then a pointer to the first character of
the string is returned as the operation result.
19-22 CORBA V2.2 February 1998

19

nd
4. If the return result is of type array , then a pointer to the slice of the array is returned as
the operation result.

Consider the following interface:

// IDL
interface X {

struct y {
long a;
float b;

};

long op1();
y op2();

};

The following C declarations ensue from processing the specification:

/* C */
typedef CORBA_Object X;
typedef struct X_y {

CORBA_long a;
CORBA_float b;

} X_y;

extern CORBA_long X_op1(X object, CORBA_Environment *ev);
extern X_y X_op2(X object, CORBA_Environment *ev);

For operation results of type variable-length struct , variable-length union , wstring ,
string , sequence , array , or any, the ORB will allocate storage for the return value
using the appropriate type-specific allocation function. The client may use and retain
that storage indefinitely, and must indicate when the value is no longer needed by
calling the procedure CORBA_free() described in “Argument Passing
Considerations” on page 19-21.

19.21 Summary of Argument/Result Passing

Table 19-3 on page 19-24 summarizes what a client passes as an argument to a stub a
receives as a result. For brevity, the CORBA_prefix is omitted from type names in the
tables.

Table 19-2Basic Argument and Result Passing

Data Type In Inout Out Return

short short short* short* short

long long long* long* long

long long long_long long_long* long_long* long_long

unsigned short unsigned_short unsigned_short* unsigned_short* unsigned_short

unsigned long unsigned_long unsigned_long* unsigned_long* unsigned_long

unsigned long long unsigned_long_long unsigned_long_long* unsigned_long_long* unsigned_long_long
CORBA V2.2 Summary of Argument/Result Passing February 1998 19-23

19
A client is responsible for providing storage for all arguments passed as in arguments.

float float float* float* float

double double double* double* double

long double long_double long_double* long_double* long_double

fixed<d,s> fixed_d_s* fixed_d_s* fixed_d_s* fixed_d_s

boolean boolean boolean* boolean* boolean

char char char* char* char

wchar wchar wchar* wchar* wchar

octet octet octet* octet* octet

enum enum enum* enum* enum

object reference ptr1 objref_ptr objref_ptr* objref_ptr* objref_ptr

struct, fixed struct* struct* struct* struct

struct, variable struct* struct* struct** struct*

union, fixed union* union* union* union

union, variable union* union* union** union*

string char* char** char** char*

wstring wchar* wchar** wchar** wchar*

sequence sequence* sequence* sequence** sequence*

array, fixed array array array array slice*2

array, variable array array array slice**2 array slice*2

any any* any* any** any*

1. Including pseudo-object references.

2. A slice is an array with all the dimensions of the original except the first one.

Table 19-3 Client Argument Storage Responsibilities

Type
Inout
Param

Out
Param

Return
Result

short 1 1 1

long 1 1 1

unsigned short 1 1 1

unsigned long 1 1 1

float 1 1 1

double 1 1 1

boolean 1 1 1

char 1 1 1

octet 1 1 1

enum 1 1 1

object reference ptr 2 2 2

struct, fixed 1 1 1

struct, variable 1 3 3

Table 19-2Basic Argument and Result Passing (Continued)

Data Type In Inout Out Return
19-24 CORBA V2.2 February 1998

19
union, fixed 1 1 1

union, variable 1 3 3

string 4 3 3

sequence 5 3 3

array, fixed 1 1 6

array, variable 1 6 6

any 5 3 3

Table 19-4 Argument Passing Cases

Case1

1. As listed in Table 19-3 on page 19-24

1 Caller allocates all necessary storage, except that which may be encapsulated and managed
within the parameter itself. For inout parameters, the caller provides the initial value, and the
callee may change that value. For out parameters, the caller allocates the storage but need not
initialize it, and the callee sets the value. Function returns are by value.

2 Caller allocates storage for the object reference. For inout parameters, the caller provides an
initial value; if the callee wants to reassign the inout parameter, it will first call
CORBA_Object_release on the original input value. To continue to use an object reference
passed in as an inout, the caller must first duplicate the reference. The client is responsible for
the release of all out and return object references. Release of all object references embedded in
other out and return structures is performed automatically as a result of calling CORBA_free.

3 For out parameters, the caller allocates a pointer and passes it by reference to the callee. The
callee sets the pointer to point to a valid instance of the parameter’s type. For returns, the callee
returns a similar pointer. The callee is not allowed to return a null pointer in either case. In both
cases, the caller is responsible for releasing the returned storage. Following the completion of a
request, the caller is not allowed to modify any values in the returned storage—to do so, the
caller must first copy the returned instance into a new instance, then modify the new instance.

4 For inout strings, the caller provides storage for both the input string and the char* pointing to it.
The callee may deallocate the input string and reassign the char* to point to new storage to hold
the output value. The size of the out string is therefore not limited by the size of the in string. The
caller is responsible for freeing the storage for the out. The callee is not allowed to return a null
pointer for an inout, out, or return value.

5 For inout sequences and anys, assignment or modification of the sequence or any may cause
deallocation of owned storage before any reallocation occurs, depending upon the state of the
boolean release in the sequence or any.

6 For out parameters, the caller allocates a pointer to an array slice, which has all the same
dimensions of the original array except the first, and passes the pointer by reference to the
callee. The callee sets the pointer to point to a valid instance of the array. For returns, the callee
returns a similar pointer. The callee is not allowed to return a null pointer in either case. In both
cases, the caller is responsible for releasing the returned storage. Following the completion of a
request, the caller is not allowed to modify any values in the returned storage—to do so, the
caller must first copy the returned array instance into a new array instance, then modify the new
instance.

Table 19-3 Client Argument Storage Responsibilities (Continued)

Type
Inout
Param

Out
Param

Return
Result
CORBA V2.2 Summary of Argument/Result Passing February 1998 19-25

19

19.22 Handling Exceptions

Since the C language does not provide native exception handling support, applications
pass and receive exceptions via the special CORBA_Environment parameter passed
to each IDL operation. The CORBA_Environment type is partially opaque; the C
declaration contains at least the following:

/* C */
typedef struct CORBA_Environment {

CORBA_exception_type _major;
...

} CORBA_Environment;

Upon return from an invocation, the _major field indicates whether the invocation ter-
minated successfully; _major can have one of the values CORBA_NO_EXCEPTION,
CORBA_USER_EXCEPTION, or CORBA_SYSTEM_EXCEPTION; if the value is
one of the latter two, then any exception parameters signalled by the object can be
accessed.

Five functions are defined on a CORBA_Environment structure for accessing
exception information. Their signatures are:

/* C */
extern void CORBA_exception_set(

CORBA_Environment *ev,
CORBA_exception_type major,
CORBA_char *except_repos_id,
void *param

);
extern CORBA_char *CORBA_exception_id(

CORBA_Environment *ev
);

extern void *CORBA_exception_value(CORBA_Environment *ev);
extern void CORBA_exception_free(CORBA_Environment *ev);
extern CORBA_any* CORBA_exception_as_any(

CORBA_Environment *ev
);

CORBA_exception_set() allows a method implementation to raise an
exception. The ev parameter is the environment parameter passed into the method.
The caller must supply a value for the major parameter. The value of the major
parameter constrains the other parameters in the call as follows:

• If the major parameter has the value CORBA_NO_EXCEPTION, this is a
normal outcome to the operation. In this case, both except_repos_id and
param must be NULL. Note that it is not necessary to invoke
CORBA_exception_set() to indicate a normal outcome; it is the default
behavior if the method simply returns.
19-26 CORBA V2.2 February 1998

19

, the

 a
riate

e

infor-

ic
• For any other value of major it specifies either a user-defined or system
exception. The except_repos_id parameter is the repository ID
representing the exception type. If the exception is declared to have members
param parameter must be the address of an instance of the exception struct
containing the parameters according to the C language mapping, coerced to
void* . In this case, the exception struct must be allocated using the approp
T__alloc() function, and the CORBA_exception_set() function
adopts the allocated memory and frees it when it no longer needs it. Once th
allocated exception struct is passed to CORBA_exception_set() , the
application is not allowed to access it because it no longer owns it. If the
exception takes no parameters, param must be NULL.

If the CORBA_Environment argument to CORBA_exception_set() already
has an exception set in it, that exception is properly freed before the new exception
mation is set.

CORBA_exception_id() returns a pointer to the character string identifying the
exception. The character string contains the repository ID for the exception. If invoked on
a CORBA_Environment which identifies a non-exception,
(_major==CORBA_NO_EXCEPTION) a null pointer is returned. Note that owner-
ship of the returned pointer does not transfer to the caller; instead, the pointer remains
valid until CORBA_exception_free() is called.

CORBA_exception_value() returns a pointer to the structure corresponding to
this exception. If invoked on a CORBA_Environment which identifies a non-excep-
tion or an exception for which there is no associated information, a null pointer is
returned. Note that ownership of the returned pointer does not transfer to the caller;
instead, the pointer remains valid until CORBA_exception_free() is called.

CORBA_exception_free() frees any storage which was allocated in the con-
struction of the CORBA_Environment or adopted by the CORBA_Environment
when CORBA_exception_set() is called on it, and sets the _major field to
CORBA_NO_EXCEPTION. It is permissible to invoke
CORBA_exception_free() regardless of the value of the _major field.

CORBA_exception_as_any() returns a pointer to a CORBA_any containing
the exception. This allows a C application to deal with exceptions for which it has no stat
(compile-time) information. If invoked on a CORBA_Environment which identifies
a non-exception, a null pointer is returned. Note that ownership of the returned pointer
does not transfer to the caller; instead, the pointer remains valid until
CORBA_exception_free() is called.

Consider the following example:
CORBA V2.2 Handling Exceptions February 1998 19-27

19
// IDL
interface exampleX {

exception BadCall {
string<80> reason;

};

void op() raises(BadCall);
};

This interface defines a single operation which returns no results and can raise a BadCall
exception. The following user code shows how to invoke the operation and recover from
an exception:

/* C */
#include "exampleX.h"

CORBA_Environment ev;
exampleX obj;
exampleX_BadCall *bc;

/*
* some code to initialize obj to a reference to an object
* supporting the exampleX interface
*/

exampleX_op(obj, &ev);
switch(ev._major) {
case CORBA_NO_EXCEPTION:/* successful outcome*/

/* process out and inout arguments */
break;

case CORBA_USER_EXCEPTION:/* a user-defined exception */
if (strcmp(ex_exampleX_BadCall,

CORBA_exception_id(&ev)) == 0) {
bc = (exampleX_BadCall*)CORBA_exception_value(&ev);
fprintf(stderr, "exampleX_op() failed - reason: %s\n",

bc->reason);
}
else { /* should never get here ... */

fprintf(stderr,
"unknown user-defined exception -%s\n",
CORBA_exception_id(&ev));

}
break;

default:/* standard exception */
/*

 * CORBA_exception_id() can be used to determine
 * which particular standard exception was
 * raised; the minor member of the struct

 * associated with the exception (as yielded by
 * CORBA_exception_value()) may provide additional

 * system-specific information about the exception
19-28 CORBA V2.2 February 1998

19

y

-

 by
 */
break;

}
/* free any storage associated with exception */
CORBA_exception_free(&ev);

19.23 Method Routine Signatures
The signatures of the methods used to implement an object depend not only on the
language binding, but also on the choice of object adapter. Different object adapters ma
provide additional parameters to access object adapter-specific features.

Most object adapters are likely to provide method signatures that are similar in most
respects to those of the client stubs. In particular, the mapping for the operation parameters
expressed in OMG IDL should be the same as for the client side.

See “Mapping for Object Implementations” on page 19-30 for the description of method
signatures for implementations using the Portable Object Adapter.

19.24 Include Files
Multiple interfaces may be defined in a single source file. By convention, each interface is
stored in a separate source file. All OMG IDL compilers will, by default, generate a header
file named Foo.h from Foo.idl . This file should be #include d by clients and
implementations of the interfaces defined in Foo.idl .

Inclusion of Foo.h is sufficient to define all global names associated with the interfaces
in Foo.idl and any interfaces from which they are derived.

19.25 Pseudo-objects

In the C language mapping, there are several interfaces that are defined as pseudo-objects;
A client makes calls on a pseudo-object in the same way as an ordinary ORB object. How
ever, the ORB may implement the pseudo-object directly, and there are restrictions on
what a client may do with a pseudo-object.

The ORB itself is a pseudo-object with the following partial definition (see the ORB Inter-
face chapter for the complete definition):

// IDL
interface ORB {

string object_to_string (in Object obj);
Object string_to_object (in string str);

};

This means that a C programmer may convert an object reference into its string form
calling:
CORBA V2.2 Method Routine Signatures February 1998 19-29

19

pec-

r-

 some
cts.

y
ual
/* C */
CORBA_Environment ev;
CORBA_char *str = CORBA_ORB_object_to_string(

orbobj, obj, &ev
);

just as if the ORB were an ordinary object. The C library contains the routine
CORBA_ORB_object_to_string , and it does not do a real invocation. The
orbobj is an object reference that specifies which ORB is of interest, since it is possible
to choose which ORB should be used to convert an object reference to a string (see the
ORB Interface chapter for details on this specific operation).

Although operations on pseudo-objects are invoked in the usual way defined by the C lan-
guage mapping, there are restrictions on them. In general, a pseudo-object cannot be s
ified as a parameter to an operation on an ordinary object. Pseudo-objects are also not
accessible using the dynamic invocation interface, and do not have definitions in the inte
face repository.

Because the programmer uses pseudo-objects in the same way as ordinary objects,
ORB implementations may choose to implement some pseudo-objects as ordinary obje
For example, assuming it could be efficient enough, a context object might be imple-
mented as an ordinary object.

19.25.1 ORB Operations

The operations on the ORB defined in the ORB Interface chapter are used as if the
had the OMG IDL definitions described in the document, and then mapped in the us
way with the C language mapping.

For example, the string_to_object ORB operation has the following signature:

/* C */
CORBA_Object CORBA_ORB_string_to_object(

CORBA_Object orb,
CORBA_char *objectstring,
CORBA_Environment *ev

);

Although in this example, we are using an “object” that is special (an ORB), the
method name is generated as i nterface_operation in the same way as
ordinary objects. Also, the signature contains an CORBA_Environment parameter
for error indications.

Following the same procedure, the C language binding for the remainder of the ORB
and object reference operations may be determined.

19.26 Mapping for Object Implementations

This section describes the details of the OMG IDL-to-C language mapping that apply
specifically to the Portable Object Adapter, such as how the implementation methods
are connected to the skeleton.
19-30 CORBA V2.2 February 1998

19

g
19.26.1 Operation-specific Details

The C Language Mapping Chapter defines most of the details of binding methods to
skeletons, naming of parameter types, and parameter passing conventions. Generally,
for those parameters that are operation-specific, the method implementing the
operation appears to receive the same values that would be passed to the stubs.

19.26.2 PortableServer Functions

Objects registered with POAs use sequences of octet, specifically the
PortableSe rver::POA::ObjectId type, as object identifiers. However, because C
programmers will often want to use strings as object identifiers, the C mapping
provides several conversion functions that convert strings to ObjectId and vice-
versa:

/* C */
extern CORBA_char* PortableServer_ObjectId_to_string(

PortableServer_ObjectId* id,
CORBA_Environment* env

);
extern CORBA_wchar_t* PortableServer_ObjectId_to_wstring(

PortableServer_ObjectId* id
CORBA_Environment* env

);

extern PortableServer_ObjectId*
PortableServer_string_to_ObjectId(

CORBA_char* str,
CORBA_Environment* env

);
extern PortableServer_ObjectId*

PortableServer_wstring_to_ObjectId(
CORBA_wchar_t* str,
CORBA_Environment* env

);

These functions follow the normal C mapping rules for parameter passing and memory
management.

If conversion of an ObjectId to a string would result in illegal characters in the strin
(such as a NUL), the first two functions raise the CORBA_BAD_PARAM exception.

19.26.3 Mapping for PortableServer::ServantLocator::Cookie

Since PortableServer::ServantLocator::Cookie is an IDL native type, its type
must be specified by each language mapping. In C, Cookie maps to void* :

/* C */
typedef void* PortableServer_ServantLocator_Cookie;
CORBA V2.2 Mapping for Object Implementations February 1998 19-31

19

ith a

pv”
For the C mapping of the PortableServer::ServantLocator::preinvoke() operation,
the Cookie parameter maps to a Cookie* , while for the postinvoke() operation, it is
passed as a Cookie :

/* C */
extern PortableServer_ServantLocator_preinvoke(

PortableServer_ObjectId* oid,
PortableServer_POA adapter,
CORBA_Identifier op_name,
PortableServer_ServantLocator_Cookie* cookie

);
extern PortableServer_ServantLocator_postinvoke(

PortableServer_ObjectId* oid,
PortableServer_POA adapter,
CORBA_Identifier op_name,
PortableServer_ServantLocator_Cookie cookie,
PortableServer_Servant servant

);

19.26.4 Servant Mapping

A servant is a language-specific entity that can incarnate a CORBA object. In C, a
servant is composed of a data structure that holds the state of the object along w
collection of method functions that manipulate that state in order to implement the
CORBA object.

The PortableServer::Servant type maps into C as follows:

/* C */
typedef void* PortableServer_Servant;

Servant is mapped to a void* rather than a pointer to ServantBase so that all ser-
vant types for derived interfaces can be passed to all the operations that take a Servant
parameter without requiring casting. However, it is expected that an instance of
PortableServer_Servant points to an instance of a
PortableServer_ServantBase or its equivalent for derived interfaces, as
described below.

Associated with a servant is a table of pointers to method functions. This table is called an
entry point vector, or EPV. The EPV has the same name as the servant type with “__e
appended (note the double underscore). The EPV for PortableServer_Servant is
defined as follows:
19-32 CORBA V2.2 February 1998

19

pointer

e to

 next-
/* C */
typedef struct PortableServer_ServantBase__epv {

void* _private;
void (*finalize)(PortableServer_Servant,

CORBA_Environment*);
PortableServer_POA (*default_POA)(

PortableServer_Servant,
CORBA_Environment*);

} PortableServer_ServantBase__epv;

extern PortableServer_POA
PortableServer_ServantBase__default_POA(

PortableServer_Servant,
CORBA_Environment*

);

The PortableServer_ServantBase__epv “_private” member, which is
opaque to applications, is provided to allow ORB implementations to associate data with
each ServantBase EPV. Since it is expected that EPVs will be shared among multiple
servants, this member is not suitable for per-servant data. The second member is a
to the finalization function for the servant, which is invoked when the servant is ethereal-
ized. The other function pointers correspond to the usual Servant operations.

The actual PortableServer_ServantBase structure combines an EPV with
per-servant data, as shown below:

/* C */
typedef PortableServer_ServantBase__epv*

PortableServer_ServantBase__vepv;

typedef struct PortableServer_ServantBase {
void* _private;
PortableServer_ServantBase__vepv* vepv;

} PortableServer_ServantBase;

The first member is a void* that points to data specific to each ORB implementation.
This member, which allows ORB implementations to keep per-servant data, is opaqu
applications. The second member is a pointer to a pointer to a
PortableServer_ServantBase__epv . The reason for the double level of
indirection is that servants for derived classes contain multiple EPV pointers, one for each
base interface as well as one for the interface itself. (This is explained further in the
section.) The name of the second member, “vepv,” is standardized to allow portable access
through it.

19.26.5 Interface Skeletons

All C skeletons for IDL interfaces have essentially the same structure as ServantBase,
with the exception that the second member has a type that allows access to all EPVs
for the servant, including those for base interfaces as well as for the most-derived
interface.
CORBA V2.2 Mapping for Object Implementations February 1998 19-33

19

e f

For example, consider the following IDL interface:

// IDL
interface Counter {

long add(in long v al);
};

The servant skeleton generated by the IDL compiler for this interface appears as
follows (the type of the second member is defined further below):

/* C */
typedef struct POA_Counter {

void* _private;
POA_Counter__vepv* vepv;

} POA_Counter;

As with PortableServer_ServantBase , the name of the second member is
standardized to “vepv” for portability.

The EPV generated for the skeleton is a bit more interesting. For the Counter
interface defined above, it appears as follows:

/* C */
typedef struct POA_Counter__epv {

void* _private;
CORBA_Long (*add)(PortableServer_Servant servant,

CORBA_Long val,
CORBA_Environment* env);

} POA_Counter__epv;

Since all servants are effectively derived from
PortableServer_ServantBase , the complete set of entry points has to
include EPVs for both PortableServer_ServantBase and for Counter
itself:

/* C */
typedef struct POA_Counter__vepv {

PortableServer_ServantBase__epv* _base_epv;
POA_Counter__epv* Counter_epv;

} POA_Counter__vepv;

The first member of the POA_Counter__vepv struct is a pointer to the
PortableServer_ServantBase EPV. To ensure portability of initialization
and access code, this member is always named “_base_epv.” It must always be thirst
member. The second member is a pointer to a POA_Counter__epv .

The pointers to EPVs in the VEPV structure are in the order that the IDL interfaces
appear in a top-to-bottom left-to-right traversal of the inheritance hierarchy of the
most-derived interface. The base of this hierarchy, as far as servants are concerned, is
always PortableServer_ServantBase . For example, consider the following
complicated interface hierarchy:
19-34 CORBA V2.2 February 1998

19

ing

// IDL
interface A {};
interface B : A {};
interface C : B {};
interface D : B {};
interface E : C, D {};
interface F {};
interface G : E, F {

void foo();
};

The VEPV structure for interface G shall be generated as follows:

/* C */
typedef struct POA_G__epv {

void* _private;
void (*foo)(PortableServer_Servant, CORBA_Environment*);

};
typedef struct POA_G__vepv {

PortableServer_ServantBase__epv* _base_epv;
POA_A__epv* A_epv;
POA_B__epv* B_epv;
POA_C__epv* C_epv;
POA_D__epv* D_epv;
POA_E__epv* E_epv;
POA_F__epv* F_epv;
POA_G__epv* G_epv;

};

Note that each member other than the “_base_epv” member is named by append
“_epv” to the interface name whose EPV the member points to. These names are
standardized to allow for portable access to these struct fields.

19.26.6 Servant Structure Initialization

Each servant requires initialization and etherealization, or finalization, functions. For
PortableServer_ServantBase , the ORB implementation shall provide the
following functions:

/* C */
void PortableServer_ServantBase__init(

PortableServer_Servant,
CORBA_Environment*);

void PortableServer_ServantBase__fini(
PortableServer_Servant,
CORBA_Environment*);

These functions are named by appending “__init” and “__fini” (note the double
underscores) to the name of the servant, respectively.
CORBA V2.2 Mapping for Object Implementations February 1998 19-35

19

e

The first argument to the init function shall be a valid
PortableServer_Servant whose “vepv” member has already been initialized
to point to a VEPV structure. The init function shall perform ORB-specific
initialization of the PortableServer_ServantBase , and shall initialize the
“finalize” struct member of the pointed-to
PortableServer_ServantBase__epv to point to the
PortableServer_ServantBase_fini() function if the “finalize” member
is NULL. If the “finalize” member is not NULL, it is presumed that it has already
been correctly initialized by the application, and is thus not modified. Similarly, if the
the default_POA member of the PortableServer_ServantBase__epv
structure is NULL when the init function is called, its value is set to point to the
PortableServer_ServantBase__default_POA() function, which
returns an object reference to the root POA.

If a servant pointed to by the PortableServer_Servant passed to an init
function has a NULL “vepv” member, or if the PortableServer_Servant
argument itself is NULL, no initialization of the servant is performed, and the
CORBA::BAD_PARAM standard exception is raised via the
CORBA_Environment parameter. This also applies to interface-specific init
functions, which are described below.

The fini function only cleans up ORB-specific private data. It is the default
finalization function for servants. It does not make any assumptions about where th
servant is allocated, such as assuming that the servant is heap-allocated and trying to
call CORBA_free() on it. Applications are allowed to “override” the fini function
for a given servant by initializing the PortableServer_ServantBase__epv
“finalize” pointer with a pointer to a finalization function made specifically for that
servant; however, any such overriding function must always ensure that the
PortableServer_ServantBase_fini() function is invoked for that
servant as part of its implementation. The results of a finalization function failing to
invoke PortableServer_ServantBase_fini() are implementation-
specific, but may include memory leaks or faults that could crash the application.

If a servant passed to a fini function has a NULL “epv” member, or if the
PortableServer_Servant argument itself is NULL, no finalization of the
servant is performed, and the CORBA::B AD_PARAM standard exception is raised
via the CORBA_Environment parameter. This also applies to interface-specific
fini functions, which are described below.

Normally, the PortableServer_ServantBase__init and
PortableServer_ServantBase__fini functions are not invoked directly
by applications, but rather by interface-specific initialization and finalization functions
generated by an IDL compiler. For example, the init and fini functions generated for
the Counter skeleton are defined as follows:
19-36 CORBA V2.2 February 1998

19

ed
/* C */
void POA_Counter__init(POA_Counter* servant,

CORBA_Environment* env)
{

/*
* first call immediate base interface init functions
* in the left-to-right order of inheritance
*/

PortableServer_ServantBase__init(
(PortableServer_ServantBase*)servant,
env

);
/* now perform POA_Counter initialization */
...

}

void POA_Counter__fini(POA_Counter* servant,
CORBA_Environment* env)

{
/* first perform POA_Counter cleanup */
...
/*

* then call immediate base interface fini functions
* in the right-to-left order of inheritance
*/

PortableServer_ServantBase__fini(
(PortableServer_ServantBase*)servant,
env

);
}

The address of a servant shall be passed to the init function before the servant is
allowed to be activated or registered with the POA in any way. The results of failing
to properly initialize a servant via the appropriate init function before registering it or
allowing it to be activated are implementation-specific, but could include memory
access violations that could crash the application.

19.26.7 Application Servants

It is expected that applications will create their own servant structures so that theycan
add their own servant-specific data members to store object state. For the Counter
example shown above, an application servant would probably have a data member us
to store the counter value:

/* C */
typedef struct AppServant {

POA_Counter base;
CORBA_Long value;

} AppServant;
CORBA V2.2 Mapping for Object Implementations February 1998 19-37

19
The application might contain the following implementation of the Counter::add
operation:

/* C */
CORBA_Long
app_servant_add(PortableServer_Servant _servant,

CORBA_Long val,
CORBA_Environment* _env)

{
AppServant* self = (AppServant*)_servant;
self->value += val;
return self->value;

}

The application could initialize the servant statically as follows:

/* C */
PortableServer_ServantBase__epv base_epv = {

NULL, /* ignore ORB private data */
NULL, /* no servant-specific finalize

function needed */
NULL, /* use base default_POA function */

};

POA_Counter__epv counter_epv = {
NULL, /* ignore ORB private data */
app_servant_add /* point to our add function */

};

/* Vector of EPVs */
POA_Counter__vepv counter_vepv = {

&base_epv,
&counter_epv

};

};
AppServant my_servant = {

/* initialize POA_Counter */
{

NULL, /* ignore ORB private data */
&counter_vepv /* Counter vector of EPVs */

},
0 /* initialize counter value */

};

Before registering or activating this servant, the application shall call:
19-38 CORBA V2.2 February 1998

19

t

t

tubs

ject

/* C */
CORBA_Environment env;
POA_Counter__init(&my_servant, &env);

If the application requires a special destruction function for my_servant , it shall
set the value of the PortableServer_ServantBase__epv “finalize”
member either before or after calling POA_Counter__init() :

/* C */
my_servant.epv._base_epv.finalize = my_finalizer_func;

Note that if the application statically initialized the “finalize” member before calling
the servant initialization function, explicit assignment to the “finalize” member as
shown here is not necessary, since the PortableServer_ServantBase
__init() function will not modify it if it is non-NULL.

The example shown above illustrates static initialization of the EPV and VEPV
structures. While portable, this method of initialization depends on the ordering of the
VEPV struct members for base interfaces—if the top-to-bottom left-to-right ordering
of the interface inheritance hierarchy is changed, the order of these fields is also
changed. A less fragile way of initializing these fields is to perform the initialization a
runtime, relying on assignment to the named struct fields. Since the names of the fields
are used in this approach, it does not break if the order of base interfaces changes.
Performing field initialization within a servant initialization function also provides a
convenient place to invoke the servant initialization functions. In any case, both
approaches are portable, and it is ultimately up to the developer to choose the one tha
is best for each application.

19.26.8 Method Signatures

With the POA, implementation methods have signatures that are identical to the s
except for the first argument. If the following interface is defined in OMG IDL:

// IDL
interface example4 {

long op5(in long arg6);
};

a method function for the op5 operation must have the following function signature:

/* C */
CORBA_long example4_op5(

PortableServer_Servant _servant,
CORBA_long arg6,
CORBA_Environment* _env

);

The _servant parameter is the pointer to the servant incarnating the CORBA ob
on which the request was invoked. The method can obtain the object reference for the
target CORBA object by using the POA_Current object. The _env parameter is
CORBA V2.2 Mapping for Object Implementations February 1998 19-39

19

hem

 to

t

MG
used for raising exceptions. Note that the names of the _servant and _env
parameters are standardized to allow the bodies of method functions to refer to t
portably.

The method terminates successfully by executing a return statement returning the
declared operation value. Prior to returning the result of a successful invocation, the
method code must assign legal values to all out and inout parameters.

The method terminates with an error by executing the CORBA_exception_set
operation (described in “Handling Exceptions” on page 19-26) prior to executing a
return statement. When raising an exception, the method code is not required to
assign legal values to any out or inout parameters. Due to restrictions in C, however,
it must return a legal function value.

19.27 Mapping of the Dynamic Skeleton Interface to C

For general information about mapping of the Dynamic Skeleton Interface to
programming languages, refer to “DSI: Language Mapping” on page 6-4.

This section contains

• A mapping of the Dynamic Skeleton Interface’s ServerRequest to C

• A mapping of the Portable Object Adapter’s Dynamic Implementation Routine
C.

19.27.1 Mapping of ServerRequest to C

In the C mapping, a ServerRequest is a pseudo object in the CORBA module tha
supports the following operations:

/* C */
CORBA_Identifier CORBA_ServerRequest_operation(

CORBA_ServerRequest req,
CORBA_Environment *env

);

This function returns the name of the operation being performed, as shown in the
operation’s OMG IDL specification.

/* C */
CORBA_Context CORBA_ServerRequest_ctx (

CORBA_ServerRequest req,
CORBA_Environment *env

);

This function may be used to determine any context values passed as part of the
operation. Context will only be available to the extent defined in the operation’s O
IDL definition; for example, attribute operations have none.
19-40 CORBA V2.2 February 1998

19

be

o

. If

o
/* C */
void CORBA_ServerRequest_arguments(

CORBA_ServerRequest req,
CORBA_NVList* parameters,
CORBA_Environment *env

);

This function is used to retrieve parameters from the ServerRequest , and to find
the addresses used to pass pointers to result values to the ORB. It must always
called by each DIR, even when there are no parameters.

The caller passes ownership of the parameters NVList to the ORB. Before this
routine is called, that NVList should be initialized with the TypeCodes and direction
flags for each of the parameters to the operation being implemented: in, out, and inout
parameters inclusive. When the call returns, the parameters NVList is still usable
by the DIR, and all in and inout parameters will have been unmarshalled. Pointers t
those parameter values will at that point also be accessible through the parameters
NVList.

The implementation routine will then process the call, producing any result values
the DIR does not need to report an exception, it will replace pointers to inout values in
parameters with the values to be returned, and assign pointers to out values in that
NVList appropriately as well. When the DIR returns, all the parameter memory is
freed as appropriate, and the NVList itself is freed by the ORB.

/* C */
void CORBA_ServerRequest_set_result(

CORBA_ServerRequest req,
CORBA_any* value,
CORBA_Environment *env

);

This function is used to report any result value for an operation. If the operation has
no result, it must either be called with a tk_void TypeCode stored in value , or not be
called at all.

/* C */
void CORBA_ServerRequest_set_exception(

CORBA_ServerRequest req,
CORBA_exception_type major,
CORBA_any* value,
CORBA_Environment *env

);

This function is used to report exceptions, both user and system, to the client wh
made the original invocation. The parameters are as follows:

major indicates whether the exception is a user exception or system exception

value is the value of the exception, including an exceptionTypeCode.
CORBA V2.2 Mapping of the Dynamic Skeleton Interface to C February 1998 19-41

19

e

ture
19.27.2 Mapping of Dynamic Implementation Routine to C

In C, a DIR is a function with this signature:

/* C */
typedef void (*PortableServer_DynamicImplRoutine)(

PortableServer_Servant servant,
CORBA_ServerRequest request

);

Such a function will be invoked by the Portable Object Adapter when an invocation is
received on an object reference whose implementation has registered a dynamic
skeleton.

servant is the C implementation object incarnating the CORBA object to which the invo-
cation is directed.

request is the ServerRequest used to access explicit parameters and report results (and
exceptions).

Unlike other C object implementations, the DIR does not receive a
CORBA_Environment* parameter, and so the CORBA_exception_set API
is not used. Instead, CORBA_ServerRequest_set_exception is used; this
provides the TypeCode for the exception to the ORB, so it does not need to consult th
Interface Repository (or rely on compiled stubs) to marshal the exception value.

To register a Dynamic Implementation Routine with a POA, the proper EPV struc
and servant must first be created. DSI servants are expected to supply EPVs for both
PortableServer_ServantBase and for
PortableServer_DynamicImpl , which is conceptually derived from
PortableServer_ServantBase , as shown below.
19-42 CORBA V2.2 February 1998

19

e

ad to
/* C */
typedef struct PortableServer_DynamicImpl__epv {

void* _private;
PortableServer_DynamicImplRoutine invoke;
CORBA_RepositoryId (*primary_interface)(

PortableServer_Servant svt,
PortableServer_ObjectId id,
PortableServer_POA poa,
CORBA_Environment* env);

} PortableServer_DynamicImpl__epv;

typedef struct PortableServer_DynamicImpl__vepv {
PortableServer_ServantBase__epv* _base_epv;
PortableServer_DynamicImpl__epv*

PortableServer_DynamicImpl_epv;
} PortableServer_DynamicImpl__vepv;

typedef struct PortableServer_DynamicImpl {
void* _private;
PortableServer_DynamicImpl__vepv* vepv;

} PortableServer_DynamicImpl;

As for other servants, initialization and finalization functions for
PortableServer_DynamicImpl are also provided, and must be invoked as
described in “Servant Structure Initialization” on page19-35.

To properly initialize the EPVs, the application must provide implementations of the
invoke and the primary_interface functions required by the
PortableServer_DynamicImpl EPV. The invoke method, which is the
DIR, receives requests issued to any CORBA object it represents and performs th
processing necessary to execute the request.

The primary_interface method receives an ObjectId value and a POA as
input parameters and returns a valid Interface Repository Id representing the most-
derived interface for that oid .

It is expected that these methods will be only invoked by the POA, in the context of
serving a CORBA request. Invoking these methods in other circumstances may le
unpredictable results.

An example of a DSI-based servant is shown below:

/* C */

/* This function serves as the DIR */
void my_invoke(PortableServer_Servant servant,

CORBA_ServerRequest req)
{

/* details omitted */
}

CORBA_RepositoryId my_primary_intf(
CORBA V2.2 Mapping of the Dynamic Skeleton Interface to C February 1998 19-43

19

f
PortableServer_Servant svt,
PortableServer_ObjectId id,
PortableServer_POA poa,
CORBA_Environment* env)

{
/* details omitted */

}

/* Application-specific DSI servant type */
typedef struct MyDSIServant {

POA_DynamicImpl base;
/* other application-specific data members */

} MyDSIServant;

PortableServer_ServantBase__epv base_epv = {
NULL, /* ignore ORB private data */
NULL, /* no servant-specific finalize */
NULL, /* use base default_POA function */

};
PortableServer_DynamicImpl__epv dynimpl_epv = {

NULL, /* ignore ORB private data */
my_invoke, /* invoke() function */
my_primary_intf, /* primary_interface() function */

};
PortableServer_DynamicImpl__vepv dynimpl_vepv = {

&base_epv, /* ServantBase EPV */
&dynimpl_epv, /* DynamicImpl EPV */

};

MyDSIServant my_servant = {
/* initialize PortableServer_DynamicImpl */
{

NULL, /* ignore ORB private data */
&dynimpl_vepv /* DynamicImpl vector of EPVs */

};
/* initialize application-specific data members */

};

Registration of the my_servant data structure via the
PortableServer_POA_set_servant() function on a suitably initialized
POA makes the my_invoke DIR function available to handle DSI requests.

19.28 ORB Initialization Operations

ORB Initialization

The following PIDL specifies initialization operations for an ORB; this PIDL is part o
the CORBA module (not the ORB interface) and is described in “ORB Initialization”
on page 4-8.
19-44 CORBA V2.2 February 1998

19

hich

. If

g

er or
 to
he
// PIDL
module CORBA {

typedef string ORBid;
 typedef sequence <string> arg_list;

 ORB ORB_init (inout arg_list argv, in ORBid orb_identifier);
};

The mapping of the preceding PIDL operations to C is as follows:

/* C */
typedef char* CORBA_ORBid;
extern CORBA_ORB CORBA_ORB_init(int *argc,

char **argv,
CORBA_ORBid orb_identifier,
CORBA_Environment *env);

The C mapping for ORB_init deviates from the OMG IDL PIDL in its handling of the
arg_list parameter. This is intended to provide a meaningful PIDL definition of the
initialization interface, which has a natural C binding. To this end, the arg_list
structure is replaced with argv and argc parameters.

The argv parameter is defined as an unbound array of strings (char **) and the
number of strings in the array is passed in the argc (int*) parameter.

If an empty ORBid string is used then argc arguments can be used to determine w
ORB should be returned. This is achieved by searching the argv parameters for one
tagged ORBid, e.g., -ORBid "ORBid_example." If an empty ORBid string is used and
no ORB is indicated by the argv parameters, the default ORB is returned.

Regardless of whether an empty or non-empty ORBid string is passed to ORB_init ,
the argv arguments are examined to determine if any ORB parameters are given
a non-empty ORBid string is passed to ORB_init , all -ORBid parameters in the
argv are ignored. All other -ORB<suffix> parameters may be of significance durin
the ORB initialization process.

For C, the order of consumption of argv parameters may be significant to an
application. In order to ensure that applications are not required to handle argv
parameters they do not recognize the ORB initialization function must be called before
the remainder of the parameters are consumed. Therefore, after the ORB_init call
the argv and argc parameters will have been modified to remove the ORB
understood arguments. It is important to note that the ORB_init call can only reord
remove references to parameters from the argv list; this restriction is made in order
avoid potential memory management problems caused by trying to free parts of t
argv list or extending the argv list of parameters. This is why argv is passed as a
char** and not a char*** .
CORBA V2.2 ORB Initialization Operations February 1998 19-45

19
19-46 CORBA V2.2 February 1998

Mapping of OMG IDL to C++ 20
he

ion)
This chapter explains how OMG IDL constructs are mapped to the constructs of t
C++ programming language. It provides mapping information for:

• Interfaces

• Constants

• Basic data types

• Enums

• Types (string, structure, struct, union, sequence, array, typedefs, any, except

• Operations and attributes

• Arguments

Contents

This chapter contains the following sections.

Section Title Page

“Preliminary Information” 20-3

“Mapping for Modules” 20-5

“Mapping for Interfaces” 20-6

“Mapping for Constants” 20-13

“Mapping for Basic Data Types” 20-15

“Mapping for Enums” 20-16

“Mapping for String Types” 20-17

“Mapping for Wide String Types” 20-20

“Mapping for Structured Types” 20-21
 CORBA V2.2 February 1998 20-1

20
“Mapping for Struct Types” 20-27

“Mapping for Union Types” 20-31

“Mapping for Sequence Types” 20-35

“Mapping For Array Types” 20-41

“Mapping For Typedefs” 20-44

“Mapping for the Any Type” 20-46

“Mapping for Exception Types” 20-58

“Mapping For Operations and Attributes” 20-61

“Implicit Ar guments to Operations” 20-62

“Argument Passing Considerations” 20-62

“Mapping of Pseudo Objects to C++” 20-68

“Usage” 20-69

“Mapping Rules” 20-69

“Relation to the C PIDL Mapping” 20-70

“Environment” 20-71

“NamedValue” 20-72

“NVList” 20-73

“Request” 20-75

“Context” 20-80

“TypeCode” 20-81

“ORB” 20-83

“Object” 20-86

“Server-Side Mapping” 20-88

“Implementing Interfaces” 20-89

“Implementing Operations” 20-97

“Mapping of Dynamic Skeleton Interface to C++” 20-99

“PortableServer Functions” 20-101

“Mapping for PortableServer::ServantManager” 20-102

“C++ Definitions for CORBA” 20-103

“Alternative Mappings For C++ Dialects” 20-116

“C++ Keywords” 20-118

Section Title Page
20-2 CORBA V2.2 February 1998

20

a
 for

L to

 the

nt

the

e

ing

tly

+

20.1 Preliminary Information

20.1.1 Overview

Key Design Decisions

The design of the C++ mapping was driven by a number of considerations, including
design that achieves reasonable performance, portability, efficiency, and usability
OMG IDL-to-C++ implementations. Several other considerations are outlined in this
section.

For more information about the general requirements of a mapping from OMG ID
any programming language, refer to “Requirements for a Language Mapping” on
page 19-2.

Compliance

The C++ mapping tries to avoid limiting the implementation freedoms of ORB
developers. For each OMG IDL and CORBA construct, the C++ mapping explains
syntax and semantics of using the construct from C++. A client or server program
conforms to this mapping (is CORBA-C++ compliant) if it uses the constructs as
described in the C++ mapping chapters. An implementation conforms to this mapping
if it correctly executes any conforming client or server program. A conforming clie
or server program is therefore portable across all conforming implementations. For
more information about CORBA compliance, refer to the Preface, “Definition of
CORBA Compliance” on page -xxx.

C++ Implementation Requirements

The mapping proposed here assumes that the target C++ environment supports all
features described in The Annotated C++ Reference Manual (ARM) by Ellis and
Stroustrup as adopted by the ANSI/ISO C++ standardization committees, including
exception handling. In addition, it assumes that the C++ environment supports th
namespace construct recently adopted into the language. Because C++
implementations vary widely in the quality of their support for templates, this mapp
does not explicitly require their use, nor does it disallow their use as part of a CORBA-
compliant implementation.

C Data Layout Compatibility

Some ORB vendors feel strongly that the C++ mapping should be able to work direc
with the CORBA C mapping. This mapping makes every attempt to ensure
compatibility between the C and C++ mappings, but it does not mandate such
compatibility. In addition to providing better interoperability and portability, the C+
call style solves the memory management problems seen by C programmers who use
the C call style. Therefore, the OMG has adopted the C++ call style for OMG IDL.
CORBA V2.2 Preliminary Information February 1998 20-3

20

 call

r

e
However, to provide continuity for earlier applications, an implementation might
choose to support the C call style as an option. If an implementation supports both
styles, it is recommended that the C call style be phased out.

Note that the mapping in the C Language Mapping chapter has been modified to
achieve compatibility between the C and C++ mappings.

No Implementation Descriptions

This mapping does not contain implementation descriptions. It avoids details that
would constrain implementations, but still allows clients to be fully source compatible
with any compliant implementation. Some examples show possible implementations,
but these are not required implementations.

20.1.2 Scoped Names

Scoped names in OMG IDL are specified by C++ scopes:

• OMG IDL modules are mapped to C++ namespaces.

• OMG IDL interfaces are mapped to C++ classes (as described in “Mapping fo
Interfaces” on page 20-6).

• All OMG IDL constructs scoped to an interface are accessed via C++ scoped
names. For example, if a type mode were defined in interface printer then the
type would be referred to as printer::mode .

These mappings allow the corresponding mechanisms in OMG IDL and C++ to b
used to build scoped names. For instance:

// IDL
module M
{

struct E {
long L;

};
};

is mapped into:

// C++
namespace M
{

struct E {
Long L;

};
}

and E can be referred outside of M as M::E . Alternatively, a C++ using statement
for namespace M can be used so that E can be referred to simply as E:

// C++
using namespace M;
20-4 CORBA V2.2 February 1998

20

ple,

 and

ally
E e;
e.L = 3;

Another alternative is to employ a using statement only for M::E :

// C++
using M::E;
E e;
e.L = 3;

To avoid C++ compilation problems, every use in OMG IDL of a C++ keyword as an
identifier is mapped into the same name preceded by the prefix “_cxx_”. For exam
an IDL interface named “try” would be named “_cxx_try” when its name is mapped
into C++. The complete list of C++ keywords from the 2 December 1996 Working
Paper of the ANSI/ISO C++ standardization committees (X3J16, WG21) can be found
in the "C++ Keywords" appendix.

20.1.3 C++ Type Size Requirements

The sizes of the C++ types used to represent OMG IDL types are implementation-
dependent. That is, this mapping makes no requirements as to the sizeof(T) for
anything except basic types (see “Mapping for Basic Data Types” on page 20-15)
string (see “Mapping for String Types” on page 20-17).

20.1.4 CORBA Module

The mapping relies on some predefined types, classes, and functions that are logic
defined in a module named CORBA. The module is automatically accessible from a
C++ compilation unit that includes a header file generated from an OMG IDL
specification. In the examples presented in this document, CORBA definitions are
referenced without explicit qualification for simplicity. In practice, fully scoped names
or C++ using statements for the CORBA namespace would be required in the
application source. Appendix A contains standard OMG IDL types.

20.2 Mapping for Modules

As shown in “Scoped Names” on page 20-4, a module defines a scope, and as such is
mapped to a C++ namespace with the same name:

// IDL
module M
{

// definit ions
};

// C++
namespace M
{

CORBA V2.2 Mapping for Modules February 1998 20-5

20

 the

// definitions
}

Because namespaces were only recently added to the C++ language, few C++
compilers currently support them. Alternative mappings for OMG IDL modules that do
not require C++ namespaces are in the Appendix “Alternative Mappings for C++
Dialects.”

20.3 Mapping for Interfaces

An interface is mapped to a C++ class that contains public definitions of the types,
constants, operations, and exceptions defined in the interface.

A CORBA–C++–compliant program cannot

• Create or hold an instance of an interface class

• Use a pointer (A*) or a reference (A&) to an interface class.

The reason for these restrictions is to allow a wide variety of implementations. For
example, interface classes could not be implemented as abstract base classes if
programs were allowed to create or hold instances of them. In a sense, the generated
class is like a namespace that one cannot enter via a using statement. This example
shows the behavior of the mapping of an interface:

// IDL
interface A
{

struct S { short field; };
};

// C++
// Conformant uses
A::S s; // declare a struct variable
s.field = 3; // field access

// Non-conformant uses:
// one cannot declare an instance of an interface class...
A a;
// ...nor declare a pointer to an interface class...
A *p;
// ...nor declare a reference to an interface class.
void f(A &r);

20.3.1 Object Reference Types

The use of an interface type in OMG IDL denotes an object reference. Because of
different ways an object reference can be used and the different possible
implementations in C++, an object reference maps to two C++ types. For an interface
A, these types are named A_var and A_ptr . For historical reasons, the type ARef
is defined as a synonym for A_ptr , but usage of the Ref names is not portable and
20-6 CORBA V2.2 February 1998

20

 is not

of

es
face

ll

e
is thus deprecated. These types need not be distinct—A_var may be identical to
A_ptr , for example—so a compliant program cannot overload operations using these
types solely.

An operation can be performed on an object by using an arrow (“-> ”) on a reference
to the object. For example, if an interface defines an operation op with no parameters
and obj is a reference to the interface type, then a call would be written obj-
>op() . The arrow operator is used to invoke operations on both the _ptr and _var
object reference types.

Client code frequently will use the object reference variable type (A_var) because a
variable will automatically release its object reference when it is deallocated or when
assigned a new object reference. The pointer type (A_ptr) provides a more primitive
object reference, which has similar semantics to a C++ pointer. Indeed, an
implementation may choose to define A_ptr as A* , but is not required to. Unlike
C++ pointers, however, conversion to void* , arithmetic operations, and relational
operations, including test for equality, are all non-compliant. A compliant
implementation need not detect these incorrect uses because requiring detection
practical.

For many operations, mixing data of type A_var and A_ptr is possible without any
explicit operations or casts. However, one needs to be careful in doing so because
the implicit release performed when the variable is deallocated. For example, the
assignment statement in the code below will result in the object reference held byp to
be released at the end of the block containing the declaration of a.

// C++
A_var a;
A_ptr p = // ...somehow obtain an objref...
a = p;

20.3.2 Widening Object References

OMG IDL interface inheritance does not require that the corresponding C++ class
are related, though that is certainly one possible implementation. However, if inter
B inherits from interface A, the following implicit widening operations for B must be
supported by a compliant implementation:

• B_ptr to A_ptr

• B_ptr to Object_ptr

• B_var to A_ptr

• B_var to Object_ptr

Implicit widening from a B_var to A_var or Object_var need not be
supported; instead, widening between _var types for object references requires a ca
to _duplicate (described in “Object Reference Operations” on page 20-8).1 An
attempt to implicitly widen from one _var type to another must cause a compile-tim
error.2 Assignment between two _var objects of the same type is supported, but
widening assignments are not and must cause a compile-time error. Widening
assignments may be done using _duplicate .
CORBA V2.2 Mapping for Interfaces February 1998 20-7

20

ll

ype

e
 a nil
// C++
B_ptr bp = ...
A_ptr ap = bp; // implicit widening
Object_ptr objp = bp; // implicit widening
objp = ap; // implicit widening

B_var bv = bp; // bv assumes ownership of bp
ap = bv; // implicit widening, bv retains

// ownership of bp
obp = bv; // implicit widening, bv retains

// ownership of bp

A_var av = bv; // illegal, compile-time error
A_var av = B::_duplicate(bv);// av, bv both refer to bp
B_var bv2 = bv; // implicit _duplicate
A_var av2;
av2 = av; // implicit _duplicate

20.3.3 Object Reference Operations

Conceptually, the Object class in the CORBA module is the base interface type for a
CORBA objects. Any object reference can therefore be widened to the type
Object_ptr . As with other interfaces, the CORBA namespace also defines the t
Object_var .

CORBA defines three operations on any object reference: duplicate , release , and
is_nil . Note that these are operations on the object reference, not the object
implementation. Because the mapping does not require object references to themselves
be C++ objects, the “-> ” syntax cannot be employed to express the usage of thes
operations. Also, for convenience these operations are allowed to be performed on
object reference.

The release and is_nil operations depend only on type Object , so they can be
expressed as regular functions within the CORBA namespace as follows:

1.When T_ptr is mapped to T* , it is impossible in C++ to provide implicit widening
between T_var types while also providing the necessary duplication semantics for
T_ptr types.

2.This can be achieved by deriving all T_var types for object references from a base _var
class, then making the assignment operator for _var private within each T_var type.
20-8 CORBA V2.2 February 1998

20

 nil,

r the

ber

,

an
// C++
void release(Object_ptr obj);
Boolean is_nil(Object_ptr obj);

The release operation indicates that the caller will no longer access the reference
so that associated resources may be deallocated. If the given object reference is
release does nothing. The is_nil operation returns TRUE if the object reference
contains the special value for a nil object reference as defined by the ORB. Neithe
release operation nor the is_nil operation may throw CORBA exceptions.

The duplicate operation returns a new object reference with the same static type as
the given reference. The mapping for an interface therefore includes a static mem
function named _duplicate in the generated class. For example:

// IDL
interface A { };

// C++
class A
{

public:
 static A_ptr _duplicate(A_ptr obj);
};

If th e given object reference is nil, _duplicate will return a nil object reference.
The _duplicate operation can throw CORBA system exceptions.

20.3.4 Narrowing Object References

The mapping for an interface defines a static member function named _narrow that
returns a new object reference given an existing reference. Like _duplicate , the
_narrow function returns a nil object reference if the given reference is nil. Unlike
_duplicate , the parameter to _narrow is a reference of an object of any
interface type (Object_ptr). If the actual (runtime) type of the parameter object
can be widened to the requested interface’s type, then _narrow will return a valid
object reference. Otherwise, _narrow will return a nil object reference. For example
suppose A, B, C, and D are interface types, and D inherits from C, which inherits from
B, which in turn inherits from A. If an object reference to a C object is widened to
A_ptr variable called ap , the

• A::_narrow(ap) returns a valid object reference;

• B::_narrow(ap) returns a valid object reference;

• C::_narrow(ap) returns a valid object reference;

• D::_narrow(ap) returns a nil object reference.

Narrowing to A, B, and C all succeed because the object supports all those interfaces.
The D::_narrow returns a nil object reference because the object does not support
the D interface.
CORBA V2.2 Mapping for Interfaces February 1998 20-9

20

o a

ot be

For another example, suppose A, B, C, and D are interface types. C inherits from B,
and both B and D inherit from A. Now suppose that an object of type C is passed t
function as an A. If the function calls B::_narrow or C::_narrow , a new object
reference will be returned. A call to D::_narrow will fail and return nil.

If successful, the _narrow function creates a new object reference and does not
consume the given object reference, so the caller is responsible for releasing both the
original and new references.

The _narrow operation can throw CORBA system exceptions.

20.3.5 Nil Object Reference

The mapping for an interface defines a static member function named _nil that
returns a nil object reference of that interface type. For each interface A, the following
call is guaranteed to return TRUE:

// C++
Boolean true_result = is_nil(A::_nil());

A compliant application need not call release on the object reference returned from
the _nil function.

As described in “Object Reference Types” on page 20-6, object references may n
compared using operator== , so is_nil is the only compliant way an object
reference can be checked to see if it is nil.

The _nil function may not throw any CORBA exceptions.

A compliant program cannot attempt to invoke an operation through a nil object
reference, since a valid C++ implementation of a nil object reference is a null pointer.

20.3.6 Object Reference Out Parameter

When a _var is passed as an out parameter, any previous value it refers to must be
implicitly released. To give C++ mapping implementations enough hooks to meet this
requirement, each object reference type results in the generation of an _out type
which is used solely as the out parameter type. For example, interface A results in the
object reference type A_ptr , the helper type A_var , and the out parameter type
A_out . The general form for object reference _out types is shown below.
20-10 CORBA V2.2 February 1998

20

ly

re
// C++
class A_out
{

public:
A_out(A_ptr& p) : ptr_(p) { ptr_ = A::_nil(); }
A_out(A_var& p) : ptr_(p.ptr_) {
release(ptr_); ptr_ = A::_nil();
}
A_out(A_out& a) : ptr_(a.ptr_) {}
A_out& operator=(A_out& a) {
ptr_ = a.ptr_; return *this;
}
A_out& operator=(const A_var& a) {
ptr_ = A::_duplicate(A_ptr(a)); return *this;
}
A_out& operator=(A_ptr p) { ptr_ = p; return *this; }
operator A_ptr&() { return ptr_; }
A_ptr& ptr() { return ptr_; }
A_ptr operator->() { return ptr_; }

private:
A_ptr& ptr_;
};

The first constructor binds the reference data member with the A_ptr& argument.
The second constructor binds the reference data member with the A_ptr object
reference held by the A_var argument, and then calls release() on the object
reference. The third constructor, the copy constructor, binds the reference data
member to the same A_ptr object reference bound to the data member of its
argument. Assignment from another A_out copies the A_ptr referenced by the
argument A_out to the data member. The overloaded assignment operator for
A_ptr simply assigns the A_ptr object reference argument to the data member.
The overloaded assignment operator for A_var duplicates the A_ptr held by the
A_var before assigning it to the data member. Note that assignment does not cause
any previously-held object reference value to be released; in this regard, the A_out
type behaves exactly as an A_ptr . The A_ptr& conversion operator returns the
data member. The ptr() member function, which can be used to avoid having to re
on implicit conversion, also returns the data member. The overloaded arrow operator
(operator->()) returns the data member to allow operations to be invoked on the
underlying object reference after it has been properly initialized by assignment.

20.3.7 Interface Mapping Example

The example below shows one possible mapping for an interface. Other mappings a
also possible, but they must provide the same semantics and usage as this example.
CORBA V2.2 Mapping for Interfaces February 1998 20-11

20
// IDL
interface A
{

A op(in A arg1, out A arg2);
};

// C++
class A;
typedef A *A_ptr;
class A : public virtual Object
{

public:
static A_ptr _duplicate(A_ptr obj);
static A_ptr _narrow(Object_ptr obj);
static A_ptr _nil();

virtual A_ptr op(A_ptr arg1, A_out arg2) = 0;

protected:
A();
virtual ~A();

private:
A(const A&);
void operator=(const A&);
};

class A_var : public _var
{
 public:
A_var() : ptr_(A::_nil()) {}
A_var(A_ptr p) : ptr_(p) {}
A_var(const A_var &a) : ptr_(A::_duplicate(A_ptr(a))) {}
~A_var() { free(); }

A_var &operator=(A_ptr p) {
reset(p); return *this;
}
A_var &operator=(const A_var& a) {
if (this != &a) {
free();
ptr_ = A::_duplicate(A_ptr(a));
}
return *this;
}
A_ptr in() const { return ptr_; }
A_ptr& inout() { return ptr_; }
A_ptr& out() {
reset(A::_nil());
return ptr_;
20-12 CORBA V2.2 February 1998

20

ple,
nt
scope
ilation

}
A_ptr _retn() {
// yield ownership of managed object reference
A_ptr val = ptr_;
ptr_ = A::_nil();
return val;
}

operator const A_ptr&() const { return ptr_; }
operator A_ptr&() { return ptr_; }
A_ptr operator->() const { return ptr_; }

protected:
A_ptr ptr_;
void free() { release(ptr_); }
void reset(A_ptr p) { free(); ptr_ = p; }

private:
// hidden assignment operators for var types to
// fulfill the rules specified in
// Section 19.3.2
void operator=(const _var &);
};

The definition for the A_out type is the same as the one shown in “Object Reference
Out Parameter” on page20-10.

20.4 Mapping for Constants

OMG IDL constants are mapped directly to a C++ constant definition that may or may
not define storage depending on the scope of the declaration. In the following exam
a top-level IDL constant maps to a file-scope C++ constant whereas a nested consta
maps to a class-scope C++ constant. This inconsistency occurs because C++ file-
constants may not require storage (or the storage may be replicated in each comp
unit), while class-scope constants always take storage. As a side effect, this difference
means that the generated C++ header file might not contain values for constants
defined in the OMG IDL file.
CORBA V2.2 Mapping for Constants February 1998 20-13

20

alue

d

e
// IDL
const string name = "testing";

interface A
{

const float pi = 3.14159;
};

// C++
static const char *const name = "testing";

class A
{

public:
static const Float pi;
};

In certain situations, use of a constant in OMG IDL must generate the constant’s v
instead of the constant’s name.3 For example,

// IDL
interface A
{

const long n = 10;
typedef long V[n];

};

// C++
class A
{

public:
static const long n;
typedef long V[10];

};

Wide Character and Wide String Constants

The mappings for wide character and wide string constants is identical to character an
string constants, except that IDL literals are preceded by L in C++. For example, IDL
constant:

const wstring ws = “Hello World”;

would map to

3.A recent change made to the C++ language by the ANSI/ISO C++ standardization commit-
tees allows static integer constants to be initialized within the class declaration, so for som
C++ compilers, the code generation issues described here may not be a problem.
20-14 CORBA V2.2 February 1998

20

er

n

 the
static const CORBA::WChar *const ws = L”Hello World”;

in C++.

20.5 Mapping for Basic Data Types

The basic data types have the mappings shown in Table 20-14. Note that the mapping of
the OMG IDL boolean type defines only the values 1 (TRUE) and 0 (FALSE); oth
values produce undefined behavior.

Each OMG IDL basic type is mapped to a typedef in the CORBA module. This is
because some types, such as short and long , may have different representations o
different platforms, and the CORBA definitions will reflect the appropriate
representation. For example, on a 64-bit machine where a long integer is 64 bits,
definition of CORBA::Long would still refer to a 32-bit integer. Requirements for
the sizes of basic types are shown in “Basic Types” on page 3-23.

4. This mapping assumes that CORBA::LongLong , CORBA::ULongLong , and
CORBA::LongDouble are mapped directly to native numeric C++ types (e.g.,
CORBA::LongLong to a 64-bit integer type) that support the required IDL semantics and
that can be manipulated via built-in operators. If such native type support is not widely
available, then an alternate mapping to C++ classes (that support appropriate creation,
conversion, and manipulation operators) should also be provided by the C++ Mapping
Revision Task Force.

Table 20-1Basic Data Type Mappings

OMG IDL C++ C++ Out Type

short CORBA::Short CORBA::Short_out

long CORBA::Long CORBA::Long_out

long long CORBA::LongLong CORBA::LongLong_out

unsigned short CORBA::UShort CORBA::UShort_out

unsigned long CORBA::ULong CORBA::ULong_out

unsigned long long CORBA::ULongLong CORBA::ULongLong_out

float CORBA::Float CORBA::Float_out

double CORBA::Double CORBA::Double_out

long double CORBA::LongDouble CORBA::LongDouble_out

char CORBA::Char CORBA::Char_out

wchar CORBA::WChar CORBA::WChar_out

boolean CORBA::Boolean CORBA::Boolean_out

octet CORBA::Octet CORBA::Octet
CORBA V2.2 Mapping for Basic Data Types February 1998 20-15

20

5. For

e

.

ing

s

 of

e
Except for boolean , char , and octet , the mappings for basic types must be
distinguishable from each other for the purposes of overloading. That is, one can safely
write overloaded C++ functions on Short , UShort , Long , ULong, Float , and
Double .

The _out types for the basic types are used to type out parameters within operation
signatures, as described in “Operation Parameters and Signatures” on page 20-6
the basic types, each _out type shall be a typedef to a reference to the
corresponding C++ type. For example, the Short_out shall be defined in the
CORBA namespace as follows:

// C++
typedef Short& Short_out;

The _out types for the basic types are provided for consistency with other out
parameter types.

Programmers concerned with portability should use the CORBA types. However, som
may feel that using these types with the CORBA qualification impairs readability. If
the CORBA module is mapped to a namespace, a C++ using statement may help
this problem. On platforms where the C++ data type is guaranteed to be identical to the
OMG IDL data type, a compliant implementation may generate the native C++ type

For the Boolean type, only the values 1 (representing TRUE) and 0 (representing
FALSE) are defined; other values produce undefined behavior. Since many exist
C++ software packages and libraries already provide their own preprocessor macro
definitions of TRUE and FALSE, this mapping does not require that such definition
be provided by a compliant implementation. Requiring definitions for TRUE and
FALSE could cause compilation problems for CORBA applications that make use
such packages and libraries. Instead, we recommend that compliant applications
simply use the values 1 and 0 directly.5 Alternatively, for those C++ compilers that
support the bool type, the keywords true and false may be used.

20.6 Mapping for Enums

An OMG IDL enum maps directly to the corresponding C++ type definition. The
only difference is that the generated C++ type may need an additional constant that is
large enough to force the C++ compiler to use exactly 32 bits for values declared to b
of the enumerated type.

5.Examples and descriptions in this document still use TRUE and FALSE for purposes of clar-
ity.
20-16 CORBA V2.2 February 1998

20

s

ic

// IDL
enum Color { red, green, blue };

// C++
enum Color { red, green, blue };

In addition, an _out type used to type out parameters within operation signatures i
generated for each enumerated type. For enum Color shown above, the
Color_out type shall be defined in the same scope as follows:

// C++
typedef Color& Color_out;

The _out types for enumerated types are generated for consistency with other out
parameter types.

20.7 Mapping for String Types

As in the C mapping, the OMG IDL string type, whether bounded or unbounded, is
mapped to char* in C++. String data is null-terminated. In addition, the CORBA
module defines a class String_var that contains a char* value and automatically
frees the pointer when a String_var object is deallocated. When a String_var
is constructed or assigned from a char* , the char* is consumed and thus the string
data may no longer be accessed through it by the caller. Assignment or construction
from a const char* or from another String_var causes a copy. The
String_var class also provides operations to convert to and from char* values,
as well as subscripting operations to access characters within the string. The full
definition of the String_var interface is given in “String_var and String_out
Class” on page 20-104. Because its mapping is char* , the OMG IDL string type is
the only non-basic type for which this mapping makes size requirements. For dynam
allocation of strings, compliant programs must use the following functions from the
CORBA namespace:

// C++
namespace CORBA {
char *string_alloc(ULong len);
char *string_dup(const char*);
void string_free(char *);
...
}

The string_alloc function dynamically allocates a string, or returns a null
pointer if it cannot perform the allocation. It allocates len+1 characters so that the
resulting string has enough space to hold a trailing NUL character. The
string_dup function dynamically allocates enough space to hold a copy of its
string argument, including the NUL character, copies its string argument into that
memory, and returns a pointer to the new string. If allocation fails, a null pointer is
returned. The string_free function deallocates a string that was allocated with
string_alloc or string_dup . Passing a null pointer to string_free is
acceptable and results in no action being performed. These functions allow ORB
CORBA V2.2 Mapping for String Types February 1998 20-17

20

t
implementations to use special memory management mechanisms for strings if
necessary, without forcing them to replace global operator new and operator
new[] .

The string_alloc , string_dup , and string_free functions may not
throw CORBA exceptions.

Note that a static array of char in C++ decays to a char* 6, so care must be taken
when assigning one to a String_var , since the String_var will assume the
pointer points to data allocated via string_alloc and thus will eventually attempt
to string_free it:

// C++
// The following is an error, since the char* should point to
// data allocated via string_alloc so it can be consumed
String_var s = "static string";// error

// The following are OK, since const char* are copied,
// not consumed
const char* sp = "static string";
s = sp;
s = (const char*)"static string too";

// C++
// The following is an error, since the char* should point to
// data allocated via string_alloc so it can be consumed
String_var s = "static string";// error

// The following are OK, since const char* are copied,
// not consumed
const char* sp = "static string";
s = sp;
s = (const char*)"static string too";

6. This has changed in ANSI/ISO C++, where string literals are const char*, not char*. How-
ever, since most C++ compilers do not yet implement this change, portable programs mus
heed the advice given here.
20-18 CORBA V2.2 February 1998

20

When a String_var is passed as an out parameter, any previous value it refers to
must be implicitly freed. To give C++ mapping implementations enough hooks to
meet this requirement, the string type also results in the generation of a String_out
type in the CORBA namespace which is used solely as the string out parameter type.
The general form for the String_out type is shown below.

// C++
class String_out
{

public:
String_out(char*& p) : ptr_(p) { ptr_ = 0; }
String_out(String_var& p) : ptr_(p.ptr_) {
string_free(ptr_); ptr_ = 0;
}
String_out(String_out& s) : ptr_(s.ptr_) {}
String_out& operator=(String_out& s) {
ptr_ = s.ptr_; return *this;
}
String_out& operator=(char* p) {
ptr_ = p; return *this;
}
String_out& operator=(const char* p) {
ptr_ = string_dup(p); return *this;
}
operator char*&() { return ptr_; }
char*& ptr() { return ptr_; }

private:
char*& ptr_;

// assignment from String_var disallowed
void operator=(const String_var&);
};

The first constructor binds the reference data member with the char*& argument.
The second constructor binds the reference data member with the char* held by the
String_var argument, and then calls string_free() on the string. The third
constructor, the copy constructor, binds the reference data member to the same char*
bound to the data member of its argument. Assignment from another String_out
copies the char* referenced by the argument String_out to the char*
referenced by the data member. The overloaded assignment operator for char*
simply assigns the char* argument to the data member. The overloaded assignment
operator for const char* duplicates the argument and assigns the result to the
data member. Note that assignment does not cause any previously-held string to be
freed; in this regard, the String_out type behaves exactly as a char* . The
char*& conversion operator returns the data member. The ptr() member function,
which can be used to avoid having to rely on implicit conversion, also returns the data
member.
CORBA V2.2 Mapping for String Types February 1998 20-19

20

ine

ked

Assignment from String_var to a String_out is disallowed because of the
memory management ambiguities involved. Specifically, it is not possible to determ
whether the string owned by the String_var should be taken over by the
String_out without copying, or if it should be copied. Disallowing assignment
from String_var forces the application developer to make the choice explicitly:

// C++
void
A::op(String_out arg)
{
String_var s = string_dup("some string");
...
arg = s;// disallowed; either
arg = string_dup(s);// 1: copy, or
arg = s._retn();// 2: adopt
}

On the line marked with the comment “1,” the application writer is explicitly copying
the string held by the String_var and assigning the result to the arg argument.
Alternatively, the application writer could use the technique shown on the line mar
with the comment “2” in order to force the String_var to give up its ownership of
the string it holds so that it may be returned in the arg argument without incurring
memory management errors.

20.8 Mapping for Wide String Types

Both bounded and unbounded wide string types are mapped to CORBA::WChar* in
C++. In addition, the CORBA module defines WString _var and WString_out
classes. Each of these classes provides the same member functions with the same
semantics as their string counterparts, except of course they deal with wide strings
and wide characters.

Dynamic allocation and deallocation of wide strings must be performed via the
following functions:

// C++
namespace CORBA {

// ...
WChar *wstring_alloc(ULong len);
WChar *wstring_dup(const WChar* ws);
void wstring_free(WChar*);

};

These functions have the same semantics as the same functions for the string type,
except they operate on wide strings.
20-20 CORBA V2.2 February 1998

20

 a

ct
 to

s)

w

 also
is
es
20.9 Mapping for Structured Types

The mapping for struct , union , and sequence (but not array) is a C++ struct or
class with a default constructor, a copy constructor, an assignment operator, and
destructor. The default constructor initializes object reference members to
appropriately-typed nil object references and string members to NULL; all other
members are initialized via their default constructors. The copy constructor performs a
deep-copy from the existing structure to create a new structure, including calling
_duplicate on all object reference members and performing the necessary heap
allocations for all string members. The assignment operator first releases all obje
reference members and frees all string members, and then performs a deep-copy
create a new structure. The destructor releases all object reference members and frees
all string members.

The mapping for OMG IDL structured types (structs, unions, arrays, and sequence
can vary slightly depending on whether the data structure is fixed-length or variable-
length. A type is variable-length if it is one of the following types:

• The type any
• A bounded or unbounded string

• A bounded or unbounded sequence

• An object reference or reference to a transmissible pseudo-object

• A struct or union that contains a member whose type is variable-length

• An array with a variable-length element type

• A typedef to a variable-length type

The reason for treating fixed- and variable-length data structures differently is to allo
more flexibility in the allocation of out parameters and return values from an
operation. This flexibility allows a client-side stub for an operation that returns a
sequence of strings, for example, to allocate all the string storage in one area that is
deallocated in a single call.

As a convenience for managing pointers to variable-length data types, the mapping
provides a managing helper class for each variable-length type. This type, which
named by adding the suffix “_var” to the original type’s name, automatically delet
the pointer when an instance is destroyed. An object of type T_var behaves similarly
to the structured type T, except that members must be accessed indirectly. For a struct,
this means using an arrow (“-> ”) instead of a dot (“. ”).
CORBA V2.2 Mapping for Structured Types February 1998 20-21

20

// IDL
struct S { string name; float age; };
void f(out S p);

// C++
S a;
S_var b;
f(b);
a = b; // deep-copy
cout << "names " << a.name << ", " << b->name << endl;

20.9.1 T_var Types

The general form of the T_var types is shown below.

// C++
class T_var
{

public:
T_var();
T_var(T *);
T_var(const T_var &);
~T_var();

T_var &operator=(T *);
T_var &operator=(const T_var &);

T* operator->();
const T* operator->() const;

/* in parameter type */ in() const;
/* inout parameter type */ inout();
/* out parameter type */ out();
/* return type */ _retn();

// other conversion operators to support
// parameter passing
};

The default constructor creates a T_var containing a null T* . Compliant applications
may not attempt to convert a T_var created with the default constructor into a T* nor
use its overloaded operator-> without first assigning to it a valid T* or another
valid T_var . Due to the difficulty of doing so, compliant implementations are not
required to detect this error. Conversion of a null T_var to a T_out is allowed,
however, so that a T_var can legally be passed as an out parameter. Conversion of a
null T_var to a T*& is also allowed so as to be compatible with earlier versions of
this specification.
20-22 CORBA V2.2 February 1998

20

ssed

s

w

The T* constructor creates a T_var that, when destroyed, will delete the storage
pointed to by the T* parameter. The parameter to this constructor should never be a
null pointer. Compliant implementations are not required to detect null pointers pa
to this constructor.

The copy constructor deep-copies any data pointed to by the T_var constructor
parameter. This copy will be destroyed when the T_var is destroyed or when a new
value is assigned to it. Compliant implementations may, but are not required to, utilize
some form of reference counting to avoid such copies.

The destructor uses delete to deallocate any data pointed to by the T_var , except
for strings and array types, which are deallocated using the string_free and
T_free (for array type T) deallocation functions, respectively.

The T* assignment operator results in the deallocation of any old data pointed to by
the T_var before assuming ownership of the T* parameter.

The normal assignment operator deep-copies any data pointed to by the T_var
assignment parameter. This copy will be destroyed when the T_var is destroyed or
when a new value is assigned to it.

The overloaded operator-> returns the T* held by the T_var , but retains
ownership of it. Compliant applications may not call this function unless the T_var
has been initialized with a valid non-null T* or T_var .

In addition to the member functions described above, the T_var types must support
conversion functions that allow them to fully support the parameter passing mode
shown in “Basic Argument and Result Passing” on page 20-66. The form of these
conversion functions is not specified so as to allow different implementations, but the
conversions must be automatic (i.e., they must require no explicit application code to
invoke them).

Because implicit conversions can sometimes cause problems with some C++ compilers
and with code readability, the T_var types also support member functions that allo
them to be explicitly converted for purposes of parameter passing. To pass a T_var
as an in parameter, an application can call the in() member function of the T_var ;
for inout parameters, the inout() member function; for out parameters, the
out() member function; and to obtain a return value from the T_var , the
_retn() function.7 For each T_var type, the return types of each of these
functions shall match the types shown in Table 6 on page 19-59 for the in , inout ,
out , and return modes for underlying type T respectively.

For T_var types that return T*& from the out() member function, the out()
member function calls delete on the T* owned by the T_var , sets it equal to the
null pointer, and then returns a reference to it. This is to allow for proper management

7.A leading underscore is needed on the _retn() function to keep it from clashing with
user-defined member names of constructed types, but leading underscores are not needed
for the in() , inout() , and out() functions because their names are IDL key-
words, so users can’t define members with those names.
CORBA V2.2 Mapping for Structured Types February 1998 20-23

20

le

 of
of the T* owned by a T_var when passed as an out parameter, as described in
“Mapping For Operations and Attributes” on page 20-61. An example implementation
of such an out() function is shown below:

// C++
T*& T_var::out()
{
// assume ptr_ is the T* data member of the T_var
delete ptr_;
ptr_ = 0;
return ptr_;
}

Similarly, for T_var types whose corresponding type T is returned from IDL
operations as T* (see Table 20-2 on page 20-66), the _retn() function stores the
value of the T* owned by the T_var into a temporary pointer, sets the T* to the null
pointer value, and then returns the temporary. The T_var thus yields ownership of its
T* to the caller of _retn() without calling delete on it, and the caller becomes
responsible for eventually deleting the returned T* . An example implementation of
such a _retn() function is shown below:

// C++
T* T_var::_retn()
{
// assume ptr_ is the T* data member of the T_var
T* tmp = ptr_;
ptr_ = 0;
return tmp;
}

This allows, for example, a method implementation to store a T* as a potential return
value in a T_var so that it will be deleted if an exception is thrown, and yet be ab
to acquire control of the T* to be able to return it properly:

// C++
T_var t = new T;// t owns pointer to T
if (exceptional_condition) {
// t owns the pointer and will delete it
// as the stack is unwound due to throw
throw AnException();
}
...
return t._retn();// _retn() takes ownership of
// pointer from t

The T_var types are also produced for fixed-length structured types for reasons
consistency. These types have the same semantics as T_var types for variable-length
types. This allows applications to be coded in terms of T_var types regardless of
whether the underlying types are fixed- or variable-length.

Each T_var type must be defined at the same level of nesting as its T type.
20-24 CORBA V2.2 February 1998

20

y is
T_var types do not work with a pointer to constant T, since they provide no
constructor nor operator= taking a const T* parameter. Since C++ does not
allow delete to be called on a const T* 8, the T_var object would normally
have to copy the const object; instead, the absence of the const T* constructor and
assignment operators will result in a compile-time error if such an initialization or
assignment is attempted. This allows the application developer to decide if a cop
really wanted or not. Explicit copying of const T* objects into T_var types can
be achieved via the copy constructor for T:

// C++
const T *t = ...;
T_var tv = new T(*t);

20.9.2 T_out Types

When a T_var is passed as an out parameter, any previous value it referred to must
be implicitly deleted. To give C++ mapping implementations enough hooks to meet
this requirement, each T_var type has a corresponding T_out type which is used
solely as the out parameter type. The general form for T_out types for variable-
length types is shown below.

// C++

class T_out
{

public:
T_out(T*& p) : ptr_(p) { ptr_ = 0; }
T_out(T_var& p) : ptr_(p.ptr_) {
delete ptr_;
ptr_ = 0;
}
T_out(T_out& p) : ptr_(p.ptr_) {}
T_out& operator=(T_out& p) {
ptr_ = p.ptr_;
return *this;
}

8. This too has changed in ANSI/ISO C++, but it not yet widely implemented by C++ compil-
ers.
CORBA V2.2 Mapping for Structured Types February 1998 20-25

20

d by

r.

d

e
T_out& operator=(T* p) { ptr_ = p; return *this; }

operator T*&() { return ptr_; }
T*& ptr() { return ptr_; }

T* operator->() { return ptr_; }

private:
T*& ptr_;

// assignment from T_var not allowed
void operator=(const T_var&):
};

The first constructor binds the reference data member with the T*& argument and sets
the pointer to the null pointer value. The second constructor binds the reference data
member with the pointer held by the T_var argument, and then calls delete on the
pointer (or string_free() in the case of the String_out type or
T_free() in the case of a T_var for an array type T). The third constructor, the
copy constructor, binds the reference data member to the same pointer reference
the data member of the constructor argument. Assignment from another T_out copies
the T* referenced by the T_out argument to the data member. The overloaded
assignment operator for T* simply assigns the pointer argument to the data membe
Note that assignment does not cause any previously-held pointer to be deleted; in this
regard, the T_out type behaves exactly as a T* . The T*& conversion operator
returns the data member. The ptr() member function, which can be used to avoid
having to rely on implicit conversion, also returns the data member. The overloade
arrow operator (operator->()) allows access to members of the data structure
pointed to by the T* data member. Compliant applications may not call the overloaded
operator->() unless the T_out has been initialized with a valid non-null T* .

Assignment to a T_out from instances of the corresponding T_var type is
disallowed because there is no way to determine whether the application developer
wants a copy to be performed, or whether the T_var should yield ownership of its
managed pointer so it can be assigned to the T_out . To perform a copy of a T_var
to a T_out , the application should use new:

// C++
T_var t = ...;
my_out = new T(t.in());// heap-allocate a copy

The in() function called on t typically returns a const T&, suitable for invoking
the copy constructor of the newly-allocated T instance.

Alternatively, to make the T_var yield ownership of its managed pointer so it can b
returned in a T_out parameter, the application should use the T_var::_retn()
function:
20-26 CORBA V2.2 February 1998

20

s to

y.

ed
cess

he

t of

. These

p-
// C++
T_var t = ...;
my_out = t._retn();// t yields ownership, no copy

Note that the T_out types are not intended to serve as general-purpose data type
be created and destroyed by applications; they are used only as types within operation
signatures to allow necessary memory management side-effects to occur properl

20.10 Mapping for Struct Types

An OMG IDL struct maps to C++ struct, with each OMG IDL struct member mapp
to a corresponding member of the C++ struct. This mapping allows simple field ac
as well as aggregate initialization of most fixed-length structs. To facilitate such
initialization, C++ structs must not have user-defined constructors, assignment
operators, or destructors, and each struct member must be of self-managed type. With
the exception of strings and object references, the type of a C++ struct member is t
normal mapping of the OMG IDL member’s type.

For a string or object reference member, the name of the C++ member’s type is not
specified by the mapping—a compliant program therefore cannot create an objec
that type. The behavior9 of the type is the same as the normal mapping (char* for
string, A_ptr for an interface A) except the type’s copy constructor copies the
member’s storage and its assignment operator releases the member’s old storage
types must also provide the in() , inout() , out() , and _retn() functions that
their corresponding T_var types provide to allow them to support the parameter
passing modes specified in “Basic Argument and Result Passing” on page 20-66.

Assignment between a string or object reference member and a corresponding T_var
type (String_var or A_var) always results in copying the data, while assignment
with a pointer does not. The one exception to the rule for assignment is when a
const char* is assigned to a member, in which case the storage is copied.

When the old storage must not be freed (for example, it is part of the function’s
activation record), one can access the member directly as a pointer using the _ptr
field accessor. This usage is dangerous and generally should be avoided.

// IDL
struct FixedLen { float x, y, z; };

// C++
FixedLen x1 = {1.2, 2.4, 3.6};

9.Those implementations concerned with data layout compatibility with the C mapping in this
manual will also want to ensure that the sizes of these members match those of their C ma
ping counterparts.
CORBA V2.2 Mapping for Struct Types February 1998 20-27

20

FixedLen_var x2 = new FixedLen;
x2->y = x1.z;

The example above shows usage of the T and T_var types for a fixed-length struct.
When it goes out of scope, x2 will automatically free the heap-allocated FixedLen
object using delete .

The following examples illustrate mixed usage of T and T_var types for variable-
length types, using the following OMG IDL definition:

// IDL
interface A;
struct Variable { string name; };

// C++
Variable str1;// str1.name is initially NULL
Variable_var str2 = new Variable;// str2->name is

// initially NULL
char *non_const;
const char *const2;
String_var string_var;
const char *const3 = "string 1";
const char *const4 = "string 2";

str1.name = const3;// 1: free old storage, copy
str2->name = const4;// 2: free old storage, copy

In the example above, the name components of variables str1 and str2 both start
out as null. On the line marked 1, const3 is assigned to the name component of
str1 ; this results in the previous str1.name being freed, and since const3
points to const data, the contents of const3 being copied. In this case, str1.name
started out as null, so no previous data needs to be freed before the copying of
const3 takes place. Line 2 is similar to line 1, except that str2 is a T_var type.

Continuing with the example:

// C++
non_const = str1.name;// 3: no free, no copy
const2 = str2->name;// 4: no free, no copy

On the line marked 3, str1.name is assigned to non_const . Since
non_const is a pointer type (char*), str1.name is not freed, nor are the data
it points to copied. After the assignment, str1.name and non_const effectively
point to the same storage, with str1.name retaining ownership of that storage. Line
4 is identical to line 3, even though const2 is a pointer to const char; str2-
>name is neither freed nor copied because const2 is a pointer type.
20-28 CORBA V2.2 February 1998

20

t

ginal

on or
// C++
str1.name = non_const;// 5: free, no copy
str1.name = const2;// 6: free old storage, copy

Line 5 involves assignment of a char* to str1.name , which results in the old
str1.name being freed and the value of the non_const pointer, but not the data
it points to, being copied. In other words, after the assignment str1.name points to
the same storage as non_const points to. Line 6 is the same as line 5 except tha
because const2 is a const char* , the data it points to are copied.

// C++
str2->name = str1.name;// 7: free old storage, copy
str1.name = string_var;// 8: free old storage, copy
string_var = str2->name;// 9: free old storage, copy

On line 7, assignment is performed to a member from another member, so the ori
value is of the left-hand member is freed and the new value is copied. Similarly, lines
8 and 9 involve assignment to or from a String_var , so in both cases the original
value of the left-hand side is freed and the new value is copied.

// C++
str1.name._ptr = str2.name;// 10: no free, no copy

Finally, line 10 uses the _ptr field accessor, so no freeing or copying takes place.
Such usage is dangerous and generally should be avoided.

ORB implementations concerned with single-process interoperability with the C
mapping may overload operator new() and operator delete() for
structs so that dynamic allocation uses the same mechanism as the C language dynamic
allocation functions. Whether these operators are overloaded by the implementati
not, compliant programs use new to dynamically allocate structs and delete to free
them.

20.11 Mapping for Fixed

The C++ mapping for fixed is an abstract data type, with the following class and
function templates:

// C++ class template
template<CORBA::UShort d, Short s>
class Fixed
{
 public:

// Constructors...
Fixed(int val = 0);
Fixed(CORBA::LongDouble val);
Fixed(const Fixed<d,s>& val);
~Fixed();

// Conversions...
CORBA V2.2 Mapping for Fixed February 1998 20-29

20

operator LongDouble() const;

// Operators...
Fixed<d,s>& operator=(const Fixed<d,s>& val);
Fixed<d,s>& operator++();
Fixed<d,s>& operator++(int);
Fixed<d,s>& operator--();
Fixed<d,s>& operator--(int);
Fixed<d,s>& operator+() const;
Fixed<d,s>& operator-() const;
int operator!() const;

// Other member functions
CORBA::UShort fixed_digits() const;
CORBA::Short fixed_scale() const;

};

template<CORBA::UShort d, CORBA::Short s>
istream& operator>>(istream& is, Fixed<d,s> &val);
template<CORBA::UShort d, CORBA::Short s>
ostream& operator<<(ostream& os, const Fixed<d,s> &val);

The digits and scale, dr and sr, respectively, in the results of the binary arithmetic
functions (+, - , * and /) are computed according to the rules in “Semantics” on
page 3-20. One way to do this is to declare the result types with a macro that evaluates
to the appropriate values, based on the digits and scale of the operands:

// Example of Fixed result type declaration
// Fixed<_FIXED_ADD_TYPE(d1,s1,d2,s2)> => Fixed<d r ,s r >

The template specification below should be read as a prefix to each of the operator
function declarations following.

// C++ function templates for operators...
template<unsigned short d1, short s1, unsigned short d2,

short s2)
Fixed<d r ,s r > operator + (const Fixed<d1,s1> &val1,

const Fixed<d2,s2> &val2);
Fixed<d r ,s r > operator - (const Fixed<d1,s1> &val1,

const Fixed<d2,s2> &val2);
Fixed<d r ,s r > operator * (const Fixed<d1,s1> &val1,

const Fixed<d2,s2> &val2);
Fixed<d r ,s r > operator / (const Fixed<d1,s1> &val1,

const Fixed<d2,s2> &val2);
Fixed<d1,s1> operator += (const Fixed<d1,s1> &val1,

const Fixed<d2,s2> &val2);
Fixed<d1,s1> operator -= (const Fixed<d1,s1> &val1,

const Fixed<d2,s2> &val2);
Fixed<d1,s1> operator *= (const Fixed<d1,s1> &val1,

const Fixed<d2,s2> &val2);
20-30 CORBA V2.2 February 1998

20

so.
Fixed<d1,s1> operator /= (const Fixed<d1,s1> &val1,
const Fixed<d2,s2> &val2);

int operator > (const Fixed<d1,s1> &val1,
const Fixed<d2,s2> &val2);

int operator < (const Fixed<d1,s1> &val1,
const Fixed<d2,s2> &val2);

int operator >= (const Fixed<d1,s1> &val1,
const Fixed<d2,s2> &val2);

int operator <= (const Fixed<d1,s1> &val1,
const Fixed<d2,s2> &val2);

int operator == (const Fixed<d1,s1> &val1,
const Fixed<d2,s2> &val2);

int operator != (const Fixed<d1,s1> &val1,
const Fixed<d2,s2> &val2);

20.11.1 Fixed T_var and T_out Types

Just as for other types, T_var types are defined for Fixed types. The semantics of
the T_var types for Fixed types is similar to that for fixed-length structs.

A T_out type for a Fixed type is defined as typedef to a reference to the Fixed
type, with the digits and scale added to the name to disambiguate it. For example, the
name of the T_out type for the type Fixed<5,2> is Fixed_5_2_out 10:

// C++
typedef Fixed<5, 2>& Fixed_5_2_out;

20.12 Mapping for Union Types

Unions map to C++ classes with access functions for the union members and
discriminant. The default union constructor performs no application-visible
initialization of the union. It does not initialize the discriminator, nor does it initialize
any union members to a state useful to an application. (The implementation of the
default constructor can do whatever type of initialization it wants to, but such
initialization is implementation-dependent. No compliant application can count on a
union ever being properly initialized by the default constructor alone.)

It is therefore an error for an application to access the union before setting it, but ORB
implementations are not required to detect this error due to the difficulty of doing
The copy constructor and assignment operator both perform a deep-copy of their
parameters, with the assignment operator releasing old storage if necessary. The
destructor releases all storage owned by the union.

10. Note that this naming scheme would not be necessary if fixed types, like sequences and
arrays, were not allowed to be passed as anonymous types.
CORBA V2.2 Mapping for Union Types February 1998 20-31

20

n
lues
The union discriminant access functions have the name _d to both be brief and avoid
name conflicts with the members. The _d discriminator modifier function can only be
used to set the discriminant to a value within the same union member. In addition to
the _d accessors, a union with an implicit default member provides a _default()
member function that sets the discriminant to a legal default value. A union has a
implicit default member if it does not have a default case and not all permissible va
of the union discriminant are listed.

Setting the union value through an access function automatically sets the discriminant
and may release the storage associated with the previous value. Attempting to get a
value through an access function that does not match the current discriminant results in
undefined behavior. If an access function for a union member with multiple legal
discriminant values is used to set the value of the discriminant, the union
implementation is free to set the discriminant to any one of the legal values for that
member. The actual discriminant value chosen under these circumstances is
implementation dependent.

The following example helps illustrate the mapping for union types:

// IDL
typedef octet Bytes[64];
struct S { long len; };
interface A;
union U switch (long) {

case 1: long x;
case 2: Bytes y;
case 3: string z;
case 4:
case 5: S w;
default: A obj;

};

// C++
typedef Octet Bytes[64];
typedef Octet Bytes_slice;
class Bytes_forany { ... };
struct S { Long len; };
typedef ... A_ptr;
class U
{

20-32 CORBA V2.2 February 1998

20

 of

-const
e

 the
e

 array
public:
U();
U(const U&);
~U();
U &operator=(const U&);

void _d(Long);
Long _d() const;

void x(Long);
Long x() const;

void y(Bytes);
Bytes_slice *y() const;

void z(char*);// free old storage, no copy
void z(const char*);// free old storage, copy
void z(const String_var &);// free old storage, copy
const char *z() const;

void w(const S &);// deep copy
const S &w() const;// read-only access
S &w();// read-write access

void obj(A_ptr);// release old objref,
// duplicate

A_ptr obj() const;// no duplicate
};

Accessor and modifier functions for union members provide semantics similar to that
of struct data members. Modifier functions perform the equivalent of a deep-copy
their parameters, and their parameters should be passed by value (for small types) or
by reference to const (for larger types). Accessors that return a reference to a non
object can be used for read-write access, but such accessors are only provided for th
following types: struct , union , sequence , and any.

For an array union member, the accessor returns a pointer to the array slice, where
slice is an array with all dimensions of the original except the first (array slices ar
described in detail in “Mapping For Array Types” on page 20-41). The array slice
return type allows for read-write access for array members via regular subscript
operators. For members of an anonymous array type, supporting typedefs for the
must be generated directly into the union. For example:
CORBA V2.2 Mapping for Union Types February 1998 20-33

20

re
ray

ns a

tions
rn
rship
// IDL
union U switch (long) {
default: long array[20][20];

};

// C++
class U
{

public:
// ...
void array(long arg[20][20]);
typedef long _array_slice[20];
_array_slice * array();
// ...
};

The name of the supporting array slice typedef is created by prepending an undersco
and appending “_slice” to the union member name. In the example above, the ar
member named “array” results in an array slice typedef called “_array_slice” nested in
the union class.

For string union members, the char* modifier results in the freeing of old storage
before ownership of the pointer parameter is assumed, while the const char*
modifier and the String_var modifier11 both result in the freeing of old storage
before the parameter’s storage is copied. The accessor for a string member retur
const char* to allow examination but not modification of the string storage.12

For object reference union members, object reference parameters to modifier func
are duplicated after the old object reference is released. An object reference retu
value from an accessor function is not duplicated because the union retains owne
of the object reference.

The restrictions for using the _d discriminator modifier function are shown by the
following examples, based on the definition of the union U shown above:

11.A separate modifier for String_var is needed because it can automatically convert to
both a char* and a const char* ; since unions provide modifiers for both of these
types, an attempt to set a string member of a union from a String_var would otherwise
result in an ambiguity error at compile time.

12.A return type of char* allowing read-write access could mistakenly be assigned to a
String_var , resulting in the String_var and the union both assuming ownership
for the string’s storage.
20-34 CORBA V2.2 February 1998

20

o

on or

ength
n the
// C++
S s = {10};
U u;
u.w(s);// member w selected
u._d(4);// OK, member w selected
u._d(5);// OK, member w selected
u._d(1);// error, different member selected
A_ptr a = ...;
u.obj(a);// member obj selected
u._d(7);// OK, member obj selected
u._d(1);// error, different member selected

As shown here, the _d modifier function cannot be used to implicitly switch between
different union members. The following shows an example of how the _default()
member function is used:

// IDL
union Z switch(boolean) {

case TRUE: short s;
};

// C++
Z z;
z._default(); // implicit default member selected
Boolean disc = z._d();// disc == FALSE
U u;// union U from previous example
u._default();// error, no _default() provided

For union Z, calling the _default() member function causes the union’s value t
be composed solely of the discriminator value of FALSE, since there is no explicit
default member. For union U, calling _default() causes a compilation error
because U has an explicitly declared default case and thus no _default() member
function. A _default() member function is only generated for unions with
implicit default members.

ORB implementations concerned with single-process interoperability with the C
mapping may overload operator new() and operator delete() for unions
so that dynamic allocation uses the same mechanism as the C language dynamic
allocation functions. Whether these operators are overloaded by the implementati
not, compliant programs use new to dynamically allocate unions and delete to free
them.

20.13 Mapping for Sequence Types

A sequence is mapped to a C++ class that behaves like an array with a current l
and a maximum length. For a bounded sequence, the maximum length is implicit i
sequence’s type and cannot be explicitly controlled by the programmer. For an
CORBA V2.2 Mapping for Sequence Types February 1998 20-35

20

th
ting a

e the
 length
te,
t
alue.

e

unbounded sequence, the initial value of the maximum length can be specified in the
sequence constructor to allow control over the size of the initial buffer allocation. The
programmer may always explicitly modify the current length of any sequence.

For an unbounded sequence, setting the length to a larger value than the current leng
may reallocate the sequence data. Reallocation is conceptually equivalent to crea
new sequence of the desired new length, copying the old sequence elements zero
through length-1 into the new sequence, and then assigning the old sequence to b
same as the new sequence. Setting the length to a smaller value than the current
does not affect how the storage associated with the sequence is manipulated. No
however, that the elements orphaned by this reduction are no longer accessible and tha
their values cannot be recovered by increasing the sequence length to its original v

For a bounded sequence, attempting to set the current length to a value larger than th
maximum length given in the OMG IDL specification produces undefined behavior.

For each different named OMG IDL sequence type, a compliant implementation
provides a separate C++ sequence type. For example:

// IDL
typedef sequence<long> LongSeq;
typedef sequence<Lo ngSeq, 3> LongSeqSeq;

// C++
class LongSeq// unbounded sequence
{

public:
LongSeq();// default constructor
LongSeq(ULong max);// maximum constructor
LongSeq(// T *data constructor
ULong max,
ULong length,
Long *value,
Boolean release = FALSE
);
LongSeq(const LongSeq&);
~LongSeq();
...
};
20-36 CORBA V2.2 February 1998

20

e

it

ces, it

ssary.
ource

class LongSeqSeq// bounded sequence
{

public:
LongSeqSeq();// default constructor
LongSeqSeq(// T *data constructor
ULong length,
LongSeq *value,
Boolean release = FALSE
);
LongSeqSeq(const LongSeqSeq&);
~LongSeqSeq();
...
};

For both bounded and unbounded sequences, the default constructor (as shown in the
example above) sets the sequence length equal to 0. For bounded sequences, th
maximum length is part of the type and cannot be set or modified, while for
unbounded sequences, the default constructor also sets the maximum length to 0. The
default constructor for a bounded sequence always allocates a contents vector, so
always sets the release flag to TRUE.

Unbounded sequences provide a constructor that allows only the initial value of the
maximum length to be set (the “maximum constructor” shown in the example above).
This allows applications to control how much buffer space is initially allocated by the
sequence. This constructor also sets the length to 0 and the release flag to TRUE.

The “T *data ” constructor (as shown in the example above) allows the length and
contents of a bounded or unbounded sequence to be set. For unbounded sequen
also allows the initial value of the maximum length to be set. For this constructor,
ownership of the contents vector is determined by the release parameter—FALSE
means the caller owns the storage, while TRUE means that the sequence assumes
ownership of the storage. If release is TRUE, the contents vector must have been
allocated using the sequence allocbuf function, and the sequence will pass it to
freebuf when finished with it. The allocbuf and freebuf functions are
described on “Additional Memory Management Functions” on page 20-40.

The copy constructor creates a new sequence with the same maximum and length as
the given sequence, copies each of its current elements (items zero through length–1),
and sets the release flag to TRUE.

The assignment operator deep-copies its parameter, releasing old storage if nece
It behaves as if the original sequence is destroyed via its destructor and then the s
sequence copied using the copy constructor.

If release=TRUE , the destructor destroys each of the current elements (items zero
through length–1).

For an unbounded sequence, if a reallocation is necessary due to a change in the length
and the sequence was created using the release=TRUE parameter in its
constructor, the sequence will deallocate the old storage. If release is FALSE
under these circumstances, old storage will not be freed before the reallocation is
performed. After reallocation, the release flag is always set to TRUE.
CORBA V2.2 Mapping for Sequence Types February 1998 20-37

20

any

t

of

For an unbounded sequence, the maximum() accessor function returns the total
amount of buffer space currently available. This allows applications to know how m
items they can insert into an unbounded sequence without causing a reallocation to
occur. For a bounded sequence, maximum() always returns the bound of the
sequence as given in its OMG IDL type declaration.

The overloaded subscript operators (operator[]) return the item at the given
index. The non-const version must return something that can serve as an lvalue (i.e.,
something that allows assignment into the item at the given index), while the const
version must allow read-only access to the item at the given index.

The overloaded subscript operators may not be used to access or modify any elemen
beyond the current sequence length. Before either form of operator[] is used on a
sequence, the length of the sequence must first be set using the length(ULong)
modifier function, unless the sequence was constructed using the T *data
constructor.

For strings and object references, operator[] for a sequence must return a type
with the same semantics as the types used for string and object reference members
structs and arrays, so that assignment to the string or object reference sequence
member via operator=() will release old storage when appropriate. Note that
whatever these special return types are, they must honor the setting of the release
parameter in the T *data constructor with respect to releasing old storage.

For the T *data sequence constructor, the type of T for strings and object
references is char* and T_ptr , respectively. In other words, string buffers are
passed as char** and object reference buffers are passed as T_ptr* .

20.13.1 Sequence Example

The example below shows full declarations for both a bounded and an unbounded
sequence.

// IDL
typedef sequence<T> V1; // u nbounded sequence
typedef sequence<T, 2> V2; // b ounded sequence

// C++
class V1// unbounded sequence
{

public:
V1();
V1(ULong max);
V1(ULong max, ULong length, T *data,
Boolean release = FALSE);
V1(const V1&);
~V1();
V1 &operator=(const V1&);
20-38 CORBA V2.2 February 1998

20
ULong maximum() const;

void length(ULong);
ULong length() const;

T &operator[](ULong index);
const T &operator[](ULong index) const;
};

class V2// bounded sequence
{

public:
V2();
V2(ULong length, T *data, Boolean release = FALSE);
V2(const V2&);
~V2();
V2 &operator=(const V2&);

ULong maximum() const;

void length(ULong);
ULong length() const;

T &operator[](ULong index);
const T &operator[](ULong index) const;
};

20.13.2 Using the “release” Constructor Parameter

Consider the following example:

// IDL
typedef sequence< string, 3> St ringSeq;

// C++
char *static_arr[] = {"one", "two", "three"};
char **dyn_arr = StringSeq::allocbuf(3);
dyn_arr[0] = string_dup("one");
dyn_arr[1] = string_dup("two");
dyn_arr[2] = string_dup("three");

StringSeq seq1(3, static_arr);
StringSeq seq2(3, dyn_arr, TRUE);

seq1[1] = "2";// no free, no copy
char *str = string_dup("2");
seq2[1] = str;// free old storage, no copy
CORBA V2.2 Mapping for Sequence Types February 1998 20-39

20

t

 can

t

es.

 to

or
In this example, both seq1 and seq2 are constructed using user-specified data, bu
only seq2 is told to assume management of the user memory (because of the
release=TRUE parameter in its constructor). When assignment occurs into
seq1[1] , the right-hand side is not copied, nor is anything freed because the
sequence does not manage the user memory. When assignment occurs into seq2[1] ,
however, the old user data must be freed before ownership of the right-hand side
be assumed, since seq2 manages the user memory. When seq2 goes out of scope, it
will call string_free for each of its elements and freebuf on the buffer given to
it in its constructor.

When the release flag is set to TRUE and the sequence element type is either a
string or an object reference type, the sequence will individually release each element
before releasing the contents buffer. It will release strings using string_free , and it
will release object references using the release function from the CORBA
namespace.

In general, assignment should never take place into a sequence element via
operator[] unless release=TRUE due to the possibility for memory managemen
errors. In particular, a sequence constructed with release=FALSE should never be
passed as an inout parameter because the callee has no way to determine the setting of
the release flag, and thus must always assume that release is set to TRUE. Code
that creates a sequence with release=FALSE and then knowingly and correctly
manipulates it in that state, as shown with seq1 in the example above, is compliant,
but care should always be taken to avoid memory leaks under these circumstanc

As with other out and return values, out and return sequences must not be assigned
by the caller without first copying them. This is more fully explained in Section 20.20,
“Argument Passing Considerations,” on page 20-62.

When a sequence is constructed with release=TRUE , a compliant application should
make no assumptions about the continued lifetime of the data buffer passed to the
constructor, since a compliant sequence implementation is free to copy the buffer and
immediately free the original pointer.

20.13.3 Additional Memory Management Functions

ORB implementations concerned with single-process interoperability with the C
mapping may overload operator new() and operator delete() for
sequences so that dynamic allocation uses the same mechanism as the C language
dynamic allocation functions. Whether these operators are overloaded by the
implementation or not, compliant programs use new to dynamically allocate
sequences and delete to free them.

Sequences also provide additional memory management functions for their buffers. F
a sequence of type T, the following static member functions are provided in the
sequence class public interface:
20-40 CORBA V2.2 February 1998

20

ter
tors

 or
ers.
e old
// C++
static T *allocbuf(ULong nelems);
static void freebuf(T *);

The allocbuf function allocates a vector of T elements that can be passed to the T
*data constructor. The length of the vector is given by the nelems function
argument. The allocbuf function initializes each element using its default
constructor, except for strings, which are initialized to null pointers, and object
references, which are initialized to suitably-typed nil object references. A null poin
is returned if allocbuf for some reason cannot allocate the requested vector. Vec
allocated by allocbuf should be freed using the freebuf function. The freebuf
function ensures that the destructor for each element is called before the buffer is
destroyed, except for string elements, which are freed using string_free() , and
object reference elements, which are freed using release() . The freebuf function
will ignore null pointers passed to it. Neither allocbuf nor freebuf may throw
CORBA exceptions.

20.13.4 Sequence T_var and T_out Types

In addition to the regular operations defined for T_var and T_out types, the
T_var and T_out for a sequence type also supports an overloaded operator[]
that forwards requests to the operator[] of the underlying sequence.13 This
subscript operator should have the same return type as that of the corresponding
operator on the underlying sequence type.

20.14 Mapping For Array Types

Arrays are mapped to the corresponding C++ array definition, which allows the
definition of statically-initialized data using the array. If the array element is a string
an object reference, then the mapping uses the same type as for structure memb
That is, assignment to an array element will release the storage associated with th
value.

// IDL
typedef float F[10];
typedef string V[10];
typedef string M [1][2][3];
void op(out F p1, out V p2, out M p3);

13.Note that since T_var and T_out types do not handle const T* , there is no need to
provide the const version of operator[] for Sequence_var and
Sequence_out types.
CORBA V2.2 Mapping For Array Types February 1998 20-41

20

 the

ch
pe

r than
// C++
typedef CORBA::Float F[10];
typedef ... V[10];// underlying type not shown because
typedef ... M[1][2][3];// it is implementation-dependent
F f1; F_var f2;
V v1; V_var v2;
M m1; M_var m2;
f(f2, v2, m2);
f1[0] = f2[1];
v1[1] = v2[1];// free old storage, copy
m1[0][1][2] = m2[0][1][2];// free old storage, copy

In the above example, the last two assignments result in the storage associated with the
old value of the left-hand side being automatically released before the value from
right-hand side is copied.

As shown in “Basic Argument and Result Passing” on page 20-66, out and return
arrays are handled via pointer to array slice, where a slice is an array with all the
dimensions of the original specified except the first one. As a convenience for
application declaration of slice types, the mapping also provides a typedef for ea
array slice type. The name of the slice typedef consists of the name of the array ty
followed by the suffix “_slice”. For example:

// IDL
typedef long LongArray[4] [5];

// C++
typedef Long LongArray[4][5];
typedef Long LongArray_slice[5];

Both the T_var type and the T_out type for an array should overload
operator[] instead of operator-> . The use of array slices also means that the
T_var type and the T_out type for an array should have a constructor and
assignment operator that each take a pointer to array slice as a parameter, rathe
T* . The T_var for the previous example would be:
20-42 CORBA V2.2 February 1998

20

for

e

n.
// C++
class LongArray_var
{

public:
LongArray_var();
LongArray_var(LongArray_slice*);
LongArray_var(const LongArray_var &);
~LongArray_var();
LongArray_var &operator=(LongArray_slice*);
LongArray_var &operator=(const LongArray_var &);

LongArray_slice &operator[](ULong index);
const LongArray_slice &operator[](Ulong index) const;

const LongArray_slice* in() const;
LongArray_slice* inout();
LongArray_slice* out();
LongArray_slice* _retn();

// other conversion operators to support
// parameter passing
};

Because arrays are mapped into regular C++ arrays, they present special problems
the type-safe any mapping described in “Mapping for the Any Type” on page 20-46.
To facilitate their use with the any mapping, a compliant implementation must also
provide for each array type a distinct C++ type whose name consists of the array nam
followed by the suffix _forany. These types must be distinct so as to allow functions to
be overloaded on them. Like Array_var types, Array_forany types allow
access to the underlying array type, but unlike Array_var , the Array_forany
type does not delete the storage of the underlying array upon its own destructio
This is because the Any mapping retains storage ownership, as described in
“Extraction from any” on page 20-49.

The interface of the Array_forany type is identical to that of the Array_var
type, but it may not be implemented as a typedef to the Array_var type by a
compliant implementation since it must be distinguishable from other types for
purposes of function overloading. Also, the Array_forany constructor taking an
Array_slice* parameter also takes a Boolean nocopy parameter which
defaults to FALSE:
CORBA V2.2 Mapping For Array Types February 1998 20-43

20

ill be

it

rcing

.

C++,
// C++
class Array_forany
{

public:
Array_forany(Array_slice*, Boolean nocopy = FALSE);
...
};

The nocopy flag allows for a non-copying insertion of an Array_slice* into an
Any.

Each Array_forany type must be defined at the same level of nesting as its
Array type.

For dynamic allocation of arrays, compliant programs must use special functions
defined at the same scope as the array type. For array T, the following functions w
available to a compliant program:

// C++
T_slice *T_alloc();
T_slice *T_dup(const T_slice*);
void T_free(T_slice *);

The T_alloc function dynamically allocates an array, or returns a null pointer if
cannot perform the allocation. The T_dup function dynamically allocates a new array
with the same size as its array argument, copies each element of the argument array
into the new array, and returns a pointer to the new array. If allocation fails, a null
pointer is returned. The T_free function deallocates an array that was allocated with
T_alloc or T_dup . Passing a null pointer to T_free is acceptable and results in
no action being performed. These functions allow ORB implementations to utilize
special memory management mechanisms for array types if necessary, without fo
them to replace global operator new and operator new[] .

The T_alloc , T_dup , and T_free functions may not throw CORBA exceptions

20.15 Mapping For Typedefs

A typedef creates an alias for a type. If the original type maps to several types in
then the typedef creates the corresponding alias for each type. The example below
illustrates the mapping.
20-44 CORBA V2.2 February 1998

20

s. For
// IDL
typedef long T;
interface A1;
typedef A1 A2;
typedef sequence< long> S1;
typedef S1 S2;

// C++
typedef Long T;

// ...definitions for A1...

typedef A1 A2;
typedef A1_ptr A2_ptr;
typedef A1_var A2_var;

// ...definitions for S1...

typedef S1 S2;
typedef S1_var S2_var;

For a typedef of an IDL type that maps to multiple C++ types, such as arrays, the
typedef maps to all of the same C++ types and functions that its base type require
example:

// IDL
typedef long array[10];
typedef array another_array;

// C++
// ...C++ code for array not shown...
typedef array another_array;
typedef array_var another_array_var;
typedef array_slice another_array_slice;
typedef array_forany another_array_forany;

inline another_array_slice *another_array_alloc() {
return array_alloc();
}

inline another_array_slice*
another_array_dup(another_array_slice *a) {
return array_dup(a);
}
inline void another_array_free(another_array_slice *a) {
array_free(a);
}

CORBA V2.2 Mapping For Typedefs February 1998 20-45

20

for

h

20.16 Mapping for the Any Type

A C++ mapping for the OMG IDL type any must fulfill two different requirements:

• Handling C++ types in a type-safe manner.

• Handling values whose types are not known at implementation compile time.

The first item covers most normal usage of the any type—the conversion of typed
values into and out of an any. The second item covers situations such as those
involving the reception of a request or response containing an any that holds data of a
type unknown to the receiver when it was created with a C++ compiler.

20.16.1 Handling Typed Values

To decrease the chances of creating an any with a mismatched TypeCode and value,
the C++ function overloading facility is utilized. Specifically, for each distinct type in
an OMG IDL specification, overloaded functions to insert and extract values of that
type are provided by each ORB implementation. Overloaded operators are used
these functions so as to completely avoid any name space pollution. The nature of
these functions, which are described in detail below, is that the appropriate TypeCode
is implied by the C++ type of the value being inserted into or extracted from the any.

Since the type-safe any interface described below is based upon C++ function
overloading, it requires C++ types generated from OMG IDL specifications to be
distinct. However, there are special cases in which this requirement is not met:

• As noted in Section 20.5, “Mapping for Basic Data Types,” on page 20-15, the
boolean , octet , and char OMG IDL types are not required to map to distinct
C++ types, which means that a separate means of distinguishing them from each
other for the purpose of function overloading is necessary. The means of
distinguishing these types from each other is described in “Distinguishing
boolean, octet, char, wchar, bounded string, and bounded wstring” on page 20-52.

• Since all strings and wide strings are mapped to char* and WChar* ,
respectively, regardless of whether they are bounded or unbounded, another
means of creating or setting an any with a bounded string or wide string value is
necessary. This is described in “Distinguishing boolean, octet, char, wchar,
bounded string, and bounded wstring” on page 20-52.

• In C++, arrays within a function argument list decay into pointers to their first
elements. This means that function overloading cannot be used to distinguis
between arrays of different sizes. The means for creating or setting an any when
dealing with arrays is described below and in “Mapping For Array Types” on
page 20-41.

20.16.2 Insertion into any

To allow a value to be set in an any in a type-safe fashion, an ORB implementation
must provide the following overloaded operator function for each separate OMG IDL
type T.
20-46 CORBA V2.2 February 1998

20

he

n,
// C++
void operator<<=(Any&, T);

This function signature suffices for types that are normally passed by value:

• Short , UShort , Long , ULong, LongLong , ULongLong , Float ,
Double , LongDouble

• Enumerations

• Unbounded strings and wide strings (char* and WChar* passed by value)

• Object references (T_ptr)

For values of type T that are too large to be passed by value efficiently, such as structs,
unions, sequences, fixed types, Any, and exceptions, two forms of the insertion
function are provided.

// C++
void operator<<=(Any&, const T&);// copying form
void operator<<=(Any&, T*);// non-copying form

Note that the copying form is largely equivalent to the first form shown, as far as the
caller is concerned.

These “left-shift-assign” operators are used to insert a typed value into an any as
follows.

// C++
Long value = 42;
Any a;
a <<= value;

In this case, the version of operator<<= overloaded for type Long must be able
to set both the value and the TypeCode properly for the any variable.

Setting a value in an any using operator<<= means that:

• For the copying version of operator<<= , the lifetime of the value in the any is
independent of the lifetime of the value passed to operator<<= . The
implementation of the any may not store its value as a reference or pointer to t
value passed to operator<<= .

• For the noncopying version of operator<<= , the inserted T* is consumed by
the any . The caller may not use the T* to access the pointed-to data after insertio
since the any assumes ownership of it, and it may immediately copy the pointed-to
data and destroy the original.

• With both the copying and non-copying versions of operator<<= , any previous
value held by the Any is properly deallocated. For example, if the
Any(TypeCode_ptr,void*,TRUE) constructor (described in “Handling
Untyped Values” on page 20-56) was called to create the Any, the Any is
responsible for deallocating the memory pointed to by the void* before copying
the new value.
CORBA V2.2 Mapping for the Any Type February 1998 20-47

20

nded

be

r
Copying insertion of a string type or wide string type causes one of the following
functions to be invoked:

// C++
void operator<<=(Any&, const char*);
void operator<<=(Any&, const WChar*);

Since all string types are mapped to char* , and all wide string types are mapped to
WChar* , these insertion functions assume that the value being inserted are
unbounded. “Distinguishing boolean, octet, char, wchar, bounded string, and bou
wstring” on page 20-52 describes how bounded strings and bounded wide strings may
be correctly inserted into an Any. Non-copying insertion of both bounded and
unbounded strings can be achieved using the Any::from_string helper type.
Similarly, non-copying insertion of bounded and unbounded wide strings strings can
achieved using theAny::from_wstring helper type. Both of these helper types
are described in “Distinguishing boolean, octet, char, wchar, bounded string, and
bounded wstring” on page 20-52.

Type-safe insertion of arrays uses the Array_forany types described in “Mapping
For Array Types” on page 20-41. Compliant implementations must provide a version
of operator<<= overloaded for each Array_forany type. For example:

// IDL
typedef long LongArray[4] [5];

// C++
typedef Long LongArray[4][5];
typedef Long LongArray_slice[5];
class LongArray_forany { ... };

void operator<<=(Any &, const LongArray_forany &);

The Array_forany types are always passed to operator<<= by reference to
const. The nocopy flag in the Array_forany constructor is used to control whethe
the inserted value is copied (nocopy == FALSE) or consumed (nocopy == TRUE).
Because the nocopy flag defaults to FALSE, copying insertion is the default.

Because of the type ambiguity between an array of T and a T* , it is highly
recommended that portable code explicitly14 use the appropriate Array_forany
type when inserting an array into an any :

14.A mapping implementor may use the new C++ key word “explicit” to prevent implicit con-
versions through the Array_forany constructor, but this feature is not yet widely available
in current C++ compilers.
20-48 CORBA V2.2 February 1998

20

he

of

o by
 by

// IDL
struct S {... };
typedef S SA[5];

// C++
struct S { ... };
typedef S SA[5];
typedef S SA_slice;
class SA_forany { ... };

SA s;
// ...initialize s...
Any a;
a <<= s; // line 1
a <<= SA_forany(s); // line 2

Line 1 results in the invocation of the noncopying operator<<=(Any&, S*)
due to the decay of the SA array type into a pointer to its first element, rather than t
invocation of the copying SA_forany insertion operator. Line 2 explicitly constructs
the SA_forany type and thus results in the desired insertion operator being invoked.

The noncopying version of operator<<= for object references takes the address
the T_ptr type.
// IDL
interface T { ... };

// C++
void operator<<=(Any&, T_ptr); // copying
void operator<<=(Any&, T_ptr*); // non-copying

The noncopying object reference insertion consumes the object reference pointed t
T_ptr* ; therefore after insertion the caller may not access the object referred to
T_ptr since the any may have duplicated and then immediately released the original
object reference. The caller maintains ownership of the storage for the T_ptr itself.

The copying version of operator<<= is also supported on the Any_var type.
Note that due to the conversion operators that convert Any_var to Any& for
parameter passing, only those operator<<= functions defined as member functions
of any need to be explicitly defined for Any_var .

20.16.3 Extraction from any

To allow type-safe retrieval of a value from an any , the mapping provides the
following operators for each OMG IDL type T:

// C++
Boolean operator>>=(const Any&, T&);
CORBA V2.2 Mapping for the Any Type February 1998 20-49

20

.

This function signature suffices for primitive types that are normally passed by value
For values of type T that are too large to be passed by value efficiently, such as structs,
unions, sequences, fixed types, Any, and exceptions, this function may be prototyped
as follows:

// C++
Boolean operator>>=(const Any&, T*&);

The first form of this function is used only for the following types:

• Boolean , Char , Octet , Short , UShort , Long , ULong, LongLong ,
ULongLong , Float , Double , LongDouble

• Enumerations

• Unbounded stringsand wide strings (char* and WChar* passed by reference,
i.e., char*& and WChar*&)

• Object references (T_ptr)

For all other types, the second form of the function is used.

All versions of operator>>= implemented as member functions of class Any,
such as those for primitive types, should be marked as const .

This “right-shift-assign” operator is used to extract a typed value from an any as
follows:

// C++
Long value;
Any a;
a <<= Long(42);
if (a >>= value) {

// ... use the value ...
}

In this case, the version of operator>>= for type Long must be able to determine
whether the Any truly does contain a value of type Long and, if so, copy its value
into the reference variable provided by the caller and return TRUE. If the Any does
not contain a value of type Long , the value of the caller’s reference variable is not
changed, and operator>>= returns FALSE.

For non-primitive types, such as struct, union, sequence, exception, Any, and fixed
types, extraction is done by pointer. For example, consider the following IDL struct:

// IDL
struct MyStruct {

long lmem;
short smem;

};

Such a struct could be extracted from an any as follows:
20-50 CORBA V2.2 February 1998

20

e

ay,

// C++
Any a;
// ... a is somehow given a value of type MyStruct ...
MyStruct *struct_ptr;
if (a >>= struct_ptr) {

// ... use the value ...
}

If the extraction is successful, the caller’s pointer will point to storage managed by the
any , and operator>>= will return TRUE. The caller must not try to delete or
otherwise release this storage. The caller also should not use the storage after th
contents of the any variable are replaced via assignment, insertion, or the replace
function, or after the any variable is destroyed. Care must be taken to avoid using
T_var types with these extraction operators, since they will try to assume
responsibility for deleting the storage owned by the any .

If the extraction is not successful, the value of the caller’s pointer is set equal to the
null pointer, and operator>>= returns FALSE.

Correct extraction of array types relies on the Array_forany types described
in“Mapping For Array Types” on page 20-41.

// IDL
typedef long A[20];
typedef A B[30][40][50];

// C++
typedef Long A[20];
typedef Long A_slice;
class A_forany { ... };
typedef A B[30][40][50];
typedef A B_slice[40][50];
class B_forany { ... };

Boolean operator>>=(const Any &, A_forany&);// for type A
Boolean operator>>=(const Any &, B_forany&);// for type B

The Array_forany types are always passed to operator>>= by reference.

For strings, wide strings, and arrays, applications are responsible for checking the
TypeCode of the any to be sure that they do not overstep the bounds of the arr
string, or wide string object when using the extracted value.

The operator>>= is also supported on the Any_var type. Note that due to the
conversion operators that convert Any_var to const Any& for parameter passing,
only those operator>>= functions defined as member functions of any need to be
explicitly defined for Any_var .
CORBA V2.2 Mapping for the Any Type February 1998 20-51

20

20.16.4 Distinguishing boolean, octet, char, wchar, bounded string, and
bounded wstring

Since the boolean , octet , char , and wchar OMG IDL types are not required
to map to distinct C++ types, another means of distinguishing them from each other is
necessary so that they can be used with the type-safe any interface. Similarly, since
both bounded and unbounded strings map to char* , and both bounded and
unbounded wide strings map to WChar* , another means of distinguishing them must
be provided. This is done by introducing several new helper types nested in the any
class interface. For example, this can be accomplished as shown next.

// C++
class Any
{

public:
// special helper types needed for boolean, octet, char,
// and bounded string insertion
struct from_boolean {

from_boolean(Boolean b) : val(b) {}
Boolean val;

};
struct from_octet {

from_octet(Octet o) : val(o) {}
Octet val;

};
struct from_char {

from_char(Char c) : val(c) {}
Char val;

};
struct from_wchar {

from_wchar(WChar wc) : val(wc) {}
WChar val;

};
struct from_string {

from_string(char* s, ULong b,
Boolean nocopy = FALSE) :

val(s), bound(b) {}
char *val;
ULong bound;

};
struct from_wstring {

from_wstring(WChar* s, ULong b,
Boolean nocopy = FALSE) :

val(s), bound(b) {}
WChar *val;
ULong bound;
20-52 CORBA V2.2 February 1998

20
};

void operator<<=(from_boolean);
void operator<<=(from_char);
void operator<<=(from_wchar);
void operator<<=(from_octet);
void operator<<=(from_string);
void operator<<=(from_wstring);

// special helper types needed for boolean, octet,
// char, and bounded string extraction
struct to_boolean {

to_boolean(Boolean &b) : ref(b) {}
Boolean &ref;

};
struct to_char {

to_char(Char &c) : ref(c) {}
Char &ref;

};
struct to_wchar {

to_wchar(WChar &wc) : ref(wc) {}
WChar &ref;

};
struct to_octet {

to_octet(Octet &o) : ref(o) {}
Octet &ref;

};
struct to_string {

to_string(char *&s, ULong b) : val(s), bound(b) {}
char *&val;
ULong bound;

};
struct to_wstring {

to_wstring(WChar *&s, ULong b) : val(s), bound(b) {}
WChar *&val;
ULong bound;

};

Boolean operator>>=(to_boolean) const;
Boolean operator>>=(to_char) const;
CORBA V2.2 Mapping for the Any Type February 1998 20-53

20

used
Boolean operator>>=(to_wchar) const;
Boolean operator>>=(to_octet) const;
Boolean operator>>=(to_string) const;
Boolean operator>>=(to_wstring) const;

// other public Any details omitted

private:
// these functions are private and not implemented
// hiding these causes compile-time errors for
// unsigned char
void operator<<=(unsigned char);
Boolean operator>>=(unsigned char &) const;

};

An ORB implementation provides the overloaded operator<<= and
operator>>= functions for these special helper types. These helper types are
as shown next.

// C++
Boolean b = TRUE;
Any any;
any <<= Any::from_boolean(b);
// ...
if (any >>= Any::to_boolean(b)) {

// ...any contained a Boolean...
}

char* p = "bounded";
any <<= Any::from_string(p, 8);
// ...
if (any >>= Any::to_string(p, 8)) {

// ...any contained a string<8>...
}

A bound value of zero passed to the appropriate helper type indicates an unbounded
string or wide string.

For noncopying insertion of a bounded or unbounded string into an any , the nocopy
flag on the from_string constructor should be set to TRUE.

// C++
char* p = string_alloc(8);
// ...initialize string p...
any <<= Any::from_string(p, 8, 1); // any consumes p

The same rules apply for bounded and unbounded wide strings and the
from_wstring helper type.
20-54 CORBA V2.2 February 1998

20

nce

med
Assuming that boolean , char , and octet all map the C++ type unsigned
char , the private and unimplemented operator<<= and operator>>=
functions for unsigned char will cause a compile-time error if straight insertion
or extraction of any of the boolean , char , or octet types is attempted.

// C++
Octet oct = 040;
Any any;
any <<= oct;// this line will not compile
any <<= Any::from_octet(oct);// but this one will

It is important to note that the previous example is only one possible implementation
for these helpers, not a mandated one. Other compliant implementations are possible,
such as providing them via in-lined static any member functions if boolean ,
char , and octet are in fact mapped to distinct C++ types. All compliant C++
mapping implementations must provide these helpers, however, for purposes of
portability.

20.16.5 Widening to Object

Sometimes it is desirable to extract an object reference from an Any as the base
Object type. This can be accomplished using a helper type similar to those required
for extracting Boolean , Char , and Octet :

// C++
class Any
{

public:
...
struct to_object {
to_object(Object_ptr &obj) : ref(obj) {}
Object_ptr &ref;
};
Boolean operator>>=(to_object) const;
...
};

The to_object helper type is used to extract an object reference from an Any as
the base Object type. If the Any contains a value of an object reference type as
indicated by its TypeCode , the extraction function
operator>>=(to_object) explicitly widens its contained object reference to
Object and returns true, otherwise it returns false. This is the only object refere
extraction function that performs widening on the extracted object reference. As with
regular object reference extraction, no duplication of the object reference is perfor
by the to_object extraction operator.
CORBA V2.2 Mapping for the Any Type February 1998 20-55

20

eate

 the
20.16.6 Handling Untyped Values

Under some circumstances the type-safe interface to Any is not sufficient. An example
is a situation in which data types are read from a file in binary form and used to cr
values of type Any . For these cases, the Any class provides a constructor with an
explicit TypeCode and generic pointer:

// C++
Any(TypeCode_ptr tc, void *value, Boolean release = FALSE);

The constructor is responsible for duplicating the given TypeCode pseudo object
reference. If the release parameter is TRUE, then the Any object assumes
ownership of the storage pointed to by the value parameter. A compliant application
should make no assumptions about the continued lifetime of the value parameter
once it has been handed to an Any with release=TRUE , since a compliant Any
implementation is allowed to copy the value parameter and immediately free the
original pointer. If the release parameter is FALSE (the default case), then the
Any object assumes the caller will manage the memory pointed to by value . The
value parameter can be a null pointer.

The Any class also defines three unsafe operations:

// C++
void replace(
TypeCode_ptr,
void *value,
Boolean release = FALSE
);
TypeCode_ptr type() const;
const void *value() const;

The replace function is intended to be used with types that cannot be used with
type-safe insertion interface, and so is similar to the constructor described above. The
existing TypeCode is released and value storage deallocated, if necessary. The
TypeC ode function parameter is duplicated. If the release parameter is TRUE, then
the Any object assumes ownership for the storage pointed to by the value parameter.
A compliant application should make no assumptions about the continued lifetime of
the value parameter once it has been handed to the Any::replace function with
release=TRUE , since a compliant Any implementation is allowed to copy the
value parameter and immediately free the original pointer. If the release
parameter is FALSE (the default case), then the Any object assumes the caller will
manage the memory occupied by the value. The value parameter of the replace
function can be a null pointer.

For C++ mapping implementations that use Environment parameters to pass
exception information, the default release argument can be simulated by providing
two overloaded replace functions, one that takes a non-defaulted release
parameter and one that takes no release parameter. The second function simply
invokes the first with the release parameter set to FALSE.
20-56 CORBA V2.2 February 1998

20

tency

r

tions

on

namic
on or

n
Note that neither the constructor shown above nor the replace function is type-safe.
In particular, no guarantees are made by the compiler or runtime as to the consis
between the TypeCode and the actual type of the void* argument. The behavior of
an ORB implementation when presented with an Any that is constructed with a
mismatched TypeCode and value is not defined.

The type function returns a TypeCode_ptr pseudo-object reference to the
TypeCode associated with the Any. Like all object reference return values, the calle
must release the reference when it is no longer needed, or assign it to a
TypeCode_var variable for automatic management.

The value function returns a pointer to the data stored in the Any. If the Any has no
associated value, the value function returns a null pointer. The type to which the
void* returned by the value function may be cast depends on the ORB
implementation; thus, use of the value function is not portable across ORB
implementations and its usage is therefore deprecated. Note that ORB implementa
are allowed to make stronger guarantees about the void* returned from the value
function, if so desired.

20.16.7 Any Constructors, Destructor, Assignment Operator

The default constructor creates an Any with a TypeCode of type tk_null , and no
value. The copy constructor calls _duplicate on the TypeCode_ptr of its
Any parameter and deep-copies the parameter’s value. The assignment operator
releases its own TypeCode_ptr and deallocates storage for the current value if
necessary, then duplicates the TypeCode_ptr of its Any parameter and deep-
copies the parameter’s value. The destructor calls release on the
TypeCode_ptr and deallocates storage for the value, if necessary.

Other constructors are described in Section 20.16.6, “Handling Untyped Values,”
page 20-56.

ORB implementations concerned with single-process interoperability with the C
mapping may overload operator new() and operator delete() for
Anys so that dynamic allocation uses the same mechanism as the C language dy
allocation functions. Whether these operators are overloaded by the implementati
not, compliant programs use new to dynamically allocate anys and delete to free
them.

20.16.8 The Any Class

The full definition of the Any class can be found in “The Any Class” on page 20-57.

20.16.9 The Any_var Class

Since Anys are returned via pointer as out and return parameters (see Table 20-2 o
page 20-66), there exists an Any_var class similar to the T_var classes for object
references. Any_var obeys the rules for T_var classes described in “Mapping for
CORBA V2.2 Mapping for the Any Type February 1998 20-57

20

her or

ree
fines a
lizes
g

s

icit

rt of

 to
ss

t
Structured Types” on page 20-21, calling delete on its Any* when it goes out of
scope or is otherwise destroyed. The full interface of the Any_var class is shown in
“Any_var Class” on page 20-107.

20.17 Mapping for Exception Types

An OMG IDL exception is mapped to a C++ class that derives from the standard
UserException class defined in the CORBA module (see “CORBA Module” on
page 20-5). The generated class is like a variable-length struct, regardless of whet
not the exception holds any variable-length members. Just as for variable-length
structs, each exception member must be self-managing with respect to its storage.

The copy constructor, assignment operator, and destructor automatically copy or f
the storage associated with the exception. For convenience, the mapping also de
constructor with one parameter for each exception member—this constructor initia
the exception members to the given values. For exception types that have a strin
member, this constructor should take a const char* parameter, since the
constructor must copy the string argument. Similarly, constructors for exception type
that have an object reference member must call _duplicate on the corresponding
object reference constructor parameter. The default constructor performs no expl
member initialization.

// C++
class Exception
{

public:
virtual ~Exception();

virtual void _raise() = 0;
};

The Exception base class is abstract and may not be instantiated except as pa
an instance of a derived class. It supplies one pure virtual function to the exception
hierarchy: the _raise() function which can be used to tell an exception instance
throw itself so that a catch clause can catch it by a more derived type. Each cla
derived from Exception shall implement _raise() as follows:

// C++
void SomeDerivedException::_raise()
{
throw *this;
}

For environments that do not support exception handling, please refer to “Withou
Exception Handling” on page 20-116 for information about the _raise() function.

The UserException class is derived from a base Exception class, which is
also defined in the CORBA module.
20-58 CORBA V2.2 February 1998

20
All standard exceptions are derived from a SystemException class, also defined in
the CORBA module. Like UserException , SystemException is derived
from the base Exception class. The SystemException class interface is
shown below.

// C++
enum CompletionStatus {
COMPLETED_YES,
COMPLETED_NO,
COMPLETED_MAYBE
};

class SystemException : public Exception
{

public:
SystemException();
SystemException(const SystemException &);
SystemException(ULong minor, CompletionStatus status);
~SystemException();
SystemException &operator=(const SystemException &);

ULong minor() const;
void minor(ULong);

void _raise();

CompletionStatus completed() const;
void completed(CompletionStatus);
};

The default constructor for SystemException causes minor() to return 0 and
completed() to return COMPLETED_NO.

Each specific system exception (described in “Exceptions” on page 19-4) is derived
from SystemException :

// C++
class UNKNOWN : public SystemException { ... };
class BAD_PARAM : public SystemException { ... };
// etc.

All specific system exceptions are defined within the CORBA module.

This exception hierarchy allows any exception to be caught by simply catching the
Exception type:
CORBA V2.2 Mapping for Exception Types February 1998 20-59

20

’s
// C++
try {
...
} catch (const Exception &exc) {
...
}

Alternatively, all user exceptions can be caught by catching the UserException
type, and all system exceptions can be caught by catching the SystemException
type:

// C++
try {
...
} catch (const UserException &ue) {
...
} catch (const SystemException &se) {
...
}

Naturally, more specific types can also appear in catch clauses.

Exceptions are normally thrown by value and caught by reference. This approach lets
the exception destructor release storage automatically.

The Exception class provides for narrowing within the exception hierarchy:

// C++
class UserException : public Exception
{

public:
static UserException *_narrow(Exception *);
// ...
};

class SystemException : public Exception
{

public:
static SystemException *_narrow(Exception *);
// ...
};

Each exception class supports a static member function named _narrow . The
parameter to the _narrow call is a pointer to the base class Exception . If the
parameter is a null pointer, the return type of _narrow is a null pointer. If the actual
(runtime) type of the parameter exception can be widened to the requested exception
type, then _narrow will return a valid pointer to the parameter Exception .
Otherwise, _narrow will return a null pointer.
20-60 CORBA V2.2 February 1998

20

wise

++

type

a.

me),

egular
Unlike the _narrow operation on object references, the _narrow operation on
exceptions returns a suitably-typed pointer to the same exception parameter, not a
pointer to a new exception. If the original exception goes out of scope or is other
destroyed, the pointer returned by _narrow is no longer valid.

For application portability, conforming C++ mapping implementations built using C
compilers that support the standard C++ Run Time Type Information (RTTI)
mechanisms still need to support narrowing for the Exception hierarchy. RTTI
supports, among other things, determination of the run-time type of a C++ object. In
particular, the dynamic_cast<T*> operator15 allows for narrowing from a base
pointer to a more derived pointer if the object pointed to really is of the more derived
type. This operator is not useful for narrowing object references, since it cannot
determine the actual type of remote objects, but it can be used by the C++ mapping
implementation to narrow within the exception hierarchy.

Request invocations made through the DII may result in user-defined exceptions that
cannot be fully represented in the calling program because the specific exception
was not known at compile-time. The mapping provides the
UnknownUserException so that such exceptions can be represented in the
calling process:

// C++
class UnknownUserException : public UserException
{

public:
Any &exception();
};

As shown here, UnknownUserException is derived from UserException .
It provides the exception() accessor that returns an Any holding the actual
exception. Ownership of the returned Any is maintained by the
UnknownUserException —the Any merely allows access to the exception dat
Conforming applications should never explicitly throw exceptions of type
UnknownUserException —it is intended for use with the DII.

20.18 Mapping For Operations and Attributes

An operation maps to a C++ function with the same name as the operation. Each read-
write attribute maps to a pair of overloaded C++ functions (both with the same na
one to set the attribute’s value and one to get the attribute’s value. The set function
takes an in parameter with the same type as the attribute, while the get function takes
no parameters and returns the same type as the attribute. An attribute marked
readonly maps to only one C++ function, to get the attribute’s value. Parameters and
return types for attribute functions obey the same parameter passing rules as for r
operations.

15.It is unlikely that a compiler would support RTTI without supporting exceptions, since much
of a C++ exception handling implementation is based on RTTI mechanisms.
CORBA V2.2 Mapping For Operations and Attributes February 1998 20-61

20

n

 (to
OMG IDL oneway operations are mapped the same as other operations; that is, there
is no way to know by looking at the C++ whether an operation is oneway or not.

The mapping does not define whether exceptions specified for an OMG IDL operatio
are part of the generated operation’s type signature or not.

// IDL
interface A
{

void f();
oneway void g();
attribute long x;

};

// C++
A_var a;
a->f();
a->g();
Long n = a->x();
a->x(n + 1);

Unlike the C mapping, C++ operations do not require an additional Environment
parameter for passing exception information—real C++ exceptions are used for this
purpose. See “Mapping for Exception Types” on page 20-58 for more details.

20.19 Implicit Arguments to Operations

If an operation in an OMG IDL specification has a context specification, then a
Context_ptr input parameter (see “Context Interface” on page 20-80) follows all
operation-specific arguments. In an implementation that does not support real C++
exceptions, an output Environment parameter is the last argument, following all
operation-specific arguments, and following the context argument if present. The
parameter passing mode for Environment is described in “Without Exception
Handling” on page 20-116.

20.20 Argument Passing Considerations

The mapping of parameter passing modes attempts to balance the need for both
efficiency and simplicity. For primitive types, enumerations, and object references, the
modes are straightforward, passing the type P for primitives and enumerations and the
type A_ptr for an interface type A.

Aggregate types are complicated by the question of when and how parameter memory
is allocated and deallocated. Mapping in parameters is straightforward because the
parameter storage is caller-allocated and read-only. The mapping for out and inout
parameters is more problematic. For variable-length types, the callee must allocate
some if not all of the storage. For fixed-length types, such as a Point type represented
as a struct containing three floating point members, caller allocation is preferable
allow stack allocation).
20-62 CORBA V2.2 February 1998

20

ng

truct is

There

e

To accommodate both kinds of allocation, avoid the potential confusion of split
allocation, and eliminate confusion with respect to when copying occurs, the mappi
is T& for a fixed-length aggregate T and T*& for a variable-length T. This approach
has the unfortunate consequence that usage for structs depends on whether the s
fixed- or variable-length; however, the mapping is consistently T_var& if the caller
uses the managed type T_var .

The mapping for out and inout parameters additionally requires support for
deallocating any previous variable-length data in the parameter when a T_var is
passed. Even though their initial values are not sent to the operation, we include out
parameters because the parameter could contain the result from a previous call.
are many ways to implement this support. The mapping does not require a specific
implementation, but a compliant implementation must free the inaccessible storag
associated with a parameter passed as a T_var managed type. The provision of the
T_out types is intended to give implementations the hooks necessary to free the
inaccessible storage while converting from the T_var types. The following examples
demonstrate the compliant behavior:

// IDL
struct S { string name; float age; };
void f(out S p);

// C++
S_var s;
f(s);
// use s
f(s); // first result will be freed

S *sp; // need not initialize before passing to out
f(sp);
// use sp
delete sp; // cannot assume next call will free old value
f(sp);

Note that implicit deallocation of previous values for out and inout parameters works
only with T_var types, not with other types:

// IDL
void q(out string s);

// C++
char *s;
for (int i = 0; i < 10; i++)
q(s);// memory leak!

Each call to the q function in the loop results in a memory leak because the caller is
not invoking string_free on the out result. There are two ways to fix this, as
shown below:
CORBA V2.2 Argument Passing Considerations February 1998 20-63

20

ple,

 is
e

se

sult
// C++
char *s;
String_var svar;
for (int i = 0 ; i < 10; i++) {
q(s);
string_free(s);// explicit deallocation
// OR:
q(svar);// implicit deallocation
}

Using a plain char* for the out parameter means that the caller must explicitly
deallocate its memory before each reuse of the variable as an out parameter, while
using a String_var means that any deallocation is performed implicitly upon each
use of the variable as an out parameter.

Variable-length data must be explicitly released before being overwritten. For exam
before assigning to an inout string parameter, the implementor of an operation may
first delete the old character data. Similarly, an inout interface parameter should be
released before being reassigned. One way to ensure that the parameter storage
released is to assign it to a local T_var variable with an automatic release, as in th
following example:

// IDL
interface A;
void f(inout string s, inout A obj);

// C++
void Aimpl::f(char *&s, A_ptr &obj) {
String_var s_tmp = s;
s = /* new data */;
A_var obj_tmp = obj;
obj = /* new reference */
}

To allow the callee the freedom to allocate a single contiguous area of storage for all
the data associated with a parameter, we adopt the policy that the callee-allocated
storage is not modifiable by the caller. However, trying to enforce this policy by
returning a const type in C++ is problematic, since the caller is required to relea
the storage, and calling delete on a const object is an error16. A compliant
mapping therefore is not required to detect this error.

For parameters that are passed or returned as a pointer (T*) or reference to pointer
(T*&), a compliant program is not allowed to pass or return a null pointer; the re
of doing so is undefined. In particular, a caller may not pass a null pointer under any of
the following circumstances:

16.The upcoming ANSI/ISO C++ standard allows delete on a pointer to const object,
but many C++ compilers do not yet support this feature.
20-64 CORBA V2.2 February 1998

20

r,

r

 that

t

hould

of an
 not

t
• in and inout string

• in and inout array (pointer to first element)

A caller may pass a reference to a pointer with a null value for out parameters,
however, since the callee does not examine the value but rather just overwrites it. A
callee may not return a null pointer under any of the following circumstances:

• out and return variable-length struct

• out and return variable-length union

• out and return string

• out and return sequence

• out and return variable-length array, return fixed-length array

• out and return any

Since OMG IDL has no concept of pointers in general or null pointers in particula
allowing the passage of null pointers to or from an operation would project C++
semantics onto OMG IDL operations.17 A compliant implementation is allowed but not
required to raise a BAD_PARAM exception if it detects such an error.

20.20.1 Operation Parameters and Signatures

Table 20-2 on page 20-66 displays the mapping for the basic OMG IDL paramete
passing modes and return type according to the type being passed or returned, while
Table 20-3 on page 20-66 displays the same information for T_var types. “T_var
Argument and Result Passing” is merely for informational purposes; it is expected
operation signatures for both clients and servers will be written in terms of the
parameter passing modes shown in Table 20-2 on page 20-66, with the exception tha
the T_out types will be used as the actual parameter types for all out parameters. It
is also expected that T_var types will support the necessary conversion operators to
allow them to be passed directly. Callers should always pass instances of either
T_var types or the base types shown in Table 20-2 on page 20-66, and callees s
treat their T_out parameters as if they were actually the corresponding underlying
types shown in “Basic Argument and Result Passing”.

In Table 20-2 on page 20-66, fixed-length arrays are the only case where the type
out parameter differs from a return value, which is necessary because C++ does
allow a function to return an array. The mapping returns a pointer to a slice of the
array, where a slice is an array with all the dimensions of the original specified excep
the first one. A caller is responsible for providing storage for all arguments passed as
in arguments.

17.When real C++ exceptions are not available, however, it is important that null pointers are
returned whenever an Environment containing an exception is returned; see “Without
Exception Handling” on page 20-116 for more details.
CORBA V2.2 Argument Passing Considerations February 1998 20-65

20
Table 20-2 Basic Argument and Result Passing

Data Type In Inout Out Return

short Short Short& Short& Short

long Long Long& Long& Long

long long LongLong LongLong& LongLong& LongLong

unsigned short UShort UShort& UShort& UShort

unsigned long ULong ULong& ULong& ULong

unsigned long long ULongLong ULongLong& ULongLong& ULongLong

float Float Float& Float& Float

double Double Double& Double& Double

long double LongDouble LongDouble& LongDouble& LongDouble

boolean Boolean Boolean& Boolean& Boolean

char Char Char& Char& Char

wchar WChar WChar& WChar& WChar

octet Octet Octet& Octet& Octet

enum enum enum& enum& enum

object reference ptr1

1. Including pseudo-object references.

objref_ptr objref_ptr& objref_ptr& objref_ptr

struct, fixed const struct& struct& struct& struct

struct, variable const struct& struct& struct*& struct*

union, fixed const union& union& union& union

union, variable const union& union& union*& union*

string const char* char*& char*& char*

wstring const WChar* WChar*& WChar*& WChar*

sequence const sequence& sequence& sequence*& sequence*

array, fixed const array array array array slice*2

2. A slice is an array with all the dimensions of the original except the first one.

array, variable const array array array slice*&2 array slice*2

any const any& any& any*& any*

fixed const fixed& fixed& fixed& fixed&

Table 20-3T_var Argument and Result Passing

Data Type In Inout Out Return

object reference var1 const objref_var& objref_var& objref_var& objref_var

struct_var const struct_var& struct_var& struct_var& struct_var

union_var const union_var& union_var& union_var& union_var

string_var const string_var& string_var& string_var& string_var

sequence_var const sequence_var& sequence_var& sequence_var& sequence_var
20-66 CORBA V2.2 February 1998

20
Table 20-4 on page 20-67 and Table 20-5 on page 20-68 describe the caller’s
responsibility for storage associated with inout and out parameters and for return
results

array_var const array_var& array_var& array_var& array_var

any_var const any_var& any_var& any_var& any_var

1. Including pseudo-object references.

Table 20-4Caller Argument Storage Responsibilities

Type
Inout
Param

Out
Param

Return
Result

short 1 1 1

long 1 1 1

long long 1 1 1

unsigned short 1 1 1

unsigned long 1 1 1

unsigned long long 1 1 1

float 1 1 1

double 1 1 1

long double 1 1 1

boolean 1 1 1

char 1 1 1

wchar 1 1 1

octet 1 1 1

enum 1 1 1

object reference ptr 2 2 2

struct, fixed 1 1 1

struct, variable 1 3 3

union, fixed 1 1 1

union, variable 1 3 3

string 4 3 3

wstring 4 3 3

sequence 5 3 3

array, fixed 1 1 6

array, variable 1 6 6

any 5 3 3

fixed 1 1 1

Table 20-3T_var Argument and Result Passing

Data Type In Inout Out Return
CORBA V2.2 Argument Passing Considerations February 1998 20-67

20

r as
.

20.21 Mapping of Pseudo Objects to C++

CORBA pseudo objects may be implemented either as normal CORBA objects o
serverless objects. In the CORBA specification, the fundamental differences between
these strategies are:

Table 20-5Argument Passing Cases

Case

1 Caller allocates all necessary storage, except that which may be encapsulated and managed
within the parameter itself. For inout parameters, the caller provides the initial value, and the
callee may change that value. For out parameters, the caller allocates the storage but need not
initialize it, and the callee sets the value. Function returns are by value.

2 Caller allocates storage for the object reference. For inout parameters, the caller provides an ini-
tial value; if the callee wants to reassign the inout parameter, it will first call CORBA::release on
the original input value. To continue to use an object reference passed in as an inout, the caller
must first duplicate the reference. The caller is responsible for the release of all out and return
object references. Release of all object references embedded in other structures is performed
automatically by the structures themselves.

3 For out parameters, the caller allocates a pointer and passes it by reference to the callee. The
callee sets the pointer to point to a valid instance of the parameter’s type. For returns, the callee
returns a similar pointer. The callee is not allowed to return a null pointer in either case. In both
cases, the caller is responsible for releasing the returned storage. To maintain local/remote
transparency, the caller must always release the returned storage, regardless of whether the
callee is located in the same address space as the caller or is located in a different address
space. Following the completion of a request, the caller is not allowed to modify any values in
the returned storage—to do so, the caller must first copy the returned instance into a new
instance, then modify the new instance.

4 For inout strings, the caller provides storage for both the input string and the char* or wchar*
pointing to it. Since the callee may deallocate the input string and reassign the char* or
wchar* to point to new storage to hold the output value, the caller should allocate the input
string using string_alloc() or wstring_alloc() . The size of the out string is
therefore not limited by the size of the in string. The caller is responsible for deleting the storage
for the out using string_free() or wstring_free() . The callee is not allowed to return
a null pointer for an inout, out, or return value.

5 For inout sequences and anys, assignment or modification of the sequence or any may cause
deallocation of owned storage before any reallocation occurs, depending upon the state of the
Boolean release parameter with which the sequence or any was constructed.

6 For out parameters, the caller allocates a pointer to an array slice, which has all the same
dimensions of the original array except the first, and passes the pointer by reference to the
callee. The callee sets the pointer to point to a valid instance of the array. For returns, the callee
returns a similar pointer. The callee is not allowed to return a null pointer in either case. In both
cases, the caller is responsible for releasing the returned storage. To maintain local/remote
transparency, the caller must always release the returned storage, regardless of whether the
callee is located in the same address space as the caller or is located in a different address
space. Following completion of a request, the caller is not allowed to modify any values in the
returned storage—to do so, the caller must first copy the returned array instance into a new
array instance, then modify the new instance.
20-68 CORBA V2.2 February 1998

20

s

that are

 the
bjects

l.

ject
re
hile

pply

e
• Serverless object types do not inherit from CORBA::Object
• Individual serverless objects are not registered with any ORB

• Serverless objects do not necessarily follow the same memory management rule
as for regular IDL types.

References to serverless objects are not necessarily valid across computational
contexts; for example, address spaces. Instead, references to serverless objects
passed as parameters may result in the construction of independent functionally-
identical copies of objects used by receivers of these references. To support this,
otherwise hidden representational properties (such as data layout) of serverless o
are made known to the ORB. Specifications for achieving this are not contained in this
chapter: making serverless objects known to the ORB is an implementation detai

This chapter provides a standard mapping algorithm for all pseudo object types. This
avoids the need for piecemeal mappings for each of the nine CORBA pseudo ob
types, and accommodates any pseudo object types that may be proposed in futu
revisions of CORBA. It also avoids representation dependence in the C mapping w
still allowing implementations that rely on C-compatible representations.

20.22 Usage

Rather than C-PIDL, this mapping uses an augmented form of full OMG IDL to
describe serverless object types. Interfaces for pseudo object types follow the exact
same rules as normal OMG IDL interfaces, with the following exceptions:

• They are prefaced by the keyword pseudo.
• Their declarations may refer to other18 serverless object types that are not

otherwise necessarily allowed in OMG IDL.

As explained in “Pseudo-objects” on page19-29, the pseudo prefix means that the
interface may be implemented in either a normal or serverless fashion. That is, a
either the rules described in the following sections or the normal mapping rules
described in this chapter.

20.23 Mapping Rules

Serverless objects are mapped in the same way as normal interfaces, except for the
differences outlined in this section.

Classes representing serverless object types are not subclasses of CORBA::Object ,
and are not necessarily subclasses of any other C++ class. Thus, they do not
necessarily support, for example, the Object::create_request operation.

For each class representing a serverless object type T, overloaded versions of th
following functions are provided in the CORBA namespace:

18.In particular, exception used as a data type and a function name.
CORBA V2.2 Usage February 1998 20-69

20

,
d

e
ld be

e

le”
nt

gs
g

en the

of

es,
// C++
void release(T_ptr);
Boolean is_nil(T_ptr p);

The mapped C++ classes are not guaranteed to be usefully subclassable by users
although subclasses can be provided by implementations. Implementations are allowe
to make assumptions about internal representations and transport formats that may not
apply to subclasses.

The member functions of classes representing serverless object types do not
necessarily obey the normal memory management rules. This is due to the fact that
some serverless objects, such as CORBA::NVList , are essentially just containers
for several levels of other serverless objects. Requiring callers to explicitly free th
values returned from accessor functions for the contained serverless objects wou
counter to their intended usage.

All other elements of the mapping are the same. In particular:

1. The types of references to serverless objects, T_ptr , may or may not simply be a
typedef of T* .

2. Each mapped class supports the following static member functions:

// C++
static T_ptr _duplicate(T_ptr p);
static T_ptr _nil();

Legal implementations of _duplicate include simply returning the
argument or constructing references to a new instance. Individual
implementations may provide stronger guarantees about behavior.

3. The corresponding C++ classes may or may not be directly instantiable or hav
other instantiation constraints. For portability, users should invoke the appropriate
constructive operations.

4. As with normal interfaces, assignment operators are not supported.

5. Although they can transparently employ “copy-style” rather than “reference-sty
mechanics, parameter passing signatures and rules as well as memory manageme
rules are identical to those for normal objects, unless otherwise noted.

20.24 Relation to the C PIDL Mapping

All serverless object interfaces and declarations that rely on them have direct analo
in the C mapping. The mapped C++ classes can, but need not be, implemented usin
representations compatible to those chosen for the C mapping. Differences betwe
pseudo object specifications for C-PIDL and C++ PIDL are as follows:

• C++-PIDL calls for removal of representation dependencies through the use
interfaces rather than structs and typedefs.

• C++-PIDL calls for placement of operations on pseudo objects in their interfac
including a few cases of redesignated functionality as noted.
20-70 CORBA V2.2 February 1998

20

may

• In C++-PIDL, the release performs the role of the associated free and
delete operations in the C mapping, unless otherwise noted.

Brief descriptions and listings of each pseudo-interface and its C++ mapping are
provided in the following sections. Further details, including definitions of types
referenced but not defined below, may be found in the relevant sections of this
document.

20.25 Environment

Environment provides a vehicle for dealing with exceptions in those cases where true
exception mechanics are unavailable or undesirable (for example in the DII). They
be set and inspected using the exception attribute.

As with normal OMG IDL attributes, the exception attribute is mapped into a pair of
C++ functions used to set and get the exception. The semantics of the set and get
functions, however, are somewhat different than those for normal OMG IDL attributes.
The set C++ function assumes ownership of the Exception pointer passed to it.
The Environment will eventually call delete on this pointer, so the
Exception it points to must be dynamically allocated by the caller. The get
function returns a pointer to the Exception , just as an attribute for a variable-length
struct would, but the pointer refers to memory owned by the Environment . Once
the Environment is destroyed, the pointer is no longer valid. The caller must not
call delete on the Exception pointer returned by the get function. The
Environment is responsible for deallocating any Exception it holds when it is
itself destroyed. If the Environment holds no exception, the get function returns
a null pointer.

The clear() function causes the Environment to delete any Exception
it is holding. It is not an error to call clear() on an Environment holding no
exception. Passing a null pointer to the set exception function is equivalent to calling
clear() . If an Environment contains exception information, the caller is
responsible for calling clear() on it before passing it to an operation.

20.25.1 Environment Interface
// IDL
pseudo interface Envir onment
{ attribute exception except ion;

void clear();
};
CORBA V2.2 Environment February 1998 20-71

20

20.25.2 Environment C++ Class

// C++
class Environment
{

public:
void exception(Exception*);
Exception *exception() const;
void clear();
};

20.25.3 Differences from C-PIDL

The C++-PIDL specification differs from the C-PIDL specification as follows:

• Defines an interface rather than a struct.

• Supports an attribute allowing operations on exception values as a whole rather
than on major numbers and/or identification strings.

• Supports a clear() function that is used to destroy any Exception the
Environment may be holding.

• Supports a default constructor that initializes it to hold no exception information.

20.25.4 Memory Management

Environment has the following special memory management rules:

• The void exception(Exception*) member function adopts the
Exception* given to it.

• Ownership of the return value of the Exception *exception() member
function is maintained by the Environment ; this return value must not be freed
by the caller.

20.26 NamedValue

NamedValue is used only as an element of NVList , especially in the DII.
NamedValue maintains an (optional) name, an any value, and labelling flags. Legal
flag values are ARG_IN , ARG_OUT, and ARG_INOUT.

The value in a NamedValue may be manipulated via standard operations on any.
20-72 CORBA V2.2 February 1998

20
20.26.1 NamedValue Interface

// IDL
pseudo interface N amedValue
{

readonly attri bute Identif ier n ame;
readonly attri bute any value;
readonly attri bute Flags flags;

};

20.26.2 NamedValue C++ Class

// C++
class NamedValue
{

public:
const char *name() const;
Any *value() const;
Flags flags() const;
};

20.26.3 Differences from C-PIDL

The C++-PIDL specification differs from the C-PIDL specification as follows:

• Defines an interface rather than a struct.

• Provides no analog of the len field.

20.26.4 Memory Management

NamedValue has the following special memory management rules:

• Ownership of the return values of the name() and value() functions is
maintained by the NamedValue ; these return values must not be freed by the
caller.

20.27 NVList

NVList is a list of NamedValue s. A new NVList is constructed using the
ORB::create_list operation (see “ORB” on page20-83). New NamedValue s may be
constructed as part of an NVList , in any of three ways:

• add—creates an unnamed value, initializing only the flags.

• add_item —initializes name and flags.

• add_value —initializes name, value, and flags.

• add_item_consume —initializes name and flags, taking over memory
management responsibilities for the char * name parameter.
CORBA V2.2 NVList February 1998 20-73

20

• add_value_consume —initializes name, value, and flags, taking over memory
management responsibilities for both the char* name parameter and the Any*
value parameter. Each of these operations returns the new item.

Elements may be accessed and deleted via zero-based indexing. The add , add_item ,
add_value , add_item_consume , and add_value_consume functions lengthen
the NVList to hold the new element each time they are called. The item function can
be used to access existing elements.

20.27.1 NVList Interface
// IDL
pseudo interface NVList
{

readonly attri bute unsigned long count;
NamedValue add(in Fl ags flags);
NamedValue add_i tem(in Identifier item_name, in Flags flags);
NamedValue add_v alue(

in Identifier item_name,
in any val,
in Flags flags

);
NamedValue it em(in unsigned long i ndex) raises(Bounds);

Status remove(in unsigned long index) raises(Bounds);
};

20.27.2 NVList C++ Class

// C++
class NVList
{

public:
ULong count() const;
NamedValue_ptr add(Flags);
NamedValue_ptr add_item(const char*, Flags);
NamedValue_ptr add_value(
const char*,
const Any&,
Flags
);
NamedValue_ptr add_item_consume(
char*,
Flags
);
20-74 CORBA V2.2 February 1998

20

on
NamedValue_ptr add_value_consume(
char*,
Any *,
Flags
);
NamedValue_ptr item(ULong);
Status remove(ULong);
};

20.27.3 Differences from C-PIDL

The C++-PIDL specification differs from the C-PIDL specification as follows:

• Defines an interface rather than a typedef

• Provides different signatures for operations that add items in order to avoid
representation dependencies

• Provides indexed access methods

20.27.4 Memory Management

NVList has the following special memory management rules:

• Ownership of the return values of the add , add_item , add_value ,
add_item_consume , add_value_consume , and item functions is
maintained by the NVList ; these return values must not be freed by the caller.

• The char* parameters to the add_item_consume and
add_value_consume functions and the Any* parameter to the
add_value_consume function are consumed by the NVList . The caller may
not access these data after they have been passed to these functions because the
NVList may copy them and destroy the originals immediately. The caller should
use the NamedValue::value() operation in order to modify the value
attribute of the underlying NamedValue , if desired.

• The remove function also calls CORBA::release on the removed
NamedValue .

20.28 Request

Request provides the primary support for DII. A new request on a particular target
object may be constructed using the short version of the request creation operati
shown in “Object” on page 20-86:

// C++
Request_ptr Object::_request(Identifier operation);

Arguments and contexts may be added after construction via the corresponding
attributes in the Request interface. Results, output arguments, and exceptions are
similarly obtained after invocation. The following C++ code illustrates usage:
CORBA V2.2 Request February 1998 20-75

20

e

tion
// C++
Request_ptr req = anObj->_request("anOp");
*(req->arguments()->add(ARG_IN)->value()) <<= anArg;
// ...
req->invoke();
if (req->env()->exception() == NULL) {
*(req->result()->value()) >>= aResult;
}

While this example shows the semantics of the attribute-based accessor functions, th
following example shows that it is much easier and preferable to use the equivalent
argument manipulation helper functions:

// C++
Request_ptr req = anObj->_request("anOp");
req->add_in_arg() <<= anArg;
// ...
req->invoke();
if (req->env()->exception() == NULL) {
req->return_value() >>= aResult;
}

Alternatively, requests can be constructed using one of the long forms of the crea
operation shown in the Object interface in “Object” on page 20-86:

// C++
Status Object::_create_request(
Context_ptr ctx,
const char *operation,
NVList_ptr arg_list,
NamedValue_ptr result,
Request_out request,
Flags req_flags
);
Status Object::_create_request(
Context_ptr ctx,
const char *operation,
NVList_ptr arg_list,
NamedValue_ptr result,
ExceptionList_ptr,
ContextList_ptr,
Request_out request,
Flags req_flags
);

Usage is the same as for the short form except that all invocation parameters are
established on construction. Note that the OUT_LIST_MEMORY and
IN_COPY_VALUE flags can be set as flags in the req_flags parameter, but they
are meaningless and thus ignored because argument insertion and extraction are done
via the Any type.
20-76 CORBA V2.2 February 1998

20

o
over

t

Request also allows the application to supply all information necessary for it to be
invoked without requiring the ORB to utilize the Interface Repository. In order to
deliver a request and return the response, the ORB requires:

• a target object reference

• an operation name

• a list of arguments (optional)

• a place to put the result (optional)

• a place to put any returned exceptions

• a Context (optional)

• a list of the user-defined exceptions that can be thrown (optional)

• a list of Context strings that must be sent with the operation (optional)

Since the Object:: create_request operation allows all of these except the last two t
be specified, an ORB may have to utilize the Interface Repository in order to disc
them. Some applications, however, may not want the ORB performing potentially
expensive Interface Repository lookups during a request invocation, so two new
serverless objects have been added to allow the application to specify this information
instead:

• ExceptionList : allows an application to provide a list of TypeCode s for all user-
defined exceptions that may result when the Request is invoke.

• ContextList : allows an application to provide a list of Context strings that must
be supplied with the Request invocation.

The ContextList differs from the Context in that the former supplies only the contex
strings whose values are to be looked up and sent with the request invocation (if
applicable), while the latter is where those values are obtained.

The IDL descriptions for ExceptionList , ContextList , and Request are shown
below.

20.28.1 Request Interface

// IDL
pseudo interface ExceptionList
{

readonly attri bute unsigned long count;
void add(in Type Code exc);
TypeC ode item(in unsigned long index) raises(Bounds);
Status remove(in unsigned long index) raises(Bounds);

};

pseudo interface ContextList
{

readonly attri bute unsigned long count;
void add(in string ctxt);
CORBA V2.2 Request February 1998 20-77

20
string item(in unsigned long index) raises(Bounds);
Status remove(in unsigned long index) raises(Bounds);

};

pseudo interface R equest
{

readonly attri bute Object target;
readonly attri bute Identif ier o peration;
readonly attri bute NVList arguments;
readonly attri bute NamedV alue result;
readonly attri bute Environment env;
readonly attri bute ExceptionList exceptions;
readonly attri bute ContextList contexts;

attribute context ctx;

Status invoke();
Status s end_one way();
Status send_deferred();
Status get_re sponse();
boolean poll_response();

};

20.28.2 Request C++ Class

// C++
class ExceptionList
{

public:
ULong count();
void add(TypeCode_ptr tc);
void add_consume(TypeCode_ptr tc);
TypeCode_ptr item(ULong index);
Status remove(ULong index);
};

class ContextList
{

public:
ULong count();
void add(const char* ctxt);
void add_consume(char* ctxt);
const char* item(ULong index);
Status remove(ULong index);
};
20-78 CORBA V2.2 February 1998

20

n

class Request
{

public:
Object_ptr target() const;
const char *operation() const;
NVList_ptr arguments();
NamedValue_ptr result();
Environment_ptr env();
ExceptionList_ptr exceptions();
ContextList_ptr contexts();

void ctx(Context_ptr);
Context_ptr ctx() const;

// argument manipulation helper functions
Any &add_in_arg();
Any &add_in_arg(const char* name);
Any &add_inout_arg();
Any &add_inout_arg(const char* name);
Any &add_out_arg();
Any &add_out_arg(const char* name);
void set_return_type(TypeCode_ptr tc);
Any &return_value();
Status invoke();
Status send_oneway();
Status send_deferred();
Status get_response();
Boolean poll_response();
};

20.28.3 Differences from C-PIDL

The C++-PIDL specification differs from the C-PIDL specification as follows:

• Replacement of add_argument , and so forth, with attribute-based accessors.

• Use of env attribute to access exceptions raised in DII calls.

• The invoke operation does not take a flag argument, since there are no flag
values that are listed as legal in CORBA.

• The send_oneway and send_deferred operations replace the single send
operation with flag values, in order to clarify usage.

• The get_response operation does not take a flag argument, and an operatio
poll_response is defined to immediately return with an indication of whether
the operation has completed. This was done because in CORBA, if the type
Status is void , the version with RESP_NO_WAIT does not enable the caller to
determine if the operation has completed.

• The add_*_arg , set_return_type , and return_value member functions are
added as shortcuts for using the attribute-based accessors.
CORBA V2.2 Request February 1998 20-79

20

ion.
20.28.4 Memory Management

Request has the following special memory management rules:

• Ownership of the return values of the target , operation , arguments ,
result , env , exceptions , contexts , and ctx functions is maintained
by the Request ; these return values must not be freed by the caller.

ExceptionList has the following special memory management rules:

• The add_consume function consumes its TypeCode_ptr argument. The
caller may not access the object referred to by the TypeCode_ptr after it has
been passed in because the add_consume function may copy it and release the
original immediately.

• Ownership of the return value of the item function is maintained by the
ExceptionList ; this return value must not be released by the caller.

ContextList has the following special memory management rules:

• The add_consume function consumes its char* argument. The caller may
not access the memory referred to by the char* after it has been passed in
because the add_consume function may copy it and free the original
immediately.

• Ownership of the return value of the item function is maintained by the
ContextList ; this return value must not be released by the caller.

20.29 Context

A Context supplies optional context information associated with a method invocat

20.29.1 Context Interface

// IDL
pseudo interface Context
{

readonly attri bute Identif ier c ontext_name;
readonly attri bute context parent;

Status creat e_chi ld(in Identifier chi ld_ctx_name, out Context child_ctx);

Status set_one_value(in Identifier propname, in any propvalue);
Status set_values(in NVList values);
Status delete_values(in Identi fier propname);
Status get_values(

in Identifier sta rt_scope,
in Flags op_flags,
in Identifier pattern,
out NVList values

);
};
20-80 CORBA V2.2 February 1998

20

r.
20.29.2 Context C++ Class

// C++
class Context
{

public:
const char *context_name() const;
Context_ptr parent() const;

Status create_child(const char *, Context_out);

Status set_one_value(const char *, const Any &);
Status set_values(NVList_ptr);
Status delete_values(const char *);
Status get_values(
const char*,
Flags,
const char*,
NVList_out
);
};

20.29.3 Differences from C-PIDL

The C++-PIDL specification differs from the C-PIDL specification as follows:

• Introduction of attributes for context name and parent.

• The signatures for values are uniformly set to any.

• In the C mapping, set_one_value used strings, while others used
NamedValue s containing any. Even though implementations need only support
strings as values, the signatures now uniformly allow alternatives.

• The release operation frees child contexts.

20.29.4 Memory Management

Context has the following special memory management rules:

• Ownership of the return values of the context_name and parent functions is
maintained by the Context ; these return values must not be freed by the calle

20.30 TypeCode

A TypeCode represents OMG IDL type information.

No constructors for TypeCode s are defined. However, in addition to the mapped
interface, for each basic and defined OMG IDL type, an implementation provides
access to a TypeCode pseudo object reference (TypeCode_ptr) of the form
tc<type> that may be used to set types in Any, as arguments for equal , and so
CORBA V2.2 TypeCode February 1998 20-81

20

be

er,
since
on. In the names of these TypeCode reference constants, <type> refer to the local
name of the type within its defining scope. Each C++ _tc_<type> constant must be
defined at the same scoping level as its matching type.

In all C++ TypeCode pseudo object reference constants, the prefix “_tc_” should
used instead of the “TC_” prefix prescribed in “TypeCode” on page 20-81. This is to
avoid name clashes for CORBA applications that simultaneously use both the C and
C++ mappings.

Like all other serverless objects, the C++ mapping for TypeCode provides a _nil()
operation that returns a nil object reference for a TypeCode . This operation can be
used to initialize TypeCode references embedded within constructed types. Howev
a nil TypeCode reference may never be passed as an argument to an operation,
TypeCode s are effectively passed as values, not as object references.

20.30.1 TypeCode Interface

The TypeCode IDL interface is fully defined in “The TypeCode Interface” on
page 8-36 and is thus is not duplicated here.

20.30.2 TypeCode C++ Class

// C++
class TypeCode
{

public:
class Bounds { ... };
class BadKind { ... };

Boolean equal(TypeCode_ptr) const;
TCKind kind() const;

const char* id() const;
const char* name() const;

ULong member_count() const;
const char* member_name(ULong index) const;

TypeCode_ptr member_type(ULong index) const;
20-82 CORBA V2.2 February 1998

20
Any *member_label(ULong index) const;
TypeCode_ptr discriminator_type() const;
Long default_index() const;

ULong length() const;

TypeCode_ptr content_type() const;

UShort fixed_digits() const;
Short fixed_scale() const;

Long param_count() const;
Any *parameter(Long) const;
};

20.30.3 Differences from C-PIDL

For C++, use of prefix “_tc_” instead of “TC_” for constants.

20.30.4 Memory Management

TypeCode has the following special memory management rules:

• Ownership of the return values of the id , name, and member_name functions
is maintained by the TypeCode ; these return values must not be freed by the
caller.

20.31 ORB

An ORB is the programmer interface to the Object Request Broker.

20.31.1 ORB Interface

// IDL
pseudo interface ORB
{

typedef sequence<R equest> R equestSeq;
string object_to_string(in Object obj);
Object string_to_obj ect(in string str);
Status create_list(in long count, out N VList new_l ist);
Status create_operation_list (in Operatio nDef oper, out NVList ne w_list);
Status create_named_value(out NamedValue nmval);
Status create_exception_list(out Except ionList exclist);
Status create_context_list(out ContextList ctxtli st);

Status get_default_context(out Context ctx);
Status create_environment(out Environment new_env);

Status send_mul tiple_req uests_oneway(in RequestSeq req);
CORBA V2.2 ORB February 1998 20-83

20
Status send_mul tiple_req uests_deferred(in RequestSeq req);
boolean poll_next_response();

Status get_next_response(out Req uest req);
};

Boolean work_pending();
void perform_work();
void shutdown(in Boolean wait_for_completion);
void run();

Boolean get_service_information (
in ServiceType service_type,
out ServiceInformation service_information

);
};

20.31.2 ORB C++ Class

// C++
class ORB
{

public:
class RequestSeq {...};
char *object_to_string(Object_ptr);
Object_ptr string_to_object(const char *);
Status create_list(Long, NVList_out);
Status create_operation_list(
OperationDef_ptr,
NVList_out
);
Status create_named_value(NamedValue_out);
Status create_exception_list(ExceptionList_out);
Status create_context_list(ContextList_out);

Status get_default_context(Context_out);
Status create_environment(Environment_out);

Status send_multiple_requests_oneway(
const RequestSeq&
);
Status send_multiple_requests_deferred(
const RequestSeq &
);
Boolean poll_next_response();
Status get_next_response(Request_out);

Boolean work_pending();
void perform_work();
void shutdown(Boolean wait_for_completion);
void run();
20-84 CORBA V2.2 February 1998

20

s

”

f
Boolean get_service_information(
ServiceType svc_type,
ServiceInformation_out svc_info
);
};

20.31.3 Differences from C-PIDL

• Added create_environment . Unlike the struct version, Environment requires
a construction operation. (Since this is overly constraining for implementation
that do not support real C++ exceptions, these implementations may allow
Environment to be declared on the stack. See “Without Exception Handling
on page 20-116 for details.)

• Assigned multiple request support to ORB, made usage symmetrical with that in
Request , and used a sequence type rather than otherwise illegal unbounded
arrays in signatures.

• Added create_named_value , which is required for creating NamedValue
objects to be used as return value parameters for the Object::create_request
operation.

• Added create_exception_list and create_context_list (see “Request” on
page 20-75 for more details).

20.31.4 Mapping of ORB Initialization Operations

The following PIDL specifies initialization operations for an ORB; this PIDL is part o
the CORBA module (not the ORB interface) and is described in “ORB Initialization”
on page 4-8.

// PIDL
module CORBA {

typedef string ORBid;
typedef sequence <string> arg_list;
ORB ORB_init (inout arg_l ist argv, in ORBid orb_identi fier);

};

The mapping of the preceding PIDL operations to C++ is as follows:
CORBA V2.2 ORB February 1998 20-85

20

hich

. If

g

er or

he

bjects.
// C++
namespace CORBA {
typedef char* ORBid;
static ORB_ptr ORB_init(
int& argc,
 char** argv,
const char* orb_identifier = ""
);
}

The C++ mapping for ORB_init deviates from the OMG IDL PIDL in its handling of
the arg_list parameter. This is intended to provide a meaningful PIDL definition of
the initialization interface, which has a natural C++ binding. To this end, the arg_list
structure is replaced with argv and argc parameters.

The argv parameter is defined as an unbound array of strings (char **) and the
number of strings in the array is passed in the argc (int &) parameter.

If an empty ORBid string is used then argc arguments can be used to determine w
ORB should be returned. This is achieved by searching the argv parameters for one
tagged ORBid, e.g., -ORBid "ORBid_example." If an empty ORBid string is used and
no ORB is indicated by the argv parameters, the default ORB is returned.

Regardless of whether an empty or non-empty ORBid string is passed to ORB_init ,
the argv arguments are examined to determine if any ORB parameters are given
a non-empty ORBid string is passed to ORB_init , all -ORBid parameters in the
argv are ignored. All other -ORB<suffix> parameters may be of significance durin
the ORB initialization process.

For C++, the order of consumption of argv parameters may be significant to an
application. In order to ensure that applications are not required to handle argv
parameters they do not recognize the ORB initialization function must be called before
the remainder of the parameters are consumed. Therefore, after the ORB_init call
the argv and argc parameters will have been modified to remove the ORB
understood arguments. It is important to note that the ORB_init call can only reord
remove references to parameters from the argv list, this restriction is made in order to
avoid potential memory management problems caused by trying to free parts of t
argv list or extending the argv list of parameters. This is why argv is passed as a
char** and not a char**& .

20.32 Object

The rules in this section apply to OMG IDL interface Object , the base of the OMG
IDL interface hierarchy. Interface Object defines a normal CORBA object, not a
pseudo object. However, it is included here because it references other pseudo o
20-86 CORBA V2.2 February 1998

20

 on

e
20.32.1 Object Interface

// IDL
interface Object
{

boolean is_nil();
Object duplicate();
void release();
Implementat ionDef get_i mplementation();
InterfaceDef get_inter face();
boolean is_a(in string logical _type_id);
boolean non_existent();
boolean is_equivalent(in Object other_object);
unsigned long hash(in unsigned long maxi mum);
Status create_requ est(

in Context ctx,
in Identifier operation,
in NVList arg_l ist,
in NamedValue result,
out R equest request,
in Flags req_flags

);
Status create_request2(

in Context ctx,
in Identifier operation,
in NVList arg_l ist,
in NamedValue result,
in ExceptionList exclist,
in Context List ctxtlist,
out R equest request,
in Flags req_flags

);
Policy_ptr get_policy(in PolicyType policy_type);
DomainManagerList get_domain_managers();
Object set_policy_override(in PolicyList policies,

in SetOverrideType set_or_add);
};

20.32.2 Object C++ Class

In addition to other rules, all operation names in interface Object have leading
underscores in the mapped C++ class. Also, the mapping for create_request is split
into three forms, corresponding to the usage styles described in “create_request”
page 5-5 and in“Request” on page 20-75 of this document. The is_nil and release
functions are provided in the CORBA namespace, as described in “Object Referenc
Operations” on page 20-8.
CORBA V2.2 Object February 1998 20-87

20

pping
// C++
class Object
{

public:
static Object_ptr _duplicate(Object_ptr obj);
static Object_ptr _nil();
ImplementationDef_ptr _get_implementation();
InterfaceDef_ptr _get_interface();
Boolean _is_a(const char* logical_type_id);
Boolean _non_existent();
Boolean _is_equivalent(Object_ptr other_object);
ULong _hash(ULong maximum);
Status _create_request(
Context_ptr ctx,
const char *operation,
NVList_ptr arg_list,
NamedValue_ptr result,
Request_out request,
Flags req_flags
);
Status _create_request(
Context_ptr ctx,
const char *operation,
NVList_ptr arg_list,
NamedValue_ptr result,
ExceptionList_ptr,
ContextList_ptr,
Request_out request,
Flags req_flags
);
Request_ptr _request(const char* operation);
Policy_ptr _get_policy(PolicyType policy_type);

DomainManagerList* _get_domain_managers();
Object_ptr _set_policy_override(

const PolicyList&,
SetOverrideType

};

20.33 Server-Side Mapping

Server-side mapping refers to the portability constraints for an object implementation
written in C++. The term server is not meant to restrict implementations to situations
in which method invocations cross address space or machine boundaries. This ma
addresses any implementation of an OMG IDL interface.
20-88 CORBA V2.2 February 1998

20

as the

ically,

ide

ive

s

kes
20.34 Implementing Interfaces

To define an implementation in C++, one defines a C++ class with any valid C++
name. For each operation in the interface, the class defines a non-static member
function with the mapped name of the operation (the mapped name is the same
OMG IDL identifier except when the identifier is a C++ keyword, in which case the
string “_cxx_” is prepended to the identifier, as noted in “Preliminary Information” on
page 20-3). Note that the ORB implementation may allow one implementation class to
derive from another, so the statement “the class defines a member function” does not
mean the class must explicitly define the member function—it could inherit the
function.

The mapping specifies two alternative relationships between the application-supplied
implementation class and the generated class or classes for the interface. Specif
the mapping requires support for both inheritance-based relationships and delegation-
based relationships. CORBA-compliant ORB implementations are required to prov
both of these alternatives. Conforming applications may use either or both of these
alternatives.

20.34.1 Mapping of PortableServer::Servant

The PortableServer module for the Portable Object Adapter (POA) defines the nat
Servant type. The C++ mapping for Servant is as follows:

// C++
namespace PortableServer
{
class ServantBase
{

public:
virtual ~ServantBase();

ServantBase& operator=(const ServantBase&);

virtual POA_ptr _default_POA();

protected:
ServantBase();
ServantBase(const ServantBase&);
// ...all other constructors...
};
typedef ServantBase* Servant;
}

The ServantBase destructor is public and virtual to ensure that skeleton classe
derived from it can be properly destroyed. The default constructor, along with other
implementation-specific constructors, must be protected so that instances of
ServantBase cannot be created except as sub-objects of instances of derived
classes. A default constructor (a constructor that either takes no arguments or ta
only arguments with default values) must be provided so that derived servants can be
CORBA V2.2 Implementing Interfaces February 1998 20-89

20

rator
te

r copy

d
 in

s

BA
es

e

e

is

constructed portably. Both copy construction and a public default assignment ope
must be supported so that application-specific servants can be copied if necessary. No
that copying a servant that is already registered with the object adapter, either by
assignment or by construction, does not mean that the target of the assignment o
is also registered with the object adapter. Similarly, assigning to a ServantBase or
a class derived from it that is already registered with the object adapter does not in any
way change its registration.

The only operation supplied by the ServantBase class is the
_default_POA() function. The default implementation of this function, provide
by ServantBase , returns an object reference to the root POA of the default ORB
this process — the same as the return value of an invocation of
ORB::resolve_initial_references("RootPOA") on the default ORB.
Classes derived from ServantBase can override this definition to return the POA
of their choice, if desired.

20.34.2 Skeleton Operations

All skeleton classes provide a _this() member function. This member function ha
three purposes:

1. Within the context of a request invocation on the target object represented by the
servant, it allows the servant to obtain the object reference for the target COR
object it is incarnating for that request. This is true even if the servant incarnat
multiple CORBA objects. In this context, _this() can be called regardless of the
policies the dispatching POA was created with.

2. Outside the context of a request invocation on the target object represented by th
servant, it allows a servant to be implicitly activated if its POA allows implicit
activation. This requires the activating POA to have been created with the
IMPLICIT_ACTIVATION policy. If the POA was not created with the
IMPLICIT_ACTIVATION policy, the PortableServer ::Wron gPolicy exception
is thrown.

3. Outside the context of a request invocation on the target object represented by th
servant, it will return the object reference for a servant that has already been
activated, as long as the servant is not incarnating multiple CORBA objects. Th
requires the POA with which the servant is activated to have been created with the
UNIQUE_ID and RETAIN policies. If the POA was created with the
MULTIPLE_ID or NON_RETAIN policies, the PortableServer ::WrongPolicy
exception is thrown.
20-90 CORBA V2.2 February 1998

20

MG

ass.
b

tions.
For example, using interface A

// IDL
interface A
{

short op1();
void op2(in long val);

};

The return value of _this() is a typed object reference for the interface type
corresponding to the skeleton class. For example, the _this() function for the
skeleton for interface A would be defined as follows:

// C++
class POA_A : public virtual ServantBase
{

public:
A_ptr _this();
...
};

The _this() function follows the normal C++ mapping rules for returned object
references, so the caller assumes ownership of the returned object reference and must
eventually call CORBA::release() on it.

The _this() function can be virtual if the C++ environment supports covariant
return types, otherwise the function must be non-virtual so the return type can be
correctly specified without compiler errors. Applications use _this() the same way
regardless of which of these implementation approaches is taken.

Assuming A_impl is a class derived from POA_A that implements the A interface,
and assuming that the servant’s POA was created with the appropriate policies, a
servant of type A_impl can be created and implicitly activated as follows:

// C++
A_impl my_a;
A_var a = my_a._this();

20.34.3 Inheritance-Based Interface Implementation

Implementation classes can be derived from a generated base class based on the O
IDL interface definition. The generated base classes are known as skeleton classes, and
the derived classes are known as implementation classes. Each operation of the
interface has a corresponding virtual member function declared in the skeleton cl
The signature of the member function is identical to that of the generated client stu
class. The implementation class provides implementations for these member func
The object adapter typically invokes the methods via calls to the virtual functions of
the skeleton class.

Assume that IDL interface A is defined as follows:
CORBA V2.2 Implementing Interfaces February 1998 20-91

20

ding

iguity.

r-
.

// IDL
interface A
{

short op1();
void op2(in long val);

};

For IDL interface A as shown above, the IDL compiler generates an interface class A.
This class contains the C++ definitions for the typedefs, constants, exceptions,
attributes, and operations in the OMG IDL interface. It has a form similar to the
following:

// C++
class A : public virtual CORBA::Object
{

public:
virtual Short op1() = 0;
virtual void op2(Long val) = 0;
...
};

Some ORB implementations might not use public virtual inheritance from
CORBA::Object , and might not make the operations pure virtual, but the
signatures of the operations will be the same.

On the server side, a skeleton class is generated. This class is partially opaque to the
programmer, though it will contain a member function corresponding to each operation
in the interface. For the POA, the name of the skeleton class is formed by prepen
the string “POA_” to the fully-scoped name of the corresponding interface, and the
class is either directly or indirectly derived from the servant base class
PortableServer::ServantBase . The
PortableServer::ServantBase class must be a virtual base class of the
skeleton to allow portable implementations to multiply inherit from both skeleton
classes and implementation classes for other base interfaces without error or amb

The skeleton class for interface A shown above would appear as follows:

// C++
class POA_A : public virtual PortableServer::ServantBase
{

public:
// ...server-side implementation-specific detail
// goes here...
virtual Short op1() throw(SystemException) = 0;
virtual void op2(Long val) throw(SystemException) = 0;
...
};

If interface A were defined within a module rather than at global scope, e.g., Mod::A ,
the name of its skeleton class would be POA_Mod::A . This helps to separate serve
side skeleton declarations and definitions from C++ code generated for the client
20-92 CORBA V2.2 February 1998

20

n

le,

ng
ation,

To implement this interface using inheritance, a programmer must derive from this
skeleton class and implement each of the operations in the OMG IDL interface. A
implementation class declaration for interface A would take the form:

// C++
class A_impl : public POA_A
{

public:
Short op1() throw(CORBA::SystemException);
void op2(Long val) throw(CORBA::SystemException);
...
};

Note that the presence of the _this() function implies that C++ servants must only
be derived directly from a single skeleton class. Direct derivation from multiple
skeleton classes could result in ambiguity errors due to multiple definitions of
_this() . This should not be a limitation, since CORBA objects have only a single
most-derived interface. Servants that are intended to support multiple interface types
can utilize the delegation-based interface implementation approach, described below in
“Delegation-Based Interface Implementation”, or can be registered as DSI-based
servants, as described in “Mapping of Dynamic Skeleton Interface to C++” on
page 20-99.

20.34.4 Delegation-Based Interface Implementation

Inheritance is not always the best solution for implementing servants. Using
inheritance from the OMG IDL–generated classes forces a C++ inheritance hierarchy
into the application. Sometimes, the overhead of such inheritance is too high, or it may
be impossible to compile correctly due to defects in the C++ compiler. For examp
implementing objects using existing legacy code might be impossible if inheritance
from some global class were required, due to the invasive nature of the inheritance.

In some cases delegation can be used to solve this problem. Rather than inheriti
from a skeleton class, the implementation can be coded as required for the applic
and a wrapper object will delegate upcalls to that implementation. This section
describes how this can be achieved in a type-safe manner using C++ templates.

For the examples in this section, the OMG IDL interface from “Inheritance-Based
Interface Implementation” on page 20-91 will again be used:

// IDL
interface A
{

short op1();
void op2(in long val);

};
CORBA V2.2 Implementing Interfaces February 1998 20-93

20

g

 the

late

ed on

In addition to generating a skeleton class, the IDL compiler generates a delegatin
class called a tie. This class is partially opaque to the application programmer, though
like the skeleton, it provides a method corresponding to each OMG IDL operation. The
name of the generated tie class is the same as the generated skeleton class with
addition that the string “_tie” is appended to the end of the name. For example:

// C++
template<class T>
class POA_A_tie : public POA_A
{

public:
...
};

An instance of this template class performs the task of delegation. When the temp
is instantiated with a class type that provides the operations of A, then the POA_A_tie
class will delegate all operations to an instance of that implementation class. A
reference or pointer to the actual implementation object is passed to the appropriate tie
constructor when an instance of the tie class is created. When a request is invok
it, the tie servant will just delegate the request by calling the corresponding method in
the implementation object.

// C++
template <class T>
class POA_A_tie : public POA_A
{

public:
POA_A_tie(T& t)
: _ptr(&t), _poa(POA::_nil()), _rel(0) {}
POA_A_tie(T& t, POA_ptr poa)
: _ptr(&t),
_poa(POA::_duplicate(poa)), _rel(0) {}
POA_A_tie(T* tp, Boolean release = 1)
: _ptr(tp), _poa(POA::_nil()), _rel(release) {}
POA_A_tie(T* tp, POA_ptr poa,
Boolean release = 1)
: _ptr(tp), _poa(POA::_duplicate(poa)),
_rel(release) {}
~POA_A_tie()
{
CORBA::release(_poa);
if (_rel) delete _ptr;
}

20-94 CORBA V2.2 February 1998

20

ree

// tie-specific functions
T* _tied_object() { return _ptr; }
void _tied_object(T& obj)
{
if (_rel) delete _ptr;
_ptr = &obj;
_rel = 0;
}
void _tied_object(T* obj, Boolean release = 1)
{
if (_rel) delete _ptr;
_ptr = obj;
_rel = release;
}
Boolean _is_owner() { return _rel; }
void _is_owner(Boolean b) { _rel = b; }

// IDL operations
Short op1() throw(SystemException)
{
return _ptr->op1();
}
void op2(Long val) throw(SystemException)
{
_ptr->op2(val);
}

// override ServantBase operations
POA_ptr _default_POA()
{
if (!CORBA::is_nil(_poa)) {
return _poa;
} else {
// return root POA
}
}

private:
T* _ptr;
POA_ptr _poa;
Boolean _rel;

// copy and assignment not allowed
POA_A_tie(const POA_A_tie&);
void operator=(const POA_A_tie&);
};

It is important to note that the tie example shown above contains sample
implementations for all of the required functions. A conforming implementation is f
to implement these operations as it sees fit, as long as they conform to the semantics in
the paragraphs described below. A conforming implementation is also allowed to
CORBA V2.2 Implementing Interfaces February 1998 20-95

20

ound

ated

in.

ined

at
ie to

tie

, such
y

e

ect
include additional implementation-specific functions if it wishes.

The T& constructors cause the tie servant to delegate all calls to the C++ object b
to reference t . Ownership for the object referred to by t does not become the
responsibility of the tie servant.

The T* constructors cause the tie servant to delegate all calls to the C++ object
pointed to by tp . The release parameter dictates whether the tie takes on
ownership of the C++ object pointed to by tp ; if release is TRUE, the tie adopts
the C++ object, otherwise it does not. If the tie adopts the C++ object being deleg
to, it will delete it when its own destructor is invoked, as shown above in the
~POA_A_tie() destructor.

The _tied_object() accessor function allows callers to access the C++ object
being delegated to. If the tie was constructed to take ownership of the C++ object
(release was TRUE in the T* constructor), the caller of _tied_object()
should never delete the return value.

The first _tied_object() modifier function calls delete on the current tied
object if the tie’s release flag is TRUE, and then points to the new tie object passed
The tie’s release flag is set to FALSE. The second _tied_object() modifier
function does the same, except that the final state of the tie’s release flag is determ
by the value of the release argument.

The _is_owner() accessor function returns TRUE if the tie owns the C++ object it
is delegating to, or FALSE if it does not. The _is_owner() modifier function
allows the state of the tie’s release flag to be changed. This is useful for ensuring th
memory leaks do not occur when transferring ownership of tied objects from one t
another, or when changing the tied object a tie delegates to.

For delegation-based implementations it is important to note that the servant is the
object, not the C++ object being delegated to by the tie object. This means that the tie
servant is used as the argument to those POA operations that require a Servant
argument. This also means that any operations that the POA calls on the servant
as ServantBase::_default_POA() , are provided by the tie servant, as shown b
the example above. The value returned by _default_POA() is supplied to the tie
constructor.

It is also important to note that by default, a delegation-based implementation (th
“tied” C++ instance) has no access to the _this() function, which is available only
on the tie. One way for this access to be provided is by informing the delegation obj
of its associated tie object. This way, the tie holds a pointer to the delegation object,
and vice-versa. However, this approach only works if the tie and the delegation object
have a one-to-one relationship. For a delegation object tied into multiple tie objects,
the object reference by which it was invoked can be obtained within the context of a
request invocation by calling PortableServer::Current::
get_object_id() , passing its return value to PortableServer::POA::
id_to_reference() , and then narrowing the returned object reference
appropriately.
20-96 CORBA V2.2 February 1998

20

,

t

ll

e
the

h is
In the tie class shown above, all the operations are shown as being inline. In practice
it is likely that they will be defined out of line, especially for those functions that
override inherited virtual functions. Either approach is allowed by conforming
implementations.

The use of templates for tie classes allows the application developer to provide
specializations for some or all of the template’s member functions for a given
instantiation of the template. This allows the application to control how the tied objec
is invoked. For example, the POA_A_tie<T>::op2() operation is normally defined
as follows:

// C++
template<class T>
void
POA_A_tie<T>::op2(Long val) throw(SystemException)
{
_ptr->op2(val);
}

This implementation assumes that the tied object supports an op2() operation with
the same signature and the ability to throw CORBA system exceptions. However, if the
application wants to use legacy classes for tied object types, it is unlikely they wi
support these capabilities. In that case, the application can provide its own
specialization. For example, if the application already has a class named Foo that
supports a log_value() function, the tie class op2() function can be made to call
it if the following specialization is provided:

// C++
void
POA_A_tie<Foo>::op2(Long val) throw(SystemException)
{
_tied_object()->log_value(val);
}

Portable specializations like the one shown above should not access tie class data
members directly, since the names of those data members are not standardized.

20.35 Implementing Operations

The signature of an implementation member function is the mapped signature of th
OMG IDL operation. Unlike the client side, the server-side mapping requires that
function header include the appropriate exception (throw) specification. This
requirement allows the compiler to detect when an invalid exception is raised, whic
necessary in the case of a local C++-to-C++ library call (otherwise the call would have
to go through a wrapper that checked for a valid exception). For example:
CORBA V2.2 Implementing Operations February 1998 20-97

20

ta
y
// IDL
interface A
{

exception B {};
void f() raises(B);

};

// C++
class MyA : public virtual POA_A
{

public:
void f() throw(A::B, CORBA::SystemException);
...
};

Since all operations and attributes may throw CORBA system exceptions,
CORBA::SystemException must appear in all exception specifications, even
when an operation has no raises clause.

Within a member function, the “this” pointer refers to the implementation object’s da
as defined by the class. In addition to accessing the data, a member function ma
implicitly call another member function defined by the same class. For example:
// IDL
interface A
{

void f();
void g();

};

// C++
class MyA : public virtual POA_A
{

public:
void f() throw(SystemException);
void g() throw(SystemException);

private:
long x_;
};

void
MyA::f() throw(SystemException)
{
this->x_ = 3;
this->g();
}

20-98 CORBA V2.2 February 1998

20

lled
a

ase

++
However, when a servant member function is invoked in this manner, it is being ca
simply as a C++ member function, not as the implementation of an operation on
CORBA object. In such a context, any information available via the POA_Current
object refers to the CORBA request invocation that performed the C++ member
function invocation, not to the member function invocation itself.

20.35.1 Skeleton Derivation From Object

In several existing ORB implementations, each skeleton class derives from the
corresponding interface class. For example, for interface Mod::A , the skeleton class
POA_Mod::A is derived from class Mod::A . These systems therefore allow an
object reference for a servant to be implicitly obtained via normal C++ derived-to-b
conversion rules:

// C++
MyImplOfA my_a;// declare impl of A
A_ptr a = &my_a;// obtain its object reference
// by C++ derived-to-base
// conversion

Such code can be supported by a conforming ORB implementation, but it is not
required, and is thus not portable. The equivalent portable code invokes _this() on
the implementation object in order to implicitly register it if it has not yet been
registered, and to get its object reference:

// C++
MyImplOfA my_a;// declare impl of A
A_ptr a = my_a._this();// obtain its object

// reference

20.36 Mapping of Dynamic Skeleton Interface to C++

“DSI: Language Mapping” on page 6-4 contains general information about mapping
the Dynamic Skeleton Interface to programming languages.

This section contains the following information:

• Mapping of the Dynamic Skeleton Interface’s ServerRequest to C++
• Mapping of the Portable Object Adapter’s Dynamic Implementation Routine to C

20.36.1 Mapping of ServerRequest to C++

The ServerRequest pseudo object maps to a C++ class in the CORBA namespace
which supports the following operations and signatures:
CORBA V2.2 Mapping of Dynamic Skeleton Interface to C++ February 1998 20-99

20

e

sed
e

quire

e

l

// C++
class ServerRequest
{
 public:
const char* operation() const;
void arguments(NVList_ptr& parameters);
Context_ptr ctx();
void set_result(const Any& value);
void set_exception(const Any& value);
};

Note that, as with the rest of the C++ mapping, ORB implementations are free to mak
such operations virtual and modify the inheritance as needed.

All of these operations follow the normal memory management rules for data pas
into skeletons by the ORB. That is, the DIR is not allowed to modify or change th
string returned by operation() , in parameters in the NVList returned from
arguments() , or the Context returned by ctx() . Similarly, data allocated by
the DIR and handed to the ORB (the NVList parameters, the result value, and
exception values) are freed by the ORB rather than by the DIR.

20.36.2 Handling Operation Parameters and Results

The ServerRequest provides parameter values when the DIR invokes the
arguments() operation. The NVList provided by the DIR to the ORB includes
the TypeCodes and direction Flags (inside NamedValues) for all parameters,
including out ones for the operation. This allows the ORB to verify that the correct
parameter types have been provided before filling their values in, but does not re
it to do so. It also relieves the ORB of all responsibility to consult an Interface
Repository, promoting high performance implementations.

The NVList provided to the ORB then becomes owned by the ORB. It will not b
deallocated until after the DIR returns. This allows the DIR to pass the out values,
including the return side of inout values, to the ORB by modifying the NVList after
arguments() has been called. Therefore, if the DIR stores the NVList_ptr
into an NVList_var , it should pass it to the arguments() function by invoking
the _retn() function on it, in order to force it to release ownership of its interna
NVList_ptr to the ORB.

20.36.3 Mapping of PortableServer Dynamic Implementation Routine

In C++, DSI servants inherit from the standard DynamicImplementation class.
This class inherits from the ServantBase class and is also defined in the
PortableServer namespace. The Dynamic Skeleton Interface (DSI) is
implemented through servants that are members of classes that inherit from dynamic
skeleton classes.
20-100 CORBA V2.2 February 1998

20

e

s

// C++
namespace PortableServer
{
class DynamicImplementation : public virtual ServantBase
{

public:
CORBA::Object_ptr _this();
virtual void invoke(
CORBA::ServerRequest_ptr request
) = 0;
virtual CORBA::RepositoryId
_primary_interface(
const ObjectId& oid,
POA_ptr poa
) = 0;
};
}

The _this() function returns a CORBA::Object_ptr for the target object.
Unlike _this() for static skeletons, its return type is not interface-specific because
a DSI servant may very well incarnate multiple CORBA objects of different types. If
DynamicImplementation::_this() is invoked outside of the context of a
request invocation on a target object being served by the DSI servant, it raises th
PortableSe rver::WrongPolicy exception.

The invoke() method receives requests issued to any CORBA object incarnated by
the DSI servant and performs the processing necessary to execute the request.

The _primary_interface() method receives an ObjectId value and a
POA_ptr as input parameters and returns a valid RepositoryId representing the
most-derived interface for that oid .

It is expected that the invoke() and _primary_interface() methods will
be only invoked by the POA in the context of serving a CORBA request. Invoking thi
method in other circumstances may lead to unpredictable results.

20.37 PortableServer Functions

Objects registered with POAs use sequences of octet, specifically the
PortableSe rver::POA::ObjectId type, as object identifiers. However, because C++
programmers will often want to use strings as object identifiers, the C++ mapping
provides several conversion functions that convert strings to ObjectId and vice-
versa:
CORBA V2.2 PortableServer Functions February 1998 20-101

20
// C++
namespace PortableServer
{
char* ObjectId_to_string(const ObjectId&);
wchar_t* ObjectId_to_wstring(const ObjectId&);

ObjectId* string_to_ObjectId(const char*);
ObjectId* wstring_to_ObjectId(const wchar_t*);
}

These functions follow the normal C++ mapping rules for parameter passing and
memory management.

If conversion of an ObjectId to a string would result in illegal characters in the
string (such as a NUL), the first two functions throw the CORBA::BAD_PARAM
exception.

20.38 Mapping for PortableServer::ServantManager

20.38.1 Mapping for Cookie

Since PortableServer::ServantLocator::Cookie is an IDL native type, its type
must be specified by each language mapping. In C++, Cookie maps to void* :

// C++
namespace PortableServer
{
class ServantLocator {
...
typedef void* Cookie;
};
}

For the C++ mapping of the PortableServer::ServantLocator::preinvoke()
operation, the Cookie parameter maps to a Cookie& , while for the postinvoke()
operation, it is passed as a Cookie .

20.38.2 ServantManagers and AdapterActivators

Portable servants that implement the
PortableServer::AdapterActivator , the
PortableServer::ServantActivator , or
PortableServer::ServantLocator interfaces are implemented just like
any other servant. They may use either the inheritance-based approach or the tie
approach.
20-102 CORBA V2.2 February 1998

20
20.39 C++ Definitions for CORBA

This section provides a complete set of C++ definitions for the CORBA module. The
definitions appear within the C++ namespace named CORBA.

// C++
namespace CORBA { ... }

Any implementations shown here are merely sample implementations: they are not the
required definitions for these types.

20.39.1 Primitive Types

typedef unsigned charBoolean;
typedef unsigned charChar;
typedef wchar_tWChar;
typedef unsigned charOctet;
typedef shortShort;
typedef unsigned shortUShort;
typedef longLong;
typedef ...LongLong;
typedef unsigned longULong;
typedef ...ULongLong;
typedef floatFloat;
typedef doubleDouble;
typedef long doubleLongDouble;
typedef Boolean&Boolean_out;
typedef Char&Char_out;
typedef WChar&WChar_out;
typedef Octet&Octet_out;
typedef Short&Short_out;
typedef UShort&UShort_out;
typedef Long&Long_out;
typedef LongLong&LongLong_out;
typedef ULong&ULong_out;
typedef ULongLong&ULongLong_out;
typedef Float&Float_out;
typedef Double&Double_out;
typedef LongDouble&LongDouble_out;
CORBA V2.2 C++ Definitions for CORBA February 1998 20-103

20
20.39.2 String_var and String_out Class

class String_var
{

public:
String_var();
String_var(char *p);
String_var(const char *p);
String_var(const String_var &s);
~String_var();

String_var &operator=(char *p);
String_var &operator=(const char *p);
String_var &operator=(const String_var &s);

operator char*();
operator const char*() const;
const char* in() const;
char*& inout();
char*& out();
char* _retn();

char &operator[](ULong index);
char operator[](ULong index) const;
};

class String_out
{

public:
String_out(char*& p);
String_out(String_var& p);
String_out(String_out& s);
String_out& operator=(String_out& s);
String_out& operator=(char* p);
String_out& operator=(const char* p)

operator char*&();
char*& ptr();

private:
// assignment from String_var disallowed
void operator=(const String_var&);
};

20.39.3 WString_var and WString_out

The WString_var and WString_out types are identical to String_var and
String_out , respectively, except that they operate on wide string and wide
character types.
20-104 CORBA V2.2 February 1998

20
20.39.4 Any Class

class Any
{

public:
Any();
Any(const Any&);
Any(TypeCode_ptr tc, void *value,
Boolean release = FALSE);
~Any();

Any &operator=(const Any&);

void operator<<=(Short);
void operator<<=(UShort);
void operator<<=(Long);
void operator<<=(ULong);
void operator<<=(Float);

void operator<<=(Double);
void operator<<=(const Any&);// copying
void operator<<=(Any*);// non-copying
void operator<<=(const char*);

Boolean operator>>=(Short&) const;
Boolean operator>>=(UShort&) const;
Boolean operator>>=(Long&) const;
Boolean operator>>=(ULong&) const;
Boolean operator>>=(Float&) const;
Boolean operator>>=(Double&) const;
Boolean operator>>=(Any*&) const;
Boolean operator>>=(char*&) const;

// special types needed for boolean, octet, char,
// and bounded string insertion
// these are suggested implementations only
struct from_boolean {
from_boolean(Boolean b) : val(b) {}
Boolean val;
};
struct from_octet {
from_octet(Octet o) : val(o) {}
Octet val;
};
struct from_char {
from_char(Char c) : val(c) {}
Char val;
};
struct from_wchar {
from_char(WChar c) : val(c) {}
CORBA V2.2 C++ Definitions for CORBA February 1998 20-105

20
WChar val;
};
struct from_string {
from_string(char* s, ULong b,
Boolean nocopy = FALSE) :
val(s), bound(b) {}
char *val;
ULong bound;
};
struct from_wstring {
from_wstring(WChar* s, ULong b,
Boolean nocopy = FALSE) :
val(s), bound(b) {}
WChar *val;
ULong bound;
};

void operator<<=(from_boolean);
void operator<<=(from_char);
void operator<<=(from_wchar);
void operator<<=(from_octet);
void operator<<=(from_string);
void operator<<=(from_wstring);

// special types needed for boolean, octet,
// char extraction
// these are suggested implementations only
struct to_boolean {
to_boolean(Boolean &b) : ref(b) {}
Boolean &ref;
};
struct to_char {
to_char(Char &c) : ref(c) {}
Char &ref;
};
struct to_wchar {
to_wchar(WChar &c) : ref(c) {}
WChar &ref;
};
struct to_octet {
to_octet(Octet &o) : ref(o) {}
Octet &ref;
};
struct to_object {
to_object(Object_ptr &obj) : ref(obj) {}
Object_ptr &ref;
};
struct to_string {
20-106 CORBA V2.2 February 1998

20
to_string(char *&s, ULong b) : val(s), bound(b) {}
char *&val;
ULong bound;
};
struct to_wstring {
to_wstring(WChar *&s, ULong b)
: val(s), bound(b) {}
WChar *&val;
ULong bound;
};

Boolean operator>>=(to_boolean) const;
Boolean operator>>=(to_char) const;
Boolean operator>>=(to_wchar) const;
Boolean operator>>=(to_octet) const;
Boolean operator>>=(to_object) const;
Boolean operator>>=(to_string) const;
Boolean operator>>=(to_wstring) const;

void replace(TypeCode_ptr, void *value,
Boolean release = FALSE);

TypeCode_ptr type() const;
const void *value() const;

private:
// these are hidden and should not be implemented
// so as to catch erroneous attempts to insert
// or extract multiple IDL types mapped to unsigned char
void operator<<=(unsigned char);
Boolean operator>>=(unsigned char&) const;
};

20.39.5 Any_var Class

class Any_var
{

public:
Any_var();
Any_var(Any *a);
Any_var(const Any_var &a);
~Any_var();

Any_var &operator=(Any *a);
Any_var &operator=(const Any_var &a);

Any *operator->();

const Any& in() const;
Any& inout();
CORBA V2.2 C++ Definitions for CORBA February 1998 20-107

20
Any*& out();
Any* _retn();

// other conversion operators for parameter passing
};

20.39.6 Exception Class

// C++
class Exception
{

public:
Exception(const Exception &);
virtual ~Exception();
Exception &operator=(const Exception &);

virtual void _raise() = 0;

protected:
Exception();
};

20.39.7 SystemException Class

// C++
enum CompletionStatus { COMPLETED_YES, COMPLETED_NO,

COMPLETED_MAYBE };
class SystemException : public Exception
{

public:
SystemException();
SystemException(const SystemException &);
SystemException(ULong minor, CompletionStatus status);
~SystemException();
SystemException &operator=(const SystemException &);

ULong minor() const;
void minor(ULong);

CompletionStatus completed() const;
void completed(CompletionStatus);

static SystemException* _narrow(Exception*);
};

20.39.8 UserException Class

// C++
class UserException : public Exception
{

20-108 CORBA V2.2 February 1998

20
public:
UserException();
UserException(const UserException &);
~UserException();
UserException &operator=(const UserException &);

static UserException* _narrow(Exception*);
};

20.39.9 UnknownUserException Class

// C++
class UnknownUserException : public UserException
{

public:
Any &exception();

static UnknownUserException* _narrow(Exception*);
virtual void raise();
};

20.39.10 release and is_nil

// C++
namespace CORBA {
void release(Object_ptr);
void release(Environment_ptr);
void release(NamedValue_ptr);
void release(NVList_ptr);
void release(Request_ptr);
void release(Context_ptr);
void release(TypeCode_ptr);
void release(POA_ptr);
void release(ORB_ptr);

Boolean is_nil(Object_ptr);
Boolean is_nil(Environment_ptr);
Boolean is_nil(NamedValue_ptr);
Boolean is_nil(NVList_ptr);
Boolean is_nil(Request_ptr);
Boolean is_nil(Context_ptr);
Boolean is_nil(TypeCode_ptr);
Boolean is_nil(POA_ptr);
Boolean is_nil(ORB_ptr);
...
}

CORBA V2.2 C++ Definitions for CORBA February 1998 20-109

20
20.39.11 Object Class

// C++
class Object
{

public:
static Object_ptr _duplicate(Object_ptr obj);
static Object_ptr _nil();
InterfaceDef_ptr _get_interface();
Boolean _is_a(const char* logical_type_id);
Boolean _non_existent();
Boolean _is_equivalent(Object_ptr other_object);
ULong _hash(ULong maximum);
Status _create_request(
Context_ptr ctx,
const char *operation,
NVList_ptr arg_list,
NamedValue_ptr result,
Request_out request,
Flags req_flags
);
Status _create_request(
Context_ptr ctx,
const char *operation,
NVList_ptr arg_list,
NamedValue_ptr result,
ExceptionList_ptr,
ContextList_ptr,
Request_out request,
Flags req_flags
);
Request_ptr _request(const char* operation);
Policy_ptr _get_policy(PolicyType policy_type);

DomainManagerList* _get_domain_managers();
Object_ptr _set_policy_override(

const PolicyList& policies,
SetOverrideType set_or_add

);
};
20-110 CORBA V2.2 February 1998

20
20.39.12 Environment Class

// C++
class Environment
{

public:
void exception(Exception*);
Exception *exception() const;
void clear();

static Environment_ptr _duplicate(Environment_ptr ev);
static Environment_ptr _nil();
};

20.39.13 NamedValue Class

// C++
class NamedValue
{

public:
const char *name() const;
Any *value() const;
Flags flags() const;

static NamedValue_ptr _duplicate(NamedValue_ptr nv);
static NamedValue_ptr _nil();
};

20.39.14 NVList Class

// C++
class NVList
{

public:
ULong count() const;
NamedValue_ptr add(Flags);
NamedValue_ptr add_item(const char*, Flags);
NamedValue_ptr add_value(const char*, const Any&,

Flags);
NamedValue_ptr add_item_consume(
char*,
Flags
);
NamedValue_ptr add_value_consume(
char*,
Any *,
Flags
);
NamedValue_ptr item(ULong);
Status remove(ULong);
CORBA V2.2 C++ Definitions for CORBA February 1998 20-111

20
static NVList_ptr _duplicate(NVList_ptr nv);
static NVList_ptr _nil();
};

20.39.15 ExceptionList Class

// C++
class ExceptionList
{

public:
ULong count();
void add(TypeCode_ptr tc);
void add_consume(TypeCode_ptr tc);
TypeCode_ptr item(ULong index);
Status remove(ULong index);
};

20.39.16 ContextList Class

class ContextList
{

public:
ULong count();
void add(const char* ctxt);
void add_consume(char* ctxt);
const char* item(ULong index);
Status remove(ULong index);
};

20.39.17 Request Class

// C++
class Request
{

public:
Object_ptr target() const;
const char *operation() const;
NVList_ptr arguments();
NamedValue_ptr result();
Environment_ptr env();
ExceptionList_ptr exceptions();
ContextList_ptr contexts();

void ctx(Context_ptr);
Context_ptr ctx() const;

Any& add_in_arg();
Any& add_in_arg(const char* name);
Any& add_inout_arg();
20-112 CORBA V2.2 February 1998

20
Any& add_inout_arg(const char* name);
Any& add_out_arg();
Any& add_out_arg(const char* name);
void set_return_type(TypeCode_ptr tc);
Any& return_value();
Status invoke();
Status send_oneway();
Status send_deferred();
Status get_response();
Boolean poll_response();

static Request_ptr _duplicate(Request_ptr req);
static Request_ptr _nil();
};

20.39.18 Context Class

// C++
class Context
{

public:
const char *context_name() const;
Context_ptr parent() const;

Status create_child(const char*, Context_out);

Status set_one_value(const char*, const Any&);
Status set_values(NVList_ptr);
Status delete_values(const char*);
Status get_values(const char*, Flags, const char*,
NVList_out);

static Context_ptr _duplicate(Context_ptr ctx);
static Context_ptr _nil();
};

20.39.19 TypeCode Class

// C++
class TypeCode
{

public:
class Bounds { ... };
class BadKind { ... };

TCKind kind() const;
Boolean equal(TypeCode_ptr) const;

const char* id() const;
const char* name() const;
CORBA V2.2 C++ Definitions for CORBA February 1998 20-113

20
ULong member_count() const;
const char* member_name(ULong index) const;

TypeCode_ptr member_type(ULong index) const;

Any *member_label(ULong index) const;
TypeCode_ptr discriminator_type() const;
Long default_index() const;

ULong length() const;

TypeCode_ptr content_type() const;

UShort fixed_digits() const;
Short fixed_scale() const;

Long param_count() const;
Any *parameter(Long) const;

static TypeCode_ptr _duplicate(TypeCode_ptr tc);
static TypeCode_ptr _nil();
};

20.39.20 ORB Class

// C++
class ORB
{

public:
typedef sequence<Request_ptr> RequestSeq;
char *object_to_string(Object_ptr);
Object_ptr string_to_object(const char*);
Status create_list(Long, NVList_out);
Status create_operation_list(OperationDef_ptr,

NVList_out);
Status create_named_value(NamedValue_out);
Status create_exception_list(ExceptionList_out);
Status create_context_list(ContextList_out);

Status get_default_context(Context_out);
Status create_environment(Environment_out);

Status send_multiple_requests_oneway(
const RequestSeq&
);
Status send_multiple_requests_deferred(
const RequestSeq&
);
Boolean poll_next_response();
20-114 CORBA V2.2 February 1998

20
Status get_next_response(Request_out);

// Obtaining initial object references
typedef char* ObjectId;
class ObjectIdList {...};
class InvalidName {...};
ObjectIdList *list_initial_services();
Object_ptr resolve_initial_references(
const char *identifier
);

Boolean work_pending();
void perform_work();
void shutdown(Boolean wait_for_completion);
void run();

Boolean get_service_information(
ServiceType svc_type,
ServiceInformation_out svc_info
);

static ORB_ptr _duplicate(ORB_ptr orb);
static ORB_ptr _nil();
};

20.39.21 ORB Initialization

// C++
typedef char* ORBid;
static ORB_ptr ORB_init(
int& argc,
 char** argv,
const char* orb_identifier = ""
);

20.39.22 General T_out Types

// C++
class T_out
{

public:
T_out(T*& p) : ptr_(p) { ptr_ = 0; }
T_out(T_var& p) : ptr_(p.ptr_) {
delete ptr_;
ptr_ = 0;
}
T_out(T_out& p) : ptr_(p.ptr_) {}
T_out& operator=(T_out& p) {
ptr_ = p.ptr_;
return *this;
CORBA V2.2 C++ Definitions for CORBA February 1998 20-115

20

t does
r the
 the

.

ller.

r by
}
T_out& operator=(T* p) { ptr_ = p; return *this; }

operator T*&() { return ptr_; }
T*& ptr() { return ptr_; }

T* operator->() { return ptr_; }

private:
T*& ptr_;

// assignment from T_var not allowed
void operator=(const T_var&):
};

20.40 Alternative Mappings For C++ Dialects

20.40.1 Without Namespaces

If the target environment does not support the namespace construct but does support
nested classes, then a module should be mapped to a C++ class. If the environmen
not support nested classes, then the mapping for modules should be the same as fo
CORBA C mapping (concatenating identifiers using an underscore (“_”) character as
separator).

Note that module constants map to file-scope constants on systems that support
namespaces and class-scope constants on systems that map modules to classes

20.40.2 Without Exception Handling
For those C++ environments that do not support real C++ exception handling, referred to
here as non-exception handling (non-EH) C++ environments, an Environment
parameter passed to each operation is used to convey exception information to the ca

As shown in “Environment” on page 20-71, the Environment class supports the abil-
ity to access and modify the Exception it holds.

As shown in “Mapping for Exception Types” on page 20-58, both user-defined and system
exceptions form an inheritance hierarchy that normally allow types to be caught eithe
their actual type or by a more general base type. When used in a non-EH C++ environ-
ment, the narrowing functions provided by this hierarchy allow for examination and
manipulation of exceptions:

// IDL
interface A
{

exception Broken { ... };
20-116 CORBA V2.2 February 1998

20

n.

n-
void op() raises(Broken);
};

// C++
Environment ev;
A_ptr obj = ...
obj->op(ev);
if (Exception *exc = ev.exception()) {

if (A::Broken *b = A::Broken::_narrow(exc)) {
// deal with user exception

} else {
// must have been a system exception
SystemException *se = SystemException::_narrow(exc);
...

}
}

“ORB” on page 20-83 specifies that Environment must be created using
ORB::create_environment , but this is overly constraining for implementations
requiring an Environment to be passed as an argument to each method invocatio
For implementations that do not support real C++ exceptions, Environment may be
allocated as a static, automatic, or heap variable. For example, all of the following are
legal declarations on a non-EH C++ environment:

// C++
Environment global_env; // global
static Environment static_env;// file static

class MyClass
{

public:
...

private:
static Environment class_env; // class static

};

void func()
{

Environment auto_env; // auto
Environment *new_env = new Environment; // heap
...

}

For ease of use, Environment parameters are passed by reference in non-EH enviro
ments:

// IDL
interface A
{

exception Broken { ... };
void op() raises(Broken);
CORBA V2.2 Alternative Mappings For C++ Dialects February 1998 20-117

20

};

// C++
class A ...
{

public:
void op(Environment &);
...

};

For additional ease of use in non-EH environments, Environment should support
copy construction and assignment from other Environment objects. These additional
features are helpful for propagating exceptions from one Environment to another
under non-EH circumstances.

When an exception is “thrown” in a non-EH environment, object implementors and ORB
runtimes must ensure that all out and return pointers are returned to the caller as null
pointers. If non-initialized or “garbage” pointer values are returned, client application
code could experience runtime errors due to the assignment of bad pointers to T_var
types. When a T_var goes out of scope, it attempts to delete the T* given to it; if this
pointer value is garbage, a runtime error will almost certainly occur.

Exceptions in non-EH environments need not support the virtual _raise() function,
since the only useful implementation of it in such an environment would be to abort the
program.

20.41 C++ Keywords

Table 20-6 lists all C++ keywords from the 2 December 1996 Working Paper of the
ANSI (X3J16) C++ Language Standardization Committee.

Table 20-6 C++ Keywords

and and_eq asm auto bitand

bitor bool break case catch

char class compl const const_cast

continue default delete do double

dynamic_cast else enum explicit extern

false float for friend goto

if inline int long mutable

namespace new not not_eq operator

or or_eq private protected public

register reinterpret_cast return short signed

sizeof static static_cast struct switch

template this throw true try

typedef typeid typename union unsigned

using virtual void volatile wchar_t

while xor xor_eq
20-118 CORBA V2.2 February 1998

Mapping of OMG IDL to Smalltalk 21
Contents

This chapter contains the following sections.

Section Title Page

Smalltalk Overview

“Mapping Summary” 21-2

“Key Design Decisions” 21-3

Mapping of OMG IDL to Smalltalk

“Implementation Constraints” 21-5

“Smalltalk Implementation Requirements” 21-6

“Conversion of Names to Smalltalk Identifiers” 21-7

“Mapping for Interfaces” 21-7

“Memory Usage” 21-7

“Mapping for Objects” 21-8

“Invocation of Operations” 21-8

“Mapping for Attributes” 21-9

“Mapping for Basic Data Types” 21-10

“Mapping for the Any Type” 21-11

“Mapping for Enums” 21-12

“Mapping for Struct Types” 21-13

“Mapping for Fixed Types” 21-13
 CORBA V2.2 February 1998 21-1

21

e
21.1 Mapping Summary

Table 21-1 provides a brief description of the mapping of OMG IDL constructs to th
Smalltalk language, and where in this chapter they are discussed.

“Mapping for Union Types” 21-13

“Mapping for Sequence Types” 21-14

“Mapping for String Types” 21-15

“Mapping for Wide String Types” 21-15

“Mapping for Array Types” 21-15

“Mapping for Exception Types” 21-15

“Mapping for Operations” 21-15

“Implicit Ar guments to Operations” 21-16

“Argument Passing Considerations” 21-16

“Handling Exceptions” 21-16

“Exception Values” 21-17

Mapping of Pseudo Objects to Smalltalk

“CORBA::Request” 21-19

“CORBA::Context” 21-19

“CORBA::Object” 21-20

“CORBA::ORB” 21-21

“CORBA::NamedValue” 21-22

“CORBA::NVList” 21-22

Appendix A, “Glossary Terms” 21-23

Table 21-1Summary of this Chapter

OMG IDL
Construct

Smalltalk Mapping See Section

Interface Set of messages that Smalltalk objects which
represent object references must respond to. The set
of messages corresponds to the attributes and
operations defined in the interface and inherited
interfaces.

“Mapping for Interfaces” on
page 21-7

Object Reference Smalltalk object that represents a CORBA object.
The Smalltalk object must respond to all messages
defined by a CORBA object’s interface.

“Mapping for Objects” on
page 21-8

Section Title Page
21-2 CORBA V2.2 February 1998

21

21.2 Key Design Decisions

The mapping of OMG IDL to the Smalltalk programming language was designed with
the following goals in mind:

Operation Smalltalk message. “Mapping for Operations”
on page 21-15

Attribute Smalltalk message “Mapping for Attributes” on
page 21-9

Constant Smalltalk objects available in the CORBAConstants
dictionary.

“Mapping for Constants” on
page 21-9

Integral Type Smalltalk objects that conform to the Integer
class.

“Mapping for Basic Data
Types” on page 21-10

Floating Point
Type

Smalltalk objects which conform to the Float
class.

“Mapping for Basic Data
Types” on page 21-10

Boolean Type Smalltalk true or false objects. “Mapping for Basic Data
Types” on page 21-10

Enumeration Type Smalltalk objects which conform to the
CORBAEnum protocol.

“Mapping for Enums” on
page 21-12

Any Type Smalltalk objects that can be mapped into an OMG
IDL type.

“Mapping for the Any
Type” on page 21-11

Structure Type Smalltalk object that conforms to the
Dictionary class.

“Mapping for Struct Types”
on page 21-13

Fixed Type “Mapping for Fixed Types”
on page 21-13

Union Type Smalltalk object that maps to the possible value
types of the OMG IDL union or that conform to the
CORBAUnion protocol.

“Mapping for Union Types”
on page 21-13

Sequence Type Smalltalk object that conforms to the
OrderedCollection class.

“Mapping for Sequence
Types” on page 21-14

String Type Smalltalk object that conforms to the String
class.

“Mapping for String Types”
on page 21-15

Wide String Type “Mapping for Wide String
Types” on page 21-15

Array Type Smalltalk object that conforms to the Array class. “Mapping for Array Types”
on page 21-15

Exception Type Smalltalk object that conforms to the
Dictionary class.

“Mapping for Exception
Types” on page 21-15

Table 21-1Summary of this Chapter (Continued)

OMG IDL
Construct

Smalltalk Mapping See Section
CORBA V2.2 Key Design Decisions February 1998 21-3

21

s

lk

 for
• The Smalltalk mapping does not prescribe a specific implementation. Smalltalk
class names are specified, as needed, since client code will need the class name
when generating instances of datatypes. A minimum set of messages that classe
must support is listed for classes that are not documented in the Smalltalk
Common Base. The inheritance structure of classes is never specified.

• Whenever possible, OMG IDL types are mapped directly to existing, portable
Smalltalk classes.

• The Smalltalk constructs defined in this mapping rely primarily upon classes and
methods described in the Smalltalk Common Base document.

• The Smalltalk mapping only describes the public (client) interface to Smallta
classes and objects supporting IDL. Individual IDL compilers or CORBA
implementations might define additional private interfaces.

• The implementation of OMG IDL interfaces is left unspecified. Implementations
may choose to map each OMG IDL interface to a separate Smalltalk class;
provide one Smalltalk class to map all OMG IDL interfaces; or allow arbitrary
Smalltalk classes to map OMG IDL interfaces.

• Because of the dynamic nature of Smalltalk, the mapping of the any and union
types is such that an explicit mapping is unnecessary. Instead, the value of the
any and union types can be passed directly. In the case of the any type, the
Smalltalk mapping will derive a TypeCode which can be used to represent the
value. In the case of the union type, the Smalltalk mapping will derive a
discriminator which can be used to represent the value.

• The explicit passing of environment and context values on operations is not
required.

• Except in the case of object references, no memory management is required
data parameters and return results from operations. All such Smalltalk objects
reside within Smalltalk memory, so garbage collection will reclaim their storage
when they are no longer used.

• The proposed language mapping has been designed with the following vendor's
Smalltalk implementations in mind: VisualWorks; Smalltalk/V; and VisualAge.

21.2.1 Consistency of Style, Flexibility and Portability of Implementation

To ensure flexibility and portability of implementations, and to provide a consistent
style of language mapping, the Smalltalk chapters use the programming style and
naming conventions as described in the following documents:

• Goldberg, Adele and Robson, David. Smalltalk-80: The Language. Addison-
Wesley Publishing Company, Reading, MA. 1989.

• Smalltalk Portability: A Common Base. ITSC Technical Bulletin GG24-3093,
IBM, Boca Raton, FL. September 1992.

(Throughout the Smalltalk chapters, Smalltalk Portability: A Common Base is referred
to as Smalltalk Common Base.)

The items listed below are the same for all Smalltalk classes used in the Smalltalk
mapping:
21-4 CORBA V2.2 February 1998

21

d in

alk

ler to

tually
• If the class is described in the Smalltalk Common Base document, the class must
conform to the behavior specified in the document. If the class is not describe
the Smalltalk Common Base document, the minimum set of class and instance
methods that must be available is described for the class.

• All data types (except object references) are stored completely within Smallt
memory, so no explicit memory management is required.

The mapping is consistent with the common use of Smalltalk. For example, sequence
is mapped to instances of OrderedCollection , instead of creating a Smalltalk
class for the mapping.

21.3 Implementation Constraints

This section describes how to avoid potential problems with an OMG IDL–to–
Smalltalk implementation.

21.3.1 Avoiding Name Space Collisions

There is one aspect of the language mapping that can cause an OMG IDL compi
map to incorrect Smalltalk code and cause name space collisions. Because Smalltalk
implementations generally only support a global name space, and disallow underscore
characters in identifiers, the mapping of identifiers used in OMG IDL to Smalltalk
identifiers can result in a name collision. See “Conversion of Names to Smalltalk
Identifiers” on page 21-7 for a description of the name conversion rules.

As an example of name collision, consider the following OMG IDL declaration:
interface Example {

void sample_op () ;
void sampleOp () ;
};

Both of these operations map to the Smalltalk selector sampleOp . In order to prevent
name collision problems, each implementation must support an explicit naming
mechanism, which can be used to map an OMG IDL identifier into an arbitrary
Smalltalk identifier. For example, #pragma directives could be used as the
mechanism.

21.3.2 Limitations on OMG IDL Types

This language mapping places limitations on the use of certain types defined in OMG
IDL.

For the any and union types, specific integral and floating point types may not be
able to be specified as values. The implementation will map such values into an
appropriate type, but if the value can be represented by multiple types, the one ac
used cannot be determined.1 For example, consider the union definition below.

union Foo swi tch (long) {
 case 1: long x;
CORBA V2.2 Implementation Constraints February 1998 21-5

21

 case 2: short y;
};
When a Smalltalk object corresponding to this union type has a value that fits in both
a long and a short , the Smalltalk mapping can derive a discriminator 1 or 2, and map
the integral value into either a long or short value (corresponding to the value of the
discriminator determined).

21.4 Smalltalk Implementation Requirements

This mapping places requirements on the implementation of Smalltalk that is being
used to support the mapping. These are:

• An integral class, conforming to the Integer class definition in the Smalltalk
Common Base.

• A floating point class, conforming to the Float class definition in the Smalltalk
Common Base.

• A class named Character conforming to the Character class definition in
the Smalltalk Common Base.

• A class named Array conforming to the Array class definition in the Smalltalk
Common Base.

• A class named OrderedCollection conforming to the
OrderedCollection class definition in the Smalltalk Common Base.

• A class named Dictionary conforming to the Dictionary class definition
in the Smalltalk Common Base.

• A class named Association conforming to the Association class definition
in the Smalltalk Common Base.

• A class named String conforming to the String class definition in the
Smalltalk Common Base.

• Objects named true , false conforming to the methods defined for Boolean
objects, as specified in the Smalltalk Common Base.

• An object named nil , representing an object without a value.

• A global variable named Processor , which can be sent the message
activeProcess to return the current Smalltalk process, as defined in the
document Smalltalk-80: The Language. This Smalltalk process must respond to
the messages corbaContext: and corbaContext .

• A class which conforms to the CORBAParameter protocol. This protocol
defines Smalltalk instance methods used to create and access inout and out
parameters. The protocol must support the following instance messages:

value
Answers the value associated with the instance

1. To avoid this limitation for union types, the mapping allows programmers to specify an
explicit binding to retain the value of the discriminator. See “Mapping for Union Types” on
page 21-13 for a complete description.
21-6 CORBA V2.2 February 1998

21

 have

 that

 pure
stem
value: anObject
Resets the value associated with the instance to anObject

To create an object that supports the CORBAParameter protocol, the message
asCORBAParameter can be sent to any Smalltalk object. This will return a
Smalltalk object conforming to the CORBAParameter protocol, whose value will be
the object it was created from. The value of that CORBAParameter object can be
subsequently changed with the value : message.

21.5 Conversion of Names to Smalltalk Identifiers

The use of underscore characters in OMG IDL identifiers is not allowed in all
Smalltalk language implementations. Thus, a conversion algorithm is required to
convert names used in OMG IDL to valid Smalltalk identifiers.

To convert an OMG IDL identifier to a Smalltalk identifier, remove each underscore
and capitalize the following letter (if it exists). In order to eliminate possible
ambiguities which may result from these conventions, an explicit naming mechanism
must also be provided by the implementation. For example, the #pragma directive
could be used.

For example, the OMG IDL identifiers:

add_to_copy_map
describe_contents

become Smalltalk identifiers

addToCopyMap
describeContents

Smalltalk implementations generally require that class names and global variables
an uppercase first letter, while other names have a lowercase first letter.

21.6 Mapping for Interfaces

Each OMG IDL interface defines the operations that object references with that
interface must support. In Smalltalk, each OMG IDL interface defines the methods
object references with that interface must respond to.

Implementations are free to map each OMG IDL interface to a separate Smalltalk
class, map all OMG IDL interfaces to a single Smalltalk class, or map arbitrary
Smalltalk classes to OMG IDL interfaces.

21.7 Memory Usage

One of the design goals is to make every Smalltalk object used in the mapping a
Smalltalk object: namely datatypes used in mappings do not point to operating sy
defined memory. This design goal permits the mapping and users of the mapping to
CORBA V2.2 Conversion of Names to Smalltalk Identifiers February 1998 21-7

21

ge
ers

t's

A

rs
sult

f an

 class
ignore memory management issues, since Smalltalk handles this itself (via garba
collection). Smalltalk objects which are used as object references may contain point
to operating system memory, and so must be freed in an explicit manner.

21.8 Mapping for Objects

A CORBA object is represented in Smalltalk as a Smalltalk object called an object
reference. The object must respond to all messages defined by that CORBA objec
interface.

An object reference can have a value which indicates that it represents no CORB
object. This value is the standard Smalltalk value nil .

21.9 Invocation of Operations

OMG IDL and Smalltalk message syntaxes both allow zero or more input paramete
to be supplied in a request. For return values, Smalltalk methods yield a single re
object, whereas OMG IDL allows an optional result and zero or more out or inout
parameters to be returned from an invocation. In this binding, the non-void result o
operation is returned as the result of the corresponding Smalltalk method, whereas out
and inout parameters are to be communicated back to the caller via instances of a
conforming to the CORBAParameter protocol, passed as explicit parameters.

For example, the following operations in OMG IDL:

boolean definesProperty(in string key);
void defines_property(
in string key,
out boolean is_defined);

are used as follows in the Smalltalk language:

aBool := self definesProperty: aString.

self
definesProperty: aString
isDefined: (aBool := nil asCORBAParameter).

As another example, these OMG IDL operations:

boolean has_property_protection(in string key,
out Protection pv al);

ORBStatus create_request (in Context ctx,
in Identifier operation,
in NVList arg_l ist,
inout DynamicInvocation::N amedValue result,
out R equest request,
in Flags req_flags);

would be invoked in the Smalltalk language as:
21-8 CORBA V2.2 February 1998

21

ce

he
aBool := self
hasPropertyProtection: aString
pval: (protection := nil asCORBAParameter).

aStatus := ORBObject
createRequest: aContext
operation: anIdentifier
argList: anNVList
result: (result := aNamedValue asCORBAParameter)
request: (request := nil asCORBAParameter)
reqFlags: aFlags.

The return value of OMG IDL operations that are specified with a void return type is
undefined.

21.10 Mapping for Attributes

OMG IDL attribute declarations are a shorthand mechanism to define pairs of simple
accessing operations; one to get the value of the attribute and one to set it. Such
accessing methods are common in Smalltalk programs as well, thus attribute
declarations are mapped to standard methods to get and set the named attribute value,
respectively.

For example:

attribute string title;
readonly attri bute string my_name;

means that Smalltalk programmers can expect to use title and title: methods to
get and set the title attribute of the CORBA object, and the myName method to
retrieve the my_name attribute.

21.10.1 Mapping for Constants

OMG IDL allows constant expressions to be declared globally as well as in interfa
and module definitions. OMG IDL constant values are stored in a dictionary named
CORBAConstants under the fully qualified name of the constant, not subject to t
name conversion algorithm. The constants are accessed by sending the at: message
to the dictionary with an instance of a String whose value is the fully qualified
name.

For example, given the following OMG IDL specification,

module Applicat ionBasics{
const CopyDepth shallow_cpy = 4;
};

the Applicatio nBasi cs::shallow_cpy constant can be accessed with the following
Smalltalk code
CORBA V2.2 Mapping for Attributes February 1998 21-9

21

ase

sses

value := CORBAConstants at:
'::ApplicationBasics::shallow_cpy'.

After this call, the value variable will contain the integral value 4.

21.11 Mapping for Basic Data Types

The following basic datatypes are mapped into existing Smalltalk classes. In the c
of short , unsigned short , long , unsigned long , long long , unsigned long
long , float , double , long double and octet , the actual class used is left up to the
implementation, for the following reasons:

• There is no standard for Smalltalk that specifies integral and floating point cla
and the valid ranges of their instances.

• The classes themselves are rarely used in Smalltalk. Instances of the classes are
made available as constants included in code, or as the result of computation.

The basic data types are mapped as follows:

short

An OMG IDL short integer falls in the range [-215,215-1]. In Smalltalk, a short is
represented as an instance of an appropriate integral class.

long

An OMG IDL long integer falls in the range [-231,231-1]. In Smalltalk, a long is
represented as an instance of an appropriate integral class.

long long

An OMG IDL long long integer falls in the range [-263,263-1]. In Smalltalk, a long
long is represented as an instance of an appropriate integral class.

unsigned short

An OMG IDL unsigned short integer falls in the range [0,216-1]. In Smalltalk, an
unsigned short is represented as an instance of an appropriate integral class.

unsigned long

An OMG IDL unsigned long integer falls in the range [0,232-1]. In Smalltalk, an
unsigned long is represented as an instance of an appropriate integral class.

unsigned long long

An OMG IDL unsigned long long integer falls in the range [0,264-1]. In Smalltalk,
an unsigned long long is represented as an instance of an appropriate integral class.
21-10 CORBA V2.2 February 1998

21

nce

t

nce

)

ined

ure
float

An OMG IDL float conforms to the IEEE single-precision (32-bit) floating point
standard (ANSI/IEEE Std 754-1985). In Smalltalk, a float is represented as an insta
of an appropriate floating point class.

double

An OMG IDL double conforms to the IEEE double-precision (64-bit) floating point
standard (ANSI/IEEE Std 754-1985). In Smalltalk, a double is represented as an
instance of an appropriate floating point class.

long double

An OMG IDL long double conforms to the IEEE double extended (a mantissa of a
least 64 bits, a sign bit, and an exponent of at least 15 bits) floating point standard
(ANSI/IEEE Std 754-1985). In Smalltalk, a long double is represented as an insta
of an appropriate floating-point class.

char

An OMG IDL character holds an 8-bit quantity mapping to the ISO Latin-1 (8859.1
character set. In Smalltalk, a character is represented as an instance of Character .

wchar

An OMG IDL wchar defines a wide character from any character set. A wide
character is represented as an instance of the Character class.

boolean

An OMG IDL boolean may hold one of two values: TRUE or FALSE. In Smalltalk, a
boolean is represented by the values true or false , respectively.

octet

An OMG IDL octet is an 8-bit quantity that undergoes no conversion during
transmission. In Smalltalk, an octet is represented as an instance of an appropriate
integral class with a value in the range [0,255].

21.12 Mapping for the Any Type

Due to the dynamic nature of Smalltalk, where the class of objects can be determ
at runtime, an explicit mapping of the any type to a particular Smalltalk class is not
required. Instead, wherever an any is required, the user may pass any Smalltalk object
which can be mapped into an OMG IDL type. For instance, if an OMG IDL struct
CORBA V2.2 Mapping for the Any Type February 1998 21-11

21

hm.

rs are
type is defined in an interface, a Dictionary for that structure type will be mapped.
Instances of this class can be used wherever an any is expected, since that Smalltalk
object can be mapped to the OMG IDL structure.

Likewise, when an any is returned as the result of an operation, the actual Smalltalk
object which represents the value of the any data structure will be returned.

21.13 Mapping for Enums

OMG IDL enumerators are stored in a dictionary named CORBAConstants under the
fully qualified name of the enumerator, not subject to the name conversion algorit
The enumerators are accessed by sending the at: message to the dictionary with an
instance of a String whose value is the fully qualified name.

These enumerator Smalltalk objects must support the CORBAEnum protocol, to allow
enumerators of the same type to be compared. The order in which the enumerato
named in the specification of an enumeration defines the relative order of the
enumerators. The protocol must support the following instance methods:

< aCORBAEnum

Answers true if the receiver is less than aCORBAEnum, otherwise answers false .
<= aCORBAEnum

Answers true if the receiver is less than or equal to aCORBAEnum, otherwise
answers false .

= aCORBAEnum
Answers true if the receiver is equal to aCORBAEnum, otherwise answers false .

> aCORBAEnum
Answers true if the receiver is greater than aCORBAEnum, otherwise answers
false .

>= aCORBAEnum
Answers true if the receiver is greater than or equal to aCORBAEnum, otherwise
answers false .

For example, given the following OMG IDL specification,

module Graphics{
enum ChartStyle

{lineCh art, barChart, stackedBarChart, pieC hart};
};

the Graphics::lineChart enumeration value can be accessed with the following
Smalltalk code

value := CORBAConstants at: '::Graphics::lineChart'.

After this call, the value variable is assigned to a Smalltalk object that can be
compared with other enumeration values.
21-12 CORBA V2.2 February 1998

21

s

es

tics

 for

,
21.14 Mapping for Struct Types

An OMG IDL struct is mapped to an instance of the Dictionary class. The key for
each OMG IDL struct member is an instance of Symbol whose value is the name of
the element converted according to the algorithm in Section 21.5. For example, a
structure with a field of my_field would be accessed by sending the at: message
with the key #myField .

For example, given the following OMG IDL declaration:

struct Binding {
Name binding_name;
BindingType binding_type;
};

the binding_name element can be accessed as follows:

aBindingStruct at: #bindingName

and set as follows:

aBindingStruct at: #bindingName put: aName

21.15 Mapping for Fixed Types

An OMG IDL fixed is represented as an instance of an appropriate fractional clas
with a fixed denominator.

21.16 Mapping for Union Types

For OMG IDL union types, two binding mechanisms are provided: an implicit binding
and an explicit binding.2 The implicit binding takes maximum advantage of the
dynamic nature of Smalltalk and is the least intrusive binding for the Smalltalk
programmer. The explicit binding retains the value of the discriminator and provid
greater control for the programmer.

Although the particular mechanism for choosing implicit vs. explicit binding seman
is implementation specific, all implementations must provide both mechanisms.

Binding semantics is expected to be specifiable on a per-union declaration basis,
example using the #pragma directive.

2. Although not required, implementations may choose to provide both implicit and explicit
mappings for other OMG IDL types, such as structs and sequences. In the explicit mapping
the OMG IDL type is mapped to a user specified Smalltalk class.
CORBA V2.2 Mapping for Struct Types February 1998 21-13

21

alues

alk
21.16.1 Implicit Binding

Wherever a union is required, the user may pass any Smalltalk object that can be
mapped to an OMG IDL type, and whose type matches one of the types of the v
in the union. Consider the following example:

structure S { long x; long y; };

union U switch (short) {
case 1: S s;
case 2: long l;
default: char c;
};

In the example above, a Dictionary for structure S will be mapped. Instances of
Dictionary with runtime elements as defined in structure S, integral numbers, or
characters can be used wherever a union of type U is expected. In this example,
instances of these classes can be mapped into one of the S, long, or char types, and
an appropriate discriminator value can be determined at runtime.

Likewise, when an union is returned as the result of an operation, the actual Smallt
object which represents the value of the union will be returned.

21.16.2 Explicit Binding

Use of the explicit binding will result in specific Smalltalk classes being accepted and
returned by the ORB. Each union object must conform to the CORBAUnion protocol.
This protocol must support the following instance methods:

discriminator
Answers the discriminator associated with the instance.

discriminator: anObject
Sets the discriminator associated with the instance.

value
Answers the value associated with the instance.

value: anObject
Sets the value associated with the instance

To create an object that supports the CORBAUnion protocol, the instance method
asCORBAUnion: aDiscriminator can be invoked by any Smalltalk object. This
method will return a Smalltalk object conforming to the CORBAUnion protocol,
whose discriminator will be set to aDiscriminator and whose value will be set to
the receiver of the message.

21.17 Mapping for Sequence Types

Instances of the OrderedCollection class are used to represent OMG IDL
elements with the sequence type.
21-14 CORBA V2.2 February 1998

21

th

d to
tion,
 of

21.18 Mapping for String Types

Instances of the Smalltalk String class are used to represent OMG IDL elements
with the string type.

21.19 Mapping for Wide String Types

An OMG IDL wide string is represented as an instance of an appropriate Smalltalk
string class.

21.20 Mapping for Array Types

Instances of the Smalltalk Array class are used to represent OMG IDL elements wi
the array type.

21.21 Mapping for Exception Types

Each defined exception type is mapped to an instance of the Dictionary class. See
“Handling Exceptions” on page 21-16 for a complete description.

21.22 Mapping for Operations

OMG IDL operations having zero parameters map directly to Smalltalk unary
messages, while OMG IDL operations having one or more parameters correspon
Smalltalk keyword messages. To determine the default selector for such an opera
begin with the OMG IDL operation identifier and concatenate the parameter name
each parameter followed by a colon, ignoring the first parameter. The mapped selector
is subject to the identifier conversion algorithm. For example, the following OMG IDL
operations:

void add_to_copy_map(
in CORBA::ORBId id,
in LinkSet link_set);

void connect_push_s uppli er(
in EventComm::Pu shSuppl ier p ush_su pplier);

void add_to_delete_map(
in CORBA::ORBId id,
in LinkSet link_set);

become selectors:

addToCopyMap:linkSet:
connectPushSupplier:
addToDeleteMap:linkSet:
CORBA V2.2 Mapping for String Types February 1998 21-15

21

text
t

So
n

ding

ers
icitly

s are

orm
21.23 Implicit Arguments to Operations

Unlike the C mapping, where an object reference, environment, and optional con
must be passed as parameters to each operation, this Smalltalk mapping does no
require these parameters to be passed to each operation.

The object reference is provided in the client code as the receiver of a message.
although it is not a parameter on the operation, it is a required part of the operatio
invocation.

This mapping defines the CORBAExceptionEvent protocol to convey exception
information in place of the environment used in the C mapping. This protocol can
either be mapped into native Smalltalk exceptions or used in cases where native
Smalltalk exception handling is unavailable.

A context expression can be associated with the current Smalltalk process by sen
the message corbaContext: to the current process, along with a valid context
parameter. The current context can be retrieved by sending the corbaContext
message to the current process.

The current process may be obtained by sending the message activeProcess to
the Smalltalk global variable named Processor .

21.24 Argument Passing Considerations

All parameters passed into and returned from the Smalltalk methods used to invoke
operations are allocated in memory maintained by the Smalltalk virtual machine. Thus,
explicit free()ing of the memory is not required. The memory will be garbage
collected when it is no longer referenced.

The only exception is object references. Since object references may contain point
to memory allocated by the operating system, it is necessary for the user to expl
free them when no longer needed. This is accomplished by using the operation
release of the CORBA:: Object interface.

21.25 Handling Exceptions

OMG IDL allows each operation definition to include information about the kinds of
run-time errors which may be encountered. These are specified in an exception
definition which declares an optional error structure which will be returned by the
operation should an error be detected. Since Smalltalk exception handling classe
not yet standardized between existing implementations, a generalized mapping is
provided.

In this binding, an IDL compiler creates exception objects and populates the
CORBAConstants dictionary. These exception objects are accessed from the
CORBAConstants dictionary by sending the at: message with an instance of a
String whose value is the fully qualified name. Each exception object must conf
to the CORBAExceptionEvent protocol. This protocol must support the
following instance methods:
21-16 CORBA V2.2 February 1998

21

he

 are

corbaHandle: aHandlerBlock do: aBlock

Exceptions may be handled by sending an exception object the message
corbaHandle:do: with appropriate handler and scoping blocks as parameters. T
aBlock parameter is the Smalltalk block to evaluate. It is passed no parameters. The
aHandlerBlock parameter is a block to evaluate when an exception occurs. It has
one parameter: a Smalltalk object which conforms to the CORBAExceptionValue
protocol.

corbaRaise

Exceptions may be raised by sending an exception object the message corbaRaise .

corbaRaiseWith: aDictionary

Exceptions may be raised by sending an exception object the message
corbaRaiseWith :. The parameter is expected to be an instance of the Smalltalk
Dictionary class, as described below.

For example, given the following OMG IDL specification,

interface NamingContext {
...

exception NotEmpty {};
void destroy ()

raises (NotEmpty);
...

};

the NamingContext::NotEmpty exception can be raised as follows:

(CORBAConstants at: '::NamingContext::NotEmpty')
corbaRaise.

The exception can be handled in Smalltalk as follows:

(CORBAConstants at: '::NamingContext::NotEmpty')
corbaHandle: [:ev | "error handling logic here"]
do: [aNamingContext destroy].

21.26 Exception Values

OMG IDL allows values to be returned as part of the exception. Exception values
constructed using instances of the Smalltalk Dictionary class. The keys of the
dictionary are the names of the elements of the exception, the names of which are
converted using the algorithm in “Conversion of Names to Smalltalk Identifiers” on
page 21-7. The following example illustrates how exception values are used:
CORBA V2.2 Exception Values February 1998 21-17

21

ment

s
interface NamingContext {
 ...
 exception CannotProceed {

NamingContext cxt;
Name rest_of_name;

};
Object resolve (in Name n)

raises (CannotProceed);
 ...
};

would be raised in Smalltalk as follows:

(CORBAConstants at: '::NamingContext::CannotProceed')
corbaRaiseWith: (Dictionary

with: (Association key: #cxt value:
aNamingContext)

with: (Association key: #restOfName value:
aName)).

21.26.1 The CORBAExceptionValue Protocol

When an exception is raised, the exception block is evaluated, passing it one argu
which conforms to the CORBAExceptionValue protocol. This protocol must
support the following instance messages:

corbaExceptionValue

Answers the Dictionary the exception was raised with.

Given the NamingContext interface defined in the previous section, the following
code illustrates how exceptions are handled:

(CORBAConstants at: '::NamingContext::NotEmpty')
corbaHandle:[:ev |
cxt:=ev corbaExceptionValue at: #cxt.
restOfName :=ev corbaExceptionValue at:
#restOfName]
do:[aNamingContext destroy].

In this example, the cxt and restOfName variables will be set to the respective
values from the exception structure, if the exception is raised. Pseudo-Objects Mapping
Overview

CORBA defines a small set of standard interfaces which define types and operations
for manipulating object references, for accessing the Interface Repository, and for
Dynamic Invocation of operations. Other interfaces are defined in pseudo OMG IDL
(PIDL) to represent in a more abstract manner programmer access to ORB service
which are provided locally. These PIDL interfaces sometimes resort to non-OMG IDL
21-18 CORBA V2.2 February 1998

21

. This

.

constructs, such as pointers, which have no meaning to the Smalltalk programmer
chapter specifies the minimal requirements for the Smalltalk mapping for PIDL
interfaces. The operations are specified below as protocol descriptions.

Parameters with the name aCORBAObject are expected to be Smalltalk objects,
which can be mapped to an OMG IDL interface or data type.

Unless otherwise specified, all messages are defined to return undefined objects

21.27 CORBA::Request

The CORBA::Request interface is mapped to the CORBARequest protocol, which
must include the following instance methods:

addArg: aCORBANamedValue
Corresponds to the add_arg operation.

invoke
Corresponds to the invoke operation with the invoke_flags set to 0.

invokeOneway
Corresponds to the invoke operation with the invoke_flags set to
CORBA::INV_NO_RESPONSE.

send
Corresponds to the send operation with the invoke_flags set to 0.

sendOneway
Corresponds to the send operation with the invoke_flags set to
CORBA::INV_NO_RESPONSE.

pollResponse
Corresponds to the get_response operation, with the response_flags set to
CORBA::RESP_NO_WAIT. Answers true if the response is complete, false
otherwise.

getResponse
Corresponds to the get_response operation, with the response_flags set to 0.

21.28 CORBA::Context

The CORBA::Context interface is mapped to the CORBAContext protocol, which
must include the following instance methods:

setOneValue: anAssociation
Corresponds to the set_one_value operation.

setValues: aCollection
Corresponds to the set_values operation. The parameter passed in should be a
collection of Association s.
CORBA V2.2 CORBA::Request February 1998 21-19

21

getValues: aString
Corresponds to the get_values operation without a scope name and op_flags =
CXT_RESTRICT_SCOPE. Answers a collection of Association s.

getValues: aString propName: aString
Corresponds to the get_values operation with op_flags set to
CXT_RESTRICT_SCOPE. Answers a collection of Association s.

getValuesInTree: aString propName: aString
Corresponds to the get_values operation with op_flags set to 0. Answers a collection
of Association s.

deleteValues: aString
Corresponds to the delete_values operation.

createChild: aString
Corresponds to the create_child operation. Answers a Smalltalk object conforming to
the CORBAContext protocol.

delete
Corresponds to the delete operation with flags set to 0.

deleteTree
Corresponds to the delete operation with flags set to CTX_DELETE_DESCENDENTS.

21.29 CORBA::Object

The CORBA::Object interface is mapped to the CORBAObject protocol, which must
include the following instance methods:

getImplementation
Corresponds to the get_implementation operation. Answers a Smalltalk object
conforming to the CORBAImplementationDef protocol.

getInterfac e
Corresponds to the get_interface operation. Answers a Smalltalk object conforming
to the CORBAInterfaceDef protocol.

isNil
Corresponds to the is_nil operation. Answers true or false indicating whether or
not the object reference represents an object.

createRequest: aCORBAContext
operation: aCORBAIdentifier
argList: aCORBANVListOrNil
result: aCORBAParameter
request: aCORBAParameter
reqFlags: flags

Corresponds to the create_request operation.
21-20 CORBA V2.2 February 1998

21

 to

duplicate
Corresponds to the duplicate operation. Answers a Smalltalk object representing an
object reference, conforming to the interface of the CORBA object.

release 3

Corresponds to the release operation.

21.30 CORBA::ORB

The CORBA::ORB interface is mapped to the CORBAORB protocol, which must
include the following instance methods:

objectToString: aCORBAObject
Corresponds to the object_to_string operation. Answers an instance of the String
class.

stringToObject: aString
Corresponds to the string_to_object operation. Answers an object reference, which
will be an instance of a class which corresponds to the Interf aceDef of the CORBA
object.

createOperationList: aCORBAOperationDef
Corresponds to the create_operation_list operation. Answers an instance of
OrderedCollection of Smalltalk objects conforming to the CORBANamedValue
protocol.

getDefaultContext
Corresponds to the get_default_context operation. Answers a Smalltalk object
conforming to the CORBAContext protocol.

sendMultipleRequests: aCollection
Corresponds to the send_multiple_requests operation with the invoke_flags set to
0.The parameter passed in should be a collection of Smalltalk objects conforming
the CORBARequest protocol.

sendMultipleRequestsOneway: aCollection
Corresponds to the send_multiple_requests operation with the invoke_flags set to
CORBA::INV_NO_RESPONSE. The parameter passed in should be a collection of
Smalltalk objects conforming to the CORBARequest protocol.

pollNextResponse
Corresponds to the get_next_response operation, with the response_flags set to
CORBA::RESP_NO_WAIT. Answers true if there are completed requests pending,
false otherwise.

getNextResponse
Corresponds to the get_next_response operation, with the response_flags set to 0.

3. The semantics of this operation will have no meaning for those implementations that rely
exclusively on the Smalltalk memory manager.
CORBA V2.2 CORBA::ORB February 1998 21-21

21

21.31 CORBA::NamedValue

PIDL for C defines CORBA::NamedValue as a struct while C++-PIDL specifies it as
an interface. CORBA::NamedValue in this mapping is specified as an interface that
conforms to the CORBANamedValue protocol. This protocol must include the
following instance methods:

name
Answers the name associated with the instance.

name: aString
Resets the name associated with instance to aString .

value
Answers the value associated with the instance.

value: aCORBAObject
Resets the value associated with instance to aCORBAObject .

flags
Answers the flags associated with the instance.

flags: argModeFlags
Resets the flags associated with instance to argModeFlags .

To create an object that supports the CORBANamedValue protocol, the instance
method asCORBANamedValue: aName flags: argModeFlags can be
invoked by any Smalltalk object. This method will return a Smalltalk object
conforming to the CORBANamedValue protocol, whose attributes associated with
the instance will be set appropriately.

21.32 CORBA::NVList

The CORBA::NVList interface is mapped to the equivalent of the OMG IDL
definition
typedef sequence<NamedValue> NVList;

Thus, Smalltalk objects representing the NVList type should be instances of the
OrderedCollection class, whose elements are Smalltalk objects conforming to
the CORBANamedValue protocol.
21-22 CORBA V2.2 February 1998

21

ted
 given

ith.
Appendix A- Glossary

This appendix includes a list of Smalltalk terms.

A.1 Glossary Terms

Smalltalk object An object defined using the Smalltalk language.

Message Invocation of a Smalltalk method upon a Smalltalk object.

Message Selector The name of a Smalltalk message. In this document, the message selectors are deno
by just the message name when the class or protocol they are associated with is
in context, otherwise the notation class >>method or protocol >>method
will be used to explicitly denote the class or protocol the message is associated w

Method The Smalltalk code associated with a message.

Class A Smalltalk class.

Protocol A set of messages that a Smalltalk object must respond to. Protocols are used to
describe the behavior of Smalltalk objects without specifying their class.

CORBA Object An object defined in OMG IDL, accessed and implemented through an ORB.

Object Reference A value which uniquely identifies an object.

IDL compiler Any software that accesses OMG IDL specifications and generates or maps Smalltalk
code that can be used to access CORBA objects.
CORBA V2.2 CORBA::NVList February 1998 21-23

21
21-24 CORBA V2.2 February 1998

21
Glossary Terms 21-25

21
21-26 CORBA V2.2 February 1998

Mapping of OMG IDL to Cobol 22
Contents

This chapter contains the following sections.

Section Title Page

“Overview” 22-2

“Mapping of IDL to COBOL” 22-2

“Scoped Names” 22-3

“Memory Management” 22-4

“Mapping for Interfaces” 22-5

“Mapping for Attributes” 22-6

“Mapping for Constants” 22-7

“Mapping for Basic Data Types” 22-7

“Mapping for Fixed Types” 22-10

“Mapping for Struct Types” 22-10

“Mapping for Union Types” 22-10

“Mapping for Sequence Types” 22-11

“Mapping for Strings” 22-15

“Mapping for Arrays” 22-19

“Mapping for Exception Types” 22-19

“Argument Conventions” 22-19

“Memory Management” 22-23
 CORBA V2.2 February 1998 22-1

22

on

r
22.1 Overview

This COBOL language mapping provides the ability to access and implement CORBA
objects in programs written in the COBOL programming language. The mapping is
based on the definition of the ORB in The Common Object Request Broker:
Architecture and Specification. The mapping specifies how CORBA objects (objects
defined by OMG IDL) are mapped to COBOL and how operations of mapped CORBA
objects are invoked from COBOL.

Support

The mapping has been designed to support as many COBOL compilers and ORB
implementations as possible. Additionally, it has been designed so that an actual
implementation may be based upon the current ANSI COBOL 85 language standard
for the COBOL programming language with some additional commonly-used
extensions from the next ANSI COBOL language standard.

Currently, the next ANSI COBOL language standard is at a draft stage and will so
be ratified. For a description of the syntax taken from the next draft for use with
standard ANSI COBOL 85, refer to “Extensions to COBOL 85” on page 22-49.

22.2 Mapping of IDL to COBOL

22.2.1 Mapping of IDL Identifiers to COBOL

Mapping IDL Identifiers to a COBOL Name

A COBOL name can only be up to 30 characters in length and may consist of a
combination of letters, digits, and hyphens. The hyphen cannot appear as the first o
last character.

“Handling Exceptions” 22-25

“Pseudo Objects” 22-29

“Mapping of the Dynamic Skeleton Interface to COBOL” 22-39

“ORB Initialization Operations” 22-44

“Operations for Obtaining Initial Object References” 22-45

“ORB Supplied Functions for Mapping” 22-46

“Accessor Functions” 22-47

“Extensions to COBOL 85” 22-49

“References” 22-53

Section Title Page
22-2 CORBA V2.2 February 1998

22

 an

rs. If

the

ant,
l
Where a COBOL name is to be used, the following steps will be taken to convert
IDL identifier into a format acceptable to COBOL.

1. Replace each underscore with a hyphen.

2. Strip off any leading or trailing hyphens.

3. When an IDL identifier collides with a COBOL reserved word, insert the string
“IDL-” before the identifier.

4. If the identifier is greater than 30 characters, then truncate right to 30 characte
this will result in a duplicate name, truncate back to 27 characters and add a
numeric suffix to make it unique.

For example, the IDL identifiers:

my_1st_operation_parameter
_another_parameter_
add
a_very_very_lo ng_operation_parameter_number_1
a_very_very_lo ng_operation_parameter_number_2

become COBOL identifiers:

my-1st-operation-parameter
another-parameter
IDL-add
a-very-very-long-operation-par
a-very-very-long-operation-001

Mapping IDL Identifiers to a COBOL Literal

A COBOL literal is a character string consisting of any allowable character in the
character set and is delimited at both ends by quotation marks (either quotes or
apostrophes).

Where a COBOL literal is to be used, the IDL identifier can be used directly within
quotes without any truncation being necessary.

22.3 Scoped Names

The COBOL programmer must always use the global names for an IDL type, const
exception, or operation. The COBOL global name corresponding to an IDL globa
name is derived as follows:

For IDL names being converted into COBOL identifiers or a COBOL literal, convert
all occurrences of “::” (except the leading one) into a “-” (a hyphen) and remove any
leading hyphens. The “::” used to indicate global scope will be ignored.

Consider the following example:
CORBA V2.2 Scoped Names February 1998 22-3

22

d to
// IDL

interface Example {

struct {
long rtn_code;
...

} return_type;

return_type my_operation();
...

};

COBOL code that would use this simple example is as follows:

PROCEDURE DIVISION.
...
call “Example-my-operation” using

a-Example-object
a-CORBA-environment

 a-return-type
if rtn-code in a-return-type NOT = 0

...
end-if
...

Care should be taken to avoid ambiguity within COBOL derived from IDL. Consider
the following example:

typedef long foo_bar;
interface foo {

typedef short bar; /* Valid IDL, but ambiguous in COBOL */
};

Is foo-bar a short or a long in the above example?

Note – It is strongly recommended that you take great care to avoid the use of
indiscriminate underscores and hyphens.

22.4 Memory Management

The standard ORB-supplied functions CORBA-alloc and CORBA-free may be use
allocate and free storage for data types. For further details on these functions refer to
“Memory Management” on page 22-23.
22-4 CORBA V2.2 February 1998

22

e

:

22.5 Mapping for Interfaces

22.5.1 Object References

The use of an interface type in IDL denotes an object reference. Each IDL interfac
shall be mapped to the well-known opaque type CORBA-Object.

The following example illustrates the COBOL mapping for an interface:

interface interface1 {
...

};

The above will result in the following COBOL Typedef declaration for the interface:

01 interface1 is typedef type CORBA-Object.

22.5.2 Object References as Arguments

IDL permits specifications in which arguments, return results, or components of
constructed types may be object references. Consider the following example:

#include “interface1.idl” // IDL
interface interface2 {

interface1 op2();
};

The above example will result in the following COBOL declaration for the interface

...
01 interface2 is typedef type CORBA-Object.

...

The following is a sample of COBOL code that may be used to call op2:

WORKING-STORAGE SECTION.
...
01 interface1-obj type interface1.
01 interface2-obj type interface2.
01 ev type CORBA-Environment.
...

PROCEDURE DIVISION.
...
call “interface2-op2” using

interface2-obj
ev

interface1-obj
...
CORBA V2.2 Mapping for Interfaces February 1998 22-5

22
22.5.3 Inheritance and Interface Names

IDL allows the specification of interfaces that inherit operations from other interfaces.
Consider the following example:

interface interface3 : interface1 {
void op3(in long parm3a, out long parm3b);

};

A call to either interface1-op1 or interface3-op1 on the above interface3 object will
cause the same actual method to be invoked. This is illustrated within the following
examples.

CORBA clients, written in COBOL, can make calls to the op1 operation that was
inherited from interface1 on an interface3 object as if it had been directly declared
within the interface3 interface:

call “interface3-op1” using
interface3-obj
aParm1a
aParm1b
ev

CORBA COBOL clients may also make interface1-op1 calls on the interface3 object.

call “interface1-op1” using
interface3-obj
aParm1a
aParm1b
ev

22.6 Mapping for Attributes

IDL attribute declarations are mapped to a pair of simple accessing operations; one to
get the value of the attribute and one to set it. To illustrate this, consider the following
specification:

interface foo {
attribute float balance;

};

The following code would be used within a CORBA COBOL client to get and set the
balance attribute that is specified in the IDL above:

call foo--get-balance” using
a-foo-object
aCORBA-environment

 balance-float
22-6 CORBA V2.2 February 1998

22

he

r

OL

t
for
call “foo--set-balance” using
a-foo-object
balance-float
aCORBA-environment

There are two hyphen characters (“--”) used to separate the name of the interface from
the words “get” or “set” in the names of the functions.

The functions can return standard exceptions but not user-defined exceptions since t
syntax of attribute declarations does not permit them.

22.7 Mapping for Constants

The concept of constants does not exist within pure ANSI 85 COBOL. If the
implementor’s COBOL compiler does not support this concept, then the IDL compile
will be responsible for the propagation of constants.

Refer to “Extensions to COBOL 85” on page 22-49 for details of the Constant syntax
within the next major revision of COBOL.

Constant identifiers can be referenced at any point in the user’s code where a literal of
that type is legal. In COBOL, these constants may be specified by using the COB
>>CONSTANT syntax.

The syntax is used to define a constant-name, which is a symbolic name representing a
constant value assigned to it.

The following is an example of this syntax:

>>CONSTANT My-Const-StringIS “This is a string value”.
>>CONSTANT My-Const-NumberIS 100.

22.8 Mapping for Basic Data Types

The basic data types have the mappings shown in the following table. Implementations
are responsible for providing either COBOL typedefs or COBOL COPY files
(whichever is appropriate for their COBOL environment):

• COBOL typedefs for CORBA-short, CORBA-unsigned-short, etc. are consisten
with OMG IDL requirements for the corresponding data types. (Note: Support
COBOL Typedefs is an optional extension to ANSI 85 for this mapping).
CORBA V2.2 Mapping for Constants February 1998 22-7

22

ll

e
lean
• COBOL COPY files within a COBOL library named CORBA. The COPY files wi
contain types that are consistent with OMG IDL requirements for the corresponding
data types. (For further details, refer to “Using COBOL COPY files instead of
Typedefs” on page 22-51).

22.8.1 Boolean

The COBOL mapping of boolean is an integer that may have the values CORBA-tru
and CORBA-false defined; other values produce undefined behavior. CORBA-boo
is provided for symmetry with the other basic data type mappings.

The following constants will be provided for setting and testing boolean types:

>>CONSTANT CORBA-true is 1.
>>CONSTANT CORBA-false is 0.

22.8.2 enum

The COBOL mapping of enum is an unsigned integer capable of representing 2**32
enumerations. Each identifier in an enum has a COBOL condition defined with the
appropriate unsigned integer value conforming to the ordering constraints.

Table 22-1COBOL COPY files within a COBOL library named CORBA

OGM IDL COBOL Typedef
COBOL COPY file in
a CORBA library

short CORBA-short short

long CORBA-long long

long long CORBA-long-long llong

unsigned short CORBA-unsigned-short ushort

unsigned long CORBA-unsigned-long ulong

unsigned long long CORBA-unsigned-long-
long

ullong

float CORBA-float float

double CORBA-double double

long double CORBA-long-double ldouble

char CORBA-char char

wchar CORBA-wchar wchar

boolean CORBA-boolean boolean

octet CORBA-octet octet

enum CORBA-enum enum

any CORBA-any any
22-8 CORBA V2.2 February 1998

22

Consider the following example:

interface Example { // IDL
enum temp{cold, warm, hot}
...

};

The above example will result in the following COBOL declarations:

01 Example-temp is typedef type CORBA-enum.
88 Example-cold value 0.
88 Example-warm value 1.
88 Example-hot value 2.

COBOL code that would use this simple example is as follows:

WORKING-STORAGE SECTION.
...

01 Example-temp-value type Example-temp.
...

PROCEDURE DIVISION.
...
evaluate TRUE

when Example-cold of Example-temp-value
...

when Example-warm of Example-temp-value
...

when Example-hot of Example-temp-value
...

end-evaluate
...

22.8.3 any

The IDL any type permits the specification of values that can express any IDL type.
The any IDL type will generate the following COBOL group item:

01 CORBA-any is typedef.
03 any-type type CORBA-TypeCode.
03 any-value usage pointer.

For details of TypeCodes, refer to The Common Object Request Broker: Architecture
and Specification. The IDL-value element of the group item is a pointer to the actual
value of the datum.
CORBA V2.2 Mapping for Basic Data Types February 1998 22-9

22

e

f
22.9 Mapping for Fixed Types

For COBOL, the IDL fixed type is mapped to the native fixed-point decimal type. Th
IDL syntax fixed<digits,scale> will generate a COBOL typedef that maps directly to
the native fixed-point decimal type.

Consider the following example:

typedef fixed<9,2> money;

The above example describes a fixed point decimal type that contains 9 digits and has
a scale of 2 digits (9,999,999.99). It will result in the following COBOL declarations:

01 money is typedef [COBOL fixed point type]

22.10 Mapping for Struct Types

IDL structures map directly onto COBOL group items. The following is an example o
an IDL declaration of a structure:

struct example {
long member1, member2;
boolean memb er3;

};

Would map to the following COBOL:

01 <scope>-example is typedef.
03 member1 type CORBA-long.
03 member2 type CORBA-long.
03 member3 type CORBA-boolean.

22.11 Mapping for Union Types

IDL discriminated unions are mapped onto COBOL group items with the
REDEFINES clause. The following is an example of an IDL declaration of a
discriminated union:

union example switch(long) {
case 1: char first_case;
case 2: long second_case;
default: double other_case;

};

Would map to the following COBOL:

01 <scope>-example is typedef.
03 d type CORBA-long.
03 u.
22-10 CORBA V2.2 February 1998

22

 being

 the

05 default-case type CORBA-double.
03 filler redefines u.

05 second-case type CORBA-long.
03 filler redefines u.

05 first-case type CORBA-char.

The discriminator in the group item is always referred to as d; the union items are
contained within the group item that is always referred to as u.

Reference to union elements is done using standard COBOL. Within the following
example, the COBOL “evaluate” statement is used to test the discriminator:

evaluate d in <scope>-example
when 1

 display “Char value = “ first-case in <scope>-example
 when 2
 display “Long value = “ second-case in <scope>-example
 when other
 display “Double value = “ other-case in <scope>-

example
end-evaluate

Note – The ANSI 85 COBOL REDEFINES clause can only be used to specify a
redefinition whose actual storage is either the same size or smaller than the area
redefined. As a result, the union elements need to be sorted such that the largest is
issued first within the generated COBOL structure and the smallest is last (as
illustrated within the above example).

22.12 Mapping for Sequence Types

The IDL data type sequence permits passing of bounded and unbounded arrays
between objects.

Bounded sequences are mapped to a typedef that contains an occurs clause up to
specified limit.

For unbounded sequences, a pointer to the unbounded array of sequence elements is
generated along with a typedef for one sequence element. To access unbounded
sequences, two accessor functions are provided (CORBA-sequence-element-get and
CORBA-sequence-element-set).

22.12.1 Bounded Sequence

Consider the following bounded IDL sequence:

typedef sequence< longfloat,10> vec10;

In COBOL, this is mapped to:
CORBA V2.2 Mapping for Sequence Types February 1998 22-11

22

s

g the
n
01 <scope>-vec10 is typedef.
03 seq-maximum type CORBA-long.
03 seq-length type CORBA-long.
03 seq-buffer usage POINTER.
03 seq-value occurs 10 type CORBA-float.

For bounded sequences, the seq-buffer pointer should be set to the address of the seq-
value item.

22.12.2 Unbounded Sequence

Consider the following unbounded IDL sequence:

typedef sequence< long> vec;

In COBOL, this is mapped to the following two typedefs:

01 <scope>-vec-t is typedef type CORBA-long.

01 <scope>-vec is typedef.
03 seq-maximum type CORBA-long.
03 seq-length type CORBA-long.
03 seq-buffer usage POINTER. [to <scope>-vec-t]

In this case the sequence is unbounded; therefore, a vec-t typedef is used to specify
one specific instance of the sequence. The seq-buffer item should be set to the addres
of a variable length array of the sequence type.

To access the elements within an unbounded sequence, application developers may
either:

• Set up a table of elements of the sequence type within the linkage section usin
IDL generated sequence element typedef. Set the table address to the value iseq-
buffer and use normal table processing logic to step through the elements.

• Use the ORB supplied sequence element accessor functions.

22.12.3 Sequence Element Accessor Functions

The following ORB supplied routines may be used to get or set specific elements
within a sequence:

call “CORBA-sequence-element-get” using
a-CORBA-sequence
a-CORBA-unsigned-long

a-element-type

call “CORBA-sequence-element-set” using
a-CORBA-sequence
a-CORBA-long
a-element-type
22-12 CORBA V2.2 February 1998

22

g

the
For further details of the above accessor functions, refer to “Accessor Functions” on
page 22-47.

The following is an example of some code that steps through sequence elements usin
the above “CORBA-sequence-element-get” routine:

WORKING-STORAGE SECTION.

01 a-Sequence type <scope>-vec.
01 ws-vec-element type <scope>-vec-t.
01 ws-num type CORBA-long.

...
PROCEDURE DIVISION.

...
PERFORM VARYING ws-num FROM 1 BY 1

UNTIL ws-num > seq-length IN a-Sequence
call “CORBA-sequence-element-get” using

 a-Sequence
 ws-num

m ws-vec-element
PERFORM process-current-element

END-PERFORM
...

22.12.4 Nested Sequences

The type specified within a sequence may be another sequence. In this instance,
generated COBOL declarations are also nested. For example:

typedef sequence<seq uence<long> > seq_type;

will be mapped to the following COBOL:

01 <scope>-seq-type-t-t is typedef type CORBA-long.

01 <scope>-seq-type-t is typedef.
03 seq-maximum type CORBA-long.
03 seq-length type CORBA-long.
03 seq-buffer usage POINTER.[to <scope>-seq-type-t-t]

01 <scope>-seq-type is typedef.
03 seq-maximum type CORBA-long.
03 seq-length type CORBA-long.
03 seq-buffer usage POINTER. [to <scope>-seq-type-t]
CORBA V2.2 Mapping for Sequence Types February 1998 22-13

22

t at

y the

.

22.12.5 Sequence parameter passing considerations

Passing a Sequence as an in parameter

When passing a Sequence as an in parameter, the COBOL programmer must:

• set the buffer member to point to an array of the specified data type item to poin
the allocated storage (or NULL if it is a bounded sequence), and

• set the length member to the actual number of elements to transmit.

Passing a Sequence as an out parameter or return

The programmer should pass a pointer (there is no need to initialize it). Once the call
has been made, the ORB will have allocated storage for the sequence returned b
object. Upon successful return from the call:

• The maximum item will contain the size of the allocated array.

• The buffer item will point at the allocated storage (or NULL if it is a bounded
sequence).

• The length item will contain the actual number of values that were returned in the
sequence.

The client is responsible for freeing the allocated sequence by making a call to
“CORBA-free” when the returned sequence is no longer required.

Passing a Sequence as an inout parameter

The programmer should pass a pointer to a sequence that has been allocated using the
CORBA-alloc routine.

Before passing a sequence as an inout parameter, the programmer must:

• set the buffer item to point to an array buffer (or NULL if it is a bounded
sequence), and

• set the length item to the actual number of elements that are to be transmitted

The CORBA-alloc routine must be used. This allows the callee to deallocate the
original sequence using a call to “CORBA-free.” If more data must be returned, then
the original sequence can hold and assign new storage.

Upon successful return from the invocation, the length member will contain the
returning number of values within the sequence.

For bounded sequences, it is an error to set the length or maximum item to a value
larger than the specified bound.
22-14 CORBA V2.2 February 1998

22

ia a set

d
22.13 Mapping for Strings

22.13.1 How string is mapped to COBOL

Bounded strings

Bounded IDL strings are mapped directly to a COBOL PIC X of the specified IDL
length. The ORB will be totally responsible for handling the null byte, as required.
Inbound strings will have the null byte automatically stripped off by the ORB and
outbound strings will automatically have a null byte appended by the ORB.

Consider the following IDL declarations:

typedef string<10> string_1;

In COBOL, this is mapped directly to:

01 string-1 is typedef pic x(10).

Unbounded strings

An unbounded IDL string cannot be mapped directly to a COBOL PIC X of a specific
size, as bounded strings are. Instead, it is mapped to a pointer that is accessed v
of accessor functions (CORBA-string-get and CORBA-string-set).

Consider the following IDL declarations:

typedef string string_2;

In COBOL, this is converted to:

01 string-2 is typedef usage POINTER.

The following ORB supplied accessor routines may be used to get or set the actual
string value:

call “CORBA-string-get” using
a-CORBA-unbounded-string
a-CORBA-unsigned-long

m a-COBOL-text

call “CORBA-string-set” using
a-CORBA-unbounded-string
a-CORBA-unsigned-long
a-COBOL-text

The CORBA-string-set routine will be responsible for allocating the storage require
and will set the pointer to point to a null terminated string.
CORBA V2.2 Mapping for Strings February 1998 22-15

22

L

.

The CORBA-string-get routine does not release the storage within the pointer;
therefore, it may be used more than once to access the same string.

The following is an example of string manipulation using the above routines.

WORKING-STORAGE SECTION.
01 my-COBOL-text pic x(16) value “some random text”.
01 my CORBA-string type string-2.

...

PROCEDURE DIVISION
...
call “CORBA-string-set” using

 my-CORBA-string
 LENGTH OF my-COBOL-text
 my-COBOL-text

...
call “CORBA-string-get” using

 my-CORBA-string
 LENGTH OF my-COBOL-text

m my-COBOL-text
...

For further details of the string accessor routines, refer to “Accessor Functions” on
page 22-47.

22.13.2 How wstring is mapped to COBOL

Bounded wstrings

Bounded IDL wstrings are mapped directly to an array of wchar’s of the specified ID
length. The ORB will be totally responsible for handling the null byte, as required.
Inbound wstrings will have the null terminator automatically stripped off by the ORB
and outbound wstrings will automatically have a null terminator appended by the ORB

Consider the following IDL declarations:

typedef wstring<10> wstring_1;

In COBOL, this is mapped to:

01 wstring-1-t is typedef.
03 filler type CORBA-wchar occurs 10.

Unbounded wstrings

An unbounded IDL wstring cannot be mapped directly to a specific sized area as
bounded wstrings are. Instead, it is mapped to a pointer that is accessed via a set of
accessor functions (CORBA-wstring-get and CORBA-wstring-set).
22-16 CORBA V2.2 February 1998

22

h
Consider the following OMG IDL declarations:

typedef wstring wst ring_2

In COBOL, this is converted to:

01 wstring-2 is typedef usage POINTER.

The following ORB supplied accessor routines may be used to handle variable lengt
null terminated wstrings:

call “CORBA-wstring-get” using
 a-CORBA-wstring
 a-CORBA-unsigned-long

 ma-COBOL-wtext

call “CORBA-wstring-set” using
 a-CORBA-wstring
 a-CORBA-unsigned-long
 a-COBOL-wtext

The CORBA-wstring-set routine will be responsible for allocating the storage
required and will return a pointer to a null terminated wstring within the pointer.

The CORBA-wstrin g-get routine does not release the storage within the pointer;
therefore, it may be used more than once to access the same wstring.

The following is an example of wstring manipulation using the above routines:

WORKING-STORAGE SECTION.
01 my-COBOL-wtext.

03 filler type CORBA-wchar occurs 10.
01 my-CORBA-wstring type wstring-2.

...
PROCEDURE DIVISION

...
call “CORBA-wstring-set” using

 my-CORBA-wstring
 length of my-COBOL-wtext
 my-COBOL-wtext

...
call “CORBA-wstring-get” using

 my-CORBA-wstring
 length of my-COBOL-wtext

m my-COBOL-wtext
...

For further details of the string accessor routines, refer to “Accessor Functions” on
page 22-47.
CORBA V2.2 Mapping for Strings February 1998 22-17

22

ay

ted

is
 will

n

ter

is

d
ing

e
d
s
22.13.3 string / wstring argument passing considerations

Passing a string or wstring as an in parameter

If the string /wstring is bounded, then the COBOL text (or array of double bytes) m
be passed directly as an in parameter.

If the string /wstring is unbounded, a pointer to the null terminated string/wstring
that was established with the CORBA-string-set (or CORBA-wstring-set) accessor
function is passed.

The accessor function is responsible for the allocation of the storage that the pointer
points to. The ORB will be responsible for releasing that storage once it has comple
processing the in parameter.

The caller is not allowed to pass a null pointer as the string/wstring argument.

Passing a string or wstring as an out parameter or return

If the string /wstring is bounded, then the COBOL text (or array of double bytes)
passed back into a COBOL text area supplied by the caller. If necessary, the ORB
be responsible for padding the storage with spaces.

If the string /wstring is unbounded, then the pointer to the null terminated
strin g/wstring is passed to the caller. The caller uses the appropriate accessor functio
to obtain the COBOL text value (CORBA-strin g-get or CORBA-wstring-get). The
caller is responsible for freeing the allocated storage pointed to by the returned poin
using CORBA-free.

Passing a string or wstring as an inout parameter

If the string /wstring is bounded, then the COBOL text (or array of double bytes)
passed directly as an in parameter. The ORB will be responsible for handling the null
termination on the user’s behalf. Upon return, the COBOL text (or array of double
bytes) is passed back to the same area of storage.

The ORB is prohibited from deallocating and reallocating storage for bounded
strin g/wstring (the storage is supplied by and belongs to the caller).

If the string /wstring is unbounded, the caller must pass a pointer to a null terminate
strin g/wstring. The storage is allocated and the value is established within it by us
the appropriate accessor function (CORBA-string-set or CORBA-wstring-set).

The ORB may deallocate and reallocate the buffer if the current buffer size is not larg
enough to hold the returning string. Upon return, the pointer to the null terminate
strin g/wstring is passed to the caller. To obtain the COBOL text value, the caller use
the appropriate accessor function (CORBA-string-get or CORBA-wstring-get). The
caller is then responsible for freeing the allocated storage pointed to by the returned
pointer using CORBA-free.
22-18 CORBA V2.2 February 1998

22

have

tion
22.14 Mapping for Arrays

IDL arrays map to the COBOL OCCURS clause. For example, given the following
IDL definition:

typedef short ShortArray[2][3][4][5];

The COBOL mapping will generate the following:

01 <scope>-ShortArray is typedef.
03 filler occurs 2.

05 filler occurs 3.
 07 filler occurs 4.

09 filler occurs 5.
 11 ShortArray-v type CORBA-short.

22.15 Mapping for Exception Types

Each defined exception type is mapped to a COBOL group-item along with a constant
name that provides a unique identifier for it. The unique identifier for the exception
will be in a string literal form.

For example:

exception foo {
long a_supplied_value;

};

will produce the following COBOL declarations:

01 <scope>-foo is typedef.
03 a-supplied-value type CORBA-long.

>>CONSTANT ex-foo IS “<unique identifier for exception>“.

The identifier for the exception uniquely identifies this exception type. For example, it
could be the exception’s Interface Repository identifier.

Since IDL exceptions are allowed to have no members, but COBOL groups must
at least one item, IDL exceptions with no members map to COBOL groups with one
member. This member is opaque to applications. Both the type and the name of the
single member are implementation-specific.

22.16 Argument Conventions

22.16.1 Implicit Arguments to Operations

From the COBOL programmer’s point of view, all operations declared in an IDL
interface have implicit parameters in addition to the actual explicitly declared opera
specific parameters. These are as follows:
CORBA V2.2 Mapping for Arrays February 1998 22-19

22

r

s

ere
• Each operation has an implicit CORBA-Object input parameter as the first
parameter; this designates the object that is to process the request.

• Each operation has an implicit pointer to a CORBA-Environment output paramete
that permits the return of exception information. It is placed after any operation
specific arguments.

• If an operation in an IDL specification has a context specification, then there is
another implicit input parameter which is CORBA-Context. If present, this is
placed between the operation specific arguments and the CORBA-Environment
parameter.

• ANSI 85 COBOL does not support a RETURNING clause, so any return value
will be handled as an out parameter and placed at the end of the argument listafter
CORBA-Environment.

Given the following IDL declaration of an operation:

interface example1
{

float op1(
in short arg1,
in long arg2

);
};

The following COBOL call should be used:

call “example1-op1” using
a-CORBA-Object
a-CORBA-short
a-CORBA-long
a-CORBA-Environment

m a-CORBA-float

22.16.2 Argument passing Considerations

All parameters are passed BY REFERENCE.

in parameters

All types are passed directly.

inout parameters

bounded and fixed length parameters

All basic types, fixed length structures, and unions (regardless of whether they w
dynamically allocated or specified within WORKING STORAGE) are passed directly.
They do not have to change size in memory.
22-20 CORBA V2.2 February 1998

22

f the

 ORB

, re-

eter

ned
unbounded and variable length parameters

All types that may have a different size upon return are passed indirectly. Instead o
actual parameter being passed, a pointer to the parameter will be passed. When there is
a type whose length may change in size, some special considerations are required.

Example: A user wants to pass in a 10 byte unbounded string as an inout parameter. To
do this, the address of a storage area that is initially large enough to hold the 10
characters is passed to the ORB. However, upon completion of the operation, the
may find that it has a 20 byte string to pass back to the caller. To enable it to achieve
this, the ORB will need to deallocate the area pointed to by the address it received
allocate a larger area, then place the larger value into the new larger storage area. This
new address will then be passed back to the caller.

For all variable length structures, unions, and strings that may change in size:

1. Initially, the caller must dynamically allocate storage using the CORBA-alloc
function and initialize it directly or use an appropriate accessor function that will
dynamically allocate storage (CORBA-xxx-set, where xxx is the type being set up).

2. The pointer to the inout parameter is passed.

3. When the call has completed and the user has finished with the returned param
value, the caller is responsible for deallocating the storage. This is done by making
a call to the “CORBA-free” ORB function with the current address in the
POINTER.

out and return parameters

Bounded

The caller will initially pass the parameter area into which the out (or return) value is
to be placed upon return.

Unbounded

For all sequences and variable length structures, unions, and strings:

1. The caller passes a POINTER.

2. The ORB will allocate storage for the data type out or return value being retur
and then place its address into the pointer.

3. The caller is responsible for releasing the returned storage when it is no longer
required by using a call to the “CORBA-free” ORB function to deallocate it.
CORBA V2.2 Argument Conventions February 1998 22-21

22
22.16.3 Summary of Argument/Result Passing

The following table is used to illustrate the parameter passing conventions used for in ,
inout, out, and return parameters. Following the table is a key that explains the
clauses used within the table.

Table 22-2Parameter Passing Conventions

Data Type in parameter inout parameter out parameter Return result

short <type> <type> <type> <type>

long <type> <type> <type> <type>

long long <type> <type> <type> <type>

unsigned short <type> <type> <type> <type>

unsigned long <type> <type> <type> <type>

unsigned long long <type> <type> <type> <type>

float <type> <type> <type> <type>

double <type> <type> <type> <type>

long double <type> <type> <type> <type>

boolean <type> <type> <type> <type>

char <type> <type> <type> <type>

wchar <type> <type> <type> <type>

octet <type> <type> <type> <type>

enum <type> <type> <type> <type>

fixed <type> <type> <type> <type>

object <type> <type> <type> <type>

struct (fixed) <type> <type> <type> <type>

struct (variable) <type> ptr ptr ptr

union (fixed) <type> <type> <type> <type>

union (variable) <type> ptr ptr ptr

string (bounded) <text> <text> <text> <text>

string (unbounded) <string> <string> <string> <string>

wstring (bounded) <wtext> <wtext> <wtext> <wtext>

wstring
(unbounded)

<wstring> <wstring> <wstring> <wstring>

sequence <type> ptr ptr ptr
22-22 CORBA V2.2 February 1998

22
Table Key:

22.17 Memory Management

22.17.1 Summary of Parameter Storage Responsibilities

The following table is used to illustrate the storage responsibilities for in, inout, out,
and return parameters. Following the table is a key that explains the numerics used
within the table.

array (fixed) <type> <type> <type> <type>

array (variable) <type> ptr ptr ptr

any <type> ptr ptr ptr

Key Description

<type> Parameter is passed BY REFERENCE

ptr Pointer to parameter is passed BY REFERENCE

For inout, the pointer must be initialized prior to the call to point
to the data type.

For out and return , the pointer does not have to be initialized
before the call and will be passed into the call unintialized. The
ORB will then initialize the pointer before control is returned to
the caller.

<text> Fixed length COBOL text (not null terminated)

<string> Pointer to a variable length NULL terminated string

<wtext> COBOL wtext (not null terminated)

<wstring> Pointer to a variable length NULL terminated wstring

Table 22-3Parameter Storage Responsibilities

Data Type in parameter inout parameter out parameter Return result

short 1 1 1 1

long 1 1 1 1

long long 1 1 1 1

unsigned short 1 1 1 1

unsigned long 1 1 1 1

Table 22-2Parameter Passing Conventions
CORBA V2.2 Memory Management February 1998 22-23

22
Table Key:

unsigned long long 1 1 1 1

float 1 1 1 1

double 1 1 1 1

long double 1 1 1 1

boolean 1 1 1 1

char 1 1 1 1

wchar 1 1 1 1

octet 1 1 1 1

enum 1 1 1 1

fixed 1 1 1 1

object 2 2 2 2

struct (fixed) 1 1 1 1

struct (variable) 1 3 3 3

union (fixed) 1 1 1 1

union (variable) 1 3 3 3

string (bounded) 1 1 1 1

string (unbounded) 1 3 3 3

wstring (bounded) 1 1 1 1

wstring (unbounded) 1 3 3 3

sequence 1 3 3 3

array (fixed) 1 1 1 1

array (variable) 1 3 3 3

any 1 3 3 3

Case Description

1 Caller may choose to define data type in WORKING STORAGE or
dynamically allocate it.

For inout parameters, the caller provides the initial value and the callee
may change that value (but not the size of the storage area used to hold
the value).

For out and return parameters, the caller does not have to initialize it,
only provide the storage required. The callee sets the actual value.

Table 22-3Parameter Storage Responsibilities
22-24 CORBA V2.2 February 1998

22
22.18 Handling Exceptions

On every call to an interface operation there are implicit parameters along with the
explicit parameters specified by the user. For further details, refer to “Argument
Conventions” on page 22-19. One of the implicit parameters is the “CORBA-
Environment” parameter which is used to pass back exception information to the
caller.

22.18.1 Passing Exception details back to the caller

The CORBA-Environment type is partially opaque. The COBOL declaration will
contain at least the following:

01 CORBA-exception-type is typedef type CORBA-enum.
88 CORBA-no-exception value 0.

88 CORBA-user-exception value 1.
88 CORBA-system-exception value 2.

01 CORBA-Environment is typedef.

2 Caller defines CORBA-Object in WORKING STORAGE or within
dynamic storage.

For inout parameters, the caller passes an initial value. If the ORB
wants to reassign the parameter, it will first call “CORBA-Object-
release” on the original input value. To continue to use the original
object reference passed in as an inout, the caller must first duplicate the
object reference by calling “CORBA-Object-duplicate.”

The client is responsible for the release of ALL specific out and return
object references. Release of all object references embedded in other out
and return structures is performed automatically as a result of calling
“CORBA-free.” To explicitly release a specific object reference that is
not contained within some other structure, the user should use an
explicit call to “CORBA-Object-release.”

3 For inout parameters, the caller provides a POINTER that points to
dynamically allocated storage. The storage is dynamically allocated by a
call to “CORBA-alloc.”

The ORB may deallocate the storage and reallocate a larger/smaller
storage area, then return that to the caller.

For out and return parameters, the caller provides an unitialized
pointer. The ORB will return the address of dynamically allocated
storage containing the out or return value within the pointer.

In all cases, the ORB is not allowed to return a null pointer. Also, the
caller is always responsible for releasing storage. This is done by using
a call to “CORBA-free.”
CORBA V2.2 Handling Exceptions February 1998 22-25

22

t

e

age

-

03 major type CORBA-exception-type.
...

When a user has returned from a call to an object, the major field within the call’s
environment parameter will have been set to indicate whether the call completed
successfully or not. It will be set to one of the valid types permitted within the field
CORBA-no-exception, CORBA-user-exception, or CORBA-system-exception. If
the value is one of the last two, then any exception parameters signalled by the objec
can be accessed.

22.18.2 Exception Handling Functions

The following functions are defined for handling exception information within from the CORBA-
Environment structure:

CORBA-exception-set

CORBA-exception-set allows a method implementation to raise an exception. The
a-CORBA-environment parameter is the environment parameter passed into th
method. The caller must supply a value for the exception-type parameter.

* COBOL
call “CORBA-exception-set” using

a-CORBA-Environment-
a-CORBA-exception-type-
a-CORBA-repos-id-string
a-param

The value of the exception-type parameter constrains the other parameters in the call as follows:

• If the parameter has the value CORBA-NO-EXCEPTION , this is a normal
outcome to the operation. In this case, both repos-id-string and param must be
NULL. Note that it is not necessary to invoke CORBA-exception-set to indicate
a normal outcome; it is the default behavior if the method simply returns.

• For any other value, it specifies either a user-defined or system exception. The
repos_id parameter is the repository ID representing the exception type. If the
exception is declared to have members, the param parameter must be the
exception group item containing the parameters according to the COBOL langu
mapping. If the exception takes no parameters, param must be NULL.

If the CORBA-Environment argument to CORBA-exception-set already has an
exception set in it, that exception is properly freed before the new exception infor
mation is set.
22-26 CORBA V2.2 February 1998

22

te

o the

of

he
CORBA-exception-id

CORBA-exception-id returns a pointer to the character string identifying the
exception. The character string contains the repository ID for the exception. If invoked
on an environment that identifies a non-exception, a NULL pointer is returned. No
that ownership of the returned pointer does not transfer to the caller; instead, the
pointer remains valid unitl CORBA-exception-free() is called.

call “CORBA-exception-id” using
a-CORBA-environment
a-pointer

CORBA-exception-value

CORBA-exception-value returns a pointer to the structure corresponding to this
exception. If invoked on an environment which identifies a non-exception, a NULL
pointer is returned. Note that ownership of the returned pointer does not transfer t
caller; instead, the pointer remains valid unitl CORBA-exception-free() is called.

call “CORBA-exception-value” using
a-CORBA-environment
a-pointer

CORBA-exception-free

CORBA-exception-free returns any storage that was allocated in the construction of
the environment exception. It is permissible to invoke this regardless of the value
the IDL-major field.

call “CORBA-exception-free” using
a-CORBA-environment

CORBA-exception-as-any

CORBA-exception-as-any() returns a pointer to a CORBA-any containing the
exception. This allows a COBOL application to deal with exceptions for which it has
no static (compile-time) information. If invoked on a CORBA-Environment which
identifies a non-exception, a null pointer is returned. Note that ownership of the
returned pointer does not transfer to the caller; instead, the pointer remains valid until
CORBA-exception-free() is called.

call “CORBA-exception-as-any” using
a-CORBA-environment
a-CORBA-any-rtn

22.18.3 Example of how to handle the CORBA-Exception parameter

The following example is a segment of a COBOL application that illustrates how t
Environment functions described above may be used within a COBOL context
application to handle an exception.
CORBA V2.2 Handling Exceptions February 1998 22-27

22
For the following IDL definition:

interface MyInterface {
exception example1{long reason, ...};
exception example2(...);

void MyOperation(long ar gument1)
raises(example1, example2, ...);

...
}

The following would be generated:

01 MyInterface x is typedef type CORBA-Object.

01 MyInterface-example1 is typedef.
03 reason type CORBA-long

>>CONSTANT ex-example1 is “<unique example1 identifier>“.
01 MyInterface-example2 is typedef.
>>CONSTANT ex-example2 is “<unique example2 identifier>“.

The following code checks for exceptions and handles them.

WORKING-STORAGE SECTION.
01 MyInterface-Object type MyInterface
01 ev type CORBA-environment.
01 argument1 type CORBA-long
01 ws-exception-ptr POINTER.

01 ws-example1-ptr POINTER.
...

LINKAGE SECTION.
01 ls-exception type CORBA-exception-id.
01 ls-example1 type MyInterface-example1.

...

PROCEDURE DIVISION.
...
call MyInterface-MyOperation” using

MyInterface-Object
argument1
ev

evaluate major in ev
mm when CORBA-NO-EXCEPTION

continue

when CORBA-USER-EXCEPTION
call "CORBA-exception-id" using ev
 mws-exception-ptr
22-28 CORBA V2.2 February 1998

22

jects.
al

in the
l
set address of ls-exception
 to ws-exception-ptr

evaluate ls-exception
when ex-example1

 call "CORBA-exception-value" using ev
ws-example1-ptr

set address of ls-example1
mm to ws-example1-ptr

display "xxxx call failed : "
 "example1 exception raised - "
 "reason code = "
reason IN ls-example1

when ex-example2
....

end-evaluate
call "CORBA-exception-free" using ev

when CORBA-SYSTEM-EXCEPTION
 ...
call "CORBA-exception-free" using ev

end-evaluate
call "CORBA-exception-free" using ev

22.19 Pseudo Objects

Within the CORBA specification are several interfaces that are pseudo-objects. The
differences between a real CORBA object and a pseudo object are as follows:

• There are no servers associated with pseudo objects.

• They are not registered with an ORB.

• References to pseudo-objects are not necessarily valid across computational
boundaries.

Pseudo Objects are used by the programmer as if they were ordinary CORBA ob
Because of this, some implementations may choose to implement some of them as re
CORBA objects.

22.19.1 Mapping Pseudo Objects to COBOL

Pseudo-objects are mapped from the pseudo-IDL according to the rules specified
preceding sections of this specification. There are no exceptions to these genera
mapping rules.
CORBA V2.2 Pseudo Objects February 1998 22-29

22

f

ceive

OL
22.19.2 Pseudo-Object mapping example

This section contains a brief example of the mapping of Pseudo-IDL to COBOL.

The following pseudo IDL:

module CORBA {

pseudo interface ORB
{

string object_to_string(
in Object obj

);
...

}

{
}

would be mapped to COBOL, as follows:

CORBA-ORB-object-to-string (used to translate an object reference into a string)

call “CORBA-ORB-object-to-string” using
 a-CORBA-ORB

a-CORBA-Object
a-CORBA-Environment

a-CORBA-string

22.20 Mapping for Object Implementations

This section describes the details of the OMG IDL-to-COBOL language mapping that
apply specifically to the Portable Object Adapter, such as how the implementation
methods are connected to the skeleton.

22.20.1 Operation-specific Details

This chapter defines most of the details of binding methods to skeletons, naming o
parameter types, and parameter passing conventions. Generally, for those parameters
that are operation-specific, the method implementing the operation appears to re
the same values that would be passed to the stubs.

22.20.2 PortableServer Functions

Objects registered with POAs use sequences of octet, specifically the
PortableServer::POA::ObjectId type, as object identifiers. However, because
COBOL programmers will often want to use strings as object identifiers, the COB
mapping provides several conversion functions that convert strings to ObjectId and
vice-versa:
22-30 CORBA V2.2 February 1998

22
* COBOL
call “PortableServer-ObjectId-to-str” using

a-PortableServer-ObjectId
a-CORBA-Environment

 a-CORBA-string-rtn
....

call ”PortableServer-ObjectId-to-wst” using
a-PortableServer-ObjectId
a-CORBA-Environment

 a-CORBA-wstring-rtn
....

call “PortableServer-str-to-ObjectId” using
a-CORBA-string
a-CORBA-Environment

a-PortableServer-ObjectId-rtn
....

call ”PortableServer-wst-to-ObjectId” using
a-CORBA-wstring
a-CORBA-Environment

a-PortableServer-ObjectId-rtn
....

These functions follow the normal COBOL mapping rules for parameter passing and memory
management. If conversion of an ObjectId to a string would result in illegal characters in the
string (such as a NUL), the first two functions raise the CORBA_BAD_PARAM exception.

22.20.3 Mapping for PortableServer::ServantLocator::Cookie

Since PortableServer::ServantLocator::Cookie is an IDL native type, its type must
be specified by each language mapping. In COBOL, Cookie maps to pointer

* COBOL
01 Cookie is typedef usage POINTER
For the COBOL mapping of the
PortableServer::ServantLocator::preinvoke() and postinvoke()
operations, the Cookie parameter is used as defined
above.ServLoc-preinvoke” using

a-PortableServer-ObjectId
a-PortableServer-POA
a-CORBA-Identifier
a-Cookie

...
call “PortableSrv-ServLoc-postinvoke” using

a-PortableServer-ObjectId
a-PortableServer-POA
a-CORBA-Identifier
CORBA V2.2 Pseudo Objects February 1998 22-31

22

OL,
with a
e

th

 a
is

t
a-Cookie
a-PortableServer-Servant

22.20.4 Servant Mapping

A servant is a language-specific entity that can incarnate a CORBA object. In COB
a servant is composed of a data structure that holds the state of the object along
collection of method functions that manipulate that state in order to implement th
CORBA object.

The PortableServer::Servant type maps into COBOL as follows:

* COBOL
01 PortableServer-Servant is typedef usage pointer

Associated with a servant is a table of pointers to method functions. This table is called
an entry point vector, or EPV. The EPV has the same name as the servant type wi
“__epv” appended (note the double underscore). The EPV for PortableServer-Servant
is defined as follows:

* COBOL
01 PortableServer-ServantBase-epv is typedef.

03 private usage pointer.
03 finalize usage procedure-pointer.

03 default-POA usage procedure-pointer.

* The signatures for the functions are as follows
call “finalize” using

a-PortableServer-Servant
a-CORBA-Environment

call “default-POA” using
a-PortableServer-Servant
a-CORBA-Environment
a-PortableServer-POA

The PortableServer-ServantBase-epv “private” member, which is opaque to
applications, is provided to allow ORB implementations to associate data with each
ServantBase EPV. Since it is expected that EPVs will be shared among multiple
servants, this member is not suitable for per-servant data. The second member is
pointer to the finalization function for the servant, which is invoked when the servant
etherial-ized. The other function pointers correspond to the usual Servant operations.

The actual PortableServer-ServantBase structure combines an EPV with per-servan
data, as shown below:

* COBOL

* (vepv is a pointer to the epv)
01 PortableServer-ServantBase-vepv is typedef pointer.
22-32 CORBA V2.2 February 1998

22

n.

ccess

ed
01 PortableServer-ServantBase is typedef.
03 privateusage pointer.
03 vepv type PortableServer-ServantBase-vepv.

The first member is a pointer that points to data specific to each ORB implementatio
This member, which allows ORB implementations to keep per-servant data, is opaque
to applications. The second member is a pointer to a pointer to a PortableServer-
ServantBase-epv. The reason for the double level of indirection is that servants for
derived classes contain multiple EPV pointers, one for each base interface as well as
one for the interface itself. (This is explained further in thee next section). The name of
the second member, “vepv,” is standardized to allow portable access through it.

22.20.5 Interface Skeletons

All COBOL skeletons for IDL interfaces have essentially the same structure as
ServantBase, with the exception that the second member has a type that allows a
to all EPVs for the servant, including those for base interfaces as well as for the most-
derived interface.

For example, consider the following IDL interface:

// IDL
interface Counter {

long add(in long v al);
};

The servant skeleton generated by the IDL compiler for this interface appears as
follows (the type of the second member is defined further below):

* COBOL
01 POA-Counter is typedef.

03 private usage pointer.
03 vepv type POA-Counter-vepv.

As with PortableServer-ServantBase, the name of the second member is standardiz
to "vepv" for portability.

The EPV generated for the skeleton is a bit more interesting. For the Counter interface
defined above, it appears as follows:

* COBOL
01 POA-Counter-epv is typedef.

03 private usage pointer.
03 add usage procedure-pointer.

Since all servants are effectively derived from PortableServer-ServantBase, the
complete set of entry points has to include EPVs for both PortableServer-
ServantBase and for Counter itself:
CORBA V2.2 Pseudo Objects February 1998 22-33

22

r

, is

g "-
* COBOL
01 POA-Counter-vepv is typedef.

03 base-epv usage pointer.
03 Counter-epvusage pointer.

The first member of the POA-Counter-vepv struct is a pointer to the PortableServer-
ServantBase EPV. To ensure portability of initialization and access code, this membe
is always named "base_epv." It must always be the first member. The second member
is a pointer to a POA-Counter-epv.

The pointers to EPVs in the VEPV structure are in the order that the IDL interfaces
appear in a top-to-bottom left-to-right traversal of the inheritance hierarchy of the
most-derived interface. The base of this hierarchy, as far as servants are concerned
always PortableServer-ServantBase. For example, consider the following
complicated interface hierarchy:

// IDL
interface A {};
interface B : A {};
interface C : B {};
interface D : B {};
interface E : B, C {};
interface F {};
interface G : E, F {

void foo();
};

The VEPV structure for interface G shall be generated as follows:

* COBOL
 01 POA-G-epv is typedef.

03 private usage pointer.
03 foo usage procedure-pointer.

 01 POA-G-vepv is typedef.
03 base-epv usage pointer.
03 A-epv usage pointer.
03 B-epv usage pointer.
03 C-epv usage pointer.
03 D-epv usage pointer.
03 E-epv usage pointer.
03 F-epv usage pointer.
03 G-epv usage pointer.

Note that each member other than the "base-epv" member is named by appendin
epv" to the interface name whose EPV the member points to. These names are
standarized to allow for portable access to these items.
22-34 CORBA V2.2 February 1998

22

to

e

he

h
22.20.6 Servant Structure Initialization

Each servant requires initialization and etherialization, or finalization, functions. For
PortableServer-ServantBase, the ORB implementation shall provide the following
functions:

* COBOL
call “PortableServer-ServantBaseInit” using

PortableServer-Servant
CORBA-Environment

call “PortableServer-ServantBaseFini” using
PortableServer-Servant
CORBA-Environment

These functions are named by appending "Init" and "Fini" to the name of the servant,
respectively.

The first argument to the init function shall be a valid PortableServer-Servant whose
"vepv" member has already been initialized to point to a VEPV structure. The init
function shall perform ORB-specific initialization of the PortableServer-
ServantBase, and shall initialize the "finalize" struct member of the pointed-to
PortableServer-ServantBase-epv to point to the PortableServer-ServantBaseFini()
function if the "finalize" member is NULL. If the "finalize" member is not NULL, it is
presumed that it has already been correctly initialized by the application, and is thus
not modified. Similarly, if the the default-POA member of the PortableServer-
ServantBase-epv structure is NULL when the init function is called, its value is set
point to the -default-POA- function, which returns an object reference to the root
POA.

If a servant pointed to by the PortableServer-Servant passed to an init function has a
NULL "vepv" member, or if the PortableServer-Servant argument itself is NULL, no
initialization of the servant is performed, and the CORBA::BAD_PARAM standard
exception is raised via the CORBA-Environment parameter. This also applies to
interface-specific init functions, which are described below.

The Fini function only cleans up ORB-specific private data. It is the default
finalization function for servants. It does not make any assumptions about where th
servant is allocated, such as assuming that the servant is heap-allocated and trying to
call CORBA-free on it. Applications are allowed to "override" the fini function for a
given servant by initializing the PortableServer-ServantBase-epv "finalize" pointer
with a pointer to a finalization function made specifically for that servant; however,
any such overriding function must always ensure that the PortableServer-
ServantBaseFini function is invoked for that servant as part of its implementation. T
results of a finalization function failing to invoke PortableServer-ServantBaseFini
are implementation-specific, but may include memory leaks or faults that could cras
the application.
CORBA V2.2 Pseudo Objects February 1998 22-35

22

s,

the
If a servant passed to a fini function has a NULL "epv" member, or if the
PortableServer-Servant argument itself is NULL, no finalization of the servant is
performed, and the CORBA::BAD_PARAM standard exception is raised via the
CORBA-Environment parameter. This also applies to interface-specific fini function
which are described below.

Normally, the PortableServer-ServantBaseInit and PortableServer-ServantBaseFini
functions are not invoked directly by applications, but rather by interface-specific
initialization and finalization functions generated by an IDL compiler. For example,
init and fini functions generated for the Counter skeleton are defined as follows:

* COBOL
IDENTIFICATION DIVISION.

PROGRAM ID. POA-Counter-init.
...

PROCEDURE DIVISION USING
a-POA-Counter
a-CORBA-environment

*
* first call immediate base interface init
* functions in the left-to-right order of
* inheritance
*

call “PortableServer-ServantBaseInit” using
a-POA-Counter
a-CORBA-environment

*
* now perform POA_Counter initialization
*

...
END-PROGRAM.

IDENTIFICATION DIVISION.
PROGRAM ID. POA-Counter-fini.
...

PROCEDURE DIVISION USING
a-POA-Counter
a-CORBA-environment

*
* first perform POA_Counter cleanup
*

...

*
* then call immediate base interface fini
* functions in the right-to-left order of
* inheritance
22-36 CORBA V2.2 February 1998

22

 to

ed
*
call “PortableServer-ServantBaseFini” using

a-POA-Counter
a-CORBA-environment

END-PROGRAM.

The address of a servant shall be passed to the init function before the servant is
allowed to be activated or registered with the POA in any way. The results of failing
properly initialize a servant via the appropriate init function before registering it or
allowing it to be activated are implementation-specific, but could include memory
access violations that could crash the application.

22.20.7 Application Servants

It is expected that applications will create their own servant structures so that theycan
add their own servant-specific data members to store object state. For the Counter
example shown above, an application servant would probably have a data member us
to store the counter value:

* COBOL
 01 AppServant is typedef.

03 base type PAO-Counter.
03 value type CORBA-long.

The application might contain the following implementation
of the Counter::add operation:

* COBOL
IDENTIFICATION DIVISION.

PROGRAM ID. app-servant-add.
...

LINKAGE SECTION.
01 a-AppServant type AppServant.

...
PROCEDURE DIVISION USING

a-AppServant
a-CORBA-long
a-CORBA-env

a-CORBA-long-rtn
add a-CORBA-long to value in a-AppServant
move value in a-AppServant to a-CORBA-long-rtn
exit program
.

The application could initialize the servant dynamically as follows:

* COBOL
WORKING-STORAGE SECTION.
01 base-epv type PortableServer-ServantBase-epv.
01 counter-epv type POA-Counter-epv.
CORBA V2.2 Pseudo Objects February 1998 22-37

22

01 counter-vepv type POA-Counter-vepv.
01 my-base type POA-Counter.
01 my-servant type AppServant.

...
* Initialize Base-epv

set private in base-epv to NULL
set finalize in base-epvto NULL
set default-POA in base-epv

to ENTRY “my-default-POA”
...

* Initialize counter-epv
set private in counter-epvto NULL
set add in counter-epv

to ENTRY “app-servant-add”
...

* Initialize counter-vepv
set base-epv in counter-vepv

to address of base-epv
set counter-epv in counter-vepv

to address of counter-epv
...

* Initialize my-base
set private in my-baseto NULL
set vepv in my-base

to address of counter-vepv
...

* Initialize my-servant
set base in my-servant

to address of my-base
set value in my-servantto 0
.

Before registering or activating this servant, the application shall call:

* COBOL
 call “POA-Counter-init” using

my-servant
a-CORBA-environment

If the application requires a special destruction function for my-servant, it shall set the
value of the PortableServer-ServantBase-epv "finalize" member either before or after
calling POA-Counter-init() :

* COBOL
set finalize in base-epv

to ENTRY “my-finalizer-func”

Note that if the application statically initialized the "finalize" member before calling
the servant initialization function, explicit assignment to the "finalize" member as
shown here is not necessary, since the PortableServer-ServantBaseInit() function will
not modify it if it is non-NULL.
22-38 CORBA V2.2 February 1998

22

tubs

vant

ons

22.20.8 Method Signatures

With the POA, implementation methods have signatures that are identical to the s
except for the first argument. If the following interface is defined in OMG IDL:

// IDL
interface example4 {

long op5(in long arg6);
};

a COBOL program for the op5 operation must have the following signature:

* COBOL
IDENTIFICATION DIVISION.

PROGRAM ID. op5.
...

PROCEDURE DIVISION USING
servant
arg6
env

 rtn
...

The Servant parameter (which is an instance of PortableServer-Servant) is the ser
incarnating the CORBA object on which the request was invoked. The method can
obtain the object reference for the target CORBA object by using the POA-Current
object. The env parameter is used for raising exceptions. Note that the names of the
servant and env parameters are standardized to allow the bodies of method functi
to refer to them portably.

The method terminates successfully by executing an EXIT PROGRAM statement
after setting the declared operation return value. Prior to returning the result of a
successful invocation, the method code must assign legal values to all out and inout
parameters.

The method terminates with an error by executing the CORBA-exception-set
operation (described in 5.17.2 Exception Handling Functions) prior to executing an
EXIT PROGRAM statement. When raising an exception, the method code is not
required to assign legal values to any out or inout parameters. Due to restrictions in
COBOL, it must return a legal function value.

22.21 Mapping of the Dynamic Skeleton Interface to COBOL

Refer to the Dynamic Skeleton Interface chapter for general information about the
Dynamic Skeleton Interface (DSI) and its mapping to programming languages.

The following section covers these topics:

• Mapping the ServerRequest Pseudo Object to COBOL

• Mapping the Dynamic Implementation Routine to COBOL
CORBA V2.2 Mapping of the Dynamic Skeleton Interface to COBOL February 199822-39

22

MG

lled by

tine
22.21.1 Mapping of the ServerRequest to COBOL

The pseudo IDL for the Dynamic Skeleton Interface’s ServerRequest is as follows:

module CORBA {
interface ServerRequest {

Identifier operation();
Context ctx();
void arguments(inout NVList parms);
Any set result(any value);
void set except ion(

exception_type major,
any value

);
}

}

The above ServerRequest pseudo IDL is mapped to COBOL, as follows.

operation

This function returns the name of the operation being performed, as shown in the
operation’s OMG IDL specification.

call “CORBA-ServerRequest-operation” using
a-CORBA-ServerRequest
a-CORBA-Environment

m a-CORBA-Identifier

ctx

This function may be used to determine any context values passed as part of the
operation. Context will only be available to the extent defined in the operation’s O
IDL definition (for example, attribute operations have none).

call “CORBA-ServerRequest-ctx” using
a-CORBA-ServerRequest
a-CORBA-Environment

m a-CORBA-Context

arguments

This function is used to retrieve parameters from the ServerRequest and to find the
addresses used to pass pointers to result values to the ORB. It must always be ca
each Dynamic Implementation Routine (DIR), even when there are no parameters.

The caller passes ownership of the parameter’s NVList to the ORB. Before this rou
is called, that NVList should be initialized with the TypeCodes and direction flags for
each of the parameters to the operation being implemented: in, out, and inout
22-40 CORBA V2.2 February 1998

22

ose
List.

. If

t

o
parameters inclusive. When the call returns, the parameter’s NVList is still usable by
the DIR and all in and inout parameters will have been unmarshaled. Pointers to th
parameter values will at that point also be accessible through the parameter’s NV

The implementation routine will then process the call, producing any result values
the DIR does not have to report an exception, it will replace pointers to inout values in
parameters with the values to be returned, and assign parameters to out values in tha
NVList appropriately as well. When the DIR returns, all the parameter memory is
freed as appropriate and the NVList itself is freed by the ORB.

call “CORBA-ServerRequest-argumentsparams” using
a-CORBA-ServerRequest
a-CORBA-NVList
a-CORBA-Environment

set-result

This function is used to report any result value for an operation. If the operation has no
result, it must either be called with a tk-void TypeCode stored in value, or not be
called at all.

call “CORBA-ServerRequest-set-result” using
a-CORBA-ServerRequest
a-CORBA-Any
a-CORBA-Environment

set-exception

This function is used to report exceptions, both user and system, to the client wh
made the original invocation.

call “CORBA-ServerRequest-set-exception” using
a-CORBA-ServerRequest
a-CORBA-exception-type
a-CORBA-any
a-CORBA-Environment

The parameters are as follows:

• The exception-type indicates whether it is a USER or a SYSTEM exception.

• The CORBA-any is the value of the exception (including the exception TypeCode).

22.21.2 Mapping of Dynamic Implementation Routine to COBOL

A COBOL Dynamic Implementation Routine will be as follows:

PROCEDURE DIVISION USING
a-PortableServer-Servant
a-CORBA-ServerRequest
CORBA V2.2 Mapping of the Dynamic Skeleton Interface to COBOL February 199822-41

22

 rely

ture
Such a function will be invoked by the Portable Object Adapter when an invocation is
received on an object reference whose implementation has registered a dynamic
skeleton.

servant is the COBOL implementation object incarnating the CORBA object to which
the invocation is directed.

request is the ServerRequest used to access explicit parameters and report results (and
exceptions).

Unlike other COBOL object implementations, the DIR does not receive a CORBA-
Environment parameter, and so the CORBA-exception-set API is not used. Instead,
CORBA-ServerRequest-set-exception is used; this provides the TypeCode for the
exception to the ORB, so it does not need to consult the Interface Repository (or
on compiled stubs) to marshal the exception value.

To register a Dynamic Implementation Routine with a POA, the proper EPV struc
and servant must first be created. DSI servants are expected to supply EPVs for both
PortableServer-ServantBase and for PortableServer-DynamicImpl, which is
conceptually derived from PortableServer-ServantBase, as shown below.

* COBOL
01 PortableServer-DynamicImpl-epv is typedef.

03 privateusage pointer.
03 invoketype PortableServer-DynamicImplRoutine.
03 primary-interface usage procedure-pointer.

* (Primary-interface signature is as follows ...)
call “primary-interface” using

a-PortableServer-Servant
a-PortableServer-ObjectId
a-PortableServer-POA
a-CORBA-Environment

a-CORBA-RepositoryId-rtn

01 PortableServer-DynamicImpl-vepv is typedef.
03 base_epv usage pointer
03 PortableServer-DynamicImpl-epvusage pointer.

01 PortableServer-DynamicImpl is typedef.
03 private usage pointer.
03 vepv usage pointer.

As for other servants, initialization and finalization functions for PortableServer-
DynamicImpl are also provided, and must be invoked as described in “Servant
Structure Initialization” in

section 5.19.6. REV???
22-42 CORBA V2.2 February 1998

22

e

he

ad to
To properly initialize the EPVs, the application must provide implementations of th
invoke and the primary-interface functions required by the PortableServer-
DynamicImpl EPV. The invoke method, which is the DIR, receives requests issued to
any CORBA object it represents and performs the processing necessary to execute t
request.

The primary-interface method receives an ObjectId value and a POA as input
parameters and returns a valid Interface Repository Id representing the most-derived
interface for that oid.

It is expected that these methods will be only invoked by the POA, in the context of
serving a CORBA request. Invoking these methods in other circumstances may le
unpredictable results.

An example of a DSI-based servant is shown below:

* COBOL
IDENTIFICATION DIVISION.

PROGRAM ID. my-invoke.
...

PROCEDURE DIVISION USING
a-PortableServer-Servant
a-CORBA-ServerRequest

...
END-PROGRAM.

IDENTIFICATION DIVISION.
PROGRAM ID. my-prim-intf.
...

PROCEDURE DIVISION USING
a-PortableServer-Servant
a-PortableServer-ObjectId
a-PortableServer-POA
a-CORBA-Environment
a-CORBA-RepositoryId-rtn

...
END-PROGRAM.

/* Application-specific DSI servant type */
01 MyDSIServant is typedef.

03 base type POA-DynamicImpl.
....
<other application specific data items>
....

01 base-epv type PortableServer-
ServantBase-epv.
01 DynamicImpl-epv type PortableServer-
DynamicImpl-epv.
CORBA V2.2 Mapping of the Dynamic Skeleton Interface to COBOL February 199822-43

22

f
01 DynamicImpl-vepv type PortableServer-
DynamicImpl-vepv.
01 my-servant type MyDSIServant.

...
* Initialize Base-epv

set private in base-epv to NULL.
set finalize in base-epvto NULL.
set default-POA in base-epvto NULL.

...
* Initialize DynamicImpl-epv

set private in DynamicImpl-epvto NULL.
set invoke in DynamicImpl-epv

to ENTRY “my-invoke”.
set primary-interface in DynamicImpl-epv

to ENTRY “my-prim-intf”.
...

* Initialize DynamicImpl-vepv
set base-epv in DynamicImpl-vepv

to address of base-epv.
set PortableServer-DynamicImpl-epv in

DynamicImpl-vepv
to address of DynamicImpl-

epv.
...

* Initialize my-servant
set private IN base IN my-servantto NULL.
set vepv IN base IN my-servant.

to address of DynamicImpl-
vepv.

....

Registration of the my-servant data structure via the PortableServer-POA-set-
servant function on a suitably initialized POA makes the my-invoke DIR function
available to handle DSI requests.

22.22 ORB Initialization Operations

22.22.1 ORB Initialization

The following PIDL specifies initialization operations for an ORB; this PIDL is part o
the CORBA module (not the ORB interface) and is described in Section 7.4, “ORB
Initialization,” on page 7-6.

// PIDL
module CORBA {

typedef string ORBid;
typedef sequence <string> arg_list;
22-44 CORBA V2.2 February 1998

22

uence

d.

B

ect

ORB ORB_init (inout arg_l ist argv, in ORBid orb_identi fier);
};

The mapping of the preceding PIDL operations to COBOL is as follows:

* COBOL
01 CORBA-ORBid is typedef type CORBA-string.

01 CORBA-arg-list-t is typedef type CORBA-string.

01 CORBA-arg-list is typedef.
03 seq-maximumtype CORBA-long.
03 seq-length type CORBA-long.
03 seq-buffer usage POINTER.

[to CORBA-arg-list-t]

 call “CORBA-ORB-init” using
a-CORBA-arg-list
a-CORBA-ORBid
a-CORBA-environment
 a-CORBA-ORB

If an empty ORBid string is used then arg-list arguments can be used to determine
which ORB should be returned. This is achieved by searching the parameter seq
for one tagged ORBid (e.g., -ORBid "ORBid_example”). If an empty ORBid string is
used and no ORB is indicated by the arg-list parameters, the default ORB is returne

Regardless of whether an empty or non-empty ORBid string is passed to ORB_init ,
the argv arguments are examined to determine if any ORB parameters are given. If a
non-empty ORBid string is passed to ORB_init , all -ORBid parameters in the argv are
ignored. All other -ORB<suffix> parameters may be of significance during the OR
initialization process.

22.23 Operations for Obtaining Initial Object References

The following PIDL specifies the operations (in the ORB interface) that allow
applications to get pseudo object references for the Interface Repository and Obj
Services. It is described in detail in Section 7.6, “Obtaining Initial Object References,”
on page 7-10.
CORBA V2.2 Operations for Obtaining Initial Object References February 199822-45

22

e
// PIDL
module CORBA {

interface ORB {
 typedef str ing ObjectId;
 typedef sequence < ObjectId> ObjectIdList;

exception InvalidName {};
 ObjectIdList list_initial_services ();
 Object resolve_initial_references (in ObjectId identif ier)

raises (InvalidName);
} ;

} ;

The mapping of the preceding PIDL to COBOL is as follows :

* COBOL
01 CORBA-ORB-ObjectId is typedef

type CORBA-string.

01 CORBA-ORB-ObjectIdList-t is typedef
type CORBA-string.

01 CORBA-ORB-ObjectIdList is typedef.
03 seq-maximumtype CORBA-long.
03 seq-length type CORBA-long.
03 seq-buffer usage POINTER.

[to CORBA-ORB-ObjectIdList-t]

01 CORBA-ORB-InvalidName is typedef.
03 filler[implementation defined]

 call “CORBA-ORB-list-initial-service” using
a-CORBA-ORB
a-CORBA-environment

a-CORBA-ORB-ObjectIdList-rtn

call “CORBA-ORB-resolve-initial-refe” using
a-CORBA-ORB
a-CORBA-ORB-ObjectId
a-CORBA-environment

a-CORBA-Object-rtn

22.24 ORB Supplied Functions for Mapping

22.24.1 Memory Management routines

CORBA-alloc

The ORB supplied CORBA-alloc routine may be used to dynamically allocate storag
for any of the COBOL data types.
22-46 CORBA V2.2 February 1998

22

et
call “CORBA-alloc” using
CORBA-unsigned-long

m POINTER

CORBA-free

The ORB supplied CORBA-free routine may be used to free storage that has
previously been dynamically allocated by either the user or the ORB.

call “CORBA-free” using
POINTER

22.25 Accessor Functions

22.25.1 CORBA-sequence-element-get and CORBA-sequence-element-s

The following ORB supplied routines may be used to get or set specific elements
within a sequence.

CORBA-sequence-element-get

call “CORBA-sequence-element-get” using
CORBA-sequence
CORBA-unsigned-long

m element-type

CORBA-sequence-element-set

call “CORBA-sequence-element-set” using
CORBA-sequence

CORBA-unsigned-long Specifies the number of bytes of storage to be
allocated.

POINTER Returns address of allocated storage.

POINTER Address of allocated storage that is to be deallocated.

CORBA-sequence The CORBA-sequence from which a specific element
is to be extracted.

CORBA-unsigned-long An index that identifies the particular element required
(1 for the 1st, 2 for the 2nd, etc.).

element-type An area into which the requested element is to be
placed.
CORBA V2.2 Accessor Functions February 1998 22-47

22

h

CORBA-unsigned-long
melement-type

22.25.2 CORBA-string-get and CORBA-string-set

The following ORB supplied accessor routines may be used to handle variable lengt
null terminated strings.

CORBA-string-get

call “CORBA-string-get” using
CORBA-unbounded-string
CORBA-unsigned-long

mCOBOL-text

CORBA-string-set

call “CORBA-string-set” using
CORBA-unbounded-string
CORBA-unsigned-long
COBOL-text

CORBA-sequence The CORBA-sequence into which a specific element is
to be placed.

CORBA-unsigned-long An index that identifies the particular element
(1 for the 1st, 2 for the 2nd, etc.).

element-type The specific element that is to be inserted into the
CORBA-sequence.

CORBA-unbounded-string A pointer to a null terminated string.

CORBA-unsigned-long The length of the COBOL text area into which the text
is to be inserted. The returned value will be truncated (if
larger than the return area) or space padded (if smaller
than the return area).

COBOL-text An area into which the requested text is to be placed.

CORBA-unbounded-string An unintialized pointer into which a null terminated string
will be placed by this routine. This routine will use
CORBA-alloc to allocate the required storage.

CORBA-unsigned-long The length of the COBOL text area from which the text is
to be extracted. Trailing spaces will be stripped off.

COBOL-text An area from which the requested text is to be extracted.
22-48 CORBA V2.2 February 1998

22

h

22.25.3 CORBA-wstring-get & CORBA-wstring-set

The following ORB supplied accessor routines may be used to handle variable lengt
null terminated wstrings.

CORBA-wstring-get
call “CORBA-wstring-get” using

CORBA-unbounded-wstring
CORBA-unsigned-long

mCOBOL-wchar-values

CORBA-wstring-set

call “CORBA-wstring-set” using
CORBA-unbounded-string
CORBA-unsigned-long
COBOL-wchar-values

22.26 Extensions to COBOL 85

The following extensions to COBOL 85 are mandatory within this submission:

• Untyped pointers and pointer manipulation

• Floating point

The following extensions to COBOL 85 are optional within this submission:

CORBA-unbounded-wstring A pointer to a null terminated wstring.

CORBA-unsigned-long The length of the area into which the array of wchars is
to be inserted. The returned value will be truncated (if
larger than the return area) or padded (if smaller than
the return area).

COBOL-wchar-values An area into which the requested COBOL wchars are to
be placed.

CORBA-unbounded-wstring An unintialized pointer into which a null terminated
wstring will be placed by this routine. This routine
will use CORBA-alloc to allocate the required
storage.

CORBA-unsigned-long The length of the COBOL area from which the
wchars are to be extracted.

COBOL-wchar-values An area from which the requested wchars are to be
extracted.
CORBA V2.2 Extensions to COBOL 85 February 1998 22-49

22

ady

s.

 will

es.
• Constants

• Typedefs

22.26.1 Untyped Pointers and Pointer manipulation

Untyped Pointers

COBOL 85 does not define an untyped pointer data type. However, the following
syntax has been defined within the next major revision of COBOL 85 and has alre
been implemented in current COBOL compilers.

[USAGE IS] POINTER

No PICTURE clause allowed.

22.26.2 Pointer Manipulation

COBOL 85 does not define any syntax for the manipulation of untyped pointers.
However, the following syntax has been defined within the next major revision of
COBOL 85 and has already been implemented in many current COBOL compiler

22.26.3 Floating point

Currently COBOL 85 does not support floating point data types. There is an implicit
use of floating point within this mapping. The OMG IDL floating-point types are
specified as follows within CORBA:

• Float represents single precision floating point numbers.

• double represents double-precision floating point numbers.

• long double represents long-double-precision floating point numbers.

The above IDL types should be mapped to the native floating point type. The ORB
then be responsible for converting the native floating point types to the Common Data
Representation (CDR) transfer syntax specified for the OMG IDL floating-point typ

{ADDRESS OF identifier }

SET {ADDRESS OF identifier} TO {identifier }

zzzzz {identifier zzzzzzzzzz } {NULL }

{NULLS }

{identifier }

SET { identifier{UP} zz } BY {integer }

zzzzzzzzz {DOWN} {LENGTH OF identifier }
22-50 CORBA V2.2 February 1998

22

rm

ile

 same
22.26.4 Constants

Currently COBOL 85 does not define any syntax for COBOL constants. The next
major revision of COBOL 85 defines the syntax below for this functionality.

To ensure that a complete mapping of CORBA IDL can be accomplished within a
COBOL application, it will be necessary to map CORBA IDL constants to some fo
of COBOL constant.

>>CONSTANT constant-name IS literal
integer

22.26.5 Typedefs

Currently COBOL 85 does not define any syntax for COBOL typedefs. The next major
revision of COBOL 85 defines the syntax below for this functionality.

A typedef is defined using the IS TYPEDEF clause on a standard data entry. It
identifies it as a typedef and will have no storage associated with it. It is later used in
conjunction with the TYPE clause to identify a user defined data type. The following
is an example of this syntax.

* (defines a typedef)
01 my-message-area-type IS TYPEDEF.

 02 ws-length USAGE pic 9(4) comp.
 02 ws-text USAGE pic x(40).

.....

* (Using types in storage definitions)
01 ws-message1 TYPE my-msg-area-type.
01 ws-message2 TYPE my-msg-area-type.

.....

* (Manipulate data as required)
PROCEDURE DIVISION.
.....

move 12 TO ws-length IN ws-message1.
move msg1 TO ws-text IN ws-message1.

.....

Using COBOL COPY files instead of Typedefs

Because COBOL typedefs are an optional part of this language mapping, an alternative
to the functionality provided by them is part of this COBOL language mapping. Wh
it is recognized that support for COBOL Typedefs is very desirable, it must also be
recognized that such support is not yet available from some of the older COBOL
compilers deployed on some platforms. It is highly recommended that, if at all
possible, COBOL Typedefs should be used because no other alternative offers the
flexibility.
CORBA V2.2 Extensions to COBOL 85 February 1998 22-51

22

les

s.

pe,

For compilers that do not support COBOL Typedefs, libraries of COBOL COPY fi
will be used instead. Each library will contain a set of COPY files for each interface,
and each individual COPY file will act as a type template for defined IDL data type
When used in conjunction with the COPY REPLACING syntax, the COPY files may
be used to create specific instances of types.

How do libraries of COBOL COPY files containing IDL data type templates work?

For basic types, such as long, a COPY file called long will be supplied as part of a
CORBA library and its contents would resemble the following:

long-type usage (local long type).

The user would use the above long copy file to create instances of the basic long ty
as follows:

WORKING STORAGE section.
...

01 COPY LONG IN CORBA
REPLACING long-type WITH ws-long-1.

01 COPY LONG IN CORBA
REPLACING long-type WITH ws-long-2.

...

Each specific IDL file will result in a library of COPY files for all the types specified
within the interface file.

For example, the following IDL:

// IDL
interface Example {

struct {
long a_long_value;
float a_float_value;

} struct_1;
...
struct {

struct_1 a_struct_1_value;
long another_long;

} struct_2;
};

Would result in COPY files called struct-1 and struct-2 being created in a library
called Example.

The following illustrates the contents of the struct-1 copy file:

struct-1-type.
05 COPY long IN corba

REPLACING long-type WITH a-long-value.
22-52 CORBA V2.2 February 1998

22

in a
This
05 COPY float IN corba
REPLACING float-type WITH a-float-value.

One problem with COPY file templates is that it is not possible to embed a struct
template within another struct because of level number resolution problems. With
user application, it will only be possible to create level 01 instances of structures.
is resolved by generating the actual definitions all the way down to basic types within
each generated COPY file. From the above IDL, the following example of struct_2
illustrates this:

struct-2-type
05 struct-1-value.

07 COPY long IN corba
REPLACING long-type WITH a-long-value.

07 COPY float IN corba
REPLACING float-type WITH a-float-value.

05 COPY long IN corba
REPLACING long-type WITH another-long.

22.27 References

COBOL 85ANSI X3.23-1985 / ISO 1989-1985
CORBA V2.2 References February 1998 22-53

22
22-54 CORBA V2.2 February 1998

 Mapping of OMG IDL to Ada 23

s
Contents

This chapter contains the following sections.

23.1 Overview

The Ada language mapping provides the ability to access and implement CORBA
objects in programs written in the Ada programming language (ISO/IEC 8652:1995).
The mapping is based on the definition of the ORB in Common Object Request Broker:
Architecture and Specification. The Ada language mapping uses the Ada language’
support for object oriented programming—packages, tagged types, and late
binding—to present the object model described by the CORBA Architecture and
Specification.

Section Title Page

“Overview” 23-1

“Mapping Summary” 23-2

“Other Mapping Requirements” 23-5

“Lexical Mapping” 23-6

“Mapping of IDL to Ada” 23-10

“Mapping of Pseudo-Objects to Ada” 23-36

“Server-Side Mapping” 23-43

“Predefined Language Environment: Subsystem CORBA” 23-45

“Glossary of Ada Terms” 23-65
CORBA V2.2 February 1998 23-1

23

type

r

e

The mapping specifies how CORBA objects (objects defined by IDL) are mapped to
Ada packages and types. Each CORBA object is represented by an Ada tagged
reference. The operations of mapped CORBA objects are invoked by calling primitive
subprograms defined in the package associated with that object’s CORBA interface.

23.1.1 Ada Implementation Requirements

The mapping is believed to map completely and correctly any legal set of definitions in
the IDL language to equivalent Ada definitions. The style of this mapping is natural fo
Ada and does not impact the reliability either of CORBA implementations or of clients
or servers built on the ORB. The mapping itself does not require any changes to
CORBA.

23.2 Mapping Summary

Table 23-1 summarizes the mapping of IDL constructs to Ada constructs. The
following sections elaborate on each of these constructs.

23.2.1 Interfaces and Tagged Types

Client Side

An IDL interface is mapped to an Ada package and a tagged reference type. The
package name will be mapped from the interface name. If the interface has an
enclosing scope (including a subsystem “virtual scope”), the mapped package will be a
child package of the package mapped from the enclosing scope. The mapped packag
will contain the definition of a tagged reference type for the object class, derived from
the reference type mapped from the parent IDL interface, if the IDL interface is a

Table 23-1Summary of IDL Constructs to Ada Constructs

IDL construct Ada construct

Source file Library package

Module Package (Child Package if nested)

Interface Package with Tagged Type (Child Package if
nested)

Operation Primitive Subprogram

Attribute “Set_ attribute ” and “ Get_attribute ” subpro-
grams

Inheritance:
 Single
 Multiple

 Tagged Type Inheritance
 Tagged Type Inheritance for first parent;
 cover functions with explicit widening
mmmmand narrowing for subsequent parents

Data types Ada types

Exception Exception and record type
23-2 CORBA V2.2 February 1998

23

o the

ild

ot,
e

on

pe
 type

l

pe.
subclass of another interface, or from an implementation-defined common root
reference type, CORBA.Object.Ref , if the interface is not a subclass of another
interface. This allows implementations of the mapping to offer automatic memory
management and improves the separation of an interface and its implementation.

The mapped package also contains definitions of constants, types, exceptions, and
subprograms mapped from the definitions in the interface or inherited by it.

Forward Declarations

Forward declarations result in the instantiation of a generic package that provides a
reference type that can be used until the interface is fully defined. The generic
instantiation also defines a nested generic package that is instantiated within the full
interface definition and provides conversion from the forward reference type to the full
interface reference type and vice versa. This allows clients that hold references t
interface to convert explicitly those references to the forward reference type when
required.

Server Side

The server-side mapping of an IDL interface creates a “.Impl” package that is a ch
of the client-side interface package. The package contains a declaration for the
Object type, derived from the parent interface's object type or from a common ro
CORBA.Object.Object , with a (possibly private) extension provided to allow th
implementor to specify the actual data components of the object.

23.2.2 Operations

Each operation maps to an Ada subprogram with name mapped from the operati
name. In the client-side package, the first (controlling) parameter to the operation is
the reference type for the interface. In the server side package, the controlling
parameter is a general access-to-variable type. Operations with non-void result ty
that have only in-mode parameters are mapped to Ada functions returning an Ada
mapped from the operation result type; otherwise, operations are mapped to Ada
procedures. A non-void result is returned by an added parameter to a procedure.

23.2.3 Attributes

The Ada mapping models attributes as pairs of primitive subprograms declared in an
interface package, one to set and one to get the attribute value. An attribute may be
read-only, in which case only a retrieval function is provided. The name of the retrieva
function is formed by prepending “Get_ ” to the attribute name. “Set_ ” is used to
form the names of attribute set procedures. Like operations, a first controlling
parameter is added. In client-side packages, the controlling parameter is of the
reference type, while in server-side packages, it is a general access-to-variable ty
CORBA V2.2 Mapping Summary February 1998 23-3

23

e

h

e.
fined
23.2.4 Inheritance

IDL inheritance allows an interface to be derived from other interfaces. IDL
inheritance is interface inheritance; the only associated semantics at the IDL level ar
that a child object reference has “access to” all the operations of any of its parents.
Reflection of IDL inheritance in mapped code is a function solely of the language
mapping.

Single inheritance of IDL interfaces is directly mapped to inheritance in the Ada
mapping (i.e., an interface with a parent is mapped to a tagged type that is derived
from the tagged type mapped from the parent). The definitions of types, constants, and
exceptions in the parent package are renamed or subtyped so that they are also
“inherited” in accordance with the IDL semantics.

The client-side of multiple inheritance in IDL maps to a single Ref tagged type, as wit
single inheritance, where the parent type is the first interface listed in the IDL parent
interface list. The IDL compiler must generate additional primitive subprograms that
correspond to the operations inherited from the second and subsequent parent
interfaces listed in the IDL.

23.2.5 Data Types

The mapping of types is summarized in Table 23-2.

23.2.6 Exceptions

An IDL exception maps directly to an Ada exception declaration of the same nam
The optional body of an exception maps to a type that is an extension of a prede
abstract tagged type. The components of the record will be mapped from the member

Table 23-2Summary of Mapping Types

Type(s) Mapping

Arithmetic Corresponding Ada arithmetic types

char Character

boolean Boolean

octet Interfaces.Unsigned_8

any CORBA.Any (implementation defined)

struct record with corresponding components

union discriminated record

enum enumerated type

sequence instantiation of pre-defined generic pack-
age

string Ada.Strings type

Arrays array types
23-4 CORBA V2.2 February 1998

23

e

s of

e

 these
ed by

of the exception body in a manner similar to the mapping of record types.
Implementors must provide a function that returns the exception members from th
Ada-provided Exception_Occurrence for each exception type.

23.2.7 Names and Scoping

Modules are mapped directly to packages. Nested modules map to child package
the packages mapped from the enclosing module.

This mapping supports the introduction of a subsystem name that serves as a root
virtual module for all declarations in one or more files. When specified, subsystems
create a library package.

Files (actually inclusion streams) create a package to contain the “bare” definitions
defined in IDL's global scope. The package name is formed from the concatenation of
the file name and _IDL_File .

Lexical inclusion (#include) is mapped to with clauses for the packages mapped
from the included files, modules, and interfaces.

23.3 Other Mapping Requirements

23.3.1 Implementation Considerations

The Ada language mapping can be implemented in a number of ways. Stub packages,
ORB packages, and datatype packages may vary between implementations of th
mapping. This is a natural consequence of using an object-oriented programming
language—the implementation of a package should not be visible to its user.

23.3.2 Calling Convention

Like IDL, Ada allows the passing of parameters to operations using in , out, and in
out modes and returning values as results. The Ada language mapping preserves
in/out modes in an operation’s subprogram specification. Parameters may be pass
value or by reference.

23.3.3 Memory Management

The mapping permits automatic memory management; however, the language mapping
does not specify what kind, if any, of memory management facility is provided by an
implementation.

23.3.4 Tasking

The mapping encourages implementors to provide tasking-safe access to CORBA
services.
CORBA V2.2 Other Mapping Requirements February 1998 23-5

23

ith

 may

tion

ls.

l
23.4 Lexical Mapping

This section specifies the mapping of IDL identifiers, literals, and constant
expressions.

23.4.1 Mapping of Identifiers

IDL identifiers follow rules similar to those of Ada but are more strict with regard to
case (identifiers that differ only in case are disallowed) and less restrictive regarding
the use of underscores. A conforming implementation shall map identifiers by the
following rules:

• Where “_” is followed by another underscore, replace the second underscore w
the character ‘U’.

• Where “_” is at the end of an identifier, add the character ’U’ after the underscore.

• When an IDL identifier collides with an Ada reserved word, insert the string
“IDL_” b efore the identifier.

These rules cannot guarantee that name clashes will not occur. Implementations
implement additional rules to further resolve name clashes.

23.4.2 Mapping of Literals

IDL literals shall be mapped to lexically equivalent Ada literals or semantically
equivalent expressions. The following sections describe the lexical mapping of IDL
literals to Ada literals. This information may be used to provide semantic interpreta
of the literals found in IDL constant expressions in order to calculate the value of an
IDL constant or as the basis for translating those literals into equivalent Ada litera

Integer Literals

IDL supports decimal, octal, and hexadecimal integer literals.

A decimal literal consists of a sequence of digits that does not begin with 0 (zero).
Decimal literals are lexically equivalent to Ada literal values and shall be mapped "as
is."

An octal literal consists of a leading ‘0’ followed by a sequence of octal digits (0 .. 7).
Octal constants shall be lexically mapped by prepending “8#” and appending “#” to the
IDL literal. The leading zero in the IDL literal may be deleted or kept.

A hexadecimal literal consists of “0x” or “0X” followed by a sequence of hexadecima
digits (0 .. 9, [a|A] .. [f|F]). Hexadecimal literals shall be lexically mapped to Ada
literals by deleting the leading “0x” or “0X,” prepending “16#” and appending “#.”

Floating-Point Literals

An IDL floating-point literal consists of an integer part, a decimal point, a fraction
part, an ‘e’ or ‘E,’ and an optionally signed integer exponent.
23-6 CORBA V2.2 February 1998

23

r
 the

ger

,

d by

lent
Note – IDL before version 1.2 allowed an optional type suffix [f, F, d, or D].

The integer and fraction parts consist of sequences of decimal digits. Either the intege
part or the fraction part, but not both, may be missing. Either the decimal point and
fractional part or the ‘e’ (or ‘E’) and the exponent, but not both, may be missing.

A lexically equivalent floating point literal shall be formed by appending to the inte
part (or “0” if the integer part is missing):

• a “.” (decimal point), the fraction part (or “0” if the fraction part is missing), or

• an “E” and the exponent (or “0” if the exponent is missing).

Optionally, the ending “E0” may be left off if the IDL did not have an exponent.

Note – For implementations choosing a mapping for the pre-1.2 optional type suffix
the following rule should be observed: If a type suffix is appended, the above
construction should be appended to the Ada mapping of the type suffix followed by
“ ’ (“, and a closing “)” should be appended.

Character Literals

IDL character literals are single graphic characters or escape sequences enclose
single quotes. The first form is lexically equivalent to an Ada character literal.
Table 23-3 supplies lexical equivalents for the defined escape sequences. Equiva
character literals may also be used, but are not recommended when used in
concatenation expressions.

Table 23-3Lexical Equivalents for the Defined Escape Sequences

Description IDL Escape
Sequence

ISO 646
Octal Value

Ada Lexical Mapping

newline \n 012 Ada.Characters.Latin_1.LF

horizontal tab \t 011 Ada.Characters.Latin_1.HT

vertical tab \v 013 Ada.Characters.Latin_1.VT

backspace \b 010 Ada.Characters.Latin_1.BS

carriage return \r 015 Ada.Characters.Latin_1.CR

form feed \f 014 Ada.Characters.Latin_1.FF

alert \a 007 Ada.Characters.Latin_1.BEL

backslash \\ 134 Ada.Characters.Latin_1.Reverse_
Solidus

question mark \? 077 Ada.Characters.Latin_1.Question

single quote \’ 047 Ada.Characters.Latin_1.Apostrophe
CORBA V2.2 Lexical Mapping February 1998 23-7

23

ter

 IDL

s

nt
, may
String Literals

An IDL string literal is a sequence of IDL characters surrounded by double quotes.
Adjacent string literals are concatenated. Within a string, the double quote charac
must be preceded by a ‘\’. A string literal may not contain the “nul” character.
Lexically equivalent Ada string literals shall be formed as follows:

• If the string literal does not contain escape sequences (does not contain ‘\’), the
literal is lexically equivalent to a valid Ada literal.

• If the IDL literal contains escape sequences, the string must be partitioned into
substrings. As each embedded escape sequence is encountered, three partitions must
be formed:

• one containing a substring with the contents of the string before the escape
sequence,

• one containing the escape sequence only, and

• one containing the remainder of the string.

The remainder of the string is checked (iteratively) for additional escape sequences.
The substrings containing an escape sequence must be replaced by their lexically
equivalent Ada character literals as specified in the preceding section. These substring
must be concatenated together (using the Ada “&” operator) in the original order.
Finally, adjacent strings must be concatenated.

23.4.3 Mapping of Constant Expressions

In IDL, constant expressions are used to define the values of constants in consta
declarations. A subset, those expressions that evaluate to positive integer values
also be found as:

• the maximum length of a bounded sequence,

• the maximum length of a bounded string, or as

• the fixed array size in complex declarators.

An IDL constant expression shall be mapped to an Ada static expression or a literal
with the same value as the IDL constant expression. The value of the IDL expression
must be interpreted according to the syntax and semantics in the Common Object

double quote \” 042 Ada.Characters.Latin_1.Quotation

octal number \ooo ooo Character’val(8#ooo#)

hex number \xhh Octal equiva-
lent to the
hexadecimal
number hh

Character’val(16#hh#)

Table 23-3Lexical Equivalents for the Defined Escape Sequences

Description IDL Escape
Sequence

ISO 646
Octal Value

Ada Lexical Mapping
23-8 CORBA V2.2 February 1998

23

ed

nt

lent

cion
nal
Request Broker: Architecture and Specification. The mapping may be accomplished by
interpreting the IDL constant expression yielding an equivalent Ada literal of the
required type or by building an expression containing operations on literals, scop
names, and interim results that mimic the form and semantics of the IDL literal
expression and yield the same value.

Mapping of Operators

Table 23-4 provides the correspondence between IDL operators in a valid consta
expression and semantically equivalent Ada operators. This information may be used
to provide semantic interpretation of the operators found in IDL constant expressions
or as the basis for translating expressions containing those operators into equiva
Ada expressions.

Note that the following IDL semantics (from the CORBA spec) requires some coer
of types. Differences in applicability of operators to types may force some additio
type conversions to obtain Ada expressions semantically equivalent to the IDL
expressions.

Mixed type expressions (e.g., integers mixed with floats) are illegal.

An integer constant expression is evaluated as unsigned long unless it
contains a negated integer literal or the name of an integer constant with
a negative value. In the latter case, the constant expression is evaluated as

Table 23-4IDL Operators and Semantically Equivalent Ada Operators

IDL
Operator

IDL
symbol

Applicable Types Ada
Operator

Supported by Ada Types

Integer Floating
point

Boolean Modular
Integer

Signed
Integer

Floating
Point

or | √ or √ √
xor ^ √ xor √ √
and & √ and √ √
shift << √ Interfaces.

Shift_Left
√

>> √ Interfaces.
Shift_Right

√

add + √ √ + √ √ √
- √ √ - √ √ √

multiply * √ √ * √ √ √
/ √ √ / √ √ √
% √ rem √ √ √

unary - √ √ - √ √ √
+ √ √ + √ √ √
~ √ not

-(value - 1)
√ √ √
CORBA V2.2 Lexical Mapping February 1998 23-9

23

less
ping

d

s:

 their

es.

 Ada
signed long. The computed value is coerced back to the target type in
constant initializers. It is an error if the computed value exceeds the range
of the evaluated-as type (long or unsigned long).

All floating-point literals are double, all floating-point constants are
coerced to double, and all floating-point expression are computed as
doubles. The computed double value is coerced back to the target type in
constant initializers. It is an error if this coercion fails or if any
intermediate values (when evaluating the expression) exceed the range of
double.”

23.5 Mapping of IDL to Ada

This section specifies the syntactic and semantic mapping of OMG IDL to Ada. Un
noted, the mapping is applicable to both client-side and server-side interfaces. Map
considerations unique to the server-side interface are specified in “Server-Side
Mapping” on page 23-43.

23.5.1 Names

Identifiers

The lexical mapping of IDL identifiers is specified in “Mapping of Identifiers” on
page 23-6. All identifiers in the Ada interfaces generated from IDL shall be mappe
from the corresponding IDL identifiers.

Scoped Names

Name scopes in IDL have the following corresponding Ada named declarative region

• The subsystem name, if specified, forms an Ada library package.

• The “global” name space of IDL files are mapped to Ada “_IDL_File” library
packages.

• IDL modules are mapped to Ada child packages of the packages representing their
enclosing scope.

• IDL interfaces are mapped to Ada child packages of the packages representing
enclosing scope.

• All IDL constructs scoped to an interface are accessed via Ada expanded nam
For example, if a type mode were defined in interface printer, then the Ada
type would be referred to as Printer.Mode.

These mappings allow the expanded name mechanism in Ada to be used to build
identifiers corresponding to IDL scoped names.
23-10 CORBA V2.2 February 1998

23

.
 can

ms.

iteral

y

, and

ion, if
23.5.2 IDL Files

Subsystems

Subsystems are expressed in Ada by hierarchies of packages and child packagesThe
closest corresponding construct in IDL is the “module” which defines a scope that
contain other modules, interfaces, and definitions. However, at least in Revision 1.2, a
module may not extend across a file boundary. This is a serious limitation in the ability
of a provider of a set of capabilities to prevent name clashes with other subsyste
For this reason, support for the generation of a subsystem is defined.

File Inclusion

While the Common Object Request Broker: Architecture and Specification document
states that “Text in files included with a #include directive is treated as if it
appeared in the including file,” a more natural Ada mapping for these includes is
mapping to Ada “with clauses.” This is consistent with the primary use of the
preprocessor facility which is to make available definitions from other IDL
specifications and avoids the problem of redundant Ada type declarations that a l
interpretation of the inclusion would cause.

The presence of an include directive in a file shall result in Ada with clauses to librar
units mapped from the definition in “included” files sufficient to provide visibility (as
defined by the Ada language) to all definitions referenced in included files.

Note – The simplest implementation of this requirement might be to include with
clauses for all included “file packages,” module packages, interface (sub)packages
transitively, all inclusions of the included file. However, significant readability and
maintainability benefits can be gained from withing only definitions actually used.

Comments

The handling of comments in IDL source code is not specified; however,
implementations are encouraged to transfer comment text to the generated Ada code.

Other Pre-Processing

Other preprocessing directives (other than #include) shall have the effect specified in
the CORBA specification.

Global Names

The naming scope defined by an IDL file outside of any module or interface shall be
mapped to an Ada package whose name shall be formed by removing the extens
any, from the IDL source file name and appending “_IDL_File. ” If the file is part
CORBA V2.2 Mapping of IDL to Ada February 1998 23-11

23

ee

 child

shall
ule or
le

les,

 its
g
of a subsystem, the global name scope shall be mapped as a child of the (implied)
subsystem package. If all the IDL statements in a file are enclosed by a single module
or interface definition, the generation of this “file package” is optional.

Note – Not generating the “file package” when not needed, permits operating system-
specific file naming rules to be isolated from the resulting Ada, and so is encouraged.
However, it may complicate an implementation of the withing rules for inclusion. S
above.

23.5.3 CORBA Subsystem

The Ada mapping relies on some predefined types, packages, and functions. In the
CORBA specification, these are logically defined in a module named CORBA that is
automatically accessible. All Ada compilation units generated from an IDL
specification shall have (non-direct) visibility to the CORBA subsystem (through a
with clause.)

In the examples presented in this document, CORBA definitions may be referenced
without explicit selection for simplicity. In practice, identifiers from the CORBA
module would require the CORBA package prefix.

23.5.4 Mapping Modules

Modules define a name scope and can contain the declarations of other modules,
interfaces, types, constants, and exceptions.

Top level modules (i.e., those not enclosed by other modules) shall be mapped to
packages of the subsystem package, if a subsystem is specified, or root library
packages otherwise. Modules nested within other modules or within subsystems
be mapped to child packages of the corresponding package for the enclosing mod
subsystem. The name of the generated package shall be mapped from the modu
name.

Packages mapped from modules form an enclosing name scope for enclosed modu
interfaces, or other declarations.

Declarations scoped within an IDL module shall be mapped to declarations within the
corresponding mapped Ada package.

23.5.5 Mapping for Interfaces (Client-Side Specific)

An IDL interface shall be mapped to a child package of the package associated with
enclosing name scope (if any) or to a root library package (if there is no enclosin
name scope). This “interface package” shall define a new controlled tagged type, with
name “Ref, ” used to represent object references for the mapped interface. This
reference type shall be derived from an implementation-specific type named
“CORBA.Object.Ref ” or from its parent Ref type as specified in “Interfaces and
Inheritance” on page23-13.
23-12 CORBA V2.2 February 1998

23

e

his
o the
ard
The declarations of constants, exceptions, and types scoped within interfaces shall be
mapped to declarations with the mapped Ada package.

Object Reference Types

The use of an interface type in IDL denotes an object reference. Each IDL interfac
shall be mapped to an Ada controlled type. For interface A, the object reference type
shall be named A.Ref (type Ref in Appendix A). All reference types shall be part of
CORBA.Object.Ref’CLASS (i.e., they are derived from CORBA.Object.Ref
or one of its descendants).

The IDL interface operations are defined as primitive operations of the Ada controlled
tagged type, Ref . For example, if an interface defines an operation called Op with no
parameters and My_Ref is a reference to the interface type, then a call would be
written A.Op(My_Ref) .

The Ref controlled tagged type shall release automatically its object reference when it
is deallocated, assigned a new object reference, or passes out of scope.

A reference type is a private type (i.e., its implementation is not visible to clients).

Interfaces and Inheritance

The reference type associated with a derived interface will inherit all of the operations
of all of its parents as follows:

Let C be derived from P1...P n, where for each i , Pi is an interface. Let
OP1(P i)...OP m(P i) be the operations specified for Pi . Then C's mapping will be a
package which will contain an OP(C) for each OPj (P i) where i is 2 to n. The
OPj (P 1) operations are inherited using Ada's inheritance mechanism.

Mapping Forward Declarations

In IDL, a forward declaration defines the name of an interface without defining it. T
allows definitions of interfaces that refer to each other. This presents a challenge t
mapping since Ada packages cannot “with” each other. An explicit mapping of forw
declarations is defined in order to break this withing problem.

Conforming implementations shall provide a generic package, CORBA.Forward ,
with the following specification that will be used in the mapping of forward
declarations.
CORBA V2.2 Mapping of IDL to Ada February 1998 23-13

23

e
e

tion.

ce
 nil,
with CORBA.Object;
generic
package CORBA.Forward is
 type Ref is new CORBA.Object.Ref with null record;

 generic
 type Ref_Type is new CORBA.Object.Ref with private;
 package Convert is
 function From_Forward(The_Forward : in Ref)return Ref_Type;
 function To_Forward (The_Ref : in Ref_Type)return Ref;
 end Convert;

end CORBA.Forward;

An instantiation of CORBA.Forward shall be performed for every forward
declaration of an interface. The name of the instantiation shall be the interface name
appended by “_Forward. ” All references to the forward declared interface before
the full declaration of the interface shall be mapped to the Ref type in this instantiated
package.

Within the full declaration of the forward declared interface, the nested Convert
package shall be instantiated with the actual Ref type. The name of the instantiation
shall be Convert_Forward . Implementations of the contained To_Forward and
From_Forward subprograms shall allow clients of the forward declaration package
to convert freely from the actual Ref to the forward Ref and vice versa. Clients
holding an instance of a valid reference for an interface may have to convert thos
references to the corresponding forward references for references mapped before th
actual interface declaration.

Object Reference Operations

CORBA defines three operations on any object reference: duplicate, release, and is_nil.
Note that these operations are on the object reference, not the object implementa
Conforming implementations shall provide these operations as follows:

• The Duplicate operation shall be provided by assignment in the Ada language.

• The other two operations shall be provided in the pre-defined package
CORBA.Object (see “Object” on page 23-42) as follows:

-- Duplicate unneeded, use assignment

function Is_Nil(Self : Ref) return Boolean;

procedure Release(Self : Ref’CLASS);

The Release procedure indicates that the caller will no longer access the referen
so that associated resources may be deallocated. If the given object reference is
Release does nothing. The Is_Nil operation returns True if the object reference
contains an empty reference.
23-14 CORBA V2.2 February 1998

23

ts
nts.

iew

d

 more

g

e,
Widening Object References

Widening of tagged types is supported by Ada through explicit type conversion and,
implicitly, through parameter passing and assignment. Any object reference may be
widened to the base type CORBA.Object.Ref using Ada syntax. Widening using
Ada syntax is supported for object references in the “primary line of descent” of a
particular object reference. The primary line of descent of an object reference consis
of its single or first-named parent and, recursively, their single or first-named pare

For the definitions:

COR : CORBA.Object.Ref;
My_Ref : Foo.Ref;

the Ada language provides a natural mechanism to widen object references via v
conversion:

COR := CORBA.Object.Ref(My_Ref);

An all purpose widening and narrowing method, To_Ref, is defined for all interfaces
that provide object reference operations. This function shall support widening (an
narrowing) along all lines of descent. For example, to widen an object reference to
CORBA.Object.Ref , the To_Ref method defined in the CORBA.Object package
would be used as follows :

function To_Ref (Self : Ref’CLASS) return Ref;

COR := CORBA.Object.To_Ref(My_Ref);

Narrowing Object References

Often it is necessary to convert an object reference from a more general type to a
specific, derived type. In particular, the root object reference IDL type Object must
often be narrowed to a specific interface object reference type. Conforming
implementations must provide a To_Ref primitive subprogram in each interface
package to perform and check the narrowing operation. Unlike widening, narrowin
cannot be accomplished via normal Ada language mechanisms.

Each interface mapping shall include a function with specification:

function To_Ref(The_Ref : in CORBA.Object.Ref’CLASS) return Ref;

The provided implementation shall be able to narrow any ancestor of the interfac
regardless of whether the ancestor was defined through single or multiple inheritance.
If The_Ref cannot be narrowed to the desired interface, this function shall raise
Constraint_Error .
CORBA V2.2 Mapping of IDL to Ada February 1998 23-15

23

 “nil”

d
Nil Object Reference

ORBs are required to define a special value of each object reference which identifies
an object reference that has not been given a valid value. Conceptually, this is the
value. This mapping relies on the Is_Nil function to detect unintialized object
references, and does require or allow definition of a Nil constant.

Type Object

Each occurrence of pre-defined type Object shall be mapped to
CORBA.Object.Ref .

Type Object is a full (non-pseudo) object type. However, because it is the pre-define
root type for the Object class, its implementation does not conform to the mapping
rules for interfaces and its implementation is left unspecified. See “Object” on
page 23-42 for more information.

Interface Mapping Examples

The following IDL specification:

File barn.idl

typedef long measure;
interface Feed {
 attribute measure weight;
};
interface Animal {
 enum State {SLE EPING, AWAKE};
 boolean eat(inout Feed bag);
 // returns true if animal is full
 attribute State alertness;
};
interface Horse : Animal{
 void trot(in short distance);
};
23-16 CORBA V2.2 February 1998

23

r
is mapped to these Ada packages:

with CORBA;

package Barn_IDL_FILE is
type Measure is new CORBA.Long;

end Barn_IDL_FILE;

with CORBA;
with CORBA.Object;
with Barn_IDL_FILE;
package Feed is
 type Ref is new CORBA.Object.Ref with null record;
 procedure Set_Weight
 (Self : in Ref;
 To : in Barn_IDL_FILE.Measure);
 function Get_Weight
 (Self : in Ref) return Barn_IDL_FILE.Measure;
 function To_Ref(The_Ref : in CORBA.Object.Ref’CLASS)
 return Ref;
end Feed;

with CORBA.Object;
with Feed;
package Animal is
 type Ref is new CORBA.Object.Ref with null record;
 type State is (SLEEPING, AWAKE);
 procedure Eat
 (Self : in Ref;
 Bag : in out Feed.Ref;
 Returns : out Boolean);
 -- returns true if animal is full
 procedure Set_Alertness
 (Self : in Ref;
 To : in State);
 function Get_Alertness
 (Self : in Ref) return State;
 function To_Ref(The_Ref : in CORBA.Object.Ref’CLASS)
 return Ref;
end Animal;

with Animal;

package Horse is
 type Ref is new Animal.Ref with null record;
 subtype State is Animal.State;
 procedure Trot
 (Self : in Ref;
 Distance : in CORBA.Short);
 function To_Ref(The_Ref : in CORBA.Object.Ref’CLASS)
 return Ref;
end Horse;

The following illustrates the use of the forward reference mapping to resolve circula
definitions. Consider the two files:
CORBA V2.2 Mapping of IDL to Ada February 1998 23-17

23

ch
File chicken.idl:

#ifndef CHICKEN
#define C HICKEN
interface Chicken;
#include “egg.idl”
interface Chicken {
 Egg lay();
};
#endif

File egg.idl:

#ifndef EGG
#define EGG
interface Egg;
#include “chicken.idl”
interface Egg {
 Chicken hatch();
};
#endif

This use of IDL presents a difficult problem for the Ada mapping since two Ada
packages cannot “with” each other. The solution is to define the operations in ea
interface in terms of a “forward” type; therefore, the circularity can be resolved.

package Chicken_IDL_FILE is

end Chicken_IDL_FILE;

with CORBA.Forward;

package Chicken_Forward is new CORBA.Forward;

with CORBA.Forward;
package Egg_Forward is new CORBA.Forward;

with CORBA.Object;
with Chicken_Forward;
with Egg_Forward;

package Egg is
 type Ref is new CORBA.Object.Ref with null record;
 function Hatch (Self : in Ref)

return Chicken_Forward.Ref;
package Convert is new Egg_Forward.Convert(Ref);

 function To_Ref(The_Ref : in CORBA.Object.Ref’CLASS)
 return Ref;
end Egg;
23-18 CORBA V2.2 February 1998

23
with CORBA.Object;
with Egg;
with Chicken_Forward;

package Chicken is
 type Ref is new CORBA.Object.Ref with null record;
 function Lay
 (Self : in Ref) return Egg.Ref;
 package Convert is new Chicken_Forward.Convert(Ref);
 function To_Ref(The_Ref : in CORBA.Object.Ref’CLASS)
 return Ref;
end Chicken;

The next example includes mapping of multiple inheritance.

This IDL:

interface Asset {
 ...
 void op1();
 void op2();
 ...

};
interface Vehicle {

 ...
 void op3();
 void op4();
 ...

};
interface Tank : Vehic le, A sset {

 ...
};
CORBA V2.2 Mapping of IDL to Ada February 1998 23-19

23
produces the following Ada code:

with CORBA;
package Asset is

type Ref is new CORBA.Object.Ref with null record;

procedure op1 (Self : Ref);
procedure op2 (Self : Ref);

function To_Ref (Self : CORBA.Object.Ref’CLASS)
 return Ref;
end Asset;

with CORBA;
package Vehicle is

type Ref is new CORBA.Object.Ref with null record;

procedure op3 (Self : Ref);
procedure op4 (Self : Ref);

function To_Ref (Self : CORBA.Object.Ref’CLASS)
 return Ref;
end Vehicle;

with CORBA;
with Vehicle, Asset;
package Tank is

type Ref is new Vehicle.Ref with null record;
function To_Ref (Self : CORBA.Object.Ref’CLASS)

 return Ref;
procedure op1 (Self : Ref);
procedure op2 (Self : Ref);

end Tank;

23.5.6 Mapping for Types

IDL is a typed language, but weakly typed. The following subsections specify the
mapping of IDL types to corresponding Ada types.

Ada Type Size Requirements

The sizes of the Ada types used to represent most IDL types are implementation
dependent. That is, this mapping makes no requirements as to the ’SIZE attribute for
any types except arithmetic types and string.
23-20 CORBA V2.2 February 1998

23

da

e, the

Mapping for Arithmetic Types

Several basic arithmetic types are defined in IDL. These types shall be mapped to A
(sub)types. The following Ada types shall be defined in the package “CORBA” with
correspondence to IDL types, as shown in Table 23-5.

If supported, and the supported representations conform to the requirements abov
following declarations, as shown in Table 23-6, should be used.

Use of the corresponding Interfaces.C types may not meet the requirements.

Mapping for Boolean Type

The IDL boolean type shall be mapped to the CORBA Boolean type. The package
CORBA will contain the definition of CORBA.Boolean as a subtype of
Standard.Boolean as follows:

subtype Boolean is Standard.Boolean;

For example, the following IDL definition:

typedef boolean Result_Flag;

Table 23-5Ada Types with Correspondence to IDL Types

Ada Type IDL Type Required Range and Representation

Short short integer, range -(2**15) .. (2**15 - 1)

Long long integer, range -(2**31) .. (2**31 - 1)

Unsigned_Short unsigned short integer, range 0 .. (2**16 - 1)

Unsigned_Long unsigned long integer, range 0 .. (2**32 - 1)

Float float floating point, ANSI/IEEE 754-1985
single precision

Double double floating point, ANSI/IEEE 754-1985
double precision

Char char 8 bit ISO Latin-1 (8859.1) character set

Octet octet integer, must include 0 .. 255

Table 23-6Declarations

Ada Type Definition

CORBA.Short type Short is new Interfaces.Integer_16;

CORBA.Long type Long is new Interfaces.Integer_32;

CORBA.Unsigned_Short type Unsigned_Short is new Interfaces.Unsigned_16;

CORBA.Unsigned_Long type Unsigned_Long is new Interfaces.Unsigned_32;

CORBA.Float type Float is new Interfaces.IEEE_Float_32;

CORBA.Double type Double is new Interfaces.IEEE_Float_64;

CORBA.Char subtype Char is Standard.Character;

CORBA.Octet type Octet is new Interfaces.Unsigned_8;
CORBA V2.2 Mapping of IDL to Ada February 1998 23-21

23

ed
er

n the

ray

be
e
 the
will map to

type Result_Flag is new CORBA.Boolean;

Mapping for Enumeration Types

An IDL enum type shall map directly to an Ada enumerated type with name mapp
from the IDL identifier and values mapped from and in the order of the IDL memb
list. For example, the IDL enumeration declaration:

enum Color {Red, Green, Blue};

has the following mapping:

type Color is (Red, Green, Blue);

Mapping for Structure Types

An IDL struct type shall map directly to an Ada record type with type name mapped
from the struct identifier and each component formed from each declarator in the
member list as follows:

• If the declarator is a simple_declarator, the component name shall be mapped from
the identifier in the declarator and the type shall be mapped from the type_spec.

• If the declarator is a complex_declarator, a preceding type definition shall define an
array type. The array type name shall be mapped from the identifier contained i
array_declarator prepended to “_Array.” The type definition shall be an array, over
the range(s) from 0 to one less than the fixed_array_size(s) specified in the ar
declarator, of the type mapped from the IDL type contained in the type
specification. If multiple bounds are declared, a multiple dimensional array shall
created that preserves the indexing order specified in the IDL declaration. In th
component definition, the name shall be mapped from the identifier contained in
array_declarator and the type shall be the array type.

For example, the IDL struct declaration below:

struct Example {
 long member1, member2;
 boolean member3[4] [8];
};

maps to the following:
23-22 CORBA V2.2 February 1998

23

t
type Member3_Array is array(0..3, 0..7) of CORBA.Boolean;
type Example is record
 Member1: CORBA.Long;
 Member2: CORBA.Long;
 Member3: Member3_Array;

end record;

Mapping for Union Types

An IDL union type shall map to an Ada discriminated record type. The type name shall
be mapped from the IDL identifier. The discriminant shall be formed with name
“Switch ” and shall be of type mapped from the IDL switch_type_spec. A default
value for the discriminant shall be formed from the ‘first value of the mapped
switch_type_spec. A variant shall be formed from each case contained in the
switch_body as follows:

• Discrete_choice_list: For case_labels specified by “case ” followed by a const_exp,
the const_exp defines a discrete_choice. For the “default ” case_label, the
discrete_choice is “others. ” If more than one case_label is associated with a
case, they shall be “or”ed together.

• Variant component_list: The component_list of each variant shall contain one
component formed from the element_spec using the mapping in “Mapping for
Structure Types” on page 23-22 for components.

For example, the IDL union declaration below:

union Example switch (long) {
 case 1: case 3: long Counter;
 case 2: boolean Flags [4] [8];
 default: long Unknown;
};

maps to the following:

type Flags_Array is array(0..3, 0.. 7) of Boolean;
type Example(Switch : CORBA.Long := CORBA.Long’first) is record
 case Switch is
 when 1 | 3 =>
 Counter: CORBA.Long;
 when 2 =>
 Flags: Flags_Array;
 when others =>
 Unknown : CORBA.Long;
 end case;
end record;

Mapping for Sequence Types

Two template types are predefined: sequence and string. IDL defines a sequence as a
“one-dimensional array with two characteristics: a maximum size (which is fixed a
compile time) and a length (which is determined at run time).” The syntax is:
CORBA V2.2 Mapping of IDL to Ada February 1998 23-23

23

thin
ined in

”

uence
<sequence_type> :=

“sequence” “<” <simple_type_spec> “,” <positive_int_const> “>”
“sequence” “<” <simple_type_spec> “>”

Note that a simple_type_spec can include any of the basic IDL types, any scoped
name, or any template type. Thus, sequences can also be anonymously defined wi
a nested sequence declaration. A sequence type specification can also be conta
a typedef, in a declaration of a struct member, or in a definition of a union case.

A sequence is mapped to an Ada type that behaves similarly to an unconstrained array.

Two Ada generic package specifications, CORBA.Sequences.Bounded and
CORBA.Sequences.Unbounded (see Appendix A - “Package CORBA.Sequences
on page 23-55) define the interface to the sequence type operations. Conforming
implementation of the packages defining the sequence types shall provide value
semantics for assignment (as opposed to reference semantics).

Thus, the implementation of assignment of one sequence variable to another seq
variable must first destroy the memory of the target sequence variable and then
perform a deep-copy of the second sequence variable to the target sequence variable.

Each sequence type declaration shall correspond to an instantiation of
CORBA.Sequences.Bounded or CORBA.Sequences.Unbounded , as
appropriate. The first or only actual argument will be the type mapped from the
simple_type_spec. For a bounded sequence, the second formal shall be a constant
mapped from the positive_int_constant. The name and scope of the instantiation is left
implementation defined.

The following sequence types in DrawingKit:

IDL File: drawing.idl

module Fresco {
interface DrawingKit {
 typedef sequence<octet> Data8;
 typedef sequence<long, 1024> Data32;
};
};

map to generic package instantiations, as follows:
23-24 CORBA V2.2 February 1998

23

package Fresco is
end Fresco;

with CORBA.Sequences;
with CORBA.Object;

package Fresco.DrawingKit is

 type Ref is new CORBA.Object.Ref with null record;
 type IDL_SEQUENCE_octet_Array is
 is array (Integer range <>) of CORBA.Octet;
 package IDL_SEQUENCE_octet is
 new CORBA.Sequences.Unbounded
 (CORBA.Octet, IDL_SEQUENCE_Octet_Array);
 type Data8 is new IDL_SEQUENCE_octet.Sequence;

 type IDL_SEQUENCE_long_Array is
 is array (Integer range <>) of CORBA.Long;
 package IDL_SEQUENCE_1024_long is
 new CORBA.Sequences.Bounded
 (CORBA.Long, IDL_SEQUENCE_long_Array, 1024);
 type Data32 is new IDL_SEQUENCE_1024_long.Sequence;

end Fresco.DrawingKit;

Note that for the purposes of other rules, the “type mapped from” a sequence
declaration is the “.Sequence” type of the instantiated package. This is relevant to the
rules for Typedefs (“Mapping for Typedefs” on page 23-28) and for other template
types. Thus, in the previous example, the instantiated “.Sequence ” type is followed
by a type derivation. Also, the following declaration:

typedef sequence<seq uence<octet>> Ragged8;

will map to

with CORBA.Unbounded;

...
type IDL_SEQUENCE_octet_Array is
 array (Integer range <>) of CORBA.Octet;
package IDL_SEQUENCE_octet is
 CORBA.Sequences.Unbounded
 (CORBA.Octet, IDL_SEQUENCE_octet_Array);

type IDL_SEQUENCE_SEQUENCE_octet_Array is
 array (Integer range <>) of IDL_SEQUENCE_octet.Sequence;
package IDL_SEQUENCE_SEQUENCE_octet is
 new CORBA.Sequences.Unbounded
 (IDL_SEQUENCE_octet.Sequence,
 IDL_SEQUENCE_SEQUENCE_octet_Array);

type Ragged8 is new IDL_SEQUENCE_SEQUENCE_octet.Sequence
CORBA V2.2 Mapping of IDL to Ada February 1998 23-25

23

Mapping for String Types

The IDL bounded and unbounded strings types are mapped to Ada’s predefined string
packages rooted at Ada.Strings .

An unbounded IDL string shall be mapped directly to the type CORBA.String . This
type shall be defined as:

package CORBA is
 ...
 type String is new
 Ada.Strings.Un bounded.Unbounded _String;
 ...
end CORBA;

Conforming implementations shall provide a CORBA.Bounded_Strings package
with the same specification and semantics as
Ada.Strings.Bounded.Generic_Bounded_Length.

The CORBA.Bounded_Strings package has a generic formal parameter “Max”
declared as type Positive and establishes the maximum length of the bounded
string at instantiation. A generic instantiation of the package shall be created using the
bound for the IDL string as the associated parameter. The name and scope of the
instantiation is left implementation defined.

For example, the IDL declaration:

typedef string Name;

maps to

type Name is new CORBA.String;

while the following declaration:

typedef string<512> Title;

may map to

with CORBA.Bounded_Strings;

package CORBA.Bounded_String_512 is new
 CORBA.Bounded_Strings(512);

at the library level, and

type Title is new CORBA.Bounded_String_512.Bounded_String;

in the corresponding interface package.

Mapping for Arrays

IDL defines multidimensional, fixed-size arrays by specifying a complex_declarator as
23-26 CORBA V2.2 February 1998

23

n

hall
t

• any of the declarators in a typedef,

• any of the declarators in a member of a struct, or

• the declarator in any element of a union.

A complex_declarator is formed by appending one or more array size bounds to
identifiers.

An IDL complex_declarator maps to an Ada array type definition. A type definition
shall define an array type. The array type name shall be mapped from the identifier
contained in the array_declarator prepended to “_Array.” The type definition shall be
an array, over the range(s) from 0 to one less then the fixed_array_size(s) specified i
the array declarator, of the type mapped from the IDL type contained in the type
specification. If multiple bounds are declared, a multiple dimensional array shall be
created that preserves the indexing order specified in the IDL declaration. In the
component definition, the name shall be mapped from the identifier contained in the
array_declarator and the type shall be the array type.

See“Mapping for Structure Types” on page 23-22, “Mapping for Union Types” on
page 23-23, and “Mapping for Constants” on page 23-27 for more information.

Mapping for Constants

An IDL constant shall map directly to an Ada constant. The Ada constant name s
be mapped from the identifier in the IDL declaration. The type of the Ada constan
shall be mapped from the IDL const_type as specified elsewhere in this section. The
value of the Ada constant shall be mapped from the IDL constant expression as
specified in “Mapping of Constant Expressions” on page 23-8. This mapping may
yield a semantically equivalent literal of the correct type or a syntactically equivalent
Ada expression that evaluates to the correct type and value.

For example, the following IDL constants:

const double Pi = 3.1415926535;
const short Line_Buffer_Length = 80;

shall map to

Pi : constant CORBA.Double := 3.1415926535;
Line_Buffer_Length : constant CORBA.Short := 80;

The following IDL constants:

const long Page_Buffer_Length =
 (Line_Buffer_Length * 60) + 2;
const long Legal_Pag e_Buf fer_Length = (80 * 80) + 2;

may be mapped as

Page_Buffer_Length : constant CORBA.Long := 4802;
Legal_Page_Buffer_Length : constant CORBA.Long := 6402;

or
CORBA V2.2 Mapping of IDL to Ada February 1998 23-27

23

tor

ied

ame

nd

 IDL
Page_Buffer_Length : constant CORBA.Long :=
(Line_Buffer_Length * 60) + 2;

Legal_Page_Buffer_Length : constant CORBA.Long :=
 (80 * 80) + 2;

Mapping for Typedefs

IDL typedefs introduce new names for types. An IDL typedef is formed from the
keyword “typedef, ” a type specification, and one or more declarators. A declara
may be a simple declarator consisting of an identifier, or an array declarator consisting
of an identifier and one or more fixed array sizes. An IDL typedef maps to an Ada
derived type.

Each array_declarator in a typedef shall be mapped to an array type. The array type
name shall be the identifier contained in the array_declarator. The type definition shall
be an array over the range(s) from 0 to one less than the fixed_array_size(s) specif
in the array declarator of the type mapped from the IDL type contained in the type
specification. If multiple bounds are declared, a multiple dimensional array shall be
created that preserves the indexing order specified in the IDL declaration.

Each simple declarator shall be mapped to a derived type declaration. The type n
shall be the identifier provided in the simple declarator. The type definition shall be the
mapping of the typespec, as specified previously in this section.

For example, the following IDL typedefs:

typedef string Name, St reet_Address[2];
typedef Name Empl oyee_N ame;
typedef enum Color {Red, Green, Blue} RGB;

will be mapped to

type Name is new CORBA.String;
type Street_Address is array(0 .. 1) of CORBA.String;
type Employee_Name is new Name;
type Color is (Red, Green, Blue);
type RGB is new Color;

Mapping for TypeCodes

TypeCodes are values that represent invocation argument types, attribute types, a
Object types. They can be obtained from the Interface Repository or from IDL
compilers and they have a number of uses:

• In the Dynamic Invocation interface: to indicate types of the actual arguments.

• By an Interface Repository: to represent type specifications that are part of the
declarations.

• As a crucial part of the semantics of the any type. Abstractly, TypeCodes consist of
a “kind” field and a “parameter list.”
23-28 CORBA V2.2 February 1998

23

f

d
:

The Ada mapping of TypeCode is provided by the pseudo-object
CORBA.TypeCode.Object type declared in the CORBA.TypeCode package
nested within the CORBA package (see “TypeCode” on page 23-40). Its implementation
is left unspecified. The primitive operations of TypeCode are mapped from the pseudo-
IDL contained in the CORBA specification. These operations allow the matching of
two TypeCodes, and extraction of the “kind” and “parameter list” from it. The contents
of the parameter list shall be as specified in the CORBA specification.

Note – These operations do not include the ability to construct a TypeCode. Two
TypeCodes are equal if the IDL type specifications from which they are compiled
denote equal types. One consequence of this is that all types derived from an IDL type
have equal TypeCodes.

All occurrences of type TypeCode in IDL shall be mapped to the
CORBA.TypeCode.Object type.

All conforming implementations shall be capable (if asked) of generating constants o
type CORBA.TypeCode.Object for all pre-defined and IDL-defined types. The
name of the constant shall be “TC_” prepended to the mapped type name.

23.5.7 Mapping for Any Type

An Ada mapping for the IDL type any must fulfill two different requirements:

1. Handling values whose types are known.

2. Handling values whose types are not known at implementation compile time.

The first item covers most normal usage of the any type, the conversion of typed
values into and out of an any . The second item covers situations such as those
involving the reception of a request or response containing an any that holds data of a
type unknown to the receiver when it was created with an Ada compiler.

The following specifies a set of Ada facilities that allows both of these cases to be
handled in a type safe manner.

Handling Known Types

For each distinct type T in an IDL specification, pre-defined or IDL-defined,
conforming implementations shall be capable of generating functions to insert an
extract values of that type to and from type Any. The form of these functions shall be

function From_Any(Item : in Any) return T;
function To_Any(Item : in T) return Any;

An attempt to execute From_Any on an Any value that does not contain a value of
type T shall result in the raising of Constraint_Error .

In addition, the following function shall be defined in package CORBA:
CORBA V2.2 Mapping of IDL to Ada February 1998 23-29

23

ed

fe
ue

is

 ORB

fic.

s
function Get_Type(The_Any : in Any) return TypeCode.Ref;

This function allows the discovery of the type of an Any.

Handling Unknown Types

Certain applications may receive and wish to handle objects of type Any that contain
values of a type not known at compile time, and, thus, for which a matching TypeCode
constant is not available. The TypeCode facility allows the decomposition of any
TypeCode to a point where all components of a type are of pre-defined (and thus
known) type. In order to extract the value associated with each component of this bre
of Any, conforming implementations shall provide an iterator
CORBA.Iterate_Over_Any_Elements defined as follows:

generic
 with procedure Process(The_Any : in Any;
 Continue: out Boolean);
procedure CORBA.Iterate_Over_Any_Elements(In_Any: in Any);

A conforming implementation of Iterate_Over_Any_Elements shall iteratively
call Process for each component of In_Any . The The_Any argument to Process
shall contain both the TypeCode and the value(s) of the component of the In_Any .
Each component may itself be compound and may be of previously unknown type;
therefore, the type of the component The_Any is another Any. Through the recursive
use of the iterator, the input In_Any can be decomposed to the point that all
components are of known (eventually of pre-defined) type. At that point, a type sa
conversion of the form From_Any discussed above may be applied to obtain the val
of the decomposed component.

No facilities are defined or required for composing Any values of previously unknown
types.

23.5.8 Mapping for Exception Types

An IDL exception is declared by specifying an identifier and a set of members. Th
member data contains descriptive information, accessible in the event the exception is
raised. Standard exceptions are predefined as part of IDL and can be raised by an
given the occurrence of the corresponding exceptional condition. Each standard
exception has member data that includes a minor code (a more detailed subcategory)
and a completion status. Exceptions can also be declared that are application-speci
The raising of an application-specific exception is bound to an interface operation as
part of the operation declaration. This does not imply that the corresponding
implementation for the operation must raise the exception; it merely announces that the
declared operation may raise any of the listed exception(s). A programmer has acces
to the value of the exception identifier upon a raise.

An application-specific exception is declared with a unique identifier (relative to the
scope of the declaration) and a member list that contains zero or more IDL type
declarations.
23-30 CORBA V2.2 February 1998

23

nstant

e of
Exception Identifier

The IDL exception declaration shall map directly to an Ada exception declaration
where the name of the Ada exception is mapped from the IDL exception identifier.

For example, the following IDL exception declaration:

exception null_exception{};

will map to the following Ada exception declaration:

Null_Exception: exception;

A programmer must be able to access the value of the exception identifier when an
exception is raised. A language-defined package, Ada.Exceptions , is provided by
Ada. The package contains a declaration of type Exception_Occurrence . Each
occurrence of an Ada exception is represented by a distinct value of type
Exception_Occurrence .

An Ada exception handler may contain a choice_parameter_specification .
This declares a constant object of type Exception_Occurrence . Upon the raise of
an exception, this constant represents the actual exception being handled. This co
value can be used to access the fully qualified name using the function,
Exception_Name , in the package Ada.Exceptions . Therefore, mapping an IDL
exception declaration to an Ada exception declaration provides access to the valu
the exception identifier by default.

Exception Members

Members are additional information available in the event of a raise of the
corresponding exception. Members can contain any combination of permissible IDL
types.

The following declarations shall be contained in package CORBA:

type IDL_Exception_Members is abstract tagged null record;

procedure Get_Members(From: in Ada.Exceptions.Exception_Occurrence;
 To: out IDL_Exception_Members) is abstract;

Standard Exceptions

A set of standard run-time exceptions is defined in the IDL language specification.
Each of these exceptions has the same member form. The following IDL declarations
appear for standard exceptions:

#define ex_body {unsigned long minor; completion_status completed;}
enum completion_status {COMPL ETED_YES, COMPLETED_NO,

COMPLETED_MAY BE};
enum exception_type {NO_EXCEPTION, USER_EXCE PTION,

SYSTEM_EXCEPTION};
CORBA V2.2 Mapping of IDL to Ada February 1998 23-31

23

t
e

apped
The following declarations shall exist in package CORBA:

type completion_Status is (COMPLETED_YES, COMPLETED_NO,
COMPLETED_MAYBE);

type Exception_Type is (NO_EXCEPTION, USER_EXCEPTION,
SYSTEM_EXCEPTION);

type System_Exception_Members is new IDL_Exception_Members with
record

Minor : CORBA.Long;
Completed : Completion_Status;

 end record;
procedure Get_Members(From: in Ada.Exceptions.

Exception_Occurrence;
To: out System_Exception_Members);

For each standard exception specified in the CORBA specification, a corresponding
Ada exception and exception members type derived from
System_Exception_Members shall be declared in package CORBA. However, the
name Initialization_Failure will be used for the Initialize exception to avoid
conflict with the Ada Initialize procedure.

For example, the IDL standard exception declaration below:

exception UNKNOWN ex_body;

maps to the following:

UNKNOWN: exception;
type Unknown_Members is new System_Exception_Members
 with null record;

The Unknown_Exception_Members type will be used to hold the current values
associated with the raised exception. The derived Get_Members function may be
used to access the values.

Application-Specific Exceptions

For an application-specific exception declaration, a type extended from the abstrac
type, IDL_Exception_Members , shall be declared where the type name will be th
concatenation of the exception identifier with “_Members”. Each member shall be
mapped to a component of the extension. The name used for each component shall be
mapped from the member name. The type of each exception member shall be m
from the IDL member type as specified elsewhere in this document.

The mapping shall also provide a concrete function, Get_Members , that returns the
exception members from an object of type:
23-32 CORBA V2.2 February 1998

23

ption
Ada.Exceptions.Exception_Occurrence.

Note – The use of the strings associated with Exception_Message and
Exception_Information in the language-defined package Ada.Exceptions
may be used by the implementor to “carry” the exception members. This may
effectively render these predefined subprograms useless. If so, this fact shall be
documented.

For example, the following IDL exception declaration:

exception access_error {
 long file_access_ code;
 string access_error_de scription;
 }

will map to the following:

Access_error : exception;

type Access_Error_Members is new CORBA.IDL_Exception_Members with
record

File_Access_Code : CORBA.Long;
Access_Error_Description : CORBA.String;

 end record;
procedure Get_Members(From: in Ada.Exceptions.Exception_Occurrence;

To : out Access_Error_Members);

For consistency, the Members type and the Get_Members function must be
generated even if the corresponding IDL exception has zero members. For an exce
declaration without members:

exception a_simple_exception{};

the mapping will be as follows:

A_Simple_Exception : exception;

type A_Simple_Exception_Members is new
 CORBA.IDL_Exception_Members with null record;
procedure Get_Members(From: in Ada.Exceptions.Exception_Occurrence;

To: out A_Simple_Exception_Members);

Example Use

The following interface definition:

interface stack {
 typedef long element;
 exception overflow{long upper_bound;};
 exception underflow{};
CORBA V2.2 Mapping of IDL to Ada February 1998 23-33

23
 void push (in element the_element)
 raises (overflow);
 void pop (out element the_element)
 raises (underflow);
};

maps to the following in Ada:

package Stack is

...

 type Element is new CORBA.Long;

Overflow : exception;
type Overflow_Members is new CORBA.IDL_Exception_Members with

 record
Upper_Bound : CORBA.Long;

 end record;
 procedure Get_Members(From: in Ada.Exceptions.

Exception_Occurrence;
To: out Overflow_Members;

Underflow : exception;
type Underflow_Members is new CORBA.IDL_Exception_Members

 with null record;
 function Get_Members(From: in Ada.Exceptions.

Exception_Occurrence;
To: out Underflow_Members);

...
end stack;

The following usage of the stack illustrates access to members upon an exception raise:

with Ada.Text_IO;
with Ada.Exceptions;
with Stack;
use Ada;procedure Use_stack is
 ...

The_Overflow_Members : Stack.Overflow_Members;
begin

 ...

exception
mmmwhen Stack_Error: Stack.Overflow =>

 Stack.Get_Members(Stack_Error,The_Overflow_Members;
Text_IO.Put_Line (“Exception raised is “ &

Exceptions.Exception_Name (Stack_Error));
 Text_IO.Put_Line (“exceeded upper bound = “ &

 CORBA.Long’image(The_Overflow_Members.Upper_Bound));

 ...

end Use_stack;
23-34 CORBA V2.2 February 1998

23

the

ters

he

s shall

l

is no
23.5.9 Mapping for Operations and Attributes (Client-Side Specific)

Operations shall map to an Ada subprogram with name mapped from the operation
identifier. The first argument to operation subprograms will refer to the object that
operation is being performed on. It shall be an “in ” mode argument with the name
“Self ” and shall be of the mapped object reference type, Ref .

IDL interface operations with non-void result type that have only in-mode parame
shall be mapped to Ada functions returning an Ada type mapped from the operation
result type. Otherwise, (non-void IDL interface operations that have out-mode
parameters, or void operations) operations shall be mapped to Ada procedures. T
non-void result, if any, is returned via an added argument with name “Returns. ”

If appropriate, each specified parameter in the operation declaration and the result type
shall be mapped to an argument of the mapped subprogram. The argument name
be mapped from the parameter identifier in the IDL. The argument mode shall be
preserved and the argument shall be of type mapped from the IDL type.

If an operation in an IDL specification has a context specification, then an additiona
argument with name “In_Context, ” of in mode and of type
CORBA.Context.Object (see “Context” on page 23-39) shall be added after all
IDL specified arguments and before the Returns argument, if any. The
In_Context argument shall have a default value of
CORBA.ORB.Get_Default_Context (see “ORB” on page 23-42).

Read-only attributes shall be mapped to an Ada function with name formed by
prepending “Get_ ” to the mapped attribute name. Read-write attributes shall be
mapped to an Ada function with name formed by prepending “Get_ ” to the mapped
attribute name and an Ada procedure with name formed by prepending “Set_ ” to the
mapped attribute name. The Set procedure takes a controlling parameter of object
reference type and name “Self, ” and a parameter with the same type as the attribute
and name “To. ” The Get function takes a controlling parameter only (of object
reference type and name “Self ”) and returns the type mapped from the attribute type.

IDL oneway operations are mapped the same as other operations; that is, there
way to know by looking at the Ada whether an operation is oneway or not.

Note – Implementations are encouraged to add a comment to the generated
specification that states that the operation is oneway .

The specification of exceptions for an IDL operation is not part of the generated
operation.

Examples of mapped operations and attributes may be found in “Interface Mapping
Examples” on page 23-16.
CORBA V2.2 Mapping of IDL to Ada February 1998 23-35

23

.

the
 that

d with
bjects

is

les
23.5.10 Argument Passing Considerations

The existing Ada language parameter passing conventions are followed for all types.
The mapping for in , out , and inout parameters to the Ada “in, ” “ out, ” and “in
out ” parameter modes removes the need for any special parameter passing rules.

23.5.11 Tasking Considerations

An implementation should document whether access to CORBA services is tasking-
safe. An operation is tasking-safe if two tasks within an Ada program may perform that
operation and the effect is always as if they were performed in sequence.

Unless otherwise noted, it should be assumed that a CORBA operation is not tasking-
safe, given current semantics of the CORBA specification, which is non-reentrant

For implementations which support tasking-safe operations, the implementation should
further document the blocking behavior of CORBA operations. Blocking may be at
task or program level: when an Ada task calls a CORBA operation, it is preferred
only the task, and not the whole Ada program, be blocked. Refer to the POSIX Ada
binding, IEEE-Std 1003.5-1992, for further discussion.

23.6 Mapping of Pseudo-Objects to Ada

CORBA pseudo-objects are not first class objects. There are no servers associate
pseudo objects, they are not registered with an ORB, and references to pseudo-o
are not necessarily valid across computational contexts.

This mapping provides a standard binding for the pseudo-objects, the pre-defined
environment for CORBA. Implementation of pseudo-objects are not specified in th
mapping.

Mapping Rules

In general, the pseudo-objects are mapped from the pseudo-IDL according to the ru
specified in preceding sections of this chapter.

The types representing pseudo-objects are not derived from CORBA.Object.Ref .
Ada also supports “object semantics” better than some other OOPLs. This mapping
specifies that the types associated with pseudo-objects are to be named Object and
support copy semantics in assignment. The Self parameter will be of the Object
type and in out mode, except when the operation is obviously a query-only
function, in which case the Object parameter is in mode.

Status result types are generally not needed by Ada. Conforming implementations
shall raise appropriate CORBA exceptions on detection of an error condition.

Other exceptions to these general mapping rules are noted in the following text.
23-36 CORBA V2.2 February 1998

23

 do

.
Object Semantics

Conforming implementations shall implement copy semantics for assignment of
pseudo-objects (i.e., assignment of a value of a type mapped from a pseudo-object to
another object shall result in a copy of all components of the original).

Conforming implementations shall ensure that implementations of pseudo-objects
not “leak” memory.

23.6.1 NamedValue

NamedValue is used only as an element of NVList . NamedValue contains an
optional name, an any value, and labelling flags. Legal flag values are ARG_IN,
ARG_OUT, and ARG_INOUT, in bitwise combination with IN_COPY_VALUE. The
type Flags is mapped in accordance with the mapping rules. Appropriate Flag
constants must be defined by the implementation. NamedValue is mapped to a record
in the CORBA package in conformance with the mapping.

type Flags is new CORBA.Unsigned_Long;
ARG_IN: constant Flags;
ARG_OUT: constant Flags;
ARG_INOUT: constant Flags;
IN_COPY_VALUE: constant Flags;
type NamedValue is record

Name : Identifier;
Argument : Any;
Len : Long;
Arg_Modes : Flags;

end record;

23.6.2 NVList

NVList is a list of NamedValue s. The CORBA.NVList package provides the
mapping for the NVList pseudo-object. The Ref type is the mapping for the reference
New NamedValue s may be constructed only as part of an NVList through one of
the add_item functions. An additional version of Add_Item that uses a NamedValue
argument is provided.
CORBA V2.2 Mapping of Pseudo-Objects to Ada February 1998 23-37

23

to

t of
package CORBA.NVList is

 type Object is private;

 procedure Add_Item
 (Self : in out Object;
 Item_Name : in Identifier;
 Item : in Any;
 Item_Flags : in Flags);
 procedure Add_Item
 (Self : in out Object;
 Item : in NamedValue);

 -- free and free_memory are unneeded

 procedure Get_Count
 (Self : Object;
 Count : out CORBA.Long);
private
 ... implementation defined ...
end CORBA.NVList;

23.6.3 Request

Request provides the primary support for the Dynamic Invocation Interface (DII). A
new request on a particular target object may be constructed using the
Create_Request operation in the Object interface. Arguments and contexts may
be provided to the Create_Request operation or may be added after construction
via the Add_Arg operation in the Request interface. Requests can be transferred
a server and responses obtained synchronously through the Invoke operation. The
Send operation may be used to transfer a request to a server without waiting for
results. Results, output arguments, and exceptions may be obtained later with the
Get_Response operation. The CORBA.Request package provides the Ada
interface to the Request pseudo-object and is mapped in conformance with the
mapping rules, except for the arguments to Add_Arg . The pseudo-IDL for Add_Arg
includes five arguments (a name, a TypeCode, a void * for the actual value, an
argument length, and a Flag value) that have been replaced by a single argumen
type NamedValue in the Ada mapping.
23-38 CORBA V2.2 February 1998

23

curs,
package CORBA.Request is

 type Object is private;

 procedure Add_Arg
 (Self : in out Object;
 Arg : in NamedValue);

 procedure Invoke
 (Self : in out Object;
 Invoke_Flags : in Flags);

 procedure Delete
 (Self : in out Object);

 procedure Send
 (Self : in out Object;
 Invoke_Flags : in Flags);

 procedure Get_Response
 (Self : in out Object;
 Response_Flags : in Flags);

private
 ... implementation defined ...
end CORBA.Request;

23.6.4 Context

A Context supplies optional context information associated with a method
invocation. Package CORBA.Context provides the Ada interface for this capability
and is mapped in accordance with the mapping rules. If an error in processing oc
the CORBA system exception BAD_CONTEXT is returned.

package CORBA.Context is

 type Object is limited private;

 procedure Set_One_Value
 (Self : in out Object;
 Prop_Name : in Identifier;
 Value : in CORBA.String);

 procedure Set_Values
 (Self : in out Object;
 Values : in CORBA.NVList.Object);

 procedure Get_Values
 (Self : in Object;
 Start_Scope : in Identifier;
 This_Object : in Boolean := TRUE;
 Prop_Name : in Identifier;
 Values : out CORBA.NVList.Object);
CORBA V2.2 Mapping of Pseudo-Objects to Ada February 1998 23-39

23
procedure Delete_Values
 (Self : in out Object;
 Prop_Name : in Identifier);

 procedure Create_Child
 (Self : in out Object;
 Ctx_Name : in Identifier;
 Child_Ctx : out Object);

 procedure Delete
 (Self : in Object;
 Delete_Desendents : in Boolean := FALSE);

private
 ... implementation defined ...
end CORBA.Context;

23.6.5 Principal

A Principal represents information about principals requesting operations. There
are no defined operations in the CORBA specification. Package CORBA.Principal
provides the Ada interface and is mapped in accordance with the mapping rules.
Because type Principal may be passed as a parameter, functions supporting
conversion to type Any are provided.

package CORBA.Principal is

 type Object is private;

function To_Any (From : in Object) return Any;
function From_Any(From : in Any) return Object;

function Is_Principal (Item : Any) return Boolean;

 -- implementations may add operations

end CORBA.Principal;

23.6.6 TypeCode

A TypeCode represents IDL type information. It is intimately related to type Any.
For this reason, package TypeCode that defines the Object type for TypeCode is a
subpackage nested within the CORBA package. See “Mapping for TypeCodes” on
page 23-28 for more information.
23-40 CORBA V2.2 February 1998

23
package CORBA is

 type TCKind is
 (tk_null,
 tk_void,
 tk_short,
 tk_long,
 tk_ushort,
 tk_ulong,
 tk_float,
 tk_double,
 tk_boolean,
 tk_char,
 tk_octet,
 tk_any,
 tk_TypeCode,
 tk_Principal,
 tk_objref,
 tk_struct,
 tk_union,
 tk_enum,
 tk_string,
 tk_sequence,
 tk_array);

package TypeCode is
type Object is private;

Bounds : exception;
type Bounds_Members is new CORBA.IDL_Exception_Members

 with null record;
procedure Get_Members

 (From : in Ada.Exceptions.Exception_Occurrence;
To : out Bounds_Members);

function Equal(Self : in Object; TC : in Object)
 return CORBA.Boolean;

function "="(Left, Right : in Object) return Boolean
 renames Equal;

function Kind(Self : in Object) return TCKind;

function Param_Count(Self : in Object) return CORBA.Long;

function Parameter
 (Self : in Object;
 Index : in CORBA.Long) -- note origin is 0
 return Any;

end TypeCode;
CORBA V2.2 Mapping of Pseudo-Objects to Ada February 1998 23-41

23
23.6.7 ORB

An ORB is the programmer interface to the Object Request Broker. The package
CORBA.ORB provides the Ada interface to the Request Broker. Package ORB is
specified as a finite state machine rather than an object. None of the mapped operations
contain the Self parameter specified in the pseudo-object mapping rules.

package CORBA.ORB is

 function Object_To_String
 (Obj : in CORBA.Object.Ref'CLASS)
 return CORBA.String;

 procedure String_to_Object
 (From : in CORBA.String)
 To : in out CORBA.Object.Ref’CLASS);

 procedure Create_List
 (Count : in CORBA.Long;
 New_List : out CORBA.NVList.Object);

 procedure Create_Operation_List
 (Oper : in CORBA.OperationDef.Ref;
 New_List : out CORBA.NVList.Object);

 function Get_Default_Context return CORBA.Context.Object;

end CORBA.ORB;

23.6.8 Object

Object is the root of the IDL interface hierarchy. While Object is a normal
CORBA object (not a pseudo-object), its interface is described here because it
references other pseudo-objects and its implementation will necessarily be different.
The package CORBA.Object provides the Ada interface and includes a Ref type
that is the root for client-side interfaces. See “Mapping for Interfaces (Client-Side
Specific)” on page 23-12 for more information.
23-42 CORBA V2.2 February 1998

23

da

or
package CORBA.Object is

 type Ref is tagged private;

 function To_Any (From : in Ref) return Any;
 function From_Any(From : in Any) return Ref;

 function Get_Implementation(Self : in Ref)
 return CORBA.ImplementationDef.Ref;

 function Get_Interface(Self : in Ref)
 return CORBA.InterfaceDef.Ref;

 function Is_Nil(Self : in Ref) return Boolean;
 function Is_Null(Self : in Ref) return Boolean renames Is_Nil;

 -- Duplicate unneeded, use assignment

 procedure Create_Request
 (Self : in Ref;
 Ctx : in CORBA.Context.Object;
 Operation : in Identifier;
 Arg_list : in CORBA.NVList.Object;
 Result : in out NamedValue;
 Request : out CORBA.Request.Object;
 Req_Flags : in Flags;
 Returns : out Status);

private
 ...
end CORBA.Object;

23.6.9 Environment

The Environment pseudo-object is not needed by this mapping except as a
parameter to the Get_Principa l operation in the BOA interface. The
CORBA.Environment package provides an Ada interface to which implementations
may add additional operations.

package CORBA.Environment is

 type Object is private;

private
 ... implementation defined ...
end CORBA.Environment;

23.7 Server-Side Mapping

This mapping refers to the portability constraints for an implementation written in A
as the server side mapping. The term server here is not meant to restrict
implementations to the situation where method invocations cross address space
machine boundaries. This section addresses any implementation of an IDL interface.
CORBA V2.2 Server-Side Mapping February 1998 23-43

23

o

 be

r-

e

e

d in
The current CORBA specification covers only a subset of the functionality needed t
build a server. As a consequence, it is unlikely that a conforming, working server can
be guaranteed to be portable. However, we expect the bulk of the server code to
portable from one ORB implementation to another.

23.7.1 Implementing Interfaces

The implementation of an IDL interface shall be mapped to a child package, named
Impl , of that interface’s client side interface package. The specification of this
package shall contain subprograms associated with the IDL interface’s operations and
the declaration of a record type, Object . The operation subprograms are invoked by
the ORB. The object record is used to hold member data employed by the
implementation of an interface.

If the interface has no parents, the type Object shall be declared as an (implemento
defined) extension of CORBA.Implementation_Defined .Object where
Implementation_Defined is implementation dependent. If the interface has a singl
parent, the type Object shall be an extension of the Object type mapped from the
parent interface.

23.7.2 Implementing Operations and Attributes

The parameters passed to an implementation subprogram parallel those passed to th
client side stub but the type of the Self parameter is access Object , where
Object is described above, rather than the reference type declared in the stub
package.

23.7.3 Examples

The following IDL interface:

File cultivation.idl:

#include “barn.idl”

interface Plow {
 long row();
 void attach(in short blade);
 void harness(in Horse pow er);
};

#pragma S ubsyst em(“Far m”);

causes the IDL translator to generate, in addition to the client packages discusse
previous sections, the following implementation specification:
23-44 CORBA V2.2 February 1998

23

ping.

s.
nd
with CORBA;
with CORBA.Object;
with Farm.Horse;

package Farm.Plow.Impl is

 type Object is new CORBA. Implementation_Defined .Object with
private;

 function Row
 (Self : access Object)
 return CORBA.Long;

 procedure Attach
 (Self : access Object;
 Blade : in CORBA.Short);

 procedure Harness
 (Self : access Object;
 Power : in Farm.Horse.Ref);

private

 type Object is new CORBA.Object.Object with
 record
 -- (implementation data)
 end record;

end Farm.Plow.Impl;

The placement of the object record in the private part is not mandated by this map

23.8 Predefined Language Environment: Subsystem CORBA

This appendix provides a complete specification of the CORBA package and its
children that comprise the pre-defined Ada environment which CORBA-compliant
clients and servers must be provided by compliant products.

Any references to package Implementaton_Defined shown here indicate items
that are to be defined by the implementation and should not be misinterpreted as the
required definitions for these items. All types derived from
Implementation_Defined.Opaque_Type are completely implementation
defined and should be made private. Implementations are allowed to add definitions
required by extensions of the CORBA specification implemented by ORB product
Other allowable additions include, but are not limited to, representation clauses a
additional with clauses.

23.8.1 Package CORBA
with Ada.Exceptions;

with Ada.Strings.Unbounded;

with Implementation_Defined; -- dummy package to let compile succeed

with Interfaces;

--I module CORBA {
CORBA V2.2 Predefined Language Environment: Subsystem CORBA February 199823-45

23
package CORBA is

-- CORBA Module: In order to prevent names defined with the

-- CORBA specification from clashing with names in programming languages

-- and other software systems, all names defined by CORBA are treated as

-- if they were defined with a module named CORBA.

 -- Each IDL data type is mapped to a native data
 -- type via the appropriate language mapping.
 -- The following definitions may differ. See the mapping
 -- specification for more information.
 subtype Boolean is Standard.Boolean;
 type Short is new Interfaces.Integer_16;
 type Long is new Interfaces.Integer_32;
 type Unsigned_Short is new Interfaces.Unsigned_16;
 type Unsigned_Long is new Interfaces.Unsigned_32;
 type Float is new Interfaces.IEEE_Float_32;
 type Double is new Interfaces.IEEE_Float_64;
 subtype Char is Standard.Character;
 type Octet is new Interfaces.Unsigned_8;
 type String is new Ada.Strings.Unbounded.Unbounded_String;

 -- Exceptions

 type IDL_Exception_Members is abstract tagged null record;

 procedure Get_Members(From: in Ada.Exceptions.Exception_Occurrence;
 To: out IDL_Exception_Members) is abstract;

 -- Standard Exceptions:
mmmm--I #define ex_body{ unsigned long minor, completion_status completed;}
 --I enum completion_status{COMPLETED_YES, COMPLETED_NO, COMPLETED_MAYBE};
 type Completion_Status is
 (COMPLETED_YES, COMPLETED_NO, COMPLETED_MAYBE);

 --I enum exception_type{ NO_EXCEPTION, USER_EXCEPTION, SYSTEM_EXCEPTION};
 type Exception_Type is

(NO_EXCEPTION, USER_EXCEPTION, SYSTEM_EXCEPTION);

 type Ex_Body is new CORBA.IDL_Exception_Members with record
 Minor: CORBA.Unsigned_Long;
 Completed : Completion_Status;
 end record;

 procedure Get_Members(From: in Ada.Exceptions.Exception_Occurrence;
 To: out Ex_Body);

 --I exception UNKNOWN ex_body; // the unknown exception
 UNKNOWN: exception;
 --I exception BAD_PARAM ex_body; // an invalid parameter was passed
 BAD_PARAM: exception;
 --I exception NO_MEMORY ex_body; // dynamic memory allocation failure
 NO_MEMORY: exception;
 --I exception IMP_LIMIT ex_body; // violated implementation limit
 IMP_LIMIT: exception;
 --I exception COMM_FAILURE ex_body; // communication failure
 COMM_FAILURE: exception;
 --I exception INV_OBJREF ex_body; // invalid object reference
23-46 CORBA V2.2 February 1998

23
 INV_OBJREF: exception;
 --I exception NO_PERMISSION ex_body; // no permission for attempted op.
 NO_PERMISSION: exception;
 --I exception INTERNAL ex_body; // ORB internal error
 INTERNAL: exception;
 --I exception MARSHAL ex_body; // error marshalling param/result
 MARSHAL: exception;
 --I exception INITIALIZE ex_body; // ORB initialization failure
 INITIALIZATION_FAILURE : exception;
 --I exception NO_IMPLEMENT ex_body;
 --// operation implementation unavailable
 NO_IMPLEMENT: exception;
 --I exception BAD_TYPECODE ex_body; // bad typecode
 BAD_TYPECODE: exception;
 --I exception BAD_OPERATION ex_body; // invalid operation
 BAD_OPERATION: exception;
 --I exception NO_RESOURCES ex_body; // insufficient resources for req.
 NO_RESOURCES: exception;
 --I exception NO_RESPONSE ex_body;
 --// response to request not yet available
 NO_RESPONSE: exception;
 --I exception PERSIST_STORE ex_body; // persistent storage failure
 PERSIST_STORE: exception;
 --I exception BAD_INV_ORDER ex_body; // routine invocations out of order
 BAD_INV_ORDER: exception;
 --I exception TRANSIENT ex_body;
 --// transient failure - reissue request
 TRANSIENT: exception;
 --I exception FREE_MEM ex_body; // cannot free memory
 FREE_MEM: exception;
 --I exception INV_IDENT ex_body; // invalid identifier syntax
 INV_IDENT: exception;
 --I exception INV_FLAG ex_body; // invalid flag was specified
 INV_FLAG: exception;
 --I exception INTF_REPOS ex_body;
 --// error accessing interface repository
 INTF_REPOS: exception;
 --I exception BAD_CONTEXT ex_body; // error processing context object
 BAD_CONTEXT: exception;
 --I exception OBJ_ADAPTER ex_body; // failure detected by object adapter
 OBJ_ADAPTER: exception;
 --I exception DATA_CONVERSION ex_body; // data conversion error
 DATA_CONVERSION: exception;

 -- TypeCodes

 --I enum TCKind {
 --I tk_null, tk_void,
 --I tk_short, tk_long, tk_ushort, tk_ulong,
 --I tk_float, tk_double, tk_boolean, tk_char,
 --I tk_octet, tk_any, tk_TypeCode, tk_Principal, tk_objref,
 --I tk_struct, tk_union, tk_enum, tk_string,
 --I tk_sequence, tk_array
 --I };
 type TCKind is
 (tk_null,
 tk_void,
 tk_short,
 tk_long,
 tk_ushort,
 tk_ulong,
CORBA V2.2 Predefined Language Environment: Subsystem CORBA February 199823-47

23
 tk_float,
 tk_double,
 tk_boolean,
 tk_char,
 tk_octet,
 tk_any,
 tk_TypeCode,
 tk_Principal,
 tk_objref,
 tk_struct,
 tk_union,
 tk_enum,
 tk_string,
 tk_sequence,
 tk_array);

 -- Any Type: The any type permits the specification of
 -- values that can express any IDL type.
 type Any is private;

 --I interface TypeCode {
 package TypeCode is

 type Object is private;

 --I exception Bounds {};
 Bounds : exception;
 type Bounds_Members is new CORBA.IDL_Exception_Members
 with null record;
 function Get_Members
 (X : Ada.Exceptions.Exception_Occurrence) return Bounds_Members;

 --I boolean equal (in TypeCode tc);
 function Equal(Self : in Object; TC : in Object) return CORBA.Boolean;
 function "="(Left, Right : in Object) return Boolean renames Equal;

 --I TCKind kind ();
 function Kind(Self : in Object) return TCKind;

 --I long param_count ();
 --I // The number of parameters for this TypeCode.
 function Param_Count(Self : in Object) return CORBA.Long;

 --I any parameter (in long index) raises (Bounds);
 --I // The index'th parameter. Parameters are indexed
 --I // from 0 to (param_count-1).

function Parameter
 (Self : in Object;
 Index : in CORBA.Long) -- note origin is 0

 return Any;
 --I };

 private
... implementation defined ...

 end TypeCode;

 function Get_Type(The_Any : in Any) return Typecode.Object;

 function To_Any (From : in Octet) return Any;
 function To_Any (From : in Short) return Any;
 function To_Any (From : in Long) return Any;
23-48 CORBA V2.2 February 1998

23
 function To_Any (From : in Unsigned_Short) return Any;
 function To_Any (From : in Unsigned_Long) return Any;
 function To_Any (From : in Boolean) return Any;
 function To_Any (From : in Char) return Any;
 function To_Any (From : in String) return Any;

 function From_Any (From: in Any) return Octet;
 function From_Any (From: in Any) return Short;
 function From_Any (From: in Any) return Long;
 function From_Any (From: in Any) return Unsigned_Short;
 function From_Any (From: in Any) return Unsigned_Long;
 function From_Any (From: in Any) return Boolean;
 function From_Any (From: in Any) return Char;
 function From_Any (From: in Any) return String;

 --I typedef string Identifier;
 type Identifier is new CORBA.String;

 -- Dynamic Invocation Interface
 -- Common Data Structures

 --I typedef unsigned long Flags;
 type Flags is new CORBA.Unsigned_Long;
 ARG_IN : constant Flags;
 ARG_OUT : constant Flags;
 ARG_INOUT: constant Flags;

 --I struct NamedValue {
 --I Identifier name; // argument name
 --I any argument; // argument
 --I long len; // length/count of argument value
 --I Flags arg_modes; // argument mode flags
 --I };
 type NamedValue is record
 Name : Identifier;
 Argument : Any;
 Len : Long;
 Arg_Modes : Flags;
 end record;

 OUT_LIST_MEMORY: constant Flags; -- CORBA 6.2.1
 IN_COPY_VALUE: constant Flags; -- CORBA 6.2.2
 INV_NO_RESPONSE: constant Flags; -- CORBA 6.3.1
 INV_TERM_ON_ERR: constant Flags; -- CORBA 6.3.2
 RESP_NO_WAIT: constant Flags; -- CORBA 6.3.3
 DEPENDENT_LIST: constant Flags; -- CORBA 6.4.2
 CTX_RESTRICT_SCOPE: constant Flags; -- CORBA 6.6.4

 -- Container and Contained Objects
 -- moved to child package CORBA.Repository_Root

 --I typedef unsigned long Status;
 type Status is new CORBA.Unsigned_Long;

private

 ... implementation defined ...
end CORBA;
CORBA V2.2 Predefined Language Environment: Subsystem CORBA February 199823-49

23
23.8.2 Package CORBA.Bounded_Strings;
--with Ada.Strings.Bounded;
--package CORBA.Bounded_Strings
-- renames Ada.Strings.Bounded.Generic_Bounded_Length;

Note – Because library units must be renames of library units and because
Generic_Bounded_Length is not a library unit, conforming implementations must
provide a substitute.

23.8.3 Package CORBA.Context
--I interface Context {
with CORBA.NVList;
package CORBA.Context is

 type Object is limited private;

--I Status set_one_value (
--I in Identifierprop_name, // property name to add
--I in stringvalue // property value to add
--I);
 procedure Set_One_Value
 (Self : in out Object;
 Prop_Name : in Identifier;
 Value : in CORBA.String);

--I Status set_values (
--I in NVListvalues // property values to be changed
--I);
 procedure Set_Values
 (Self : in out Object;
 Values : in CORBA.NVList.Object);

--I Status get_values (
--I in Identifierstart_scope, // search scope
--I in Flagsop_flags, // operation flags
--I in Identifierprop_name, // name of property(s) to retrieve
--I out NVListvalues // requested property(s)
--I);
 procedure Get_Values
 (Self : in out Object;
 Start_Scope : in Identifier;
 Op_Flags : in Flags;
 Prop_Name : in Identifier;
 Values : out CORBA.NVList.Object);

--I Status delete_values (
--I in Identifierprop_name // name of property(s) to delete
--I);
 procedure Delete_Values
 (Self : in out Object;
 Prop_Name : in Identifier);

--I Status create_child (
--I in Identifierctx_name, // name of context object
--I out Contextchild_ctx // newly created context object
23-50 CORBA V2.2 February 1998

23
--I);
 procedure Create_Child
 (Self : in out Object;
 Ctx_Name : in Identifier;
 Child_Ctx : out Object);

--I Status delete (
--I in Flagsdel_flags // flags controlling deletion
--I);
--I };
 procedure Delete
 (Self : in out Object;
 Del_Flags : in Flags);

private
 ... implementation defined ...
end CORBA.Context;

23.8.4 Package CORBA.Environment
--I interface Environment {};
package CORBA.Environment is

 type Object is private;

private
 ... implementation defined ...
end CORBA.Environment;

23.8.5 Package CORBA.Forward
with CORBA.Object;
generic
package CORBA.Forward is
 type Ref is new CORBA.Object.Ref with null record;

 generic
 type Ref_Type is new CORBA.Object.Ref with private;
 package Convert is
 function From_Forward(The_Forward : in Ref) return Ref_Type;
 function To_Forward (The_Ref : in Ref_Type) return Ref;
 end Convert;
private
 function To_Ref(From : in Any) return Ref;
end CORBA.Forward;

23.8.6 Package CORBA.Iterate_Over_Any_Elements
generic
 with procedure Process

 (The_Any : in Any;
 Continue : out boolean);

procedure CORBA.Iterate_Over_Any_Elements
(In_Any: in Any);
CORBA V2.2 Predefined Language Environment: Subsystem CORBA February 199823-51

23
23.8.7 Package CORBA.NVList
--I interface NVList {
package CORBA.NVList is

 type Object is private;

--I Status add_item (
--I in Identifier item_name, // name of item
--I in TypeCode item_type, // item datatype
--I in void *value, // item value
--I in long value_len, // length of item value
--I in Flags item_flags // item flags
--I);
 procedure Add_Item
 (Self : in out Object;
 Item_Name : in Identifier;
 Item : in Any;
 Item_Flags : in Flags);
 procedure Add_Item
 (Self : in out Object;
 Item : in NamedValue);

--I Status free (); -- unneeded
--I Status free_memory (); -- unneeded

--I Status get_count (
--I out longcount // number of entries in the list
--I);
 procedure Get_Count
 (Self : in Object;
 Count : out CORBA.Long);

--I };
private
 ... implementation defined ...;

end CORBA.NVList;

23.8.8 Package CORBA.Object
with CORBA.ImplementationDef;
with CORBA.InterfaceDef;
with CORBA.Context;
with CORBA.NVList;
with CORBA.Request;
--I interface Object {
package CORBA.Object is

 type Ref is tagged private;

 function To_Any(From : in Ref) return Any;
 function To_Ref(From : in Any) return Ref;

 --I ImplementationDef get_implementation();
 function Get_Implementation(Self : in Ref)
 return CORBA.ImplementationDef.Ref;

 --I InterfaceDef get_interface();
 function Get_Interface(Self : in Ref)
23-52 CORBA V2.2 February 1998

23
 return CORBA.InterfaceDef.Ref;

 --I boolean is_nil();
 function Is_Nil(Self : in Ref) return Boolean;
 function Is_Null(Self : in Ref) return Boolean renames Is_Nil;

 --I Object duplicate();
 -- use assignment

 --I void release();
 procedure Release(Self : in out Ref);

 --I Status create_request(
 --I in Context ctx,
 --I in Identifier operation,
 --I in NVList arg_list,
 --I inout NamedValue result,
 --I out Request request,
 --I in Flags req_flags
 --I);
 procedure Create_Request
 (Self : in Ref;
 Ctx : in CORBA.Context.Object;
 Operation : in Identifier;
 Arg_list : in CORBA.NVList.Object;
 Result : in out NamedValue;
 Request : out CORBA.Request.Object;
 Req_Flags : in Flags;
 Returns : out Status);

private
 ... implementation defined ...
end CORBA.Object;

23.8.9 Package CORBA.ORB
-- Converting Object References to Strings
-- interface ORB {
with CORBA.NVList;
with CORBA.OperationDef;
with CORBA.Object;
with CORBA.Context;
with CORBA.Sequences;
with CORBA.BOA;
package CORBA.ORB is

-- string object_to_string (in Object obj);
 function Object_To_String
 (Obj : in CORBA.Object.Ref'CLASS)
 return CORBA.String;

-- Object string_to_object (in string str);
 procedure String_to_Object
 (From : in CORBA.String;
 To : out CORBA.Object.Ref’CLASS);

-- Status create_list (
CORBA V2.2 Predefined Language Environment: Subsystem CORBA February 199823-53

23
-- in long count,
-- out NVListnew_list
--);
 procedure Create_List
 (Count : in CORBA.Long;
 New_List : out CORBA.NVList.Object);

-- Status create_operation_list (
-- in OperationDefoper,
-- out NVListnew_list
--);
 procedure Create_Operation_List
 (Oper : in CORBA.OperationDef.Ref;
 New_List : out CORBA.NVList.Object);

-- Status get_default_context (out Context ctx);
 function Get_Default_Context return CORBA.Context.Object;

end CORBA.ORB;

23.8.10 Package CORBA.Principal
--I Interface Principal{};
package CORBA.Principal is

 type Object is private;

 function To_Any (From : in Object) return Any;
 function From_Any(From : in Any) return Object;

 function Is_Principal (Item : Any) return Boolean;

 -- implementations may add operations

private
 ... implementation defined ...
end CORBA.Principal;

23.8.11 Package CORBA.Request
--Request Routines
--I interface Request {
package CORBA.Request is

 type Object is private;

--I Status add_arg (
--I in Identifier name, // argument name
--I in TypeCode arg_type, // argument datatype
--I in void *value, // argument value to be added
--I in long len, // length/count of argument value
--I in Flags arg_flags // argument flags
--I);
 procedure Add_Arg
 (Self : in out Object;
 Arg : in NamedValue);

--I Status invoke (
--I in Flags invoke_flags // invocation flags
23-54 CORBA V2.2 February 1998

23
--I);
 procedure Invoke
 (Self : in out Object;
 Invoke_Flags : in Flags);

--I Status delete ();
 procedure Delete
 (Self : in out Object);

--I Status send (
--I in Flags invoke_flags // invocation flags
--I);
 procedure Send
 (Self : in out Object;
 Invoke_Flags : in Flags);

--I Status get_response (
--I in Flags response_flags // response flags
--I);
 procedure Get_Response
 (Self : in out Object;
 Response_Flags : in Flags);

--I };
private
 ... implementation defined ...
end CORBA.Request;

23.8.12 Package CORBA.Sequences
package CORBA.Sequences is

--
-- CORBA.Sequences is the parent of the bounded and unbounded sequence
-- packages. Some exceptions and types common to both are declared here
-- (following the structure of Ada.Strings).
--
-- Length_Error is raised when sequence lengths are exceeded.
-- Pattern_Error is raised when a null pattern string is passed.
-- Index_Error is raised when indexes are out of range.
--

 Length_Error, Pattern_Error, Index_Error : exception;

 type Alignment is (Left, Right, Center);
 type Truncation is (Left, Right, Error);
 type Membership is (Inside, Outside);
 type Direction is (Forward, Backward);

 type Trim_End is (Left, Right, Both);

end CORBA.Sequences;
CORBA V2.2 Predefined Language Environment: Subsystem CORBA February 199823-55

23
23.8.13 Package CORBA.Sequences.Bounded

--
-- This package provides the definitions required by the IDL-to-Ada
-- mapping specification for bounded sequences.
-- This package is instantiated for each IDL bounded sequence type.
-- This package defines the sequence type and the operations upon it.
-- This package is modeled after Ada.Strings.
--
-- Most query operations are not usable until the sequence object has
-- been initialized through an assignment.
--
-- Value semantics apply to assignment, that is, assignment of a sequence
-- value to a sequence object yields a copy of the value.
--
-- The exception INDEX_ERROR is raised when indexes are not in the range
-- of the object being manipulated.
--
-- The exception CONSTRAINT_ERROR is raised when objects that have not
-- been initalized or assigned to are manipulated.
--

 generic

 type Element is private;
 Max : Positive; -- Maximum length of the bounded sequence

 package CORBA.Sequences.Bounded is

 Max_Length : constant Positive := Max;

 type Element_Array is array (Positive range <>) of Element;

 Null_Element_Array : Element_Array(1..0);

 type Sequence is private;

 Null_Sequence : constant Sequence;

 subtype Length_Range is Natural range 0 .. Max_Length;

 function Length (Source : in Sequence)
 return Length_Range;

 type Element_Array_Access is access all Element_Array;
 procedure Free(X : in out Element_Array_Access);

 --
 -- Conversion, Concatenation, and Selection Functions --
 --

 function To_Sequence
 (Source : in Element_Array;
 Drop : in Truncation := Error)
 return Sequence;

 function To_Sequence
 (Length : in Length_Range)
 return Sequence;
23-56 CORBA V2.2 February 1998

23

 function To_Element_Array (Source : in Sequence)
 return Element_Array;

 function Append
 (Left, Right : in Sequence;
 Drop : in Truncation := Error)
 return Sequence;

 function Append
 (Left : in Sequence;
 Right : in Element_Array;
 Drop : in Truncation := Error)
 return Sequence;

 function Append
 (Left : in Element_Array;
 Right : in Sequence;
 Drop : in Truncation := Error)
 return Sequence;

 function Append
 (Left : in Sequence;
 Right : in Element;
 Drop : in Truncation := Error)
 return Sequence;

 function Append
 (Left : in Element;
 Right : in Sequence;
 Drop : in Truncation := Error)
 return Sequence;

 procedure Append
 (Source : in out Sequence;
 New_Item : in Sequence;
 Drop : in Truncation := Error);

 procedure Append
 (Source : in out Sequence;
 New_Item : in Element_Array;
 Drop : in Truncation := Error);

 procedure Append
 (Source : in out Sequence;
 New_Item : in Element;
 Drop : in Truncation := Error);

 function "&" (Left, Right : in Sequence)
 return Sequence;

 function "&"
 (Left : in Sequence;
 Right : in Element_Array)
 return Sequence;

 function "&"
 (Left : in Element_Array;
 Right : in Sequence)
 return Sequence;

CORBA V2.2 Predefined Language Environment: Subsystem CORBA February 199823-57

23
 function "&"
 (Left : in Sequence;
 Right : in Element)
 return Sequence;

 function "&"
 (Left : in Element;
 Right : in Sequence)
 return Sequence;

 function Element_Of
 (Source : in Sequence;
 Index : in Positive)
 return Element;

 procedure Replace_Element
 (Source : in out Sequence;
 Index : in Positive;
 By : in Element);

 function Slice
 (Source : in Sequence;
 Low : in Positive;
 High : in Natural)
 return Element_Array;

 function "=" (Left, Right : in Sequence)
 return Boolean;

 function "="
 (Left : in Sequence;
 Right : in Element_Array)
 return Boolean;

 function "="
 (Left : in Element_Array;
 Right : in Sequence)
 return Boolean;

 -- Search functions --

 function Index
 (Source : in Sequence;
 Pattern : in Element_Array;
 Going : in Direction := Forward)
 return Natural;

 function Count
 (Source : in Sequence;
 Pattern : in Element_Array)
 return Natural;

 -- Sequence transformation subprograms --

 function Replace_Slice
 (Source : in Sequence;
 Low : in Positive;
23-58 CORBA V2.2 February 1998

23
 High : in Natural;
 By : in Element_Array;
 Drop : in Truncation := Error)
 return Sequence;

 procedure Replace_Slice
 (Source : in out Sequence;
 Low : in Positive;
 High : in Natural;
 By : in Element_Array;
 Drop : in Truncation := Error);

 function Insert
 (Source : in Sequence;
 Before : in Positive;
 New_Item : in Element_Array;
 Drop : in Truncation := Error)
 return Sequence;

 procedure Insert
 (Source : in out Sequence;
 Before : in Positive;
 New_Item : in Element_Array;
 Drop : in Truncation := Error);

 function Overwrite
 (Source : in Sequence;
 Position : in Positive;
 New_Item : in Element_Array;
 Drop : in Truncation := Error)
 return Sequence;

 procedure Overwrite
 (Source : in out Sequence;
 Position : in Positive;
 New_Item : in Element_Array;
 Drop : in Truncation := Error);

 function Delete
 (Source : in Sequence;
 From : in Positive;
 Through : in Natural)
 return Sequence;

 procedure Delete
 (Source : in out Sequence;
 From : in Positive;
 Through : in Natural);

 -- Sequence selector subprograms --

 function Head
 (Source : in Sequence;
 Count : in Natural;
 Pad : in Element;
 Drop : in Truncation := Error)
 return Sequence;

 procedure Head
CORBA V2.2 Predefined Language Environment: Subsystem CORBA February 199823-59

23
 (Source : in out Sequence;
 Count : in Natural;
 Pad : in Element;
 Drop : in Truncation := Error);

 function Tail
 (Source : in Sequence;
 Count : in Natural;
 Pad : in Element;
 Drop : in Truncation := Error)
 return Sequence;

 procedure Tail
 (Source : in out Sequence;
 Count : in Natural;
 Pad : in Element;
 Drop : in Truncation := Error);

 -- Sequence constructor subprograms --

 function "*"
 (Left : in Natural;
 Right : in Element)
 return Sequence;

 function "*"
 (Left : in Natural;
 Right : in Element_Array)
 return Sequence;

 function "*"
 (Left : in Natural;
 Right : in Sequence)
 return Sequence;

 function Replicate
 (Count : in Natural;
 Item : in Element;
 Drop : in Truncation := Error)
 return Sequence;

 function Replicate
 (Count : in Natural;
 Item : in Element_Array;
 Drop : in Truncation := Error)
 return Sequence;

 function Replicate
 (Count : in Natural;
 Item : in Sequence;
 Drop : in Truncation := Error)
 return Sequence;

 private

 ... implementation defined ...

 end CORBA.Sequences.Bounded;
23-60 CORBA V2.2 February 1998

23
23.8.14 Package CORBA.Sequences.Unbounded

-- This package provides the definitions required by the IDL-to-Ada
-- mapping specification for unbounded sequences.
-- This package is instantiated for each IDL unbounded sequence type.
-- This package defines the sequence type and the operations upon it.
-- This package is modeled after Ada.Strings.
--
-- Most query operations are not usable until the sequence object has
-- been initialized through an assignment.
--
-- Value semantics apply to assignment, that is, assignment of a sequence
-- value to a sequence object yields a copy of the value.
--
-- The exception INDEX_ERROR is raised when indexes are not in the range
-- of the object being manipulated.
--
-- The exception CONSTRAINT_ERROR is raised when objects that have not
-- been initalized or assigned to are manipulated.
--

 generic

 type Element is private;

 package CORBA.Sequences.Unbounded is

 type Element_Array is array (integer range <>) of Element;

 Null_Element_Array : Element_Array(1..0);

 type Sequence is private;

 Null_Sequence : constant Sequence;

 function Length (Source : in Sequence)
 return Natural;

 type Element_Array_Access is access all Element_Array;
 procedure Free(X : in out Element_Array_Access);

 --
 -- Conversion, Concatenation, and Selection Functions --
 --

 function To_Sequence
 (Source : in Element_Array)
 return Sequence;

 function To_Sequence
 (Length : in Natural)
 return Sequence;

 function To_Element_Array (Source : in Sequence)
 return Element_Array;

 procedure Append
 (Source : in out Sequence;
CORBA V2.2 Predefined Language Environment: Subsystem CORBA February 199823-61

23
 New_Item : in Sequence);

 procedure Append
 (Source : in out Sequence;
 New_Item : in Element_Array);

 procedure Append
 (Source : in out Sequence;
 New_Item : in Element);

 function "&" (Left, Right : in Sequence)
 return Sequence;

 function "&"
 (Left : in Sequence;
 Right : in Element_Array)
 return Sequence;

 function "&"
 (Left : in Element_Array;
 Right : in Sequence)
 return Sequence;

 function "&"
 (Left : in Sequence;
 Right : in Element)
 return Sequence;

 function "&"
 (Left : in Element;
 Right : in Sequence)
 return Sequence;

 function Element_Of
 (Source : in Sequence;
 Index : in Positive)
 return Element;

 procedure Replace_Element
 (Source : in out Sequence;
 Index : in Positive;
 By : in Element);

 function Slice
 (Source : in Sequence;
 Low : in Positive;
 High : in Natural)
 return Element_Array;

 function "=" (Left, Right : in Sequence)
 return Boolean;

 function "="
 (Left : in Element_Array;
 Right : in Sequence)
 return Boolean;

 function "="
 (Left : in Sequence;
 Right : in Element_Array)
 return Boolean;
23-62 CORBA V2.2 February 1998

23

 -- Search functions --

 function Index
 (Source : in Sequence;
 Pattern : in Element_Array;
 Going : in Direction := Forward)
 return Natural;

 function Count
 (Source : in Sequence;
 Pattern : in Element_Array)
 return Natural;

 -- Sequence transformation subprograms --

 function Replace_Slice
 (Source : in Sequence;
 Low : in Positive;
 High : in Natural;
 By : in Element_Array)
 return Sequence;

 procedure Replace_Slice
 (Source : in out Sequence;
 Low : in Positive;
 High : in Natural;
 By : in Element_Array);

 function Insert
 (Source : in Sequence;
 Before : in Positive;
 New_Item : in Element_Array)
 return Sequence;

 procedure Insert
 (Source : in out Sequence;
 Before : in Positive;
 New_Item : in Element_Array);

 function Overwrite
 (Source : in Sequence;
 Position : in Positive;
 New_Item : in Element_Array)
 return Sequence;

 procedure Overwrite
 (Source : in out Sequence;
 Position : in Positive;
 New_Item : in Element_Array);

 function Delete
 (Source : in Sequence;
 From : in Positive;
 Through : in Natural)
 return Sequence;

CORBA V2.2 Predefined Language Environment: Subsystem CORBA February 199823-63

23
 procedure Delete
 (Source : in out Sequence;
 From : in Positive;
 Through : in Natural);

 -- Sequence selector subprograms --

 function Head
 (Source : in Sequence;
 Count : in Natural;
 Pad : in Element)
 return Sequence;

 procedure Head
 (Source : in out Sequence;
 Count : in Natural;
 Pad : in Element);

 function Tail
 (Source : in Sequence;
 Count : in Natural;
 Pad : in Element)
 return Sequence;

 procedure Tail
 (Source : in out Sequence;
 Count : in Natural;
 Pad : in Element);

 -- Sequence constructor subprograms --

 function "*"
 (Left : in Natural;
 Right : in Element)
 return Sequence;

 function "*"
 (Left : in Natural;
 Right : in Element_Array)
 return Sequence;

 function "*"
 (Left : in Natural;
 Right : in Sequence)
 return Sequence;

 private

 ... implementation defined ...
 end CORBA.Sequences.Unbounded;
23-64 CORBA V2.2 February 1998

23

ry

en
t

 for a

pe

ted

 the

red
ss

me.

e
used

”
23.9 Glossary of Ada Terms

This appendix defines terms used in the document that are not defined in the glossa
of the CORBA specification. These definitions are quoted mostly from the Ada 95
Reference Manual (ISO/IEC 8652:1995).

Class A class is a set of types that is closed under derivation, which means that if a giv
type is in the class, then all types derived from that type are also in the class. The se
of types of a class share common properties, such as their primitive operations.

Clas s-wide types Class-wide types are defined for (and belong to) each derivation class rooted at a
tagged type. Given a subtype S of a tagged type T, S’Class is the subtype_mark
corresponding subtype of the tagged class-wide type T’Class. Such types are called
“class-wide” because when a formal parameter is defined to be of a class-wide ty
T’Class, an actual parameter of any type in the derivation class rooted at T is
acceptable.

Controlled type A controlled type supports user-defined assignment and finalization. Objects are
always finalized before being destroyed.

Package Packages are program units that allow the specification of groups of logically rela
entities. Typically, a package contains the declaration of a type along with the
declarations of primitive subprograms of the type, which can be called from outside
package, while the inner working remains hidden from outside users.

Primitive op erations The primitive operations of a type are the operations (such as subprograms) decla
together with the type declaration. They are inherited by other types in the same cla
of types. For a tagged type, the primitive subprograms are dispatching subprograms,
providing run-time polymorphism. A dispatching subprogram may be called with
statically tagged operands, in which case the subprogram body invoked is determined
at compile time. Alternatively, a dispatching subprogram may be called using a
dispatching call, in which case the subprogram body invoked is determined at run ti

Subsystems A library unit is a “top-level” separately compiled program unit, and is always a
package, subprogram, or generic unit. Library units may have other (logically nested)
library units as children, and may have other program units physically nested within
them. A root library unit, together with its children and grandchildren and so on, form
a subsystem.

Tagged type The values of a tagged type have a run-time type tag, which indicates the specific typ
from which the value originated. An operand of a class-wide tagged type can be
in a dispatching call; the tag indicates which subprogram body to invoke.

Withing, withs, with clause The Ada mechanism to gain visibility to a compilation unit is to include a “with
clause” naming that compilation unit. Such a compilation unit is said to be “withed” by
the current unit. Conversely, the current unit “withs” the named unit. This “withing
allows use of declarations from the “withed” unit through a “selected component”
notation consisting of the withed unit name, “.”, and the declaration name.
CORBA V2.2 Glossary of Ada Terms February 1998 23-65

23
23-66 CORBA V2.2 February 1998

Mapping of OMG IDL to Java 24
 code

kage.
This chapter describes the complete mapping of IDL into the Java language.

Examples of the mapping are provided. It should be noted that the examples are
fragments that try to illustrate only the language construct being described. Normally
they will be embedded in some module and hence will be mapped into a Java pac

Contents

This chapter contains the following sections.

Section Title Page

“Names” 24-2

“Mapping of Module” 24-3

“Mapping for Basic Types” 24-3

“Helper Classes” 24-9

“Mapping for Constant” 24-10

“Mapping for Enum” 24-11

“Mapping for Struct” 24-13

“Mapping for Union” 24-14

“Mapping for Sequence” 24-17

“Mapping for Array” 24-18

“Mapping for Interface” 24-19

“Mapping for Exception” 24-22

“Mapping for the Any Type” 24-26
 CORBA V2.2 February 1998 24-1

24

ay be

p
nce).

ese

.

,
24.1 Names

In general IDL names and identifiers are mapped to Java names and identifiers with no
change. If a name collision could be generated in the mapped Java code, the name
collision is resolved by prepending an underscore (_) to the mapped name.

In addition, because of the nature of the Java language, a single IDL construct m
mapped to several (differently named) Java constructs. The “additional” names are
constructed by appending a descriptive suffix. For example, the IDL interface foo is
mapped to the Java interface foo , and additional Java classes fooHelper and
fooHolder .

In those exceptional cases that the “additional” names could conflict with other
mapped IDL names, the resolution rule described above is applied to the other maped
IDL names (i.e., the naming and use of required “additional” names takes precede

For example, an interface whose name is fooHelper or fooHolder is mapped to
_fooHelper or _fooHolder respectively, regardless of whether an interface
named foo exists. The helper and holder classes for interface fooHelper are named
_fooHelperHelper and _fooHelperHolder .

IDL names that would normally be mapped unchanged to Java identifiers that conflict
with Java reserved words will have the collision rule applied.

24.1.1 Reserved Names

The mapping in effect reserves the use of several names for its own purposes. Th
are:

• The Java class <type>Helper , where <type> is the name of IDL user defined type

• The Java class <type>Holder , where <type> is the name of an IDL defined type
(with certain exceptions such as typedef aliases).

• The Java classes <basicJavaType>Holder , where <basicJavaType> is one of the
Java primitive datatypes that is used by one of the IDL basic datatypes (Section
“Holder Classes).

• The nested scope Java package name <interface>Package , where <interface> is
the name of an IDL interface (Section24.14, “Mapping for Certain Nested Types).

“Mapping for Certain Nested Types” 24-29

“Mapping for Typedef” 24-30

“Mapping Pseudo Objects to Java” 24-31

“Server-Side Mapping” 24-48

“Java ORB Portability Interfaces” 24-49

Section Title Page
24-2 CORBA V2.2 February 1998

24

it is

ce

va

nt

L.
• The keywords in the Java language:
abstract default if private throw
boolean do implements protected throws
break double import public transient
byte else instanceof return try
case extends int short void
catch final interface static volatile
char finally long super while
class float native switch
const for new synchronized
continue goto package this

The use of any of these names for a user defined IDL type or interface (assuming
also a legal IDL name) will result in the mapped name having an (_) prepended.

24.2 Mapping of Module

An IDL module is mapped to a Java package with the same name. All IDL type
declarations within the module are mapped to corresponding Java class or interfa
declarations within the generated package.

IDL declarations not enclosed in any modules are mapped into the (unnamed) Ja
global scope.

24.2.1 Example

// IDL
module Example {...}

// generated Java
package Example;

...

24.3 Mapping for Basic Types

24.3.1 Introduction

The following table shows the basic mapping. In some cases where there is a poteial
mismatch between an IDL type and its mapped Java type, the Exceptions column lists
the standard CORBA exceptions that may be (or is) raised. See Section 24.12,
“Mapping for Exception for details on how IDL system exceptions are mapped.

The potential mismatch can occur when the range of the Java type is “larger” than ID
The value must be effectively checked at runtime when it is marshaled as an in
parameter (or on input for an inout), e.g., Java chars are a superset of IDL chars.
CORBA V2.2 Mapping of Module February 1998 24-3

24

upport
arge

ong
JDK
It
Users should be careful when using unsigned types in Java. Because there is no s
in the Java language for unsigned types, a user is responsible for ensuring that l
unsigned IDL type values are handled correctly as negative integers in Java.

Table 24-1BASIC TYPE MAPPINGS

Future Support

In the future it is expected that the “new” extended IDL types fixed, and possibly l
double, to be supported directly by Java. Currently there is no support for them in
1.0.2, and as a practical matter, they are not yet widely supported by ORB vendors.
is expected that they would be mapped as follows:

IDL Type Java type Exceptions

boolean boolean

char char CORBA::DATA_CONVERSION

wchar char

octet byte

string java.lang.String CORBA::MARSHAL
CORBA::DATA_CONVERSION

wstring java.lang.String CORBA::MARSHAL

short short

unsigned short short

long int

unsigned long int

long long long

unsigned long long long

float float

double double

IDL Type Java type Exceptions

long double not available at
this time

fixed java.math.BigDecimal CORBA::DATA_CONVERSION
24-4 CORBA V2.2 February 1998

24

 the
t

ts

as a

.

s
Holder Classes

Support for out and inout parameter passing modes requires the use of additional
“holder” classes. These classes are available for all of the basic IDL datatypes in
org.omg.CORBA package and are generated for all named user defined types excep
those defined by typedefs.

For user defined IDL types, the holder class name is constructed by appending
Holder to the mapped (Java) name of the type.

For the basic IDL datatypes, the holder class name is the Java type name (with i
initial letter capitalized) to which the datatype is mapped with an appended Holder ,
(e.g., IntHolder .)

Each holder class has a constructor from an instance, a default constructor, and h
public instance member, value , which is the typed value. The default constructor sets
the value field to the default value for the type as defined by the Java language: false
for boolean, 0 for numeric and char types, null for strings, null for object references

In order to support portable stubs and skeletons, holder classes for user defined type
also have to implement the org.omg.CORBA.portable.Streamable interface.

The holder classes for the basic types are defined below. Note that they do not
implement the Streamable interface. They are in the org.omg.CORBA package.

// Java

package org.omg.CORBA;

final public class ShortHolder {
public short value;
public ShortHolder() {}
public ShortHolder(short initial) {

value = initial;
}

}

final public class IntHolder {
public int value;
public IntHolder() {}
public IntHolder(int initial) {

value = initial;
}

}

final public class LongHolder {
public long value;
public LongHolder() {}
public LongHolder(long initial) {

value = initial;
}

}

CORBA V2.2 Mapping for Basic Types February 1998 24-5

24
final public class ByteHolder {
public byte value;
public ByteHolder() {}
public ByteHolder(byte initial) {

value = initial;
}

}

final public class FloatHolder {
public float value;
public FloatHolder() {}
public FloatHolder(float initial) {

value = initial;
}

}

final public class DoubleHolder {
public double value;
public DoubleHolder() {}
public DoubleHolder(double initial) {

value = initial;
}

}

final public class CharHolder {
public char value;
public CharHolder() {}
public CharHolder(char initial) {

value = initial;
}

}

final public class BooleanHolder {
public boolean value;
public BooleanHolder() {}
public BooleanHolder(boolean initial) {

value = initial;
}

}

final public class StringHolder {
public java.lang.String value;
public StringHolder() {}
public StringHolder(java.lang.String initial) {

value = initial;
}

}

24-6 CORBA V2.2 February 1998

24
final public class ObjectHolder {
public org.omg.CORBA.Object value;
public ObjectHolder() {}
public ObjectHolder(org.omg.CORBA.Object initial) {

value = initial;
}

}

final public class AnyHolder {
public Any value;
public AnyHolder() {}
public AnyHolder(Any initial) {

value = initial;
}

}

final public class TypeCodeHolder {
public TypeCode value;
public typeCodeHolder() {}
public TypeCodeHolder(TypeCode initial) {

value = initial;
}

}

final public class PrincipalHolder {
public Principal value;
public PrincipalHolder() {}
public PrincipalHolder(Principal initial) {

value = initial;
}

}

The Holder class for a user defined type <foo> is shown below:

// Java
final public class <foo>Holder

implements org.omg.CORBA.portable.Streamable {

public <foo> value;
public <foo>Holder() {}
public <foo>Holder(<foo> initial) {}
public void _read(org.omg.CORBA.portable.InputStream i)

{...}
public void _write(org.omg.CORBA.portable.OutputStream o)

{...}
public org.omg.CORBA.TypeCode _type() {...}
}

CORBA V2.2 Mapping for Basic Types February 1998 24-7

24

a

a

. If

ause
Use of Java null

The Java null may only be used to represent the “null” object reference. For example,
a zero length string, rather than null must be used to represent the empty string.
Similarly for arrays.

24.3.2 Boolean

The IDL boolean constants TRUE and FALSE are mapped to the corresponding Jav
boolean literals true and false .

24.3.3 Character Types

IDL characters are 8-bit quantities representing elements of a character set while Jav
characters are 16-bit unsigned quantities representing Unicode characters. In order to
enforce type-safety, the Java CORBA runtime asserts range validity of all Java chars
mapped from IDL chars when parameters are marshaled during method invocation
the char falls outside the range defined by the character set, a
CORBA::DATA_CONVERSION exception shall be thrown.

The IDL wchar maps to the Java primitive type char .

24.3.4 Octet

The IDL type octet , an 8-bit quantity, is mapped to the Java type byte .

24.3.5 String Types

The IDL string , both bounded and unbounded variants, are mapped to
java.lang.String . Range checking for characters in the string as well as bounds
checking of the string shall be done at marshal time. Character range violations c
a CORBA::DATA_CONVERSION exception to be raised. Bounds violations cause a
CORBA:: MARSHAL exception to be raised.

The IDL wstring , both bounded and unbounded variants, are mapped to
java.lang.String . Bounds checking of the string shall be done at marshal time.
Bounds violations cause a CORBA:: MARSHAL exception to be raised.

24.3.6 Integer Types

The integer types map as shown in Table 24-1 on page 24-4.

24.3.7 Floating Point Types

The IDL float and double map as shown in Table 24-1 on page 24-4.
24-8 CORBA V2.2 February 1998

24

d
rrow
24.3.8 Future Fixed Point Types

The IDL fixed type is mapped to the Java java.math.BigDecimal class. Size
violations raises a CORBA::DATA_CONVERSION exception.

This is left for a future revision.

24.3.9 Future Long Double Types

There is no current support in Java for the IDL long double type. It is not clear at this
point whether and when this type will be added either as a primitive type, or as a new
package in java.math.* , possibly as java.math.BigFloat .

This is left for a future revision.

24.4 Helper Classes

All user defined IDL types have an additional “helper” Java class with the suffix
Helper appended to the type name generated. Several static methods needed to
manipulate the type are supplied. These include Any insert and extract operations for
the type, getting the repository id, getting the typecode, and reading and writing the
type from and to a stream.

For any user defined IDL type, <typename> , the following is the Java code generate
for the type. In addition, the helper class for a mapped IDL interface also has a na
operation defined for it.

// generated Java helper

public class <typename> Helper {
public static void

insert(org.omg.CORBA.Any a, <typename> t) {...}
public static <typename> extract(Any a) {...}
public static org.omg.CORBA.TypeCode type() {...}
public static String id() {...}
public static <typename> read(

org.omg.CORBA.portable.InputStream istream)
{...}

public static void write(
org.omg.CORBA.portable.OutputStream ostream,
<typename> value)

{...}

// only for interface helpers
public static

<typename> narrow(org.omg.CORBA.Object obj);
}

The helper class associated with an IDL interface also has the narrow method.
CORBA V2.2 Helper Classes February 1998 24-9

24
24.4.1 Examples

// IDL - named type
struct st {long f1; string f2;};

// generated Java
public class stHelper {

public static void insert(org.omg.CORBA.Any any,
st s) {...}

public static st extract(Any a) {...}
public static org.omg.CORBA.TypeCode type() {...}
public static String id() {...}
public static st read(org.omg.CORBA.InputStream is) {...}
public static void write(org.omg.CORBA.OutputStream os,

 st s) {...}
}

// IDL - typedef sequence
typedef sequence <lo ng> IntSeq;

// generated Java helper

public class IntSeqHelper {
public static void insert(org.omg.CORBA.Any any,

int[] seq);
public static int[] extract(Any a){...}
public static org.omg.CORBA.TypeCode type(){...}
public static String id(){...}
public static int[] read(

org.omg.CORBA.portable.InputStream is)
{...}

public static void write(
org.omg.CORBA.portable.OutputStream os,
int[] seq)

{...}
}

24.5 Mapping for Constant

Constants are mapped differently depending upon the scope in which they appear.

24.5.1 Constants Within An Interface

Constants declared within an IDL interface are mapped to public static final
fields in the Java interface corresponding to the IDL interface.
24-10 CORBA V2.2 February 1998

24

iler

er
Example

// IDL

module Example {
interface Face {
const long aLongerOne = -321;

};
};

// generated Java

package Example;
public interface Face {

public static final int aLongerOne = (int) (-321L);
}

24.5.2 Constants Not Within An Interface

Constants not declared within an IDL interface are mapped to a public
interface with the same name as the constant and containing a public static
final field, named value , that holds the contant’s value. Note that the Java comp
will normally inline the value when the class is used in other Java code.

Example

// IDL

module Example {
const long aLongOne = -123;

};

package Example;
public interface aLongOne {

public static final int value = (int) (-123L);
}

24.6 Mapping for Enum

An IDL enum is mapped to a Java final class with the same name as the enum
type which declares a value method, two static data members per label, an integ
conversion method, and a private constructor as follows:
CORBA V2.2 Mapping for Enum February 1998 24-11

24

 used

// generated Java

public final class <enum_name> {

// one pair for each label in the enum
public static final int _<label> = <value> ;
public static final <enum_name> <label> =

new <enum_name>(_ <label>);

public int value() {...}

// get enum with specified value
public static <enum_name> from_int(int value);

// constructor
private <enum_name>(int) { ... }

}

One of the members is a public static final that has the same name as the
IDL enum label. The other has an underscore (_) prepended and is intended to be
in switch statements.

The value method returns the integer value. Values are assigned sequentially starting
with 0. Note: there is no conflict with the value() method in Java even if there is a
label named value.

There shall be only one instance of an enum. Since there is only one instance, equality
tests will work correctly. I.E. the default java.lang.Object implementation of
equals() and hash() will automatically work correctly for an enum’s singleton
object.

The Java class for the enum has an additional method from_int() , which returns
the enum with the specified value.

The holder class for the enum is also generated. Its name is the enum’s mapped Java
classname with Holder appended to it as follows:
24-12 CORBA V2.2 February 1998

24
public class <enum_name>Holder implements
org.omg.CORBA.portable.Streamable {

public <enum_name> value;
public <enum_name>Holder() {}
public <enum_name>Holder(<enum_name> initial) {...}
public void _read(org.omg.CORBA.portable.InputStream i)

{...}
public void _write(org.omg.CORBA.portable.OutputStream o)

{...}
public org.omg.CORBA.TypeCode _type() {...}

}

24.6.1 Example

// IDL
enum EnumT ype {a, b, c};

// generated Java

public final class EnumType {

public static final int _a = 0;
public static final EnumType a = new EnumType(_a);

public static final int _b = 1;
public static final EnumType b = new EnumType(_b);

public static final int _c = 2;
public static final EnumType c = new EnumType(_c);

public int value() {...}
public static EnumType from_int(int value) {...};

// constructor
private EnumType(int) {...}

};

24.7 Mapping for Struct

An IDL struct is mapped to a final Java class with the same name that provides
instance variables for the fields in IDL member ordering and a constructor for all
values. A null constructor is also provided so that the fields can be filled in later.

The holder class for the struct is also generated. Its name is the struct’s mapped Java
classname with Holder appended to it as follows:
CORBA V2.2 Mapping for Struct February 1998 24-13

24
final public class <class> Holder implements
org.omg.CORBA.portable.Streamable {

public <class> value;
public <class> Holder() {}
public <class> Holder(<class> initial) {...}
public void _read(org.omg.CORBA.portable.InputStream i)

{...}
public void _write(org.omg.CORBA.portable.OutputStream o)

{...}
public org.omg.CORBA.TypeCode _type() {...}

}

24.7.1 Example

// IDL
struct StructType {

long field1;
string field2;

};

// generated Java
final public class StructType {

// instance variables
public int field1;
public String field2;
// constructors
public StructType() {}
public StructType(int field1, String field2)

{...}
}

final public class StructTypeHolder
implements org.omg.CORBA.portable.Streamable {

public StructType value;
public StructTypeHolder() {}
public StructTypeHolder(StructType initial) {...}
public void _read(org.omg.CORBA.portable.InputStream i)

{...}
public void _write(org.omg.CORBA.portable.OutputStream o)

{...}
public org.omg.CORBA.TypeCode _type() {...}

24.8 Mapping for Union

An IDL union is mapped to a final Java class with the same name that has:

• a default constructor

• an accessor method for the discriminator, named discriminator()

• an accessor method for each branch
24-14 CORBA V2.2 February 1998

24

r

.

r is

e

of
tion

ava
• a modifier method for branch

• a modifier method for each branch which has more than one case label.

• a default modifier method if needed

The normal name conflict resolution rule is used (prepend an “_”) for the discriminato
if there is a name clash with the mapped uniontype name or any of the field names.

The branch accessor and modifier methods are overloaded and named after the branch
Accessor methods shall raise the CORBA::BAD_OPERATION system exception if
the expected branch has not been set.

If there is more than one case label corresponding to a branch, the simple modifier
method for that branch sets the discriminant to the value of the first case label. In
addition, an extra modifier method which takes an explicit discriminator paramete
generated.

If the branch corresponds to the default case label, then the modifier method sets th
discriminant to a value that does not match any other case labels.

It is illegal to specify a union with a default case label if the set of case labels
completely covers the possible values for the discriminant. It is the responsibility
the Java code generator (e.g., the IDL complier, or other tool) to detect this situa
and refuse to generate illegal code.

A default modifier method, named default() (_default() if name conflict) is
created if there is no explicit default case label, and the set of case labels does not
completely cover the possible values of the discriminant. It will set the value of the
union to be an out-of-range value.

The holder class for the union is also generated. Its name is the union’s mapped J
classname with Holder appended to it as follows:

final public class <union_class> Holder
implements org.omg.CORBA.portable.Streamable {

public <union_class> value;
public <union_class> Holder() {}
public <union_class> Holder(<union_class> initial) {...}
public void _read(org.omg.CORBA.portable.InputStream i)

{...}
public void _write(org.omg.CORBA.portable.OutputStream o)

{...}
public org.omg.CORBA.TypeCode _type() {...}

}

CORBA V2.2 Mapping for Union February 1998 24-15

24
24.8.1 Example

// IDL
union UnionType swi tch (E numType) {

case first: long win;
 case second: short place;

case third:
case fourth: octet show;
default: boolean other;

};

// generated Java
final public class UnionType {

// constructor
public UnionType() {....}

// discriminator accessor
public <switch-type> discriminator() {....}

// win
public int win() {....}
public void win(int value) {....}

// place
public short place() {....}
public void place(short value) {....}

// show
public byte show() {....}
public void show(byte value) {....}
public void show(int discriminator, byte value){....}

// other
public boolean other() {....}
public void other(boolean value) {....}

}

final public class UnionTypeHolder
implements org.omg.CORBA.portable.Streamable {

public UnionType value;
public UnionTypeHolder() {}
public UnionTypeHolder(UnionType initial) {...}

 public void _read(org.omg.CORBA.portable.InputStream i)
{...}

public void _write(org.omg.CORBA.portable.OutputStream o)
{...}

public org.omg.CORBA.TypeCode _type() {...}
}
24-16 CORBA V2.2 February 1998

24

g,
quence
 are
24.9 Mapping for Sequence

An IDL sequence is mapped to a Java array with the same name. In the mappin
everywhere the sequence type is needed, an array of the mapped type of the se
element is used. Bounds checking shall be done on bounded sequences when they
marshaled as parameters to IDL operations, and an IDL CORBA::MARSHAL is
raised if necessary.

The holder class for the sequence is also generated. Its name is the sequence’s mapped
Java classname with Holder appended to it as follows:

final public class <sequence_class> Holder {
public <sequence_element_type> [] value;
public <sequence_class> Holder() {};
public <sequence_class> Holder(

<sequence_element_type> [] initial) {...};
public void _read(org.omg.CORBA.portable.InputStream i)

{...}
public void _write(org.omg.CORBA.portable.OutputStream o)

{...}
public org.omg.CORBA.TypeCode _type() {...}

}

24.9.1 Example

// IDL
typedef sequence< long > Unb ound edData;
typedef sequence< lo ng, 42 > B oundedData;

// generated Java

final public class UnboundedDataHolder
implements org.omg.CORBA.portable.Streamable {

public int[] value;
public UnboundedDataHolder() {};
public UnboundedDataHolder(int[] initial) {...};
public void _read(org.omg.CORBA.portable.InputStream i)

{...}
public void _write(org.omg.CORBA.portable.OutputStream o)

{...}
public org.omg.CORBA.TypeCode _type() {...}

}

CORBA V2.2 Mapping for Sequence February 1998 24-17

24

ping,

array.
n
final public class BoundedDataHolder
implements org.omg.CORBA.portable.Streamable {

public int[] value;
public BoundedDataHolder() {};
public BoundedDataHolder(int[] initial) {...};
public void _read(org.omg.CORBA.portable.InputStream i)

{...}
public void _write(org.omg.CORBA.portable.OutputStream o)

{...}
public org.omg.CORBA.TypeCode _type() {...}

}

24.10 Mapping for Array

An IDL array is mapped the same way as an IDL bounded sequence. In the map
everywhere the array type is needed, an array of the mapped type of the array element
is used. In Java, the natural Java subscripting operator is applied to the mapped
The bounds for the array are checked when the array is marshaled as an argument to a
IDL operation and a CORBA::MARSHAL exception is raised if a bounds violation
occurs. The length of the array can be made available in Java, by bounding the array
with an IDL constant, which will be mapped as per the rules for constants.

The holder class for the array is also generated. Its name is the array’s mapped Java
classname with Holder appended to it as follows:

final public class <array_class> Holder
implements org.omg.CORBA.portable.Streamable {

public <array_element_type> [] value;
public <array_class> Holder() {}
public <array_class> Holder(

<array_element_type> [] initial) {...}
public void _read(org.omg.CORBA.portable.InputStream i)

{...}
public void _write(org.omg.CORBA.portable.OutputStream o)

{...}
public org.omg.CORBA.TypeCode _type() {...}

}

24.10.1 Example

// IDL

const long ArrayBound = 42;
typedef long larray[ArrayBound];
24-18 CORBA V2.2 February 1998

24

an
.

ific

r

// generated Java

final public class larrayHolder
implements org.omg.CORBA.portable.Streamable {

public int[] value;
public larrayHolder() {}
public larrayHolder(int[] initial) {...}
public void _read(org.omg.CORBA.portable.InputStream i)

{...}
public void _write(org.omg.CORBA.portable.OutputStream o)

{...}
public org.omg.CORBA.TypeCode _type() {...}

}

24.11 Mapping for Interface

24.11.1 Basics

An IDL interface is mapped to a public Java interface with the same name, and
additional “helper” Java class with the suffix Helper appended to the interface name
The Java interface extends the (mapped) base org.omg.CORBA.Object interface.

The Java interface contains the mapped operation signatures. Methods can be invoked
on an object reference to this interface.

The helper class holds a static narrow method that allows a
org.omg.CORBA.Object to be narrowed to the object reference of a more spec
type. The IDL exception CORBA::BAD_PARAM is thrown if the narrow fails.

There are no special “nil” object references. Java null can be passed freely whereve
an object reference is expected.

Attributes are mapped to a pair of Java accessor and modifier methods. These methods
have the same name as the IDL attribute and are overloaded. There is no modifier
method for IDL readonly attributes.

The holder class for the interface is also generated. Its name is the interface’s mapped
Java classname with Holder appended to it as follows:
CORBA V2.2 Mapping for Interface February 1998 24-19

24
final public class <interface_class> Holder
implements org.omg.CORBA.portable.Streamable {

public <interface_class> value;
public <interface_class> Holder() {}
public <interface_class> Holder(

<interface_class> initial) {
value = initial;

public void _read(org.omg.CORBA.portable.InputStream i)
{...}

public void _write(org.omg.CORBA.portable.OutputStream o)
{...}

public org.omg.CORBA.TypeCode _type() {...}
}

Interface inheritance expressed in IDL is reflected directly in the Java interface
hierarchy.

Example

// IDL

module Example {
interface Face {

long method (in long arg) raises (e);
attribute long assignable;
readonly attri bute long nonassignable;

}
}

// generated Java

package Example;

public interface Face extends org.omg.CORBA.Object {
int method(int arg)

throws Example.e;
int assignable();
void assignable(int i);
int nonassignable();

}

public class FaceHelper {

// ... other standard helper methods

public static Face narrow(org.omg.CORBA.Object obj)
{...}

}

24-20 CORBA V2.2 February 1998

24

al

g

value)
final public class FaceHolder
implements org.omg.CORBA.portable.Streamable {

public Face value;
public FaceHolder() {}
public FaceHolder(Face initial) {...}
public void _read(org.omg.CORBA.portable.InputStream i)

{...}
public void _write(org.omg.CORBA.portable.OutputStream o)

{...}
public org.omg.CORBA.TypeCode _type() {...}

}

24.11.2 Parameter Passing Modes

IDL in parameters which implement call-by-value semantics, are mapped to norm
Java actual parameters. The results of IDL operations are returned as the result of the
corresponding Java method.

IDL out and inout parameters, which implement call-by-result and call-by-
value/result semantics, cannot be mapped directly into the Java parameter passin
mechanism. This mapping defines additional holder classes for all the IDL basic and
user-defined types which are used to implement these parameter modes in Java. The
client supplies an instance of the appropriate holder Java class that is passed (by
for each IDL out or inout parameter. The contents of the holder instance (but not the
instance itself) are modified by the invocation, and the client uses the (possibly)
changed contents after the invocation returns.

Example

// IDL

module Example {
interface Modes {

long operation(in long inArg,
out long outArg,
inout long inoutArg);

};
};
CORBA V2.2 Mapping for Interface February 1998 24-21

24

eters

er
by
g
alue
ut
 the

// Generated Java

package Example;

public interface Modes {
int operation(int inArg,

IntHolder outArg,
IntHolder inoutArg);

}

In the above, the result comes back as an ordinary result and the actual in param
only an ordinary value. But for the out and inout parameters, an appropriate holder
must be constructed. A typical use case might look as follows:

// user Java code

// select a target object
Example.Modes target = ...;

// get the in actual value
int inArg = 57;

// prepare to receive out
IntHolder outHolder = new IntHolder();

// set up the in side of the inout
IntHolder inoutHolder = new IntHolder(131);

// make the invocation
int result =target.operation(inArg, outHolder, inoutHolder);

// use the value of the outHolder
... outHolder.value ...

// use the value of the inoutHolder
... inoutHolder.value ...

Before the invocation, the input value of the inout parameter must be set in the hold
instance that will be the actual parameter. The inout holder can be filled in either
constructing a new holder from a value, or by assigning to the value of an existin
holder of the appropriate type. After the invocation, the client uses the outHolder.v
to access the value of the out parameter, and the inoutHolder.value to access the outp
value of the inout parameter. The return result of the IDL operation is available as
result of the invocation.

24.12 Mapping for Exception

IDL exceptions are mapped very similarly to structs. They are mapped to a Java class
that provides instance variables for the fields of the exception and constructors.
24-22 CORBA V2.2 February 1998

24

ce)
pping

g IDL
CORBA system exceptions are unchecked exceptions. They inherit (indirectly) from
java.lang.RuntimeException .

User defined exceptions are checked exceptions. They inherit (indirectly) from
java.lang.Exception

Figure 24-1 Inheritance of Java Exception Classes

24.12.1 User Defined Exceptions

User defined exceptions are mapped to final Java classes that extend
org.omg.CORBA.UserException and are otherwise mapped just like the IDL
struct type, including the generation of Helper and Holder classes.

If the exception is defined within a nested IDL scope (essentially within an interfa
then its Java class name is defined within a special scope. See Section 24.14, “Ma
for Certain Nested Types for more details. Otherwise its Java class name is defined
within the scope of the Java package that corresponds to the exception’s enclosin
module.

Example

// IDL

module Example {
exception ex1 { string reason; };

};

// Generated Java

package Example;
final public class ex1 extends org.omg.CORBA.UserException {

public String reason; // instance
public ex1() {...} // default constructor
public ex1(String r) {...} // constructor

}

java.lang.Exception

org.omg.CORBA.UserException java.lang.RuntimeException

org.omg.CORBA.SystemException
userException1
CORBA V2.2 Mapping for Exception February 1998 24-23

24

e

0

 other
final public class ex1Holder
implements org.omg.CORBA.portable.Streamable {

public ex1 value;
public ex1Holder() {}
public ex1Holder(ex1 initial) {...}
public void _read(org.omg.CORBA.portable.InputStream i)

{...}
public void _write(org.omg.CORBA.portable.OutputStream o)

{...}
public org.omg.CORBA.TypeCode _type() {...}

}

24.12.2 System Exceptions

The standard IDL system exceptions are mapped to final Java classes that extend
org.omg.CORBA.SystemException and provide access to the IDL major and
minor exception code, as well as a string describing the reason for the exception.Not
there are no public constructors for org.omg.CORBA.SystemException ; only
classes that extend it can be instantiated.

The Java class name for each standard IDL exception is the same as its IDL name and
is declared to be in the org.omg.CORBA package. The default constructor supplies
for the minor code, COMPLETED_NO for the completion code, and ““ for the reason
string. There is also a constructor which takes the reason and uses defaults for the
fields, as well as one which requires all three parameters to be specified. The mapping
from IDL name to Java class name is listed in the table below:

Table 24-2Mapping of IDL Standard Exceptions

IDL Exception Java Class Name
CORBA::UNKNOWN org.omg.CORBA.UNKNOWN

CORBA::BAD_PARAM org.omg.CORBA.BAD_PARAM

CORBA::NO_MEMORY org.omg.CORBA.NO_MEMORY

CORBA::IMP_LIMIT org.omg.CORBA.IMP_LIMIT

CORBA::COMM_F AILURE org.omg.CORBA.COMM_FAILURE

CORBA::INV_OBJREF org.omg.CORBA.INV_OBJREF

CORBA::NO_PERMISSION org.omg.CORBA.NO_PERMISSION

CORBA::INTERNAL org.omg.CORBA.INTERNAL

CORBA:: MARSHAL org.omg.CORBA.MARSHAL

CORBA:: INITIALIZE org.omg.CORBA.INITIALIZE

CORBA:: NO_IMPLEMENT org.omg.CORBA.NO_IMPLEMENT

CORBA:: BAD_TYPECODE org.omg.CORBA.BAD_TYPECODE

CORBA:: BAD_OPERATION org.omg.CORBA.BAD_OPERATION

CORBA:: NO_RESOURCES org.omg.CORBA.NO_RESOURCES

CORBA:: NO_RESPONSE org.omg.CORBA.NO_RESPONSE
24-24 CORBA V2.2 February 1998

24
The definitions of the relevant classes are specified below.

// from org.omg.CORBA package

package org.omg.CORBA;

public final class CompletionStatus {
// Completion Status constants
public static final int _COMPLETED_YES = 0,

_COMPLETED_NO = 1,
_COMPLETED_MAYBE = 2;

public static final CompletionStatus COMPLETED_YES =
new CompletionStatus(_COMPLETED_YES);

public static final CompletionStatus COMPLETED_NO =
new CompletionStatus(_COMPLETED_NO);

public static final CompletionStatus COMPLETED_MAYBE =
new CompletionStatus(_COMPLETED_MAYBE);

public int value() {...}
public static final CompletionStatus from_int(int) {...}
private CompletionStatus(int) {...}

}

CORBA:: PERSIST_STORE org.omg.CORBA.PERSIST_STORE

CORBA:: BAD_INV_ORDER org.omg.CORBA.BAD_INV_ORDER

CORBA:: TRANSIENT org.omg.CORBA.TRANSIENT

CORBA:: FREE_MEM org.omg.CORBA.FREE_MEM

CORBA:: INV_IDENT org.omg.CORBA.INV_IDENT

CORBA:: INV_FLAG org.omg.CORBA.INV_FLAG

CORBA:: INTF_REPOS org.omg.CORBA.INTF_REPOS

CORBA:: BAD_CONTEXT org.omg.CORBA.BAD_CONTEXT

CORBA::OB J_ADAPTER org.omg.CORBA.OBJ_ADAPTER

CORBA::DATA_CONVERSION org.omg.CORBA.DATA_CONVERSION

CORBA::OBJECT_NOT_EXIST org.omg.CORBA.OBJECT_NOT_EXIST

CORBA::TRANSACTIONREQUIRED org.omg.CORBA.TRANSACTIONREQUIRED

CORBA:: TRANSACTIONROLLEDBACK org.omg.CORBA.TRANSACTIONROLL EDBA
CK

CORBA:: INVALIDTRANSACTION org.omg.CORBA.INVALIDTRANSACTION

Table 24-2Mapping of IDL Standard Exceptions

IDL Exception Java Class Name
CORBA V2.2 Mapping for Exception February 1998 24-25

24

r to
an

erly
abstract public class
SystemException extends java.lang.RuntimeException {

public int minor;
public CompletionStatus completed;
// constructor
protected SystemException(String reason,

int minor,
CompletionStatus status) {

super(reason);
this.minor = minor;
this.status = status;

}
}

final public class
UNKNOWN extends org.omg.CORBA.SystemException {
public UNKNOWN() ...
public UNKNOWN(int minor, CompletionStatus completed) ...
public UNKNOWN(String reason) ...
public UNKNOWN(String reason, int minor,

CompletionStatus completed)...
}

...

// there is a similar definition for each of the standard
// IDL system exceptions listed in the table above

24.13 Mapping for the Any Type

The IDL type Any maps to the Java class org.omg.CORBA.Any . This class has all
the necessary methods to insert and extract instances of predefined types. If the
extraction operations have a mismatched type, the CORBA::BAD_OPERATION
exception is raised.

In addition, insert and extract methods which take a holder class are defined in orde
provide a high speed interface for use by portable stubs and skeletons. There is
insert and extract method defined for each primitive IDL type as well as a pair for a
generic streamable to handle the case of non-primitive IDL types. Note that to preserve
unsigned type information unsigned methods (which use the normal holder class) are
defined where appropriate.

The insert operations set the specified value and reset the any’s type if necessary.

Setting the typecode via the type() accessor wipes out the value. An attempt to
extract before the value is set will result in a CORBA::BAD_OPERATION exception
being raised. This operation is provided primarily so that the type may be set prop
for IDL out parameters.
24-26 CORBA V2.2 February 1998

24
package org.omg.CORBA;

abstract public class Any {

abstract public boolean equal(org.omg.CORBA.Any a);

// type code accessors
abstract public org.omg.CORBA.TypeCode type();
abstract public void type(org.omg.CORBA.TypeCode t);

// read and write values to/from streams
// throw excep when typecode inconsistent with value
abstract public void read_value(

org.omg.CORBA.portable.InputStream is,
org.omg.CORBA.TypeCode t) throws org.omg.CORBA.MARSHAL;

abstract public void
write_value(org.omg.CORBA.portable.OutputStream os);

abstract public org.omg.CORBA.portable.OutputStream
create_output_stream();

abstract public org.omg.CORBA.portable.InputStream
create_input_stream();

// insert and extract each primitive type

abstract public short extract_short()
throws org.omg.CORBA.BAD_OPERATION;

abstract public void insert_short(short s);

abstract public int extract_long()
throws org.omg.CORBA.BAD_OPERATION;

abstract public void insert_long(int i);

abstract public long extract_longlong()
 throws org.omg.CORBA.BAD_OPERATION;

abstract public void insert_longlong(long l);

abstract public short extract_ushort()
throws org.omg.CORBA.BAD_OPERATION;

abstract public void insert_ushort(short s);

abstract public int extract_ulong()
throws org.omg.CORBA.BAD_OPERATION;

abstract public void insert_ulong(int i);

abstract public long extract_ulonglong()
throws org.omg.CORBA.BAD_OPERATION;

abstract public void insert_ulonglong(long l);
CORBA V2.2 Mapping for the Any Type February 1998 24-27

24
abstract public float extract_float()
throws org.omg.CORBA.BAD_OPERATION;

abstract public void insert_float(float f);

abstract public double extract_double()
throws org.omg.CORBA.BAD_OPERATION;

abstract public void insert_double(double d);

abstract public boolean extract_boolean()
throws org.omg.CORBA.BAD_OPERATION;

abstract public void insert_boolean(boolean b);

abstract public char extract_char()
throws org.omg.CORBA.BAD_OPERATION;

abstract public void insert_char(char c)
throws org.omg.CORBA.DATA_CONVERSION;

abstract public char extract_wchar()
throws org.omg.CORBA.BAD_OPERATION;

abstract public void insert_wchar(char c);

abstract public byte extract_octet()
throws org.omg.CORBA.BAD_OPERATION;

abstract public void insert_octet(byte b);

abstract public org.omg.CORBA.Any extract_any()
throws org.omg.CORBA.BAD_OPERATION;

abstract public void insert_any(org.omg.CORBA.Any a);

abstract public org.omg.CORBA.Object extract_Object()
throws org.omg.CORBA.BAD_OPERATION;

abstract public void insert_Object(
org.omg.CORBA.Object o);

// throw excep when typecode inconsistent with value
abstract public void insert_Object(

org.omg.CORBA.Object o,
org.omg.CORBA.TypeCode t)

throws org.omg.CORBA.MARSHAL;

abstract public String extract_string()
throws org.omg.CORBA.BAD_OPERATION;

abstract public void insert_string(String s)
throws org.omg.CORBA.DATA_CONVERSION, org.omg.CORBA.MAR-

SHAL;

abstract public String extract_wstring()
throws org.omg.CORBA.BAD_OPERATION;

abstract public void insert_wstring(String s)
throws org.omg.CORBA.MARSHAL;
24-28 CORBA V2.2 February 1998

24

s to
 that

ted by
// insert and extract typecode

abstract public org.omg.CORBA.TypeCode extract_TypeCode()
throws org.omg.CORBA.BAD_OPERATION;

abstract public voidinsert_TypeCode(
org.omg.CORBA.TypeCode t);

// insert and extract Principal

abstract public org.omg.CORBA.Principal extract_Principal()
throws org.omg.CORBA.BAD_OPERATION;

abstract public void insert_Principal(
org.omg.CORBA.Principal p);

// insert non-primitive IDL types

abstract public void insert_Streamable(
org.omg.CORBA.portable.Streamable s);

}

24.14 Mapping for Certain Nested Types

IDL allows type declarations nested within interfaces. Java does not allow classe
be nested within interfaces. Hence those IDL types that map to Java classes and
are declared within the scope of an interface must appear in a special “scope” package
when mapped to Java.

IDL interfaces that contain these type declarations will generate a scope package to
contain the mapped Java class declarations. The scope package name is construc
appending Package to the IDL type name.

24.14.1 Example

// IDL

module Example {
interface Foo {

exception e1 {};
};

};
CORBA V2.2 Mapping for Certain Nested Types February 1998 24-29

24

Hence

ed.
// generated Java

package Example.FooPackage;
final public class e1 extends org.omg.CORBA.UserException

 {...}

24.15 Mapping for Typedef

Java does not have a typedef construct.

24.15.1 Simple IDL types

IDL types that are mapped to simple Java types may not be subclassed in Java.
any typedefs that are type declarations for simple types are mapped to the original
(mapped type) everywhere the typedef type appears.

The IDL types covered by this rule are described in Section 24.3, “Mapping for Basic
Types.

Helper classes are generated for all typedefs.

24.15.2 Complex IDL types

Typedefs for non arrays and sequences are “unwound” to their original type until a
simple IDL type or user-defined IDL type (of the non typedef variety) is encounter

Holder classes are generated for sequence and array typedefs only.

Example

// IDL

struct EmpName {
string firstName;
string lastName;

};
typedef EmpName EmpRec;

// generated Java
// regular struct mapping for EmpName
// regular helper class mapping for EmpRec

final public class EmpName {
...

}

public class EmpRecHelper {
...

}

24-30 CORBA V2.2 February 1998

24

 local,

uage

24.16 Mapping Pseudo Objects to Java

24.16.1 Introduction

Pseudo objects are constructs whose definition is usually specified in “IDL,” but whose
mapping is language specified. A pseudo object is not (usually) a regular CORBA
object. Often it exposed to either clients and/or servers as a process, or a thread
programming language construct.

For each of the standard IDL pseudo-objects we either specify a specific Java lang
construct or we specify it as a pseudo int erface .

This mapping is based on the revised version 1.1 C++ mapping.

Pseudo Interface

The use of pseudo interface is a convenient device which means that most of the
standard language mapping rules defined in this specification may be mechanically
used to generate the Java. However, in general the resulting construct is not a CORBA
object. Specifically it is:

• not represented in the Interface Repository

• no helper classes are generated

• no holder classes are generated

• mapped to a Java public abstract class that does not extend or inherit from
any other classes or interfaces

Please note that the specific definition given for each piece of PIDL may override the
general guidelines above. In such a case, the specific definition takes precedence.

All of the pseudo interfaces are mapped as if they were declared in:

module org {
module omg {

module CORBA {
...

That is, they are mapped to the org.omg.CORBA Java package.
CORBA V2.2 Mapping Pseudo Objects to Java February 1998 24-31

24

e

24.16.2 Certain Exceptions

The standard CORBA PIDL uses several exceptions, Bounds , BadKind , and
InvalidName .

No holder and helper classes are defined for these exceptions, nor are they in th
interface repository. However so that users can treat them as “normal exceptions” for
programming purposes, they are mapped as normal user exceptions.

They are defined within the scopes that they are used. A Bounds and BadKind
exception are defined in the TypeCodePackage for use by TypeCode . A Bounds
exception is defined in the standard CORBA module for use by NVList ,
Except ionList , and ContextList . An InvalidName exception is defined in the
ORBPackage for use by ORB.

// Java

package org.omg.CORBA;

final public class Bounds
extends org.omg.CORBA.UserException {
public Bounds() {...}

}

package org.omg.CORBA.TypeCodePackage;

final public class Bounds
extends org.omg.CORBA.UserException {
public Bounds() {...}

}
final public class BadKind

extends org.omg.CORBA.UserException {
public BadKind() {...}

}

package org.omg.CORBA.ORBPackage;

final public class InvalidName
extends org.omg.CORBA.UserException {
public InvalidName() {...}

}

24.16.3 Environment

The Environment is used in request operations to make exception information
available.
24-32 CORBA V2.2 February 1998

24

pairs.

t of
// Java code

package org.omg.CORBA;

public abstract class Environment {
void exception(java.lang.Exception except);
java.lang.Exception exception();
void clear();

}

24.16.4 NamedValue

A NamedValue describes a name, value pair. It is used in the DII to describe
arguments and return values, and in the context routines to pass property, value

In Java it includes a name, a value (as an any), and an integer representing a se
flags.

typedef unsigned long Flags;
typedef string Identif ier;
const Flags ARG_IN = 1;
const Flags ARG_OUT = 2;
const Flags ARG_INOUT = 3;
const Flags C TX_RESTRICT_SCOPE = 15;

pseudo interface N amedValue {
readonly attri bute Identif ier n ame;
readonly attri bute any value;
readonly attri bute Flags flags;

};

// Java

package org.omg.CORBA;

public interface ARG_IN {
public static final int value = 1;

}
public interface ARG_OUT {

public static final int value = 2;
}
public interface ARG_INOUT {

public static final int value = 3;
}

public interface CTX_RESTRICT_SCOPE {
public static final int value = 15;

}

CORBA V2.2 Mapping Pseudo Objects to Java February 1998 24-33

24

 by
public abstract class NamedValue {
public abstract String name();
public abstract Any value();
public abstract int flags();

}

24.16.5 NVList

A NVList is used in the DII to describe arguments, and in the context routines to
describe context values.

In Java it maintains a modifiable list of NamedValue s.

pseudo interface NVList {
readonly attri bute unsigned long count;
NamedValue add(in Fl ags flags);
NamedValue add_i tem(in Identifier item_name, in Flags flags);
NamedValue add_v alue(in Identifier item_name,

 in any val,
 in Flags flags);

NamedValue it em(in unsigned long i ndex) raises (CORBA::Bounds);
void remove(in unsigned long index) raises (CORBA::Bounds);

};

// Java

package org.omg.CORBA;

public abstract class NVList {
public abstract int count();
public abstract NamedValue add(int flags);
public abstract NamedValue add_item(String item_name, int

flags);
public abstract NamedValue add_value(String item_name,

Any val,
int flags);

public abstract NamedValue item(int index)
throws org.omg.CORBA.Bounds;

public abstract void remove(int index) throws
org.omg.CORBA.Bounds;
}

24.16.6 ExceptionList

An ExceptionList is used in the DII to describe the exceptions that can be raised
IDL operations.

It maintains a list of modifiable list of TypeCode s.
24-34 CORBA V2.2 February 1998

24
pseudo interface ExceptionList {
readonly attri bute unsigned long count;
void add(in Type Code exc);
TypeC ode i tem (in unsig ned long index) raises (CORBA::Bounds);
void remove (in unsigned long index) raises (CORBA::B ounds);

};

// Java

package org.omg.CORBA;

public abstract class ExceptionList {
public abstract int count();
public abstract void add(TypeCode exc);
public abstract TypeCode item(int index)

throws org.omg.CORBA.Bounds;
public abstract void remove(int index)

throws org.omg.CORBA.Bounds;
}

24.16.7 Context

A Context is used in the DII to specify a context in which context strings must be
resolved before being sent along with the request invocation.

pseudo interface Context {
readonly attri bute Identif ier c ontext_name;
readonly attri bute Context parent;
Context creat e_chi ld(in Identifier chil d_ctx_name);
void set_one_value(in Identifier propname, in any propv alue);
void set_values(in NVList values);
void delete_values(in Identif ier propn ame);
NVList get_values(in Identifier start_scope,

 in Flags op_flags,
 in Identifier pattern);

};
CORBA V2.2 Mapping Pseudo Objects to Java February 1998 24-35

24
// Java

package org.omg.CORBA;

public abstract class Context {
public abstract String context_name();
public abstract Context parent();
public abstract Context create_child(String

child_ctx_name);
public abstract void set_one_value(String propname,

 Any propvalue);
public abstract void set_values(NVList values);
public abstract void delete_values(String propname);
public abstract NVList get_values(String start_scpe, int

op_flags,
String pattern);

}

24.16.8 ContextList

pseudo interface ContextList {
readonly attri bute unsigned long count;
void add(in string ctx);
string item(in unsigned long index) raises (CORBA::B ounds);
void remove(in unsigned long index) raises (CORBA::Bounds);

};

// Java

package org.omg.CORBA;

public abstract class ContextList {
public abstract int count();
public abstract void add(String ctx);
public abstract String item(int index)

throws org.omg.CORBA.Bounds;
public abstract void remove(int index)

throws org.omg.CORBA.Bounds;
}

24-36 CORBA V2.2 February 1998

24
24.16.9 Request

pseudo interface Request {
readonly attri bute Object target;
readonly attri bute Identif ier o peration;
readonly attri bute NVList arguments;
readonly attri bute NamedV alue result;
readonly attri bute Environment env;
readonly attri bute ExceptionList exceptions;
readonly attri bute ContextList contexts;

attribute Context ctx;

any add_in_ar g();
any add_named_in_arg(in string name);
any add_inout_arg();
any add_named_inout_arg(in string name);
any add_out_arg();
any add_named_out_ar g(in string name);
void set_return_type(in T ypeC ode tc);
any return_value();

void invoke();
void send_onew ay();
void send_deferred();
void get_response();
boolean poll_response();

};

// Java

package org.omg.CORBA;

public abstract class Request {

public abstract Object target();
public abstract String operation();
public abstract NVList arguments();
public abstract NamedValue result();
public abstract Environment env();
public abstract ExceptionList exceptions();
public abstract ContextList contexts();

public abstract Context ctx();
public abstract void ctx(Context c);
CORBA V2.2 Mapping Pseudo Objects to Java February 1998 24-37

24
public abstract Any add_in_arg();
public abstract Any add_named_in_arg(String name);
public abstract Any add_inout_arg();
public abstract Any add_named_inout_arg(String name);
public abstract Any add_out_arg();
public abstract Any add_named_out_arg(String name);
public abstract void set_return_type(TypeCode tc);
public abstract Any return_value();

public abstract void invoke();
public abstract void send_oneway();
public abstract void send_deferred();
public abstract void get_response();
public abstract boolean poll_response();

}

24.16.10 ServerRequest and Dynamic Implementation

pseudo interface S erverRequ est {
Identifier op_nam e();
Context ctx();
void params(in NVList parms);
void result(in Any res);
void except(in Any ex);

} ;

// Java

package org.omg.CORBA;

public abstract class ServerRequest {
public abstract String op_name();
public abstract Context ctx();
public abstract void params(NVList parms);
public abstract void result(Any a);
public abstract void except(Any a);

The DynamicImplementation interface defines the interface such a dynamic
server is expect to implement. Note that it inherits from the base class for stubs and
skeletons (see Section , “Portable ObjectImpl).

// Java

package org.omg.CORBA;

public abstract class DynamicImplementation
extends org.omg.CORBA.portable.ObjectImpl {

public abstract void invoke(org.omg.CORBA.ServerRequest
request);
}

24-38 CORBA V2.2 February 1998

24
24.16.11 TypeCode

The deprecated parameter and param_count methods are not mapped.

enum TCKind {
tk_null, tk_void,
tk_short, tk_long, tk_ushort, tk_ulong,
tk_float, tk_double, tk_boolean, tk_char,
tk_octet, tk_any, tk_TypeC ode, tk_Principal, tk_objref,
tk_struct, tk_union, tk_enum, tk_st ring,
tk_sequen ce, tk_array, tk_alias, t k_except,
tk_longlong, tk_ulonglong, tk_longdouble,
tk_wchar, tk_wstring, tk_fixed

};

// Java

package org.omg.CORBA;

public final class TCKind {
public static final int _tk_null = 0;
public static final

TCKind tk_null = new TCKind(_tk_null);
public static final int _tk_void = 1;

TCKind tk_void = new TCKind(_tk_void);
public static final int _tk_short = 2;

TCKind tk_short = new TCKind(_tk_short);
public static final int _tk_long = 3;

TCKind tk_long = new TCKind(_tk_long);
public static final int _tk_ushort = 4;

TCKind tk_ushort = new TCKind(_tk_ushort);
public static final int _tk_ulong = 5;

TCKind tk_ulong = new TCKind(_tk_ulong);
public static final int _tk_float = 6;

TCKind tk_float = new TCKind(_tk_float);
public static final int _tk_double = 7;

TCKind tk_double = new TCKind(_tk_double);
public static final int _tk_boolean = 8;

TCKind tk_boolean = new TCKind(_tk_boolean);
public static final int _tk_char = 9;

TCKind tk_char = new TCKind(_tk_char);
public static final int _tk_octet = 10;

TCKind tk_octet = new TCKind(_tk_octet);
public static final int _tk_any = 11;

TCKind tk_any = new TCKind(_tk_any);
public static final int _tk_TypeCode = 12;

TCKind tk_TypeCode = new TCKind(_tk_TypeCode);
public static final int _tk_Principal = 13;

TCKind tk_Principal = new TCKind(_tk_Principal);
public static final int _tk_objref = 14;

TCKind tk_objref = new TCKind(_tk_objref);
CORBA V2.2 Mapping Pseudo Objects to Java February 1998 24-39

24
public static final int _tk_stuct = 15;
TCKind tk_stuct = new TCKind(_tk_stuct);

public static final int _tk_union = 16;
TCKind tk_union = new TCKind(_tk_union);

public static final int _tk_enum = 17;
TCKind tk_enum = new TCKind(_tk_enum);

public static final int _tk_string = 18;
TCKind tk_string = new TCKind(_tk_string);

public static final int _tk_sequence = 19;
TCKind tk_sequence = new TCKind(_tk_sequence);

public static final int _tk_array = 20;
TCKind tk_array = new TCKind(_tk_array);

public static final int _tk_alias = 21;
TCKind tk_alias = new TCKind(_tk_alias);

public static final int _tk_except = 22;
TCKind tk_except = new TCKind(_tk_except);

public static final int _tk_longlong = 23;
TCKind tk_longlong = new TCKind(_tk_longlong);

public static final int _tk_ulonglong = 24;
TCKind tk_ulonglong = new TCKind(_tk_ulonglong);

public static final int _tk_longdouble = 25;
TCKind tk_longdouble = new TCKind(_tk_longdouble);

public static final int _tk_wchar = 26;
TCKind tk_wchar = new TCKind(_tk_wchar);

public static final int _tk_wstring = 27;
TCKind tk_wstring = new TCKind(_tk_wstring);

public static final int _tk_fixed = 28;
TCKind tk_fixed = new TCKind(_tk_fixed);

public int value() {...}
public static TCKind from_int(int value) {...}
private TCKind(int value) {...}

}

pseudo interface Typ eCode {

exception B ounds {};
exception BadKind {};

// for all T ypeC ode kinds
boolean equal(in Type Code tc);
TCKind kind();

// for objref, struct, union, enum, alias, and except
RepositoryID id() raises (BadKind);
RepositoryId name() raises (BadKind);

// for struct, union, enum, and except
unsigned long member_count() raises (BadKind);
Identifier member_name(in unsigned long index)

 raises (B adKind, Boun ds);
24-40 CORBA V2.2 February 1998

24
// for struct, union, and except
TypeC ode member_type(in unsigned long index)

raises (BadKind, Bounds);

// for union
any member_label(in unsigned long index) raises (BadKind, B ounds);
TypeC ode discriminator_type() raises (BadKind);
long default_index() raises (BadKind);

// for string, sequence, and array
unsigned long length() raises (BadKind);
TypeC ode content_type() raises (BadKind);

}

// Java

package org.omg.CORBA;

public abstract class TypeCode {

// for all TypeCode kinds
public abstract boolean equal(TypeCode tc);
public abstract TCKind kind();

// for objref, struct, unio, enum, alias, and except
public abstract String id() throws TypeCodePackage.Bad-

Kind;
public abstract String name() throws TypeCodePackage.Bad-

Kind;

// for struct, union, enum, and except
public abstract int member_count() throws TypeCodePack-

age.BadKind;
public abstract String member_name(int index)

throws TypeCodePackage.BadKind;

// for struct, union, and except
public abstract TypeCode member_type(int index)

throws TypeCodePackage.BadKind,
TypeCodePackage.Bounds;

// for union
public abstract Any member_label(int index)

throws TypeCodePackage.BadKind,
TypeCodePackage.Bounds;

public abstract TypeCode discriminator_type()
throws TypeCodePackage.BadKind;

public abstract int default_index() throws TypeCodePack-
age.BadKind;
CORBA V2.2 Mapping Pseudo Objects to Java February 1998 24-41

24

s,
// for string, sequence, and array
public abstract int length() throws TypeCodePackage.Bad-

Kind;
public abstract TypeCode content_type() throws TypeCode-

Package.BadKind;
}

24.16.12 ORB

The UnionMemeberSeq , EnumMemberSeq , and StructMemberSeq typedefs are
real IDL and bring in the Interface Repository. Rather than tediously list its interface
and other assorted types, suffice it to say that it is all mapped following the rules for
IDL set forth in this specification in this chapter.

StructMember[], UnionMember[], EnumMember[]

pseudo interface ORB {

exception InvalidName {};

typedef string ObjectId;
typedef sequence< ObjectId> ObjectIdList;

ObjectIdList list_initial_services();
Object resolve_initi al_references(in Obj ectId object_name)

raises(InvalidName);

string object_to_string(in Object obj);
Object string_to_obj ect(in string str);

NVList create_list (in long count);
NVList create_operation_l ist(in Oper ationDef oper);
NamedValue create_named_v alue(in String name, in Any value,

in Flags flags);
Except ionList create_exception_list();
ContextList create_context_l ist();

Context get_default_conte xt();
Environment create_environment();

void send_multiple_requests_onew ay(in RequestSeq req);
void send_multiple_requests_deferred(in R equestSeq req);
boolean poll_next_response();
Request get_next_response();

// typecode creation

TypeC ode create_struct_tc (in RepositoryId id,
in Identifier name,
in StructMemberSeq members);
24-42 CORBA V2.2 February 1998

24
TypeC ode create_union_tc (in RepositoryId id,
 in Identifier name,

 in TypeCode discriminator_type,
in UnionMemberSeq members);

TypeC ode create_enum_tc (in RepositoryId id,
in Identifier name,
in EnumMemberSeq members);

TypeC ode create_alias_tc (in RepositoryId id,
in Identifier name,
in TypeCode original_type);

TypeC ode create_exception_tc (in RepositoryId id,
in Identifier name,
in StructMemberSeq members);

TypeC ode create_interface_tc (in RepositoryId id,
in Identifier name);

TypeC ode create_string_tc (in unsigned long bound);

TypeC ode create_w strin g_tc (in unsigned long bound);

TypeC ode create_sequence_tc (in unsigned long bound,
in TypeCode element_type);

TypeC ode create_recursive_sequence_tc(in unsigned long bound,
in unsigned long offset);

TypeC ode create_array_tc (in unsigned long length,
in TypeCode element_type);

Current get_current();

// Additional operations for Java mapping

TypeC ode get_primitive_tc(in TCKind tcKind);
Any create_any();
OutputStream create_output_stream();
void connect (Object obj);
void disconnect (Object obj);

// additional methods for ORB init ialization go h ere, but only
// appear in the ma pped Java (seeSection 24.18.8, “ORB I nitialization)
CORBA V2.2 Mapping Pseudo Objects to Java February 1998 24-43

24
// Java signatures
// public static ORB init(Strings[] args, Properties props);
// public static ORB init(Applet app, Properties props);
// public static ORB init();
// abstract protected void set_parameters(String[] args,
// java.util.Properties props);
// abstract protected void set_parameters(java.applet.Applet
app,
// java.util.Properties props);

}

// Java

package org.omg.CORBA;

public abstract class ORB {

public abstract String[] list_initial_services();
public abstract org.omg.CORBA.Object

resolve_initial_references(
String object_name)
throws org.omg.CORBA.ORBPackage.InvalidName;

public abstract String
object_to_string(org.omg.CORBA.Object obj);

public abstract org.omg.CORBA.Object
string_to_object(String str);

public abstract NVList create_list(int count);
public abstract NVList create_operation_list(OperationDef

oper);
public abstract NamedValue create_named_value(String

name,
 Any value,
 int flags);

public abstract ExceptionList create_exception_list();
public abstract ContextList create_context_list();

public abstract Context get_default_context();
public abstract Environment create_environment();

public abstract void
send_multiple_requests_oneway(Request[] req);

public abstract void
sent_multiple_requests_deferred(Request[] req);

public abstract boolean poll_next_response();
public abstract Request get_next_response();
24-44 CORBA V2.2 February 1998

24
// typecode creation

public abstract TypeCode create_struct_tc(String id,
String name,
StructMember[] members);

public abstract TypeCode create_union_tc(String id,
String name,
TypeCode discriminator_type,
UnionMember[] members);

public abstract TypeCode create_enum_tc(String id,
String name,
EnumMember[] members);

public abstract TypeCode create_alias_tc(String id,
String name,
TypeCode original_type);

public abstract TypeCode create_exception_tc(String id,
String name,
StructMember[] members);

public abstract TypeCode create_interface_tc(String id,
String name);

public abstract TypeCode create_string_tc(int bound);
public abstract TypeCode create_wstring_tc(int bound);
public abstract TypeCode create_sequence_tc(int bound,

TypeCode element_type);
public abstract TypeCode create_recursive_sequence_tc(int

bound,
int offset);

public abstract TypeCode create_array_tc(int length,
TypeCode element_type);

public abstract Current get_current();
CORBA V2.2 Mapping Pseudo Objects to Java February 1998 24-45

24

 a
// additional methods for IDL/Java mapping

public abstract TypeCode get_primitive_tc(TCKind tcKind);
public abstract Any create_any();
public abstract org.omg.CORBA.portable.OutputStream

create_output_stream();
public abstract void connect(org.omg.CORBA.Object obj);
public abstract void disconnect(org.omg.CORBA.Object

obj);

// additional static methods for ORB initialization

public static ORB init(Strings[] args, Properties props);
public static ORB init(Applet app, Properties props);
public static ORB init();
abstract protected void set_parameters(String[] args,

java.util.Properties props);
abstract protected void set_parameters(java.applet.Applet

app,
java.util.Properties props);

}

24.16.13 CORBA::Object

The IDL Object type is mapped to the org.omg.CORBA.Object and
org.omg.CORBA.ObjectHelper classes as shown below.

The Java interface for each user defined IDL interface extends
org.omg.CORBA.Object , so that any object reference can be passed anywhere
org.omg.CORBA.Object is expected.
24-46 CORBA V2.2 February 1998

24
// Java

package org.omg.CORBA;

public interface Object {
boolean _is_a(String Identifier);
boolean _is_equivalent(Object that);
boolean _non_existent();
int _hash(int maximum);
org.omg.CORBA.Object _duplicate();
void _release();
ImplementationDef _get_implementation();
InterfaceDef _get_interface();
Request _request(String s);
Request _create_request(Context ctx,

String operation,
NVList arg_list,
NamedValue result);

Request _create_request(Context ctx,
String operation,
NVList arg_list,
NamedValue result,
ExceptionList exclist,
ContextList ctxlist);

}

24.16.14 Current

pseudo interface Current {
}

// Java

public abstract class Current
extends org.omg.CORBA.portable.ObjectImpl {

}

24.16.15 Principal

pseudo interface Principal {
attribute sequence<octet> name;
}

// Java

public abstract class Principal {
public abstract byte[] name();
public abstract void name(byte[] name);

}

CORBA V2.2 Mapping Pseudo Objects to Java February 1998 24-47

24

ORB

final

d

d

t to
24.17 Server-Side Mapping

24.17.1 Introduction

This section discusses how implementations create and register objects with the
runtime.

It will be patterned after the server framework architecture to be described by the
submission to the Server Side Portability RFP.

24.17.2 Transient Objects

For this initial submission only a minimal API to allow application developers to
implement transient ORB objects is described.

Servant Base Class

For each IDL interface <interface_name> the mapping defines a Java class as
follows:

// Java

public class _ <interface_name> ImplBase implements
<interface_name> {
}

Servant Class

For each interface, the developer must write a servant class. Instances of the servant
class implement ORB objects. Each instance implements a single ORB object, and
each ORB object is implemented by a single servant.

Each object implementation implements ORB objects that supports a most derived IDL
interface. If this interface is <interface_name> , then the servant class must exten
_<interface_name>ImplBase .

The servant class must define public methods corresponding to the operations an
attributes of the IDL interface supported by the object implementation, as defined by
the mapping specification for IDL interfaces. Providing these methods is sufficien
satisfy all abstract methods defined by _<interface_name>ImplBase .

Creating A Transient ORB Object

To create an instance of an object implementation, the developer instantiates the
servant class.
24-48 CORBA V2.2 February 1998

24

at is

object

the
s
Connecting a Transient ORB Object

Object implementations (object references) may be explicitly connected to the ORB by
calling the ORB’s connect() method (seeSection 24.16.12, “ORB,” on page 24-42).

An object implementation may also be automatically and implicitly connected to the
ORB if it is passed as a (mapped IDL) parameter to a (mapped) IDL operation th
itself not implemented as a local (Java) object. I.e., it has to be marshaled and sent
outside of the process address space. Note, a vendor is free to connect such an
implementation “earlier” (e.g. upon instantiation), but it must connect the
implementation to the ORB when it is passed as described above.

Note that calling connect() when an object is already connected has no effect.

Disconnecting a Transient ORB Object

The servant may disconnect itself from the ORB by invoking the ORB’s
disconnect() method (see Section 24.16.12, “ORB,” on page 24-42). After this
method returns, incoming requests will be rejected by the ORB by raising the
CORBA::OBJECT_NOT_EXIST exception. The effect of this method is to cause
the ORB object to appear to be destroyed from the point of view of remote clients.

Note that calling disconnect() when the object is not connected has no effect.

Note however, that requests issued using the servant directly (e.g. using the
implementation’s this pointer) do not pass through the ORB; these requests will
continue to be processed by the servant.

24.18 Java ORB Portability Interfaces

24.18.1 Introduction

The APIs specified here provide the minimal set of functionality to allow portable
stubs and skeletons to be used with a Java ORB. The interoperability requirements for
Java go beyond that of other languages. Because Java classes are often downloaded and
come from sources that are independent of the ORB in which they will be used, it is
essential to define the interfaces that the stubs and skeletons use. Otherwise, use of a
stub (or skeleton) will require: either that it have been generated by a tool that was
provided by the ORB vendor (or is compatible with the ORB being used), or that
entire ORB runtime be downloaded with the stub or skeleton. Both of these scenario
are unacceptable.

Design Goals

The design balances several goals:

• Size
CORBA V2.2 Java ORB Portability Interfaces February 1998 24-49

24

ring

ctures

ors

mes.
Stubs and skeletons must have a small bytecode footprint in order to make
downloading fast in a browser environment and to minimize memory requirements
when bundled with a Java VM, particularly in specialized environments such as set-
top boxes.

• Performance
Obviously, the runtime performance of the generated stub code must be excellent.
In particular, care must be taken to minimize temporary Java object creation du
invocations in order to avoid Java VM garbage collection overhead.

• Reverse Mapability
The design does not require adding methods to user-defined types such as stru
and exceptions to ensure that stubs and skeletons generated by IDL to Java
compilers and reverse Java to IDL mapping tools are interoperable and binary
compatible.

A very simple delegation scheme is specified here. Basically, it allows ORB vend
maximum flexibility for their ORB interfaces, as long as they implement the interface
APIs. Of course vendors are free to add proprietary extensions to their ORB runti
Stubs and skeletons which require proprietary extensions will not necessarily be
portable or interoperable and may require download of the corresponding runtime.

Portability Package

The APIs needed to implement portability are found in the
org.omg.CORBA.portable package.

The portability package contains interfaces and classes that are designed for and
intended to be used by ORB implementors. It exposes the publicly defined APIs that
are used to connect stubs and skeletons to the ORB.

24.18.2 Architecture

The stub and skeleton portability architecture allows the use of the DII and DSI as its
portability layer. The mapping of the DII and DSI PIDL have operations that support
the efficient implementation of portable stubs and skeletons.

All stubs shall inherit from a common base class
org.omg.CORBA.portable.ObjectImpl . The class is responsible for
delegating shared functionality such as is_a() to the vendor specific implementation.
This model provides for a variety of vendor dependent implementation choices, while
reducing the client-side and server “code bloat.”

All DSI-based skeletons inherit from
org.omg.CORBA.DynamicImplementation .
24-50 CORBA V2.2 February 1998

24
StubForX

org.omg.CORBA.Object

Inheritance Relationships: Stub for Interface X

delegates to
org.omg.CORBA.portable.ObjectImpl

org.omg.CORBA.portable.Delegate

_XImplBase (the skeleton base class for X)

org.omg.CORBA.Object

Inheritance Relationships: DSI Skeleton for Interface X

delegates to

org.omg.CORBA.portable.ObjectImpl

org.omg.CORBA.portable.Delegateorg.omg.CORBA.DynamicImplementation
CORBA V2.2 Java ORB Portability Interfaces February 1998 24-51

24

assed

e

may
24.18.3 Streamable APIs

The Streamable Interface API provides the support for the reading and writing of
complex data types. It is implemented by static methods on the Helper classes. They
are also used in the Holder classes for reading and writing complex data types p
as out and inout parameters.

package org.omg.CORBA.portable;

public interface Streamable {
void _read(org.omg.CORBA.portable.InputStream istream);
void _write(org.omg.CORBA.portable.OutputStream ostream);
org.omg.CORBA.TypeCode _type();

}

24.18.4 Streaming APIs

The streaming APIs are Java interfaces that provide for the reading and writing of all
of the mapped IDL types to and from streams. Their implementations are used insid
the ORB to marshal parameters and to insert and extract complex datatypes into and
from Any s.

The streaming APIs are found in the org.omg.CORBA.portable package.

The ORB object is used as a factory to create an output stream. An input stream
be created from an output stream.

package org.omg.CORBA;

interface ORB {
OutputStream create_output_stream();

};
24-52 CORBA V2.2 February 1998

24
package org.omg.CORBA.portable;

public abstract class InputStream {
public abstract booleanread_boolean();
public abstract charread_char();
public abstract charread_wchar();
public abstract byteread_octet();
public abstract shortread_short();
public abstract shortread_ushort();
public abstract intread_long();
public abstract intread_ulong();
public abstract longread_longlong();
public abstract longread_ulonglong();
public abstract floatread_float();
public abstract doubleread_double();
public abstract Stringread_string();
public abstract Stringread_wstring();
public abstract voidread_boolean_array(boolean[] value,

 int offset, int length);
public abstract voidread_char_array(char[] value,

 int offset, int length);
public abstract voidread_wchar_array(char[] value,

 int offset, int length);
public abstract voidread_octet_array(byte[] value,

 int offset, int length);
public abstract voidread_short_array(short[] value,

 int offset, int length);
public abstract voidread_ushort_array(short[] value,

 int offset, int length);
public abstract voidread_long_array(int[] value,

 int offset, int length);
public abstract voidread_ulong_array(int[] value,

 int offset, int length);
public abstract voidread_longlong_array(long[] value,

 int offset, int length);
public abstract voidread_ulonglong_array(long[] value,

 int offset, int length);
public abstract voidread_float_array(float[] value,

 int offset, int length);
public abstract voidread_double_array(double[] value,

 int offset, int length);
public abstract org.omg.CORBA.Objectread_Object();
public abstract org.omg.CORBA.TypeCoderead_TypeCode();
public abstract org.omg.CORBA.Anyread_any();
public abstract org.omg.CORBA.Principalread_Principal();

}

CORBA V2.2 Java ORB Portability Interfaces February 1998 24-53

24
public abstract class OutputStream {
public abstract InputStream create_input_stream();
public abstract void write_boolean(boolean value);
public abstract void write_char(char value);
public abstract void write_wchar(char value);
public abstract void write_octet(byte value);
public abstract void write_short(short value);
public abstract void write_ushort(short value);
public abstract void write_long(int value);
public abstract void write_ulong(int value);
public abstract void write_longlong(long value);
public abstract void write_ulonglong(long value);
public abstract void write_float(float value);
public abstract void write_double(double value);
public abstract void write_string(String value);
public abstract void write_wstring(String value);
public abstract void write_boolean_array(boolean[] value,

 int offset, int length);
public abstract void write_char_array(char[] value,

 int offset, int length);
public abstract void write_wchar_array(char[] value,

 int offset, int length);
public abstract void write_octet_array(byte[] value,

 int offset, int length);
public abstract void write_short_array(short[] value,

 int offset, int length);
public abstract void write_ushort_array(short[] value,

 int offset, int length);
public abstract void write_long_array(int[] value,

 int offset, int length);
public abstract void write_ulong_array(int[] value,

 int offset, int length);
public abstract void write_longlong_array(long[] value,

 int offset, int length);
public abstract void write_ulonglong_array(long[] value,

 int offset, int length);
public abstract void write_float_array(float[] value,

 int offset, int length);
public abstract void write_double_array(double[] value,

 int offset, int length);
public abstract void write_Object(org.omg.CORBA.Object

value);
public abstract void write_TypeCode(org.omg.CORBA.Type-

Code value);
public abstract void write_any (org.omg.CORBA.Any value);
public abstract void write_Principal(org.omg.CORBA.Prin-

cipal value);
}

24-54 CORBA V2.2 February 1998

24

sic

e
 the
24.18.5 Portability Stub Interfaces

Stub Design

The stub class is implemented on top of the DII.

Portable ObjectImpl

The ObjectImpl class is the base class for stubs and skeletons. It provides the ba
delegation mechanism.

The method _ids() returns an array of repository ids that an object implements. Th
string at the zero index shall represent the most derived interface. The last id, for
generic CORBA object (i.e, “IDL:omg.org/CORBA/Object:1.0”), is implied and not
present.

package org.omg.CORBA.portable;

abstract public class ObjectImpl implements
 org.omg.CORBA.Object {

private Delegate __delegate;

public Delegate _get_delegate() {
if (__delegate == null) {

throw new org.omg.CORBA.BAD_OPERATION();
}
return _delegate;

}

public void _set_delegate(Delegate delegate) {
__delegate = delegate;

}

public abstract String[] _ids() {...}

// methods for standard CORBA stuff

public org.omg.CORBA.ImplementationDef
_get_implementation() {

return _get_delegate().get_implementation(this);
}

public org.omg.CORBA.InterfaceDef
_get_interface() {

return _get_delegate().get_interface(this);
}

CORBA V2.2 Java ORB Portability Interfaces February 1998 24-55

24
public org.omg.CORBA.Object _duplicate() {
return _get_delegate().duplicate(this);

}

public void _release() {
_get_delegate().release(this);

}

public boolean _is_a(String repository_id) {
return _get_delegate().is_a(this, repository_id);

}

public boolean _is_equivalent(org.omg.CORBA.Object rhs) {
return _get_delegate().is_equivalent(this, rhs);

}

public boolean _non_existent() {
return _get_delegate().non_existent(this);

}

public int _hash(int maximum) {
return _get_delegate().hash(this, maximum);

}

public org.omg.CORBA.Request _request(String operation) {
return _get_delegate().request(this, operation);

}

public org.omg.CORBA.Request _create_request(
org.omg.CORBA.Context ctx,

 String operation,
 org.omg.CORBA.NVList arg_list,
 org.omg.CORBA.NamedValue result) {

return _get_delegate().create_request(this, ctx,
operation, arg_list, result);

}

public Request _create_request(
org.omg.CORBA.Context ctx,

 String operation,
 org.omg.CORBA.NVList arg_list,
 org.omg.CORBA.NamedValue result,
 org.omg.CORBA.ExceptionList exceptions,
 org.omg.CORBA.ContextList contexts) {

return _get_delegate().create_request(this, ctx, oper-
ation,

arg_list, result,exceptions, contexts);
}

}

24-56 CORBA V2.2 February 1998

24
24.18.6 Delegate

The delegate class provides the ORB vendor specific implementation of CORBA
object.

// Java

package org.omg.CORBA.portable;

public abstract class Delegate {

public abstract org.omg.CORBA ImplementationDef
get_implementation(

org.omg.CORBA.Object self);
public abstract org.omg.CORBA.InterfaceDef get_interface(

org.omg.CORBA.Object self);
public abstract org.omg.CORBA.Object duplicate(

org.omg.CORBA.Object self);
public abstract void release(org.omg.CORBA.Object self);
public abstract boolean is_a(org.omg.CORBA.Object self,

String repository_id);
public abstract boolean non_existent(org.omg.CORBA.Object

self);
public abstract boolean

is_equivalent(org.omg.CORBA.Object self,
org.omg.CORBA.Object rhs);

public abstract int hash(org.omg.CORBA.Object self
int max);

public abstract org.omg.CORBA.Request
request(org.omg.CORBA.Object self,

String operation);
public abstract org.omg.CORBA.Request create_request(

org.omg.CORBA.Object self,
org.omg.CORBA.Context ctx,
String operation,
org.omg.CORBA.NVList arg_list,
org.omg.CORBA.NamedValue result);

public abstract org.omg.CORBA.Request create_request(
org.omg.CORBA.Object self,
org.omg.CORBA.Context ctx,
String operation,
org.omg.CORBA.NVList arg_list,
org.omg.CORBA.NamedValue result,
org.omg.CORBA.ExceptionList excepts,
org.omg.CORBA.ContextList contexts);

}

CORBA V2.2 Java ORB Portability Interfaces February 1998 24-57

24
24.18.7 Skeleton

The skeleton uses the DynamicImplementation (see Section24.16.10, “ServerRequest
and Dynamic Implementation).

See “Servant Class” on page 24-48 for more information.

24.18.8 ORB Initialization

The ORB class represents an implementation of a CORBA ORB. Vendors specific
ORB implementations can extend this class to add new features.

There are several cases to consider when creating the ORB instance. An important
factor is whether an applet in a browser or an stand-alone Java application is being
used.

In any event, when creating an ORB instance, the class names of the ORB
implementation are located using the following search order:

• check in Applet parameter or application string array, if any

• check in properties parameter, if any

• check in the System properties

• fall back on a hardcoded default behavior

Standard Properties

The OMG standard properties are defined in the following table.

ORB Initialization Methods

There are three forms of initialization as shown below. In addition the actual ORB
implementation (subclassed from ORB) must implement the set_parameters()
methods so that the initialization parameters will be passed into the ORB from the
initialization methods.

Table 24-3Standard ORB properties

Property Name Property Value

org.omg.CORBA.ORBClass class name of an ORB implementation

org.omg.CORBA.ORBSingletonCl
ass

class name of the singleton ORB
implementation
24-58 CORBA V2.2 February 1998

24

union

ly
// Java

package org.omg.CORBA;

abstract public class ORB {

// Application init

public static ORB init(String[] args,
java.util.Properties props) {

// call to: set_parameters(args, props);
...
}

// Applet init

public static ORB init(java.applet.Applet app,
java.util.Properties props) {

// call to: set_parameters(app, props);
...
}

// Default (singleton) init

public static ORB init()
{...}

// Implemented by subclassed ORB implementations
// and called by init methods to pass in their params

abstract protected void set_parameters(String[] args,
java.util.Properties props);

abstract protected void set_parameters(Applet app,
java.util.Properties props);

}

Default initialization

The default initialization method returns the singleton ORB. If called multiple times it
will always return the same Java object.

The primary use of the no-argument version of ORB.init() is to provide a factory
for TypeCode s for use by Helper classes implementing the type() method, and to
create Any instances that are used to describe union labels as part of creating a
TypeCode . These Helper classes may be baked-in to the browser (e.g, for the
interface repository stubs or other wildly popular IDL) and so may be shared across
untrusted applets downloaded into the browser. The returned ORB instance is shared
across all applets and therefore must have sharply restricted capabilities so that
unrelated applets can be isolated from each other. It is not intended to be used direct
CORBA V2.2 Java ORB Portability Interfaces February 1998 24-59

24
by applets. Therefore, the ORB returned by ORB.init() , if called from a Java
applet, may only be used to create Typecode s. An attempt to invoke other “regular”
ORB operations shall raise a system exception.

If called from an application, a fully functional ORB object is returned.

Application initialization

The application initialization method should be used from a stand-alone Java
application. It is passed an array of strings which are the command arguments and a
list of Java properties. Either the argument array or the properties may be null .

It returns a new fully f unctional ORB Java object each time it is called.

Applet initialization

The applet initialization method should be used from an applet. It is passed “the
applet” and a list of Java properties. Either the applet or the properties may be null .

It returns a new fully f unctional ORB Java object each time it is called.
24-60 CORBA V2.2 February 1998

OMG IDL Tags A
 in
this
This appendix lists the standardized profile, service, and component tags described
the Interoperability chapters. Implementor-defined tags can also be registered in
manual. Requests to register tags with the OMG should be sent to
tag_request@omg.org.

Table A-2 Standard Service Tags

Table A-1 Standard Profile Tags

Tag Name Tag Value Described in

ProfileId TAG_INTERNET_IOP = 0 Section 11.6.2, “Interoperable Object Refer-
ences: IORs,” on page 11-14

ProfileId TAG_MULTIPLE_COMPONENTS = 1 Section 11.6.2, “Interoperable Object Refer-
ences: IORs,” on page 11-14

Tag Name Tag Value Described in

ServiceId TransactionService = 0 Section 11.6.7, “Object Service Context,” on
page 11-20
 CORBA V2.2 February 1998 A-1

A

Table A-3 Standard Component Tags

Tag Name Tag Value Described in

ComponentId TAG_DCE_STRING_BINDING = 100 Section 14.5.1, “DCE-CIOP String Binding
Component,” on page 14-17

ComponentId TAG_DCE_BINDING = 101 Section 14.5.2, “DCE-CIOP Binding Name
Component,” on page 14-18

ComponentId TAG_DCE_NO_PIPES = 102 Section 14.5.3, “DCE-CIOP No Pipes Com-
ponent,” on page 14-19

ComponentId TAG_OBJECT_KEY = 10 Section 14.5.4, “Complete Object Key Com-
ponent,” on page 14-19

ComponentId TAG_ENDPOINT_ID = 11 Section 14.5.5, “Endpoint ID Position Com-
ponent,” on page 14-20

ComponentId TAG_LOCATION_POLICY = 12 Section 14.5.6, “Location Policy Compo-
nent,” on page 14-20 and Section 14.6.3,
“Basic Location Algorithm,” on page 14-23
A-2 CORBA V2.2 February 1998

Glossary
xecu-

nce

r

activation Preparing an object to execute an operation. For example, copying the persistent
form of methods and stored data into an executable address space to allow e
tion of the methods on the stored data.

adapter Same as object adapter.

attribute An identifiable association between an object and a value. An attribute A is made
visible to clients as a pair of operations: get_A and set_A . Readonly attributes
only generate a get operation.

behavior The observable effects of an object performing the requested operation including
its results binding. See language binding, dynamic invocation, static invocation,
or method resolution for alternatives.

class See interface and implementation for alternatives.

client The code or process that invokes an operation on an object.

context object A collection of name-value pairs that provides environmental or user-prefere
information.

CORBA Common Object Request Broker Architecture.

data type A categorization of values operation arguments, typically covering both behavio
and representation (i.e., the traditional non-OO programming language notion of
type).

deactivation The opposite of activation.

deferred synchronous request A request where the client does not wait for completion of the request, but does
intend to accept results later. Contrast with synchronous request and one-way
request.
 CORBA V2.2 February 1998 Glossary-1

dis-

ts

w
-
sent

or-

fini-

the

r-
domain A concept important to interoperability, it is a distinct scope, within which com-
mon characteristics are exhibited, common rules observed, and over which a
tribution transparency is preserved.

dynamic invocation Constructing and issuing a request whose signature is possibly not known until
run-time.

dynamic skeleton An interface-independent kind of skeleton, used by servers to handle reques
whose signatures are possibly not known until run-time.

externalized object reference An object reference expressed as an ORB-specific string. Suitable for storage in
files or other external media.

implementation A definition that provides the information needed to create an object and allo
the object to participate in providing an appropriate set of services. An imple
mentation typically includes a description of the data structure used to repre
the core state associated with an object, as well as definitions of the methods that
access that data structure. It will also typically include information about the
intended interface of the object.

implementation definition lang uage A notation for describing implementations. The implementation definition lan-
guage is currently beyond the scope of the ORB standard. It may contain vend
specific and adapter-specific notations.

implementation inheritance The construction of an implementation by incremental modification of other
implementations. The ORB does not provide implementation inheritance. Imple-
mentation inheritance may be provided by higher level tools.

implementation object An object that serves as an implementation definition. Implementation objects
reside in an implementation repository.

implementation repository A storage place for object implementation information.

inheritance The construction of a definition by incremental modification of other definitions.
See interface and implementation inheritance.

instance An object is an instance of an interface if it provides the operations, signatures
and semantics specified by that interface. An object is an instance of an imple-
mentation if its behavior is provided by that implementation.

interface A listing of the operations and attributes that an object provides. This includes the
signatures of the operations, and the types of the attributes. An interface de
tion ideally includes the semantics as well. An object satisfies an interface if it
can be specified as the target object in each potential request described by
interface.

interface inheritance The construction of an interface by incremental modification of other interfaces.
The IDL language provides interface inheritance.

interface object An object that serves to describe an interface. Interface objects reside in an inte
face repository.

interface repository A storage place for interface information.
Glossary-2 CORBA V2.2 February 1998

c-

t

r

r

which

ive
interface type A type satisfied by any object that satisfies a particular interface.

interoperability The ability for two or more ORBs to cooperate to deliver requests to the proper
object. Interoperating ORBs appear to a client to be a single ORB.

language binding or mapping The means and conventions by which a programmer writing in a specific pro-
gramming language accesses ORB capabilities.

method An implementation of an operation. Code that may be executed to perform a
requested service. Methods associated with an object may be structured into one
or more programs.

method resolution The selection of the method to perform a requested operation.

multiple inher itance The construction of a definition by incremental modification of more than one
other definition.

object A combination of state and a set of methods that explicitly embodies an abstra
tion characterized by the behavior of relevant requests. An object is an instance of
an implementation and an interface. An object models a real-world entity, and i
is implemented as a computational entity that encapsulates state and operations
(internally implemented as data and methods) and responds to request or ser-
vices.

object adapter The ORB component which provides object reference, activation, and state
related services to an object implementation. There may be different adapters
provided for different kinds of implementations.

object creation An event that causes the existence of an object that is distinct from any othe
object.

object destruction An event that causes an object to cease to exist.

object implementation Same as implementation.

object reference A value that unambiguously identifies an object. Object references are neve
reused to identify another object.

objref An abbreviation for object reference.

one-way request A request where the client does not wait for completion of the request, nor does it
intend to accept results. Contrast with deferred synchronous request and synchro-
nous request.

operation A service that can be requested. An operation has an associated signature,
may restrict which actual parameters are valid.

operation name A name used in a request to identify an operation.

ORB Object Request Broker. Provides the means by which clients make and rece
requests and responses.
CORBA V2.2 February 1998 Glossary-3

t

ted

 of

e a

r in

ation

that
ORB core The ORB component which moves a request from a client to the appropriate
adapter for the target object.

parameter passing mode Describes the direction of information flow for an operation parameter. The
parameter passing modes are IN, OUT, and INOUT.

persistent object An object that can survive the process or thread that created it. A persistent objec
exists until it is explicitly deleted.

portable object adapter The object adapter described in Chapter 9.

referential integrity The property ensuring that an object reference that exists in the state associa
with an object reliably identifies a single object.

repository See interface repository and implementation repository.

request A client issues a request to cause a service to be performed. A request consists
an operation and zero or more actual parameters.

results The information returned to the client, which may include values as well as status
information indicating that exceptional conditions were raised in attempting to
perform the requested service.

server A process implementing one or more operations on one or more objects.

server object An object providing response to a request for a service. A given object may b
client for some requests and a server for other requests.

signature Defines the parameters of a given operation including their number order, data
types, and passing mode; the results if any; and the possible outcomes (normal
vs. exceptional) that might occur.

single inheritance The construction of a definition by incremental modification of one definition.
Contrast with multiple inheritance.

skeleton The object-interface-specific ORB component which assists an object adapte
passing requests to particular methods.

state The time-varying properties of an object that affect that object’s behavior.

static invocation Constructing a request at compile time. Calling an operation via a stub proce-
dure.

stub A local procedure corresponding to a single operation that invokes that oper
when called.

synchronous request A request where the client pauses to wait for completion of the request. Contrast
with deferred synchronous request and one-way request.

transient object An object whose existence is limited by the lifetime of the process or thread
created it.

type See data type and interface.
Glossary-4 CORBA V2.2 February 1998

value Any entity that may be a possible actual parameter in a request. Values that serve
to identify objects are called object references.
CORBA V2.2 February 1998 Glossary-5

Glossary-6 CORBA V2.2 February 1998

Index
Symbols
_duplicate 20-7, 20-9
_major 19-27
_narrow 20-9, 20-60
_nil 20-10
_ptr field accessor 20-27
_tie_A class 20-94
_var 20-7
’SIZE 23-20

A
A_ptr 20-6, 20-7, 20-117
A_var 20-6, 20-7
aBool 21-9
abstract base class 20-6
access function 20-32
Accessor Functions 22-47
aCORBAObject 21-19, 21-22
activation 1-8, 1
Ada Implementation Requirements 23-2
Ada package 23-2
addArg 21-19
aDiscriminator instance method 21-15
aggregate type 20-62
alias 20-44
AliasDef

OMG IDL for 8-22
alignment 13-10
Alternative Mappings for C++ 21-24, 23-45, 23-65
ANSI COBOL 85 language 22-2
ANSI/ISO C++ standardization committees20-3, 20-118
Any 23-29
Any class

helper types 20-52
any class 20-105
any type3-25, 5-3, 13-17, 16-10, 16-38, 19-11, 20-46, 21-4, 21-12

conversion of typed values into 20-46
Any values

dynamic management overview 7-2
Any_var 20-57
application object xxv
ARef 20-6
Arguments, Passing 23-36
Arithmetic Types 23-21
array

sample mapping to OLE collection 17-49
syntax of 3-29

array slice 20-33
Array_forany 20-43
Array_var 20-43
ArrayDef

OMG IDL for 8-25
Arrays 23-26
assignment operator 20-21, 20-31
attribute 1

defined 1-7
mapped to OLE 17-4
mapping to COM 16-23
mapping to OLE Automation 15-10
mapping to programming languages 19-5

attribute declaration

syntax of 3-33
Attribute_Def

OMG IDL for 8-26
Attributes 23-3, 23-35, 23-44
Attributes, Server Side 23-44
Automation View Dual interface, default name 15-31
Automation View interface 17-2, 17-16

non-dual 17-36
Automation View interface class id 15-32
Automation View interface, default name 15-30
Automation View interface, default tag 15-30

B
BAD_PARAM exception 20-65
BadCall exception 19-28
base exception class 20-58
base interface 3-16
base interface type 20-8
basic data types

and different platforms 20-15
mapped from OMG IDL to C 19-11
mapped from OMG IDL to C++ 20-15
mapped to programming languages 19-3

basic object adapter 17-37, 20-91
mapped to C 19-42

big-endian 13-7
binding 15-20
BindingIterator interface 17-60
Boolean 23-21
boolean 17-60
boolean is_a operation

OMG PIDL for 4-6
boolean type 20-15, 20-16, 21-12
boolean types3-25, 13-10, 20-15

mapped to C 19-11
bridge

architecture of inter-ORB 11-2
in networks 11-11
inter-domain 11-9
inter-ORB 10-2, 10-5, 11-6
locality 15-33

bridging techniques 11-8

C
C

_major field 19-27
and is_nil operation 19-7
any type 19-11
attribute mapping examples 19-8
BadCall exception 19-28
basic data type mapping 19-11
boolean types 19-11
global name 19-5
inheritance of operations 19-8
ORB initialization 19-44
signature of Dynamic Implementation Routine 19-42
underscore characters in mapping 19-9

C++ 20-61
_duplicate 20-7, 20-9
_narrow 20-9, 20-60
_nil 20-10
CORBA V2.2 February 1998 Index-1

Index
_ptr field accessor 20-27
_tie_A class 20-94
_var 20-7
A* 20-7
A_ptr 20-6, 20-117
A_var 20-6
abstract base class 20-6
aggregate types 20-62
alias 20-44
and struct 20-27
Any class interface 20-52
any type 20-56
Any_var 20-57
ARef 20-6
arglist 19-45, 20-86
arithmetic operations 20-7
array 20-41
array slice 20-33
Array_forany 20-43
Array_var 20-43
assignment operator 20-31
automatic release 20-64
basic data type mapping 20-15
boolean type 20-16
catch clause 20-60
char type 20-16
char* 20-17
CompletionStatus 20-59
constant 20-13
Context interface, OMG PIDL for 20-80
conversion to void* 20-7
CORBA

Object 20-69
CORBA Boolean 20-15
CORBA Char 20-15
CORBA Double 20-15
CORBA Float 20-15
CORBA long 20-15
CORBA namespace 20-103
CORBA Octet 20-15
CORBA Short 20-15
CORBA ULong 20-15
CORBA UShort 20-15
delete 20-23
deleting old character data 20-64
discriminant 20-31
Double 20-16
duplicate 20-8
dynamic_cast<T*> 20-61
enumeration type 20-16
Environment 20-117
Environment interface, OMG PIDL for20-71
extraction of values 20-50
Float 20-16
function overloading 20-46
generated class 20-6
implicit release 20-7
implicit widening 20-7
insertion of a string type 20-48
insertion of arrays,type-safe 20-48
is_nil operation 20-8

keywords 20-5, 20-118
keywords, list of 20-118
left-shift-assign operator 20-47
Long 20-16
mapped for non-exception handling environments 20-116
mapped for non-namespace environments 20-116
mapped to ORB initialization operations 20-85
mapping compatability to C 20-4
modifier function 20-33
NamedValue interface, OMG PIDL for 20-73
namespace20-3, 20-5
nested constant 20-13
NVList interface, OMG PIDL for20-74
NVList type 20-100
Object interface, OMG PIDL for20-87
object reference variable type 20-7
Object_ptr 20-8
Object_var 20-8
octet type 20-16
oneway 20-61
operation-specific arguments 20-62
operator< 20-47
operator-> 20-23
operator>>= 20-50
operator[] 20-38
ORB interface, OMG PIDL for20-83
ORB_init operation 19-45, 20-86
overloaded subscript operator 20-38
parameter passing 20-62
pointer type 20-7
portability of implementations 20-16
primitive type 20-103
read-write access 20-33
relational operations 20-7
release operation 20-8
release parameter 20-37
replace function 20-56
Request interface, OMG PIDL for 20-77
returning or passing null pointers 20-64
right-shift-operator 20-50
run time type information 20-61
sample COM mapping 16-17
sample interface mapping 20-11
sequence types 20-35
server 20-88
set function 20-61
setting union value 20-32
sizeof(T) 20-5
skeleton class 20-93
slice 20-42
split allocation 20-63
storage 20-64
string union members 20-34
String_var 20-17
structured types 20-21
SystemException 20-59
T *data constructor 20-37
T_ptr* 20-38
T_var 20-21, 20-118
template 20-93
throw exception 20-97
Index-2 CORBA V2.2 February 1998

Index
tie class 20-94
type function 20-57
TypeCode 20-46
TypeCode and value, mismatched 20-46
TypeCode_ptr 20-57, 20-81
typedef 20-44
ULong 20-16
underscore 20-89
union members 20-31
unsafe operations 20-56
untyped value 20-56
UserException 20-58
UShort 20-16
using statement20-4, 20-5
value function 20-57
void* 20-57

Calling Convention 23-5
catch clause 20-60
caught 20-60
CDR 13-4

features of 13-3
char type3-24, 20-15, 20-16
char* 20-17
char** 20-38
client 2-7
CloseConnection 13-31
CLSID 15-32, 16-44
COBOL language mapping 22-2
COM

described 15-4
COM View interface, default name 15-30
COM View interface,default tag 15-29
Comments 23-11
Common Data Representation

see CDR
Common Facilities xxv
CompletionStatus 20-59
compliance xxvi
component

tags for A-1
Component Object Model

see COM 15-4
ConnectionPoint Service 17-52
constant 20-14
constant declaration

syntax of 3-18
Constant Expressions 23-8
Constants 23-27
constants

mapping to programming languages 19-3
constructed data types 13-10

mapping to programming languages 19-3
Contained interface

OMG IDL for 8-11
Container interface 8-9

OMG IDL for 8-13
containment 11-6
Context 23-39
Context interface

OMG PIDL for 20-80
context object 5-13

copy constructor 20-21
CORBA

Any values
dynamic creation of7-14

dynamic interpretation7-15
contributors xxix
core xxvii
documentation set xxv
general language mapping requirements 19-2
getResponse instance method 21-20
interoperability xxvii
namespace 20-103
Object 20-69
object references and request level bridging 12-6

CORBA module
C++ definitions for 20-103
Context interface 5-15
description of 3-34
NVList interface 5-11
object class 20-8
Request interface 5-5
types defined by 5-1

CORBA package 23-12
CORBA_free 5-4
CORBA-alloc 22-4
CORBAComposite interface 16-50
CORBAConstants 21-10, 21-12, 21-17, 21-18
CORBAContext protocol 21-20, 21-22
CORBAEnum protocol 21-12
CORBAExceptionEvent 21-17
CORBAExceptionEvent protocol 21-16
CORBAExceptionValue protocol 21-17, 21-19
CORBA-fre 22-4
CORBANamedValue protocol 21-22, 21-23
CORBAObject protocol 21-21
CORBAORB protocol 21-21
CORBAParameter 21-8
corbaRaise message 21-17
CORBARequest protocol 21-19
CORBA-string-get and CORBA-string-set 22-48
CORBAUnion protocol 21-15
CORBA-wstring-get & CORBA-wstring-set 22-49
core, compliance xxvi
CosNaming interface 17-56
create_list operation 5-2
create_request operation 4-4
createRequest 21-9
CreateType method 17-28

D
data type

basic OMG IDL 3-23–3-25
constructed OMG IDL 3-25–3-27
constructs for OMG IDL 3-22
native 3-23
OMG IDL template 3-27–3-28

DCE 10-1, 16-1
DCE CIOP

pipe interface, DCE IDL for 14-6
CORBA V2.2 February 1998 Index-3

Index

-

DCE CIOP module
OMG IDL for 14-25

DCE ESIOP 11-21
see also DCE CIOP

DCE UUID 15-17
DCE-CIOP

storage in IOR 14-5
DCORBATypeCode interface 17-24
DCORBAUnion interface 17-22
DCORBAUserException interface 17-31
deactivation 1-8
derived interface 3-16
DICORBAAny interface 15-27, 17-24
DICORBAFactory interface 15-24, 17-26, 17-27
DICORBAStruct interface 17-21
DICORBASystemException interface 17-33
DICORBAUnion interface 17-22
DICORBAUserException interface 17-31
Dictionary 21-18
DIForeignComplexType interface 17-20
discriminant 20-31
discriminator instance method 21-15
domain 11-2

architecture 11-5
containment 11-6
federation 11-6
naming objects for multiple 11-12
object references 11-12
object referencing for 11-12–11-14
security 12-4

double 21-11
double type 20-15
Dual interface 15-12, 17-4
duplicate 20-9
duplicate operation 20-8
Dynamic Implementation Routine

C signature 19-42
mapped to C 19-42

Dynamic Invocation interface 16-28, 17-37
overview of 2-4, 2-9
parameters 5-2
request level bridging 12-6
request routines 5-5

Dynamic Skeleton interface 12-5, 17-37
mapped to C++ 20-99
mapping to C 19-40
overview of 2-5, 2-10, 6-1

dynamic_cast<T*> 20-61
DynAny

iterating through components of 7-9
management overview 7-2

DynAny API 7-3
DynAny object

basic data type values 7-9
copying 7-8
creating 7-5
destroying 7-8
generating an any value from 7-8
initializing from an any value 7-8
initializing from another DynAny object 7-7
interface 7-7

TypeCode associated with 7-7
DynAny objects

locality and usage constraints 7-5
DynArray objects

interface 7-13
DynEnum objects

interface 7-10
DynFixed objects

interface 7-10
DynSequence objects

interface 7-13
DynStruct objects

interface 7-11
DynUnion objects

interface 7-12

E
encapsulation 13-12

defined 13-5
enum 13-11
enumerated types 3-27
enumeration type 20-16
Environment 23-43
Environment interface

OMG PIDL for 20-71
environment specific inter-ORB protocol for OSF’s DCE environ

ment
see DCE ESIOP

environment-specific inter_ORB protocol
see ESIOP

ESIOP 10-1, 10-4
Example of how to handle the CORBA-Exception parameter 22-27
exception 1-7
ExceptionDef interface

OMG IDL for 8-26
Exceptions23-4, 23-30
exceptions 20-62

COM and CORBA compared 16-12
COM exception structure example 16-17
mapped to COM error codes 16-45, 17-34
mapped to COM interfaces 16-20
mapped to programming languages 19-4

Exceptions, Application-Specific 23-32
Exceptions, Example 23-33
Exceptions, Identifier 23-31
Exceptions, Members 23-31
Exceptions, Standard 23-31
expression

context 3-33
raises 3-32

Extensions to COBOL 85 22-49

F
federation 11-6
fixed-length 19-11
float type 20-15, 21-11
floating point data type 13-8
floating point type 3-24
fooHelper 24-2
fooHolder 24-2
foreign object system
Index-4 CORBA V2.2 February 1998

Index
integration of 2-18
Forward Declaration 23-17
Forward Declarations 23-3, 23-13
full bridge 12-2
fully scoped names

defined 3-35

G
general inter-ORB protocol

see GIOP
generated class 20-6
generic pointer 20-56
get function 20-61
get_interface operation 4-5

OMG PIDL for 4-5
get_interface() operation 8-8
GIOP 10-3, 11-21

alignment for primitive data types 13-6
and language mapping 13-10
and primitive data types 13-3, 13-5, 13-10
any type 13-17
array type 13-11
cancel request header, OMG IDL for 13-26
close connection message 13-29, 13-31
constucted data types 13-10
context pseudo object 13-18
exception 13-18
floating point data type 13-8
goals of 13-2
implementation on various transport protocols 13-30
integer data types 13-7
locate reply header, OMG IDL for 13-28
locate request header, OMG IDL for 13-27
mapping to TCP/IP transport protocol 13-33
message header, OMG IDL for 13-20
message type 13-19
primitive data types 13-6
principal pseudo object 13-18
relationship to IIOP 10-3
reply message, OMG IDL for 13-24
RepositoryId parameters 13-16
request header, OMG IDL for 13-22
TCKind 13-13
typecode 13-13

GIOP module 13-22, 13-27, 13-28
OMG IDL for 13-37

global name3-36, 19-5
and inheritance 3-36
and Interface Repository ScopedName 8-10
and Smalltalk 21-5

Global Names 23-11

H
hash operation 4-6
hexadecimal string 11-20
HRESULT 16-11, 17-5, 17-10, 17-36

constants and their values 16-12

I
IConnectionPointContainer interface 17-52
ICORBA_Context interface 16-31

ICORBAFactory interface 15-24, 15-37
ICORBAObject interface 15-27
ICustomer

Get_Profile interface 16-25
identifier 3-15
Identifiers 23-6
IDispatch interface 15-4, 15-11, 17-10
IDL file 23-11
IDLType interface 8-9
IEnumConnectionPoints interface 17-54
IEnumConnections interface 17-54
IForeignException interface 17-30
IForeignObject interface 15-26, 15-36, 17-17
IID 15-17, 15-29, 16-44
IIOP 11-16, 11-21, 13-2, 13-33, 15-17, 15-32, 15-33

defined 13-33
host 13-36
object key 13-36
port 13-36
relationship to GIOP 10-3
version 13-35

IIOP module 11-18, 13-34
OMG IDL for 13-39

IIOP profile
OMG IDL for 13-34

IMonikerProvider interface 15-23, 15-36
implementation

defined 1-9, 2
model for 1-8

Implementation Repository
overview of 2-11

implementation skeleton
overview of 2-9

implicit context 11-10, 12-7
include 23-11
infix operator 3-20
Inheritance 23-4, 23-13
inheritance

COM mapping for 16-25
OLE Automation mapping for 17-5

Inheritance and Interface Names 22-6
inheritance, multiple 15-11
inheritance, single 17-5
Initialization interfaces 17-39
in-line bridging 12-2
integer data type 13-7
integer tdata type 3-24
interface 1-5

defined 1-6, 2
interface identifier

see IID 15-17
interface inheritance 20-7
interface object 8-7
interface package 23-12
Interface Repository 2-5, 13-16

AliasDef, OMG IDL 8-22
and COM EX repository id 17-31
and COM mapping 15-11
and identifiers 8-9
and request level bridging 12-6
CORBA V2.2 February 1998 Index-5

Index
ArrayDef, OMG IDL 8-25
AttributeDef, OMG IDL 8-26
Contained interface, OMG IDL 8-11
Container 8-9
Container interface, OMG IDL 8-13
ExceptionDef interface 8-26
IDLType 8-9
inserting information 8-4
InterfaceDef, OMG IDL 8-29
IRObject interface 8-9
IRObject interface, OMG IDL 8-10
legal typecodes 8-40
location of interfaces in 8-8
mapped to OLE type library 16-51
ModuleDef interface, OMG IDL 8-19
OMG IDL for 8-44
OperationDef, OMG IDL 8-27
overview of 2-11, 8-2
PrimitiveDef, OMG IDL 8-23
Repository interface, OMG IDL 8-17
SequenceDef, OMG IDL 8-24
StringDef, OMG IDL 8-23
StructDef, OMG IDL 8-20
TypeCode 8-42
TypeCode interface, OMG IDL 8-36

InterfaceDef 8-8
OMG IDL for 8-29

InterfaceDef interface 16-51
Interfaces23-2, 23-12, 23-44
Interfaces, Server Side 23-44
Internet inter-ORB protocol

see IIOP
interoperability

architecture of 11-1
compliance 10-5
domain 11-5
examples of 10-5
object service-specific information, passing 11-21, 13-4
overview of 10-2
primitive data types 13-6
RFP for 11-1

interoperability, compliance xxvi
interoperable object reference

see IOR
interworking 15-13

any type 16-38
array to collection mapping 17-49
Automation View Dual interface 15-31
Automation View interface 15-30, 15-32
BindingIterator interface, mapped to ODL 17-60
bridges 15-33
COM aggregation mechanism 17-37
COM data types mapped to CORBA types 16-2
COM Service 17-51
COM View interface 15-29, 15-30
compliance xxvi
ConnectionPoint Service 17-52
CORBA_Context interface 16-31
CORBAComposite interface 16-50
CosNaming interface

mapped to ODL 17-56

DCORBATypeCode interface 17-24
DCORBAUnion interface 17-22
DCORBAUserException interface 17-31
DICORBAAny interface 15-27, 17-24
DICORBAFactory interface 15-24, 17-26, 17-27
DICORBAStruct interface 17-21
DICORBASystemException interface 17-33
DICORBAUnion interface 17-22
DICORBAUserException interface 17-31
DIForeignComplexType interface 17-20
Dual interface 15-12, 17-4
HRESULT 16-11, 17-5, 17-10, 17-36
IConnectionPointContainer interface 17-52
ICORBAFactory interface 15-24, 15-37
ICORBAObject interface 15-27
ICustomer

Get_Profile interface16-25
IDispatch interface 15-4
IDisptach interface 17-10
IEnumConnectionPoints interface 17-54
IEnumConnections interface 17-54
IForeignException interface 17-30
IForeignObject interface 15-26, 15-36, 17-17
IMonikerProvider interface 15-23, 15-36
inheritance,mapping for 16-49
IORBObject interface 15-28
IProvideClassInfo interface 16-32, 16-51
ISO Latin1alphabetic ordering model 17-8
ISupportErrorInfo interface 16-15
ITypeFactory interface 17-29
ITypeInfo interface 16-32, 16-51
IUnknown interface 17-10
mapping between OMG IDL and OLE, overview 17-3
MIDL and ODL data types mapped to CORBA types 16-32
MIDL data types 16-2
MIDL pointers 16-43
multiple inheritance 17-6
OLE data types 17-9
OLE data types mapped to CORBA types 17-42
pseudo object mapping 16-28
QueryInterface 15-11, 17-7
sequence to collection mapping 17-49
SetErrorInfo interface 16-15
SimpleFactory interface 15-23
single inheritance 17-5
target 15-6
types of mappings 15-8
VARIANT 16-40, 17-5, 17-48
VARIANT data types 16-40
view 15-5
View interface program id 15-31

interworking object model 15-3
IOP module

and DCE ESIOP 11-21
and GIOP 11-21
and IIOP 11-21
OMG IDL for 11-15

IOR 11-15, 11-18, 11-19, 13-28, 14-5
converting to object reference 11-20
Index-6 CORBA V2.2 February 1998

Index
externalized 11-20
IORBObject interface 15-28
IProvideClassInfo interface 16-32, 16-51
IRObject interface 8-9

OMG IDL for 8-10
is 20-8
is_equivalent operation 4-7
is_nil operation 20-8
ISupportErrorInfo interface 16-15
ITypeFactory interface 17-29
ITypeInfo interface 16-32, 16-51
IUknown interface 17-10

L
language mapping

overview 2-8
left-shift-assign operator 20-47
Literals 23-6
Literals, Character 23-7
Literals, Floating-Point 23-6
Literals, Integer 23-6
Literals, String 23-8
little endian 13-7
logical_type_id string 4-6
long double type 21-11
long long type 21-11
long type 20-15, 21-11

M
magic 13-20, 13-37, 13-38
Mapping for Interfaces 22-5
Mapping IDL Identifiers to a COBOL Literal 22-3
Mapping IDL Identifiers to a COBOL Name 22-2
mapping IDL to Java

basic types 24-3
helper classes 24-9
Java ORB portability interfaces 24-49
mapping for array 24-18
mapping for certain nested types 24-29
mapping for constant 24-10
mapping for enum 24-11
mapping for exception 24-22
mapping for interface 24-19
mapping for sequence 24-17
mapping for struct 24-13
mapping for the Any type 24-26
mapping for typedef 24-30
mapping for union 24-14
mapping psuedo objects 24-31
modules 24-3
names 24-2
server-side mapping 24-48

Mapping of BOA’s Dynamic Implementation Routine to
COBOL 22-41

Mapping of the ServerRequest to COBOL 22-40
Mapping Pseudo Objects to COBOL 22-29
mediated bridging 11-8
Memory Management 23-5
method 1-8
Microsoft Interface Definition Language

see MIDL 15-4

MIDL 15-4
transformation rules 15-13

modifier function 20-33
ModuleDef interface

OMG IDL for 8-19
Modules 23-12
multiple inheritance 3-17, 15-11, 17-6
MultipleComponentProfile 11-16

N
NamedValue 23-37
NamedValue interface

OMG PIDL for 20-73
NamedValue type 5-2
Names 23-5, 23-10
namespace 20-3, 20-116, 21-6
NamingContext 12-7
NamingContext interface

mapped to Smalltalk 21-18
Narrowing 23-15
nested scope

and definitions 3-35
Nil 23-16
nil 21-8
nil object reference 20-10
null pointer 20-51, 20-64
NVList 16-28, 21-23, 23-37
NVList interface

add_item operation 5-12
create_list operation 5-12
create_operation_list 5-13
free operation 5-12
get_count operation 5-13
OMG PIDL for 20-74

NVList operation
free_memory operation 5-13

NVList type 5-2, 20-100

O
Object 23-16, 23-42
object

context 5-13
CORBA and COM compared 15-9
defined 3
implementation 1-9, 2-7
invocation 2-9, 2-10
mapping to programming languages 19-3
reference 2-8
reference canonicalization 11-13
reference embedding 11-12
reference encapsulation 11-13
references, stringified 11-19
request 11-3

object adapter2-6, 2-9, 2-14
and request level bridging 12-6
functions of 2-15
overview of 2-5, 2-10

object class 20-8
Object Definition Language 15-4
object duplicate operation

OMG PIDL for 4-5
CORBA V2.2 February 1998 Index-7

Index
object identifiers
and hash operation 4-6

Object interface
create_request operation 4-4
OMG PIDL for 4-4, 20-87

object key 13-18
Object Management Group xxiii

address of xxv
Object model 1-2
Object Reference 23-13
object reference 20-6

and COM interface pointers 15-4
obtaining for View interface 17-40
testing for equivalence 4-7
union members 20-34

Object Reference Operations 23-14
object reference variable type 20-7
Object References 22-5
object references

obtaining for automation controller environments 17-26
Object References as Arguments 22-5
Object Request Broker xxiv

explained 2-2
how implemented 2-6
interfaces to 2-2
sample implementations 2-11, ??–2-13

Object Services xxiv
and GIOP module 13-22
and interoperability 12-7
and IOP module 11-20
Life Cycle 15-20, 15-22, 15-23, 16-50, 17-26
Naming 12-7, 15-25, 17-26, 17-27, 17-39
Naming, sample mapping to OLE 17-51, 17-55
Relationship 10-5
tags for A-1
Transaction 11-10

object type 1-5
Object_ptr 20-8
object_to_string operation 4-3

OMG PIDL for 4-3
Object_var 20-8
Objects 1-3
octet type 3-25, 13-4, 13-10, 20-15, 20-16, 21-12
ODL 16-4, 17-1
OLE Automation 15-4

basic data types 17-9
basic data types mapped to CORBA types 17-42
relationship to OMG IDL 17-3
transformation rules 15-13

OLE automation controller 17-2
OMG IDL

overview of 2-8
relationship to OLE 17-3
syntax of 3-14

OMG IDL global name 3-36
OMG IDL struct

mapping to C++ 20-27
OMG IDL tags

requests to allocate 11-19, A-1
OMG IDL-to-programming language mapping

overview 2-8

oneway 16-23, 20-61, 20-62, 3
opaque data type 13-5
operation 20-7

attribute,syntax of 3-31
declaration,syntax of 3-31
defined 1-6
mapping to programming languages 19-4
signature of 1-6

OperationDef
OMG IDL for 8-27

Operations 17-33, 23-3, 23-35, 23-44
Operations, Server Side 23-44
operator 20-47
operator< 20-47
operator-> 20-23
operator>>= 20-50
operator[] 20-38
Operators 23-9
ORB 23-42

backbone 11-11
connecting 8-4
core 11-3
kernel 11-3

ORB initialization
mapped to C 19-44

ORB Interface
overview of 2-10

ORB interface
and create_list operation 5-12
and create_operation_list operation 5-13
and NVList objects 5-11
mapping to programming languages 19-5
OMG PIDL for 20-83

ORB Services 11-3, 11-7
how selected 11-4
vs. Object Services 11-3

ORB Supplied Functions for Mapping 22-46
ORB_init operation 19-45, 20-86

mapped to C++ 19-45, 20-86

P
parameter

defined 1-7
parameter declaration

syntax of 3-32
POA Interface 9-30

locality contraints 9-30
pointer type 20-7
Portable Object Adaptor

abstract model description 9-2
AdaptorActivator interface 9-19
creating 9-30, 9-48
creating object references 9-7
creation 9-6
destroying 9-31
dynamic skeleton interface 9-12
finding 9-31
implicit activation 9-10
Implicit Activation policy 9-29
interface 9-30
model architecture 9-4
Index-8 CORBA V2.2 February 1998

Index

-

model components 9-2
multi-threading 9-11
overview 9-1
request processing 9-9
root POA 9-48
ServantActivator interface 9-21
ServantLocator Interface 9-24
ServantManager interface 9-20
SYSTEM_ID policy 9-48
usage scenarios 9-47

Portable Oject Adaptor
policy objects 9-25

PortableServer
UML description of 9-46

PowerPoint.Slide.7 9-5
pragma directive

and Interface Repository 8-32
id 8-32
prefix 8-32
use in Smalltalk mapping 21-14

PrimitiveDef
OMG IDL for 8-23

Principal 23-40
principal 13-12, 13-23
principal pseudo object 16-28, 16-31
profile

tags for A-1
property name 5-14
pseudo keyword 20-69

Q
qualified name 3-35
QueryInterface 15-11, 17-7

R
readonly 20-61
reference encapsulation 12-5
reference model xxiv
reference translation 12-5
Relationship Service 10-5
release operation 4-5, 20-8
release parameter 20-37
replace function 20-56
Repository interface

OMG IDL for 8-17
RepositoryId

and COM interface identifiers 16-44
and COM mapping 16-11
and pragma directive 8-32
format of 8-31

Request 23-38
Request interface

add_arg operation 5-7
delete operation 5-8
get_next_response operation 5-10
get_response operation 5-10
invoke operation 5-8
OMG PIDL for 20-77
send operation 5-8
send_multiple_requests operation 5-9

request level bridging 12-2

types of 12-6
Requests 1-3
result

defined 1-7
right-shift-operator 20-50
RPC 14-20, 14-24
RTTI 20-61
Run time type information

see RTTI

S
SAFEARRAY 15-10, 16-40, 17-19
scoped name identifier 3-35
Scoped Names 22-3
scoped_name 3-17
scoping

and C language mapping 19-6
and C++ mapping 20-4
and identifiers 3-35
explained 3-35

see ODL 15-4
Sequence 23-23
sequence octet 13-13, 13-18
sequence type3-25, 3-27, 3-32, 13-11, 20-35, 21-15
Sequence Types 23-23
SequenceDef

OMG IDL for 8-24
server 20-88, 23-43, 4
ServerRequest

mapped to C 19-40
mapped to C++ 20-99

ServerRequest pseudo interface
mapped to C 19-40

Service Type Repository Module 23-45, 23-50, 23-51, 23-52, 23
53, 23-54, 23-55

ServiceContext 11-21
ServiceID 11-22
set function 20-61
SetErrorInfo interface 16-15
Short 20-16
short type 20-15, 21-10
signature 4
SimpleFactory interface 15-23
single 20-64
sizeof(T) 20-5
skeleton class 20-91, 20-93
slice 20-42, 20-65
Smalltalk 21-11

aBindingStruct 21-13
aBool 21-9
aCORBAObject 21-19, 21-22
active Process message 21-16
add_arg operation 21-19
addArg instance method 21-19
aDiscriminator instance method 21-15
any 21-12
argList 21-9
array class 21-15
array type 21-15
Association 21-20
at message 21-12, 21-17
CORBA V2.2 February 1998 Index-9

Index
boolean 21-12
char 21-12
Character 21-12
Common Base 21-5
CORBAConstants 21-10, 21-12, 21-17
corbaContext message 21-16
CORBAContext protocol 21-20, 21-22
CORBAEnum protocol 21-12
CORBAExceptionEvent protocol 21-16
CORBAExceptionValue protocol 21-17, 21-19
CORBANamedValue protocol 21-22, 21-23
CORBAObject protocol 21-21
CORBAORB protocol 21-21
CORBAParameter protocol 21-8
corbaRaise message 21-17
CORBARequest protocol 21-19
CORBAUnion protocol 21-15
create_child operation 21-20
create_operation_list operation 21-22
create_request operation 21-21
createChild instance method 21-20
createOperationList instance method 21-22
createRequest21-9, 21-21
cxt 21-19
delete instance method 21-20
delete operation 21-20
design of mapping 21-4
Dictionary 21-18
Dictionary class 21-13, 21-15
discriminator instance method 21-15
duplicate 21-21
exceptions 21-15
explicit vs implicit mappings 21-14
flags instance method 21-22
float 21-11
garbage collection 21-8, 21-17
get_next_response operation 21-22
get_response operation 21-20
getDefaultContext instance method 21-22
invoke instance method 21-19
invoke operation 21-19
invokeOneway instance method 21-19
long 21-11
long double 21-11
long long 21-11
memory management 21-8, 21-21
memory management for object references 21-17
mini-glossary 21-24
name instance method 21-22
namespace 21-6
nil 21-8
NVlist type and OrderedCollection class 21-23
obect_to_string operation 21-21
objectToString instance method 21-21
octet 21-12
operation 21-9
OrderedCollection class 21-15
overview of mapping 21-3
pollNextResponse instance method 21-22
pollResponse instance method 21-20
Processor variable 21-16

reference books 21-5
release operation 21-21
reqFlags 21-9
request 21-9
restOfName 21-19
result 21-9
send instance method 21-20
send operation 21-20
send_multiple_requests operation 21-22
sendMultipleRequests instance method 21-22
sequence 21-15
set and get value instance methods 21-20
set and get value operations 21-20
set value operations 21-20
short 21-10
String class 21-15
string type 21-15
struct type 21-13
underscore characters in mapping 21-7
unsigned long 21-11
unsigned long long 21-11
unsigned short and long 21-11
value instance method 21-15, 21-22
Value instance methods 21-20
wchar 21-12

split allocation
avoiding errors with 20-63

statically-initialized 20-41
string 23-20
string type 3-28, 3-32, 13-11, 20-17
String Types 23-26
string union members 20-34
string_to_object operation 4-3

OMG PIDL for 4-3
String_var 20-17
StringDef

OMG IDL for 8-23
struct type 3-25, 13-11
StructDef

OMG IDL for 8-20
stub 4
stub interface 2-8, 2-9
subject 3-34
Subsystem 23-11
Summary of IDL Constructs to Ada Constructs 23-2
SystemException 20-59

T
T *data constructor 20-37
T_ptr* 20-38
T_var 20-21, 20-118
tag

component 11-19
protocol 11-19
requests to allocate A-1

TAG_MULTIPLE_COMPONENTS tag 11-16, 11-19
Tagged Types 23-2
target 15-6, 15-34
Tasking 23-5, 23-36
TCKind 13-13
TCP/IP 13-30, 13-33
Index-10 CORBA V2.2 February 1998

Index
template 20-3, 20-93
test 19-3
this pointer 20-98
throw exception 20-60, 20-97
tie class 20-94
top 20-13
Transaction Service 11-10
transfer syntax

between ORBs and inter-ORB bridges 13-3
transparency 11-4
transparency of location 11-2
type 20-49
type function 20-57
type specifier

syntax of 3-22
type unknown to the receiver 20-46
TypeCode 5-3, 16-28, 20-46, 23-28, 23-40

OMG IDL for 8-42
typecode 21-4
TypeCode interface

OMG IDL for 8-36
TypeCode_ptr 20-57, 20-81
typedef 20-44
Typedefs 23-28
Types 23-4
types

any 1-4
basic 1-4
constructed 1-5
defined 1-4
interface 1-5
legal values 1-5

Types, Any 23-29
Types, Arithmetic 23-21
Types, Array 23-26
Types, Boolean 23-21
Types, Enumeration 23-22
Types, Exception 23-30

Types, Sequence 23-23
Types, Size Requirements 23-20
Types, String 23-26
Types, Structure 23-22
Types, TypeCodes 23-28
Types, Typedefs 23-28
Types, Union 23-23
type-safe 20-46

U
unbounded sequence 19-11, 20-21
unbounded string 19-11, 20-21
Unicode 15-10, 16-36, 17-12
union member 20-31
union type3-26, 13-11, 21-4
unsigned long long type 21-11
unsigned long type 20-15, 21-11
unsigned short type 20-15, 21-11
UserException 20-58

V
value function 20-57
value instance method 21-15
variable-length 19-11
VARIANT 16-40, 17-5, 17-30, 17-48

OLE data types 16-40
view 15-5, 15-21
View interface 15-31
Visual Basic 15-9
void* 20-57

W
wchar type 21-12
Widening 23-15
Windows System Registry 15-24, 17-2, 17-25

X
X/Open xxiv
CORBA V2.2 February 1998 Index-11

Index
Index-12 CORBA V2.2 February 1998

-

CORBA 2.2 Update Sheet

The following information details the changes made to Common Object Request Broker: Architecture and Specifica-
tions, Version 2.2. CORBA 2.2 includes the following specifications: POA and IDL/JAVA. To update your book, sim
ply remove the entire contents of CORBA 2.1 and replace with CORBA Version 2.2

.

CORBA 2.2 Chapter Description of change(s)

Table of contents Updated

Preface Updated

1. The Object Model

2. CORBA Overview Updated

3. OMG IDL Syntax and Semantics Updated

4. ORB Interface Renumbered (was chapter 5) and updated

5. Dynamic Invocation Interface Renumbered (was chapter 4) and updated

6. Dynamic Skeleton Interface Updated

7. Dynamic Management of Any Values New chapter

8. The Interface Repository Renumbered (was chapter 7) and updated

9. Portable Object Adapter New chapter - replaced BOA chapter

10. Interoperability Overview Renumbered (was chapter 9)

11. ORB Interoperability Architecture Renumbered (was chapter 10) and updated

12. Building Inter-ORB Bridges Renumbered (was chapter 11)

13. General Inter-ORB Protocol Renumbered (was chapter 12)

14. The DCE ESIOP Renumbered (was chapter 13) and updated

15. Interworking Architecture Renumbered (was chapter 14)

16. Mapping: COM and CORBA Renumbered (was chapter 15) and updated

17. Mapping: OLE Automation and CORBA Renumbered (was chapter 16) and updated

18. Interceptors New chapter

19. C Language Mapping Renumbered (was chapter 17) and updated

20. C++ Language Mapping Renumbered (was chapter 18) and updated

21. Smalltalk Mapping Renumbered (was chapter 19)

22. COBOL Language Mapping Renumbered (was chapter 20) and updated

23. Ada Language Mapping Renumbered (was chapter 21)

24. IDL/JAVA Mapping New chapter

Appendix A - OMG IDL Tags Renumbered (was Appendix B)

Glossary Content unchanged

Index Updated
CORBA 2.2 Update Sheet February 24, 1998 1

2 March 11, 1998 CORBA 2.2 Update Sheet

	Preface
	0.1 About This Document
	0.1.1 Object Management Group
	0.1.2 X/Open

	0.2 Intended Audience
	0.3 Context of CORBA
	0.4 Associated Documents
	0.5 Definition of CORBA Compliance
	0.6 Structure of This Manual
	0.7 Acknowledgements
	0.8 References
	1. The Object Model
	1.1 Overview
	1.2 Object Semantics
	1.2.1 Objects
	1.2.2 Requests
	1.2.3 Object Creation and Destruction
	1.2.4 Types
	1.2.5 Interfaces
	1.2.6 Operations
	1.2.7 Attributes

	1.3 Object Implementation
	1.3.1 The Execution Model: Performing Services
	1.3.2 The Construction Model

	2. CORBA Overview
	2.1 Structure of an Object Request Broker
	2.1.1 Object Request Broker
	2.1.2 Clients
	2.1.3 Object Implementations
	2.1.4 Object References
	2.1.5 OMG Interface Definition Language
	2.1.6 Mapping of OMG IDL to Programming Languages
	2.1.7 Client Stubs
	2.1.8 Dynamic Invocation Interface
	2.1.9 Implementation Skeleton
	2.1.10 Dynamic Skeleton Interface
	2.1.11 Object Adapters
	2.1.12 ORB Interface
	2.1.13 Interface Repository
	2.1.14 Implementation Repository

	2.2 Example ORBs
	2.2.1 Client- and Implementation-resident ORB
	2.2.2 Server-based ORB
	2.2.3 System-based ORB
	2.2.4 Library-based ORB

	2.3 Structure of a Client
	2.4 Structure of an Object Implementation
	2.5 Structure of an Object Adapter
	2.6 CORBA Required Object Adapter
	2.6.1 Portable Object Adapter

	2.7 The Integration of Foreign Object Systems

	3. OMG IDL Syntax and Semantics
	3.1 Overview
	3.2 Lexical Conventions
	3.2.1 Tokens
	3.2.2 Comments
	3.2.3 Identifiers
	3.2.4 Keywords
	3.2.5 Literals

	3.3 Preprocessing
	3.4 OMG IDL Grammar
	3.5 OMG IDL Specification
	3.5.1 Module Declaration
	3.5.2 Interface Declaration

	3.6 Inheritance
	3.7 Constant Declaration
	3.7.1 Syntax
	3.7.2 Semantics

	3.8 Type Declaration
	3.8.1 Basic Types
	3.8.2 Constructed Types
	3.8.3 Template Types
	3.8.4 Complex Declarator
	3.8.5 Native Types

	3.9 Exception Declaration
	3.10 Operation Declaration
	3.10.1 Operation Attribute
	3.10.2 Parameter Declarations
	3.10.3 Raises Expressions
	3.10.4 Context Expressions

	3.11 Attribute Declaration
	3.12 CORBA Module
	3.13 Names and Scoping
	3.14 Differences from C++
	3.15 Standard Exceptions
	3.15.1 Standard Exceptions Definitions
	3.15.2 Object Non-Existence
	3.5.3 Transaction Exceptions

	4. ORB Interface
	4.1 Overview
	4.1.1 Converting Object References to Strings
	4.1.2 Getting Service Information

	4.2 Object Reference Operations
	4.2.1 Determining the Object Interface
	4.2.2 Duplicating and Releasing Copies of Object References
	4.2.3 Nil Object References
	4.2.4 Equivalence Checking Operation
	4.2.5 Probing for Object Non-Existence
	4.2.6 Object Reference Identity
	4.2.7 Getting Policy Associated with the Object
	4.2.8 Getting the Domain Managers Associated with the Object

	4.3 ORB and OA Initialization and Initial References
	4.4 ORB Initialization
	4.5 Obtaining Initial Object References
	4.6 Current Object
	4.7 Policy Object
	4.8 Management of Policy Domains
	4.8.1 Basic Concepts
	4.8.2 Domain Management Operations

	4.9 Thread-related operations
	4.9.1 work_pending
	4.9.2 perform_work
	4.9.3 run
	4.9.4 shutdown

	5. Dynamic Invocation Interface
	5.1 Overview
	5.1.1 Common Data Structures
	5.1.2 Memory Usage
	5.1.3 Return Status and Exceptions

	5.2 Request Operations
	5.2.1 create_request
	5.2.2 add_arg
	5.2.3 invoke
	5.2.4 delete

	5.3 Deferred Synchronous Operations
	5.3.1 send
	5.3.2 send_multiple_requests
	5.3.3 get_response
	5.3.4 get_next_response

	5.4 List Operations
	5.4.1 create_list
	5.4.2 add_item
	5.4.3 free
	5.4.4 free_memory
	5.4.5 get_count
	5.4.6 create_operation_list

	5.5 Context Objects
	5.6 Context Object Operations
	5.6.1 get_default_context
	5.6.2 set_one_value
	5.6.3 set_values
	5.6.4 get_values
	5.6.5 delete_values
	5.6.6 create_child
	5.6.7 delete

	5.7 Native Data Manipulation

	6. Dynamic Skeleton Interface
	6.1 Introduction
	6.2 Overview
	6.3 ServerRequestPseudo-Object
	6.3.1 ExplicitRequest State: ServerRequestPseudo-Object

	6.4 DSI: Language Mapping
	6.4.1 ServerRequest’s Handling of Operation Parameters
	6.4.2 Registering Dynamic Implementation Routines

	7. Dynamic management of Any values
	7.1 Overview
	7.2 DynAny API
	7.2.1 Locality and usage constraints
	7.2.2 Creating a DynAny object
	7.2.3 The DynAny interface
	7.2.4 The DynFixed interface
	7.2.5 The DynEnum interface
	7.2.6 The DynStruct interface
	7.2.7 The DynUnion interface
	7.2.8 The DynSequence interface
	7.2.9 The DynArray interface

	7.3 Usage in C++ language
	7.3.1 Dynamic creation of CORBA::Any values
	7.3.2 Dynamic interpretation of CORBA::Any values

	8. The Interface Repository
	8.1 Overview
	8.2 Scope of an Interface Repository
	8.3 Implementation Dependencies
	8.3.1 Managing Interface Repositories

	8.4 Basics
	8.4.1 Names and Identifiers
	8.4.2 Types and TypeCodes
	8.4.3 Interface Objects
	8.4.4 Structure and Navigation of Interface Objects

	8.5 Interface Repository Interfaces
	8.5.1 Supporting Type Definitions
	8.5.2 IRObject
	8.5.3 Contained
	8.5.4 Container
	8.5.5 IDLType
	8.5.6 Repository
	8.5.7 ModuleDef
	8.5.8 ConstantDef Interface
	8.5.9 StructDef
	8.5.10 UnionDef
	8.5.11 EnumDef
	8.5.12 AliasDef
	8.5.13 PrimitiveDef
	8.5.14 StringDef
	8.5.15 WstringDef
	8.5.16 FixedDef
	8.5.17 SequenceDef
	8.5.18 ArrayDef
	8.5.19 ExceptionDef
	8.5.20 AttributeDef
	8.5.21 OperationDef
	8.5.22 InterfaceDef

	8.6 RepositoryIds
	8.6.1 OMG IDL Format
	8.6.2 DCE UUID Format
	8.6.3 LOCAL Format
	8.6.4 Pragma Directives for RepositoryId
	8.6.5 For More Information
	8.6.6 RepositoryIDs for OMG-Specified Types

	8.7 TypeCodes
	8.7.1 The TypeCode Interface
	8.7.2 TypeCode Constants
	8.7.3 Creating TypeCodes

	8.8 OMG IDL for Interface Repository

	9. The Portable Object Adaptor
	9.1 Overview
	9.2 Abstract Model Description
	9.2.1 Model Components
	9.2.2 Model Architecture
	9.2.3 POA Creation
	9.2.4 Reference Creation
	9.2.5 Object Activation States
	9.2.6 Request Processing
	9.2.7 Implicit Activation
	9.2.8 Multi-threading
	9.2.9 Dynamic Skeleton Interface
	9.2.10 Location Transparency

	9.3 Interfaces
	9.3.1 The Servant IDL Type
	9.3.2 POAManager Interface
	9.3.3 AdapterActivator Interface
	9.3.4 ServantManager Interface
	9.3.5 ServantActivator Interface
	9.3.6 ServantLocator Interface
	9.3.7 POA Policy Objects
	9.3.8 POA Interface
	9.3.9 Current operations

	9.4 IDL for PortableServer module
	9.5 UML Description of PortableServer
	9.6 Usage Scenarios
	9.6.1 Getting the root POA
	9.6.2 Creating a POA
	9.6.3 Explicit Activation with POA-assigned Object Ids
	9.6.4 Explicit activation with user assigned Object Ids
	9.6.5 Creating references before activation
	9.6.6 Servant Manager Definition and Creation
	9.6.7 Object activation on demand
	9.6.8 Persistent objects with POA-assigned Ids
	9.6.9 Multiple Object Ids Mapping to a Single Servant
	9.6.10 One Servant for all Objects
	9.6.11 Single Servant, many objects and types, using DSI

	10.Interoperability Overview
	10.1 Elements of Interoperability
	10.1.1 ORB Interoperability Architecture
	10.1.2 Inter-ORB Bridge Support
	10.1.3 General Inter-ORB Protocol (GIOP)
	10.1.4 Internet Inter-ORB Protocol (IIOP)
	10.1.5 Environment-Specific Inter-ORB Protocols (ESIOPs)

	10.2 Relationship to Previous Versions of CORBA
	10.3 Examples of Interoperability Solutions
	10.3.1 Example 1
	10.3.2 Example 2
	10.3.3 Example 3
	10.3.4 Interoperability Compliance

	10.4 Motivating Factors
	10.4.1 ORB Implementation Diversity
	10.4.2 ORB Boundaries
	10.4.3 ORBs Vary in Scope, Distance, and Lifetime

	10.5 Interoperability Design Goals
	10.5.1 Non-Goals

	11.ORB Interoperability Architecture
	11.1 Overview
	11.1.1 Domains
	11.1.2 Bridging Domains

	11.2 ORBs and ORB Services
	11.2.1 The Nature of ORB Services
	11.2.2 ORB Services and Object Requests
	11.2.3 Selection of ORB Services

	11.3 Domains
	11.3.1 Definition of a Domain
	11.3.2 Mapping Between Domains: Bridging

	11.4 Interoperability Between ORBs
	11.4.1 ORB Services and Domains
	11.4.2 ORBs and Domains
	11.4.3 Interoperability Approaches
	11.4.4 Policy-Mediated Bridging
	11.4.5 Configurations of Bridges in Networks

	11.5 Object Addressing
	11.5.1 Domain-relative Object Referencing
	11.5.2 Handling of Referencing Between Domains

	11.6 An Information Model for Object References
	11.6.1 What Information Do Bridges Need?
	11.6.2 Interoperable Object References: IORs
	11.6.3 Standard IOR Components
	11.6.4 Profile and Component Composition in IORs
	11.6.5 IOR Creation and Scope
	11.6.6 Stringified Object References
	11.6.7 Object Service Context

	11.7 Code Set Conversion
	11.7.1 Character Processing Terminology
	11.7.2 Code Set Conversion Framework
	11.7.3 Mapping to Generic Character Environments

	11.8 Example of Generic Environment Mapping
	11.8.1 Generic Mappings
	11.8.2 Interoperation and Generic Mappings

	11.9 Relevant OSFM Registry Interfaces
	11.9.1 Character and Code Set Registry
	11.9.2 Access Routines

	12.Building Inter-ORB Bridges
	12.1 In-Line and Request-Level Bridging
	12.1.1 In-line Bridging
	12.1.2 Request-level Bridging
	12.1.3 Collocated ORBs

	12.2 Proxy Creation and Management
	12.3 Interface-specific Bridges and Generic Bridges
	12.4 Building Generic Request-Level Bridges
	12.5 Bridging Non-Referencing Domains
	12.6 Bootstrapping Bridges

	13.General Inter-ORB Protocol
	13.1 Goals of the General Inter-ORB Protocol
	13.2 GIOP Overview
	13.2.1 Common Data Representation (CDR)
	13.2.2 GIOP Message Overview
	13.2.3 GIOP Message Transfer

	13.3 CDR Transfer Syntax
	13.3.1 Primitive Types
	13.3.2 OMG IDL Constructed Types
	13.3.3 Encapsulation
	13.3.4 Pseudo-Object Types
	13.3.5 Object References

	13.4 GIOP Message Formats
	13.4.1 GIOP Message Header
	13.4.2 Reply Message
	13.4.3 CancelRequest Message
	13.4.4 LocateRequest Message
	13.4.5 LocateReply Message
	13.4.6 CloseConnection Message
	13.4.7 MessageError Message
	13.4.8 Fragment Message

	13.5 GIOP Message Transport
	13.5.1 Connection Management
	13.5.2 Message Ordering

	13.6 Object Location
	13.7 Internet Inter-ORB Protocol (IIOP)
	13.7.1 TCP/IP Connection Usage
	13.7.2 IIOP IOR Profiles
	13.7.3 IIOP IOR Profile Components

	13.8 OMG IDL
	13.8.1 GIOP Module
	13.8.2 IIOP Module

	14.The DCE ESIOP
	14.1 Goals of the DCE Common Inter-ORB Protocol
	14.2 DCE Common Inter-ORB Protocol Overview
	14.2.1 DCE-CIOP RPC
	14.2.2 DCE-CIOP Data Representation
	14.2.3 DCE-CIOP Messages
	14.2.4 Interoperable Object Reference (IOR)

	14.3 DCE-CIOP Message Transport
	14.3.1 Pipe-based Interface
	14.3.2 Array-based Interface

	14.4 DCE-CIOP Message Formats
	14.4.1 DCE_CIOP Invoke Request Message
	14.4.2 DCE-CIOP Invoke Response Message
	14.4.3 DCE-CIOP Locate Request Message
	14.4.4 DCE-CIOP Locate Response Message

	14.5 DCE-CIOP Object References
	14.5.1 DCE-CIOP String Binding Component
	14.5.2 DCE-CIOP Binding Name Component
	14.5.3 DCE-CIOP No Pipes Component
	14.5.4 Complete Object Key Component
	14.5.5 Endpoint ID Position Component
	14.5.6 Location Policy Component

	14.6 DCE-CIOP Object Location
	14.6.1 Location Mechanism Overview
	14.6.2 Activation
	14.6.3 Basic Location Algorithm
	14.6.4 Use of the Location Policy and the Endpoint ID

	14.7 OMG IDL for the DCE CIOP Module
	14.8 References for this Chapter

	15.Interworking Architecture
	15.1 Purpose of the Interworking Architecture
	15.1.1 Comparing COM Objects to CORBA Objects

	15.2 Interworking Object Model
	15.2.1 Relationship to CORBA Object Model
	15.2.2 Relationship to the OLE/COM Model
	15.2.3 Basic Description of the Interworking Model

	15.3 Interworking Mapping Issues
	15.4 Interface Mapping
	15.4.1 CORBA/COM
	15.4.2 CORBA/Automation
	15.4.3 COM/CORBA
	15.4.4 Automation/CORBA

	15.5 Interface Composition Mappings
	15.5.1 CORBA/COM
	15.5.2 Detailed Mapping Rules
	15.5.3 Example of Applying Ordering Rules
	15.5.4 Mapping Interface Identity

	15.6 Object Identity, Binding, and Life Cycle
	15.6.1 Object Identity Issues
	15.6.2 Binding and Life Cycle

	15.7 Interworking Interfaces
	15.7.1 SimpleFactory Interface
	15.7.2 IMonikerProvider Interface and Moniker Use
	15.7.3 ICORBAFactory Interface
	15.7.4 IForeignObject Interface
	15.7.5 ICORBAObject Interface
	15.7.6 IORBObject Interface
	15.7.7 Naming Conventions for View Components

	15.8 Distribution
	15.8.1 Bridge Locality
	15.8.2 Distribution Architecture

	15.9 Interworking Targets
	15.10 Compliance to COM/CORBA Interworking
	15.10.1 Products Subject to Compliance
	15.10.2 Compliance Points

	16.Mapping: COM and CORBA
	16.1 Data Type Mapping
	16.2 CORBA to COM Data Type Mapping
	16.2.1 Mapping for Basic Data Types
	16.2.2 Mapping for Constants
	16.2.3 Mapping for Enumerators
	16.2.4 Mapping for String Types
	16.2.5 Mapping for Struct Types
	16.2.6 Mapping for Union Types
	16.2.7 Mapping for Sequence Types
	16.2.8 Mapping for Array Types
	16.2.9 Mapping for the any Type
	16.2.10 Interface Mapping
	16.2.11 Inheritance Mapping
	16.2.12 Mapping for Pseudo-Objects
	16.2.13 Interface Repository Mapping

	16.3 COM to CORBA Data Type Mapping
	16.3.1 Mapping for Basic Data Types
	16.3.2 Mapping for Constants
	16.3.3 Mapping for Enumerators
	16.3.4 Mapping for String Types
	16.3.5 Mapping for Structure Types
	16.3.6 Mapping for Union Types
	16.3.7 Mapping for Array Types
	16.3.8 Mapping for VARIANT
	16.3.9 Mapping for Pointers
	16.3.10 Interface Mapping
	16.3.11 Mapping for Read-Only Attributes
	16.3.12 Mapping for Read-Write Attributes

	17.Mapping: OLE Automation and CORBA
	17.1 Mapping CORBA Objects to OLE Automation
	17.1.1 Architectural Overview
	17.1.2 Main Features of the Mapping
	17.1.3 Mapping for Interfaces
	17.1.4 Mapping for Basic Data Types
	17.1.5 Special Cases of Basic Data Type Mapping
	17.1.6 Mapping for Strings
	17.1.7 A Complete IDL to ODL Mapping for the Basic Data Types
	17.1.8 Mapping for Object References
	17.1.9 Mapping for Enumerated Types
	17.1.10 Mapping for Arrays and Sequences
	17.1.11 Mapping for CORBA Complex Types
	17.1.12 Mapping for TypeCodes
	17.1.13 Mapping for anys
	17.1.14 Mapping for Typedefs
	17.1.15 Mapping for Constants
	17.1.16 Getting Initial CORBA Object References
	17.1.17 Creating Initial in Parameters for Complex Types
	17.1.18 Mapping CORBA Exceptions to Automation Exceptions
	17.1.19 Conventions for Naming Components of the Automation View
	17.1.20 Naming Conventions for Pseudo-Structs, Pseudo-Unions, and Pseudo- Exceptions
	17.1.21 Automation View Interface as a Dispatch Interface (Nondual)
	17.1.22 Aggregation of Automation Views
	17.1.23 DII and DSI

	17.2 Automation Objects as CORBA Objects
	17.2.1 Architectural Overview
	17.2.2 Main Features of the Mapping
	17.2.3 Getting Initial Object References
	17.2.4 Mapping for Interfaces
	17.2.5 Mapping for Inheritance
	17.2.6 Mapping for ODL Properties and Methods
	17.2.7 Mapping for Automation Basic Data Types
	17.2.8 Conversion Errors
	17.2.9 Special Cases of Data Type Conversion
	17.2.10 A Complete OMG IDL to ODL Mapping for the Basic Data Types
	17.2.11 Mapping for Object References
	17.2.12 Mapping for Enumerated Types
	17.2.13 Mapping for SafeArrays
	17.2.14 Mapping for Typedefs
	17.2.15 Mapping for VARIANTs
	17.2.16 Mapping Automation Exceptions to CORBA

	17.3 Older OLE Automation Controllers
	17.3.1 Mapping for OMG IDL Arrays and Sequences to Collections

	17.4 Example Mappings
	17.4.1 Mapping the OMG Naming Service to OLE Automation
	17.4.2 Mapping a COM Service to OMG IDL
	17.4.3 Mapping an OMG Object Service to OLE Automation

	18.Interceptors
	18.1 Introduction
	18.1.1 ORB Core and ORB Services

	18.2 Interceptors
	18.2.1 Generic ORB Services and Interceptors
	18.2.2 Request-Level Interceptors
	18.2.3 Message-Level Interceptors
	18.2.4 Selecting Interceptors

	18.3 Client-Target Binding
	18.3.1 Binding Model
	18.3.2 Establishing the Binding and Interceptors

	18.4 Using Interceptors
	18.4.1 Request-Level Interceptors
	18.4.2 Message-Level Interceptors

	18.5 Interceptor Interfaces
	18.5.1 Client and Target Invoke
	18.5.2 Send and Receive Message

	18.6 IDL for Interceptors

	19.C Language Mapping
	19.1 Requirements for a Language Mapping
	19.1.1 Basic Data Types
	19.1.2 Constructed Data Types
	19.1.3 Constants
	19.1.4 Objects
	19.1.5 Invocation of Operations
	19.1.6 Exceptions
	19.1.7 Attributes
	19.1.8 ORB Interfaces

	19.2 Scoped Names
	19.3 Mapping for Interfaces
	19.4 Inheritance and Operation Names
	19.5 Mapping for Attributes
	19.6 Mapping for Constants
	19.7 Mapping for Basic Data Types
	19.8 Mapping Considerations for Constructed Types
	19.9 Mapping for Structure Types
	19.10 Mapping for Union Types
	19.11 Mapping for Sequence Types
	19.12 Mapping for Strings
	19.13 Mapping for Wide Strings
	19.14 Mapping for Fixed
	19.15 Mapping for Arrays
	19.16 Mapping for Exception Types
	19.17 Implicit Arguments to Operations
	19.18 Interpretation of Functions with Empty Argument Lists
	19.19 Argument Passing Considerations
	19.20 Return Result Passing Considerations
	19.21 Summary of Argument/Result Passing
	19.22 Handling Exceptions
	19.23 Method Routine Signatures
	19.24 Include Files
	19.25 Pseudo-objects
	19.25.1 ORB Operations

	19.26 Mapping for Object Implementations
	19.26.1 Operation-specific Details
	19.26.2 PortableServer Functions
	19.26.3 Mapping for PortableServer::ServantLocator::Cookie
	19.26.4 Servant Mapping
	19.26.5 Interface Skeletons
	19.26.6 Servant Structure Initialization
	19.26.7 Application Servants
	19.26.8 Method Signatures

	19.27 Mapping of the Dynamic Skeleton Interface to C
	19.27.1 Mapping of ServerRequest to C
	19.27.2 Mapping of Dynamic Implementation Routine to C

	19.28 ORB Initialization Operations

	20.Mapping of OMG IDL to C++
	20.1 Preliminary Information
	20.1.1 Overview
	20.1.2 Scoped Names
	20.1.3 C++ Type Size Requirements
	20.1.4 CORBA Module

	20.2 Mapping for Modules
	20.3 Mapping for Interfaces
	20.3.1 Object Reference Types
	20.3.2 Widening Object References
	20.3.3 Object Reference Operations
	20.3.4 Narrowing Object References
	20.3.5 Nil Object Reference
	20.3.6 Object Reference Out Parameter
	20.3.7 Interface Mapping Example

	20.4 Mapping for Constants
	20.5 Mapping for Basic Data Types
	20.6 Mapping for Enums
	20.7 Mapping for String Types
	20.8 Mapping for Wide String Types
	20.9 Mapping for Structured Types
	20.9.1 T_var Types
	20.9.2 T_out Types

	20.10 Mapping for Struct Types
	20.11 Mapping for Fixed
	20.11.1 Fixed T_var and T_out Types

	20.12 Mapping for Union Types
	20.13 Mapping for Sequence Types
	20.13.1 Sequence Example
	20.13.2 Using the “release” Constructor Parameter
	20.13.3 Additional Memory Management Functions
	20.13.4 Sequence T_var and T_out Types

	20.14 Mapping For Array Types
	20.15 Mapping For Typedefs
	20.16 Mapping for the Any Type
	20.16.1 Handling Typed Values
	20.16.2 Insertion into any
	20.16.3 Extraction from any
	20.16.4 Distinguishing boolean, octet, char, wchar, bounded string, and bounded wstring
	20.16.5 Widening to Object
	20.16.6 Handling Untyped Values
	20.16.7 Any Constructors, Destructor, Assignment Operator
	20.16.8 The Any Class
	20.16.9 The Any_var Class

	20.17 Mapping for Exception Types
	20.18 Mapping For Operations and Attributes
	20.19 Implicit Arguments to Operations
	20.20 Argument Passing Considerations
	20.20.1 Operation Parameters and Signatures

	20.21 Mapping of Pseudo Objects to C++
	20.22 Usage
	20.23 Mapping Rules
	20.24 Relation to the C PIDL Mapping
	20.25 Environment
	20.25.1 Environment Interface
	20.25.2 Environment C++ Class
	20.25.3 Differences from C-PIDL
	20.25.4 Memory Management

	20.26 NamedValue
	20.26.1 NamedValue Interface
	20.26.2 NamedValue C++ Class
	20.26.3 Differences from C-PIDL
	20.26.4 Memory Management

	20.27 NVList
	20.27.1 NVList Interface
	20.27.2 NVList C++ Class
	20.27.3 Differences from C-PIDL
	20.27.4 Memory Management

	20.28 Request
	20.28.1 Request Interface
	20.28.2 Request C++ Class
	20.28.3 Differences from C-PIDL
	20.28.4 Memory Management

	20.29 Context
	20.29.1 Context Interface
	20.29.2 Context C++ Class
	20.29.3 Differences from C-PIDL
	20.29.4 Memory Management

	20.30 TypeCode
	20.30.1 TypeCode Interface
	20.30.2 TypeCode C++ Class
	20.30.3 Differences from C-PIDL
	20.30.4 Memory Management

	20.31 ORB
	20.31.1 ORB Interface
	20.31.2 ORB C++ Class
	20.31.3 Differences from C-PIDL
	20.31.4 Mapping of ORB Initialization Operations

	20.32 Object
	20.32.1 Object Interface
	20.32.2 Object C++ Class

	20.33 Server-Side Mapping
	20.34 Implementing Interfaces
	20.34.1 Mapping of PortableServer::Servant
	20.34.2 Skeleton Operations
	20.34.3 Inheritance-Based Interface Implementation
	20.34.4 Delegation-Based Interface Implementation

	20.35 Implementing Operations
	20.35.1 Skeleton Derivation From Object

	20.36 Mapping of Dynamic Skeleton Interface to C++
	20.36.1 Mapping of ServerRequest to C++
	20.36.2 Handling Operation Parameters and Results
	20.36.3 Mapping of PortableServer Dynamic Implementation Routine

	20.37 PortableServer Functions
	20.38 Mapping for PortableServer::ServantManager
	20.38.1 Mapping for Cookie
	20.38.2 ServantManagers and AdapterActivators

	20.39 C++ Definitions for CORBA
	20.39.1 Primitive Types
	20.39.2 String_var and String_out Class
	20.39.3 WString_var and WString_out
	20.39.4 Any Class
	20.39.5 Any_var Class
	20.39.6 Exception Class
	20.39.7 SystemException Class
	20.39.8 UserException Class
	20.39.9 UnknownUserException Class
	20.39.10 release and is_nil
	20.39.11 Object Class
	20.39.12 Environment Class
	20.39.13 NamedValue Class
	20.39.14 NVList Class
	20.39.15 ExceptionList Class
	20.39.16 ContextList Class
	20.39.17 Request Class
	20.39.18 Context Class
	20.39.19 TypeCode Class
	20.39.20 ORB Class
	20.39.21 ORB Initialization
	20.39.22 General T_out Types

	20.40 Alternative Mappings For C++ Dialects
	20.40.1 Without Namespaces
	20.40.2 Without Exception Handling

	20.41 C++ Keywords

	21.Mapping of OMG IDL to Smalltalk
	21.1 Mapping Summary
	21.2 Key Design Decisions
	21.2.1 Consistency of Style, Flexibility and Portability of Implementation

	21.3 Implementation Constraints
	21.3.1 Avoiding Name Space Collisions
	21.3.2 Limitations on OMG IDL Types

	21.4 Smalltalk Implementation Requirements
	21.5 Conversion of Names to Smalltalk Identifiers
	21.6 Mapping for Interfaces
	21.7 Memory Usage
	21.8 Mapping for Objects
	21.9 Invocation of Operations
	21.10 Mapping for Attributes
	21.10.1 Mapping for Constants

	21.11 Mapping for Basic Data Types
	21.12 Mapping for the Any Type
	21.13 Mapping for Enums
	21.14 Mapping for Struct Types
	21.15 Mapping for Fixed Types
	21.16 Mapping for Union Types
	21.16.1 Implicit Binding
	21.16.2 Explicit Binding

	21.17 Mapping for Sequence Types
	21.18 Mapping for String Types
	21.19 Mapping for Wide String Types
	21.20 Mapping for Array Types
	21.21 Mapping for Exception Types
	21.22 Mapping for Operations
	21.23 Implicit Arguments to Operations
	21.24 Argument Passing Considerations
	21.25 Handling Exceptions
	21.26 Exception Values
	21.26.1 The CORBAExceptionValue Protocol

	21.27 CORBA::Request
	21.28 CORBA::Context
	21.29 CORBA::Object
	21.30 CORBA::ORB
	21.31 CORBA::NamedValue
	21.32 CORBA::NVList

	22.Mapping of OMG IDL to Cobol
	22.1 Overview
	22.2 Mapping of IDL to COBOL
	22.2.1 Mapping of IDL Identifiers to COBOL

	22.3 Scoped Names
	22.4 Memory Management
	22.5 Mapping for Interfaces
	22.5.1 Object References
	22.5.2 Object References as Arguments
	22.5.3 Inheritance and Interface Names

	22.6 Mapping for Attributes
	22.7 Mapping for Constants
	22.8 Mapping for Basic Data Types
	22.8.1 Boolean
	22.8.2 enum
	22.8.3 any

	22.9 Mapping for Fixed Types
	22.10 Mapping for Struct Types
	22.11 Mapping for Union Types
	22.12 Mapping for Sequence Types
	22.12.1 Bounded Sequence
	22.12.2 Unbounded Sequence
	22.12.3 Sequence Element Accessor Functions
	22.12.4 Nested Sequences
	22.12.5 Sequence parameter passing considerations

	22.13 Mapping for Strings
	22.13.1 How string is mapped to COBOL
	22.13.2 How wstring is mapped to COBOL
	22.13.3 string / wstring argument passing considerations

	22.14 Mapping for Arrays
	22.15 Mapping for Exception Types
	22.16 Argument Conventions
	22.16.1 Implicit Arguments to Operations
	22.16.2 Argument passing Considerations
	22.16.3 Summary of Argument/Result Passing

	22.17 Memory Management
	22.17.1 Summary of Parameter Storage Responsibilities

	22.18 Handling Exceptions
	22.18.1 Passing Exception details back to the caller
	22.18.2 Exception Handling Functions
	22.18.3 Example of how to handle the CORBA-Exception parameter

	22.19 Pseudo Objects
	22.19.1 Mapping Pseudo Objects to COBOL
	22.19.2 Pseudo-Object mapping example

	22.21 Mapping of the Dynamic Skeleton Interface to COBOL
	22.21.1 Mapping of the ServerRequest to COBOL
	22.21.2 Mapping of Dynamic Implementation Routine to COBOL

	22.22 ORB Initialization Operations
	22.23 Operations for Obtaining Initial Object References
	22.24 ORB Supplied Functions for Mapping
	22.24.1 Memory Management routines

	22.25 Accessor Functions
	22.25.1 CORBA-sequence-element-get and CORBA-sequence-element-set
	22.25.2 CORBA-string-get and CORBA-string-set
	22.25.3 CORBA-wstring-get & CORBA-wstring-set

	22.26 Extensions to COBOL 85
	22.26.1 Untyped Pointers and Pointer manipulation
	22.26.2 Pointer Manipulation
	22.26.3 Floating point
	22.26.4 Constants
	22.26.5 Typedefs

	22.27 References

	23.Mapping of OMG IDL to Ada
	23.1 Overview
	23.1.1 Ada Implementation Requirements

	23.2 Mapping Summary
	23.2.1 Interfaces and Tagged Types
	23.2.2 Operations
	23.2.3 Attributes
	23.2.4 Inheritance
	23.2.5 Data Types
	23.2.6 Exceptions
	23.2.7 Names and Scoping

	23.3 Other Mapping Requirements
	23.3.1 Implementation Considerations
	23.3.2 Calling Convention
	23.3.3 Memory Management
	23.3.4 Tasking

	23.4 Lexical Mapping
	23.4.1 Mapping of Identifiers
	23.4.2 Mapping of Literals
	23.4.3 Mapping of Constant Expressions

	23.5 Mapping of IDL to Ada
	23.5.1 Names
	23.5.2 IDL Files
	23.5.3 CORBA Subsystem
	23.5.4 Mapping Modules
	23.5.5 Mapping for Interfaces (Client-Side Specific)
	23.5.6 Mapping for Types
	23.5.7 Mapping for Any Type
	23.5.8 Mapping for Exception Types
	23.5.9 Mapping for Operations and Attributes (Client-Side Specific)
	23.5.10 Argument Passing Considerations
	23.5.11 Tasking Considerations

	23.6 Mapping of Pseudo-Objects to Ada
	23.6.1 NamedValue
	23.6.2 NVList
	23.6.3 Request
	23.6.4 Context
	23.6.5 Principal
	23.6.6 TypeCode
	23.6.7 ORB
	23.6.8 Object
	23.6.9 Environment

	23.7 Server-Side Mapping
	23.7.1 Implementing Interfaces
	23.7.2 Implementing Operations and Attributes
	23.7.3 Examples

	23.8 Predefined Language Environment: Subsystem CORBA
	23.8.1 Package CORBA
	23.8.2 Package CORBA.Bounded_Strings;
	23.8.3 Package CORBA.Context
	23.8.4 Package CORBA.Environment
	23.8.5 Package CORBA.Forward
	23.8.6 Package CORBA.Iterate_Over_Any_Elements
	23.8.7 Package CORBA.NVList
	23.8.8 Package CORBA.Object
	23.8.9 Package CORBA.ORB
	23.8.10 Package CORBA.Principal
	23.8.11 Package CORBA.Request
	23.8.12 Package CORBA.Sequences
	23.8.13 Package CORBA.Sequences.Bounded
	23.8.14 Package CORBA.Sequences.Unbounded

	23.9 Glossary of Ada Terms

	24.Mapping of OMG IDL to Java
	24.1 Names
	24.1.1 Reserved Names

	24.2 Mapping of Module
	24.2.1 Example

	24.3 Mapping for Basic Types
	24.3.1 Introduction
	24.3.2 Boolean
	24.3.3 Character Types
	24.3.4 Octet
	24.3.5 String Types
	24.3.6 Integer Types
	24.3.7 Floating Point Types
	24.3.8 Future Fixed Point Types
	24.3.9 Future Long Double Types

	24.4 Helper Classes
	24.4.1 Examples

	24.5 Mapping for Constant
	24.5.1 Constants Within An Interface
	24.5.2 Constants Not Within An Interface

	24.6 Mapping for Enum
	24.6.1 Example

	24.7 Mapping for Struct
	24.7.1 Example

	24.8 Mapping for Union
	24.8.1 Example

	24.9 Mapping for Sequence
	24.9.1 Example

	24.10 Mapping for Array
	24.10.1 Example

	24.11 Mapping for Interface
	24.11.1 Basics
	24.11.2 Parameter Passing Modes

	24.12 Mapping for Exception
	24.12.1 User Defined Exceptions
	24.12.2 System Exceptions

	24.13 Mapping for the Any Type
	24.14 Mapping for Certain Nested Types
	24.14.1 Example

	24.15 Mapping for Typedef
	24.15.1 Simple IDL types
	24.15.2 Complex IDL types

	24.16 Mapping Pseudo Objects to Java
	24.16.1 Introduction
	24.16.2 Certain Exceptions
	24.16.3 Environment
	24.16.4 NamedValue
	24.16.5 NVList
	24.16.6 ExceptionList
	24.16.7 Context
	24.16.8 ContextList
	24.16.9 Request
	24.16.10 ServerRequest and Dynamic Implementation
	24.16.11 TypeCode
	24.16.12 ORB
	24.16.13 CORBA::Object
	24.16.14 Current
	24.16.15 Principal

	24.17 Server-Side Mapping
	24.17.1 Introduction
	24.17.2 Transient Objects

	24.18 Java ORB Portability Interfaces
	24.18.1 Introduction
	24.18.2 Architecture
	24.18.3 Streamable APIs
	24.18.4 Streaming APIs
	24.18.5 Portability Stub Interfaces
	24.18.6 Delegate
	24.18.7 Skeleton
	24.18.8 ORB Initialization

	Appendix A - OMG IDL Tags
	Glossary
	Index

