
Volume 1, Issue 2 June 1996

Marketplace Modeling

The demand for plug-and-play business applications is strong, yet the

available options are limited. A new discipline is required to achieve the

vision of application interoperability. Marketplace modeling is a unique

design approach that could finally allow users to combine best-in-class

capabilities from multiple application vendors.

Benchmarking
Partners

Strategic Technologies

MARKETPLACE MODELING
CONTENTS

1996 BY BENCHMARKING PARTNERS, INC. I

&RQWHQWV

([HFXWLYH�6XPPDU\ �

,QWURGXFWLRQ �

The Demand for Plug-and-Play Software 3
Vendor-based Integration 3
Interoperability Initiatives 4
Technical Challenges 4

%HVW�LQ�&ODVV�3UDFWLFHV �

Modeling Goals 6
Service, Contract, and Marketplace Modeling 7
Systems Integration and Interoperability 15
Summary of Modeling Techniques 25

%HVW�LQ�&ODVV�6\VWHPV ��

Implementation Technology 26
Technology Impact on Modeling 27

&RQFOXVLRQ ��

*ORVVDU\ ��

$FURQ\P�*XLGH ��

Benchmarking Partners is an industry analysis and consulting firm. The firm is the premier provider of strategic advisory services that
enable clients to achieve strategic and tangible ROI by applying best-in-class business practices and best-in-class information technology
across the global value chain. The clients of Benchmarking Partners are leading multinational manufacturers, distributors, retailers, health
care providers, financial service companies, and information systems suppliers. In each part of the supply chain, the Benchmarking
Partners team of specialists sets the standard for in-depth, industry-specific expertise.

Benchmarking Partners, Inc. publishes Supply Chain Strategies for the sole use of Benchmarking Partners Annual Strategic Advisory
Service members. It may be duplicated and distributed to employees of the member organization only. Any other duplication,
reproduction, or distribution without prior written permission of Benchmarking Partners is prohibited. Copyright ©1996.

Reported information and opinions reflect the most accurate information available at the time of publication and are subject to change.

For more information, contact Benchmarking Partners, One Main Street, Cambridge, MA 02142 USA. Tel. (01)617/225-7800.
Internet: info@benchmarking.com

MARKETPLACE MODELING
EXECUTIVE SUMMARY

1996 BY BENCHMARKING PARTNERS, INC. 2

([HFXWLYH�6XPPDU\

Multinational corporations require business applications produced by

multiple suppliers. To interface this software to their existing information

systems, these organizations currently must pursue custom projects,

resulting in increased costs, implementation time, and maintenance effort.

As a result, many have demanded that future applications include built-in

integration interfaces, allowing plug-and-play compatibility.

Some business application vendors have formed alliances to offer

complementary products as an integrated suite. However, these fall short

of true interoperability. Vendor consortium efforts focused on

interoperability, such as the Open Applications Group (OAG), have made

only limited progress.

To carry interoperability beyond the proof-of-concept stage, developers

will need to employ interface design techniques that specifically address

interoperability issues. One such approach is called marketplace modeling.

This study describes how marketplace modeling differs from existing

modeling approaches, and evaluates how it could be used with popular

integration frameworks (such as OMG CORBA and Microsoft DCOM) to

build interoperable networks of applications.

MARKETPLACE MODELING
INTRODUCTION

1996 BY BENCHMARKING PARTNERS, INC. 3

,QWURGXFWLRQ

7KH�'HPDQG�IRU�3OXJ�DQG�3OD\�6RIWZDUH

As organizations acquire and deploy business application software, most

find that a single vendor is unable to meet all of their needs. Every

company has special demands, which could be addressed by custom, best-

of-breed, or industry-specific solutions.

With very few exceptions, however, business applications have not been

designed to be integrated with each other. It is usually up to whoever is

deploying the solution to custom configure and program interfaces that

allow them to communicate. Custom integration carries many penalties:

increased implementation time, higher project cost, and ongoing

maintenance responsibilities.

It is only reasonable, then, that customers of major business applications

have begun to demand pre-integrated software. They visualize a universe

of plug-compatible modules, which would allow them to choose the best

applications from each supplier.

9HQGRU�%DVHG�,QWHJUDWLRQ

Some application vendors have responded by establishing alliances to

create integrated packages. For example, PeopleSoft has embedded

technology from Red Pepper Software in its application suite to perform

advanced planning. SAP has defined standard application programming

interfaces (APIs) for its R/3 package to work with imaging, plant

automation, and warehouse communications. Datalogix and IMI System

ESS interact with Oracle Financials.

Vendor API-based solutions solve many of the problems of integration, but

they do not achieve the goal of plug-and-play software. All are proprietary,

MARKETPLACE MODELING
INTRODUCTION

1996 BY BENCHMARKING PARTNERS, INC. 4

because customers have only a limited ability to substitute alternative

applications. If a company selects a vendor who is not an alliance partner

as one of the components of their application environment, it must pursue

integration as a custom project.

,QWHURSHUDELOLW\�,QLWLDWLYHV

A variety of business issues have inhibited the development of a plug-

compatible business application marketplace. Ironically, the applications

that are most crucial to the process–those with a large installed base–are

the least likely to be integrated. Integration capabilities bring the threat of

rapid displacement by best-of-breed solutions. Historically, vendors have

tried to add their own best-of-breed features instead of integrating with

others.

However, there has been some recent progress. The Open Applications

Group (OAG), a consortium of major software vendors, has begun to

define standard transactions that link financial and manufacturing

packages. The OAG Integration Specification (OAGIS) that the OAG has

published to date is too narrow in scope to serve as the foundation for

integration projects. Nonetheless, some vendors have committed to

supporting OAG interfaces, and others continue to join the group.

7HFKQLFDO�&KDOOHQJHV

Just as business barriers seem to be breaking, technical challenges rise in

their place. There are no guidelines for creating interfaces for interoperable

business applications. The OAG’s approach defines interfaces around a

few transactions (such as posting inventory receipts to the general ledger)

that have widely agreed-upon semantics. Broader integration must address

semantic variations, differences in application module boundaries, and the

need to view a set of applications as a single, integrated system.

Object-oriented design, with its emphasis on modularity and data hiding

has promise, but existing object modeling approaches used for building

MARKETPLACE MODELING
INTRODUCTION

1996 BY BENCHMARKING PARTNERS, INC. 5

applications or integrating them at a single site are inadequate. Object-

based standards for integration from the OMG and Microsoft (CORBA

and DCOM) also have limitations when applied to the problem of

interoperability. A new modeling discipline is required, explicitly focused

on achieving interoperability.

This paper assesses best-in-class practices for application interoperability,

and introduces a business object modeling technique that addresses many

of the problems with existing approaches. It also evaluates CORBA and

DCOM as technologies for the deployment of interoperable environments.

What is a Business Object?

Business objects are independent building blocks that mirror the features

of an enterprise: its business documents (invoices, orders, and bills of

lading), physical resources (materials, personnel, and facilities), and

logical structures (departments, product lines, and operating concerns).

Objects within a system (such as an order and its associated material)

communicate with one another to execute business processes.

Application functions and data are hidden (“encapsulated”) behind the

objects’ interfaces, giving system designers more freedom to incorporate

new technologies without changing the way users interact with the

objects.

MARKETPLACE MODELING
BEST-IN-CLASS PRACTICES

1996 BY BENCHMARKING PARTNERS, INC. 6

%HVW�LQ�&ODVV�3UDFWLFHV

0RGHOLQJ�*RDOV

One lesson that can be learned from the vast literature on object modeling

techniques is that no specific modeling technique applies to all situations.

Not only should the object modeling technique vary depending on the

project stage, it should also vary depending on the goal of the project.

These goals may be classified into three categories of modeling:

��Analysis: understanding or explaining a business problem

�� Implementation: designing and developing a system or a part of a system

�� Integration: creating an interface between component applications

Much of the popular literature on object modeling discusses the second

category: implementing a system design. There are also prominent studies

of object-oriented requirements analysis (the first category). However, the

third category, modeling to create interfaces, is critical to application-level

interoperability. This topic has remained largely unexplored.

To develop a viable interface model, it is important to first explore how

and why interface modeling differs from implementation object modeling.

MARKETPLACE MODELING
BEST-IN-CLASS PRACTICES

1996 BY BENCHMARKING PARTNERS, INC. 7

Object Terminology

Unfortunately, the popularization of object technology has resulted in a
wealth of terms with incompatible definitions, including client, interface,
and implementation. (See Glossary.)

In discussing modeling in this paper, the term client refers to program
code that makes use of a function or group of functions. The client sends
requests to an implementation of the functions, using the rules specified
in the interface.

The term implementation refers to a program code that implements an
interface. All of the program code together is considered the
implementation.

An interface refers to a complete set of rules for accessing a function or
group of functions.

6HUYLFH��&RQWUDFW��DQG�0DUNHWSODFH

0RGHOLQJ

Service Modeling
The goal of service modeling is to create a system or part of a system.

Most conventional object modeling techniques fall into this category. In

this context, objects are designed as bundles of functionality. Objects can

be thought of as service providers, or perhaps miniature machines.

Attributes and Restrictions

Service modeling represents a tools-based approach. Its attributes and

restrictions include the following.

��Rich Functionality

In service modeling it is generally desirable to make each object as rich in

functionality as possible to satisfy users. If, for example, a development

group in charge of designing and implementing billing objects adds

attributes and operations to support alternative payment terms, those who

use the billing objects will be happier.

MARKETPLACE MODELING
BEST-IN-CLASS PRACTICES

1996 BY BENCHMARKING PARTNERS, INC. 8

��Reuse of Difficult Implementations

One of the principal goals of service modeling is reusing code, which refers

to implementing objects only once and reusing them whenever applicable.

��Cooperative Use

In service modeling, designing frameworks that require the clients to

behave correctly to guarantee the integrity of the objects is considered

acceptable. For example, it is common in service models to specify

operations such as create <object>, and destroy <object>, and require the

client to destroy the <object>’s state when finished with it. An

uncooperative client who goes into an infinite loop calling create <object>

can crash the implementation.

Object Modeling Notation

Objects can be diagrammed in a variety of ways. In the Rumbaugh

notation (used in this study), object types are represented by rectangles.

The figure below shows a simple object type that uses this notation.

Interface
Name

Attribute
Names

Operation
Names

Patient

name
id

admit

The uppermost section of the rectangle is reserved for the object type

name. The middle of the rectangle lists the attributes (data properties)

that the object contains. The bottom section lists operations: functions

that can be called to manipulate or access the object’s state in more

complex ways.

The complete set of features illustrated for an object type is called its

interface. Objects can only be accessed via the interface; all other details

about the object are private.

MARKETPLACE MODELING
BEST-IN-CLASS PRACTICES

1996 BY BENCHMARKING PARTNERS, INC. 9

An Example

In defining a service model, a simple clock service can be used as an

example. At a minimum, this clock service should be able to set or get the

time of day, so the first cut might resemble the model shown in Example 1.

Time

day
hour
minute
month
second
year

Clock

get_time
set_time(Time)

Note that as a service model, the clock interface can be visualized as an

actual clock or as a control panel wired up to an actual clock. The time can

be read by calling the get_time operation or set using the set_time

operation.

To be an effective implementation, the clock service should be more

general and functional. The first consideration might be to allow a wider

variety of output time formats. One way of achieving this would be to

define a time object that could perform conversions. The refined interface

is shown in Example 2.

Time

day
hour
minute
month
second
tcp_format
unix_format
year

convert_from_string(string)
convert_to_string(format)

Clock

get_time
set_time(Time)

With this new interface, the time can be read as year/month/

day/hour/minute/second, or as the number of seconds since January 1,

1900, or as a text string in a user-defined format, such as, “January 03,

Example 1

Clock Service

Example 2

Clock Service with Formatting Capabilities

MARKETPLACE MODELING
BEST-IN-CLASS PRACTICES

1996 BY BENCHMARKING PARTNERS, INC. 10

1996.” The time can also be set any number of ways. This is clearly a

more powerful service model than the first one.

As a last refinement, the ability to set the time as a change from the current

time may be a desirable addition. For example, perhaps the clock could be

turned back an hour for a seasonal time change. Given the latest interface,

it makes the most sense to add these features to the time object. The final

service model for a clock is illustrated in Example 3.

Clock

get_time
set_time(Time)

Time

add_years(amount)
add_months(amount)
add_seconds(amount)
add_weeks(amount)
day
hour
minute
month
second
tcp_format
unix_format
year

convert_from_string(string)
convert_to_string(format)

A clock service that conformed to this interface would be a useful, flexible

tool. If a development group produced an implementation, clients would

probably use it whenever they needed a clock service, which would provide

the benefit of code reuse. For these reasons, this particular clock service is

a good service model.

Contract Modeling
Contract modeling is critically important to the software marketplace. It is

also the cornerstone of marketplace modeling, the interoperability

architecture presented later in this study.

In contract modeling, the designer still defines sets of objects that work

together to solve problems in a problem domain. However, the primary

goal is to produce a contract, not a piece of functionality. This approach

might also be thought of as a standards-based approach, in contrast to the

Example 3

Clock Service with Formatting and

Relative Time Calculation

MARKETPLACE MODELING
BEST-IN-CLASS PRACTICES

1996 BY BENCHMARKING PARTNERS, INC. 11

tools-based approach. Although the goal is superficially very similar to the

goal of service modeling, many subtle differences exist.

To explain the difference between contract and service modeling, the

example of an automobile design project follows. In this case, the

automobile’s design is almost complete, but the way to pour in fuel has not

yet been designed. A service modeler would decide that there should be as

many ways to fuel the car as possible, so that the driver could add fuel

under any circumstances. In order to do the best possible job, the service

modeler would redesign the engine so that it works with diesel, propane,

hydrogen or conventional gasoline. The modeler would make a large hole

in the gas tank to make sure that any size nozzle would fit. In addition, for

extra flexibility, the modeler would add a nozzle with a built-in pump to

the car, in case the driver needs to refuel directly from a gasoline truck that

does not have its own nozzle.

The modeler could rest, having done a complete job. The department in

charge of designing gas station pumps could interface to the car with a

minimum of effort. The pumps designers would be very thankful that their

job was simplified.

On the other hand, a contract modeler would have a completely different

viewpoint and goal. The job would not be to produce any actual machines

(except for proof-of-concept purposes). Instead, the contract modeler

would assume that other organizations would produce the automobiles and

gas pumps. The modeler’s job would be to write a manual for the

automobile producers stating the steps they must follow to ensure that the

car can be refueled. The modeler then would produce a second manual for

the gas pump producers stating the steps they must take to make their gas

pumps work on all automobiles.

If the contract modeler decided that the automobile producers have to make

cars with multiple fuel capability and that they had to provide a large fuel

entry hole as well as a hose and nozzle, the automobile producers would

not be thankful. The fuel pump producers would probably not be thankful

either, since they would be unsure how to create good fuel pumps. The

MARKETPLACE MODELING
BEST-IN-CLASS PRACTICES

1996 BY BENCHMARKING PARTNERS, INC. 12

situation would likely result in wasted effort, because there would be no

simple, clear, minimal contract between the auto makers and fuel pump

makers.

On the other hand, if the auto manual said simply “cars must have a hole in

their gas tank that is 2.25-2.50 inches in diameter,” and the fuel pump

manual said “fuel pumps must have a nozzle 1.75-2.00 inches in

diameter,” the modeler would have catalyzed the industry. The rules would

be simple to follow for both automobile and fuel pump makers, and as long

as everyone followed the rules, there would not be any compatibility

problems.

Contract versus Service Modeling
��Simple Contracts versus Rich Functionality

When creating contract models, it is not generally desirable to make each

object as rich in functionality as possible. Instead, designers must make the

contract between client and provider as simple as possible.

��Choice of Implementations versus Reuse

Typically, each interface will have many implementations and many users,

and these users will be in different enterprises. As a result, a marketplace

evolves around the interface.

The goal of contract modeling is not to reuse a given piece of code as much

as possible, but rather to make sure that users can choose from a wide

variety of implementations.

If the interface is too difficult to implement, the marketplace will suffer

because few will be able to create implementations. If the interface is easy

to implement but not useful enough, the marketplace will suffer because

few will be interested in using the implementation. Therefore, a careful

balance must be struck. While service modelers must be careful to expose

only the features that they can implement, contract modelers must specify

only those features that would be reasonable in any implementation.

MARKETPLACE MODELING
BEST-IN-CLASS PRACTICES

1996 BY BENCHMARKING PARTNERS, INC. 13

�� Interface Design

In contract modeling, reliable interfaces must be designed. If clients of the

interface operate incorrectly, they must not be able to inhibit the correct

operation of the implementation. This is crucial since implementations may

be shared by unrelated clients.

The responsibility of the interface designer is to make it possible to create

perfectly reliable implementations. Obviously, some providers may create

bad implementations, but the designer must make sure that the interface

design does not preclude the possibility of building good ones.

In sum, designers must account in the design for adversarial clients who

will try their best to crash the implementation. This is in contrast to service

modeling, where designers can assume that the client is cooperative.

Contract Modeling in Perspective

Good contract models make it possible for users to write code that will be

adaptable to future technology. For example, code written today to open

database connectivity (ODBC) and Winsock interfaces will work with

many of tomorrow’s databases and TCP/IP networks, because of wide

agreement on a minimal contract between implementors and users.

Contract models also make it possible for implementers to write more

general-purpose code. If an implementation team creates a new database

and writes an ODBC driver for it, its database will automatically work

with many pre-existing applications. In sum, contract models provide

points of interoperability and help the software marketplace operate more

efficiently.

Contract models often take on a life of their own. Once there are thriving

marketplaces of implementers and users, the interfaces themselves resist

change. New implementations of the interface cannot remove or change

functionality without endangering compatibility with the many existing

clients of the interface. Implementers also cannot add functionality because

responsible users avoid new functions in order to make their code work

with as many implementations as possible. This reaction reduces the

MARKETPLACE MODELING
BEST-IN-CLASS PRACTICES

1996 BY BENCHMARKING PARTNERS, INC. 14

incentive to add extra functions. However, if a new, very compelling

capability is added to an interface, people will be willing to test for the

presence of the capability and have their code work both ways. When the

Netscape Communications Corporation introduced nonstandard but

compelling extensions to HTML, many implementations soon adopted

them.

Contract Model Example
A contract model of a clock is a useful example of the contrast between

contract and service modeling. For this clock, the goal is still to make a

powerful, useful model, but the rules are different. A simple contract will

make clocks straightforward to implement and to use. It will also define a

marketplace in which people could compete to produce and sell clock

implementations. Users can design their programs, and then choose a best-

of-breed clock implementation later, knowing that it will be compatible.

To design the clock service, the modeler should first investigate whether

there is a representation of time that is standard or very popular. If there is

a single popular standard that would satisfy most users, there is no need to

add anything to the model, since that would just make it harder for

implementers and not add significant value to users.

For this example, one might consider the TCP/IP standard (seconds since

1/1/1900) or the UNIX standard (seconds since 1/1/1970), which are both

in wide use. Alternatively, one could use the relevant ISO time/date

representation standard (ISO 8601) or extract standards from time-related

protocols such as NTP, which is used for synchronizing clocks across the

Internet. Formal standards such as ISO 8601 have the advantage that many

people have invested a great deal of time thinking about issues that may

not be obvious at first. However, ISO 8601 in particular allows too many

ambiguities and partially specified dates for this clock service example.

For this clock service, the TCP/IP standard is adequate.

The final representation may be:

MARKETPLACE MODELING
BEST-IN-CLASS PRACTICES

1996 BY BENCHMARKING PARTNERS, INC. 15

Time

epoch

Clock

get_time
set_time(Time)

This is now a very simple implementation. It may not meet all requirements

for all users, but it is very much in the spirit of the auto refueling solution

discussed earlier. Although it does not seem to be a particularly powerful

interface, a programmer writing a real production application would have

no trouble using this as a clock service. Furthermore, companies in the

business of writing clock-related software would find this interface simple

to support.

This example may appear simplistic, because a clock is a relatively simple

device. However, when modeling complex applications with tens of

thousands of functions, keeping the interface minimal is even more critical.

Common Ground between Service and Contract Modeling
Although the differences between contract and service modeling are

significant, they have much in common; in fact, much of the current

literature about object modeling applies to both types. Both attempt to

manage complexity by using techniques such as modular decomposition,

abstraction, and hierarchy. Both modeling techniques stress the separation

between interface and implementation, thereby isolating the client from

irrelevant implementation details.

The differences lie only in the subtle decisions about which functions

belong in each interface. By foregoing non-essential features, the modeler

arrives at a simple, widely implementable interface.

6\VWHPV�,QWHJUDWLRQ�DQG�,QWHURSHUDELOLW\

While contracts must be made at the component object level, users

experience integration at the application level. The goal of systems

integration is to make a set of software applications work together to

provide more value than the individual applications could separately (as

Example 4

Minimal Clock Interface

MARKETPLACE MODELING
BEST-IN-CLASS PRACTICES

1996 BY BENCHMARKING PARTNERS, INC. 16

shown in Figure 1). This value can be added by creating new functions or

reconfiguring the applications.

Requests in vendor proprietary formats

$ % &

Software application

Source: Benchmarking Partners

The result of creating new functions that are not provided by any of the

individual systems is that functions that require processing by more than

one of the applications are handled by the integration code, and not by the

applications themselves. These delta functions result in a superset system.

Figure 2 illustrates an object-oriented integration environment with delta

functions.

Figure 1

Application Integration

MARKETPLACE MODELING
BEST-IN-CLASS PRACTICES

1996 BY BENCHMARKING PARTNERS, INC. 17

$ % &

{ ________

}

{ ________

}

Requests in vendor proprietary formats

Software application
Requests in generic format

{ ________

}

{ ________

} Integration code

Object model

Source: Benchmarking Partners

The second strategy for systems integration is to configure the applications

so that they automatically remain synchronized. An example is a set of

applications: one handles production scheduling, while another performs

maintenance. The integration code could be designed so that if a task is

scheduled in one application, the other application is automatically notified

and marks the appropriate resources as unavailable. In such a case, no new

functions are created, but the integration code adds value.

Since the integrated system will have capabilities (i.e., delta functionality)

that were unavailable in any of the original applications, additional

interfaces for the integrated system must first be defined. Contract

modeling can be used to design these interfaces. The integration can then

be performed by creating an implementation of the new contract models.

For example, the scheduling system could be integrated with a cost

accounting system to determine detailed costs for specific tasks.

Calculating the costs incurred for a resource during a specific time period

would require a new delta function.

Once the implementation is complete, programmers can write integrated

applications. If they are using a delta function, they use the rules specified

Figure 2

Model-Based Integration

MARKETPLACE MODELING
BEST-IN-CLASS PRACTICES

1996 BY BENCHMARKING PARTNERS, INC. 18

in the contract model. If they are using a nondelta function (calculating the

standard cost for a resource, or scheduling a task), they use the original

proprietary API provided by the vendor. The provision of contract models

for nondelta functions would certainly be beneficial as well, but

development of these has a much lower priority. It is the delta functions

that the client currently cannot perform at all.

When the contract model for the integration is complete, it is possible for a

marketplace of integrations to emerge. Another vendor can replicate the

integration (conforming to the same contract model and using the same

proprietary APIs), add higher performance or reliability, and then charge

more money for it. Furthermore, vendors can integrate different but

equivalent applications using the same contract model but with different

proprietary APIs. In such a case, the integrated applications can in theory

work without change on a different set of underlying applications.

However, to the extent that the integrated applications use nondelta

functions, they will not be able to switch easily to a different set of

applications.

If the contract models are made powerful enough that useful integrated

applications can be written using only the contract models, the contract

models will work with any set of underlying applications. It will be

necessary only to create new implementations of the integration for each

set of applications. Each integration must conform to the contract model

and must use whichever proprietary APIs are appropriate for the

underlying applications. Figure 3 shows two alternative implementations of

the same contract model, one supported by three applications, the other by

two applications.

MARKETPLACE MODELING
BEST-IN-CLASS PRACTICES

1996 BY BENCHMARKING PARTNERS, INC. 19

Requests in vendor proprietary formats

Software application

Requests in generic format

{ ________

}

{ ________

}

Integration code

Object model

$ % &

{ ________

}

{ ________

}

{ ________

}

{ ________

}

('

Source: Benchmarking Partners

From Integration to Interoperability
Any code that uses contract models instead of proprietary APIs becomes

more widely applicable and longer lasting. For example, an integrated

application can be written once and work with a wide variety of underlying

applications if it makes calls that conform to the contract model only.

The difficulty is that in order to change the set of underlying applications

(for example to another set that provides equivalent functionality), a new

implementation of the integration has to be created. This is typically a

large development effort.

The idea of interoperability is that an integration can be performed once,

then can be used with a variety of combinations of underlying applications.

This makes sense in theory. After all, if one integrates a scheduler and a

costing system using specially designed logic, it ought to be possible to

substitute a different scheduler without having to rewrite the integration

logic substantially.

Contract models allow clients (that is, anything or anyone consuming a

standard) to be widely applicable and adaptable to future technology.

Figure 3

Alternative Implementations of

a Single Contract

MARKETPLACE MODELING
BEST-IN-CLASS PRACTICES

1996 BY BENCHMARKING PARTNERS, INC. 20

Furthermore, contract models allow for the existence of a marketplace of

substitutable implementations. The solution to interoperability is therefore

to introduce another layer of contract models, and make the integration

logic use only contract models to access the underlying applications. For

example, the delta function discussed earlier, which calculates costs for

resources used in an appointment would use the underlying contract models

for costing and scheduling, respectively. The integration logic becomes a

client of the new contract models, and the underlying applications become

the marketplace of substitutable implementations. Figure 4 illustrates a

multilayer integration environment that uses contract models at two levels

to achieve interoperability.

VB DemoVB Demo

IDX SchedulingIDX Scheduling

TSI MercatorTSI Mercator

3M LDR3M LDR

SAP R/3SAP R/3

Paper ChasePaper Chase

QMRQMR

CORBA serverCORBA server

CORBA serverCORBA server

CORBA serverCORBA server

CORBA serverCORBA server

CORBA serverCORBA server

CORBA serverCORBA server

CORBA serverCORBA server

CORBA serverCORBA server

OLE GatewayOLE Gateway

OLE GatewayOLE Gateway

CORBA requests via TCP/IP

Requests in vendor proprietary formats

OLE 2.0 requests

OLE-CORBA
Gateways

Logical
object models

Literal
object models Applications

Source: Benchmarking Partners

Marketplace Modeling
Creating layered object models that promote interoperable, integrated

systems is called marketplace modeling. A service that can be

implemented several times by different vendors, and offered at different

levels of quality and price, is called a marketplace. Users can first design

systems that use this service, then pick a vendor. As long as all users and

implementers follow the relevant contract models, all systems will be

compatible.

Figure 4

Interoperability Architecture

MARKETPLACE MODELING
BEST-IN-CLASS PRACTICES

1996 BY BENCHMARKING PARTNERS, INC. 21

Each contract model makes a miniature marketplace possible.

Consequently, an objective of marketplace modeling is to use contract

models as often as possible to promote miniature marketplaces. This is

good for everyone: large vendors can create implementations for many

marketplaces, small vendors can focus on a single marketplace, and

programmers can choose best-of-breed technology for each miniature

marketplace.

For interoperable systems, a marketplace of integrations and a marketplace

for each underlying application type is desirable. Such integration would

allow a company to implement a costing workstation in-house, buy a

scheduler from one vendor, a costing system from another vendor, and an

integration from a third vendor—all of which would work together. If a

better integration were developed, the company could purchase the new

integration, which would automatically work with the existing costing

workstation, scheduler and costing system. Similarly, the scheduler would

be replaceable without impacting the rest of the system.

It follows that interoperability requires layered contract models. The

implementation of high-level contract models works by combining program

logic with calls to lower-level contract models. In the company case

scenario above, for instance, the following would be required: a contract

model for the integration functionality, a contract model for the scheduler,

and a contract model for the costing system.

In sum, marketplace modeling means using layered contract models to

promote an efficient software marketplace built around individual business

objects.

Literal and Logical Models for Interoperability

Although the general principles of contract modeling always apply,

different refinements are appropriate at each level of contract-model

layering. Based on the nature of these refinements, contract models can be

classified as follows.

MARKETPLACE MODELING
BEST-IN-CLASS PRACTICES

1996 BY BENCHMARKING PARTNERS, INC. 22

Literal Models

Low-level contract models that are designed to promote marketplaces

around individual applications (schedulers, clinical data systems, etc.) are

called literal models because they are not very abstract. Marketplaces at

this level are available already; for instance, a hospital can shop for a

“scheduling system.” However, these marketplaces do not work smoothly,

since one scheduler cannot be easily substituted for another.

Low-level contract models are usually created by examining multiple

applications in an existing marketplace and modeling an archetypal version

of the application. Powerful new abstractions are not desirable for this

level; rather, the goal is to standardize an abstraction that is already

crudely formed. Consequently, the fairly literal expression of the

underlying applications is termed literal model.

Logical Models

Higher-level contract models specify complete integrated systems and

provide abstractions that cross the boundaries of the underlying

applications. These are called logical models, since they are abstractions

over the lower-level models. In order to be widely applicable and

compatible with future technology, implementations of logical models must

never use proprietary APIs of specific applications. Rather, the

implementations of logical models should be a combination of logic

(calculations, decisions, and sequencing) with calls to implementations of

literal models. Business objects, such as orders, customers, or products

play a role in logical models.

Traditionally, business applications have been decomposed along

functional lines. They perform billing or scheduling, rather than taking a

global business object view of the scheduled and billed for item. Literal

models require object models that respect the functional boundaries of the

applications they represent. Only limited concepts of each business object

are visible. For example, the literal model for scheduling could include a

resource object, whose meaning could be “important item that must be

scheduled.” The literal model for billing could contain a shipment object

MARKETPLACE MODELING
BEST-IN-CLASS PRACTICES

1996 BY BENCHMARKING PARTNERS, INC. 23

whose semantics could be “important item on whose behalf bills must be

processed.” Similarly, the idea of a shipment business object exists in the

logical (integration) contract model. The business object implements all

business concepts related to the idea of a shipment, and the implementation

combines integration logic with calls to the literal objects related to

shipments.

In sum, literal and logical models work together to construct marketplace

models in two levels, promoting marketplaces of interoperable applications

and integration frameworks.

Responsibilities and Benefits of Marketplace Modeling

Once literal models are accepted in the marketplace, individual application

vendors should become responsible for the creation of implementations of

the literal models relevant to their applications.

Once that occurs, learning the APIs of specific applications will be

unnecessary. If one needed to interface to a scheduler, one could call

functions using the rules in the scheduling literal model. Any scheduling

application could then be used, as long as the vendor provided an

implementation of the scheduling literal model.

The implementation by vendors of relevant literal models would, therefore,

become the requirement for conformance to the framework standard.

Literal Models as Application Subsets

Since applications can be very complex and different from one another, it

may seem impossible to create good literal models. However, the task of

creating literal models is manageable because it is not necessary to model

whole applications. It is only necessary to model those parts of the

application that must be accessed electronically (by another application or

by a logical model).

For example, it may be necessary in the model for a patient scheduling

system to include functions for creating and looking up patient

appointments. However, including functions for entering a new patient into

the system may be unnecessary. Instead, policy can ensure that new

MARKETPLACE MODELING
BEST-IN-CLASS PRACTICES

1996 BY BENCHMARKING PARTNERS, INC. 24

patients are always entered using the original client interface. Or perhaps

an electronic interface can enter new patients while the original interface

backs up and restores the database. The literal models need to deal only

with selected subsets of the application functionality.

Fine-Grained Literal Models

The wide variety of application capabilities provides another method for

simplifying literal models. In some cases, it may be impossible to come up

with sensible literal models that fit the applications. The solution is to

choose finer-grained literal models allowing the underlying applications

each to implement more than one model.

For example, if application A implements patient scheduling and clinical

data functions, and application B implements clinical data and financial

functions, the solution is to define three literal models (patient scheduling,

clinical data, and financial). Then application A implements the first two

models and application B implements the last two.

Modeling Paradoxes

The main difficulty in creating literal models is the wide variation in

application capability. A model with fewer features enables conformity

with a greater number of applications but will be a less powerful model. A

model with more features will be more useful but will enable conformity

with fewer applications. This paradox is typical of contract modeling.

In the long run, it may be necessary to introduce levels of conformance.

However, if there are too many different levels of conformance, the

marketplace can easily be damaged, since few vendors will implement the

highest conformance level, and users will lose confidence in the model. On

the other hand, if there are too few levels of conformance the resulting

model will be the least common denominator.

The simplest approach is to keep things simple by having only one

conformance level for each literal model, and go with a least common

denominator approach. If simple literal models suffice for doing reasonable

MARKETPLACE MODELING
BEST-IN-CLASS PRACTICES

1996 BY BENCHMARKING PARTNERS, INC. 25

integration projects, the concept will be proved, and others can develop

more elaborate literal models.

6XPPDU\�RI�0RGHOLQJ�7HFKQLTXHV

Most object modelers today are involved in service modeling. Contract

modeling emphasizes different priorities. Contract modeling is the best

approach for creating interfaces, rather than systems.

Using contract models in a layered fashion promotes interoperability and a

fine-grained, efficient marketplace. The concept of layering contract

models is termed marketplace modeling.

A simple use of marketplace modeling is a two-tiered structure of contract

models. Low-level contract models (that is, literal models) are used to

promote application interoperability. High-level contract models, (that is,

logical models) are used to promote interoperability of system integration

software.

Logical models contain business objects. Literal models contain limited

versions of business objects, as they pertain to particular application

functions.

MARKETPLACE MODELING
BEST-IN-CLASS SYSTEMS

1996 BY BENCHMARKING PARTNERS, INC. 26

%HVW�LQ�&ODVV�6\VWHPV

,PSOHPHQWDWLRQ�7HFKQRORJ\

Designing “universal” business objects—such as schedules and

resources—that work across multiple implementations is the single greatest

interoperability challenge. Technological details rarely come to play in the

selection of the features that will appear in an object’s interface.

However, technology eventually comes into the picture. Once the standard

schedule is defined, the rules need to be specified. For instance, how does a

client request a schedule? How does a scheduling application receive the

request and return a schedule?

Since this technology selection will become part of each interface, the

designer must be careful not to accidentally create platform limitations.

Engineers should be able to create conforming scheduler implementations

in any programming language or operating system. Furthermore, they

should be able to send requests from any programming language or

operating system. Steering away from such limitations would provide the

maximum amount of choice to users and the largest possible market for

implementers.

Although it is reasonable to design ad hoc TCP/IP based interfaces that

can operate almost anywhere (many popular protocols have been designed

this way), higher-level tools that can read simple interface specifications

and generate the appropriate networking code are available. High level

tools are a good approach if the interface specification is powerful enough,

published, and widely accepted, and if the TCP/IP message formats are

also published and widely accepted.

MARKETPLACE MODELING
BEST-IN-CLASS SYSTEMS

1996 BY BENCHMARKING PARTNERS, INC. 27

Candidates for specification standards include:

��OSF DCE: A system based on remote procedure calls

��OMG CORBA: An object-oriented system in which object references can

be sent from system to system and method invocations can take place

across application boundaries using TCP/IP

�� ISO OSI Abstract Syntax Notation One (ASN.1) over an asynchronous

message passing technology based on TCP/IP: ASN.1 is a generic notation

standardized by the ISO for the specification of data types and values;

frequently used in telecommunication protocols and applications

��XDR over an asynchronous message passing technology based on TCP/IP:

XDR is another standard for the description and encoding of data, similar

to ASN.1 but differing in the use of implicit versus explicit typing

Undoubtedly, many other possibilities exist. CORBA is the most attractive

specification standard because it is object-oriented, has wide industry

support and many commercial vendors, and has recently come out with a

standardized TCP/IP encoding scheme. The object-oriented nature of

CORBA makes it reasonably expressive, and also makes it work well with

currently popular object-oriented design tools.

7HFKQRORJ\�,PSDFW�RQ�0RGHOLQJ

Ultimately, technology has a big impact on object modeling. It is naive to

claim that all objects are essentially the same concept. A cursory

examination of several object-oriented languages (for example C++,

Smalltalk, CLOS and Self) will reveal vastly different concepts about what

objects really are. When designing a large interoperable system, the

middleware technology must be chosen before the detailed contract models

are designed. The middleware technology will determine the set of idioms

that can be used safely in the contract models.

MARKETPLACE MODELING
BEST-IN-CLASS SYSTEMS

1996 BY BENCHMARKING PARTNERS, INC. 28

Impact of CORBA on Modeling

Resource Management

Models must make it possible to design perfectly reliable implementations.

Resource management is problematic in CORBA because it does not

provide any mechanisms that facilitate the task of distributed resource

management.1 If a CORBA server creates an object that exists only to

service a particular client during a particular session, the server is

dependent on the client to notify it when the object can be destroyed and its

resources reclaimed.

This is an extremely serious problem. If the client violates its side of the

contract by crashing, for example, the server will have an object allocated

that will never be freed. An adversarial client can crash the server simply

by going into a loop allocating objects and not freeing them. The server

cannot free the object after a time-out period either, because the client may

have saved the object reference in a database and will depend on it in the

future.

If a very large, complex distributed system is built using many layered

interfaces, the consequences of an accidental deletion of an important

object can be very serious. Furthermore, if one increases safety by

increasing the “time-out deadlines,” the amount of wasted storage can be

very high. For example, if a single incorrectly-written client creates a

garbage object every five minutes, and the time-out is one month, over the

long run there will be a constant overhead of 8,640 garbage objects per

running client. Reference counting is not a good solution to this problem

either, since it depends on a correctly programmed client.

This rules out the popular object-oriented idiom that uses iterators to

traverse complex structures. Any CORBA server that uses the iterator

idiom can be crashed by an adversarial client program. Many idioms that

use analogous principles or “temporary” objects are also ruled out. For

example, the notion of a database query object—which is created by a

1 The best CORBA vendors have provided some very crude tools for distributed resource management,

which are not part of the CORBA standard.

MARKETPLACE MODELING
BEST-IN-CLASS SYSTEMS

1996 BY BENCHMARKING PARTNERS, INC. 29

client, manipulated to represent a query, and submitted to a database—

suffers from this same problem.

Stateless idioms must be substituted in these situations. For example,

traversing an array can be done using a count and a fetch-by-index

operation, rather than an iterator.

Structured Polymorphic Values

Another failing of CORBA is that it does not support polymorphism in

values. Objects are polymorphic, meaning that an object reference to a Car

can be manipulated uniformly, whether it refers to a Mercedes or a Honda.

However, there is no equivalent for values. For instance, one might want to

send an e-mail message from one system to another and want to define a

Message value.2 In CORBA, one possible solution is to define a structured

data type (struct). However, if one later wanted to define a DatedMessage

as a type of message with an extra date field, it would be desirable to use

some sort of inheritance mechanism for this. Then if one sent a

DatedMessage to a server expecting a Message, the date information

would simply be ignored. However, inheritance does not work on structs in

CORBA, so this type of polymorphism cannot be achieved.3

Another possible solution is to use the CORBA any construct, which does

provide value polymorphism. However, the use of the any type hides

structure from the CORBA interface definition language. The

interpretation of any objects is up to the runtime code in the client and

server. This means that the interface must be documented in written

language, and eliminates the convenience and safety of the CORBA code

generation facilities.

2 Not an object, since in CORBA objects are not mobile and have an identity other than their value.

3 Interestingly, C++ object-oriented language almost permits this type of thing, although not in a
distributed system. Objects can be passed by value, except that a slicing problem occurs preventing
polymorphism from working correctly unless some special programming idioms are brought into
play. To be fair, most object-oriented languages do not support value objects at all. It is not so
important in a monolithic system, since passing by value or reference does not have the dramatic
performance impact it has in a distributed system. Also, global resource management policies (such as
garbage collection) are often supported, so that reference-passing disciplines do not make servers
vulnerable to incorrect clients.

MARKETPLACE MODELING
BEST-IN-CLASS SYSTEMS

1996 BY BENCHMARKING PARTNERS, INC. 30

Finally there are some creative solutions for creating a CORBA union of

various structs, much like the C or C++ concept of union. This is

polymorphic, but loses some of the benefits of object orientation.

The Object Management Group is currently collecting proposals for

extending CORBA to include polymorphic values, but it will be some time

before standard implementations become available.

Impact of Microsoft COM on Modeling
Another way to design contract models and implement them is using the

Microsoft Component Object Model (COM) technology found in its OLE

and DCOM protocols. With this technology, one can build components,

which are chunks of functionality that can be distributed like application

software. Microsoft advertises that component technology is superior to

object technology because object technology does not provide standardized,

reusable chunks of functionality. Today, for example, there is a thriving

marketplace of widget components for graphical applications based on

OLE (ActiveX controls). One can purchase a diskette full of these and use

them in a Visual Basic program.

COM achieves plug and play interoperability, albeit in limited problem

domains. However, Microsoft’s conclusion that components are better than

objects is an oversimplification. Components are really a combination of:

��An implied contract model based on Microsoft’s binary standard for OLE

components

��An implementation of that implied contract model

These contract models can be identified in studying a particular

marketplace of OLE components. For example, there is a marketplace of

graphical listboxes. If one wants to create a new graphical listbox

component and sell it, one will find that there is already an implied contract

model defined (originating at Microsoft, where the first listbox component

was developed). Therefore, third-party listboxes must be developed using

this contract model, which implies using Microsoft’s OLE technology and

implementing certain specific methods and properties.

MARKETPLACE MODELING
BEST-IN-CLASS SYSTEMS

1996 BY BENCHMARKING PARTNERS, INC. 31

By developing and selling many OLE components along with powerful

tools that use those components (for example Excel and Visual Basic),

Microsoft is creating large numbers of contract models, which immediately

become de facto standards. The real value of the COM technology is in

these contract models. The fact that popular applications use the models

validates the models and makes creating and marketing alternative

implementations attractive propositions.

Microsoft is currently working on defining COM objects (contract models)

for application-level functionality (e.g., healthcare components, accounting

components). If they succeed in creating a viable component marketplace

at this level, the application software industry will benefit greatly.

Relationship to CORBA

Technically, COM has much in common with CORBA, yet CORBA is

making slower progress for several reasons. First, a well-defined point of

interoperability between CORBA implementations did not exist for a long

time. OMG has now defined an interoperability specification that

standardizes the TCP/IP messages sent between CORBA clients and

servers. Before this development, CORBA clients could only communicate

with CORBA servers written by the same vendor. (In fact, that is still the

case, since most CORBA vendors have not conformed to the

interoperability specification yet.) COM, on the other hand, had the

advantage of platform uniformity. Since most COM users are on Microsoft

platforms and Microsoft is the only COM development kit vendor, no need

existed for achieving consensus on the encoding schemes.

Second, perhaps because of the fragmented CORBA marketplace, no

software vendor has taken the initiative to develop a powerful, universally

compelling suite of UNIX applications organized as a network of CORBA

components. Because no vendors have invested in this “starter set” of

CORBA-based contract models, organizations have been uncertain about

CORBA’s viability and have been hesitant to invest in CORBA

technology.

MARKETPLACE MODELING
CONCLUSION

1996 BY BENCHMARKING PARTNERS, INC. 32

&RQFOXVLRQ

Marketplace modeling is not a radical departure from current techniques.

Rather, it is a set of subtle improvements to current object modeling

approaches that takes into account the functional orientation and varying

capabilities of application packages.

Plug-and-play interoperability is difficult to achieve, and despite advances

in methods and technology, it is likely to stay that way. Few developers are

aware of the principles of constructing models as simple contracts between

implementors and users. Fewer still have considered the impact of selecting

a standard such as CORBA or DCOM on the inherent reliability of their

distributed designs. The hope for interoperability hinges upon the

exploding demands of the Internet, and a new generation of tools, which

use dynamic specification, interpreted execution, and distributed garbage

collection to create flexible, reliable systems.

MARKETPLACE MODELING
GLOSSARY

1996 BY BENCHMARKING PARTNERS, INC. 33

*ORVVDU\

Service A useful function or group of functions.

Interface A complete set of rules for accessing a service. Interfaces can
be specified in many ways: Interface Definition Language code of some
kind, pictures in an object modeling tool, or lists of function headers. All of
these techniques must be supplemented by written explanations, since they
are usually incomplete by themselves. Interfaces are usually optimized
either for use by humans (e.g., graphical user interfaces) or by programs
(e.g., application programming interfaces).

Model Synonym for interface. The term model suggests a graphical
representation of the interface, but this is not always the case.

Implementation A program that implements an interface. All of the
program code together is considered the implementation. For example, if
the implementation is written in C++, the header files, source files, make
files and any other related files, taken together, constitute the
implementation. (Header files are sometimes considered an “interface”;
that definition is not used in this paper.)

Client Program code that makes use of a service. The client sends
requests to an implementation of the service, using the rules specified in the
interface. If the client and the implementation both follow the interface
rules in the interface, they will work together properly. If a better
implementation comes along, the client can presumably switch to the new
implementation since the new implementation must conform to the same
interface.

User A person operating a client application.

Class A term whose many inconsistent definitions render it useless. This
paper only refers to the very specific term C++ class.

Modeling The act of creating a model (interface).

Service Modeling Creating a model (interface) with the goal of
implementing a system or part of a system. This term is intended to refer to
traditional object modeling as it is described in the literature. The name
service modeling is derived from the assumption that an object is an
abstraction that encapsulates a set of services.

Contract Modeling Creating a model (interface) with the goal of
specifying an interface. The name is derived from the idea that an object
definition is a contract that both users and implementers must honor.

Marketplace Modeling A way of layering contract models to achieve
application interoperability.

MARKETPLACE MODELING
ACRONYM GUIDE

1996 BY BENCHMARKING PARTNERS, INC. 34

$FURQ\P�*XLGH

API application programming interface

COM Component Object Model

CORBA Common Object Request Broker Architecture

DCOM Distributed Common Object Model

IDL interface definition language

OAG Open Applications Group

OAGIS Open Applications Group Integration Specification

ODBC open database connectivity

OMG Object Management Group

